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ABSTRACT

Underthrusting and the elastic-rebound theory are

consistent with the gross static deformations after earth-

quakes for island-arc regions such as Japan, Alaska, and

Chile. Yet anomalous, time-dependent post-earthquake

adjustments suggest additional processes. Here the astheno-

sphere or mantle becomes the element that both determines

the post-seismic deformation and controls the accumulation

of strain. The lithosphere and asthenosphere represent a

coupled system. A large earthquake strains the entire

system; stress relaxation in the viscous asthenosphere

follows and allows the post-seismic readjustments.

The convergence zone is first considered as a semi-

infinite, elastic plate overlying a viscoelastic foundation.



Analytic solutions for short-period deformations place

bounds on the behavior for the surface deformations, boundary

conditions on the fault interface, and stress-propagation

following an earthquake. Detailed models are then considered

using a novel, time-dependent, finite element solution for

the convergence zone. The solution avoids propagation of

errors in time and readily accommodates inversion theory.

The method clearly defines the behavior for realistic models.

Thus, scaling with the fault depth and lithospheric thickness

controls the shape for simple, planar fault models, while

the time scale depends on the asthenospheric viscosity.

Different boundary conditions imposed on the fault, whether

a constant dislocation or a constant stress with

time, strongly affect the resulting deformations and stresses.

Finally, stresses introduced by thermal density anomalies

within the descending lithosphere are compared to

earlier models and focal mechanisms near Hokkaido.

Generalized-matrix inversion theory now places bounds

on the effective viscosity and fault parameters using

geodetic data, focal mechanisms, and tectonic setting for

the 1946 Nankaido earthquake (M 8.2) in southwest Japan.

Using the assumption of stress relaxation in the astheno-

sphere, the data constrains the fault geometry to a shallow

150 dip, followed by a 60* dip from 26 km depth to the base

of the lithosphere at 60 km depth. Near the hypocenter

the slip is 3 meters, while the maximum slip is less than



15 meters. Other models with constant dip or shallower dip

beyond 25 km do not satisfy these constraints. The

viscosity of the asthenosphere now becomes 1020 poise. The

results suggest segmentation of the lithosphere and

deformations that generate the embayed shoreline, sedimentary

basins off southwest Japan, seismicity, and focal mechanisms.

Thesis Supervisor: M. Nafi Toks8z

Title: Professor of Geophysics
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1. INTRODUCTION

Large shallow earthquakes at island arcs such as Japan

and Alaska are attributed to convergence and subduction of

lithospheric plates. The majority of mechanisms fit neatly

into the framework provided by new global tectonics: the

earthquakes occur as a megathrust between the continental and

underthrusting oceanic lithosphere (McKenzie and Parker, 1967;

Isacks, et al., 1968). The 1964 Alaska earthquake and the

1960 Chilean earthquake appear as notable examples (Plafker,

1972). The earthquakes indicate the accumulation and release

of strain energy, but they do not reveal the processes con-

trolling the accumulation. New global tectonics synthesizes

the observations into an empirical description, and outlines

possible driving mechanisms for the plates. These suggest a

probable cause for earthquakes: they are the sudden release

of elastic strain energy primarily at the edges of or within

lithospheric plates. Yet global tectonics does not treat the

physics controlling the time-dependent process of strain

accumulation prior to an earthquake, nor the readjustments

following a major earthquake. Theoretically only the static

problem for a fault dislocation has been treated; the factors

effecting the slow accumulation of strain and post-earthquake

deformations have not been studied adequately.

Moreover, observations suggest the importance for a

time-dependent analysis of strain fields associated with major
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earthquakes. Geodetic data has long indicated a succession

of crustal warping and rebounds for major earthquakes in

Japan. In addition, anomalous crustal movements that are

inconsistent with Reid's (1910) elastic rebound theory are

prominent in these geodetic observations (e.g. Matuzawa, 1964).

The anomalies are not isolated to any one earthquake; instead,

post-seismic movements are observed after many earthquakes:

1906 San Francisco, 1923 Kanto, 1927 Tango, 1946 Nankaido,

1964 Niigata, and 1966 Parkfield earthquakes (Matuzawa, 1964;

Fitch and Scholz, 1971; Scholz, 1972; Thatcher, 1974). Diff-

erent explanations are possible to account for the behavior.

Aftershock patterns also reflect the changing stress field

caused by a major earthquake. Besides their location, after-

shocks show continuing alterations after major earthquakes

(Aver'yanova, 1973). Seismicity gaps indicate stress

variations on a larger scale. Here the interaction

of adjacent seismic zones requires further analysis (e.g.

Kelleher, 1970; Mogi, 1973). All these separate observa-

tions offer constraints on the possible modes of strain accu-

mulation at island arcs.

In this thesis I propose the mantle or asthenosphere as

a key element controlling the strain accumulation and influ-

encing the long-term strain release. Its influence poten-

tially extends from.aftershocks and seismicity gaps to post-

glacial rebound and convection. Here we examine the effects
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of the asthenosphere on processes of strain accumulation and

release associated with major thrusting earthquakes. The

interaction of an elastic lithosphere overlying a viscous

asthenosphere represents the significant concept. Solving

such a problem yields relaxation times for the diffusion

of strains, the effective viscosity of the asthenosphere, and

a deeper understanding of the interaction and its consequences

at island arcs. In short, the lithosphere and mantle repre-

sent a coupled system which is important on time scales com-

parable to the strain accumulation of earthquakes.

The sequence of crustal deformations associated with a

major thrust earthquake such as the 1946 Nankaido have parti-

cular significance in this proposal. These movements reduce

to four stages: secular, pre-earthquake, earthquake or

seismic, and post earthquake (Scholz, 1972). The first is

slow (secular) strain accumulation occurring between major

earthquakes. Here the driving forces responsible for plate

tectonics manifest themselves by crustal warping. This

stage and the third phase, the earthquake, combine to form

the elastic rebound theory of Reid (1910): tectonic move-

ments produce a slow and steadily increasing elastic strain

until failure occurs and crustal rebound releases the poten-

tial energy. Thus, these two phases directly follow from

elasticity theory. Yet even here stress relaxation may

determine the rate.
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The other phases introduce new phenomena. The second

phase, pre-earthquake deformations, occurs as a rapid

change in crustal deformation patterns. Many observations

are available prior to major earthquakes (Matuzawa, 1964);

unfortunately, they are often dubious and fragmentary. The

anomalous movements preceeding the 1964 Niigata earthquake

by a year at tidal stations are perhaps the best documented

case for pre-earthquake tectonic movements (Tsubokawa, et al.,

1964). Even here sources of error cast doubt on the results

(Tsumura, 1970; section 5.2). Matuzawa (1964) and Scholz

(1972) summarize observations preceding other major earth-

quakes including the 1923 Kanto, the 1966 Parkfield, and

the 1966 Tashkent earthquakes. Simple mantle relaxation does

not readily account for these observations since the hypo-

thesis does not predict any pre-earthquake movements, only

post-earthquake deformations. Other candidates include dila-

tancy or premonitory fault creep along the zone (Scholz, 1972,

1974; Kanamori, 1973). If dilatancy proves correct, it will

also generate post-earthquake deformations.

Rapid crustal movements when compared to the slow,

secular accumulation also characterize post-seismic or post-

earthquake deformations. The movements have either the same

or the reverse sense as the earthquake phase; the sense of

movement and the overall pattern depend on the particular

earthquake. The 1966 Parkfield earthquake appears as a
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buried fault: the post-earthquake movements correspond to

creep along the surface extension of the buried fault (Scholz,

et al., 1969). Thus, the post-seismic movements have the

same direction as the earthquake and approach its inferred

offset. Scholz (1972) documents similar observations for

other strike-slip faults. Thatcher (1974) suggests this be-

havior for the 1906 San Francisco earthquake except along

deeper segments. All these appear directly attributable to

fault creep on buried faults.

Another group of earthquakes do not readily lend them-

selves to this mechanism for post-earthquake adjustments;

instead, asthenospheric stress relaxation gives a concise

explanation. These earthquakes include the 1946 Nankaido,

the 1923 Kanto, and perhaps the 1964 Niigata earthquakes.

One might also include the 1964 Alaskan earthquake. All

these earthquakes conform to a dip-slip mechanism, and the

post-earthquake deformations have both reverse and similar

sense to the seismic deformations. Fault creep or after-

shocks may contribute to these deformations. Yet unlike the

previous case, the geodetic data would indicate both forward

creep extending the fault and reverse slip on the existing

rupture (Fitch and Scholz, 1971). The rapid decay of after-

shocks, however, suggests fault slip may not be the only

mechanism since the geodetic data varies long after the 1946

Nankaido earthquake (Matuzawa, 1964; Fujita, 1969; Fitch and
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Scholz, 1971; Tsumura, 1970).

Dilatancy may also contribute to the post-earthquake

deformations (Scholz, 1974). If dilatancy is proven for a

pre-earthquake phase similar to the 1964 Niigata earthquake,

it introduces a strong case for post-earthquake dilatant

recovery that at least contributes to the surface deforma-

tions. The effects of dilatancy on seismic waves, however,

have proven elusive under controlled conditions (i.e. Allen

and Helmberger, 1973), and an adequate model to simulate

surface deformations is not available. Scholz (1974) uses

a one-dimensional model based on fluid outflow using the

theory of consolidation. Qualitative agreement results

for the recovery time using the tilt data at Muroto promon-

tory for the 1946 Nankaido earthquake or using the tidal

data from the 1964 Niigata earthquake. The recovery time

defines the ratio of the hydraulic diffusivity and dilatant

thickness. This qualitatively agrees with the diffusivity-

dimensional relation deduced from seismic velocities

(Scholz, et al., 1973; Anderson and Whitcomb, 1973), but

the short decay time disagrees with the geodetic observa-

tions occurring years after the 1946 Nankaido earthquake.

Beyond this relationship, problems arise in the description.

Dilatancy predicts post-seismic subsidence which may increase

approaching the fault (Scholz, 1974). Yet the 1946 Nankaido

earthquake involves post-seismic uplift over a broad area
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(Fujita, 1969). This tends to contradict dilatancy, at least

in a qualitative sense. If it exists, the assumption remains

that it is a short term anomaly obscured in the geodetic

measurements. Consequently, dilatancy effects are not in-

cluded in the present analysis.

The analysis here will attempt to define just one effect

of the asthenosphere on the strain field: the post-seismic

geodetic deformations following the 1946 Nankaido earthquake.

Other contributions such as fault creep are not directly

treated in the analysis, but are discussed through idealized

models. Inclusion of these factors, fault creep and mantle

flow, presents a difficult problem for solution. A model or

simulation must be developed which contains the essential

physics and assumptions while ignoring unwarranted or unre-

solvable complications. The approach taken uses a linear

viscoelastic continuum for the mantle and lithosphere. It

contains the essential features, initial elasticity and

time-dependent stress relaxation, and avoids further material

and numerical complications inherent in nonlinear stress-

strain relaxation. A novel approach in the Laplace plane

using the finite element method results in a very tractable

model for the time-dependent problem when inertial terms are

ignored. Generalized matrix inversion theory can then be

applied to yield the bounds upon the parameters such as

fault creep and viscosity. The assumptions and methods are

the topics of Chapter 2.
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Prior to this analysis long-term, time-dependent deforma-

tions are primarily confined to dislocations in an elastic

medium. Analytic solutions for strike-slip and dip-slip

faults give fundamental insights (i.e. Maruyama, 1963, 1964;

Burridge and Knopoff, 1964). Using these simple models at

island arcs, Savage and Hastie (1966) were able to confirm

major thrust faults at continental margins or island arcs.

They appear as a megathrust between the subducting oceanic

and continental lithospheres. Fitch and Scholz (1971)

employ a simple analytic solution in their analysis of the

1946 Nankaido data. Each time-interval conforms to a

separate dislocation model, thereby representing fault creep

by successive fault displacements. Using the correspondence

principle (Biot, 1954; Lee, 1955), solutions for a dip-slip

fault in a viscoelastic half-space are available (Rosenman

and Singh, 1973b); unfortunately, the elastic lithosphere

makes this a very poor model for an island arc. To extend

the solution to a layered medium generally requires an ana-

lytic solution in closed form for the dip-slip fault; how-

ever, none exists. On the other hand, Nur and Mavko (1974)

use Rybicki's (1971) analytic solution for a strike-slip

fault to generate a viscoelastic solution with an elastic

lithosphere.

Numerical methods and hybrid techniques appear as the

best alternative. Braslau and Lieber (1968) proposed a
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solution method using Galerkin vectors for a Volterra

dislocation, but never could implement the technique. Other

possible methods include propagator matrices, yet the assump-

tion limits the solution to a layered medium (Barker, 1974).

Consequently, the finite element method becomes the most

feasible method for an island arc. Chapter 2 extends this

discussion to numerical methods and inversion theory.

In Chapter 3 idealized models define characteristic

interactions between the asthenosphere and lithosphere.

Simple, first-order analytic models suggest directions and

approaches to the problem: Crustal deformations, boundary

conditions along the fault, and viscosity of the astheno-

sphere are significant factors for the analysis. The

results encourage an idealized two-dimensional analysis using

the finite element method. This is the topic of Chapter 4.

Finally, in Chapter 5 detailed models using geodetic data,

inverse theory, and the finite element method define the

fault geometry and slip for the 1946 Nankaido earthquake

when stress relaxation in the asthenosphere occurs after

the earthquake.
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2. VARIATIONAL FORMULATION AND THE FINITE ELEMENT METHOD

2.1 Introduction

The earth exhibits a complex structure along island arcs:

a dipping fault plane often separating continental and oceanic

lithosphere. This real earth domain can include geometrical

and material inhomogeneities, and irregular boundaries. And

all this may also be imposed on the time-domain. A solution

strategy for the time-dependence of strain must be capable of

handling these problems. Analytic solutions are virtually

limited to the half-space (Rosenman and Singh, 1973a,b).

Hybrid analytic solutions with propagator matrices are possible

for a linear viscoelastic model, but one is limited to a

layered media. This may be suitable for a strike-slip fault,

however, island arcs do not correspond to a layered media.

Numerical solutions appear as the only real technique that

holds any promise for even a simple dipping lithosphere.

Not every problem is suitable for numerical solution.

Our intent is not brute force. A reasonably efficient and

versatile solution strategy must be found that includes the

essential feature of the problem: time-dependent relaxation

of the stress within the mantle, inhomogeneities within the

mantle (i.e- dipping slab), and fault dislocation. Two

general strategies immediately suggest themselves, use of the

finite element method and finite differences.
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The finite element method solves the variational

problem, that is, minimizing an energy functional or similar

expression over subregions and then combining into a banded

symmetric matrix. The engineering sciences have provided

the impetus for its development, for it is ideally suited to

elliptical boundary value problems as encountered in elasti-

city theory. For these the method is efficient and has

flexible resolution. But time dependence introduces problems.

One could discretize in time and solve; however, this

normally requires a two-point boundary value problem, while

time represents an initial value domain. It is at this

point that finite differences is usually introduced together

with all its difficulties.

The finite difference technique has been the usual

solution strategy for time dependent problems (Richtmeyer and

Morton, 1967). It is also notorious for its idiosyncrasies:

unstable convergence, slowness, and difficulties at discontinui-

ties. If we use an integral technique for generating the

difference equations (Smith and Toks8z, 1972), and then step

in time, one does better. Yet this is basically equivalent

to a finite element solution in space and finite-differences

in time. This is better than finite differences in time and

space, but not by much considering the bookkeeping needed

during the solution.

An alternate method uses an approximate Laplace trans-

form inversion and applies the finite element method to the
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Laplace domain of the variational-evolutionary principle.

First developed by Schapery (1962) for the Rayleigh-Ritz

method, the technique immediately limits one to linear visco-

elasticity, actually a very desirable assumption. Adey and

Brebbia (1973) suggested extending the finite element method

to it since the strategy obviously overcomes the problems

of stability and error propagation found in the finite

difference technique. Indeed it is applicable to any problem

formulated as a Stieltjes integral having a well behaved

kernal. The next section will elaborate on this strategy.

2.2 Variational Problem for Linear Viscoelasticity

Essential to the finite element problem is a variational

formulation of the problem: the solution technique is based

on the minimization of an integral-differential operator.

For boundary value problems as in the theory of elasticity,

these variational principles are relatively straightforward

and assert that a function u (displacement or stress) satis-

fies such a principle if and only if the given functional

(i.e. potential or complementary energy) is stationary at u.

However, viscoelasticity requires an "evolutionary" principle:

a functional which is minimized along a trajectory in time.

Several derivations of variational theorems in quasi-

static viscoelasticity are possible. Schapery (1962) has

used Biot's thermodynamic theory to deduce one such principle.
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This theorem imposes certain limitations on the class of

problems. Instead, a simple generalization of the elasto-

static variatonal principle due to Gurtin (1963) using

Stieltjes convolutions will be proven. Later we will review

Schapery's assumptions, for they bear upon the numerical

technique.

For reference the differential equation defining the

quasi-static viscoelastic boundary value problem are

(Christensen, 1971)

E..= 1/2(u . .+u. . ) assuming infinitesimal strain
IJ1,J J,1 au.

and u. 
.

i,j ax.

t aekiT)
= G ik(t-T) DT dT (2.2.1)

or
a. = G dE13 ijkkZY

using the Stieltjes convolution form of the constituent relation.

Note that a.. is the stress tensor and c.. is the strain tensor.
13 1J

a..
ij,j + F. = 0 for equilibrium relation, (2.2.2)

and a..n. =S. on B (2.2.3)

u. =A. on B (2.2.4)

where S. and A. are the prescribed stresses and displacements
1 1

on the boundaries B and Bu , respectively, when n . is the normalau

vector and F is the body force. The kernals G ijk (t) are mech-

anical properties of the material and are termed relaxation

functions.
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The object is to derive a functional w whose variation 6f

vanishes and yields equations (2.2.2) - (2.2.4). We now define

the functional w according to Gurtin (1963):

7= f [1/2G.. *d ..*de - a. .*de.. - (a.. .+F.)*du.]dv
V ijk. ij kt 1j 1j 13,j 1 1

+ f [a.*dA.]da + f [(a.-S.)*du.Ida (2.2.5)
B 1Bua

where F., A., and S, are given quantities and each variable
1 1 1

is dependent upon the appropriate coordinates. We let

a. = a..n. on the boundary. w is the correct functional if
1 1J J

the Euler equations give the proper field equations and

boundary conditions. The first

variational duf of the functional 7 in equation (2.2.5) vanishes

if and only if the field equations and boundary conditions

given by equations (2.2.2) - (2.2.4) are satisfied. The

variational principle is then a generalization to visco-

elasticity of the Hu-Washizu theorem in elasticity (Hai-Chang,

1955; Washizu, 1955).

Suppose we take the variations in the histories u. (T),

E..(T), and a..(T) to prove this statement; that is
1J 1J

u.(T) + 6u.(T)ax

C..(T) + 66 .(T) (2.2.6)

a. . (T) + 3a. . (T)a
1J 1J

where a is some small real number and Su.(T), 6,.(T), and
1 1J

6I. . (T) are sufficiently smooth, arbitrary functions. The
IJ
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general variation of the function is desired (Gelfand and

Fomin, 1963). The first variation of 7 becomes

67= f [G.. *de *d6E.. - a..*dE, - 6a..*de.. - (a. .

V ijkt kZ 1J 13 i3 13 ij ij,3

F.)*d6u. - 65.. .*du]dv (2.2.7)
1 1 1J,J 1 227

+ fB [6a.*dA.]da + f [(a.-S.)*d6u. + 6a.*du.]da
Bu 1 1B 11 1 1 1a

Here the commutative property of Stieljes convolutions

(G * d6c,..*ds = G.. *de *d6E .), and the symmetric rela-
ijkt ij kt 1jkZ k2t ij

tion (Gijkz = Gkzij) based on the existence of energy and

Onsager's principle (Fung, 1965, pp. 373; Christensen, 1971).

Following Gurtin's development the term fB [60a.*du.]da is sub-

tracted from the integral over Bu and added to the last term

of the B integral. Using Green's theorem, the first

variation results:

6 = f (G .,k*dk z- a. )*d6..- (a.. . + F.)*d6u.
V ik k 1j 1J 13,j 1 1

- (F.. - 1/2u. . - l/2u. .)*d6a .]dv
1J i,J J,1 iJ

+ fB [(a.-S.)*d6u.]da + fB [(A.-u.)*d6a.]da (2.2.8)
a 1 1 1 Bu 1 1 1

To satisfy 6ff = 0 for arbitrary da., 6u , and de each

integral must separately vanish. This requires that the

integrand of each equal zero giving us the field equation

and boundary conditions, equations (2.2.2) - (2.2.4).
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Since a 'displacement' approximation will be used with

the finite element method, a simplified variation principle is

more useful:

7= f [1/2G.. *dj.*de - F.*du.]dv - f (S.*du.)da

(2.2.9)

Only the displacements are varied subject to the constraint

imposed by the displacement boundary conditions (2.2.4).

This variational principle is then analogous to stationary

potential energy in elasticity and the proof proceeds as

before (Christensen, 1971, sec. 5.4).

An operational form of the variational principle may now

be obtained if the Laplace transform of 7 d is taken (Schapery,

1962):

d f e-Ptf(t)dt (2.2.10)

obtaining

Td = f [1/2G. *de..*de - F. *d.dv - fB(S.*du.)da
d v 3 13kt i i

(2.2.11)

where the bar denotes the Laplace transform of the function.

The variation of id derives the Laplace transformed Euler

equations. These are completely analogous to the Euler

equations in the time domain. Using this operational varia-

tional principle we can easily compute the displacement
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solution in the Laplace domain given the transformed relaxation

function G for the material and the transformed boundary

conditions. Only the solution must be inverted to the time

domain. These are the topics of the next sections.

2.3 Finite Element Method for Operational Variational Principles

The finite element method is very similar to the Rayleigh-

Ritz-Galerkin technique. Each begins with a functional or

variational principle and minimizes it for an approximating

function u. This in turn leads to the Euler equations for the

system. While finite difference schemes approximate the

derivatives after minimization in these Euler or field equa-

tions, both the finite element and Rayleigh-Ritz methods

start with the actual variational principle, but with one

significant difference: the Rayleigh-Ritz-Galerkin strategy

chooses a finite number of trial functions $ ... $N which span

the whole domain and satisfy the boundary conditions for the

variational principle. The finite element method, on the

other hand, subdivides the domain into 'elements'. Within

each element a simple, complete sequence of trial functions

interpolates the function u. Compatibility with essential

boundary conditions is easily achieved for the trial func-

tions within each regular element, as opposed to the Rayleigh-

Ritz method when irregular boundaries over the whole domain

must be satisfied by the trial functions. Each subdivision
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or element of the finite element domain can then be assembled

with the others into discrete algebraic equations having

banded properties, a significant advantage for effi-

cient numerical solution. It is this simplicity of the trial

or interpolation functions which gives the finite element

method its power.

Courant (1943) first proposed the equivalent of the

finite element method with a piecewise application of the Ritz

method to the St. Venant torsion problem. Engineering prob-

lems, however, provided the real motivation for its development

(Argyris, 1954; Turner, et al., 1956), while

its relation to the Rayleigh-Ritz-Galerkin principles was only

later recognized and used to advantage. It is not my intention

here to outline the whole theory, for an excellent mathematical

text is available (Strang and Fix, 1973). Instead the emphasis

is placed upon the solution of the quasi-static viscoelastic

problem using the operational formulation.

Common to all finite element problems is the variational

formulation of the equations. These can be developed by

using the principle of 'virtual work' for elasticity theory

(Fung, 1965, sec. 10.7), by introducing the thermodynamics

of the system (Biot, 1965, 1970), or by appealing to various

mathematical operations as the Galerkin method (Strang and

Fix, 1973, sec. 2.3). It is fundamental to remember, however,

that the variational principle determines the boundary
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conditions satisfied by the trial or interpolation functions

for each element. The variational statement represents the

primary physical principle, and the differential equation and

boundary conditions are only a secondary consequence. Care

must be taken then to preserve the proper boundary conditions

within the variational principle. The results will be obvious

as the finite element approximation emerges from the varia-

tional principle.

Let us begin with the simplified displacement variational

principle developed in the previous section for viscoelasticity.

Although the operational form in the Laplace domain is used

for the derivation, the results are exactly analogous to the

elasticity problem. The transformed operational variational

principle is given by equation (2.2.11) if .. = 1/2(u. .+u. .):
iJ 1,J J,1

T= f [1/2G.. * U~..*d k - F. *du.dv - f ( .*diIda
V ijk. iJ kZ i i B ~*d.d

(2.3.1)

when the integrations are carried over the volume V for the

region and surface area B for the applied tractions Si. The

bar denotes the Laplace transform of the function. Associated

with this operational variational principle are the following

Euler equationsand boundary conditions in the Laplace domain:

a. . .+F. = 0 (2.3.2)
13,J 1

~..n. = S.
13JJ 1

(2.3.3)on B
ar
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Now the approximation requires an interpolation function for

u applied to each element, then summing the contributions

of the elements.

The interpolation function for the subregion must satisfy

certain conditions in displacement: first, rigid body motions

must be possible. This is a consequence of the essential

boundary conditions. Second, the admissible space of

derivatives in the variational principle must be represented

in the interpolation. Finally, the set of functions should

be complete between the lowest and highest degree of approxi-

mation. With the variational principle (2.3.1) the inter-

polation of u must contain a constant displacement term u and

at least the linear term to represent the first derivative.

Polynomial interpolation such as Hermite splines give the best

and most complete representation. A discussion of this

problem may be found in Strang and Fix (1973); here it will

suffice to assume that a polynomial representation is optimum.

Let us represent the function (i.e. displacement) u as

a sum of the basis or interpolation functions $.. If the
J

problem is discretized, nodal parameters q. can be associated

with each element. Each of these q. is the value at a given
J

node z. of either the function itself or one of its deriva-
J

tives. Thus one has for trial function yh

q. = D.vh (z..) (2.3.4)
J J J

when D. is the differential operator of order j. For each
J
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element specific nodes are assigned for the approximation as

illustrated in Figure 2.1. Now a trial function $. is
J

assigned to each nodal parameter q, having the following

property: At node z., D.$. equals 1, while at all other nodes
J JJ

the interpolation function is zero. One has

D.$.z. = 6.. (2.3.5)
1J 1 1J

Within the element the displacement trial function then becomes

uh = jqjcfi (2.3.6)

This represents a local basis within one element.

If the variational principle is now considered as the sum

of each element's contribution, one arrives at the following

form after introducing matrix notation:

- = I f [ /2 T- - --yT- f= {f [1/2Te G dc-du F]dv - I (du S)da} (2.3.7)
n V B

The interpolation basis function can be represented by

du = $q (2.3.8)

and
de = E du = E~q (2.3.9)

where E represents the strain operator, # is the interpolation

function, and q represents the nodal values. The operator E

depends upon the coordinate system and particular element.
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Figure 2.1

Configuration for representative elements. Nodes Z. de-
J

fine each element, where the values q. approximate the trial
J

function v at node Z..
J
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Z3

z2

Z7

Z6,

Fig. 2.1

Z,
Z4

Z8
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Substituting these into the variational principle for each

element yields

kq- e) (2.3.10)
n

where

k = 1/2 f $TE TEdv

Q -=f T $Tdy + f 'da
V~ ~ B

(2.3.11)

(2.3.12)

Here q have been removed from the integrals since they

represent the nodal values. All the elements may now be

summed obtaining a matrix of the form

= - qQq Kq -cq Q (2.3.13)

where

K = k
n

Q = d
~ n ~

(2.3.14)

(2.3.15)

The quadratic form for Tr is minimized when

Kq = Q (2.3.16)

Thus we need only solve this matrix equation.

The solution technique is improved if we observe certain

properties of the matrix K: first, K is banded if care is

taken when numbering or ordering the displacements q . Each

position in K represents the coupling between two nodal
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values; an entry will generally occur if the nodes are adjacent

to one another. Thus adopting a uniform and sequential order-

ing scheme for q drastically reduces the bandwidth of K and

its storage requirements. Second, K is symmetric and

positive-definite since G ijk are always positive. Under these

circumstances Cholesky factorization and forward-backward

substitution provides an efficient solution strategy for the

problem (see Wilkinson and Reinsch, 1971, Part 1).

As one might have forseen, the elements and their basis

functions have a crucial position in the method. The degree

of the approximation dictates the minimum possible bandwidth,

but also the accuracy of the approximation. For example, if

a linear approximation to the displacement u is used on a

triangular element, stress will be constant throughout the

element (hence the name Constant Strain Triangle), and six

degrees of freedom are required for a two-dimensional element.

The error for the displacement is proportional to h2 where h

is the characteristic dimension of the element (Strang and

Fix, 1973, chapter 1). Introducing a quadratic approximation

and six nodes or twelve degrees of freedom on the triangular

element vastly improves the accuracy. One now has a linear

approximation in stress and h4 error in displacement; however,

the bandwidth is increased with twelve degrees of freedom for

one element giving a corresponding increase in solution time

(Strang and Fix, 1973, sec. 1.9). A trade-off exists then
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between the order of the approximation and the solution time.

It may be more expedient to use more three node than six node

triangular elements to achieve a desired accuracy for the

displacements. The most desirable element for stress approxi-

mation is not obvious for most circumstances, since the twelve

degree of freedom triangular element can make an immense

difference (Desai and Abel, 1972, sec. 6.2). For the visco-

elastic computations both six node triangular and four node

isoparametric quadrilaterals also improve the stress approxi-

mation. Each problem, then, poses different conditions re-

quiring careful thought for the grid structure.

The singularity introduced by the fault (i.e. crack tip)

strongly effects the element configuration. The convergence

error associated with the singularity depends on the dimension

of the element and not the order of the approximation within

the element (Strang and Fix, 1973, chapter 8). Unless a

special element containing a singularity function is intro-

duced, the grid must be more refined near the crack tip.

For these computations I have opted for increasing the number

of elements rather than using a singularity function.

Arbitrary displacements are necessary along the fault which

implies singularity functions for each element along the

whole fault. This complication would significantly effect

the bandwidth and computational speed, negating the effort

required for development and incorporation of these singu-

larity elements.
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2.4 Modified Variational Principle for Hydrostatic Stress

Gravity introduces prestressing into the media which

can be included in the variational principle. Biot (1965)

has extensively treated this problem; his development will

be cited in this section. The finite element method intro-

duces special problems since the symmetry of the banded

matrix must be maintained. The terms representing hydrostatic

prestressing, however, retain a bilinear form allowing a

simple transformation to a real symmetric quadratic matrix.

When the hydrostatic component of the initial stress is

removed from the variational principle and only residual or

deviatoric stress is expressed, two additional terms are

introduced which represent the work of the buoyancy forces

(Biot, 1965, sec. 3.6):

OPf
Y = PfXu.e + 1/2 X. u. (2.4.1)

J J J ax i -1-J

Here pf denotes the fluid density of the media producing the

hydrostatic stress; X. is the j component of the body force;
J

e is the dilatation; and u are the displacement components.

The first term, p fX ue, expresses a buoyancy effect arising

from a change of volume, while the second, 1/2 X. -uu.,

J ax i J

represents a buoyancy generated from the displacement and the

density gradient. The latter term appears as an elastic

force proportional to the displacement directed normally to

the equipotential surfaces. The modulus is proportional to
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the product of the body force magnitude and the density gradient;

hence, depending on the sign, it may be stabilizing or destabili-

zing.

To incorporate these terms within the finite element method,

they must be represented in a symmetric quadratic form. We can

represent the dilatation e using our nodal approximation in the

finite element method (see section 2.3)

e = E~q (2.4.2)

where u = $q for the displacements and E represents the strain-

displacement operator. Thus a bilinear form also results for Y:

Y = qTT (pX) Eaq + 1/2qTa TaxXaq (2.4.3)

Any real bilinear matrix A can be transformed to a real

symmetric quadratic

xTCx (2.4.4)

ifT
C = 1/2[A + A T (2.4.5)

This formulation, then, readily accommodates initial hydrostatic

prestressing within the media.

2.5 Fault Zone in Finite Elements

An earthquake fault zone is analogous to a crack or

internal boundary condition within the media. Different

boundary conditions are possible along each face of the
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crack: a stress boundary implies a constant stress drop

while a displacement boundary signifies a Somigliana disloca-

tion (Bilby and Eshelby, 1968). In this section a method is

indicated which incorporates either boundary condition along

a fault so long as linearity assumptions are maintained for

the deformation.

For simplicity let us consider a displacement dislocation

along a crack or fault represented by Au = u -u . This

internal boundary can be represented by two adjacent nodes

with a prescribed displacement between the nodes. Each node

is then free to deform within the media; yet their location

relative to one another defines the dislocation. Figure 2.2

illustrates this configuration. To implement this strategy

using the finite element method requires little additional

effort if the coordinate system of the variational principle

is transformed along the fault. We must express the absolute

coordinates along one fault interface in terms of the opposing

face. Assuming the elements have been assembled into a stiff-

ness matrix, we have the following variational principle (see

section 2.3):

= qT Kq - qTQ (2.5.1)

where q are the nodal parameters or generalized coordinates,

K is the stiffness matrix, and Q represents the nodal forces.

If the matrix is partitioned into sections
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Figure 2.2

Representation for fault (or crack) within finite ele-

ment region. Considering a pair of nodes, we define the u2

coordinate in terms of u1 (u2 = u1 + Au) along the internal

boundary.



/

FAULT

FAULT
TIP 0

Fig. 2.2
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[q aq q K K K q [q q q Y Q

K K K q -Q

K KK q Q

(2.5.2)

where a are coordinates in the continuum, 6 are coordinates

along one fault interface, and y are the coordinates along

the opposing fault interface. Introducing a new coordinate

where

q =q + A , (2.5.3)

we obtain

[qa q A] K K + K K q [q q A] Q

K + K 1K + K K + K q - Q +Q7 =a ya lS YY IY YY y

K IK0 + K 1 K A Q
ya YI YY I YY .-- - (2.5.4) .

A now represents the dislocation along the internal boundary

independent of the coordinates; it can be either a free

parameter or prescribed along the interface.

Introducing this coordinate change simplifies the

computations and properly simulates the dislocation. Jungels

and Frazier (1973) express the fault dislocation in the

force or inhomogeneous vector Q . This representation com-

plicates the bookkeeping associated with assembling the

elements. Each element location and submatrix adjacent to

the fault must be retained in addition to any rows and
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columns of the K matrix for successive application of the

fault displacements. If instead the fault is prescribed in

the absolute coordinate frame (i.e. left in q), the problem

is completely wrong. Deformations of the crack or

fault are then impossible. McCowan, Glover, and Alexander

(1974) and Shimazaki (1974) are among those that have

committed this error. The coordinate change appears then

as the most efficient strategy to incorporate the fault.

2.6 Inversion to the Time Domain

Essential to the use of operational variational methods

for transient problems is the final inversion to the time

domain. A strategy is needed giving accuracy comparable to

solutions in the Laplace domain, but unwarranted accuracy

would be inefficient. Thus using Fast Fourier transforms are

very inefficient for they require too many solutions and

exact evaluation. Schapery (1962) developed, instead, a

technique based upon the thermodynamic properties of linear

viscoelasticity: apart from steady flow, the time dependence

of all coordinates is given by a series of decaying exponen-

tials (Biot, 1958). Schapery went on to prove uniform con-

vergence for a finite sum of decaying exponentials and to

demonstrate its power with the Rayleigh-Ritz method. But

recognition of its potential usefulness to the finite

element method is due to Adey and Brebbia (1973).
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To prove this property of time dependence for the

coordinates, we must first indicate certain properties of

the kernal Gijkk in the Stieltjes convolution or 'hereditary

integral' (equation (2.2.1)). Using thermodynamics we

can prove the following assertions (Christensen, 1971):

I G ijk (t) > 0 (2.6.1)

from the requirement of non-negative work.

II g Gijkz(t) < 0 (2.6.2)

from the requirement of non-negative dissipation or

increasing entropy.

a2

t 2 Gijk (t) > 0 (2.6.3)

if we require a fading memory behavior.

These conditions are fulfilled if we assume a Prony series

representation:

N -t/T
G (t) = Gne + G (2.6.4)

a n=1 a' a

Steady flow introduces a differential operator into the

kernal. Biot (1958) has proven equation (2.6.4) represents

the solution of the normal coordinates for a hereditary

material. A concise treatment of this proof may be found

in Fung (1965, sec. 13.5).

Once the form of the kernal G., has been established,

the Laplace transform gives the operational moduli (Biot,

1958; Schapery, 1962):
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pGn
Gp+ T +G ijk++ (2.6.5)ik9n G.n.

where T are the relaxation times and p is the Laplace
n

transform variable. Each matrix is symmetric, real, and

positive semi-definite; i.e.

ijk, Gijk Gijk - (2.6.6)

but the matrix made up of the sum is positive definite:

[[ G ijk + Gijkk + Gijke ije k > 0 (2.6.7)
n

If the operational moduli G ijk is now substituted into the

operational variational principle, one can now prove the

following conjecture (Schapery, 1962, 1964):

q = Sn -t/yn) + So + Sst (2.6.8)
n

where yn are the relaxation times for the series. We have

assumed the relaxation times are independent of position

within any one element and a finite number of degrees of

freedom are used for q. These assumptions are completely

consistent with the finite element method.

This relationship suggests a very simple procedure to

calculate the time-dependent displacements (or stress) from

our operational-variational principle. Provided that the

undisturbed linear viscoelastic body is subject to prescribed

loads and displacements which are step functions of time
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applied at time zero, we can denote the stress or displacement

response by

1P(t) = $*+$st +A(t) (2.6.9)

where $* and *s are constant with respect to time and Ai(t)

is the transient response:

A$(t) = f$(T)e-t/TdT (2.6.10)
0

$(T) represents the temporal spectral distribution function

of the variable T. The function may consist of discrete

frequencies represented by Dirac delta functions, ie.

n
$(T) = (2.6.11)

One obtains then the series representation as in equation

(2.6.4):

n -t/T
A$(t) = $ 1 (2.6.12)

i=1

Representing the displacements or stress response by equation

(2.6.9) for $(t) and using A$(t) implies that the Laplace

transform $'(t) has singularities only on the non-positive

real p axis, and that all poles are simple, except at the

origin where a double pole is possible (Schapery, 1962, 1964).

The simplicity of the Laplace transform of $(t) suggests

that a reasonable approximation to the displacement solution

is possible using collocation or least-squares (Schapery,

1961, 1962). If the transient response is given by the
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Prony series

n -t/y

A$D S(1 - e ) (2.6.1
i=17

where y. are prescribed relaxation times, the unspecified

coefficients S. are readily calculated by minimizing the

total squared error between the actual displacements A*

and the calculated displacement A$D. This total squared

error is

E2 = f [Ap A %D]2dt (2.6.14
0

with the minimization yielding

, 2 o
-1/2 = f [A - APD]Ee 0

-t/y.
dt i=l,...,n

(2.6.15)

Collocation results in n relations between the Laplace

transform of A$ and A$PD evaluated at 1/y :

A4]) (p)
D p~l/y.

(p=l/y i=l,. ..,n

Substituting the Laplace transform for A$ D and multiplying

by p, we obtain a convenient form for the variational

solutions:

[pAgi(p) = 11+ yip P=l/y
j=1,...n

(2.6.17)

Additional p for evaluation allows calculating $* and s/

in the series (2.6.9), or using a least-squares solution

3)

)

(2.6.16)
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to (2.6.17). pAi$(p) is just the finite element solution

using the operational-variational principle for linear

viscoelasticity. Thus the coefficients S when substituted

into the series (2.6.13) and (2.6.9) immediately yield the

time-dependent solution.

The total squared error involves both the accuracy of

fitting the series to the calculated displacements and the

numerical error introduced when the transformed displace-

ments are calculated with the finite element method.

Consequently, if an approximate inversion has been obtained

with n terms and it is desirable to reduce the squared error

by using additional terms, it will often be necessary to

evaluate the transform AP(p) and A9ID(p) with increased

accuracy. When the transforms are calculated with enough

numerical accuracy, the total squared error (2.6.14) indicates

that, if they are evaluated sufficiently close for 0<p< ,

the error of the time-dependent approximation is arbitrarily

small.

2.7 Boundary Conditions

Application of the finite element method to a problem

normally occurring in a half-space entails artificial boundaries

within the media. A slice of the media is taken rather than

the half-space. Two approaches to simulate the boundary of a

half-space suggest themselves. The first follows from the
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flexibility afforded by the elements: we grade the

element dimensions for the desired resolution. Near the

fault the elements are fine, while along the boundary far

from the fault, the elements increase in size. This

maximizes the distance between the boundary and fault for a

given number of unknowns. But this is nothing new.

An alternate strategy simulates the half-space on the

boundary. This is analogous to Boussinesq and Cerruti's

problem in elasticity: we desire the relation between

displacement and force for the surface of an elastic or

viscoelastic half-space. Since the two dimensional analogue

of Boussinesq's solution does not tend to zero at infinity

(Love, 1944 art. 150), we examine the behavior using an

empirical relation. Boussinesq and Cerruti's problems

indicate a linear relation between surface displacements u

and load P for a half-space (Fung, 1965, sec. 8.8).
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P = au (2.7.1)

We can postulate a similar relation for the boundary of the

region to simulate. the infinite continuum. Along the diagonal

of the stiffness matrix an additional constant a for the

elastic support relates the displacement and reaction. This

is equivalent to altering the variational problem for the

new boundary condition. A term 1/2a . .u.u. enters the varia-

tional principle along the surface specified by these

boundaries.

To estimate the best value for a , we compare an

analytic solution for a fault within a half-space to the

finite element method. Another comparison uses a second

finite element model constructed by reducing the size of the

original model. Varying the boundary conditions then allows

a best fit for the reduced model to the original. Using

this analogy to a half-space, a noticeable improvement

occurs for the reduced model.

2.8 Inversion Theory Applied to Finite Elements

General inverse theory encompasses more than determining

a particular solution that fits the data; knowing the

uniqueness and resolution of the solution often gives more

insight into the problem. A particular solution has only

limited value if we cannot specify bounds upon it. The data,
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in particular their errors, impose constraints on the model's

uniqueness. The solution can be varied within these bounds

while still satisfying the data. Essential to any inversion

theory, then, are the data and their errors, and the

assumed model.

The time-dependent deformations of the earth's surface

introduce a special set of data and model parameters. The

deformations consist of geodetic observations relative to

some datum. This datum may be another bench mark or an

absolute such as a tidal station. The former is also de-

forming with the surface, while the latter has uncertain

errors. The model parameters, on the other hand, pose the

problem. Time-dependent surface deformations may result

from a series of fault movements, relaxation of the astheno-

sphere, or both. The gradual spreading of the oceanic

lithosphere and accumulation of strain impose an additional

freedom. Simplifying the problem and conditions yields a

more tractable solution; we can then isolate individual

contributions and test their significance.

In this thesis I confine the problem to stress relaxation

within the asthenosphere. After the earthquake, the fault

remains locked within the lithosphere, only segments within

the asthenosphere relax with time. The effects of strain

accumulation are removed from the data prior to any inversion.

Given these assumptions, the free parameters are the fault
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displacements during the earthquake, the viscosity of the

asthenosphere, and the problem's geometry. The latter is

constrained for any particular inversion. Only the first

two, initial fault displacement and viscosity, are actually

inverted with the data. Section 5.2 discusses these assumptions

in greater detail.

In our case the finite element method generates the model.

Given a set of m observations 0. where j=l,...,m and a set of
J

n parameters P where i=l,...,n, the finite element method

provides the relationship between the two within a specific

geometry. Any model must provide a functional (computational)

relationship between the model parameters and the calculated

value C corresponding to the observations:

C. = F.(P.) (2.8.1)J 11i

The inversion theory minimizes a norm expressing the distance

between the observations and calculated values until the

optimum parameters are found. Now the finite element method

introduces simplifying assumptions.

First, the formulation of the variational principle and

its minimization gives a linear functional. Although it may

be linearized around an initial model for nonlinear problems,

the functional is strictly linear for displacement with our

problem, time-dependent linear viscoelasticity. The quadratic

variational principle, (2.3.1), reduces to a set of linear
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matrix equations in the Laplace domain:

Kq = Q (2.8.2)

relating nodal displacements q to the nodal forces Q . Given

a set of boundary conditions, the surface displacements are

a linear function of the fault displacements in the Laplace

domain. This relation is preserved during the inversion to

the time domain. Consequently, imposing a unit displacement

for each fault parameter gives the variational parameters for

the surface displacements after inversion to the time domain.

Since the viscosity scales from dimensional and non-dimensional

time, the variational parameters for the gross viscosity of

the problem follow from the scaling. This, however, is a non-

linear functional of time; thus, an initial model is necessary

for viscosity. This procedure guarantees a linearized problem

for the functional relationship.

Various approaches are possible for the inversion theory

(Backus and Gilbert, 1967; Jordan and Franklin, 1971; Barcilon,

1974); however, here the problem will be treated as a gener-

alized matrix inverse weighted according to the errors and

parameters. The other methods which depend on variational

parameters are analogous. Wiggins (1972) gives an adequate

summary of the generalized inverse, its interpretation, and

its relation to other inverses. Except for minor variations,

we will follow his notation.
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The finite element method has reduced the functional

relating fault displacements q and calculated surface dis-

placements C to a linear problem

C = Mq (2.8.3)

where M is the coupling matrix derived from the time inversion

for each surface and fault displacement. We evaluate the

matrix at specific times and an initial viscosity correspond-

ing to the geodetic time intervals. A direct relationship

results for the fault displacements rather than a matrix of

variational parameters since the problem is linear. Inclusion

of viscosity introduces one nonlinear parameter requiring a

variational parameter evaluated around an initial model.

Using Wiggin's notation, we let

01 q, var{ql}

0
Ac = 2 . var{Ap'} =

-qn-1 var{qn-1
0 var{An}

LM M M

M 1M2 ... .... Ml n-l aC1/Va

A =(2.8.4)

M ....... M 9C /an
Ml m n-l m

where var{Ap'} denotes the variance of the parameter Ap'

and 3C/Dq are evaluated using an initial model for both
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fault displacements q* and viscosity n*. The inversion now

has the form

n-l
0. = 1 Mq. + (DC (2.8.5)

or in matrix form

A'Ap' = Ac (2.8.6)

In general there are only k independent equations where

k<<n,m . Thus A' is singular giving an unstable inverse.

Additional constraints contained in the generalized inverse,

however, allow a well-posed problem: Both IE'| = |A'Ap-Ac' 12
2

and jAp'll are minimized simultaneously. The inverse selects

the smallest change in Ap' that satisfies the simultaneous

equations (e.g. Lanczos, 1961, or Wiggins, 1972).

Weighting the parameters and observations are first

necessary to remove the dimensionality of the vectors Ap'

and Ac' (Searle, 1971; Wiggins, 1972). Defining a diagonal

matrix W.. proportional to the dimensions of the parameters,
.Ll

AT -2 2
we now minimize Ap W Ap instead of ApI . The lengths

of the rows for A'W are now invariant to the parameter

interval. A covariance matrix S proportional to the dimen-

sions of the observations or the errors

S = Cov{0.0.} (2.8.7)
1J l J

weights the observations. The minimization becomes
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-2'S E (2.8.8)

to bias the corrections towards the more accurate observations.

This gives a maximum likelihood estimate. The new parameters

are now introduced into the equation:

A = S A'W

AP = W~lAp' (2.8.9)

Ac = S~ Ac'

where we minimize

|1 l2= 1 AAp-Ac1 2 (2.8.10)

and

IApI 2 (2.8.11)

The finite element method already forms a weighted matrix

for the displacement parameters; we need only the covariance

and viscosity weighting.

The generalized inverse gives a solution satisfying

these constraints. The matrix A can be expressed as

A= U A vT (2.8.12)

mxn mxk kxk kxn

where A contains k independent equations, U and V are k

eigenvectors for the m columns (observations) and n rows

(parameters) respectively with eigenvalues given by the
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diagonal matrix A (Lancsoz, 1961; Wiggins, 1972). The

generalized inverse picks p nonsingular eigenvalues in

descending value to express A:

A = U A V T
~ep ~ppi p

The inverse immediately follows:

A-
-p

(2.8.13)

(2.8.14)-V A~1U T
~p-p -p

where the solution to

AAp = Ac (2.8.15)

now becomes

-1 TAp =V A U Ac
g ~p~ -p

(2.8.16)

Substituting Ap into the norm for the error, we have

c = Ac - AAp = Ac - U A VTV A-lUT Ac
g ~ ~pp-p -p-p -p ~

(2.8.17)

=Ac - U U Ac
~ ~pp ~

using the orthogonality of the eigenvectors, VT V = I. The
p -p

components of the error c lie outside the solution space p.,

since

(AAp) T- = Ap V A U T (Ac - U U TAc)~ -p-p-p ~ p-p ~

= APT V A (UT Ac - UT U UT Ac)
-g ~p-p -p - -p -p-p

= Ap V A (UT Ac - UT Ac) =0
g -p-p ~p ~

(2.8.18)
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The solution represents a minimum in the p space.

The addition of the unconstrained eigenvectors V. in
~l

the singular space to the Ap solution gives the general

solution
n

Ap = Ap + Y a.V. (2.8.19)
g i=p+l1

Using orthogonality, we obtain

|Ap| = |Ap |1g2  + Ya.2  (2.8.20)

which implies

|Ap12  > |Ap 2 (2.8.21)

Thus the generalized inverse gives the minimum solution in

the domain of p eigenvectors.

2
The variance a . for the new parameters space using

pi

p eigenvectors becomes

2 22
2 . = V /X 2 (2.8.22)

where V. . are the elements of the eigenvector matrix V

The n parameters are not independently resolvable since

there are only p independent vectors. Associated with these

errors, then, is a resolution matrix R characterizing the

parameter's closeness to a delta function:

R = VVT (2.8.23)
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The jth column of the nxn matrix is the least-squares solution

for maximizing the jth parameter. An analogous matrix deter-

mines the information resolution contained in the data space

(Wiggins, 1972).

The generalized matrix inverse allows both direct inversion

of the fault displacements and iterative refinement for the

viscosity. Other formulations such as Backus and Gilbert's

(1967) yield similar results. It is essential to remember,

however, that the inversion minimizes both the perturbation

Ip| from the initial model and the error let simultaneously.

Thus if we start from an initial model of zero, the inver-

sion determines the closest model. In this sense the initial

model is important even for a completely linear problem.

This effect is also implicitly contained in Alewine and

Jungels' (1974) model for the Alaskan earthquake, although

they do not divulge whether their initial model is zero

or if iterations are used from the initial model. In

Chapter 5 the geodetic and tilt data for the 1946 Nankaido

earthquake provides the format for the inversion of the fault

displacements in the context of a viscoelastic model. Here

the inversion applied to the real earth will be in-

vestigated given the initial model and its assumptions.
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3. FIRST ORDER ANALYSIS OF MANTLE INTERACTIONS

3.1 Introduction

To gain insight into the importance of the mantle on

strain release, simple analytic models are very useful.

These have the advantages of simplicity and flexibility,

while numerical models involve greater expense and extensive

development. It is appropriate then to review various

models that may clarify our intuition and understanding of

processes associated with strain accumulation and release.

In this chapter we consider analytic solutions for three

separate problems involving an elastic layer and a visco-

elastic half-space. Numerical solutions to such problems

will be given in Chapter 4.

The earthquake may first be approached as a boundary

condition on a semi-infinite plate or beam overlying a

viscoelastic foundation. The beam represents the lithosphere

and the foundation corresponds to the asthenosphere. The

relaxation of the foundation to a load or displacement

boundary condition applied to the free end of the beam

suggests possible modes of deformation after an earthquake.

These relaxation modes are analogous to those from post-

glacial rebound. A second method proposed by Nur and

Mavko (1974) uses a dislocation in an elastic layer over-

lying a viscoelastic half-space. An accurate solution,

however, is still unavailable for a thrust fault. Finally,
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stress propagation or diffusion in the lithosphere is

modelled using an elastic beam overlying a viscous medium.

All these problems assume linear viscoelasticity for

the media. It contains both the essential behavior of

relaxation and reasonable analytic techniques. A more

complex media such as power-law creep would retain the same

characteristic behavior, but would introduce complex mathe-

matics. Considering the other unknowns contained in the

problem, this additional complexity is not justified until

we understand the basic phenomena.

3.2 Elastic Plate on a Viscoelastic Half-Space

Surface deformations of the earth before and after an

earthquake are analogous to the glacial loading problem.

The accumulating strain from the descending oceanic litho-

sphere represents the loading; the earthquake and post-

earthquake adjustments are the rebound phase. A simple

model can be adopted to represent the accumulation and

release of strain along the fault interface: a semi-infinite,

thin, elastic beam or plate overlying a viscoelastic

foundation that simulates the mantle. Along the edge of

the beam a displacement or stress boundary condition with

time replaces the fault. This model is simple and illustrates

important phenomena.

Consider first the elements of the model as given

in Figure 3.1. If we assume a Winkler foundation which
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Figure 3.1

Configuration for a semi-infinite, thin, elastic beam

with flexure rigidity D overlying a viscoelastic Winkler

foundation with modulus k. Constant axial load N and

saw-tooth end load P or displacement y0 are boundary con-

ditions. The restoring force for a Winkler foundation is

proportional to the displacement y; thus, it corresponds

to a buoyant fluid.
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implies a vertical restoring force proportional to the

displacement, one obtains a fourth-order differential

equation (Hetenyi, 1946):

42
D 4 - N + ky = 0 (3.2.1)

dx dx

D = Eh /12(1 -

where N is the axial load on the beam (positive under

tension), and k denotes the foundation modulus. The

flexure rigidity D depends on the elastic moduli, Young's

modulus E and Poisson's ratio v, and the thickness of the

beam h. Free boundary conditions at x = 0 are taken as:

2
D .= 0 , moment vanishes (3.2.2)

dx

3
D y + N = 0 , vertical shear stress vanishes.

dx3  dx
(3.2.3)

At infinity the solution must decay. For a concentrated

normal end force P, these yield the displacement solution:

2
P 2X -ax 2~cs~ 2 -2

Y =k 2 2 e [2a~cos~x + (a -_ )sinax] (3.2.4)
ak 3a -_a6 %

and the shear stress

-P e- ax 2 2 2
QV - 2 2 [(3a - )acosax - (3a - a )asinax]

3a -a (3.2.5(3.2.5)

where
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A = (k/4D)

a = (A2 + N/4D) (3.2.6)

6 = (A2 - N/4D)

If we prescribe a displacement y0 at x = 0, the results are

e-[ax~ (2_ 2
y= yo e [cosx + 2a_ sin~x] (3.2.7)

and

-YO ke -ax22
QV 2 - [(3a -?)8cos~x - (32 - a )asin~x]

(3.2.8)

These can be arranged into a nondimensional format for

plotting. For a concentrated normal end force P, one now has

2
y/y0 =e -a [cosC + a 2- sinC] (3.2.9)2a

Qv -aC (a -_3)a
p = e [cosC + (2 sin] (3.2.10)

3a -1

2
where a = a/0, C = ax, and initial displacement y0 4P2 a0 ks(a 2-1)

When expressing the viscoelastic solutions, k is taken as

the final buoyant support which will be discussed later.

There are significant assumptions involved in these

solutions. The foundation transmits only normal forces to

the plate or beam; shear tractions between the plate and

underlying foundation are ignored in the model. This is

not as severe as one might imagine. The overlying stiffness

of the plate or beam acts to diffuse the stress along the
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foundation. For example, the exact solution for a harmonic

loading sin(mx) on a thin elastic plate overlying an

elastic continuum is (Hoskin and Lee, 1959)

y~x) = 1 sin(mx)
Dm +m

(3.2.11)

while the solution for a fluid foundation which transmits no

shear stresses reduces to

y(x) = 1 sin(mx)
Dm +k

(3.2.12)

when P is the shear modulus (Hoskin and Lee, 1959). If a

spacial wavenumber m is examined, say m-, the solutions

(3.2.11) and (3.2.12) suggest that k can be approximated

using

k (3.2.13)

if the two solutions (3.2.11) and (3.2.12) are the same. The

wavenumber significantly effects the foundation modulus

when the two terms Dm4 and are similar; thus, our

solution can only provide a guide to the behavior.

Applying the correspondence principle to the elastic

solutions (3.2.4) and (3.2.7) now gives the viscoelastic

solutions (Christensen, 1971). The foundation modulus k

becomes the transformed viscoelastic modulus. Since the

mantle has an initial elastic behavior while approaching

a dense fluid under gravity for large times, a standard

solid is adopted as the response of k: an initial elastic
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behavior, then decaying until the restoring force corresponds

to a dense fluid in gravity. The Stieltjes convolution for

k * y becomes:

k * y = t [k-e-t/T + k(1 - e-t/T)] H dT (3.2.14)
k0~ e f dT

0

where ke is the elastic modulus for the foundation, T

corresponds to the relaxation time, and kf is the modulus

representing the buoyant restoring force. A modified Fast

Fourier transform algorithm then inverts the operational

form of equations (3.2.4) and (3.2.7) to the time domain

(Dubner and Abate, 1968).

Figure 3.2 shows two models that are identical except

for the boundary conditions. In one case a saw-tooth

displacement profile is specified; for the second we pre-

scribe a saw-tooth stress profile. The profile starts with

a linear accumulation phase, jumps back to the initial

state, then starts accumulating again, and repeats the cycle.

The repetition rate is 33.3 when nondimensionalized by the

relaxation time of the foundation. We reference the vertical

deformations to the displacement either just prior to the

step discontinuity or just after the jump. Again the

relaxation time nondimensionalizes all time intervals.

The boundary conditions imposed upon the beam, whether

stress or displacement, significantly effect the resulting

deformations. If the relaxation time for the foundation

or asthenosphere is much less than the accumulation time,
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Figure 3.2

Dimensionless vertical displacement profile versus

dimensionless distance Bx from the fault for two boundary

conditions, stress or displacement. The 'fault' or

boundary condition is applied at 6x = 0. Displacements

are relative to the instant just prior to the step dis-

continuity and normalized by the step displacement. Time

is non-dimensionalized by the relaxation time for the

foundation. In these units the period equals 33.3 Solid

and dashed curves represent t/T = 0 and t/T = 6, res-

pectively.
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a stress condition applies a relatively constant stress

state to the foundation allowing deformations that increase

with time. Thus the profiles have similar shape to one

another. The displacement boundary condition, on the other

hand, strains the foundation and then allows its relaxation.

As the restoring force relaxes on the plate, the wavelength

for the deformation increases thereby establishing a new

equilibrium. The boundary conditions at the "fault" define

then the stress state imposed on the foundation and, thus,

determine the deformation behavior. We can now compare

these deformations to geodetic observations after a major

earthquake.

Figure 3.3 illustrates a model fitting the vertical

surface deformations before and after the Nankaido earth-

quake of 1946. The model assumes that axial loading is

insignificant, i.e., a/s ~ 1, or N is less than a kilobar.

The fluid buoyancy kf corresponds to a density contrast of

33.4 gm/cm between the surface and the mantle. The

dominant wavelength 6 defines ke in equation (3.2.14). To

simulate the accumulation of strain and its release by the

earthquake, a saw-tooth displacement profile is applied

at the free boundary. The strain accumulation lasts 100

years, the earthquake occurs, and then the process repeats

itself. This period approximates the periodicity of

earthquakes in the Nankaido region. A best fit to the

Nankaido data (Fitch and Scholz, 1971) then constrains the
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Figure 3.3

Vertical deformations using a thin elastic plate over-

lying a viscoelastic foundation fitted to the leveling

data for the 1946 Nankaido earthquake. This geodetic data

is taken from Fitch and Scholz (1971), profile A. For the

model parameters, the flexure rigidity D equals 2.78 x 1031

giving a lithospheric thickness h of 65 km if Young's

12 2modulus E is taken as 10 dyne/cm2. The axial load N

compressing the beam is 1.4 x 1010 bar-cm 2, or for a 65 km

lithosphere 2.1 k bar. The elastic foundation modulus k is
e

5 23.12 x 10 dyne/cm while the fluid foundation modulus kf

becomes 3.3 x 103 dyne/cm2 for a density contrast of

3
3.4 gm/cm3. The relaxation time giving the best fit is

3 years, suggesting a viscosity of 7 x 10 9 poise.

The vertical slip y0 becomes 3.1 m. The time intervals

represent the two dates for the geodetic measurements where

the changes in elevation between these dates are plotted

as vertical bars. All deformations are tied to tidal

stations as an absolute datum. The top figure (a)

corresponds to the downwarping of the continental

lithosphere on Shikoku island between 1895 and 1929 prior

to the earthquake. This is the accumulation phase. Follow-

ing the earthquake in 1946, the elastic-rebound phase re-

covers most of the accumulation as (b) illustrates between

1929 and 1947. Relaxation in the asthenosphere, however,

gives post-seismic adjustments in (c) and (d).
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lithosphere to 65 km thickness. These parameters yield a

model surprisingly similar to the Nankaido deformations.

Both the model and data represent the difference between

vertical deformations for two specific times. For the

geodetic data, tidal stations tie the vertical displacements

to an absolute datum. This allows comparison of the model

to the data. Chapter 5 discusses the assumptions and impli-

cations involved in this comparison.

The data for the Nankaido earthquake contains three

phases of deformation (Scholz, 1972), with corresponding

behavior in the model. Prior to the 1946 earthquake, the

descending oceanic lithosphere warps and strains the

continental lithosphere as in Figure 3.3a. The strain

energy within the asthenosphere relaxes during the slow

warping, since the relaxation time for the asthenosphere

is short compared to the repetition rate of large earthquakes.

The 1946 earthquake signals the second phase of acute

deformation. Here the large and destructive deformations

commonly associated with an earthquake occur along the

fault, while less obvious subsidence and uplift are found

far from the fault. Reid (1910) recognized these two

phases and related them in his elastic-rebound theory. The

slow downwarping represents the accumulation of strain energy;

the earthquake signals the fault rupture and rebound of the

elastic media. But for a medium allowing stress relaxation,

another phase of adjustment is possible after the earthquake.
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During this third phase the asthenosphere relaxes after

the strain step introduced by the earthquake. Noting that

the mantle has little accumulated strain energy from the

first phase, the earthquake acts as a step function in strain.

The subsequent relaxation in the asthenosphere after the

earthquake results in the surface deformations of Figure 3.3d.

The wavelength of deformation increases and the hinge point

for zero deformation moves away from the fault. This is

analogous to glacial rebound (Haskell, 1935; McConnell, 1965).

Yet this rebound differs in one significant aspect: the

relaxation time and spacial harmonics are much shorter than

any glacial rebound observations. In addition, no

observations of glacial rebound are available at island

arcs. If the effect of the boundary conditions and the

finite thickness to the lithosphere can be resolved in our

models, a new and independent viscosity for the asthenosphere

is possible.

The stress relaxation within the asthenosphere strongly

effects the state of stress along the free boundary or fault.

Figure 3.4 shows a plot of stress versus time for the previous

model, again related to the Nankaido earthquake of 1946.

While we have no direct data for the absolute stress level,

the aftershock frequency may be a reflection of the stress

state (i.e., Rybicki, 1973). Thus the energy released by

the aftershocks is also plotted on the diagram.

During the first year the energy released by the
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Figure 3.4

Plot of stress on a linear scale along the fault for

the model in Figure 3.2 overlain on the energy released

by the aftershocks and a swarm on Shikoku. The fault

length is taken as 100 km. Using the Catalogue of major

earthquakes which occurred in or near Japan (1958) and

the energy-magnitude relation according to Gutenberg and

Richter, the rate of energy release for the swarm and all

aftershocks is computed for the intervals shown by the

open or closed circles. Notice that the exponential

decay time for the aftershocks immediately preceding the

earthquake is much shorter than the stress decay. The

large peak in the aftershocks occurring more than a year

following the main shock originates from a magnitude

6.8 and 7.0 aftershock on the Kii peninsula.
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aftershocks rapidly decreases giving a relaxation time for

exponential decay of approximately one month. The stress

along the fault for our model returns exponentially to the

initial state, but with a relaxation time of approximately

three years. This suggests independent processes unless the

aftershock frequency is exceptionally sensitive to the

stress level: a small change in the stress level during

the first month produces a large change in aftershocks.

In that case we would be appealing to a process similar to

Benioff's (1951) or Lieber and Braslau's (1965) viscoelastic

rebound mechanism for aftershocks.

As the stress returns to its initial state, however,

the aftershock frequency would be expected to increase, not

decrease as observed. A more plausible argument suggests

that the aftershocks are a response to stress concentration

and inhomogeneities near the fault tip (i.e., Mogi, 1963;

Rybicki, 1973). These local concentrations are far larger

than the stress variations envisioned by viscoelastic re-

bound in the asthenosphere. These local concentrations

could produce the short decay time. Yet this does not

rule out long term effects. Increasing stress along the

fault could trigger the abnormally large aftershocks (M

7.0) occurring a year after the main earthquake. In

addition, a swarm of earthquakes on Shikoku may be related

to the main shock, but delayed by approximately three

weeks. These large aftershocks and the swarm contaminate
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the geodetic data. In Chapter 5 we further discuss the

limitations imposed by the data.

With this model the three phases observed in the

geodetic data translate into accumulation within the litho-

spheric plate, sudden rebound and straining of the astheno-

sphere, and post-earthquake relaxation within the asthenosphere.

An alternate mechanism for the third phase, fault creep, cannot

be excluded with the analytic simulations. The model can

only broadly outline the probable phases.

3.3 Note on the Wavelength of Relaxation

The analog to the glacial loading problem may be further

pursued using the analysis of McConnell (1965) for surface

loading. Prior to his solution, a uniform Newtonian vis-

cosity had been assumed for the earth models (Haskell, 1935),

rather than an elastic lithosphere overlying a viscous

asthenosphere. McConnell pointedly argued that the elastic

lithosphere significantly alters the characteristic deforma-

tions for short wavelengths, just as we found for the thin

plate or beam on a viscous foundation. We first must review

his results.

The simplest model for glacial rebound is a homogeneous

viscous half-space. Here the relaxation time T for wavenumber

u reduces to

T = 2nu/pg (3.3.1)
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where

u = 27r/X (3.3.2)

when X is the wavelength of the deformation and q is the

viscosity (Haskell, 1935). Introducing a characteristic

length h, the time T is nondimensionalized

T= g (3.3.3)

and the dimensionless wavenumber becomes uh. Our relation

for the relaxation time reduces to

= uh (3.3.4)

The relaxation time is then inversely proportional to the

wavelength; thus long wavelength components decay faster

than shorter ones.

Introducing an elastic layer on the surface diffuses

the stress and allows rapid relaxation. In his analysis,

McConnell (1965) solves the problem of an elastic layer

overlying a viscous half-space. Figure 3.5 gives a plot of

the solution in non-dimensional form where -P is the dimension-

less shear modulus if

p = y/pgh (3.3.5)

Upon inspection, one notices immediately that for short

wavelengths the relaxation time T asymptotically approaches

1/ . Moving along constant P_, the relaxation time first

increases, then conforms to a viscous half-space for long

wavelength deformations allowing the relaxation time to

again decrease. The elastic layer controls, then, the
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Figure 3.5

Dimensionless relaxation time T as a function of dimen-

sionless wave number uh for a single elastic layer of

thickness h with Poisson's ratio 0.25 overlying a viscous

half-space. Short wave-length deformations occupy the

upper portion of the diagram where the transition is

denoted by the dotted line. Here the relaxation time T

approaches 2n/y when X<2h. The values near the top, 100,

50, 20, 10, and 5, correspond to values of y. (Figure re-

produced from McConnell, 1965).
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short wavelength deformation.

A fault introduces short wavelength deformations; thus,

one would expect rapid relaxation for short wavelengths and

slower relaxation for greater wavelengths. The transition

occurs near uh = ff or dimensionalized, A = 2h. We expect

then the following behavior for stress relaxation following

a large earthquake:

1. The dominant wavelength for the post-seismic

deformation conforms to A 2h for the initial

relaxation.

2. The wavelength increases during later post-

seismic deformations.

3. Linear dependence roughly holds between the

dominant relaxation wavelength and the litho-

spheric thickness.

In detailed models these relationships should be approached

when we approximate initial conditions that are similar to

a normal surface load.

3.4 Dislocation Within a Layered Medium

An alternate method which accurately models the fault

dislocation uses the elastic solution for a screw or edge

dislocation in an elastic layer over a half-space. Nur

and Mavko (1974) have used these with the correspondence

principle to calculate the rebound for a thrust or strike-

slip fault. But again the solutions involve major
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approximations for a dip-slip fault.

The viscoelastic solution depends on an elastic solution

for a strike-slip or dip-slip fault within a layered media.

Rybicki (1971) solved the problem of a strike-slip fault in

a layered media using images, an extension of Maruyama's

(1966) method. The resulting elastic solution is exact for

the problem given by Figure 3.6:

Au -l D l-Y M D-2m+l -l D+2mHu =- {tan -+ (+) [tan 1  + tan y

m=l

(3.4.1)

where y = y 21. Using the correspondence principle the

solution immediately yields the viscoelastic solution.

Figure 3.6 also illustrates a solution for the u2 (t) component

for a standard viscoelastic solid.

Unfortunately, Nur and Mavko (1974) do not fully define

the parameters for the viscoelastic media. Stress asymptot-

ically relaxes in a standard viscoelastic solid to a non-zero

minimum. This minimum is not given. The figure, however,

is still similar to complete relaxation of shear stress

within the asthenosphere and sufficiently illustrates the

point: relaxation of the asthenosphere allows further

displacements far from the fault.

Nur and Mavko (1974) also give an incomplete solution

for a dip-slip fault totally within the lithosphere. The

solution is useless in its present form for it lacks the

necessary geometric factors. A critical problem, however,
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Figure 3.6

Viscoelastic model for a strike-slip fault according

to Nur and Mavko (1974) using Rybicki's (1971) elastic

solution. The dislocation occurs at t = 0, then relaxation

of the asthenosphere produces the new profile at t = w. A

standard viscoelastic solid is used for the asthenosphere

allowing initial elastic behavior and relaxation to a

non-zero stress level. Unfortunately, the parameters

are not given. Figure reproduced from Nur and Mavko

(1974).
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lies with the solution technique. The solution for a

layered half-space uses Head's (1953, or see Mura, 1968)

solution for an edge dislocation within an elastic half-space

when bonded to a second and different half-space. An image

of the dislocation sharing a common slip plane with the

original dislocation approximates the free surface midway

between the two. This gives an incorrect boundary condition

along the free surface, and neither does it satisfy the

symmetry of the problem. In addition, Head used images for

the solution of the original problem, and these images are

not represented in Nur and Mavko's solution. Thus,

their viscoelastic solution also represents a gross approxi-

mation for a fault within a layered media.

3.5 Stress Propagation

Among his many contributions, Elsasser (1969) realized

the possibility of stress propagation within the lithosphere

when overlying the viscous asthenosphere. A simple, one-

dimensional model given in Figure 3.7 was suggested for the

problem: a thin, elastic plate or beam of thickness h

and elastic modulus E represents the lithosphere. The

asthenosphere conforms to a fluid layer of depth h2 and

viscosity n. Now consider a lateral transient load on the

plate which locally deforms it. The load also stresses

the asthenosphere which locally relaxes, and diffuses or

propagates the stress down the plate. Thus the problem is
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Figure 3.7

One dimensional model after Elsasser (1969) for an

elastic lithosphere overlying a viscous asthenosphere. A

step displacement is applied at the boundary on the left.
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analogous to heat conduction.

Let us consider the simple model. If the transient

load results in pure elastic deformation within the plate,

the horizontal displacement u within the plate depends on

the local horizontal stress a :
x

a = E au (3.5.1)x ax

A traction T applied at the base of the plate introduces a

horizontal gradient to the total load on the plate:

T - h (3.5.2)

d 

If the motion is slow ( = ), the plate moving upon the

viscous asthenosphere causes a traction at the base

T = (3.5.3)
h2 a

Balancing the horizontal forces within the plate with the

shear forces at its base gives the following parabolic

equation:

au K 2U
at a2

3x
(3.5.4)

1i2E
K=

Standard solutions are available for this diffusion

equation. A unit displacement at the boundary of

a semi-infinite solid yields a horizontal displacement

u = erfc {x/2/35t} (3.5.5)
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or if

=x/2/E , u = erfc {c} (3.5.6)

(Carslaw and Jaeger, 1959). The stress a, using equation

(3.5.1) is then

2
-E -x /4Kt

or

Cx /n -C2

These are plotted in Figure 3.8.

The normalized stress propagates as a diffusion wave

or front with velocity

v = ( when x =( )2

(3.5.7)

(3.5.8)

(3.5.9)

-l
Alternately, when a is e

x
the velocity becomes

V =/7T

of its maximum at time t;

when x = 2/EE (3.5.10)

These only differ by a constant. The solutions give a realistic

approximation for times greater than zero. Substituting the

values used for the surface deformation in section 3.2:

E = 1012

h = 65 km

h2 = 200 km

q = 5.1019

dyne cm-2

poise

gives

K = 2.6 ' 10 cm sec
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Figure 3.8

Normalized horizontal displacements and stress for the

propagating displacement impulse. The displacement is

normalized by the initial pulse, while the stress is

normalized by two alternate models. Each shape is in-

variant in time, but the magnitude depends either on the

time since the impulse or the distance from its applica-

tion point.
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Figure 3.9

Velocity and distance for diffusion propagation.

The two derivations in the text represent upper and lower

bounds for each. Thus, 10 years after the strain step the

diffusive front has propagated approximately 500 km and is

now continuing at 30 km/yr.
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Figure 3.9 plots the velocity and distance for the diffusion

propagation of stress, where the two derivations represent

upper and lower bounds. For distances between 10 and 1000

km the 'propagation time' is from .1 to 50 years, well within

the accumulation interval between large earthquakes.

These models predict propagation of stress after large

earthquakes. The perturbations in the stress pattern are not

large, yet it may influence the probability of an earthquake

in an adjacent region.

3.6 Predictions and Conclusions

The first-order analysis contained in this chapter suggests

diverse effects introduced by mantle relaxation prior to and

following major earthquakes. The most significant consequence

is the post-seismic deformations since geodetic measurements

can provide reasonable constraints on the model. In addition,

the state of stress simultaneously varies during mantle

relaxation. While aftershocks probably do not reflect this

variation, stress relaxation and propagation following a major

earthquake could influence the state of stress within adjacent

regions during later times. This characteristic time would

depend on the relaxation time of the asthenosphere. These

variations could in turn trigger earthquakes in adjacent

'seismic gaps'. This suggests that a two-dimensional analysis

containing Jthe fault and descending lithosphere would further

define the problem and the important factors.
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The geodetic data for the 1946 Nankaido earthquake

indicates that a detailed regional analysis would also be

profitable. The following conditions in the problem may be

further resolved using two-dimensional models:

1. Effective viscosity of the asthenosphere near

the island arc during the deformations.

2. Thickness of the lithosphere at these time scales.

3. Geometry of the fault.

4. Boundary conditions on the fault.

In the next chapter idealized models for island arc systems

attempt to resolve the various aspects of the problem. Later

in the last chapter the geodetic data for the 1946 Nankaido

earthquake will introduce constraints on the model for South-

west Japan and Shikoku.
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4. FINITE ELEMENT MODELS OF TIME-DEPENDENT STRAIN FIELDS

4.1 Introduction

Analytic solutions give only a limited description of

mantle relaxation. The solutions are first an approximation

to the fault within a layered media. Even if exact, the des-

cending lithosphere imposes important boundary conditions

on the fault; that is, the slab penetrating into the mantle

acts as a stress guide. Within this chapter we consider

idealized models for an island arc using the finite element

method to model the media.

Linear viscoelasticity characterizes the simplest medium

which contains the desired behavior: stress relaxation and

elastic response. But even with this simplification, pre-

vious numerical solutions have been inefficient. Our solu-

tion method using finite elements gives a simple and efficient

technique yielding accurate results (see sections 2.1-2.6).

Just as significant is its ability to include gravity and to

generate the inverse model. Precedence also exists for the

application of viscoelasticity to earth models. Almost all

models for the earth's response to glacial loading assume

linear viscoelasticity (i.e., Haskell, 1935; McConnell,

1965). Post and Griggs (1973) only recently advanced to

material nonlinearities and suggested a relationship between

the glacial rebound data and nonlinear creep. Generally the

geodetic data, whether post-glacial rebound or post-seismic
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adjustments, do not warrant a nonlinear analysis. Such an

approach to our problem would entail vastly more complex

mathematics and computational time. In view of the other

inherent complications, a nonlinear analysis does not make

sense when a simpler linear model gives the desired physics

for the problem.

A second major assumption reduces the problem to two-

dimensional plane strain for a flat-earth. Along the trend

of an island arc the geometry does essentially conform to

two-dimensions, depth and distance perpendicular to the arc.

An earthquake, however, is finite along the arc rather than

an infinite crack as two-dimensional models implicitly

assume. Immediately, all edge effects introduced by the

finite length are ignored in our models. So long as the

model avoids the fault ends and remains within roughly a

fault length of the rupture, the two dimensional approxima-

tion is reasonable and still retains the physics (Jungels

and Frazier, 1973). Three dimensional models using the finite

element method only require more computer time. This addi-

tional expense, however, does not seem justified at this

moment.

The finite element method represents an ideal compro-

mise to solve problems having dip-slip faulting. For the

simplest problem, a fault within a half-space, analytic

solutions exist and are far more efficient than the
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numerical schemes. A layered media probably represents

an even trade-off if a semi-analytic solution were avail-

able. Any greater complexity favors the finite element

model for elastic solutions. Jungels and Frazier (1973)

present a strong case for the finite element method when the

media is inhomogeneous. As section 2.3 poignantly illus-

trates, the accuracy for the approximation depends on the

degree of approximation within any one element, the number

of elements within the region, and the presence of sin-

gularities. Under normal conditions increasing the elements

or approximation degree insures any desired accuracy. The

singularity introduced by the fault, however, slows the

convergence rate for more elements, and eliminates the ad-

vantage of higher degree approximations within the element

(Strang and Fix, 1973, chapt. 8). Yet convergence still

does occur for displacement or stress; it only requires

greater effort. This caution has not been sufficiently

stressed in the literature. Given the appropriate prob-

lem, the finite element method gives an efficient solution

technique.

The deformations of a dip-slip fault in a complex

viscoelastic media is such a problem. At the present no

other solution strategy exists that incorporates the com-

plex geometry of the descending lithosphere and fault. We

must still proceed with caution for the fault does intro-
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duce a singularity. The trade-off between accuracy and

computational speed must retain the physical behavior.

To satisfy these criteria, two models are adopted in

the computations. A coarse array of elements demonstrates

the phenomena. Figure 4.1 portrays the structure and pro-

perties for both a long 650 km and short 200 km depth slab.

The grid contains 206 elements and 324 degrees of freedom

graded toward the fault. Nine segments comprise the fault.

The second array in Figure 4.2 improves the accuracy.

The structure contains 467 elements and 956 degrees of free-

dom, while the fault contains 15 independent segments. This

model allows detailed comparisons and inversions.

The next section begins with a linear viscoelastic media

and approaches various simple problems. Once the effect

of the boundary conditions has been resolved, we solve for

a 45* dip-slip fault with and without gravity for an elastic

media. The solutions without gravity have an analytic

counterpart. Stress relaxation is then introduced into the

asthenosphere. Later comparison of models indicates the

effect of various geometric changes such as fault depth

and lithospheric thickness, slab length, and dip. The

boundary conditions imposed upon the fault are also dis-

cussed. Within these models the effects of stress pro-

pagation and gravity are evident. The behavior is then

summarized in a set of predictions.
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Figure 4.1

Coarse finite element grid for an idealized island

arc. The grid contains 206 elements and 324 degrees of

freedom. The fine shading denotes the continental and

oceanic lithospheres where the boundary for the short des-

cending slab corresponds to the heavy line between 100 and

200 km depth. The alternate model with the long descending

lithosphere extends to 600 km depth. The lithosphere

extends from 0 to 100 km depth; the asthenosphere lies

between 100 and 350 km; and the mesosphere occupies depths

greater than 350 km to the bottom artificial boundary.

The side and bottom boundaries simulate a viscoelastic half-

space (see section 2.7). Nine fault segments separate the

continental and oceanic lithospheres. If the relative

viscosity or relaxation time of the asthenosphere is taken

as 1., the mesosphere becomes 20., and the slab and litho-

5sphere are 2.xlO. These are the relative viscosity

ratios. Both finite element grids assume that the bulk

modulus equals 1.xlO12 dynes/cm 2, and that the elastic

shear modulus is .7x102 dynes/cm2
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Figure 4.2

Refined element grid for inversion problems and de-

tailed models. Now 467 elements and 956 degrees of free-

dom define the net. In this configuration the fault dips

at 350 between the continental lithosphere and a short

descending lithosphere extending to 75 km depth. Again

the continental and oceanic lithospheres conform to the light

shading. Fifteen segments define the thrust fault be-

tween the two lithospheres. Again the outer boundaries

simulate a viscoelastic half-space. Viscosity ratios to the

asthenosphere (50-100 km) become: lithosphere and slab

(0-50 km), 106; lower asthenosphere (100-350 km), 10.;

mesosphere (350-500 km), 100. Rescaling this basic model

generates new configurations with bends and different dips

in the fault.
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4.2 Dip Slip Fault in an Elastic Media

A simple model having an analytic solution is a 45

degree dipping fault in a homogeneous elastic half-space.

Using the elements in Figures 4.1 and 4.2, the finite element

method yields an elastic solution for a Poisson solid with-

out gravity. Figure 4.3 shows the non-dimensionalized ver-

tical displacements for two models. The dimensions are

normalized by the fault depth and the vertical offset on

the fault. The first using the coarse grid imposes a

dislocation extending to 100 km depth, but linearly decay-

ing along the last 25 km. The diagram also depicts an

analytic solution for the same model, except the dis-

location remains constant along the full depth (Jungels

and Frazier, 1973). The deviations between the fault con-

ditions used for analytic calculations and finite element

models are unavoidable; it results from the linear approx-

imation used in the finite elements. The difference be-

tween the solutions amounts to 3 percent of the maximum

displacement. A similar model with the detailed grid in

Figure 4.3 gives similar deviations, while it closely

follows the previous finite element model. Recalling the

slightly different initial conditions for the analytic

and finite element models, these results are adequate and

conform to linear decay at the fault tip. Jungels and

Frazier (1973) consider other elastic models which con-
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Figure 4.3

Vertical displacements versus horizontal distance for

two finite element models compared to an analytic solution

for a 45* thrust fault in an elastic, Poisson half-space.

The vertical offset is normalized to 1. The model denoted

by the filled circles uses the coarse grid in Figure 4.1.

Similarly, the crosses represent the surface displacements

for the finer grid in Figure 4.2. The fault conforms to

the line extending from x=O, where the slip linearly decays

to zero along the dashed portion for the finite elements

models. The analytic solution has constant slip along its

full length (Jungels and Frazier, 1973). The deviation

between the numerical solutions and the analytic solution

reflects this difference.
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tain variations along the fault and breaks in the dip.

There is no inherent limitation to the accuracy, only the

previously discussed trade-off between computational time

and accuracy.

4.3 Models for Island Arcs

Certain structural features are essential to character-

ize an idealized island-arc structure, beginning with a

descending oceanic lithosphere adjacent to the island arc

or continental plate. A thrust fault separates the two

domains and their independent motions. A distinct low

velocity and low Q zone underlies both the oceanic and par-

ticularly the island arc (Utsu, 1967). These are also the

essential features that dominate the model.

In section 4.1, the finite element grids are illus-

trated together with these essential regions. We now

examine the behavior of these models to time-dependent

deformations. The dominant interaction is one between the

asthenosphere and the lithosphere; however, other factors

are important. Gravity strongly perturbs the time-de-

pendent deformations. The length of the descending litho-

sphere influences the possible modes of relaxation.

Even more significant are the thickness of the litho-

sphere and the relative dimensions of the fault. The

time-dependent deformations and their relation to these
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factors are the topics of this section.

The simplest model and the one most closely approach-

ing the analytic solutions uses a short descending slab

illustrated in Figure 4.2. A 50 km lithosphere overlies

an asthenosphere with viscosity of 7 x 1018 poise for the

shear modulus or a relaxation time of .32 years. Starting

at 100 km depth, the viscosity increases to 7 x 10 19 poise.

The viscosity of the lithosphere is 7 x 1024 poise. We

can rescale these values, only their ratios remain constant.

Thus the diagrams express the time in dimensionless units

scaled by the relaxation time T for the asthenosphere where

T 0= fi/li

if q is the viscosity and p the shear modulus. The dimen-

sionless relaxation times become 105 for the lithosphere

and 10-100 for the mesosphere. For all the models the

shear modulus p equals 7,x 1011 dyne/cm 2 and the bulk

modulus is elastic at 1.x 10 dyne/cm2. All models in-

clude the gravitational potential unless otherwise noted.

Starting with a fault not quite extending through the

lithosphere, we observe in Figure 4.4 significant post-

earthquake deformations analogous to the analytic models

in section 3.2. Just as before the hinge point of zero de-

formation expands from the fault along the "continental

lithosphere" with increasing time. Yet now the finite

fault contained within the lithosphere further perturbs
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Figure 4.4

Post-seismic vertical deformations using a 100 km

descending lithosphere in Figure 4.2. The fault dips at

350, slips 7. m, and intersects the surface at 50 km. The

geometry is shown in the upper left corner for all the

forthcoming models where the lithosphere is outlined. The

arrows indicate the direction of slip along the fault inter-

face. Between the two filled circles the slip linearly

decays to zero. Five nondimensional times are plotted

where the increasing frequency for dashing denotes increas-

ing time. When nondimensionalized by the relaxation time

for the asthenosphere, the times for the plot are 0.

(elastic), 3.16, 15.8, 31.6, 63.1. For a viscosity of

7x108 poise for the asthenosphere, these correspond

to 0., 1., 5., 10., and 20. years. The short lithosphere

allows prominent post-seismic deformations on the con-

tinental lithosphere. The reaction to the fault tip

causes the developing bulge at -75 km.
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the deformations; it determines the initial deformation

field. It is this field that relaxes within the astheno-

sphere. Furthermore, the fault plane deforms with the

lithosphere during this process. As we will see later, a

long descending lithosphere restricts the possible relaxa-

tion modes for the lithosphere.

Gravity significantly perturbs the surface deformation

caused by the fault. Figure 4.5 compares two finite element

models, one without gravity and one with the gravitational

potential introduced into the variational

principle according to section 2.4. The deformations are

for two times, zero or elastic and 12.6 after the disloca-

tion. We observe its effect by the slight increase in the

spacial wavelength for the vertical deformations and an

overall perturbation. This represents a significant

effect for times after the deformation. When the astheno-

sphere relaxes, the gravitational restoring force becomes

relatively more important; the asthenosphere approaches a

buoyant fluid. Even for the elastic solution, the

gravitational potential introduces a significant pertur-

bation when we invert the geodetic data.

4.4 Geometrical Scaling

The analytic solutions for a strike-slip fault suggest

certain geometrical scalings within the problem. The
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Figure 4.5

Perturbation introduced by gravity on the vertical

surface deformations. The geometry is again shown in the

upper left inset using the bottom distance scale. The

fault slip is now 10 m with linear decay between the filled

circles. The descending lithosphere penetrates to 600 km

using the coarse finite element net in Figure 4.1.

The comparison is for two nondimensional times, 0. and

12.6. The solid line represents the solution with gravity;

the dashed line is the solution without gravity. Thus

gravity introduces an additional restoring force, thereby

reducing the post-seismic deformations.
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most significant is the fault depth to lithospheric thick-

ness. Let the fault dip at angle 0 and extend to depth D,

where the lithosphere has thickness H. The analytic solu-

tion suggests that D/H represents the nondimensional para-

meter (Nur and Mavko, 1974). Similarly,(D/H)cosO influences

the horizontal scaling for a given 0. These scalings are

evident in the numerical solutions.

First let us consider a change in the lithospheric

thickness when the fault depth and dip remain constant.

Figures 4.6a, b compare two models: a 50 km thick litho-

sphere and 50 km fault depth, to a 100 km lithosphere with

the same 50 km fault. Both these models use the fine

element grid in Figure 4.2 but with the fault dipping at

50 degrees. D/H now becomes 1. and .5 respectively. The

results are distinctly different deformations. To deci-

pher these changes, Figures 4.7 a,b, are schematics showing

the slab and the net deformations introduced by relaxation.

Two processes are controlling the relaxation. For

the first model the fault tip extends to the asthenosphere.

The lithosphere is thinner, and relaxation occurs without

any intervening lithosphere to diffuse the stress. Thus,

the relaxation wavelength must be shorter due to the thin-

ner lithosphere, and the stress concentration at the fault

tip relaxes within the asthenosphere giving locally large

changes. On the other hand, when the fault terminates
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Figure 4.6a,b

The vertical surface deformations for D/H=1. and

D/H=.5. The models use the elements in Figure 4.2 for a

500 dipping fault with 7 m slip. For each model, five non-

dimensional times are denoted as before: 0., 3.16, 15.8,

31.6, and 63.1.

(a) The fault extends to 50 km depth corresponding to

the thickness of the lithosphere. Thus, D/H=l. The

deformations are similar to Figure 4.4.

(b) The thickness of the lithosphere is now 100 km, while

retaining a fault that extends to approximately 50 km

depth. Here D/H=.5. The relaxation wavelength now doubles

with the lithosphere. Thus subsidence occurs in regions of

uplift.
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Figure 4.7a,b

Schematic of only the post-seismic, vertical dis-

placements from Figure 4.6. Here the deformations are

referenced to the initial elastic response at time 0. The

four dashed lines then correspond to times 3.16, 15.8,

31.6, and 63.1 since the dislocation.

(a) When D/H=l., strong asymmetric relaxation occurs for

a short descending lithosphere. Uplift predominates over

the whole region.

(b) When D/H=.5, the deformations are now more symmetric

about the fault. Subsidence occurs near the fault and

uplift at greater distances. Keeping the fault depth con-

stant and doubling the lithospheric thickness implies that

the relaxation wavelength doubles. Thus D/H is the

essential scaling.
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well within the lithosphere, the stress concentration at

the fault tip lies further within the lithosphere, thereby

filtering the high frequency spacial harmonics. Yet it

is the increased thickness of the lithosphere that dominates

the wavelength. Recalling McConnell's (1965) analysis in

section 3.3 for relaxation of a viscous half-space with an

elastic layer after removal of a surface load, the dominant

wavelength should be proportional to the lithospheric

thickness. This is indeed paramount for the present situa-

tion. For the 100 km lithosphere in Figure 4.6b or 4.7b

the spacial wavelength is approximately 400 km, while it is

100 km for the 50 km lithosphere. As relaxation proceeds,

Figure 4.7a suggests that the wavelength increases from

time 3.16 to time 63.1, again agreeing in principle with

the simplistic analog found in glacial rebound.

To validate the importance of the parameter D/H, a set

of models having different fault depths while retaining

the same lithospheric thickness is appropriate.

Figures 4.8a,b consider such a comparison for fault depths

from 25 km to 50 km. Again these new models are similar

to the previous Figures 4.6a,b, when the lithospheric

thickness is scaled by the fault depth, thus keeping the

parameter D/H constant. The nondimensional parameter,

D/H, then, primarily controls the shape of the profile.

It is the lithospheric thickness that scales the primary
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Figure 4.8a,b,c,d

Vertical displacements for different fault configura-

tions with a 35* dipping fault and a 50 km lithosphere. The

elements conform to Figure 4.2. The fault geometry for each

model is pictured in the upper left corner, where the dashed

line between the filled circles indicates linear decay of

the slip. The arrows denote the 7 m fault slip. The dashed

lines again correspond to times 0. (solid), 3.16, 15.8, 31.6,

and 63.1.

(a) Fault extending through the lithosphere to the astheno-

sphere. This model duplicates Figure 4.4 where D/H=l.

(b) Fault extends only 25 km through the lithosphere.

The scaling factor D/H=.5; thus, the model has similar

characteristics to Figure 4.6b: a broad zone of subsidence

near the fault.

(c) A buried fault segment within the lithosphere. A broad

zone of uplift occurs above the fault.

(d) A buried fault segment within the asthenosphere.

Initial uplift is followed by complete relaxation of the

displacements as the surrounding mantle relaxes around

the fault.
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wavelength. If the fault depth is varied as between

Figures 4.8a,b, the dominant wavelength for relaxation

remains near 200 to 300 km. Instead, the fault depth and

geometry drastically alters the profile. The fault dip in-

fluences the horizontal scaling as Figure 4.8a illustrates

for a 35 degree dipping slab if we compare it to our pre-

vious model in Figure 4.6a for a 50 degree dip. Within a

range of dips, the shape remains similar from one dip to

the next, rather than the distinctive changes occurring

for the geometric ratio D/H. The dip, of course, produces

subtler variations analogous to the elastic solution.

These include amplitudes of uplift and subsidence. Yet

the models confirm their relative insensitivity to dip.

Consequently, scaling the dimensions by D/H approximates

a variety of circumstances.

In addition to the ratio of fault depth to lithospheric

thickness, the fault can be considered as a sum of indivi-

dual fault segments. Each component contributes to the

total deformation. Figures 4.8b-c depict three such

fault segments: the previous fault extending only half

the thickness of the lithosphere and breaking the

surface; a buried fault within the lithosphere; and a fault

segment contained within the asthenosphere. For the first

two, relaxation of the asthenosphere causes further surface

deformations as its elastic restoring force decays. The

displacements for the last segment contained within the
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asthenosphere completely relax since the media deforms

around the dislocation until complete stress relaxation

occurs. This is an important distinction. Any extension

of the fault within the asthenosphere will relax together

with the corresponding surface displacements for a constant

dislocation. All the surface displacements eventually

result from the fault interface between the two 'elastic'

lithospheres. Creep along the fault would continually

stress the asthenosphere and introduce an equilibrium be-

tween the dislocation extending into the asthenosphere and

its relaxation. If the creep is sufficiently slow, however,

the displacements are still primarily given by the dis-

location between the elastic lithospheres. The extremes

of these conditions are discussed in the following section.

In this section we investigated the effects ofthe fault

and its geometry upon the surface displacements. These

effects reduce to the relative dimensions of the fault

to the lithosphere, both maximum and minimum depth, and

to fault segments exterior to the lithosphere. Other

parameters such as dip and asthenospheric thickness

are relatively unimportant. In the next sections we will

explore other conditions imposed near the fault, that is,

the descending lithosphere and the physical process occur-

ring along the fault.
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4.5 Descending Lithosphere as a Boundary Condition

The analytic models represent a layered media rather

than the complex structure of an island arc. The previous

numerical models generally simulate a short descending litho-

sphere; thus, they are similar to the layered case. A deep

descending lithosphere, on the other hand, characterizes

many island arc systems such as Honshu and Tonga. This

introduces a significant, new aspect to the problem: a

long slab acting as a vertical stress guide within the

mantle. In effect we are altering the boundary conditions

along the fault. The oceanic interface is now partially

tied to the higher viscosity mesosphere through the slab,

thereby restricting the modes of relaxation.

To illustrate this point, Figure 4.9 compares two

models dipping at 45 degrees. The maximum depth for the

slab's penetration now represents the only change between

the models. The long slab functions as a stress guide in

the viscous mantle. It inhibits any motion of the litho-

sphere near the fault and emphasizes other modes of relaxa-

tion. The asymmetry which is noticeable during relaxation

of the short slab does not occur for the long slab; in-

stead, the stress guided by the descending lithosphere

equalizes the deformations on either side of the fault

plane and allows greater vertical uplift on the oceanic

lithosphere.
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Figure 4.9

Comparison of two different penetration depths for

the descending lithosphere. The coarse element grid in

Figure 4.1 simulates both cases. The inset shows the fault

geometry for the two models; the dashed line represents

the short slab. At time 0. the solution for both geometries

is equivalent. For post-seismic deformations the vertical

displacements progressively diverge. At time 6.3 the short

slab is dashed; the solid line denotes the long, 600 km

descending lithosphere. Notice the asymmetric, post-seismic

deformations for the short slab as opposed to the more

symmetric displacements of the long slab.
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This example emphasizes the importance given the

proper geometry for an island arc regime. While the per-

turbations are less than altering the ratio of fault depth

to lithospheric thickness, the maximum depth of the slab

is important for inverting the data to a best fitting model.

Consequently, every possible constraint on the problem

must be introduced to define the dip and slab configura-

tion.

4.6 Fault Interface: Stress Drop or Dislocation Boundary

Conditions

Our previous models have all imposed a displacement

condition along the fault plane, thus creating a generalized

Somigliana dislocation (Bilby and Eshelby, 1968). In the

time domain this implies an initial step-function displace-

ment profile and subsequent locking of the fault. Any

further displacements along the interface such as creep

are impossible; however, the stress released along the

interface is free to vary with time. This introduces an

implicit assumption for the faulting process: once the

rupture occurs, the static friction retains its value prior

to the earthquake. This does not exclude aftershocks at

stress concentrations, rather it prevents any creep along

a weakened fault zone.

At this point it is instructive to consider alterna-

tive representations for the boundary condition imposed
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on the fault. Suppose we examine a likely physical process

for faulting. The episodic behavior of earthquakes suggests

a net decrease in the stress and potential energy along

the fault interface. The stress reaccumulates again at

some later time until it attains the yield or rupture

strength of the fault zone. The fault is analogous to a

crack, except the shear stress along the interface is not

necessarily zero. Rather we can associate a stress drop

with the faulting process (Berg, 1968). There exists no

a priori reason that the fault plane corresponds to the plane

of maximum shear for the initial stress, only that the

shear stress along the plane decrease during the rupture.

Assuming a process of failure occurs along the fault

plane, the earthquake may be visualized as an initial value

problem involving the propagation of the rupture along

the plane. The criteria for rupture, from one point of

view, rests upon the stress near the fault tip exceeding a

critical value (i.e. Griffith, 1921; Barenblatt, 1959). Here

we encounter a highly complex phenomena depending on the

stress and material inhomogeneities within the media.

Our concern is the boundary value problem that results

after the rupture. Both a displacement discontinuity and

a stress drop occur along the fault zone. For the quasi-

static problem either of these provides a representation

for the fault (Bilby and Eshelby, 1968), but each implies
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different behavior in time. The dislocation, as we have

seen, specifies the displacement and allows the stress

release to vary in time. Alternatively, the fault zone may

be weakened and only slowly recover its former strength.

This extreme specifies the stress release as an imposed

condition after the earthquake and allows creep along the

fault to compensate for relaxation within the astheno-

sphere.

To model an imposed stress release or stress drop along

the fault, a couple is applied to the adjacent nodes at

the fault interface. On one face the stress could be +C

and directed along the plane of the fault; for the node

located on the opposing face the stress becomes -C (see

section 2.5). Since the two opposing nodes are constrained

to the same plane, this introduces a couple analogous to the

stress release or stress drop of an earthquake. The reac-

tion of the medium gives a net double couple without any

mathematical tricks.

The vertical displacement for the two alternate models,

constant stress release or constant displacement with time,

is illustrated in Figure 4.10a,b. Unlike the previous

models, the fault extends fully through the lithosphere

and terminates within the asthenosphere. The stress

condition or dislocation linearly decays over the last

25 km of the fault. These boundary conditions now give
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Figure 4.10a,b

Vertical displacements for two models, one with a

constant dislocation extending into the asthenosphere, the

other having a constant stress release. The finite element

grid in Figure 4.1 uses a long, 600 km descending litho-

sphere. The five dimensionless times are 0. (solid line),

.63, 3.2, 6.3, and 12.6. The fault geometry conforms to the

diagram in the upper left corner where the slip initially

has linear decay over the dashed segment. For later times

this dashed segment is free to slip as it responds to mantle

relaxation.

(a) A constant 10 m dislocation along the arrows. As

the asthenosphere relaxes, further forward slip along the

lower fault segments (dashed) now allows continued uplift

over the fault zone.

(b) A constant stress release denoted by the arrows. The

stress at the fault interface normalizes the vertical

displacements. Since the continental lithosphere is free

to slip in response to the constant stress release, the

deformations continue increasing as the restoring force

decreases during mantle relaxation.
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dramatically different results.

A constant dislocation allows stress relaxation with-

in the asthenosphere: the vertical displacements tend to

approach a limiting value. The wavelength of the spacial

harmonics also increases as the relaxation proceeds within

the mantle. On the other hand, a constant stress drop

prevents any stress relaxation within the mantle. Since

the fault interface along the elastic lithosphere is

free to slip, only the viscoelastic asthenosphere resists

the stress drop. Consequently, the fault creeps with the

asthenosphere until the flexure rigidity of the lithosphere

and the gravitational restoring force balances the stress

drop. These deformations continue growing long after

specifying the stress drop. The results are then analogous

to the first order theory in section 3.2.

The vertical surface deformations are not the only

indication for time-dependent variations nor the only

diagnostic to the physical process occurring along the fault.

Both the horizontal surface deformations and the stress

within the media vary for each problem. The comparison

of these two fault conditions presents an opportunity to

introduce these other indicators. Neither the stress nor

the horizontal displacements are as sensitive to the fault,

yet the effects of each may exist in the observations:

aftershocks and other earthquakes may show the state of
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stress, while the geodetic measurements give the relative

horizontal displacements. To evaluate their significance,

the same finite element models give these displacements

and stresses.

The horizontal displacements for the two specified

boundary conditions, stress drop or dislocation, are re-

produced in Figures 4.lla,b. Although some deviations

occur between the two models, they are not as large as the

vertical displacements. It is the horizontal gradient that

provides the usable information. Unlike the vertical de-

formation, the constant dislocation model now gives similar

variations with time for this measure. Even these deforma-

tions when referred to a baseline far from the fault are

not much greater than one meter. Moreover, the corresponding

geodetic triangulations are more difficult and inaccurate

than elevation. They only give the horizontal displacements

referred to a baseline, an important point for strike-slip

faults where the largest components are horizontal strains.

Throughout the bulk of this paper, then, we will ignore

the relative horizontal displacements and concentrate

instead on the vertical deformations.

The stress state within the media shows small but dis-

tinctive variations with time between the models. Figures

4.12a,b compare our previous models, one with its stress

drop specified and the other with a constant disloca-

tion. Each line corresponds to an individual time. Here
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Figure 4.lla,b

Horizontal displacements using the two different

boundary conditions on the fault, constant dislocation or

constant stress release. The problem is identical to

Figure 4.10.

(a) A constant 10 m dislocation. The gradient of the

horizontal displacements contains the important geophysical

measurement.

(b) A constant stress release on the fault. The small change

in the gradient between the models and difficult geophysical

measurements suggest horizontal displacements are not as

suitable an indicator unless measured across the fault.
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Figure 4.12a,b

Maximum shear stress and direction of the principle

compressive stress for the two fault boundary conditions,

a constant dislocation or a constant stress release. The

parameters are those of Figure 4.10. Each line segment

represents a separate time at a specific element. Unfor-

tunately, the dashing for the lines is often obscure. The

length of each line denotes the magnitude of the maximum

shear stress in bars on a logarithmic scale in the lower

right. The direction indicates the orientation of the

maximum compressive stress at each time. As before the

dimensionless times are 0. (solid line), .63, 3.2,

6.3, and 12.6.

(a) Constant 10 m dislocation. Stress relaxation in the

asthenosphere allows relaxation of the shear stress and

rotations of the principle axes. The maximum shear stress

generally decreases near the fault: it tends towards the

prior initial stress

(b) Constant stress release on the fault normalized to

one bar. This condition prevents complete stress

relaxation in the asthenosphere; thus, the shear stress

remains relatively constant throughout the region.
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the directions of the lines correspond to the direction

of the maximum compressive stress, while the length denotes

the logarithm of the maximum shear stress in bars. The

diagram only displays a segment of the problem enclosing

the fault. Constant strain triangles or isoparametric

quadrilaterals are used for the elements; consequently,

the individual elements represent an average stress

over the region. Comparison of the two boundary conditions

shown in the models now yields some obvious distinctions.

As we first conjectured, a constant stress drop pro-

duces relatively constant stress near the fault and for ad-

jacent regions within the asthenosphere. Remembering that

we are observing the change in stress caused by the

'earthquake', the stress perturbations near the surface

manifest the stress release along the fault: the plane of

maximum shear stress corresponds to the fault plane. Thus

tension or minimum principal stress is approximately hori-

zontal, opposite the prestressing according to our initial

assumption. Near the fault the stress varies little in

time. But within the subducting lithosphere and the is-

land arc lithosphere, the directions rotate and small

magnitude changes occur far from the fault. Within the

asthenosphere only partial relaxation is possible.

Overall the behavior for a constant stress drop is as ex-

pected: large variations in the vertical displacements

and small changes in the stress field.
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The dislocation specified on the fault also agrees

with our previous expectations. We observe significant

rotations and stress relaxation within both the lithosphere

and asthenosphere. In some cases the stress increases

rather than decreases. Within the asthenosphere the re-

laxation is virtually complete; in the lithosphere the

stress pattern easily varies by a factor of two.

In Figure 4.13 the magnitude of the maximum shear stress

for a few representative regions is superimposed on the pre-

vious diagram for the shear stress resulting from a con-

stant dislocation. Throughout the subducting lithosphere,

the stress exponentially decays towards a new non-zero

value corresponding to a new equilibrium for a relaxed

asthenosphere. The asthenosphere, of course, decays

towards zero. In other regions such as in the island arc

lithosphere, relatively constant or even slightly increasing

shear stress spans large portions of the domain. These

variations of the released shear stress are significant;

their possible influence on strain accumulation and earth-

quakes may be important. In addition, if we examine

regions far from the fault, evidence of stress propagation

should be apparent in these variations.

When all the possible modes of relaxation are consi-

dered, stress propagation per se does not manifest any

distinct behavior near the fault. As we have seen, the
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Figure 4.13

Profiles of maximum shear stress a in bars versus non-

dimensional time T within the lithosphere for a 10 m

fault dislocation. The stresses are those from Figure

4.12a and correspond to the problem in Figure 4.10a. The

inserts plot the maximum shear stress at representative

elements. Unlike the previous logarithmic scale, these

plots emphasize the significant change in magnitude that

accompanies mantle stress relaxation. Recalling that this

represents the stress release following the earthquake, the

stress returns to its initial prestress prior to the earth-

quake.
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stress release only gradually decays. Farther away, how-

ever, the complexities of the dislocation are not as sig-

nificant. Figure 4.14 presents examples from the previous

model that satisfy this criterion. As we proceed from the

fault, clear indications of stress propagation become evi-

dent: the curves show a break or change in slope charac-

teristics. If we plot the arrival of the front versus the

distance from the fault, the arrivals fall within the band

predicted by the simple first order model for stress pro-

pagation (see section 3.4). Figure 4.15 illustrates this

plot. Since both our simple first-order analysis and the

finite element model depend on linear viscoelasticity,

this result should hold true. We see then that stress

propagation does occur, albeit insignificantly for most

circumstances. It is overwhelmed near the fault by more

complex relaxation modes.

The two models that have been discussed here,

constant stress drop and constant dislocation, constitute

the best approximation to the first order theory: they

allow slip along the whole fault boundary separating the

island arc and the subducting oceanic lithospheres. Per-

haps a more realistic representation limits the constant

stress drop and the dislocation to the lithospheric inter-

face. Figures 4.16a,b depict two models, one with a con-

stant dislocation and the other with a constant stress

drop when the fault does not fully extend through the
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Figure 4.14

Profiles of maximum shear stress a in bars versus

nondimensional time T which suggest stress propagation far

from the slab. The problem uses the same model as Figures

4.13, 4.12a, and 4.10a: (a 10 m dislocation on the fault).

The notation conforms to the previous Figure, 4.13. The

distinct change in the shear stress with time suggests

stress propagation; the stress first decays then increases

or vice versa. Near the fault complex relaxation modes over-

whelm simple stress propagation.
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Figure 4.15

Arrival times of the diffusive stress front plotted

on the first-order model of stress propagation, Figure 3.9.

Sketched on the graph of distance versus time are the first

order bounds using the theory in section 3.5. The arrival

times estimated from Figure 4.14 fall within the bounds.
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Figure 4.16a,b

Comparison of two models with different boundary

conditions, a constant dislocation or a constant stress

release, when the fault terminates within the lithosphere.

The models are identical to the previous comparison in

Figure 4.10 except for this different fault geometry. But

the results are quite different when the fault is partially

constrained in the lithosphere.

(a) A constant 10 m dislocation when the slip decays

linearly to the base of the lithosphere. This model is

similar to 4.8a, 4.6a, or 4.4, except the descending

lithosphere now extends to 600 km depth.

(b) A constant stress release normalized to one bar on the

fault. The vertical offset and displacements continue near

the fault. Uplift occurs as before in Figure 4.10b, except

not as extreme. The deformations are not symmetric any

longer about the fault; post-seismic subsidence occurs on the

oceanic plate in response to the fault creep.
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lithosphere. This partially locked condition conforms

to the models in section 4.4. The distinction between

the results is now more obscure, although present.

The constant stress drop generates forward creep along

the fault, thus increasing the total slip as the astheno-

sphere relaxes. The major contribution to the vertical

deformation occurs at the island arc since the subducting

slab acts as a stress guide and restricts the modes of

deformation for the oceanic lithosphere. At greater dis-

tances from the fault, say 200 km, the relaxation occurs

over a wider area for the specified stress drop. Similar

behavior is possible, however, by increasing the constant

dislocation with depth for a specified slip model. The

horizontal displacements give similar variations as

Figures 4.17a,b demonstrate. The differences are also

less distinct; the largest change is found near the fault

zone. The same pattern holds for the stress distribution

given by Figures 4.18a,b; the differences between the two

specified boundary conditions on the fault are relatively

insignificant. Locking the fault at its tip allows only

limited creep along the fault. The geodetic data, then,

holds the greatest promise as an indicator of the fault pro-

cess. Still, to distinguish between these alternative

representations, it is essential to constrain the models

with geodetic data near the fault zone.
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Figure 4.17a,b

Horizontal displacements for the previous model in

Figure 4.16 using the two boundary conditions, a constant

10 m dislocation or a constant stress release following

the earthquake. The fault only extends to the base of the

lithosphere. The same five dimensionless times are shown:

0. (solid line), .63, 3.2, 6.3, and 12.6. When referred

to a baseline far from the fault, the horizontal displacements

differ only slightly between the two cases and their post-

seismic deformations.

(a) A constant 10 m dislocation.

(b) A constant stress release normalized to one bar.
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Figure 4.18a,b

Maximum shear stress and the direction of the

maximum compressive stress for the two boundary conditions,

a constant 10 m dislocation or a constant stress release.

The notation duplicates Figure 4.12.

(a) A constant 10 m dislocation. Both stress relaxation

and rotations occur in the lithosphere. The changes are

smaller with time than if the fault extends into the

asthenosphere; however, they still approach 50%.

(b) A constant stress release normalized to one bar. Lock-

ing the fault at the base of the lithosphere now allows

stress relaxation in the asthenosphere unlike Figure 4.12b.

Thus, both rotations and magnitude variations occur in the

lithosphere.
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The boundary condition specified on the fault interface

has then a substantial influence on the surface deforma-

tions and the interior stress patterns when the fault

extends through to the asthenosphere. Our simple models

for viscoelastic behavior did suggest the correct response:

a constant stress drop produces rapidly changing displace-

ments and constant interior stress; a constant dislocation

implies limited displacements and stress changes, both de-

caying to asymptotic values.

4.7 Initial Stress State Within the Lithosphere

An earthquake introduces a perturbation into the

existing stress field, where the faulting represents a

partial release of the preexisting strain field. So far

nothing has been said of this initial strain field. To

treat this problem, we must examine the probable mechanisms

behind plate tectonics and the stresses they introduce.

In a previous work this problem has been extensively

treated from the perspective of the descending litho-

sphere (Smith, 1971; Smith and Toksz, 1972). In this

section the problem will only be summarized: we will

confirm the previous models suggesting both that the

rheology of the mantle and lithosphere and that the den-

sity anomalies due to the colder descending lithosphere

and phase changes control the stress distribution. The
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shallow regime will be examined in order to compare the

stresses introduced by the earthquake and the initial

pre-stress from the density anomalies.

The density anomalies within the descending lithosphere

and the rheology of the system exert a profound influence

on the overall stress pattern within the lithosphere. It

was Elsasser (1969) who first proposed that the descending

lithosphere acts as a 'stress guide': the viscous mantle

prevents the accumulation of strain within itself; instead,

the stress concentrates within the lithosphere. Isacks

and Molnar (1969, 1971) found ample evidence in the focal

mechanisms to support this belief. The denser lithosphere

introduces a relatively constant stress which is guided

within the slab. Smith (1971) examines the effects of

potential density anomalies: thermal density anomalies due

to the colder lithosphere(Toksoz et al., 1971; McKenzie,

1969), and density anomalies caused by the elevation of

the phase boundaries (Toksoz et al., 1971; Smith, 1971).

Each contribution, thermal and phase transformation, pro-

duces a distinct density and stress pattern within the

lithosphere. Together they yield a viable explanation for

the direction of the principle stresses observed from

focal mechanism solutions (Smith, 1971; Smith and Toksdz,

1972). In addition, the detailed stress models verify

that a one-dimensional model along the slab gives reason-

able behavior for the intermediate and deep stress patterns.



170.

These models, however, introduce approximations for

both the boundary conditions and the solution strategy.

The fault was taken as locked; thus, all the stress is

transmitted directly through the region and no relaxation

occurs along the thrust fault. The solution technique also

involves significant approximations. The problem is

taken as quasi-static, steady-state viscoelasticity. To

calculate a solution using a modified integral form of the

finite difference method, the material constants are

estimated assuming a load time applied to the medium (Smith,

1971). This is an approximation to the flow behavior.

Using the finite element scheme outlined in this thesis,

the stresses are exact for a specific time within the

numerical accuracy of the element approximation (see

section 2.6). In addition, a slip boundary along the fault

interface may represent the long term behavior for the

fault. The effect of these boundary conditions is now

resolvable. It is appropriate, then, to calculate a new

model using a viscoelastic medium and finite elements.

Later we can compare the stresses to the focal mechanisms

for the Kuril islands.

The finite element model chosen is identical to the

previous models originating from Figure 4.1: a 100 km

lithosphere together with a 650 km deep slab. The fault

imposes a free slip condition along the interface; other
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boundary conditions such as a locked fault do not materially

effect the result. To properly model the stresses gen-

erated by the internal body forces, we examine the stress

after a long time interval has elapsed since loading. The

stress then approaches an asymptotic value and direction.

In this case the time interval is 3x105 when nondimension-

alized by the viscosity of the asthenosphere. At the bound-

ary for the oceanic lithosphere, one kilobar compression

represents the ridge driving force. The models also include

the effect of gravity. The resulting stresses are insen-

sitive to both the boundary conditions and the fault

interface; instead, our previous conclusions hold true:

the stress distribution depends on the relative viscosity

contrasts within the mantle and the distribution of den-

sity anomalies within the slab (Smith, 1971; Smith and

Toksbz, 1972).

Figure 4.19 depicts a representative model. The

density anomalies within the slab correspond to approxi-

mately .1 gm/cm3 and conform to the thermal anomaly for a

slab descending at 8 cm/yr. (Figure 12, Toksbz, et al.,

1973). For depths greater than 400 km, the

maximum compressive stress remains down-dip and the magni-

tude of the maximum shear stress increases to 1800 bars

at 600 km depth. Within the region depicted in the

diagram, the maximum shear stress averages 500 bars in the
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Figure 4.19

Magnitude of the maximum shear stresses and direction

of principle compressive stresses caused by thermal density

anomalies. The density anomalies duplicate Figure 12 in

Toksoz, et al. (1973): approximately .1 gm/cm3 in the des-

cending lithosphere. The model uses the coarse element mesh

in Figure 4.1 when free slip is allowed on the fault. In

addition, at the exterior boundary to the oceanic litho-

sphere, 1 kbar of compressive stress simulates a spreading

ridge. These two conditions, the fault boundary and the

spreading ridge, do not materially effect the results. The

model calculations assume the body forces within the des-

cending lithosphere are introduced at time zero, the stresses

then relax to equilibrium assuming linearity holds. By

nondimensional time 3x10 5 the equilibrium has been effectively

attained; these stresses are shown here. As before in

Figure 4.12, the lengths of the line segments indicate the

logarithmic magnitude of the maximum shear stress; the

direction represents the final orientation of the maximum

compressive stress. The model indicates an equilibrium shear

stress of 10 bars in the asthenosphere and higher stresses

in the order of 500 bars within the lithosphere. For depths

greater than 400 km, the stress is downdip compression and

increases to 1800 bars.
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slab and near 10 bars within the asthenosphere. The litho-

sphere predominately exhibits horizontal compression, ex-

cept where it bends into the mantle. Here horizontal

'tension' or minimum compressive stress is evident, even

with one kilobar compression applied at the oceanic

lithosphere where an active spreading ridge would be

located. The results are only slightly different without

this boundary stress.

Comparing these stresses to those generated by the 10

meter dislocation in Figure 4.18a, it is apparent that the

dislocation only introduces a small perturbation. Near

the fault the dislocation reduces the maximum shear stress,

a feature consistent with our requirement that the earth-

quake must reduce the strain energy. Deeper within the

descending lithosphere the earthquake reinforces the

existing stress field. This may indicate a predisposition

for later earthquakes: a series of shocks propagating down

the descending lithosphere. Continuing this line of

speculation, the oceanic plate near the trench also con-

forms to this pattern. Larger stress concentrations occur

near the fault tip that are not resolvable in these models.

It is here, at the ends of the slip plane, that after-

shocks are most likely to occur in response to the stress

concentrations. Only at the tip are stresses opposite

to the pre-stressing conceivable. This is necessary to
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explain aftershocks whose focal mechanisms have the

opposite polarity to the main shock (e.g. Aver'yanova, 1973).

The stress pattern that the density anomalies introduce

has analogous features to those at island arcs based upon

shallow and intermediate depth earthquakes. Figure 4.20

gives a representative pattern of stress orientations

determined from earthquake focal mechanism for the

Hokkaido-Kuril-Kamchatka region overlain on the previous

model for the initial stress (Aver'yanova, 1973, Fig. 96f).

Near the trench and within the oceanic lithosphere nor-

mal faulting prevails within both the idealized model and

the observations. This identical behavior occurs at other

island arcs (Stauder, 1968b). These mechanisms have been

correctly attributed to bending of the lithospheric plate

as this model demonstrates. In other regions horizontal

compression predominates in the observations. Even with

free slip along the fault interface, the model also gives

this orientation. At 250 km depth the horizontal orienta-

tion of the compressive stress originates from the sharp

increase in mantle viscosity. Perhaps the correspondence

with the observations justifies a similar interpretation

within the earth. These similarities may not extend to all

island arcs; thus, further observations and analysis are

warranted for the future.

In conclusion, the initial prestress introduced by
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Figure 4.20

Comparison of the previous model (Fig. 4.19) for the

initial stress to principle stresses deduced from focal

mechanisms near Hokkaido. Aver'yanova (1973, fig. 96f)

compiles the focal mechanism solutions for this section.

Here the horizontal hatching denotes horizontal, maximum

compressive stress; the more vertical hatching represents

horizontal minimum compressive stress, or in a two dimen-

sional model, vertical maximum compressive stress. The

arrows denoting the theoretical model and the focal mech-

anisms compare quite favorably. Notice similar domains of

tension where the slab bends during subduction. This

pattern also holds for a locked fault with or without the

compressive stress applied at the 'spreading ridge'.
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the gravitational body forces within the descending litho-

sphere is consistent with the stress release. Except at

stress concentrations near the fault tip, the stress per-

turbations caused by the earthquake are small, less than

10 percent, compared to the initial stress. This in turn

suggests that the earthquake represents only a partial

release of strain energy. The stress orientations also

agree with earthquake focal mechanisms near Hokkaido.

4.8 Predictions and Conclusions

The numerical experiments verify the major factors

effecting the behavior of mantle relaxation. To re-

capitulate the significant points, they are given below:

(1) Scaling by the lithospheric thickness and by the fault

depth primarily controls the relaxation characteristics.

(2) The asthenospheric relaxation time directly scales the

time.

(3) Inclusion of gravity significantly perturbs the time-

dependent deformations.

(4) The boundary conditions imposed on the fault interface,

whether prescribed offset or stress release, give diff-

erent time-dependent deformations.

(5) Stress relaxation within the asthenosphere rotates the

orientations and changes the magnitude of the stress

released within the lithosphere.
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(6) Following the earthquake, stress propagation occurs

far from the fault, albeit small.

(7) The geometry of the descending lithosphere, whether

a long or short slab, emphasizes different relaxation modes

for the post-seismic deformations.

(8) Changing the dip shifts and perturbs the deformation

pattern.

The vertical deformations following the earthquake prove to

be the strongest constraint on the parameters. The hori-

zontal measurements are not as sensitive since the baseline

for the measure also deforms. In addition, the models de-

monstrate the versatility of the time-dependent finite element

strategy. The computations are relatively inexpensive

while retaining good resolution near the fault zone.

Starting with the linearity assumption contained in

this analysis, a partial stress release is consistent with

prestressing produced by gravitational density anomalies.

Comparison of the models with focal mechanisms at island

arcs again suggests the importance of mantle rheology.

This, then, sustains our previous conclusions for the

stress orientations in the descending lithosphere, and

extends them to shallow earthquakes.
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5. AN ISLAND ARC-MODEL: THE 1946 NANKAIDO

EARTHQUAKE AND SOUTHWEST JAPAN

5.1 Introduction 1

In the previous chapters relaxation in the astheno-

sphere has been approached primarily as an idealized problem,

except in Chapter 4 when geodetic data and seismicity

motivate the extension to two-dimensional models. From these

models the primary factors that influence the deformation

and stress field have emerged from a series of numerical

experiments. The capability now extends to specific regional

models.

Geophysical observations can introduce constraints on

the possible modes of deformation associated with an earth-

quake. Geodetic measurements are perhaps the best diagnostic.

Other constraints include gravity, the stress field deduced

from focal mechanisms, and the seismicity. In this chapter

the geodetic data constrains time-dependent models for the

1946 Nankaido earthquake and provides bounds on the relevant

parameters when possible. Effects such as dilatancy

and fault creep are also germane and the measurements again

may define their role. Yet before these problems are

approached, relevant geophysical measurements and the factors

that determine their usefulness must be closely examined to

expedite the selection process. Following this review and

using the preferred discriminants it suggests, only Japan

and Alaska are acceptable regions. Finally, the 1946
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Nankaido earthquake represents the best data, and also the

most remarkable region. Starting with the assumption of

mantle relaxation, the tectonic structure of this region is

further defined and gives a consistent picture of the sub-

duction process.

5.2 Interpretation of Constraining Data

The vertical movements following an earthquake impose

severe constraints on the model for the time-dependent vari-

ations. This is evident from the previous discussions in

Chapter 4. Our concern lies with the post-earthquake defor-

mations; thus, we must address ourselves to possible sources

of error contained in the data. Fitch and Scholz (1971)

have outlined the problem in the context of the 1946 Nankai-

do earthquake; it would be appropriate here to summarize the

salient points. We will concentrate on how these influence

the inversion to a fault model.

Geodetic measurements are the key to discriminate be-

tween various potential processes. It was such data that

first suggested the elastic rebound mechanism for earth-

quakes (Reid, 1910). Similarly, the most direct evidence

for underthrusting at the continental margins also relies

upon vertical and horizonal movements following great earth-

quakes (Savage and Hastie, 1966; Plafker, 1972). For the

majority of island arcs, however, the geodetic data is

totally lacking or fragmentary. Even for the 1964 Alaskan
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earthquake few surveys are available and these give little

constraint on the time variations immediately following the

earthquake. Tidal stations improve the situation, yet here

meteorological and oceanographic errors may creep into the

analysis. These will be discussed later.

Japan has the most complete network of geodetic stations.

These have been periodically surveyed since the late 1800's,

particularly following major earthquakes. The data includes

both leveling and triangulation. For the former an exten-

sive network of first order level lines has been resurveyed

three times in the last 100 years, excluding regional sur-

veys in the vicinity of major earthquakes or for the earth-

quake prediction program (Rikitake, 1974). The triangula-

tion surveys have been completed twice, the last in 1950.

An extensive network of tidal stations has also been in

operation since before 1950 (Hayashi, 1970). The offset

in these records gives a measure of the vertical displacement

during the earthquake, and they provide an absolute datum

for gradual pre- and post-earthquake changes. The displace-

ments measured at the shorelines using terraces and lines of

marine growth provide an additional measure for the vertical

displacements. Each of these indicators, however, contains

errors.

The leveling surveys include more than just the earth-

quake displacements; they involve an interval prior to the

earthquake when the strain was accumulating. Post-earthquake
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deformations immediately following the earthquake also con-

taminate the surveys. For each earthquake, then, we must

estimate these stages by subtracting the secular or pre-

earthquake and post-earthquake displacements. In addition,

each survey must be referenced to a specific datum which in

turn may deform. One solution uses a bench mark far from

the seismic zone and assumes that it remains constant. Yet

this may still obscure changes unless some verification of

its constant elevation is possible. Fitch and Scholz (1971)

use tidal records to provide this verification and, alter-

nately, an absolute datum for the geodetic surveys.

Records from tidal stations afford a convenient measure

if the absolute datum is taken as sea level; however, it is

not free from errors. Before these stations are usable as

a datum, corrections are introduced for the following pertur-

bations: annual variation of sea level, atmospheric pressure,

wind gradient, precipitation and land runoff, cyclones, sea

water density, and ocean currents (Tsumura, 1964).

An absolute datum is possible if the mean sea level can

be corrected for these effects. Yamaguti (1968) has conclu-

ded that the monthly mean sea level corrected for the effects

of mean annual variations, barometric pressure, and sea water

temperature one meter below the water surface reveals the

crustal movements. Unfortunately, these corrections do not

include oceanic currents, such as the Kuroshio. The mean-

dering of the Kuroshio alone produces a 10 cm gradient over
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15 km between Uragami and Kushimoto tidal stations on Kii

Peninsula (Tsumura, 1964). Although this represents an ex-

treme, it emphasizes the care necessary to distinguish abso-

lute crustal movements occurring over short-time intervals

from the meteorological or oceanic influences.

Coastal Japan, however, reduces to similar oceanographic

regions where the irregular variations are similar (Tsumura,

1964, 1970). Thus Uragami and Kushimoto represent two se-

parate oceanographic provinces: Kushimoto and Shikoku island

to Kochi define one region, while Uragami to Uchura are sim-

ilar (Tsumura, 1970). Taking the difference between any two

stations within a region dramatically reduces the irregular

oceanic variations. Over distances greater than 100 km the

standard deviation of the monthly mean values is reduced to

approximately 10-20 mm from the original deviation ranging

from 35 to 55 mm. This is comparable to precise leveling

(Tsumura, 1964).

An alternate approach determines the regional mean fluc-

tuation by computing the mean for all the stations within an

oceanographic province. Each station is then referenced to

this mean. Both these reduced sea-levels are almost free

from seasonal variations and irregular variations character-

istic of each region (Tsumura, 1970). But both of these

methods give relative variations: one with respect to a

particular station, the other an average over a region. Con-

sequently, potential fluctuations may be masked, or
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particularly abnormal oceanographic variations may not be

equivalent throughout the averaging region. Unless precise

leveling data also exists, extreme caution must be used

during interpretation.

The implications for any inversion process are clear:

the relative elevations are known much more precisely than

the absolute datum. Using the geodetic data for the 1946

Nankaido earthquake, Fitch and Scholz (1971) estimate their

errors for the absolute datum as 10 cm. This error also con-

tains unavoidable pre- and post-seismic movements in the sur-

vey data for the earthquakes; the surveys are the sum of

secular, seismic and post-seismic deformations. In addition,

each survey requires an interval of time for completion.

This is particularly important during rapid post-seismic de-

formations (Fitch and Scholz, 1971). These examples suggest

that the relative elevations or tilts place the strongest

constraint on the model, and less emphasis is indicated for

the absolute datum. In the inversion these hypotheses can

be checked against the fit to the proposed model.

Gravity offers another important constraint. The pro-

cess of mantle relaxation involves a net transport of ma-

terial; thus, a strong deviation from constant free-air

anomaly results for time-dependent relaxation. Indeed, the

correction to the free air must be larger than the normal

Bouguer since the density of the asthenosphere exceeds

22.67 gm/cm .If fault creep or aftershocks are responsible
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for the deformations, the correction would be closer to the

Bouguer. Primarily crustal lithosphere is underthrust rather

than the motion of the denser asthenosphere. Dilatancy gives

a change even closer to the free-air correction. Here mass

transport is insignificant (Biehler, 1974). We have then a

diagnostic that can distinguish between alternate models for

post-seismic deformations.

For the 1964 Alaskan earthquake, Rice (1969) reports a

+.15 milligal change with subsidence of .4 feet. Unfortu-

nately these observations are within the probably error of

the gravity survey. As it is the gravity changes are four

or five times larger than the free air corrections. Further

evaluation of this discriminant must await accurate post-

seismic gravity observations.

Fujita, et al. (1974) report both post-seismic subsi-

dence and a large, net mass decrease following the 1973

Hokkaido earthquake. This is consistent with mantle relaxa-

tion where outward flow occurs below the subsiding region.

5.3 Discussion of Earthquake Selection

As the last section has emphasized, few island arcs are

endowed with extensive geodetic nets. This essentially

limits the choice of regions to Japan and Alaska. In this

section the available data for large earthquakes within

these regions further reduced our choice. The criteria for

the selection process follows from the types of errors
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contained in the data. Thus short period tidal fluctuations

are suspect. A series of both tidal and leveling data span-

ning the years following the earthquake represent the ideal

combination. In the first chapter we note earthquakes

having unusual pre- and post-earthquake deformations as a

motivation for this investigation. Limiting the examples to

large thrusting or reverse mechanisms, a number of outstand-

ing cases are available. These include the 1946 Nankaido

earthquake, 1964 Niigata earthquake, and to a lesser degree,

the 1964 Alaskan earthquake. Of these the 1946 Nankaido

earthquake will prove to have the most suitable data.

The 1964 Alaskan earthquake conforms to a megathrust

between the continental and oceanic lithosphere (i.e. Plaf-

ker, 1972; Alewine and Jungels, 1974). Geodetic observations

indicate uplift near the fault on Middleton and Montague

islands, while a broad area of subsidence extends through

Kenai peninsula (Small and Wharton, 1969; Plafker, 1972).

Unfortunately, the leveling data after the earthquake are

fragmentary. Near Anchorage subsidence and tilts continue

during the years following the earthquake (Small and Wharton,

1969). Gravity observations are also consistent with this

interpretation (Rice, 1969). On Middleton island, however,

gravity suggests further uplift after the earthquake. But

by 1968 any further variations in gravity are unresolvable

when comparing Middleton island station to the Anchorage re-

ference (Rice, 1969). Although the sign of the vertical
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displacements is consistent with stress relaxation within

the asthenosphere following a low-angle thrust earthquake,

shown in Figure 5.1, the data are too fragmentary and offer

little constraint on possible mechanisms.

The 1964 Niigata earthquake in the Sea of Japan between

Awashima island and mainland Honshu represents a classic and

often quoted case of both premonitory and post-seismic de-

formations (Tsubokawa, et al., 1964; Okada and Kasahara,

1966). In this instance one meter uplift occurs during the

earthquake on Awashima island, while on the mainland corres-

ponding to the opposite side of the fault, subsidence

results. The mechanism is a reverse fault with a preferred

dip of 60 degrees and maximum depth of 30 km (Abe, personal

communication, 1974).

Prior to the Niigata earthquake various authors claim

premonitory changes related to the earthquake (Tsubokawa,

et al., 1964). This assertion stems from both tidal records

and leveling data. Yet it is far from conclusive. Tsubo-

kawa, et al. (1964) base the variations on the difference

between the tidal records at Nezugaseki and Kashiwazaki, in

this case a 2 cm fluctuation occurring one year prior to the

earthquake. Similar fluctuations, however, occur periodical-

ly through the records for these stations and similar stations

in Japan without any association with earthquakes (Tsumura,

1970). This is a short term fluctuation easily within the

realm of meteorological and oceanographic variations. The
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Figure 5.1

Vertical displacements for a shallow, 15* dipping fault.

The schematic in the upper left corner illustrates the

geometry using the scale for the horizontal distance. Thus

the lithosphere is 50 km thick. The arrows on either side

of the fault denote the direction of slip while the length

represents the magnitude of slip at each node. Here the

scale conforms to the 5 m. segment. At the surface the slip

is 2 meters and increases to 6 meters at 30 km. depth. In-

creasing slip with depth on a shallow dipping fault also

fits the displacements for the 1964 Alaskan earthquake

(Alewine, 1974). The model illustrates post-seismic uplift

near the fault and subsidence near the region of maximum up-

lift. The dimensionless times are 0. (solid), 3.16, 15.8,

31.6, and 63.1.
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leveling data taken between Kashiwazaki and Nezugaseki

prior to the earthquake also suggest a premonitory change

(Tsubokawa, et al., 1964). But the change is small and in-

conclusive when the external influences such as gas mining

and industrial development are included along the route.

While this is the strongest case for premonitory displace-

ments, any proof awaits a finer net of tidal stations and

leveling.

The post-seismic deformations depend solely on tidal

records (Tsubokawa, et al., 1964; Okada and Kasahara, 1966).

The mainland stations, Kashiwazaki and Nezugaseki, are

spaced relatively far apart. Few stations occupy this

oceanographic province of the Japan sea which limits, in

turn, the accuracy of the tidal corrections. On Awashima

island only temporary stations employed after the earthquake

give data for the months immediately following the earth-

quake. Consequently, inadequate controls exist for the me-

teorological and oceanographic influences, which implies

that the rapid subsidence claimed after the earthquake de-

serves skepticism (Tsumura, 1970). The evidence favors,

then, no measurable post-seismic deformations and probably

no premonitory variations (Nakamura, et al., 1964; Tsumura,

1970).

These arguments do not imply that asthenospheric relax-

ation could not satisfy subsidence on both sides of the

fault; a steeply dipping fault as in Figure 4.6b which
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partially extends through the lithosphere generates just

this behavior. Rather the problem lies with the reliability

of the data and its time scale. We cannot resolve variations

that are buried in the random fluctuations or extend in time

beyond the data set. Thus, the 1964 Niigata earthquake is

not a good case.

The 1946 Nankaido earthquake represents the best geode-

tic data set and, coincidently, the most remarkable deforma-

tions. Tidal and geodetic observations confirm a broad re-

gion of uplift during the years following the earthquake

(Kawasumi, 1956; Matuzawa, 1964; Fujita, 1969; Tsumura, 1970;

Fitch and Scholz, 1971). Post-seismic uplift occurs for

regions of both seismic uplift and subsidence and for both

Kii peninsula and Muroto promontory. This contradicts the

expected recovery that should be similar to the pre-seismic

down-warping. Moreover, the post-seismic deformations occur

for years and far exceed the meteorological and oceanograph-

ic influences (Tsumura, 1970). Other unusual circumstances

are evident for the earthquake and the region as a whole:

seismicity and aftershock distribution, electrical conducti-

vity, and tectonic setting (Kanamori, 1972). These motivate

a series of numerical models that will attempt to clarify the

processes occurring in Southwest Japan with the assumption of

stress relaxation within the asthenosphere. The next section

will treat these problems and the geodetic data in the con-

text of the regional tectonics.
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5.4 1946 Nankaido Earthquake

The 1946 Nankaido earthquake (M 8.2) is one of two major

earthquakes occurring in southwest Japan and north of the

Philippine Sea. The other is the 1944 Tonankai earthquake

(M 8.1). The combined influence of these two adjacent earth-

quakes has been the focal point of considerable investiga-

tions (i.e. Matuzawa, 1964; Fitch and Scholz, 1971; Kanamori,

1972). Because of the close spacial and temporal proximity

of these two earthquakes, they are generally considered as

one in the following analysis. Further justification will

follow for this assumption. But first let us consider the

tectonic setting.

In the following review and analysis, strong evidence

exists that southwest Japan represents juvenile underthrust-

ing of the oceanic plate (Fitch and Scholz, 1971; Kanamori,

1972). A pattern emerges from the present geophysical and

structural data and from the late Cenozoic and recent his-

tory that reinforces this conclusion and adds to its descrip-

tion. Following a long episode of lithospheric underthrust-

ing, these patterns suggest the recent proximity of the

active ridge system in the Philippine Sea until the Pleis-

tocene. During this period strike-slip motion predominates

along the Median Tectonic Line. The termination of spreading

along the active ridge system initiates subduction in south-

west Japan (Uyeda, 1974). Yet the remnants of this history

are evident in the abnormally high heat flow and the proposed
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mantle relaxation. The geodetic data for the Nankaido earth-

quake will prove to offer additional constraints over and

above those imposed by the region's seismicity and focal me-

chanisms when we include the assumption of stress relaxation

within the asthenosphere.

Figure 5.2 gives a map of southwest Japan which deline-

ates the important structures. One should first notice its

location between two major arc systems: Izu-Bonin ridge and

Honshu to the east, and Kyushu-Ryukyu arc on the Philippine

Sea. Both these arc systems show characteristic features of

island arcs. These include a well defined volcanic front,

distinct trench with low heat flow, and a progression from

shallow to deep earthquakes. On the other hand, the Median

zone including Shikoku and Kii peninsula violate these pro-

perties to a substantial degree. The region straddles the

Izu-Bonin-Honshu triple arc junction and the Kyushu-Ryukyu

arc. A shallow trough lies offshore containing little sedi-

ment and gives the appearance of a juvenile trench (Hilde,

et al., 1969; Ludwig, et al., 1973). A deformed ridge of

sediments separates this trough from flat-lying, sediment-

filled basins occurring to the east of each promontory

(Ludwig, et al., 1973). The Median Tectonic Line separating

the inner and outer zones defines a right-lateral strike-

slip fault having Quaternary movements (Okada, 1968; Sugi-

mura and Uyeda, 1973, p. 136). In addition, Quaternary de-

formations show north-south trending folds following the axis
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Figure 5.2

Map of major structural divisions of southwest Japan

taken from Ludwig, et al. (1973). Stippled areas represent

zones of Neocene volcanism; solid triangles correspond to

active volcanoes. Hatching designates sediment-filled

depressions (H, Hyuganada basin; T, Tosa basin; KS, Kii

Suido basin; K, Kumanonada basin; E, Enshunada depression;

N, Nankai trough). The broad dotted line corresponds to

thick sediments in a crustal trough underlying the conti-

nental slope south of Kyushu. A represents Ashizurizaki;

-M, Murotosaki; S, Shionomisaki; SP, Shima peninsula; 0,

Omaezaki. The median tectonic line passes from Honshu-Izu-

Bonin ridge to Kyushu (reproduced from Ludwig, et al., 1973).
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of the promontories, rather than the azimuth of the trough.

Finally, the region is devoid of active volcanoes; the most

recent date from the early Pleistocene (Sugimura and Uyeda,

1973, p. 111). These structural features combine to suggest

a most unusual tectonic region.

Geophysical indicators are also anomalous. Contrary to

other island arc systems, the heat flow from the adjacent

basins and the trough are high (Watanabe, et al., 1970).

The distribution of hot springs retains this unusual behavior

(Sugimura and Uyeda, 1973, p. 62). These two do not neces-

sarily reflect current conditions, rather they are strongly

related to the previous history of southwest Japan. The

electrical conductivity, however, also suggests an anomalous

region of high conductivity compared to the adjacent arcs

(Rikitake, 1966). This may be related to the absence of a

pronounced subducting lithosphere (Kanamori, 1972).

Before we continue, it is appropriate here to review

the previous history of this region and possible conjectures

in view of the previous observations. Huzita (1962) and

Sugimura and Uyeda (1973) summarize the recent structural

history of southwest Japan. The following characteristics

are evident for the Median zone:

(1) Southwest Japan shows generally more cratonic character

than northeast Japan during the Neogene.

(2) The province subsided in Miocene and Plio-Pleistocene

times allowing formation of thin shallow-sea and terrestrial
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deposits, and lacustrine.

(3) Volcanic activity peaked in the Late Miocene, a second

maximum in the Middle Miocene, and ending in the Early Pleis-

tocene. Further, the primary magma evolves from tholeiite

in Early Miocene to subalkaline in the Middle and Late Mio-

cene for the Median zone. According to Sugimura and Uyeda

(1973), this reflects a decrease of underthrusting from Early

Miocene to Middle Miocene.

(4) The apparent decrease in underthrusting corresponds to

cessation of intense deformation. During this period the

extensive volcanics are deposited on Honshu and some on

Shikoku. Subduction now ceases while the ridge system in

the Philippine Sea becomes active. Subsidence occurs along

southwestern Japan; the anomalous heat flow begins and re-

flects the absence of subduction and the proximity of the

spreading center; and the deformations cease. Again a change

in direction of plate motion accompanies the cessation of

spreading at the ridge during the Plio-Pleistocene. Subduc-

tion once again initiates but with a new orientation (Uyeda,

1974). Some small anomalies such as a bend in the Hawaiian

chain offer support to this assertion (Uyeda, 1974). It is

this new episode of subduction that currently dominates our

observations. The seismicity now adds another dimension to

the problem.

Kanamori (1971, 1972) has summarized the seismicity and

focal mechanisms for southwest Japan. Figure 5.3 shows the
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Figure 5.3

A schematic of the tectonic features and the epicenters

for historic, great (M 8.0) earthquakes in southwest Japan

since 1400. Adjacent to the approximate epicenter lies the

year of occurrence. (Reproduced from Kanamori, 1972).
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epicenters of large historical earthquakes with the year of

their occurrence together with an outline of the tectonic

structure. A regular pattern emerges of temporal seismicity:

the 1944 and 1946, two in 1854, and perhaps a twin set in

1707 reflect a remarkable pattern of paired earthquakes.

Kanamori (1972, 1973) notes that this may signify a different

mode of interaction or evolutionary stage for the arc as op-

posed to other more developed regions including Honshu.

Throughout the Median zone the seismicity is predominately

shallow, with only a few intermediate earthquakes and no deep

ones. In addition, Western Shikoku is devoid of both histo-

rical and current seismicity. This may reflect the location

of the extinct ridge.

The seismicity and focal mechanisms suggest a shallow

dipping plane for underthrusting near the hypocenters of the

1944 Tonankai and 1946 Nankaido earthquakes (Kanamori, 1972).

The micro-seismicity distribution in Figure 5.4 for the Kii

peninsula shows a wedge-like feature extending towards the

trough (Kanamori and Tsumura, 1971). The focal mechanism

for the 1944 and 1946 earthquakes conform to this wedge;

Figure 5.4 also illustrates the faults dipping at approxi-

mately 10* towards the mainland (Kanamori, 1972). The loca-

tions for the earthquakes cannot exceed 40 km depth and could

easily be 20 km (Kanamori, 1972). Farther inland diffuse

seismicity occurs with anomalous clustering at 50 km depth

(Shiono, 1970a; Kanamori and Tsumura, 1971). While the
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Figure 5.4

The hypocenters for microseismicity from January 1969

to July 1969, using the projection in the left-hand figure.

The hatched region on the left shows the seismicity trend

from 50 to 70 km depth. The mechanism diagrams and slip

vectors of the 1944 Tonankai and 1946 Nankaido earthquake

are also shown on the left. Distinct clustering occurs at

50 km depth beneath the Kii peninsula (reproduced from

Kanamori, 1972).
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station grid only samples Kii peninsula, Kanamori (1972) ar-

gues that the seismicity for moderate size earthquakes justi-

fies extending this pattern toward the south and offshore

from Shikoku.

The focal mechanisms deduced by Shiono (1970a,b) for

the microseismicity near Kii peninsula present a new aspect

to the problem. Concentrating on only the deeper earth-

quakes, two major groupings are evident: extending from 40

to 60 km depth within the Kii peninsula, the predominant so-

lutions have their P axis following the trend of the pro-

posed slab. Thus the dominant force is compression in the

direction of motion (Kanamori, 1972). The nodal planes

show no systematic orientation. In addition, a preponder-

ance of strike-slip solutions occur in the Kii channel

between Shikoku and the Kii peninsula. This (together with

the distinct embayed shoreline and basins) would suggest a

segmented lithosphere as it descends or a distorted continen-

tal crust. These also conform to the slip direction deduced

from the earthquakes or the relative plate motions, but are

skewed 10 to 15 degrees to the trend of the Nankai trough.

Two alternate models are possible that account for the

seismicity. The first places the seismicity at 50 km within

the descending lithosphere. The orientations then reflect

the state of stress within the slab, either generated by the

gravitational body forces or by collision with the continen-

tal lithosphere. The strike-slip motion would indicate
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tearing within the lithosphere as Stauder (1968a) proposed for

the Aleutians. The structural history could be satisfied

if the slab terminated soon after the seismicity cluster.

This creates a short slab. The alternate model places the

seismicity within the deformed continental lithosphere

(Kanamori, 1972). Now the descending lithosphere terminates

sooner or bends abruptly downward if the shallow dip for the

1944 and 1946 earthquakes is to be maintained at the mega-

thrust. The geodetic data can provide the distinguishing

factor between these hypotheses.

Using a fault model which invokes constant slip and dip

with depth, Fitch and Scholz (1971) found that the geodetic

data constrains the fault plane to roughly 350 dip. This

configuration, however, contradicts both the structural ob-

servations and the focal mechanism. The surface fault trace

would occur approximately 45 km inland from the trench margin.

There is no evidence from bathymetry and submarine morphology

to indicate such a major thrust fault (Ludwig, et al., 1973).

Furthermore, Kanamori's (1972) fault plane solutions will not

admit a mechanism having this dip. These argue for an alter-

native solution if we eliminate the restriction of constant

slip.

Requiring a shallow dip near the hypocenter of the 1944

and 1946 earthquakes and constraining the surface fault trace

to the inner margin of the Nankai trough still allow alter-

nate fault geometries along the deeper fault segments. We
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must discriminate between these alternate hypotheses using

the geodetic data. The time-dependent deformations now

offer additional constraints if one initially assumes mantle

stress relaxation occurs and is significant following the

earthquake. As the preceding discussion has emphasized,

southwest Japan gives every indication of an anomalous as-

thenosphere. If stress relaxation occurs, here represents

relatively ideal conditions: a large earthquake exciting

the deformations, and the proximity of a ridge in the recent

past. In the next section alternate hypotheses are elimina-

ted until the geodetic data limits us to one preferred fault

orientation.

5.5 Models for the 1946 Nankaido Earthquake

The observations, both geophysical and structural, limit

any initial model for southwest Japan. The source parameters

for the 1944 Tonankai and 1946 Nankaido earthquakes confine

us to a shallow dipping fault near the hypocenter (Kanamori,

1972). Combining this with the restriction that the fault

trace intersects the Nankai trough places the depth at 20 to

25 km for a fault initially dipping at 15*. Figure 5.5 de-

lineates the alternate models now available using a dislo-

cation boundary condition on the fault interface:

(1) The fault plane may continue at this shallow dip and ex-

tend beneath Shikoku. The cluster of deep seismicity would

then lie within the subducting lithosphere.
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Figure 5.5a, b

Fault planes for five different models of southwest

Japan projected on the hypocenters of the microseismicity in

Figure 5.4. The models are given in Table 5.1.

a) Diagram for model A-1 using a fault plane dipping at

350*. The model is similar to the preferred model of Fitch

and Scholz (1971), except the dislocation varies along the

fault to yield the best fit to the Nankaido data and the

plane is displaced 12 km towards the arc. The dotted line

outlines the continental and descending lithospheres.

b) Fault planes A-2 through A-5 superimposed on the micro-

seismicity. The thick line segments indicate the position

of the lithospheres. The models span possible locations

for the microseismicity: either within the descending

lithosphere or in the continental plate. The lithosphere

varies between 50 and 60 km thickness.
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(2) The lithosphere gradually bends under the continental

lithosphere towards a steeper dip. Depending on the dip and

depth of the bend, the seismicity remains within the slab or

on the fault interface that separates the two lithospheres.

There exists no a priori justification for this latter case;

the nodal planes have no preferred direction (Shiono, 1970a).

(3) The seismicity exists in the continental lithosphere.

Here the deeper fault segment must dip at least 350 in order

to satisfy the focal mechanism and hypocenter for the 1944

or 1946 earthquakes. For each category and the additional

model using constant 35* dip, the inversion of time-dependent

geodetic data compiled by Fitch and Scholz (1971) gives a

maximum likelihood model (section 2.8; Searle, 1971; Wiggins,

1972).

Fitch and Scholz (1971) examine the geodetic and tidal

data for the pre-earthquake or secular, seismic, and post-

seismic deformations; these profiles are outlined in

Figure 5.6. For profiles A and C post-seismic deformations

are available where tidal records impose an absolute datum.

Section 5.2 discusses some of the errors associated with

this absolute datum; they primarily originate from meteoro-

logical and oceanographic influences. To compensate for

these errors, the inversion weights the level of the absolute

datum less than the geodetic surveys and their tilts. These

weights depend on the errors associated with the individual

observations: larger errors imply less weight. In addition,
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Figure 5.6

Outline of displacement profiles, A through C and Kii,

in southwest Japan determined by Fitch and Scholz (1971).

The dashed and dot-dashed lines denote the leveling lines

used in the profile. The filled circles indicate principle

bench marks. The stripped regions are examples of uplifted

marine terraces (reproduced from Fitch and Scholz, 1971).
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a two-dimensional simulation defines the model. The error

introduced by this assumption progressively increases as we

move from the fault. Yet compared to the inaccuracies of

the geodetic data, this error is probably relatively small

(e.g. Jungels and Frazier, 1973).

Another consideration also tied to the real three-

dimensional character of southwest Japan is the divergence

between the axis of subduction defined by the Nankai trough

and the slip vectors determined by earthquake or relative

plate velocities. It is this divergence that may account for

the peculiar segmented basins and embayed shoreline that

characterize southwest Japan (see section 5.4). The dif-

ference is not small; it is on the order of 15* (Kanamori,

1972; Ludwig, et al., 1973). The focal mechanisms for the

1944 and 1946 earthquakes show no strike-slip components

within this range (Kanamori, 1972); thus, one can conjecture

that the segmentation of the slab and crust follows the

breaks defined by the promontories. The strong strike-slip

component of the large aftershock near the Kii peninsula

(15 June 1948, M 7.0; see Ichikawa, 1971) may reflect motion

between these adjacent segments. Unfortunately, the solution

may be unreliable. The structure may also account for the

tendency towards paired earthquakes; they occur in adjacent

segments. To model this complex behavior necessitates a

three-dimensional problem; instead, one must assume the

simpler two-dimensional profile through the trench. The
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model, then, conforms to an average behavior across the arc.

The assumption should not materially effect asthenospheric

relaxation for any given profile. For the same reasons, the

1944 Tonankai and 1946 Nankaido earthquakes reduce to one

earthquake. We must assume their spatial and temporal proxi-

mity conforms to a continuous break.

Aftershocks pose the final source of contamination to

the geodetic data and the model. Figure 5.7 illustrates the

aftershock epicenters following the 1946 Nankaido earthquake.

The aftershocks which pose the greatest problem are those

located on Shikoku near our profiles and two large after-

shocks on the Kii peninsula. For the latter the distance

separating the profile and the aftershocks should minimize

their influence on the time-dependent geodetic data. The

swarm of shallow aftershocks following the main shock on

Shikoku, however, lies close to the center of our profiles.

Although these earthquakes do not exceed magnitude 5.5, their

cumulative effect could distort the profile (e.g. Tsubokawa,

et al., 1968). Evidence of this perturbation actually

exists in profile A; the anomalous bulge at 110 km in the

post-seismic deformations has strong gradients suggesting

a shallow, buried fault (see Figure 5.8). To compensate for

these anomalies during the inversion, the observations near

the bulge are given little weight.

Profile A of Fitch and Scholz (1971) for the vertical

displacements represents the best compromise for the
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Figures 5.7

Aftershocks of the 1944 Tonankai (circles) and the 1946

Nankaido (triangles) earthquakes. Filled circles and tri-

angles are those within one month after the main shock. The

size suggests the magnitude of the shock. The filled

square represents the epicenter for a large (M~6.9) after-

shock during June 15, 1948. The hatched zone shows the

fault surfaces deduced from seismicity (reproduced from

Kanamori, 1972).



L 'S * fij

Not

o LI 291J0tp 2I 0921 og 21



217.

Figure 5.8

Profile A showing vertical displacements for the

Nankaido earthquake determined by Fitch and Scholz (1971).

From top to bottom, pre-seismic, seismic, post-seismic, and

sum of seismic and post-seismic vertical displacements for

eastern Shikoku (see Figure 5.6) projected onto vertical

planes perpendicular to the Nankai trough. The abscissa

gives the distance from the Fitch and Scholz (1971) model

for the trace of the megathrust. The inner margin of the

Nankai trough is an additional 45 km to this distance (repro-

duced from Fitch and Scholz, 1971).
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inversion. Figure 5.6 illustrates its location and the pro-

file itself is shown in Figure 5.8. The profile is nearest

the central axis of the fault for the 1946 Nankaido earthquake.

This minimizes edge effects at the ends of the fault (e.g.

Fitch and Scholz, 1971; Jungels and Frazier, 1973).

Profile C, which lies at one extreme of the fault, also veri-

fies similar post-seismic deformations.

To generate the data set for the seismic and post-

seismic deformations, the contribution of the pre-seismic

movements contained in the profile is estimated and sub-

tracted from the geodetic displacements. Here we assume

linear accumulation prior to the earthquake (Okada and

Nagata, 1953). Thus for profile A we estimate rates of

downwarping for the interval from 1895 to 1929. These rates

are used to estimate the net pre-seismic or secular move-

ment occurring between 1929 and 1946 or 1964; with this cor-

rection the 1929 to June 1947 or the 1929 to 1964 profiles

give the net seismic or post-seismic deformations.

Figure 5.9 shows the resulting data set for profile A. The

net vertical displacements are now generally greater than

those contained in the original profile. This data set pro-

vides the starting point for the forthcoming models. Match-

ing the data set to the surface nodes for the finite element

model discretizes the data giving a fixed number of observa-

tions. This is not a deterrent; the number of observations

and parameters are both greater than the resolvable and
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Figure 5.9

Reduced profile A after removing the pre-seismic strain

accumulation. The abscissa has two scales for the horizontal

distance: the inner corresponds to the original scale of

Fitch and Scholz (1971) in Figure 5.8 for profile A; the

outer scale represents the perpendicular distance from the

inner margin of the Nankai trough. The latter scale defines

the distance from the fault trace for models A-1 to A-5 in

Figure 5.5. The two curves show the seismic displacement

from June 1947 and the seismic plus post-seismic by 1964

after removing the pre-seismic deformation between 1929 and

1947. The rate of pre-seismic deformation is extrapolated

from the deformation observed between 1895 and 1929 in

Figure 5.8.
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independent parameters (Wiggins, 1972).

The tsunami generated by the 1946 Nankaido earthquake

provides one additional constraint. Hatori (1966) estimates

vertical displacements of a few meters in the source area.

Any model, then, must have surface displacements in this

range. Although not included as an explicit constraint ex-

cept during selection of the initial model for the inver-

sion, the source parameters do introduce one criterion for

the final model.

Adopting five geometries for the region spans the domain

of probable fault configurations. The previous Figure 5.5

shows these models overlain on the microseismicity of the Kii

peninsula. Thus, models exist that place the seismicity both

within the descending lithosphere and within the continental

lithosphere. For each geometry a variety of initial fault

displacements provide the starting point for the inversion

(see section 2.8). Even without the nonlinear viscosity,

minimizing the perturbations from the initial model requires

careful selection of the starting point. Iterating from

different initial models will usually produce similar final

models if the final fit is good. A poor geometry for the

problem, however, generally has unstable convergence and will

never give a good fit to the data. This goodness of fit in-

dicates how adequately the models simulate the actual process

if the errors chosen for the data are correct (Wiggins, 1972);

unstable convergence and a poor fit suggest improper geometry
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for the fault or incorrect initial assumptions. In addition,

we assume a priori reasonably smooth models. Large swings

for the slip from node to node along the fault are ignored;

consequently, this limits the independent degrees of free-

dom within the data (Wiggins, 1972). Yet some fault geomet-

ries still give actual reversals in slip along the fault or

reversals at the surface. These slip reversals often vio-

late the tsunami data or the inferred slip direction from the

focal mechanism. These criteria will guide our evaluation

of the final models.

Table 5.1 lists the best and most reasonable final

models derived from the inversion of each fault geometry.

Included within the table are the number of independent de-

grees of freedom selected for a smooth model, the standard

deviation of the model's fit to the data, and any pertinent

comments. The two best models use the original dip of 350

proposed by Fitch and Scholz (1971) and a shallow dip of

15* followed by a steep 600 dip. These models are compared

later. The other models violated one or more of our restric-

tions: large errors in the absolute level giving rise to

subsidence over the region, small vertical offset in the tsu-

nami source area, large reversals in slip on the fault, or a

poor fit combined with unstable convergence. The models

giving the best fit have a common property: the fault plane

intersects the asthenosphere between the region of maximum

seismic subsidence and the surface fault trace. This is not



TABLE 5.1

MODEL DESIGNATION
DEPTH OF

DIP BEND (KM)
LITHOSPHERIC
THICKNESS (KM)

DEGREES OF
FREEDOM STD COMMENTS

350

150, 350

15 0, 350

none

40.

30.

A-1

A-2

A-3

A-4

A-5

50,

50.

50.

2.35 Good tsunami
displacements,

2.70 Absolute datum poor.
Small vertical disp.
in tsunami zone,

3.74 Reversals of slip.
Large and increasing slip with depth,
or subsidence instead of uplift over
region if correct slip (large error
in absolute datum).

3.97 Sections of normal
slip along fault, Large error in
absolute level datum.

N9-23,1

N19-35.3

N17-29.4
-29.5

N18-32.4

N21-37.4 60. 1.60 Preferred model.
3-15 meters
displacement.

15 0, 350 20.

15 0, 600 26.

60,
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surprising. Chapter 4 demonstrates this relationship as a

direct result of relaxation. Altering the dip affects it

slightly, but the basic phenomenon remains. Thus with a

fault dipping at 15* under Shikoku, one expects post-seismic

subsidence and not uplift after the earthquake. A sharp

change in dip must then occur to create the zone of uplift

if the focal mechanism requires the shallow dip.

The first model, A-1, intersects the asthenosphere near

the proper location to obtain uplift for post-seismic defor-

mations; however the model intersects the surface 45 km from

the Nankai trough. The geometry corresponds to Fitch and

Scholz's (1971) best fitting model. Although violating the

focal mechanism and structural features, allowing arbitrary

slip along the fault yields a good fit to the seismic and

post-seismic deformations. As a reference point, the results

are given for this model. It may then suggest possible im-

provements.

Figure 5.10 delineates the fault geometry and displace-

ments for this model, a fault dipping at a constant 35*.

The geodetic data set uses the discretized version of

Figure 5.9 and includes both seismic and post-seismic defor-

mations (Appendix C). The geodetic surveys are tied to an

arbitrary level; consequently, only the tilts constrain the

fault displacements. In spite of this restriction, the

results agree with the absolute datum determined from tidal

records. The resulting fault displacements show increasing
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Figure 5.10

Vertical displacements for model A-1 in Figure 5.5a

compared to seismic and seismic plus post-seismic deforma-

tions using profile A. The inset in the upper-left indicates

the fault offset when the length denotes the magnitude. The

5 meter line gives the scale. Near the surface the offset

equals 5 meters and increases to 8 meters at 40 km depth.

The dislocation then remains constant with time. The verti-

cal bars extending from the baseline give the observed

seismic vertical displacements. The dotted region indicates

the seismic plus post seismic displacements after 18 years.

The dotted region extends from either the observed baseline

or the seismic deformation. For a viscosity of 3.2 x101 9

poise the dotted lines correspond to 0. (solid), 1., 5.,

10., and 20. years after the earthquake. The fit suggests

only a small baseline correction from the zero line of the

model. The same baseline applies to both sets of observa-

tions, the seismic and seismic plus post-seismic. Model A-i

constrains a priori the fault offset near the surface to

satisfy the tsunami source region.
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slip to 40 km depth, then decreasing until the asthenosphere.

Within the asthenosphere the slip is virtually zero. The

diagram also indicates the standard deviations and resolution

for these displacements. The surface displacements only

slightly constrain the fault near the surface. To satisfy

the tsunami data, these segments are restricted to 500 cm

displacement; arbitrary displacements do not significantly

change the slip at greater depths.

Using this geometry and fault slip inverted from profile

A, the model reproduces the time-dependent behavior in the

geodetic profile. Figure 5.10 compares the reduced profile A

to the resulting vertical displacements. Except near the

anomalous bulge, the fit is good; it yields a broad zone of

uplift throughout the profile. Decreasing the slip on the

deepest segments tends to decrease the uplift. This is im-

portant if an error in the absolute datum occurs in the data

set. Unfortunately, the constant 350 dip violates the focal

mechanism solution and structural features.

The simplicity of the previous model does argue for a

variation that fulfills all the constraints. First, the dip

near the hypocenter must be shallow to satisfy the focal

mechanism and to intersect the Nankai trough. Second, the

fault must meet the asthenosphere between the zone of seis-

mic subsidence and the trough. An obvious model follows the

inner margin of the microseismicity in Figure 5.5. Indeed,

this model, A-5, does give the preferred behavior.

Profile A again represents the discretized data set
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after correcting for the secular deformations (Appendix C).

The absolute datum is now retained during the inversion, al-

though the weighting is halved. The resulting fault slip and

surface displacements, although at first peculiar, faithfully

produce the major features of the time-dependent deformations.

Figure 5.11 gives the fault parameters determined for the pre-

ferred inversion. In this case the parameters are free to

vary from the surface to the asthenosphere. Again the reso-

lution improves with increasing depth along the fault. This

reflects the surface distribution of geodetic data. The

model shows one unusual feature: the slip has a minimum near

the hypocenter. Unfortunately, the resolution lengths indi-

cate incomplete discrimination for adjacent nodes. Again the

fault slip decays near the asthenosphere. With decreasing

depth the resolution rapidly deteriorates; the geodetic data

controls the surface displacements only slightly. In this

case the starting model for the inversion had near-surface

fault displacements that satisfy the tsunami data.

The vertical displacements are given in Figure 5.12

overlain by the geodetic data. The model incorporates a

slight change in the absolute datum: the net post-seismic

uplift decreases over the whole survey. This is insignifi-

cant relative to the errors found in tidal records. Again

the deformations show a large deviation from the bulge ten-

tatively attributed to the swarm of aftershocks. The tsu-

nami source region shows vertical offsets within the proper
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Fi ure 5.11

Fault parameters and resolution for model A-5. The

schematic at the bottom gives the fault configuration using

the horizontal scale; the arrows indicate positive fault

slip. Projected above each node on the fault are the dis-

placements for the fault slip (filled circles) based on the

inversion. The vertical bars extending from each displace-

ment denote the standard deviation for the slip, while the

horizontal bars give the resolution length at each fault

node. Both the resolution and errors are smallest along

the deeper segments of the fault. Near the surface both are

poor using the geodetic data; however, the tsunami source

region constrains the initial model. The hatching suggests

the inferred limits on the fault displacement introduced by

the resolution and error analysis. The inversion gives a

3 m offset near the fault bend, but the analysis indicates

only partial resolution. The shading reflects smoothing

over the resolution length.
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Figure 5.12

Vertical surface displacements for model A-5 in Figure

5.5b constrained by profile A. The inset depicts the geo-

metry and fault displacements when the 10 meter line gives

the scale for the fault offset. The offset reaches a maxi-

mum of 14.5 meters at approximately 30 km depth, while near

the surface it averages 9.7 meters. Again we assume constant

displacements with time. The vertical bars extending from

the baseline denote the seismic displacements following the

earthquake from the reduced profile A. This seismic base-

line is offset 4 cm from the zero line for the best fitting

model. The seismic plus post-seismic deformations are indi-

cated by the dotted region extending from its baseline. The

post-seismic baseline is offset 7 cm relative to the seismic

baseline which lies within the error margin for the absolute

datum (Fitch and Scholz, 1971). For a viscosity of 1.4 x

1020 poise the curves denote the seismic displacement at 0.

(solid), and post-seismic plus seismic at 2., 10., 20., and

40, years following the earthquake.
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range, a few meters. The model, however, gives an anomalous

region of subsidence between the geodetic and tsunami con-

trols. Yet a corresponding structure exists offshore in the

form of sedimentary basins (Ludwig, et al., 1973). Although

the model does not simulate finite deformations, this pre-

disposition does suggest the origin of the basins: they form

near an abrupt bend in the descending oceanic lithosphere.

A distinct gravity minimum comparable to the Nankai trough

occurs within the basins (Ludwig, et al., 1973). The mor-

phology of the basins further supports this assertion. It

suggests flat-lying sediments with an outer ridge thrust

upwards from the Nankai trough. Thus the surface deforma-

tions may reflect the bending slab beneath the island arc.

Independent tilt data is also available for the 1946

Nankaido earthquake at Muroto promontory. Figure 5.13 gives

this data (Okada and Nagata, 1953). Assuming a linear trend

for the secular deformations, the seismic offset becomes

6.2 seconds. This corresponds well with tilts estimated

from model A-5 in Figure 5.14. The decay following the

earthquake, however, differs from the post-seismic model.

The observations suggest a relaxation time of 1/2 year, but

the model indicates a decay time closer to 5 years. Before

any conclusions are drawn, a number of factors need further

consideration. If the tilt observations are correct, signi-

ficant tilts occur before and during the geodetic survey in

1947. Thus, the effects of the short term tilts are obscured
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Figure 5.13

Recent history of tilting at Muroto promontory when

leveling lines are projected on a line perpendicular to the

fault trace. The ordinate gives the tilt in seconds of

arc, while the abscissa extends from 1830 to 1970 in incre-

ments of 10 years. Positive tilt corresponds to uplift of

the promontory relative to inland Shikoku. The tilt data,

denoted by dots, are taken from leveling lines; the dotted

or dashed curves are extrapolations. The double arrows

estimate the permanent tilt (from Okada and Nagata, 1953;

Fitch and Scholz, 1971).
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Figure 5.14

Tilts from model A-5 using the horizontal scale of

Figure 5.12. For a viscosity of 1.4 x 1020 poise, six times

after the earthquake are shown: 0. (solid), 2., 10., 20.,

40., and 200. years. The tilt is estimated using a central

difference approximation. Muroto point corresponds approx-

imately to -40 km on the horizontal distance scale.
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in the original profiles for the seismic displacements; the

tilts are partially contained in the seismic deformations.

In this analysis, then, they are not considered too signifi-

cant. Yet they could reflect different processes occurring

on a shorter time scale, such as fault creep (Kanamori, 1973)

or dilatancy (Scholz, 1974). This time-scale cannot be re-

solved using the present analysis.

No post-seismic data exists for the horizontal displace-

ments; however, horizontal displacements are available for

the seismic deformations when referred to a baseline approx-

imately 300 km from the fault (Fitch and Scholz, 1971). Un-

fortunately, the displacements are seriously contaminated by

pre-seismic deformations. Moreover, the baseline's distance

from the fault makes a two-dimensional model only a rough

approximation. Only a cursory comparison is then appropriate.

Figure 5.15 gives the horizontal deformations using the

model A-5 in Figure 5.5 for southwest Japan. The baseline

follows the axis of the plot; consequently, extending the

slope from the baseline at approximately -200 to -150 km in

Figure 5.15 gives a corrected zero line. Using this as a

guide, the maximum horizontal displacements from the

theoretical model become 1.5 to 2.0 m; within 50 km they de-

cay to less than 1.0 m. Fitch and Scholz (1971) report sim-

ilar behavior on Shikoku after correcting for secular defor-

mations. Under these circumstances, the results appear

quite good.
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Figure 5.15

Horizontal displacements resulting from model A-5 in

Figures 5.5b and 5.12. Again the curves show six times

using a viscosity of 1.4 x 1020 poise for the asthenosphere:

0. (solid), 2., 10., 20., 40., and 200. years following the

earthquake. The thick, dotted lines represents the base-

line extrapolated from the horizontal displacements far

from the fault. The maximum displacement on Shikoku then

approaches 2 meters.
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The maximum shear stress resulting from this model now

suggests the origin of the crustal seismicity: within the

continental lithosphere the shear stress released by the

earthquake attains a maximum near the bend. Figure 5.16

illustrates this phenomenon for the preferred model. Near

the bend the stress release reaches 500 bars. Comparing the

zone of deep microseismicity in Figure 5.5 to this model,

the earthquakes occur precisely in the regions of highest

stress change. Here the stress change increases the initial

stress after assuming a model similar to Figure 4.19.

Although this does not represent a causal proof, it does pose

the possibility.

Unlike the vertical deformations, the maximum shear

stress varies only 10% during the first 20 years. It is

doubtful that these variations are responsible for the after-

shock sequences. The evidence, instead, supports the concept

based on stress concentrations and inhomogeneities near the

fault tip (Rybicki, 1973). Only this hypothesis allows

short decay times together with mechanisms having their po-

larity opposite to the main shock as observed in the Kurils

(Aver'yanova, 1973).

To summarize, this model of southwest Japan represents

a consistent explanation for the regional structure, geodetic

data, seismicity, and focal mechanisms. It suggests mantle

stress relaxation as a result. With this assump-

tion the geodetic data constrains the mantle viscosity to
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Figure 5.16

Maximum shear stress and direction of the maximum

compressive stress for model A-5. The heavy line outlines

the configuration of the lithosphere and the fault plane.

The direction of each line segment represents the orienta-

tion of the maximum compressive stress, while the length

denotes the magnitude of the maximum shear stress. The

scale in bars is given in the lower-right. Each line seg-

ment represents the stress within a particular element at

a separate time; these times are 0. (solid), 2., 10,, 20.,

40., and 200. years after the fault dislocation. Only small

magnitude variations occur during the first 20 years. The

earthquake, however, introduces large (500 bars) stress

changes near the bend in the fault.
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1020 poise and the lithosphere to 60 km thickness. These

are reasonably consistent with other independent estimates

considering the unusual region. In addition, the data

requires a sharp bend in the fault. This is similar to Kana-

mori's (1972) proposal for the region, except the bend does

not necessarily imply that the descending slab abruptly

terminates.
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6. CONCLUSIONS AND DIRECTIONS

6.1 Conclusions

This thesis suggests an approach to resolve time-

dependent strains in an earthquake zone. Concentrating upon

only one aspect of the problem, the consequences of stress

relaxation within the asthenosphere on post-seismic deforma-

tions, a tractable model first requires development. Here

a numerical strategy using the finite element method proves

to be optimum.

The model first reduces the material behavior to linear

viscoelasticity, initial elastic deformation followed by

stress relaxation. This retains the essential features of

the asthenosphere. Using an approximate Laplace transform

and discretizing the continuum yields a relatively inexpen-

sive solution to deformations in the medium. Introducing

the fault interface with arbitrary boundary conditions bet-

ween the faces, determining the effects of gravity, and

inverting the data to a model directly follow using finite

elements. Thus, simple fault creep is possible. The

technique gives an extremely versatile solution method for

linear viscoelasticity or any other problem having a

similar mathematical structure. The models here are two-

dimensional, but only minor changes are necessary for three

dimensional computations given the additional computer time.

Using convolutions, the approach is directly extendable to
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other time-dependent problems involving loading (ie. sedi-

mentation, glacial, or strain accumulation prior to an

earthquake), and fault creep.

Beginning with the assumption of mantle stress relaxa-

tion occurring on the time scale of the strain accumulation

for earthquakes, the method yields solutions that conclu-

sively demonstrate its effects and defines its relative

significance. Thus, for thrust faults the vertical surface

displacements provide the most sensitive and practical indi-

cator of mantle relaxation. But these displacements alone

may be insufficient to distinguish between alternate mech-

anisms: fault creep and dilatancy. Measurements on

opposite sides of the fault and gravity hold the greatest

promise as a tool to constrain the mechanism and modes of

post-seismic deformation. Comparing the stress release

and the initial pre-stress to the aftershocks gives an

additional constraint.

The results for idealized numerical experiments prove

that stress relaxation in the asthenosphere can play an

important role. For viscosities near 1019 to 1020 poise

alterations in the post-seismic deformations and stresses

are evident. The lithospheric thickness and the relative

fault depth dominate the shape of the post-seismic

deformations. The boundary conditions imposed on the fault

interface, whether prescribed offset or stress release

give different time-dependent deformations and stress
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states within the lithosphere. This is analogous, respect-

ively, to no fault creep as opposed to fault creep along a

weakened zone. The models favor either fault creep or a

constant dislocation within the lithosphere. Extending the

fault through the lithosphere gives large and continuing

surface deformations, particularly for a constant stress

release applied at the fault interface. These models and

relationships suggest, then, regions where asthenospheric

stress relaxation manifests itself.

Furthermore, the models contradict Scholz's (1974)

assertion that stress relaxation in the asthenosphere cannot

account for post-seismic subsidence on both sides of the

fault. According to his analysis, post-seismic deformations

for the 1964 Niigata earthquake originate from dilatancy

recovery. Yet a definitive result is still not forthcoming;

dilatancy, stress relaxation or both may occur. Only the

data is insufficient to uniquely resolve the contributions.

This emphasizes the clear need for extensive pre- and post-

earthquake monitoring: the role of dilatancy as opposed to

mantle stress relaxation or fault creep is germane to

earthquake prediction.

Reviewing evidence of post-seismic surface deformations,

the 1946 Nankaido earthquake presents the most complete and

convincing evidence. Other geophysical evidence and the

conjectured history of southwest Japan are also consistent

with a low viscosity for the asthenosphere,
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an essential property for stress relaxation. Using only

mantle stress relaxation as the mechanism producing the

anomalous surface deformations, inversion theory gives the

preferred model satisfying the geodetic data and auxiliary

constraints. These additional constraints include a smooth

initial model, a low-angle thrust fault near the hypocenter,

and a tsunami source region that remains consistent with

the observations. The results suggest a general interpreta-

tion for the tectonics of southwest Japan: the structure

and seismicity originates from a recently subducted litho-

sphere that abruptly bends beneath the continental margin.

Moreover, the model indicates the following properties:

1. The constraints impose a shallow, 150 dipping fault

plane from the inner trench margin to 26 km depth, then

plunging at 60* dip. A short, 150 km descending lithosphere

satisfies the data; thus, the model is consistent with

recent dates for the initiation of subduction (3 my accord-

ing to Moore, 1974).

2. The slip along the reverse fault varies from 9 meters

near the surface to a maximum of 14 meters at 35 km depth,

then decays towards the base of the lithosphere at 60 km

depth. The error for the lithospheric thickness becomes

approximately 10 km.

3. The viscosity for the asthenosphere is 1020 poise for

the preferred model. This is an order of magnitude lower
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than most results from post-glacial rebound (Artyushkov,

1967; McConnell, 1968; O'Connell, 1971).

4. The deformation pattern suggests the origin of the

sedimentary basins off each promontory in Figure 6,1: they

originate from the abrupt bend during the lithospheric

descent.

5. The preferred model, A-5, both suggests and supports a

segmented descending lithosphere depicted in Figure 6.1.

These segments are partially decoupled allowing the unique

pattern of major earthquakes (i.e. Kanamori, 1972; Ando, 1974),

an embayed shoreline characterized by submarine basins off

each promontory (i.e. Ludwig, et al., 1973), and a slip di-

rection for the 1946 Nankaido earthquake that neither lies

perpendicular to the trench axis nor shows any evidence of

strike-slip components (Kanamori, 1972). In addition, focal

mechanisms for the microseismicity suggest strike-slip solu-

tions within the Kii sound (Shiono, 1970b). These are con-

sistent with slip between adjacent lithospheric segments,

and thus, are similar to tearing that occurs beneath the

Aleutians or Honshu (Stauder, 1968a; Abe, 1972; Carr, et al.,

1973).

6. The maximum shear stress released by the earthquake

approaches 500 bars near the bend. Although the stress

approximation has first-order errors, the magnitude and

orientation of the stress tensor places the greatest change

in shear stress near the fault bend. Moreover, the stress
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Figure 6.1

Inferred tectonic structure for southwest Japan based

on model A-5. Hatching denotes the sedimentary basins off

each promontory, and the stippled area corresponds to the

Nankai trough (Ludwig, et al., 1973). The preferred model

and constraints suggest a sequence of major lithospheric

tears that separates and partially decouples each segment;

the dotted lines indicate these subdivisions or tears. The

structural divisions of the embayed shoreline, microseismi-

city, historical earthquakes (Kanamori, 1972; Ando, 1974),

relative plate velocities (McKenzie and Parker, 1967), slip

vectors for the 1944 and 1946 earthquakes (Kanamori, 1972),

and implications of the preferred model A-5 are consistent

with this interpretation.
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microseismicity. The predicted effects would be

essentially similar.

6.2 Implications and Future Directions

Using the preferred model containing a bending litho-

sphere and assuming only mantle stress relaxation, the

structure, seismicity, and subduction history for southwest

Japan reduce to a consistent scenario. Yet the potential

contributions of other mechanisms, fault creep and dila-

tancy recovery, on the post-seismic deformations remain

obscure. Additional data may resolve the relative contri-

butions of the two mechanisms. Gravity, in particular,

could discriminate between these alternate explanations.

Still, further sophistication using computer models may

realize insights into fault creep processes and

dilatancy recovery if they are included, first separately

then jointly, in the analysis and inversion. Combined with

extensive geodetic and gravity surveys, tidal stations,

continuous tilt records, and seismic velocities, both

questions of post-seismic anomalies and predictive methods

would reap immense benefits.

Seismic gaps and strain accumulation do pose further

questions for lithospheric and asthenospheric interactions.

Coupled with pattern recognition and a statistical analysis,

these questions represent an extension of the theoretical

analysis contained in this thesis: how does the mantle

control the short-term accumulation of strain energy at an
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reinforces the initial stress originating from thermal

density anomalies. The region of maximum stress then cor-

responds to the one of deep microseismicity on the Kii

peninsula. Compared to the idealized models where the stress

release hovers near 10% of the initial stress, the 1946

Nankaido earthquake may relax a larger fraction of the pre-

stress over localized regions.

The preferred model, A-5, based on the geodetic data

and on the assumption of asthenospheric stress relaxation

both satisfies and explains these additional features of

southwest Japan. Significantly, a model satisfying the

focal mechanism and tsunami source and excluding any sec-

tions of normal faulting, but placing the microseismicity

within the descending lithosphere, could not be established

if only mantle relaxation occurs following the earthquake.

Eliminating the shallow dip on the fault plane allows a

model that is similar to Fitch and Scholz's (1971). Yet no

evidence exists for a major fault trace between Shikoku and

the Nankai trough. The preferred, A-5, model, however,

resembles Kanamori's (1972) proposal for the structure of

southwest Japan using only inferences from the seismicity.

Both cases place the microseismicity within the continental

crust and each requires a short slab. The difference is

partially one of semantics: model A-5 shown here requires

a sharp bend with slip also occurring deeper; Kanamori

(1972) terminates the descending slab at the zone of
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island arc? Here a three-dimensional analysis becomes

crucial which further precludes any nonlinear phenomenon in

the method.

Problems within the realm of long-term surface deform-

ations during the evolution of a tectonic zone will not

yield to this approach. Nonlinear creep probably controls

crustal deformations, formation of the trench margin, and

similar quasi-fluid dynamic processes. Thus, these require

a different approach for a clear resolution. At this point,

whether finite elements or finite differences are optimum,

must await further developments.
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APPENDIX A

Implementation of time-dependent, finite element method

Chapter 2 outlines a finite element method for linear

time-dependent problems; now the implementation of this

scheme introduces new problems. Flexibility is needed

for the method: elastic solutions, gravity, faults, and in-

versions should be available. Each finite element solution

must yield both displacement and stress solutions in the

time-domain. These requirements place tremendous demands

upon input-output control within the programming. All these

require careful implementation to give an efficient and

useful computational strategy.

These requirements are obvious in the solution method.

Each finite element solution in the Laplace domain demands a

separate factoring of the stiffness matrix; each element's

contribution involves an integral of the transformed relaxa-

tion function G

K = f 42ET GEgdv (A.1)
n V

where the notation conforms to Chapter 2. For each La-

place time the transformed displacement q are the solution

to

K q = Q (A.2)
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where the boundary conditions and loads Q start at time

zero (section 2.3). The inversion to the time-domain using

collocation or least-squares requires the transformed dis-

placements q for each reduced time. If stresses are

necessary, we also save the stress-strain matrix for each

reduced Laplace time and element. This involves enormous

data retention. Once the finite element solutions are

available in the Laplace domain, least-squares fits the

displacements q or element stresses to the transformed

exponential series:

n S.

[q= j = ln (A.3)
J Li__ P=l/y.

where

n -t/y.
- 1 S (1 - e) (A.4)

i=1

in the time domain (section 2.6). Notice that all initial

displacements or stresses correspond to a step function at

time zero. The fitting implies access to many solutions

in the Laplace domain. Inversions multiply this require-

ment: each fault segment needs its own time-dependent

solution. Fortunately, multiple factoring is unnecessary

for the stiffness matrix K; rather, forward-backward sub-

stitution yields each solution when intermediate results

are available. Again efficient data management is paramount.
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Figure A.1

Outline of system structure for finite element computa-

tions and inversion. Three systems are represented:

i) The finite element computations (FEM) include SETUP,

SOLUTION, and INVERSION stages. Three direct-access files

on disk represent intermediate storage modes. For the

solution program, gravity, the Laplace times for the solu-

tions, and the problem type (elastic or viscoelastic) must

be specified. The subsequent inversion to the time domain

involves either the stress of displacement when the series

times and, if necessary, a constant flow term are selected.

ii) The second system plots the displacements and stresses

for models derived from either inversions or specific FEM

problems. The program accesses the mesh configuration

stored on disk and plots at desired times using the series

approximation (equation 2.6.9).

iii) Given an initial model and the constraining data, the

inversion stage generates new models together with the

resolution and errors for each. The first program formu-

lates the problem into an eigenvalue problem and the result-

ing work files are stored on direct-access disk. The

second solves the problem, while the last generates new

models and determines the resolution and errors for a speci-

fic number of eigenvalues. These models may now serve as

a new initial model.



WORKFILE

--- SOLUTION FILE
TIME FILE

Gravity
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Flow
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On-line core storage is crucial. Adopting a scheme

used by Orringer and French (1972), we store each band of the

stiffness matrix beginning with the first non-zero entry.

A significant savings in space results compared to the maximum

bandwidth mode. Subroutines from the FEABLE system

(Orringer and French, 1972) have been incorporated with

modifications for setting up the problem, factoring the

matrix using Cholesky's algorithm, and subsequent solution

using forward-backward substitution. These provide an

efficient solution scheme when we retain the whole stiffness

matrix in core.

Figure A.1 shows the system structure adopted for the

viscoelastic solution. A crucial element is sufficient

versatility to allow solution of various problems: elastic,

viscoelastic, and inversion for both displacements and

stresses. Information must be accumulated for each. For

example, the stress-strain matrix for each Laplace time

and element must be saved for computing time-dependent

stresses. To accomplish these tasks, we subdivide the

problem into the following operations:

I. SETUP assigns locations to the storage areas (i.e.

stiffness matrix, solution-force vector, bookkeeping variables,

etc.) based upon the dimensions of the problem, and reads and

stores the element information. This is independent of the

type of solution, whether elastic or viscoelastic; it
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only depends on the grid structure. All this is stored

on a disk work-file together with the element informa-

tion, material constants, node locations, densities,

boundary conditions, and other assorted information.

Access to the disk file occurs one track at a time to

reduce input-output operations.

II. SOLUTION constructs the stiffness matrices and

solves them for the specified problem. For an elastic

solution just one factoring is necessary while a visco-

elastic solution requires half a dozen or more separate

assembling and factoring operations. Each factoring may

involve more than one solution if a generalized matrix

inversion is necessary. All the input is accessed from

the disk work-file, while all output is stored on a disk

solution-file. This dramatically decreases input-output

expense when combined with an additional buffer variable

located in a read-write subroutine. Large blocks of input

or output may be transferred thereby reducing the input-

output operations to the computer.

III. TIME DOMAIN INVERSION reads the displacement solu-

tions for each Laplace time and inverts using the series

approximation for either displacement or stress. The

resulting coefficients are stored on disk file. Once
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these solutions are available, various modes of pro-

cessing can be executed including plotting and con-

structing the variational parameters for the inversion

solutions.

IV. DATA INVERSION

The generalized matrix inverse allows a simple in-

version scheme for the fault displacements. We access

a file containing the time inverted coefficients for the

displacements and introduce a starting model. SETUP fixes

the viscosity ratios for the asthenosphere and mantle;

however, scaling allows us to vary the initial viscosity

in the asthenosphere. In the starting model we constrain

this initial viscosity and define the fault segments for

the inversion. The resulting coupling and variational

coefficients together with appropriate weighting and

errors define the coefficient matrix for the inversion.

Now the first of two routines multiplies the co-

efficient matrix by its transpose and factors into a

tridiagonal matrix using Householder's method, solves for

the p largest eigenvalues using bisection, and finds the

eigenvectors. With the results stored on disk, the

second routine selects the number of eigenvalues and

generates the solution, variances, resolution matrix, and

weighting matrices for the next iteration. The structure

facilitates alterations and new models without solving a

new finite element model.
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APPENDIX B

TEST PROBLEM: Pressurization of a viscoelastic cylinder

with an elastic case.

We desire a problem with an analytic solution for

comparison to the numerical method. A problem often en-

countered in engineering literature is the pressurization

of an infinite viscoelastic cylinder enclosed by an elastic

case. Using the correspondence principle of viscoelasticity

and the elastic solution, we can compute an analytic

solution. The strategy is similar to the operational

form of the variational principle, except the Laplace

transform of the Euler equations reduce to equations

analogous to the elastic problem (Christensen, 1971).

Thus elastic solutions are applicable when the elastic

moduli are replaced by the corresponding transformed

viscoelastic moduli. We then transform the operational

solution in the Laplace domain to the time domain. Using

this approach, Lee et al. (1959) have calculated the

stresses for an externally reinforced viscoelastic

cylinder. These results allow direct comparison with our

finite element solution.

The numerical solution uses the method previously

outlined: finite element solutions in the Laplace domain

and a series inversion using collocation to the time

domain. In addition, a finite element solution using
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stepping in the time domain is available (Zienkiewicz,

et al., 1968). Assuming a Maxwellian viscoelastic behavior

in shear and elastic behavior for the bulk modulus, the

constituent relations are:

G (t)= [k (t) - P(t) ] 6 + [ 6j.+6 j (B.1)ijkk. 3 ijkt"Pt ik i

where k(t) is the bulk modulus relaxation function and yi(t)

is the shear modulus relaxation function. Therefore one

has t dkk (T)
a = 6 j[k(t-T)- y(t-T)] k dT

(B.2)
t c. .( T)

+ 2J p(t- T) 3 dT
0 6T

where the relaxation functions for our case are

k(t) = K (B.3)

and

(t) = p0 e-t/T (B.4)

For the thin elastic case, these moduli are set to

K = 3.778x10 lb/in 2; p = 1.1525x10 lb/in 2; T = 1. (B.5)

The relaxation time T is in arbitrary units. For the

internal viscoelastic cylinder these take the values

5 2 5 2 4K = 1 x 10 lb/in ; 0 = .375 x 10 lb/in ; T = 10(
(B.6)

Thus the case is essentially elastic.
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The element configuration adopted for the problem

is given in Figure B.1. The elements are all constant

strain triangles. The boundaries simulate a full cylinder;

free slip is specified along the edge of each quadrant.

The interior is then given an outward, arbitrary pressure

of one unit. Finally, the inversion of stresses to the

time domain uses five reduced times.

Figure B.2 illustrates the principle stresses for

two times, zero and ten, plotted on the element array.

The zero time is obscured by time ten except where a

tensional hoop stress occurs along the inner boundary.

The ends of the tensional stress are denoted by small

asterisks superimposed on the isotropic stress at time ten.

The stiffer elastic case receives the brunt of the ten-

sional hoop stresses as the shear modulus relaxes within

the viscoelastic cylinder. These results correspond pre-

cisely to both our intuition and the analytic solution.

The results for the radial stress, arr, are given in

Figure B.3 with a comparison to the analytic solution of

Lee, et al. (1959). The results correspond very favorably

when the individual elements are properly averaged for each

radial distance. The elements, constant strain triangles,

do not give exceptionally accurate results since stress is

constant throughout the element. Better results occur when

adjacent elements are averaged to obtain an approximation
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Figure B.l

Finite element net for viscoelastic cylinder with

elastic case. Using plane strain, one quadrant simulates

the full cylinder when slip boundary conditions are applied

to the faces. The origin then represents the center of

revolution. Shaded elements correspond to the visco-

elastic medium; the surrounding, thin elastic case

conforms to the outer, unshaded elements. The inner

arrows represent the pressurization of the interior at

time zero.
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Figure B.2

Principle stresses plotted on the element array.

Two dimensionless times, 0. and 10., are shown in the

diagram. The length of the line segment denotes the

magnitude normalized by the pressure; the orientations

correspond to the minimum and maximum stress. The scale

is in the upper right. Asterisks mark the ends of the

tensional stress. Note that time 10. generally obscures

time 0. except when the asterisks are visible. By time 10.

the stress within the viscoelastic cylinder is virtually

isotropic; the elastic case absorbs the tensional hoop

stress.
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Figure B.3

Normalized radial stress from the finite element

solution compared to an analytic solution by Lee, et al.

(1959) for pressurization of a viscoelastic cylinder with

an elastic case. Three times are shown after pressurization:

0., 1., 10. The symbols indicate the finite element

solution at specific elements; the lines are the analytic

solution. Averaging two adjacent elements yields the

best approximation since CST (constant strain triangles)

give constant stress. The comparison is then quite good.
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midway between the two (Desai and Abel, 1972). One

effectively obtains then a second order approximation

similar to a six node triangle.

The solution given by Zienkiewicz, et al. (1968) re-

quires many more individual solutions than the operational

strategy. His solutions use time increments of .1; thus,

100 solution steps span the time domain. This is 20 times

more than the transformed solution. An iterative solution

technique can successfully be applied to save time for both

methods. It was not used for the transformed principle since

many unique solutions are required for the fault plane in-

version at each reduced time. The inversion solutions are

also impossible with the time-stepping strategy. The

operational strategy requires then only one twentieth the

solutions as an efficient stepping method, not to mention

the versatility gained for inversion problems and the avoid-

ance of error propagation.
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APPENDIX C

Results for Models A-1 and A-5.

Table C.1 represents the original output for model A-1

from the inversion. The first part gives the parameters for

the model, standard deviations and resolution. The initial

model constrains the fault displacements from 26 km depth to

the surface at 500 cm. This is held constant during the

inversion. From 57 to 35 km depth the initial model is zero.

The table includes the following notations and comments:

PARAMETERS

TYPE: Depth of node (km) on fault where displacement occurs,

or VIS represents the viscosity parameter.

DEPTH: Depth of node (km) on fault, or -1. if viscosity

parameter.

PARM OLD: Old or initial value of parameter if used in in-

version. In model A-1, it is set to zero if constrained

during the inversion.

PDELP: Change in parameter during inversion.

STD: Standard deviation for fit. To obtain true estimate,

this value is multiplied by model fit in std (i.e. 2.35).

RLEN: Resolution length of parameter in km. The distance

represents the depth extent.

DATA

TYPE: Horizontal distance (km) from fault trace. The first

group of eight are for .5 year since the earthquake; the
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second represents 18 years.

OBVAL: Observed value (cm) for geodetic observations. In

model A-1 the displacements are relative to 63 km, and

the absolute datum is not constrained.

STD: Standard deviation (cm) assigned each observation.

DELCN: Calculated value (cm) from the new model for each

observation.

FIT STD: Fit of new model to observations in the standard

deviations assigned each data point.

RLEN: Number of adjacent data that represents an independent

observation.

Table C.2 gives the corresponding results for model A-5.

The first part gives an additional display of the new model

with the sum of the old parameters plus the change. Thus,

the new model is designated PARM NEW. In the DATA section,

the type also includes tilt observations from Muroto promon-

tory (T122) at times 0., l., 2., and 5. years after the

earthquake. V designates vertical displacements, again in

time groups of .5 and 18. years. In each case the number

represents the distance from the fault trace in figure 5.5.

The observed value (OBVAL) are relative to T122 or V112

(for both times); however, the inversion now retains the ab-

solute datum as a constraint.



TABLE CA - Model A-1

PARAIETER RESOLUTION - 'IEVIATION/rES.LEN.
EI GEUVALUE

TYPE CS7. 50. 43. 35. 20. Tr vI;
DEPTH 57.00 50.00 43.00 35.00 21.P0 17.'1 -1.000
PARt- OLD .0 .0 .0 .0 .1 cc - .n -- 9.

-151.9 -781.1"
38.15 15.03

11. 50 10.15

-491.1
33.64

9.564

DATA DENSITY - NUMBER OF ADJACENT DATA REQUIRED
EIGENIVALUE 4 MiODEL FIT IN STD= 2.35E+00

63
.0
2. 000

-. 2461E-12
4 -. 1230E-12

.9677E+27

75
-40.41
3.010

-33.50
.6635
3.096

6 9
-29. 40

2.000
-31.58
-1.039

5.197

87
-91.70,

3. 000
-84.38

2. 440
4. 098

-69.77
2.000

-64.14
2.464
2.121

100
-118.1
3.000

-103.1
.9567E-12
2. 722

100
-127.5

2.010
-131.5
-1.975
3. 138

112
-111.3
3.00

-118.3
.3119
2.255

112
-128.2

2.000
-135.5
-3. 602

5. 201q

--. 14^i2E-11 -. 1'72E-11 -. 3141E-01
.4134E-11 .211325-11.l 09-0

.4138"E+21 .7134E+21 1.911

Viscosity = 3.2±0.8 x 1019

125
-130.6

2.000
-133.0
-1.654
4.411

137
-132.4
2.000

-121.7
1.382
3. 340

150
-133.1

2.000
-125.3
3.674
2.896

PDELP#
STD# 4
RLEN

4 -16.14
39.6 L

7.13.1

TYPE
GBVAL
STD
DELCN
FIT STDO
RLENt 4

TYPE
ODVAL

DELCN
FIT STDU
RLEN# 4

poise

63
30.59
3.000
22.42

-2. 723
3.903

-. 8428
3.000

-7.062
-2.073
3.129



TABLE C.2 - Model A-5

TYPE 60 50 34
DEPTH. -60.00 __ -50 .0U ____-34.0. 24.00
PAPM OLD 94.50 -577.8 -1501. -287.0
POELP - -58.16 1.658 45.88 -6.899
PARM NEW 36.34 -576.1 -1455. -293.9
STD3 .4 18~.94 . 41.63 44.95
RLEN 17.84 18.13 20,74 29.20
W. _ 60.00 ___65.Q0 73.i0.A290
WSTD 132.9 220.1 166.7 268o2
WRES -... 39.07 42.67 51.25 1C1.6

PARAMETER RESOLUTICN - DEVIATION/RES.LEN.
EIGENVALuE 5

22 1 16 13 11 VIS

__ _ -1900 - -16.10- r_3.01__af) -
-1105. -1001. -978.0 -689.0 -829.0 0
60.93 L15.5 186.2 - 121.*8. _-142e 0- - 1._10___

-1144. -885.5 -791.8 -810.8 -971.0 -1.310
55.17 96.11 135.7-

31.70 41.63 61.11 77.48 57.46 1.007
_ _.143.0_ 16, 0 745*0A 0 6, 1135

283.7 473e4 942.3 1010. 598.0 23.48
124.1 314.3 897.8 1365. 1

,Viscosity = 1.4±0.6 x 1020 poise

62)
-60.00
94.50

50 34 24 22
-50.00 -34.30 -24.00 -22.00
-577.8 r1501. -287.0 -1105.

19
-19. 30
-1001.

PDELP# 5 -58.16. 1.658 45.88 -6.899 60.83 115.5
SSTD_ 5_ 44. 26 __--- I _. _ 4.63 445_ 55.1.7_____ 96.77_
RLEN 17.84 18.13 20.74 29.20 31.70 41.63

16
-16.00
-978.0

186.2

61.11

13 11 VIS
-13.00 _._-11.00 0.___.
-689.0 -829.0 .0

-121.8
215.3

77.48

-142.0 -1.310
621n.1-at

57.46 1.007

DATA DENSITY - NUMBER OF ADJACENT DATA R$QUIRED
E IGE NV ALUE 5 ._ .._ MODEL FIT IN_ S_._ + ___ _ _ _ _ _

TYPE _ T122 TI22 T122 _ T1-2T122 . V112 V126 V132 ___ V143 _V163 V18_
OBVAL -2.009 -3.325 -3.350 -2.980 -5.696 .8961 -.6376 -25.70 1.648 -2.750
STD ._. 3.000 00 .00 3.000 _ 3.000-__ 4.000 2.000 2.000 10. 00 Z.000 Z.000
DELCN -. 7797E-01 *1023 .2661 .7537 1.738- -.8054 -.2451 -.2306 -2.036 -3.341
FIT STOM5 .6436 1.42 _1.05 .2?_4 5 .859 -- 0508 . 1963 2.547 1.842' -. 2959
RLEN# 5 505.0 537.6 580.2 707.8 .B.956 2.308 2.378 33.67 ~~2.294 4.618

TYPE V205 V225 V112 V126 V132 V143 V163
0 8VAL ____-71764 -4.309 27o43 13.07-__--19.04 _-35.93 -44.59
STD 2.000 2.000 4.000 2.000 2.003 2.000 2.000

_ DELCN _ -3. 752 -3.650 73*60 -11._5 -20. 8-5 -1.24 -47.
FIT STD# 5 2.006- .3294 -. 9556- *8117 -.9055 2.343 -,5 0
RLEN# 5 3.498 _ 2.276_ 1.220_ ___-2.376_-___.3.694_._- 2.294___ 1.4A6____

TYPE
DEPTH
PARM OLD

_
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APPENDIX D

Glossary of Symbols

Matrix giving variational parameters for inversion.

Boundary surface having prescribed displacements.

Boundary surface having prescribed stress.

Difference between observations and values calcu-

lated from initial model for inversion.

Flexural rigidity = Eh3/12(1-v ).

Differential operator of order j.

Integral over surface.

Integral over volume.

Strain operator.

Dilatation.

Component of body force.

Jkl (t) Relaxation function. Represents kernal for stress

strain relation with viscoelastic medium.

Gravitational acceleration at earth's surface.

Thickness of beam or plate. Characteristic dimen-

sion of element.

Stiffness matrix for sum of elements.

Stiffness matrix for one element.

Foundation modulus.

Axial load on plate or beam.

Normal vector to surface.

Parameter change during inversion.
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Q Force vector for sum of elements.

Qe Force vector for one element.

Qv Shear stress on beam.

q. Nodal parameters (i.e. displacement).
J

S Prescribed stresses on boundary of solid.

S Covariance matrix proportional to dimensions of

observations or errors for inversion.

U Eigenvectors in data space.

U Displacements in continuum.

V Eigenvectors in parameter space.

vh Trial function for finite element method.

X. jth component of body force,

x Horizontal distance on beam.

y Vertical displacement perpendicular to beam.

z. Node j in finite element mesh.

J

=(A2-N/4D) Dimensionless number for beam solution.

6 =(A2-N/4D) Dimensionless number for beam solution.

A Prescribed displacements on boundary of solid.

E.. Infinitesimal strain tensor.

n Viscosity.

A Eigenvalue vector arranged in descending order.

A. Eigenvalue j.

A =(k/4D) Dimensionless number for beam solution.

V Poisson's ratio.
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7T Variational functional for extremum (also constant

pi).

I d Simplified variational functional for displace-

ments.

p Density.

Pf Fluid density, of medium producing hydrostatic

stress.

a.. Stress tensor.
1)

T Variable in time (often dimensionless)

Trial function for each model parameter q.
J)

Representation for displacements or stress using

approximate Laplace transform.
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I first saw the light of day December 13, 1946, in San

Diego, California, the result of a post-war boom. My parents,
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