
Available on CMS information server CMS CR -2009/097

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
14 May 2009

Utilizing Lustre filesystem with dCache for CMS
analysis

Y Wu, B Kim, J Rodriguez, Y Fu, D Bourilkov and P Avery

Abstract

This paper presents our new experimentations to utilize Lustre filesystem for CMS analysis with direct
POSIX file access while keeping dCache as the frontend for data distribution and management. We
describe our implementations that integrate dCache with Lustre filesystem and how to enable user data
access without going through the dCache file read protocol. Our initial CMS analysis job measurement
and transfer performance results are shown and the advantages of difference implementations are
briefly discussed.

Presented at17th International Conference on Computing in High Energy and Nuclear Physics,21 - 27 March
2009,Prague,Czech Republic,15/05/2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44225035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Utilizing Lustre filesystem with dCache for CMS analysis

Y Wu1, B Kim1, J Rodriguez2, Y Fu1, D Bourilkov1 and P Avery1
1Department of Physics, University of Florida, Gainesville, FL 32611, USA
2Department of Physics, Florida International University, Miami, FL 33199, USA

Abstract. This paper presents our new experimentations to utilize Lustre filesystem for CMS
analysis with direct POSIX file access while keeping dCache as the frontend for data
distribution and management. We describe our implementations that integrate dCache with
Lustre filesystem and how to enable user data access without going through the dCache file
read protocol. Our initial CMS analysis job measurement and transfer performance results are
shown and the advantages of difference implementations are briefly discussed.

1. Introduction
The CMS experiment is expected to produce a few Peta Bytes of data per year and distribute them
globally. Within the CMS computing infrastructure, most user analyses and Monte Carlo event
production will be carried out at some 50 CMS Tier-2 sites [1]. How to store the data and allow
efficient access by physicists has been a challenge, especially for Tier-2 sites with limited storage
resources. The CMS experiment, including other LHC experiments, has been successfully using
dCache [2] for managing and distributing large amount of data. CMS users generally access the data
stored in dCache through dCache dcap protocol. However, it is observed that file access is relatively
slow through the dCache dcap protocol, especially when large numbers of simultaneous jobs are trying
to access the data at the same time.

Lustre filesytem [3], a cluster filesystem developed by Sun, has been used among various high
performance computing systems in many government laboratories, universities and corporations, like
Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Indiana University, and
Texas Advanced Computing Centre (TACC), etc due to its high performance IO feature. In fact,
Lustre file system was said to manage data on more than 50 percent of the Top 50 Supercomputers by
November 2008 according to Sun [4]. The HPC Centre at the University of Florida (UF) has been
using Lustre since 2007. It now has over 81TB disk storage managed by Lustre filesystem. UF CMS
Tier-2 site has been collaborating with UF HPC Centre since the very beginning and is a shareholder
of UF HPC Centre. It is nature for us to explore the possibility to utilize the large amount of storage
available in UF HPC Centre, and try to look at the IO access performance when running CMS
applications on it.

In this paper, we describe our experimentations to utilize dCache as the frontend for data management
and distribution and Lustre filesystem as the backend to provide users with the direct POSIX (portable
operating system interface) file access without going through dCache file read protocol for fast IO
access performance. Utilizing our new implementations, we are able to store files into Lustre
filesystem and retrieve them through the existing dCache interface using the well defined OSG/EGEE

client tools. In the meantime, we are able to run user jobs more efficiently by directly accessing data
through mounted Lustre filesystem.

2. Implementations
We tried to find the optimum way to keep the existing data transfer and management functionalities
for dCache and allow the users to access the data without going through the dcap doors in the
meantime. To do so, we experimented with two possible implementations while trying to fully utilize
the existing UF CMS Tier-2 and UF HPC Centre infrastructures. One implementation is to directly use
mounted Lustre filesytem as dCache pool storage; another one is to use dCache configurable HSM
(hierarchical storage management) interface to tertiary storage system with customized dCache/Lustre
storage handling scripts for storing and retrieving files to/from Lustre filesystem.

2.1. Using Lustre filesystem directly as dCache pool
The implementation to directly use Lustre filesystem is pretty straightforward. So we only briefly
describe it here. Using the standard dCache installation procedure, we created 12 dCache pools on a
server node at UF CMS Tier-2 where each pool has 1TB of disk space. The <poolDirectory> is set in
the dCache configuration to point to the mounted Lustre path. We then created two cronjobs: one
makes a soft link for each pnfsid file under the Lustre pools with their original user defined filename
in the same Lustre filesystem, the entry was also put in a postgres database (not related to the existing
dCache pnfs postgres database) for tracking; another cronjob is used to clean up the soft links when
the corresponding pnfsids are removed. File transfer and storage will be handled by the existing
dCache system. User data access is provided through the linked filenames in Lustre filesystem.

2.2. Using dCache HSM interface
dCache provides an open interface to store and retrieve data from tertiary storage system, e.g., enstore
tape system [5]. Our dCache+Lustre implementation fully takes advantage of this interface with some
modification. Files are first put onto stageout pools after transfer, and then migrated to Lustre, just as

Figure 1. Use dCache HSM interface for storing/retrieving data in Lustre filesystem

dCache Core dCache pools

PoolManager

dCache doors

Pnfs
/pnfs/ihepa.ufl.edu/data/raid/

/pnfs/ihepa.ufl.edu/data/lustre/

Lustre storage

/crn/scratch/phedex/
data/store/mc/2007/

…

gridftp dcap

Raid
pools

… …

Stageout
pools

Resili.
pools

Stagein
pools

PnfsManager HSM interface

being done in standard dCache with tape backend. However, before files are migrated into Lustre
using their pnfsids, we map them to their original physical filenames and put the files into Lustre. Files
will be mapped back to their pnfsids before staging back to stage-in pools for dCache access if missing
from any dCache pools. HSM interface with callout script provides store/retrieve operation to/from
Lustre and mapping between physical filenames and pnfsids. Figure 1 shows the interaction between
different dCache components.

2.3. PoolManager and pnfs configuration
As the heart of dCache system is its pool manager, the pool manager decides how to handle a user
read/write requests and which dCache pool to use when dCache receives a request. We need to make
sure the files we intend to put into Lustre filesystem are put into the right pools for the corresponding
Lustre filesystem. In order to fulfill this, we defined special directory tags within pnfs so that we can
put files under a single top directory, e.g., /pnfs/ihepa.ufl.edu/data/lustre/, for controlling which
dCache pools to use. Special dedicated dCache pools along with pgroup and link are defined in
PoolManager.conf file for use with the corresponding pnfs tags. The configurations of pnfs and
dCache PoolManager need to be modified for dCache to work properly with our new implementations.

3. Experiments and discussions
We tested both our implementations through CMS data transfer system PhEDEx [6] and CMS analysis
jobs NtupleDumper. Our tests focused on two aspects of the CMS Tier-2 functionalities: one is data
access for running CMS applications; another is data transfer to our CMS Tier-2 site.

In all these tests, we used the UF HPC /crn Lustre filesystem which is mounted on all the UF CMS
Tier-2 worker nodes and test nodes. UF/HPC /crn Lustre filesystem has one MDS (metadata server)
and two OSSs (object storage server) that manage multiple OSTs (object storage target). 10Gb
network connection was in place for connecting OSSs with the UF CMS Tier-2 nodes. The following
are the test results and some discussions.

3.1. Analysis job performance
To compare the analysis job performance using data on Lustre, dCache and dCache with Lustre pools,
we ran CMS application NtupleDumper with CMSSW_2_1_12 used by UF analysis group against
recent Cosmic run data. We first ran the jobs accessing the data located on Lustre filesystem, then
accessing them through dCache dcap protocol, and lastly accessing the same data through dCache
dcap protocol with Lustre backend pools.

We first put two copies of the same file: one on dCache, another one on the HPC /crn Lustre
filesystem. We first ran the IO intensive NtupleDumper program on the same node using files on
dCache and Lustre separately. The job running with the file on Lustre was able to finish in 386.88
seconds, and the job running with the file access through dCache dcap protocol completed in 1019.82
seconds. We then put 50 files from another Cosmic run dataset on both dCache and Lustre filesystem
and re-ran the same IO intensive CMS application NupleDumper across multiple worker nodes at UF
CMS Tier-2 site (each worker node got one job). We also ran the same application through dCache
dcap protocol on our setup using Lustre filesystem as dCache pools. Figure 2 shows the average
execution time with different number of jobs using different storage access technologies (diamond:
direct Lustre access; square: dcap access xfs dCache pools; triangle: dcap access Lustre dCache
pools).

When the jobs were running, we tried to make sure the worker nodes, HPC Lustre system and dCache
pool nodes were not in use if possible. One thing we want to point out is that the dCache pool server
node and underlying storage at UF CMS Tier-2 are the same as the one used at UF HPC for their

Lustre filesystem. As you can see, CMS jobs are generally 2.56 times faster when running with data
on HPC Lustre filesystem. Also shown on Figure 2 is the running result with the same jobs for our
setup with Lustre filesystem as dCache pools through dCache dcap protocol. Comparing with direct
access the data with mounted Lustre filesystem, the job execution time is about 60% longer than the
same job execution time on the same worker node. And the job execution time generally increases
with the increasing number of jobs. Re-running the same jobs accessing the same data generally
provides better performance due to cache effect. It is possible to further improve the IO related
performance by using file striping in Lustre filesystem. Further investigation is needed in this area.

0

500

1000

1500

0 10 20 30 40 50

Number of jobs

E
xe

cu
tio

n
 t

im
e

(s
)

direct Lustre access

dcap access xfs pool

dcap access Lustre pool

Figure 2. CMS analysis job execution time with number of jobs using different storage access
technologies (diamond: direct Lustre access, square: dcap access with xfs backend dCache pool;
triangle: dcap access with Lustre backend dCache pool)

3.2. Transfer performance

3.2.1. Transfer performance using dCache HSM interface
To test how well the system works, we configured 3 nodes as stageout dCache pools and 1 node as the
stagein dCache pool node. We then subscribed a 9.6TB Cosmic RECO dataset (3999 files) to move
the files from FNAL USCMS Tier-1 centre to the UF Tier-2 centre through PhEDEx. Initially, we
only used the two computer nodes which didn’t have good IO performance as dCache pools for data
transfer; the rate was relatively low, less than 20MB/s. We later found out that the transfer rate was
limited by the local disk rate, especially during the simultaneous read/write operations (files on the
dCache pools were transferred to Lustre backend while more new files were being put on the pool
disks). Later, we configured a much more powerful server node as the new Lustre pool node. And we
were able to reach a rate of 50MB/s continuously. When the transfer to the pool node completed, we
were able to achieve over 100MB/s from Lustre pool node to the HPC Lustre file storage system.
Figure 3 shows the transfer performance using dCache HSM interface.

3.2.2. Transfer performance using directly mounted Lustre filesystem
In this test, we transferred another Cosmic dataset with 2.4 TB (2103 files) from FNAL USCMS Tier-
1 centre to UF Tier-2 centre. The transfer performance is improved substantially as the files are put

Figure 3. PhEDEx data transfer rate using dCache HSM interface implementation

Figure 4. PhEDEx data transfer rate using directly mounted Lustre filesystem implementation

directly on Lustre filesystem without going through the local disks. As we can see from the next
figure, the average transfer rate was now about 80MB/s, and the peak transfer rate was able to reach
130MB/s from the single dCache pool node we configured. Figure 4 shows the improved transfer
performance using directly mounted Lustre filesystem. We want to point out that we only used one
server node as dCache pool node during our test. Our intention was not to test what’s the maximum
transfer rate we can achieve using our current infrastructure, but to show that reasonable transfer rate
can be achieved using directly mounted Lustre filesystem implementation (even with a single dCache
pool node).

From the above tests, we can see that Lustre filesystem is likely suitable for using as dCache pool
storage and offers reasonable transfer performance. Comparing with other distributed filesystems, e.g.,
NFS, we have not observed any transfer issue that happened when using NFS 3 as dCache pool
storage [7]. Using directly mounted Lustre filesystem as dCache pool likely gives better transfer
performance. On the other hand, the transfer rate will suffer if the connection between Lustre
filesystem and a dCache pool node is not reliable. People might consider using HSM interface
implementation when Lustre storage belongs to another organization that you may just want to use
them as opportunity storage. Within the same organization and good network connection, using
directly Lustre mounted filesystem as dCache pool is likely a better choice to achieve better transfer
performance.

4. Conclusion
In this paper, we describe our experimentations to utilize Lustre filesystem for CMS analysis with
direct POSIX file access while keeping dCache as the frontend for data distribution and management.
Two possible implementations are described in this paper. In each implementation, we are able to use
existing UF CMS Tier-2 dCache infrastructures to put files into dCache and underlying UF HPC
Lustre filesystem, and then to retrieve them if requested.

Utilizing Lustre filesystem can significantly improve the data access performance than being accessed
through dCache directly with dcap protocol for the CMS applications we used. Over 60% performance
improvement has been observed when running jobs with data stored on Lustre filesystem. It is likely
Lustre can provide faster data access rate for CMS analysis jobs with the specific CMS applications.
Also, separate study shows users can access files stored in Lustre filesystem remotely with reasonable
IO performance [8]. This may have important implication on how a CMS Tier-3 site may store and
access the CMS data.

dCache with directly Lustre mounted pools shows reasonable transfer performance. Utilizing Lustre
filesystem directly as dCache pool will likely be useful at sites with good network connections and
possible same integrated site. Using HSM interface will be a good choice if a site can get opportunity
storage from a larger organization and/or the network connection is not in good shape.

References

[1] “The CMS computing model”, CMS NOTE/2004-31
[2] dCache web site: http://www.dcache.org
[3] Lustre web site: http://www.lustre.org
[4] Sun Press Release: http://www.sun.com/aboutsun/pr/2008-11/sunflash.20081118.2.xml
[5] Riese M et al., “The dCache book”, http://www.dcache.org/manuals/Book/

[6] Rehn J, Barrass T, Bonacorsi D, Hernandez J, Semeniouk I, Tuura L and Wu Y, “PhEDEx high-
throughput data transfer management system”, CHEP06, Mumbai, India, February 2006

[7] Cowan G, “Using dCache with NFS”, http://www.ph.ed.ac.uk/~gcowan1/dcache/dcache_nfs.txt
[8] Rodriguez J, Avery P, Brody T, Bourilkov D, Fu Y, Kim B, Prescott C and Wu Y, “Wide area

network access to CMS data using the Lustre filesystem”, CHEP09, Prague, Czech Republic,
March 2009

Acknowledgments
Authors wishing to acknowledge a lot of assistances and advices from the colleagues at UF HPC
Centre, especially Dr. Craig Prescott.

