
Available on CMS information server CMS CR -2009/091

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
12 May 2009

CMS Partial Releases: Model, Tools, and
Applications. Online and Framework-Light

Releases.

Christopher D. Jones, David Lange, Emilio Meschi, Shahzad Muzaffar, Andreas Pfeiffer, Natalia Ratnikova ,
Elizabeth Sexton-Kennedy

Abstract

The CMS Software project CMSSW embraces more than a thousand packages organized in subsys-
tems for analysis, event display, reconstruction, simulation, detector description, data formats, frame-
work, utilities and tools. The release integration process is highly automated by using tools developed
or adopted by CMS. Packaging in rpm format is a built-in step in the software build process. For sev-
eral well-defined applications it is highly desirable to have only a subset of the CMSSW full package
bundle. For example, High Level Trigger algorithms that run on the Online farm, and need to be rebuilt
in a special way, require no simulation, event display, or analysis packages. Physics analysis applica-
tions in Root environment require only a few core libraries and the description of CMS specific data
formats. We present a model of CMS Partial Releases, used for preparation of the customized CMS
software builds, including description of the tools used, the implementation, and how we deal with
technical challenges, such as resolving dependencies and meeting special requirements for concrete
applications in a highly automated fashion.

Presented atCHEP 2009,21-27/03/2009,Prague,Czech Republic,15/05/2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44224981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CMS Partial Releases: Model, Tools, and Applications
Online and Framework-Light Releases

Christopher D. Jones, David Lange, Emilio Meschi, Shahzad Muzaffar,
Andreas Pfeiffer, Natalia Ratnikova1, Elizabeth Sexton-Kennedy

UNI Experimentelle Kernphysik, Kaiserstr. 12, 76131 Karlsruhe, Germany

Email: Natalia.Ratnikova@cern.ch

Abstract. The CMS Software project CMSSW embraces more than a thousand packages
organized in subsystems for analysis, event display, reconstruction, simulation, detector
description, data formats, framework, utilities and tools. The release integration process is
highly automated by using tools developed or adopted by CMS. Packaging in rpm format is a
built-in step in the software build process. For several well-defined applications it is highly
desirable to have only a subset of the CMSSW full package bundle. For example, High Level
Trigger algorithms that run on the Online farm, and need to be rebuilt in a special way, require
no simulation, event display, or analysis packages. Physics analysis applications in Root
environment require only a few core libraries and the description of CMS specific data formats.
We present a model of CMS Partial Releases, used for preparation of the customized CMS
software builds, including description of the tools used, the implementation, and how we deal
with technical challenges, such as resolving dependencies and meeting special requirements for
concrete applications in a highly automated fashion.

1. Scope and Motivation
The CMS [1] software project CMSSW [2] includes over 1000 interdependent packages for data
analysis, event display, reconstruction and simulation algorithms, detector description, data formats,
framework, and utilities. It depends on about 100 of external software products.

Every external package, including configuration, development, and installation tools, is built and
packaged for distribution. The whole CMSSW release is automatically configured, built and packaged
into one distribution file. Prepared releases and externals are published for distribution and
deployment on the GRID and on the user development machines.

Alongside with the main approach CMS has at least two important use cases, when only small
subsets of packages and externals are needed:

• High Level Trigger (HLT) algorithms running online on the Event Filter farm [3].
• Light-weight Root based physics analysis tool Framework-light [4].

1 To whom any correspondence should be addressed.

The model of Partial Releases allows building customized releases for such applications, while
satisfying a number of special requirements.

The main technical challenges addressed by a model for the Partial Releases are the consistency
with the base release by construction, and the automation of all steps of the procedure for optimal
support at reduced maintenance cost.

2. Model and Implementation
The model of partial releases is based on the following definitions:

• Base Release – is a given version of a standard CMS Software release, including the full set of
CMSSW packages, and configuration of external software products, built, packaged and
distributed using standard CMS release management tools.

• Application Set - is a subset of packages of the base release that directly provides the desired
functionality.

• Build Set - is a complete minimal set of packages of the base release, and external products,
necessary to build all packages of the Application Set.

• Partial Release - is an independent software release of packages defined in the application
Build Set, built and packaged using standard CMS release management tools.

As illustrated on Figure 1, the Base Release represents a large number of interdependent packages.
The desired functionality of a particular application is provided by a well-defined subset of packages,
we call it Application Set. Any package included in Application Set may depend on other packages
beyond the Application Set. Dependencies occur at compilation time via included header files, at link
time via symbols in libraries, and at run time via dynamically loaded plug-in modules. All these
dependencies need to be satisfied for the package to be built and run successfully. Thus the partial
release includes all packages and external products, required by the Application Set; we call it Build
Set.

Figure 1 . Illustration of the partial release model.

The procedure of building the Partial Release starts from the request of the application manager,
who defines the base CMSSW release, and corresponding Application Set. All the subsequent steps
are performed automatically using standard tools developed by the CMS Collaboration.

The crucial point of finding the correct Build Set is discovery of dependencies between packages.
We use the Ignominy tool [5] to extract and collect all dependency information for the base CMSSW
release. Ignominy provides fine-grained information about direct dependencies of various types. For
the Build Set we need to analyze package dependencies recursively, while discarding some types of
dependencies, such as appearing from the package’s local unit tests. This work is done by the BuildSet
tool, which takes as input the Application Set and Ignominy output for the Base Release, and produces
a list of packages and external products for the Build Set.

Once the Build Set is found, we start building the release. Specifications for release build and
configuration are defined in the CMSDIST repository. The specifications for the Partial Release are
constructed in such a way that the source code distribution of the corresponding Base Release is used
automatically. All packages included into the Build Set are automatically selected and copied into the
build area of the partial release. Thus, only packages included into the Build Set are built.

The list of external products for the Partial Release is maintained separately. This list only includes
the names of products, without specifying their versions. The consistency on the version level is
enforced by the packaging system [6]. Software build and configuration rules are defined in the shared
area, so that Partial Release uses the same set of rules as the base CMSSW release does.

 In this implementation the overall consistency of the code, external configuration, and build rules
for the Partial and Base releases, is insured by construction.

3. Tools used for producing the Partial Release
• IGNOMINY is a powerful tool used to analyze software release source code and resulting

build products, and to detect different types of dependencies between software packages.
• BuildSet tool allows to query Ignominy results, and to calculate dependencies recursively for a

given package or a list of packages.
• CMSDIST is a repository of specification files for building distributions of CMSSW and

required external products.
• PKGTOOLS provides a framework for building, packaging and uploading software

distributions according to instructions in the CMSDIST specifications.
• Tag Collector [7] is the central interface to publish packages version tags and to manage the

contents of CMSSW releases on a package level.
• SCRAM is the software configuration and release management tool used for managing

CMSSW release internal configuration and build rules. It also provides CMS software
development environment.

4. Examples of Applications
The concept of Partial Releases was driven by two major use cases: software distribution of the High
Level Trigger algorithms for the online Event Filter Farm, and distribution of the light weight CMS
software framework for physics analysis in Root environment.

4.1. Online release
The goal of the Online Release [8] is to provide consistent with Base Release environment for HLT
online operation, while minimizing the amount of code to be deployed on the Event Filter Farm
machines. It should also offer the possibility of producing patch releases forking from the mainstream
CMSSW release sequence to retrofit necessary fixes while guaranteeing stable operation of the online
HLT.

Special requirements [9] to build the Online Release are the following:
• Minimize online Build Set to improve robustness and stability.
• Use system compiler, hence different architecture name and completely separate set of

distribution files.
• Use external packages available on the local system: online version of XDAQ software [10]

and corresponding external products.

• Software distribution must be suitable for use with Quattor tool [11], which is used to manage
software installations on the Event Filter farm, and has a number of constraints with respect to
regular CMSSW installation method based on apt-get.

• Full rebuild may be required in case of major software upgrade on the Event Filter farm.

The online release Application Set includes HLT reconstruction packages, filter modules, data

acquisition, and Data Quality Monitoring tools. A special effort has been applied to make sure that
none of the packages included into the Online Application Set would bring in dependency on detector
simulation and physics analysis packages. The configuration has been adjusted in such a way, that
required external products which are available in the system installation, including compiler, XDAQ,
and some other packages, would be used in place of versions normally distributed with CMS software.

The rpm packages for all remaining external products, and the Online release itself, are then built
and named according to the conventions used in the Online system according to requirements imposed
by the use of the Quattor.

To enable a possibility of quick updates of the HLT modules in case of urgent corrections, an
additional procedure of patch releases has been developed. The patch release distribution only includes
new versions of packages, specified by the Online application manager in a dedicated release queue of
the CMS Tag Collector. The rest of the packages is distributed with the original “parent” release.

4.2. Framework-light release
The goal of the Framework-light application is to provide the possibility of convenient physics
analysis of data in a regular CMS Event Data Model format in plain Root environment.

Special requirements:
• Minimal distribution set must only include Root and external packages required by Root,

together with necessary Data Format packages.
• All dictionaries, necessary for analyzing Analysis Object Data (AOD) directly in Root, must

be included.
Consequently, the Application Set for Framework-light release includes all packages containing
objects which may appear in the Analysis Object Data (AOD), and corresponding analysis algorithms.
A special effort was applied to eliminate any accidental dependencies that would bring additional
unneeded packages into Framework-light distribution.

Small distribution size allows easy download and installation of Framework-light application onto
the user’s laptops. Minimal number of external dependencies and modest amount of code simplify
porting to another platforms. It is already possible to run the Framework-light application on the
MacOS.

Small size and easy access to CMS data structures, combined with powerful Root visualization
tools, make the Framework-light tool attractive and popular among physicists.

5. Summary and Conclusions
The model of Partial releases allows building and distributing customized software builds for
particular applications, in cases when the big size and complexity of the standard full CMSSW
distribution becomes an issue. As an example, the Application Set for the Framework-light application
currently contains 30 packages. The resulting Framework-light distribution includes 86 packages and
16 external products, while the corresponding full CMSSW Base Release includes 1114 packages and
83 external products.

In the past two years a successful development effort had been applied to clean up and straighten
out the dependencies between the packages, package categories, and external software products, in
order to eliminate unnecessary connections. The Application Set and Build Set for the two major
applications have been stabilized. The dependency discovery and checking procedures are still strictly
required, as every development step potentially involves a change in the dependency pattern. Now, in
this stable phase, we are changing over to a preventive strategy. Dependency checking is done for

every software integration build, so that any accidentally introduced unwanted dependencies are
detected and cured at the early stage in the release integration process.

References
[1] http://cmsdoc.cern.ch/cms/outreach/html/,

CMS Experiment
[2] http://cms.cern.ch/iCMS/jsp/page.jsp?mode=cms&action=url&urlkey=CMS_OFFLINE,

CMS Offline Software
[3] https://twiki.cern.ch/twiki/bin/view/CMS/EventFilter,

CMS Event Filter
[4] https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideFWLiteAnalysis,

FWLite Analysis Tutorial
[5] http://www.ihep.ac.cn/~chep01/paper/8-024.pdf,

Ignominy: a tool for software dependency and metric analysis with examples from large HEP
packages

[6] http://indico.cern.ch/contributionDisplay.py?contribId=302&confId=3580,
CMS packaging system

[7] https://cmstags.cern.ch/cgi-bin/CmsTC/CmsTCLogin,
CMS Tag Collector

[8] https://twiki.cern.ch/twiki/bin/view/CMS/HowToInstallONLINErelease,
Online Releases installation guidelines

[9] https://twiki.cern.ch/twiki/bin/view/CMS/SWDevToolsWorkshopApr07,
CMS Software Development Tools Workshop, agenda.
Report on CMS Software Development Tools Workshop, Internal Note: CMS IN 2007/000

[10] https://twiki.cern.ch/twiki/bin/view/XdaqWiki,
Xdaq, a platform for the development of distributed data acquisition system

[11] http://www.quattor.org,
The quator administration tool suite

