
Available on CMS information server CMS CR -2009/079

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
12 May 2009 (v2, 14 May 2009)

Optimization of the CMS software build and
distribution system

S Muzaffar, G Eulisse

Abstract

CMS software consists of over two million lines of code actively developed by hundreds of develop-
ers from all around the world. Optimal build, release and distribution of such a large-scale system
for production and analysis activities for hundreds of sites and multiple platforms are quite a chal-
lenge. Its dependency on more than one hundred external tools makes its build and distribution more
complex. We describe how parallel building of the software and minimalizing the size of the distri-
bution dramatically reduced the time gap between software build and installation on remote sites, and
how producing few big binary products, instead of thousands small ones, helped finding out some
integration and runtime issues of the software.

Presented atComputing in High-Energy and Nuclear Physics (CHEP), 21-27 March 2009,Prague,Czech
Republic,15/05/2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44225001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Optimization of the CMS software build and distribution
system

S Muzaffar, G Eulisse

Northeastern University, Boston, MA, USA

Shahzad.Muzaffar@cern.ch, Giulio.Eulisse@cern.ch

Abstract. CMS software consists of over two million lines of code actively developed by
hundreds of developers from all around the world. Optimal build, release and distribution of
such a large-scale system for production and analysis activities for hundreds of sites and
multiple platforms are quite a challenge. Its dependency on more than one hundred external
tools makes its build and distribution more complex. We describe how parallel building of the
software and minimalizing the size of the distribution dramatically reduced the time gap
between software build and installation on remote sites, and how producing few big binary
products, instead of thousands small ones, helped finding out some integration and runtime
issues of the software.

1. CMS software build and distribution
The Compact Muon Solenoid (CMS) experiment on the Large Hadron Collider (LHC) at CERN [1]
has been using SCRAM [2] (Software Configuration and Management) to build and release its
software CMSSW. SCRAM resolves the issues of external tools’ configuration, software build,
runtime environment and installation [2]. It provides an easy and simple way for software developers
to build subsets of their software without rebuilding everything. It basically transforms user defined
build rules, provided via a so-called BuildFile [2], into a Makefile and runs gmake [3] to actually build
the user code. To avoid parsing of unmodified BuildFiles, SCRAM generates internal caches for future
use. Figure 1 shows an overview of the SCRAM workflow.

Figure 1. SCRAM workflow

CMSSW depends on more than 100 external tools [4]. For consistent build and distribution of these

external tools for hundreds of sites and multiple platforms, CMS has been using PKGTOOLS and apt-

mailto:Shahzad.Muzaffar@cern.ch

get [5]. PKGTOOLS is a collection of homemade scripts, which help building external tools from
sources using RPM as package manager and apt-get as distribution manager.

1.1. Software build issues
Active development of CMSSW, which consists of over two million lines of code divided in 1100
packages [4], exposed scalability issues in earlier versions of SCRAM. To compile a few source files
in a developer area, the overhead introduced by SCRAM became larger than the time needed to
actually compile the code itself.

For caching the information of over 2400 CMS build products (shared libraries, plugins and
executables), SCRAM was generating over 110MB of internal cache and well over 70MB of
Makefiles. Its runtime memory usage went over 800MB, which was killing its performance on many
machines.

Due to such a heavy usage of system resources, it became nearly impossible to build even a single
CMSSW package in reasonable time. Things got worst when developers worked in their AFS area on
public machines shared by other developers, which is the case for most of CMSSW developers. With
no parallel build support, it was taking more than 10 hours to build full CMSSW release.

1.2. Distribution issues
Rapid changes in external tools’ versions exposed a few issues with the way PKGTOOLS [5] was

working. It was only building external tools for which the SPEC files were modified. So if SPEC files
for other external tools, which depended on these new SPEC files, were not changed as well, then the
packages “higher up” in the hierarchy were not rebuilt. This causes multiple versions of the same
external tool downloaded and installed for single version of CMSSW. Figure 2 shows that two
versions of ToolY were installed for the installation of ToolA version V2 because ToolC was not
rebuilt using the new ToolY.

Figure 2. PKGTOOLS: Multiple versions of same tools shipped

2. CMS software build and distribution optimizations
With all these build and distribution overheads, it was clear that CMS should improve or change the
software development tools it is using. In addition, not being able to build CMSSW in parallel was a
big disadvantage too. Instead of testing new tools and asking hundreds of developers to migrate to a
new interface, we identified the areas where our current tools have problems.

2.1. SCRAM and build rules optimizations
SCRAM, being written in PERL, was taking a lot of time finding dependencies for CMSSW packages
and its external tools. Its large internal caches and Makefile were also slowing down its performance.
Improvements in these areas dramatically reduced SCRAM overhead, these are described in detail
below.

2.1.1. Dependency Checking. For a full CMSSW release, SCRAM version V1.0 was taking around
220s for calculating dependency information. As SCRAM uses gmake to actually compile and build,

so there was no reason why SCRAM should solve all the dependencies itself. So we fixed our build
rules and moved all the dependency tracking logic from SCRAM in to gmake. This turned out to be a
big performance gain. Figure 3 shows SCRAM version V1.0 and V2.0 overheads for a full CMSSW
release and for a typical user development area with few CMSSW packages in it.

CMSSW Full Release Developer Area
Figure 3. SCRAM version V2.0 runtime memory and time overhead

2.1.2. SCRAM caches. Over 800MB of runtime memory usage was due to large caches generated by
SCRAM in order to avoid parsing of unchanged BuildFile. Looking in these cache files we discovered
that there was duplicate information and a lot of things were actually not needed. So cleaning up these
caches, removing product dependency information and saving only minimal information shrunk cache
size from 110MB to 20MB. To keep disk usage small we saved these cache files in compressed form.

2.1.3. Makefile size. The build rules for CMSSW were not optimized and SCRAM V1.0 was
generating over 30KB of Makefile fragments for each CMSSW build product. The result of that was a
Makefile with size of over 70MB. We rewrote and optimized CMSSW build rules, which resulted in a
very compact Makefile of size less than 4MB for a full CMSSW release.

Full CMSSW Release Developer Area

Figure 4. SCRAM caches and Makefile overhead

2.1.4. Parallel build support. CMSSW build rules used with SCRAM version V1.0 were not
allowing us to build CMSSW in parallel. A major effort was done to rewrite build rules in such a way
that we can make use of the parallel build option of gmake (“gmake –j”) [3]. This change dramatically
reduced CMSSW build time. Figure 5 shows that CMSSW build time reduced to 90 minutes from
around 10 hours on an 8 core machine.

Figure 5.CMSSW full release build time on an 8 core machine

2.1.5. Big shared libraries. CMSSW build generates thousands of small shared-libraries and plugins,
which affect its runtime performance [6]. Introducing new build rules for building CMSSW also
allowed us to build a few big-shared libraries instead of thousands of small ones. This enabled us
doing different profiling and code coverage tasks [7]. It also helped us identifying the issues like

• C++ template code replicated in hundreds of shared libraries and plugins.
• Copying of source files between different CMSSW packages resulted in same symbol

definition in many libraries and plugins, which meant unpredictable runtime behavior.

2.2. PKGTOOLS optimization
Installation of multiple base level external tools for a single CMSSW release was clearly a problem in
the PKGTOOLS workflow. Also not being able to build independent tools in parallel was slowing
down build time. So the PKGTOOLS scripts were re-written and their logic was changed to
automatically rebuild all top-level tools for which a base tool is changed. Building independent
external tools in parallel saved a lot of build time and we have managed to build all the externals tools
needed for CMSSW in less than 4 hours.

3. Conclusions
All these optimization and cleanup allowed CMSSW developers to spend more time on their code
instead of waiting for the compilation to finish. Now we are able to build multiple Integration Builds
each day for all the supported platforms for each CMSSW release cycles [4]. Clean distribution of
CMSSW and its externals resulted in faster download and installation of new CMSSW releases on
remote sites.

4. Acknowledgements
We would like to thank members of CMS software tools development project for their support, help
and resources they have provided us. Special thanks to all CMS software developers and CMS site
managers for their positive feedback, which helped us to identify these issues. Thanks to National
Science Foundation (NSF) of the United States of America for their support.

References
[1] CMS Collaboration, “Technical proposal”, CERN/LHCC 94-38, 1994
[2] Wellisch, J., Williams, C. and Ashby, S., “SCRAM: Software configuration and management

for the LHC Computing Grid prohect”, ”, Computing in High-Energy and Nuclear Physics
(CHEP), La Jolla, California, 2003

[3] Gmake home page, http://www.gnu.org/software/make
[4] Pfeiffer, A. et al, “CMS software Infrastructure Tools”, IEEE/NSS, 2008

Lange, D., “Software Integration and Development Tools in CMS”, Computing in High-Energy
and Nuclear Physics (CHEP), Prague, 2009

[5] Argiro, S., Elmer, P., Eulisse, G. and Tuura, L., “CMS packaging system or: how I learned stop
worrying and love RPM spec files”, Computing in High-Energy and Nuclear Physics
(CHEP), Victoria, BC, 2007

[6] Eulisse, G., Tuura, L. and Elmer, P., “HEP C++ meets reality”, Computing in High-Energy and
Nuclear Physics (CHEP), Prague, 2009

[7] Elmer, P., Eulisse, G., Tuura, L. and Innocente, V., “CMS software Performance Strategies”,
Computing in High-Energy and Nuclear Physics (CHEP), Prague, 2009

