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Abstract. With the evolution of various grid federations, the Condor glide-ins represent a
key feature in providing a homogeneous pool of resources using late-binding technology. The
CMS collaboration uses the glide-in based Workload Management System, glideinWMS, for
production (ProdAgent) and distributed analysis (CRAB) of the data. The Condor glide-in
daemons traverse to the worker nodes, submitted via Condor-G. Once activated, they preserve
the Master-Worker relationships, with the worker first validating the execution environment
on the worker node before pulling the jobs sequentially until the expiry of their lifetimes. The
combination of late-binding and validation significantly reduces the overall failure rate visible to
CMS physicists. We discuss the extensive use of the glideinWMS since the computing challenge,
CCRC-08, in order to prepare for the forthcoming LHC data-taking period. The key features
essential to the success of large-scale production and analysis on CMS resources across major
grid federations, including EGEE, OSG and NorduGrid are outlined. Use of glide-ins via the
CRAB server mechanism and ProdAgent, as well as first hand experience of using the next
generation CREAM computing element within the CMS framework is discussed.

1. Introduction

The CMS collaboration has adopted Grid computing as its base computing model to simplify
the deployment and management of the tens of thousand of CPUs needed to accomplish its
mission. While the Grid computing paradigm has been shown to be a boon for resource providers,
allowing them to keep their administrative autonomy over the resources they manage, the added
abstraction layer has introduced several problems for the users, ranging from higher complexity
to decreased reliability.

One solution that has proven to significantly reduce user problems is the late-binding, or
pilot technology. A late-binding Workload Management System (WMS) hides the complexity
of the Grid environment by dynamically creating a virtual private pool of compute resources,
thus giving users an environment similar to a dedicated batch cluster. This paper describes
the experience of the CMS collaboration with one late-binding WMS implementation, called
glideinWMS.
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Figure 1. Overview of glideinWMS system.

2. Late-binding based Workload Management System - GlideinWMS

The Grid paradigm calls for the compute resources to be partitioned into multiple independent
pools, called Grid sites, with only a thin common layer to provide interoperability. Without
some additional tools, this approach makes the life of a Grid user quite difficult.

The four major problems users experience are:

• A user must partition their jobs between the resource pools. Finding the optimal partition
is far from an easy task, as explained below.
• At any Grid site, the common layer provides only very limited information about the status

and policies of the batch system that handles the local resource pool. This is a necessary
evil that allows the common layer to present the information from all the different batch
system implementations in a uniform way.
• The common layer provides very limited information about the progress of a job, once it

is accepted at a Grid site. Again, this is a necessary evil that allows the common layer to
monitor jobs submitted to different batch systems.
• Each Grid site is allowed to configure the worker nodes arbitrarily, within very permissive

limits. Users are expected to develop their jobs in such a way to automatically adapt to
any condition they encounter.

The approach taken by the late-binding Workload Management Systems (WMS) to ease the
user burden is to create a dynamic virtual private pool of compute resources by submitting pilot
jobs to the Grid sites. Once a pilot job starts, it joins the virtual private pool and starts a user
job from the late-binding WMS job queue, as shown in Fig. 1.

This insulates the users from the Grid layer, giving users the impression of running on a
single, local, dedicated pool of compute resources and thus eliminating, or at least reducing the



magnitude of the above mentioned major problems:

• By having a single resource pool, no job partitioning is needed.
• Detailed information about the status and policies of the virtual private pool can be made

available, since users can use the tools provided by the specific implementation of the late-
binding WMS instance used.
• Detailed information about the progress of a job can be made available, since users can use

the tools provided by the specific implementation of the late-binding WMS instance used.
• The late-binding WMS can reduce the heterogeneity of the compute resources, by either

only gathering properly configured worker nodes, or by providing wrapper scripts that
provide common tools and libraries.

The late-binding WMS used by CMS is called glideinWMS. GlideinWMS is based on the
Condor batch system, with the addition of a thin layer responsible for the submission of the
pilot jobs.

A glideinWMS virtual private pool consists of a regular Condor pool, where worker node
Condor daemons, i.e. condor startd and condor starter, have been downloaded, configured and
started by a glideinWMS pilot job; such pilot jobs are known as glide-ins. Since the different
Condor daemons are dispersed around the world and use wide area networking to communicate
to each other, the daemons are configured to use strong, X.509 based authentication for
authorization and message integrity purposes. The worker node Condor daemons are also
configured to have a limited lifetime in order to fit within the wall-clock limits of the batch
system of the Grid site they are running on. For all other practical purposes, the resulting
Condor pool is indistinguishable from a dedicated Condor pool without a shared file system.

The submission of glide-ins is regulated by two types of daemon processes; one or more
glide-in factories and one or more VO frontends. The two types of processes communicate
by means of Condor ClassAds using a dedicated condor collector daemon:

(i) A glide-in factory advertises what Grid sites it knows about, and can submit to, together
with the characteristics of the site (for example: what versions of CMS software are installed
there).

(ii) The VO frontend queries the user queues, i.e. the condor schedds, matches the found jobs
with the factory ClassAds, and then advertises how fast the factory should submit new
glide-ins.

(iii) Finally, the factory reads the VO frontend ClassAds and starts submitting the glide-ins at
the specified rate.

Together these make the system work as illustrated in Fig. 1.

2.1. Interoperability between EGEE, OSG, and NorduGrid

In principle, the problem of interoperability between different grids is reduced to having a
Condor-G client for submission of the glide-ins for the particular grid flavor. All other
incompatibilities can be resolved via appropriate configuration of the glide-ins. In practice, CMS
deals with many of the differences between EGEE and OSG inside the CRAB or ProdAgent
layers of the software stack, thus requiring little special configuration in the glide-ins. As part
of our work for the Common Computing Readiness Challenge 08 (CCRC-08), we worked with
the Condor team on the details of submitting glide-ins via Condor-G to grids such as the
NorduGrid. The method consists of using protocol-specific modules called GAHPs (Grid Ascii
Helper Programs) along with logic in the Condor gridmanager for the specific use of it, when
submitting to a given grid flavor. This resulted in the first ever use of NorduGrid resources for
data analysis within CRAB using glideinWMS. The other grid flavors like EGEE and OSG CEs
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Figure 2. Number of simultaneous running glide-ins for: a) scalability studies and b) CMS
data re-processing at Tier-1 centers.

are accessible using GRAM2 protocols via the Condor-G client. This development led to a fully
interoperable system across all three grid flavors for the first time.

2.2. Scalability of the system

The scalability of the system has been intensively tested over the WAN, especially over large
distances such as between US and Europe. Various components were identified which could have
an effect on latencies in communications between the glide-in startds and the central managers.
Many improvements were made both in reducing the cost of authentication, as well as enhancing
the speed in matchmaking and the security sessions [1]. The overall improvement from this study
led to simultaneous running between 23,000 to 25,000 jobs, as shown in Fig. 2a). More than
500,000 jobs were submitted with an average running period of 3 hours. In excess of 200,000 jobs
were queued in addition to the 20,000 running jobs. Successfully harnessing more than 25,000
computing slots gives us confidence that using the system for collaboration-wide data analysis
and Monte Carlo productions is feasible.

3. Use of glideinWMS for Production and Data Reprocessing

The CMS computing architecture [2] is based on a tier-organized structure of computing
resources, based on a Tier-0 center at CERN and 7 Tier-1 centers for organized mass data
processing. The Tier-0 is in charge of storing the data coming from the detector onto mass
storage, performing a prompt reconstruction of the data and distributing the data among the
Tier-1 centers. The Tier-1 sites archive on mass storage their share of data, run data reprocessing
and centrally organized group physics analyses for data selection, and distribute the selected
data to Tier-2s for user analysis. Tier-1 centers also have the responsibility of storing Monte
Carlo (MC) data produced at the Tier-2 sites.

The workflows and dataflows are conducted using glideinWMS as well as CMS-specific services
built on top of them. Data transfers are managed by the CMS data transfer and placement
system PhEDEx [3]. Data skimming is conducted at the Tier-1 sites. Skim jobs apply a number
of filters which produce the corresponding output files with the selected events. ProdAgent is
used to carry out the skimming workflow. It automatically prepares the skim jobs for the sample
to be filtered, submits to the glideinWMS and finally launches the corresponding merge jobs.
More than 1.9 million jobs were successfully processed at various Tier-1s, with a remarkable
efficiency of approximately 96% within last 3 months, using glideinWMS as shown in Fig. 3.

Fig. 2b) shows the number of simultaneous glide-ins running at various Tier-1 centers during
the last week of March 2009. More than 1400 million events as shown in Fig. 4b) were reprocessed
and merged in last 80 days, which are then used for physics analyses at the Tier-2 centers.
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Figure 3. Overview of CMS data re-processing and resource usage statistics using glideinWMS.

One of the essential features of the glideinWMS is the capability to utilize a large number of
resources, with low startup latency. As discussed earlier, most of the reprocessing task workflows
involve numerous short jobs. Previous studies have shown that a given CE can schedule jobs
at a rate of 0.5Hz. In order to fill 6,000 resources at this rate, it would normally take about
3.33 hours. The glide-in approach, however allows workers (startds) to process multiple client
jobs sequentially with more than an order of magnitude increase in rate, until the expiration of
the glide-in’s lifetime [4]. This provides a scalable solution for Tier-1 centers such as Fermilab,
where a large number of resources are required to be used efficiently, which otherwise would not
be possible to harness effectively using traditional early-binding approach.

4. Use of glideinWMS for data analysis

Data analysis in a distributed environment is a complex computing task. The CMS Collaboration
uses CRAB [5], in order to perform user analyses at the Tier-2 centers. CRAB is a CMS-specific
software layer layer integrated with a number of WMSes, including glideinWMS. It simplifies the
process of data analysis, job submission and retrieval by hiding much of the grid complexity from
the end user. The tool splits the analysis task into several jobs based on the requested number of
events and the location of the input dataset via the CMS-specific Dataset Bookkeeping System
(DBS). Furthermore, it performs various checks along with packaging of the executables/libraries
before submitting the jobs to the glideinWMS. Periodic updates are performed regarding job
status via glideinWMS to CRAB. Once the job is completed, the WMS provides the log files
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Figure 4. a) Number of simultaneous running glide-ins at Fermilab during Oct.08 - Feb.09. b)
Distribution of events merged as a function of time, written at various CMS Tier-1 centers.

(stdout/stderr). The overall process also updates the CMS Dashboard using MonALISA as the
transport agent for user job monitoring. In addition. glideinWMS provides a mechanism for
on-demand “read” access to the job environment. This allows pseudo-realtime debugging of a
running job via commands like ps, top, ls, and tail of various files, including stdout and stderr.
At present, CRAB does not yet make use of these features of glideinWMS.

4.1. CMS User Analysis and CCRC-08

The glideinWMS was intensively used during the CCRC-08 computing challenge. The goal was
to gain an overall understanding of the performance and readiness of the CMS Tier-2 sites for
data analysis. Centrally organized workflows were used for this activity. The site performance
was evaluated using different types of jobs with increasing complexity. The long-running CPU
intensive jobs with moderate I/O were aimed at understanding the site performance without
heavy loads on the storage systems. The short-running jobs with local stage-out were targeted to
evaluate the performance of the site storage elements (SE). Intensive I/O with remote stage-out
jobs were used not only to mimic the scenario of a real user performing data analyses, but also
to understand the site access to the back-end storage.

Over 40 sites across EGEE, OSG and Nordugrid were involved during this exercise. Fig. 5
shows overall results recorded in the CMS dashboard during the month-long exercise. There
were a mix of errors at a few sites due to catastrophic storage failures. The overall success
rate without SE issues ranged from 92-99%, based on more than 200,000 submitted jobs using
glideinWMS. The gliteWMS was also used during this exercise [6].

4.2. Studies using CRABserver and JobRobots

CRABserver is a novel approach towards decoupling the user activities with the stack of software
layers responsible for performing the actual workload. The user submission is a simple layer of
job submission and retrieval using the CRAB client. On the other hand, the CRABserver handles
much of the complex work in a central location. User jobs are submitted using information from
the DBS, as well as their credentials. These are sent to the server using gridftp. CRABserver
consists of several daemons that are responsible for job tracking, task tracking, managing task
lifetimes, etc. These processes essentially ensure all the (re)submission/retrieval activities of a
given task are correctly communicated to the WMS, as illustrated in Fig. 6. The glideinWMS



  

Figure 5. Resource usage via glideinWMS during CCRC-08 exercise.

then submits them to respective sites by preserving the user identity and privileges. The user
credentials and priorities are maintained by the WMS using Condor.

The University of California, San Diego (UCSD) is one of the centers responsible for hosting
the CRABserver using glideinWMS for CMS user analyses. UCSD maintains production and
development CRABservers that are integrated with glideinWMS. The CRABserver was tested
to a large scale using so-called “JobRobots”. At regular time intervals, a new analysis task is
created for each site to be run on a specific dataset. The task is split into several jobs that are
submitted as a collection to the CRABserver, which eventually submits to glideinWMS. Each
job performs a trivial data analysis on a fraction of the dataset, and when finished, its output
is retrieved. All submitted jobs are classified as either successful, failed at the application level
or aborted at the Grid level.

The JobRobot daily statistics are not only used to measure the success rate for each site,
but also to evaluate the CRABserver performance. More than 25,000 jobs were submitted
within a span of a few days using this technique. Several issues related to monitoring,
submission/retrieval, delays, etc. were identified and fixed during this study. Various scalability
related issues are currently under study and are expected to be fixed in the forthcoming release
version of the server.

5. Coherent monitoring interface for the system

The glideinWMS consists of two sets of jobs: glide-ins and the user jobs. The glide-in jobs, as
well as the submission rates, are monitored using the information from the collector, submitter
and the retrieved output after the termination of the glide-ins via Condor-G. Fig. 2 shows the
pilot statistics and its client usage.
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Figure 6. Schematic diagram of CRABserver in association with glideinWMS.

However, it is essential both for the end-users and the glideinWMS administrator to have a
secure and transparent access to the real-time job monitoring. This is achieved using “detailed
job monitoring” discussed in detail in [7]. The framework enables users to track jobs in
substantial detail in quasi-real time as shown in Fig. 7. The monitoring system aims to achieve
the following goals:

• For the end users to be able to track jobs using job ID and get
- the summary information, process list
- CPU, memory and disk usage as a function of time
- job and working directory listing
- access to the log files (e.g stdout, stderr)
- status of the node that runs a job as well as site information
- submission/start time

• For the administrators in real time to
- track jobs using local job ID
- find faulty worker nodes
- spot problems quickly with misbehaving jobs (signified by zero load, expiring proxies,

etc.)

The framework sensors use the information from the glide-in collector and scheduler to update
the data at a regular interval to a MySQL Database. The database serves the monitoring
information to the clients. The interface provides information regarding the CPU load, memory
usage, job state and selection in quasi-real time. The database also stores summary information
for the already completed jobs for archival purposes. The monitoring system is currently under
active development and promises to provide access in real time to the logs of the currently
running jobs at remote sites, using pseudo-interactive monitoring [8].

6. Experience using CREAM Compute Element (CE)

The Computing Resource Execution And Management (CREAM) is a next generation web
service interface for job management operation at the CE level. Recent developments to Condor-
G have focused on adding support for CREAM. This is accomplished for the first time by



Figure 7. Web-based user job monitoring in quasi-real time

using GAHP daemons tailored to CREAM. It consists of various algorithms responsible for
communication with the CE at different stages of job submission procedure. The responses
from the CE are sent back to the Condor Gridmanager, which then updates the state of the
jobs based on the provided info. The log retrieval is managed by Condor.

More than 10,000 jobs have been submitted to CREAM CEs as shown in Fig. 8. We observed
a 25% failure rate, mostly due to proxy renewal/delegation. This problem is under investigation
with the CREAM developers. Overall, this approach to interface Condor with CREAM seems
to be quite promising. User jobs, submitted via glideinWMS are not affected due to above
mentioned issues.

7. Conclusion

GlideinWMS has been extensively used in CMS for central data reprocessing, skimming at the
Tier-1 centers, as well as user analysis. It provides a homogeneous pool of resources overlaid on a
heterogeneous grid environment. CRAB-based user analysis efficiency benefits significantly from
the late-binding approach. Detailed job monitoring associated with the WMS, provides tools
for the users to access worldwide running jobs interactively. This is expected to enhance the
user participation into the debugging infrastructure of the Grid. An interface to the CREAM
CE has been created using Condor. We are in the process of integrating this interface with
glideinWMS.

Acknowledgments

This work was partially funded by the Office of Advanced Scientific Computing Research, Office
of Science, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357, U.S NSF grants PHY-
0427113 (RACE) and PHY-0533280 (DISUN).



  

Figure 8. Number of resources used during the CMS tests of the CREAM CE.
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