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ABSTRACT

Experiments in the system olivine-albite-anorthite were conducted to investigate

the dependence on oxidation state of nickel and cobalt partitioning between olivine and

silicate melt. DNi olivlliq and DCooliV/liq show no dependence on oxygen fugacity at

conditions more oxidizing than metal saturation ( -10.3 <log f02 < -4.9, and -12.2 <log

f02< -5.1 respectively). Upon metal saturation, however, both nickel and cobalt decrease

in their affinity for olivine. DNioliv/liq drops by a factor of 1.8, from 6.8 to 3.8;

Deoliv/liq similarly drops from 2.8 to 1.65. The change in partitioning behavior may

indicate that nickel and cobalt are present in the melt in a mixed valence state.

Thesis Supervisor: Dr. Timothy L.Grove, Professor of Geology



INTRODUCTION

Nickel partitioning between olivine and silicate melt is a geochemical tool useful

for modelling crystallization processes (Hedge 1971, Taylor et al. 1969, Irvine 1974),

identifying primary basaltic liquids (Hart and Davis 1978, Clarke and O'Hara 1979) and

temperatures of crystallization of basalts (Leemann 1974). The dependence of nickel

partitioning on temperature and liquid composition has been thoroughly investigated, early

studies examining temperature dependence (Leemann 1974, Mysen 1976, Duke 1976)

while later work focussed on separating temperature and compositional effects (Hart and

Davis 1978) and on the effect of more chemically complex systems (Kinzler et al. 1990).

This study extends previous work by exploring the dependence of nickel partitioning on

oxidation state. The experimental results can provide information useful to an

understanding of such diverse geologic phenomena as the chemical evolution of planetary

interiors and melt structure.

A preliminary study of the dependence of nickel partitioning on oxygen fugacity

(Ehlers et al., submitted) shows a step drop in the olivine/liquid partition coefficient for

nickel (Dol/liqNi) upon metal saturation. To test the hypothesis that the non-linear change

in DOl/iqNi is due to the presence of NiO in the melt, subsequent experiments on cobalt

partitioning were conducted. Ehlers et al. did not observe a step drop in Dol/liqCo over the

range in oxygen fugacity covered by the nickel experiments, but metal saturation was not

achieved. This study undertakes to expand the range of oxygen fugacity investigated to

include saturation with cobalt metal. For the nickel experiments, metal saturation occurred

at four log units below the Ni/NiO buffer; the target f0 2 for the cobalt experiments in this

study was therefore chosen to be -12.2, four log units below the Co/CoO buffer. An

additional nickel experiment was done to better define the point of change in the nickel

partition coefficient, given the scatter in the original data.



EXPERIMENTAL PROCEDURES

Starting Materials

A powder mix similar in composition to that of a barred olivine chondrule from an

ordinary chondrite (Lux et al. 1981) was synthesized from end member components F086

(67.49%), Ab (27.03%), and a pseudo-An (5.48%), after Ehlers et al. (submitted) and

Kinzler et al. (1990). The Fo, Fa, and pseudo-An components were synthesized from

Johnson Matthey high purity oxides as reported in Kinzler et al. (1990). The pseudo-An

component incorporates 35% more CaO than stoichiometric anorthite plagioclase in order to

maintain a non-plagioclase (i.e. basaltic) liquid composition (Watson 1977). Powdered

Amelia albite was used for the Ab component to reduce Na2O volatilization (Kinzler et al.

1990). Addition of sodium as crystalline plagioclase is thought to enhance the formation of

a plagioclase-like structural component in the melt that inhibits the release of sodium to

furnace gas. The trace elements Co and Ni were added as oxides to the synthetic chondrule

mix in amounts equal to 1-2% of total weight. All mixes were ground under alcohol for 4-

6 hours in an agate mortar and pestle.

CONTAINERS

In order to circumvent problems posed by Fe-Mg exchange with containers,

crucibles fashioned from San Carlos olivine were used, as in Ehlers et al. (submitted). San

Carlos olivine is of the composition Fo89-9 1 and will be in equilbrium with the Fo90

olivine and melt assemblage generated by the synthetic chondrule starting composition at

1350*C. Roughly cubic individual crucibles were cut from single crystal San Carlos

olivine, and cored in the center of one face. The holes, 4mm in diameter and 5mm deep,

serve as repositories for the powder charges. After being packed with 40-50 mg of powder



the crucibles were wrapped and hung on the furnace assembly with platinum wire. At no

time is platinum in contact with powder or melt.

RUN CONDITIONS

All experiments were run in a 1 atm Deltech DT31VT gas mixing furnace at

1350*C ± *C. Temperature was monitored with Pt-Pt90Rh10 thermocouples that have

been calibrated against the melting points of NaCl, Au, and Pd on the IPTS 1968 (Biggar,

1972).

Oxygen fugacities were maintained by mixtures of H2 and CO2 supplied at a low

flow rate of -0.1 ml/s that minimizes Na loss (Tormey et al., 1987). A ZrO 2 - CaO

electrolyte cell positioned in the furnace hot spot was used to monitor oxygen fugacity.

The oxygen cell was calibrated at the Fe/FeO and Cu/Cu2O buffers using values from

Huebner (1971).

All experiments were quenched in water to preserve assemblages existing at run

conditions.

ANALYTICAL METHODS

Chemical analyses of run products were performed on a four spectrometer JEOL

model 733 electron microprobe at an accelerating potential of 15 keV. The silicate data

were collected using wavelength dispersive spectrometers and Tracor Northern 5500-5600

automation. Sample current for the nickel experiments was 30 nA for all elements; for the

cobalt experiments sample current was 200 nA for cobalt analyses and lOnA for all other

elements. Electron beam spot size was 2 microns for olivine analyses and 10 microns for

glass analyses of the nickel experiments. For the olivine analyses of cobalt, beam size

broadened to 5 microns because of the high sample current. Due to the low detectability of

cobalt and nickel, especially in metal saturated experiments, count times were increased



over those usual for major element analysis. Cobalt was counted for 250 seconds, nickel

for 60 seconds, and all other elements for between 10-40 seconds. Minimum detectability

limits are shown in Table 1. For nickel experiments, counting statistic uncertainties (1

sigma) are less than .7% for major elements (Al, Fe, Si, Mg) less than 2.0% for minor

elements (Ca, Na), and less than 6.5% for nickel in the glass; in olivine counting statistic

uncertainties are less than .7% for major elements (Fe, Si, Mg), less than 22.0% for minor

elements (Ca, Al), and less than 1.6% for nickel. Cobalt experiment counting statistic

uncertainties are similar to those obtained in the analyses of nickel experiments for major

and minor elements, and less than .5% for cobalt in both olivine and glass.

Standards used for most elements are the same as those reported in Kinzler et al.

1990, and are listed in Table 1. Co-olivine was used as the standard for cobalt analysis.

The silicate and metal data were reduced using the correction scheme of Bence

and Albee (1968). As discussed in Kinzler et al. (1990) and Ehlers et al. (submitted), this

correction scheme gives the same result as conventional ZAF procedures. Analytical

uncertainties (1 sigma) are 1.2% (glass) and 2.4% (olivine) for cobalt experiments, larger

than counting statistics, and therefore the dominant source of error. For the nickel

experiment, counting statistic uncertainties are greater than the analytical uncertainties of

1.2% (glass) and 0.6% (olivine). Longer count times and/or higher beam current for nickel

would decrease counting statistic uncertainties to below that of analytical uncertainty.

Despite the greater than desired counting statistic errors, the results of the nickel experiment

are included here for comparison with previous results. Experimental run conditions along

with the run products are given in Table 2; Table 3 presents average analyses for nickel

and cobalt experiments along with analytical uncertainties.

In order to minimize excitation of x-rays in the metallic phases present in the metal

saturated experiments, and the resultant inaccurate measurement of trace element

concentrations, care was taken to analyze regions of olivine and glass that are metal poor.

Masking of metal rich regions in metal saturated experiments with carbon paint or a



CuTEM grid was shown to be unnecessary for preventing unwanted contributions to trace

element concentrations in Ehlers et al. (submitted.)

EQUILIBRIUM

Equilibrium is demonstrated for nickel and cobalt experiments using different

criteria. For synthesis nickel experiments, a minimum run time of 48 hours was

determined from time temperature equilibration plots calculated by Hart and Davis, 1978.

Figure 1 shows their plot recalculated for 95% equilibration. At 1350*C, 48 hours is time

enough for a 30 micron diameter olivine sphere to reach equilibrium values, assuming the

sphere is immersed in a well mixed reservoir of constant composition. The average length

of olivines present in the nickel experiments is 10 microns; no olivine over 30 microns in

length was analyzed. The reversal experiments of Kinzler et al. 1990 further support that

equilibrium was attained within 48 hours. In that study, synthesis experiments held at one

temperature were allowed to re-equilibrate at another. The concentration of nickel in the

pre-existing olivines and glass was then compared to the values measured in synthesis

experiments conducted only at the final temperature of the re-equilibration experiment. The

measured values of the nickel partition coefficient agree within the experimental and

analytical uncertainties, and the duration of the synthesis experiments was determined to be

sufficient to attain equilibrium.

Equilibrium run times for cobalt experiments were estimated using iron and

magnesium interdiffusion coefficients (D) for olivine from Misener (1973) in Figure 2. At

1350*C, -In D for diffusion along the b axis is equal to 25.3, and D is equal to 1.03 x

10-11 cm2/s. A run time of 48 hours will allow equilibration of a crystal of 26 microns in

length, where radial length is equal to the square root of the product of D and time. Iron

and magnesium interdiffusion coefficients are appropriate for cobalt diffusion since the



cobalt 2+ ion is intermediate in size between the iron and magnesium ions. The average

length of olivines in the cobalt experiments is 20 microns; no olivine over 30 microns in

length was analyzed. Reversal experiments are necessary to demonstrate that equilibrium

was attained, since partitioning was observed to be dependent on oxidation state.

Loss of major and trace elements from the charges to the containers was

minimized by using San Carlos olivine crucibles. A chemical analysis of San Carlos

olivine shows major element concentrations (iron, magnesium) close to those expected

from olivine in equilibrium with a liquid generated by an olivine chondrule starting

composition at 13500C (Ehlers et al., submitted). Nickel and cobalt trace element

concentrations are assumed to be similarly in equilibrium with the liquid.

Unexpectedly, orthopyroxene (protoenstatite) is present in two cobalt

experiments, lining the cavity holding the charge (Figure 3). Experiment Co-I was run at

very reducing conditions (log f0 2 equal to -12.2) for 48 hours, while experiment Co-2 was

run at more oxidizing conditions (log f0 2 at the QFM buffer equal to -3.8), but for an

extended length of time (6 days). Reducing conditions may account for the reaction of the

liquid with the container in experiment Co-1 by changing the composition of the system, as

would sodium loss over time in experiment Co-1. Low oxygen fugacity may precipitate

the reaction by reducing iron in the fayalite component of the melt, releasing oxygen to gas

and effectively increasing the silica content of the melt. In the system quartz-olivine-

diopside-plagioclase, bulk composition moves towards quartz and intersects the

orthopyroxene/olivine reaction curve (Figure 4). Loss of sodium would similarly move

the bulk composition towards quartz. In this case, sodium is a constituent of the albite

component, and loss of sodium releases silica and alumina into the melt.. While the

assemblage of orthopyroxene, olivine, and liquid represents a reaction relation, the three

phase assemblage can be an equilibrium relation for multi-component systems at a constant

temperature, and olivine/liquid partition coefficients for these experiments are valid, albeit

for slightly different starting compositions. In order to monitor the reaction, and determine



the time needed for it to go to completion, experiments of duration longer than 48 hours

are necessary. Figures 5 and 6 shows magnesium profiles of non-crucible olivines from

experiment Co-1(48 hours) and Co-2 (144 hours). Due to a broader electron beam as a

result of the high current necessary for statistically valid cobalt counts, and the small size of

the olivines grown from the liquid, cobalt profiles of olivine were not possible. Since the

cobalt ion is similar in size to the magnesium ion, the olivine is assumed to be similarly

homogeneous with respect to cobalt. The olivine profile of Co-1 shows no growth zoning.

For experiment Co-2 the greatest difference in MgO content (wt.%) represents -4% of total

MgO. Although this difference is greater than the analytical uncertainty, growth zoning due

to compositional changes from sodium loss and consequent orthopyroxene growth is not

likely to be the source of such a small variation, but rather small scale heterogeneity of the

olivine. Despite sodium loss and the growth of orthopyroxene, olivine crystals are

therefore interpreted to be in equilibrium with orthopyroxene and the liquid. Nevertheless,

care was taken to analyze adjacent glass and olivine at a distance from orthopyroxene

crystals.

As a caveat, it should be noted that homogeneity alone does not guarantee

equilibrium (Hart and Davis 1978). Given the slow diffusion in olivine, only minor

diffusion may occur at surfaces leaving crystal interiors deceptively unzoned. The partition

coefficients measured under such circumstances will be too high. The analytical problems

discussed above prevent an accurate characterization of olivine rims, and a question

remains as to whether diffusion of cobalt keeps pace with growth of orthopyroxene.

RESULTS

Table 4 presents partition coefficients obtained for the nickel and cobalt

experiments. DOl/liqNi and Dol/li4Co are defined as the weight ratio of NiO and CoO in

olivine to NiO or CoO in melt.



Experimental results for nickel are presented in two ways. Figure 7 plots

Dol/qNi against MgO content of the liquid in an effort to discriminate the effects of

oxidation state from compositional effects. Included in the plot are data from Ehlers et al.

(submitted), Seifert et al. 1988, and Hart and Davis 1978. Significantly, metal saturated

experiments define a trend distinct from that of non metal saturated experiments, and

suggest a melt structural control on partitioning. A plot of Dol/liqNi against log f0 2 is

shown in Figure 8, where again two trends are in evidence. Metal saturation occurs at log

fO2 equal to -10.3 (Ehlers et al., submitted), and it is at this point that the step drop in

Dol/liqNi is seen. Only those data points from Ehlers et al. (submitted) with starting

compositions that correspond to our synthetic olivine chondrule composition are included

in Figure 8, in order to eliminate compositional effects that may mask the dependence of

Dol/liqNi on oxidation state.

Experimental results for cobalt are similarly presented in Figures 9 and 10,

Dol/lCiCo versus MgO content and f0 2 respectively. There is a drop in Dol/liq~y

analogous to that in DOI/liqNi with metal saturation.

DISCUSSION

INTERPRETATION OF RESULTS

The nickel experiment, which is unsaturated with metal, gives a partition

coefficient that when plotted against f02 along with the data from Ehlers et al. (submitted),

follows a trend defined by metal unsaturated experiments that is distinct from the metal

saturated trend (Figure 8). This data point more tightly constrains the oxygen fugacity at

which the step drop in DOl/liNi occurs; a smooth linear variation between the partition

coefficients measured at f02's corresponding to metal saturation, and those measured at

non metal saturated conditions is not predicted. Metal saturation and the associated lower



DolIliqNi are projected to occur at an f02 between 10-9-4 and 10- 10.3. While it has been

proposed that non-ideality in the olivine solid solution may influence partitioning (Colson

1988), Ehler's et al. (submitted) use an empirical model developed by Kinzler et al. 1990 to

account for non-ideality and demonstrate that measured values of Dol/liqNi are significantly

lower than those predicted by equation 4 of Kinzler et al 1990. Ehler's plot is reproduced

in Figure 11 with the nickel data point of this study added. Some effect other than non-

ideality in the olivine must account for the step drop in Dol/liqNi. Ehler's et al. propose

that the valence state of nickel in the melt changes from 2+ to 0 (metallic), thereby reducing

the amount of nickel available for incorporation into olivine crystals. The results of the

cobalt experiments show a similar change in partitioning behavior upon metal saturation.

Given the similarity in the size of the nickel and cobalt ions and their same valence state, it

is expected that nickel and cobalt would demonstrate like speciation in the melt.

The question exists as to whether olivine/liquid partition coefficients measured in

experiments containing orthopyroxene can be legitmately compared with and included in

discussions of those values determined from experiments containing only olivine and

liquid. Henry's Law states that activity is independent of concentration. Orthopyroxene,

while providing another site option for cobalt and nickel cations, may lower the

concentration of trace element in the liquid, but this lower concentration should have no

bearing on the partitioning behavior of the element between olivine and melt.

Measurements of DOl/li9Co from experiments containing orthopyroxene are therefore

included in the results of this study.

IMPLICATIONS

Nickel and cobalt partitioning data can be used to identify the oxidation state of a

magma at the time of crystallization of olivine. The lunar basalt measurements of

olivine/bulk rock nickel concentration ratios suggest a variable oxidation state for the source



region of mare basalts. Chen et al. 1982 analyzed Apollo 14 VLT glasses; a value of 4 for

DNioliv/liq is calculated from these measurements, indicating metal saturation.

Alternatively, high-Ti basalt 74275 analyzed by Delano 1982 gives an approximate

DNioliv/liq of 10, which suggests non-metal saturated conditions. Cobalt analyses of these

and similar rocks could further constrain magmatic oxygen fugacity. Lunar mantle

oxidation states in turn are important for understanding lunar formation and constitution.

CONCLUSIONS

Experiments over a range of oxygen fugacity demonstrate a marked change in the

partitioning behavior of cobalt and nickel between olivine and silicate melt upon metal

saturation. Both nickel and cobalt show a decreased affinity for olivine under reducing

conditions, DNioliv/liq and DC0oliV/liq dropping by factors of 1.8 and 1.7 respectively.

The presence of orthopyroxene, indicating a reaction relation as a consequence of changes

in the bulk composition of the system, does not affect the partitioning behavior of the trace

metals. The effects of changing oxygen fugacity can be distinguished from compositional

effects. The step drop behavior of trace element partition coefficients is interpreted as a

consequence of the presence of trace metals in the melt in a mixed valence state, as 2+ ions

and 0 charge metals. Similar effects on trace element partitioning may result from other

melt speciations. Sulphur, for example, may complex with siderophiles and decrease the

amount of 2+ ions available for partitioning. Further measurements of partitioning

dependence on oxygen and sulphur fugacity will provide constraints on the volatile budgets

of planetary interiors.
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FIGURE CAPTIONS

Figure 1. Time-temperature equilibration plot for nickel in forsterite. Modified after Hart

and Davis (1978). Curves represent conditions necessary for nickel in an olivine sphere to

reach 95% of equilibrium value, assuming sphere is immersed in a well-mixed reservoir of

constant composition.

Figure 2. Iron-magnesium interdiffusion coefficients. From Misener (1973). Plot shows

temperature dependence of D (interdiffusion coefficient) for olivine of composition Fo93-

Diffusion will be faster with increasing fayalite component in olivine.

Figure 3. Backscattered electron scanning electron microscope images of cobalt

experiments showing the reaction relation of orthopyroxene, olivine, and liquid. Large,

dark grey, euhedral crystals are orthopyroxene (opx), smaller light grey, subhedral crystals

are olivine (oliv), and light interstitial areas are glass (gl). Metal blebs (m) are evident in

the metal saturated experiment. Darkest areas are epoxy. Scale bar is 100 microns. A.

Co-1 metal saturated experiment of 48 hour duration. B. Co-2 non-metal saturated

experiment of 144 hour duration.

Figure 4. Phase diagram showing change in bulk composition under reducing conditions.

Composition moves towards quartz with loss of oxygen to furnace gas as a consequence of

the reduction of iron in the fayalite component in the melt, and in the olivine.

Figure 5. Magnesium profile of olivine from metal saturated cobalt experiment Co-1.

Magnesium distribution in olivine determined by electron microprobe line scan for an

olivine grain. Homogeneity is better than ± 1.5% in olivine. Typical glass analyses

adjacent to olivine grain are shown for comparison.

Figure 6. Magnesium profile of olivine from 6 day non-metal saturated experiment Co-2.

Magnesium distribution in olivine determined by electron microprobe line scan for an



olivine grain. Homogeneity is better than ± 2.9% in olivine. Typical glass analyses

adjacent to olivine grain are shown for comparison.

Figure 7. A comparison of experimentally determined values of DNioliv/liq plotted against

wt % MgO in the coexisting silicate melt for simple system experiments (Ehlers et al.,

submitted; Hart and Davis, 1978; Seifert et al., 1988; and this study). Two distinct

compositionally dependent trends are evident, one for non-metal saturated experiments

(above the line), and one for metal saturated experiments (below the line).

Figure 8. Experimentally determined values of DNioliv/liq plotted against log f0 2 (Ehlers

et al., and this study). A step drop in DNioliv/liq is observed with metal saturation.

Figure 9. Experimentally determined values of DCoOliv/lil plotted against wt. % MgO

(Ehlers et al.,, and this study). Value from the metal saturated experiment falls well outside

the trend defined by the non-metal saturated experiment.

Figure 10. Experimentally determined values of Daoliv/liq plotted against log f0 2

(Ehlers et al., and this study). Value from the metal saturated experiment falls well outside

the trend defined by the non-metal saturated experiment.

Figure 11. Experimentally determined values of DNioliv/liq from Ehlers et al. and this

study are plotted against the predicted values of DNioliv/liq calculated from equation 4 of

Kinzler et al. 1990. The Kinzler et al. expression was derived from partitioning

experiments carried out over the range of oxygen fugacities from QFM to air.



Table 1. Standards and minimum detectibility limits

Element Standard Minimum detection limit
Glass Olivine Glass Olivine

Na2O Amelia albite - .03 -

MgO diopside65- synthetic .02 .02

jadeite35 forsterite
A12 0 3  diopside65- diopside 65- .03 .03

jadeite35 jadeite35
SiO2 Shallow water synthetic .02 .02

enstatite forsterite
CaO diopside65- diopside65- .03 .04

jadeite35 jadeite35
FeO cossyrite synthetic fayalite .04 .04
NiO P140 olivine nickel sulfide .02 .02
CoO cobalt olivine cobalt olivine



Table 2. Experimental conditions and run products

Run -log f0 2  Time (hours) T (0 C) Run products

Ni-1 9.4 48 1350 oliv, glass
Co-1 12.2 48 1350 oliv, opx, glass
Co-2 6.8 144 1350 oliv, opx, glass



Table 3. Microprobe analyses of run products

3a. Nickel experiments

Expt. Phase SiO2  A12O3 FeO MgO CaO Na2O NiO Total

Ni-1 glass 57.51 13.21 9.38 16.49 2.52 1.41 0.192 100.71
± .08 ± .02 ±.03 ± .03 ±..0i ±.01 ±.002

olivine 40.47 0.12 9.45 48.63 0.046 _ 1.292 100.01
± .06 ±.05 ±.03 ± .06 ±.002 ±.007

3b. Cobalt experiments

Expt. Phase SiO2  A12 0 3 FeO MgO CaO Na2O CoO Total

Co-1 glass 54.41 15.36 7.47 18.90 3.10 0.252 0.139 99.64
±.06 ±.06 ±.02 ±.03 ±.01 ±.009 ±.003

olivine 41.44 0.043 7.23 51.15 0.043 _ 0.314 100.22
±.07 ±.006 ±.04 ±.16 ±.006 +.008

CO-2 glass 60.74 11.28 8.62 14.35 2.14 2.79 0.584 100.52
±.14 f.06 ±.12 ±.07 ±.01 ±.02 ±.014

olivine 41.32 0.058 8.13 49.58 0.064 _ 1.49 100.64
±.20 ±.003 ±.17 ±.23 ±.004 i.05



Table 4. Calculated partition coefficients

Run -log f0 2  Trace element (i) Doliv/liqi

Ni-1 9.4 nickel 6.73 ± .17
Co-1 12.2 cobalt 1.65 ± .07
Co-2 6.8 cobalt 2.56 ± .05
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Figure 3.
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