
Available on CMS information server CMS CR -2009/064

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
08 May 2009

An Assessment of a Model for Error Processing
in the CMS Data Acquisition System

Schahram Dustdar2), Johannes Gutleber1), Roland Moser1,2), Luciano Orsini1)

Abstract

The CMS Data Acquisition System consists of O(20000) interdependent services. A system providing
exception and application-specific monitoring data is essential for the operation of such a cluster. Due
to the number of involved services the amount of monitoring data is higher than a human operator
can handle efficiently. Thus moving the expert-knowledge for error analysis from the operator to a
dedicated system is a natural choice. This reduces the number of notifications to the operator for
simpler visualization and provides meaningful error cause descriptions and suggestions for possible
countermeasures. This paper discusses an architecture of a workflow-based hierarchical error analysis
system based on Guardians for the CMS Data Acquisition System. Guardians provide a common
interface for error analysis of a specific service or subsystem. To provide effective and complete error
analysis, the requirements regarding information sources, monitoring and configuration, are analyzed.
Formats for common notification types are defined and a generic Guardian based on Event-Condition-
Action rules is presented as a proof-of-concept.

Presented at17th International Conference on Computing in High Energy and Nuclear Physics,21 - 27 March
2009,Prague,Czech Republic,15/05/2009

1) CERN, Geneva, Switzerland
2) Technical University of Vienna, Vienna, Austria

An Assessment of a Model for Error Processing
in the CMS Data Acquisition System

S Dustdar1, J Gutleber2, R Moser1,2 and L Orsini2

1 Technical University of Vienna, Karlsplatz 13, 1040 Vienna, Austria

2 CERN, 1211 Gevena 23, Switzerland

E-mail: dustdar@infosys.tuwien.ac.at, johannes.gutleber@cern.ch,
roland.moser@cern.ch, luciano.orsini@cern.ch

Abstract. The CMS Data Acquisition System consists of O(20000) interdependent services. A
system providing exception and application-specific monitoring data is essential for the
operation of such a cluster. Due to the number of involved services the amount of monitoring
data is higher than a human operator can handle efficiently. Thus moving the expert-
knowledge for error analysis from the operator to a dedicated system is a natural choice. This
reduces the number of notifications to the operator for simpler visualization and provides
meaningful error cause descriptions and suggestions for possible countermeasures. This paper
discusses an architecture of a workflow-based hierarchical error analysis system based on
Guardians for the CMS Data Acquisition System. Guardians provide a common interface for
error analysis of a specific service or subsystem. To provide effective and complete error
analysis, the requirements regarding information sources, monitoring and configuration, are
analyzed. Formats for common notification types are defined and a generic Guardian based on
Event-Condition-Action rules is presented as a proof-of-concept.

1. Introduction
The CMS Data Acquisition System [6] consists of O(20000) interdependent services. A system
providing exception and application-specific monitoring data is essential for the operation of such a
cluster.

Due to the number of involved services the amount of monitoring data is higher than a human
operator can handle efficiently. Thus moving expert-knowledge for error analysis from the operator to
a dedicated error processing system is a natural choice. This reduces the number of notifications to the
operator for simpler visualization and provides meaningful error cause descriptions and suggestions
for possible countermeasures.

2. Technologies
The CMS data acquisition system follows a service-oriented architecture (SOA) [1][8] where each
service provides a SOAP control interface [10]. High-level data acquisition applications have been
implemented using the XDAQ framework [7], which also provides fundamental infrastructure services
for error processing, such as a distributed monitoring system. The XDAQ monitoring and alarming
system (XMAS) [2] infrastructure is based on a scalable and distributed publish/subscribe eventing
system [3] and currently handles O(100000) notifications per second.

Continuing a service based approach, we implemented an error processing system with Web
Workflows. We chose the ActiveBPEL workflow engine [4], which combines workflows with SOAP
based web services.

3. Requirements
We have identified the following requirements to build an extensible error processing system for the
CMS data acquisition system:
• Access to run-time and configuration information in a standardized format.
• Allow extension with custom error processing components through a defined interface.

3.1. Run-time and configuration information
Run-time information represents the actual condition of the running system and can be categorized as

shown in

!"#$!%&#$"'

())") *#&#+ *+),$%+-./+%$!%

0+..&1+-$2+'#$!+)

!"#$!%&#$"'-$2+'#$!+)

!"#$!+)

*"3)%+

4$5+.#&5/

6'"-./+%$!%7*+),$%+-#8/+

*#&#+

('2/"$'#.

(9%+/#$"'-#8/+

:+.%)$/#$"'

*+,+)$#8-6;&)'<-())")<-=&3>#7

%&3.+2-?8

Figure 1:

State information contains information about the actual state of services. With hierarchical states as
defined in ASAP [5] we can impose general states for visualization and error processing and allow

refinement when necessary for control (
• Figure 2).
• Error information describes exceptions, which could not be handled locally by services. It

embeds a complete exception trace for debugging. In addition custom properties can be added at
each level of the exception trace to provide further information for error processing in an
automated fashion.

• Service information contains dynamic data ranging from statistics to configuration data not
known a priori. It is freely definable and usually specific to applications.

!"#$!%&#$"'

())") *#&#+ *+),$%+-./+%$!%

0+..&1+-$2+'#$!+)

!"#$!%&#$"'-$2+'#$!+)

!"#$!+)

*"3)%+

4$5+.#&5/

6'"-./+%$!%7*+),$%+-#8/+

*#&#+

('2/"$'#.

(9%+/#$"'-#8/+

:+.%)$/#$"'

*+,+)$#8-6;&)'<-())")<-=&3>#7

%&3.+2-?8

Figure 1 Notifications and their primary properties.

!"#$ %&!'#

()$$*$+ $!,()$$*$+

')'"#$-#-

%!."&#,#-
/0$!(./&

%!."&#,#-

()$$*$+ $!,()$$*$+

',/,#'

Figure 2 Hierarchical states allowing refinement and generalization.

Configuration information represents the nominal condition of the running system. It can be
categorized in hardware and software information. Hardware information describes the setup of hosts,
devices and networks. Software information specifies applications, services and communication
endpoints.

4. Error Processing Architecture
A high-level error processing system is responsible to detect the cause of errors on startup and operation

of the monitored system. Therefore it analyzes differences between actual and nominal condition. The
general architecture of our error processing system is depicted in

Figure 3. The data layer contains services, which may emit data into the monitoring system and
alarming system. The logic layer contains the monitoring and error processing system and the
visualization layer contains the graphical user interface the operator interacts with.

The error processing system contains of two kinds of services, an Error Processor and Guardians.
In our system the Error Processor is an intermediate, which subscribes to the monitoring system for
retrieving error notifications and forwards them to error processing components, called Guardians.

Based on their responses the Error Processor forwards notification to the operator and monitoring
system accordingly. If exceptions could not be matched to an error cause it informs the operator to
refine the rules for notifications based on their unique identifier.

Figure 3 Principle Architecture containing native XMAS services (N) and legacy services (L).

Guardians are hierarchically ordered error analysis components and contain expert knowledge

about specific services or subsystems (Figure 4). The lowest layer guards observe specific services
whereas the higher ones observe groups of services. In case a guardian cannot identify the cause of an
error directly it may emit an exception, which is passed to a higher-level Guardian. Error processing
should always be done on the lowest possible layer without incorporating knowledge about other
subsystems or services. This keeps the higher-level guardians abstract and confined to their respective
group of applications. In case a Guardian could identify the cause of an error it may return an operator
notification, which is forwarded, to the operator by the Error Processor.

All guardians provide the same SOAP interface and as such may be implemented in any language.
This allows integration with already existing rule-based systems or custom error processing code in
case a generic Guardian is insufficient. The request message to the Guardians contains a list of error

notifications and a list of URLs of monitoring data servers, which may be queried for more
information. The response message contains notifications for an operator if an error cause could be
identified or an error notification, which is propagated, to a higher level Guardian. It additionally
encloses a list of matched notification identifiers.

!"#$%&"'%(")*

+%(%

,)-".
/$%01"%*

!"#$%&'$

2304".3

/$%01"%* /$%01"%*

/$%01"%* /$%01"%* /$%01"%*

2304".3 2304".3 2304".3

5
)
03
6.
)
5
7
)
*
3
*
(#

&3
##
65
3
##
%
-
3
#

Figure 4 Error propagation (arrows in the middle) and operator notifications (arrows on the right).

We chose to implement error processing using BPEL as it already provides powerful languages for

filtering (XPath) [12] and querying (XQuery) [11] XML data. Using those features we implemented
also a generic Guardian, which processes Event-Condition-Action (ECA) rules [9]. A rule that checks
the diskUsage of our computers is shown in Figure 5. This is an example of a rule which is not
triggered by an error notification but triggered periodically and checks service-specific information.

Figure 5 ECA rule for generic Guardian detecting low disk space.

<eca xmlns:tns="http://xdaq.web.cern.ch/xdaq/wsdl/2008/guardianeca-10.wsdl">
 <source type='flashlist' name='diskInfo'>urn:xdaq-flashlist:diskInfo</source>
 <rule>
 <condition>/*/source/diskInfo/table/rows[diskUsage/rows[xs:double(usePercent/text())>90]] </condition>
 <action>
 <inform>
 <message>free disk space below 10 percent</message>
 <services source="condition">/*/rows/context</services>
 </inform>
 </action>
 </rule>
</eca>

5. Enhancements
During evaluation of existing workflow engines we identified some shortcomings of BPEL and
missing components necessary for integration with our system:

• BPEL workflows can only be triggered through SOAP messages and not through timers or
even more complex rules.

• ActiveBPEL natively supports only SOAP based protocols.
• BPEL does not support to model an organizational perspective [15] and mapping of services

to invoke activities must be modelled explicitly.
To overcome those shortcomings we implemented several additional services as depicted in

Figure 3.

The Event Generator is a service, which sends SOAP messages based on predefined rules. Rules

may match on workflow engine, timing and external user events. This allows periodic triggering of
workflows and avoids ever running workflows, both concepts that are not supported by BPEL
natively. The rule in Figure 6 shows a timing event emitted (MinuteTimer:trigger) once every 60
seconds. The timer is started based on the internal start event that is emitted as soon as the servlet
engine in which the Event Generator is running is started. The second rule presented in Figure 7 starts
a workflow which checks if all discovery services daemons [14] in our cluster are running and fully
functional. The rule specifies that specific SOAP request message to be sent to a web service based on
the previously mentioned timer event. This allows calling web services with without enforcing a
specific interface on them.

Figure 6 Event Generator rule of a timer emitting an event once per minute.

<?xml version='1.0'?>
<netflow:event xmlns:netflow="http://xdaq.web.cern.ch/xdaq/xsd/2006/netflow-event-10">
 <netflow:component activated="true" changeable="false" class="ch.cern.cms.wf.event.Timer">
 <netflow:item name="name">MinuteTimer</netflow:item>
 <netflow:item name="type">timer</netflow:item>
 <netflow:item name="description">Timer for executing scripts once per minute </netflow:item>
 <netflow:item name="maxinstances">1</netflow:item>

 <netflow:item name="period">PT60S</netflow:item>
 </netflow:component>

 <netflow:bind xpath="/netflow:event[@name='internal' and @command='start']">
 <netflow:event name="MinuteTimer" command="start">
 <!-- contains SOAP message to send out if component supports that -->
 </netflow:event>
 </netflow:bind>
 <netflow:bind xpath="/netflow:event[@name='internal' and @command='stop']">
 <netflow:event name="MinuteTimer" command="stop">
 <!-- contains SOAP message to send out if component supports that -->
 </netflow:event>
 </netflow:bind>
</netflow:event>

Figure 7 Event Generator rule for triggering a web service (workflow) based on a timer event.

The Broker is a component for dynamically allocating resources and services according to Quality

of Service (QoS) requests. It works with models for different scenarios. For example, the model for the
monitoring system implements a load balancer for periodically allocating monitoring services to
O(20000) services. This model itself relies on monitoring information, e.g. CPU load, to provide a
scalable monitoring infrastructure. Another example where a model would be useful is the assignment
of services to hosts based on QoS attributes instead of statically assigning services to hosts. This can
provide improved fault-tolerance and better resource usage in the data acquisition cluster. It will also
simplify our workflows, as they will not need the informational perspective to model the
organizational one [16].

Integration: As not all services publish directly into XMAS we added custom workflow scripts

which query the states of those services over SSH and publish their information into XMAS through
SOAP messages. In addition some services use a custom, binary protocol for performance reasons.

Although WSDL allows defining interfaces independent of transport protocols, the ActiveBPEL
engine only supports SOAP over HTTP as a protocol by default. ActiveBPEL solves this problem by
providing InvokationHandlers, which translate between internal workflow engine data representation
(XML) and custom formats and protocols and therefore allowing seamless integration with our system
at hand.

<?xml version='1.0'?>
<netflow:event xmlns:netflow="http://xdaq.web.cern.ch/xdaq/xsd/2006/netflow-event-10">
 <netflow:component activated="false" changeable="true" class="ch.cern.cms.wf.event.Workflow">
 <netflow:item name="name">slpcheck</netflow:item>
 <netflow:item name="type">workflow</netflow:item>
 <netflow:item name="description">Script for checking if SLP daemons</netflow:item>
 <netflow:item name="maxinstances">1</netflow:item>
 </netflow:component>

 <!-- Event Bindings between internal components -->
 <netflow:bind xpath="/netflow:event[@name='MinuteTimer' and @command='trigger']">
 <netflow:event name="slpcheck" command="start">
 <ns1:StartServiceRequest xmlns:ns1="http://xdaq.web.cern.ch/xdaq/wsdl/2007/wfcheck-10.wsdl"/>
 </netflow:event>
 </netflow:bind>

 <!-- External (User) emitted events -->
 <netflow:emittable from='user' to='slpcheck' description='activate'>
 <netflow:event name="slpcheck" command="activate"/>
 </netflow:emittable>
 <netflow:emittable from='user' to='slpcheck' description='deactivate'>
 <netflow:event name="slpcheck" command="deactivate"/>
 </netflow:emittable>

</netflow:event>

6. Summary
This paper summarizes requirements and pitfalls during design and implementation of a generic error
processing system using the CMS experiment as a case study. The presented error processing
architecture relies on workflow and Web service technologies, which allow seamless integration into
the existing environment. We implemented a generic workflow-based Guardian, which performs error
processing, based on ECA rules. Tests of the system were performed in the operational environment of
the CMS data acquisition system and different kinds of error causes have been successfully identified.

Due to the standardized notification formats integration with other existing monitoring systems is
feasible and would allow extending the scope of error processing beyond the core data acquisition
applications. In addition providing a standardized interface for Guardians will allow us to take
advantage by integrating distributed rule business rule engines [13] and already existing error
processing components in the future.

References
[1] Booth D et al 2004 Web Service Architecture http://www.w3.org/TR/ws-arch
[2] Bauer G et al 2009 Monitoring the CMS Data Acquisition System Proc. International

Conference on Computing in High Energy and Nuclear Physics in Journal of Physics:
Conference Series.

[3] Box D et al 2006 Web Services Eventing (WS-Eventing) http://www.w3.org/Submission/WS-
Eventing/

[4] ActiveBPEL Engine – official homepage http://www.activevos.com/community-open-
source.php

[5] Fuller J, Krishnan M, Swenson K, Ricker J 2005 Asynchronous Service Access Protocol
(ASAP) Version 1.0 http://www.oasis-open.org/committees/asap/

[6] Gutleber J, Murray S, Orsini L 2003 Towards a homogeneous architecture for high-energy
physics data acquisition systems Elsevier Comp. Phys. Comm. 153(2) 155-163.

[7] Gutleber J, Moser R, Orsini L 2007 Data Acquisition in High Energy Physics Proc.
Astronomical Data Analysis Software and Systems (ADASS) XVII, 394 47.

[8] CERN 2002 Data Acquisition & High-Level Trigger, Technical Design Report CMS TDR 6.2,
LHCC 2002-26 (ISBN 92-9083-111-4).

[9] Chen L, Li M, Cao J, Wang Y 2005, An ECA Rule-based Workflow Design Tool for Shanghai
Grid, 2005 IEEE International Conference on Services Computing 1 325-328.

[10] Gutleber J et al 2005 HyperDAQ Where Data Acquisition Meets the Web Proc. 10th Intl. Conf.
Accel. and L. Exp. Phys. Control Sys. (Geneva, Switzerland, 10-14 October 2005).

[11] Scott B et al 2007 XQuery 1.0: An XML Query Language http://www.w3.org/TR/xquery/
[12] Berglund A et al 2007 XML Path Language (XPath) 2.0 http://www.w3.org/TR/xpath20/
[13] Nagl C, Rosenberg F, Dustdar S 2006 VIDRE - A Distributed Service Oriented Business Rule

Engine based on RuleML Proc. 10th IEEE International Enterprise Distributed Object
Computing Conference. EDOC 2006: 35-44.

[14] Guttman E, Perkins C, Vaizades J and Day M 1999 Sevice Location Protocol Version 2 Internet
RFC http://www.ietf.org/rfc/rfc2608.txt

[15] Russell N, ter Hofstede A, Edmond D, van der Aalst W 2004 Workflow Data Patterns.
[16] Zur Muehlen M 2004 Workflow-based Process Controlling: Foundation, Design, and

Application of Workflow-driven Process Information Systems, Logos,
http://books.google.com/books?id=EpgxaWJwkFQC

