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Abstract

The Compact Muon Solenoid experiment at the Large Hadron Collider at CERN includes a silicon
pixel detector as its innermost component. Its main task is the precise reconstruction of charged
particles close to the primary interaction vertex. This paper gives an overview of the mechanical
requirements and design choices for the barrel pixel detector. The distribution of material in the
detector as well as its description in the Monte Carlo simulation are discussed in detail.



1 Introduction
At the LHC design luminosity of 1034 cm−2s−1, about 1000 particles will be traversing the tracker for each bunch
crossing every 25 ns. At a radius of 4 cm this corresponds to a hit rate density of 1 MHz/mm2. The tracker is
required to operate in this high radiation environment with a reasonable lifetime of several years. The trajectories
of charged particles need to be measured efficiently and with high precision. The amount of material needs to be
kept to a minimum in order to limit effects such as multiple scattering, bremsstrahlung, photon conversions and
nuclear interactions. These requirements and limitations strongly suggested an all-silicon design.

The CMS tracking detector consists of 200 m2 of active silicon. It is therefore the largest silicon tracking device
ever built [1, 2, 3].

The pixel detector as the innermost part of CMS consists of three barrel layers at radii of 4.4, 7.4 and 10.2 cm,
respectively, with a length of 53 cm. It is completed by two forward disks on each side, located along the beam
axis at z = ±34.5 cm and z = ±46.5 cm, extending in radius from 6 cm to 15 cm. The pixel detector has 66
million pixels in total, of which 48 millions belong to the barrel.

Details on the mechanical design of the pixel barrel detector (PXB) are given in Section 2, while the material
budget is discussed in Section 3. The description of the detector in the Monte Carlo simulation is outlined in
Section 4.

2 Detector Design
For the purpose of the following discussion the detector is subdivided into three logical parts: the central barrel
(containing the detector modules), the endflange and the supply tube.

The PXB system is constructed in two half-shells so that the insertion into the detector after the beam pipe instal-
lation is facilitated. A sketch of one half-shell is shown in Figure 1. The three half-barrel layers and the detector
endflanges are clearly visible. The arrangement of the detector modules in ladders is indicated. The supply tube is
not shown in this picture (see Figure 6 below).
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Figure 1: Sketch of one half of the pixel barrel detector including the endflanges.

2.1 Central Barrel
The skeleton of the central barrel is made of aluminum cooling pipes of trapezoidal shape with 0.3 mm wall
thickness and 55.5 cm length. They are arranged in a way that thin carbon fiber ladders of 0.22 mm thickness can
be glued on alternating sides as shown in Figure 2 [4]. The detector modules are then screwed to the carbon fiber
ladders. The half-layers 1, 2 and 3 contain 8, 14 and 20 ladders, respectively. The number of cooling pipes is 9, 15
and 21, respectively. Each layer is completed by two half-modules (and half-ladders) at both edges (Figure 2).
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Figure 2: Sketch of the carbon fiber ladders mounted on aluminum cooling pipes.

Eight modules are mounted on each ladder. A module consists of the following components [5]:

• 250 µm thick silicon nitride basestrips supporting the modules,

• sensors made of 285 µm thick DOFZ-silicon [6],

• 8 or 16 Read-out Chips (ROCs) [7] with 52× 80 pixels of size 150× 100 µm2,

• a High Density Interconnect (HDI), a flexible low mass three-layer PCB (flex print),

• a Token Bit Manager (TBM) chip controlling the readout of the ROCs [8],

• signal and power cables.

A complete module has the dimensions 66.6 × 26.0 mm2 and weighs 2.2 g plus up to 1.3 g for cables. More
than half of the modules weight is due to the silicon (1.4 g) in the sensors and the ROCs. The temperature of the
sensors will be maintained at −10◦C. Details about the module and sensor design, performance and assembly can
be found in Ref. [5, 9].

The signal and power cables run parallel to the modules along the z-direction. They are fed through the spacings
in the endflange and are then radially distributed until they connect to the Printed Circuit Boards (PCBs) at the
detector endflange.

The envelope of the central barrel region is defined by an internal and an external shielding at r = 3.7 cm and
r = 18.6 cm extending over the full length of the barrel (57 cm). Both inner and outer shieldings are made of a
250 µm thick Kevlar R© cylinder sandwiched between two 25 µm aluminum layers.

2.2 Endflange
The endflanges serve several purposes. They act as support structure for the whole barrel, distribute the coolant
and hold electronic devices (endring prints) which are mounted circularly at the outer part of the endflanges.

An illustration of the layout is shown in Figure 3. Each half-disk contains 10 aluminum containers acting as
manifolds to distribute the cooling fluid. Liquid fluorocarbon (C6F14) is used as coolant in the whole CMS tracker.
The trapezoidal aluminum cooling pipes, described in Section 2.1, are laser welded to the containers with highest
precision to guarantee leak tightness of the cooling system [10]. The side of the endflange facing the supply tube
is equipped with “L” shaped cooling bends, one for each aluminum manifold, which facilitate the connection of
flexible cooling lines (see Figure 5).

The half-disks are made of three arcs which are connected by 8 fittings as shown in Figure 3. The space between
the arcs is used as feedthrough for the signal cables connecting the modules with the endflange electronics.

The dimensions of the endflange components are given in Table 1.
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Figure 3: Drawing of the layout of the PXB endflange.

Table 1: Dimensions of the PXB endflanges in [cm].

Layer 1 Layer 2 Layer 3
inner radius 3.75 6.1 9
outer radius 5.3 8.2 18.6
thickness 0.78
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Figure 4: Photograph of the PXB detector. The supply tube is visible on the left half of the picture. The part in
the middle shows the third layer of detector modules. The endflange with the radial cabling is visible on the upper
right.

The endflange is made of a thin fiberglass frame filled with low density Airex R© foam [11]. Both sides are covered
with 0.5 mm thick carbon fiber plates, glued on either side. This technique provides the necessary stability and
precision at a very low mass.

The layer 3 arc extends radially up to 18.6 cm and holds electronics equipment, the endring prints, which are fixed
to the flange with custom made aluminum clamps. They act as interconnect between the modules and the supply
tube electronics. The area between the radius 10.7 cm and 18.6 cm is almost fully covered by the endring PCBs on
both sides of the endflange. They contain low current differential signal (LCDS) transceivers and cable connectors.
More details about their functionality are available in [8].

As visible in Figure 4, the cables cover a large fraction of the endring prints and contribute a significant part to the
total amount of metal in the vicinity of the endflange. This is discussed in more detail in Section 3.

All connections between the barrel detector and the supply tube run through the barrel endflange. The connections
are flexible to a certain extent to allow small movements of the pixel detector. Also the cooling pipes connecting
to the manifolds in the endflange are made of flexible material, silicone rubber reinforced with fiberglass. These
cooling lines are distributed radially in the r− φ plane at z = ±30.5 cm and are fixed with steel clamps to the “L”
shaped cooling bends on the endflange and supply tube.

2.3 Supply Tube
The supply tube, one at each end of the pixel barrel, connects the PXB detector to the outside world. It contains
the power cables, optical signal cables, and cooling lines. The tube is constructed in two half shells at both ends
of the detector. Its position with respect to the barrel is shown in Figure 5. The tube has a length of 2.2 m and an
inner radius of 18 cm with a wall thickness between 1 cm and 3 cm, depending on the z-position. It is subdivided
into three logical sectors (sectors A, B and C), as shown in Figure 6.

The supply tube also hosts several electronic devices, which are briefly described in the following: for the readout,
the Analog Optical Hybrid (AOH) converts the analog signals to optical signals. The AOH includes the Analog
Level Translator (ALT) chips. Six AOHs are placed in a single analog mother board.

For the detector control, digital signals are translated to optical signals in the Digital Optical Hybrid (DOH). The
Phase Locked Loop (PLL) chips are used to split the clock from the trigger and the DELAY25 chips adjust the
relative phases of all control signals. The Gate-Keeper chips convert the Low Voltage Differential Signals (LVDS)
used by PLLs and DELAY25s to low current differential signals (LCDS) used by the pixel front-end chips. Two
DOHs, 2 PLLs, 2 DELAY25s and 2 Gate-Keepers are placed on a single digital-motherboard.

The analog and digital mother boards are plugged into a single board called the opto-board.

To configure the AOHs and DOHs, the CCU chip (Communication and Control Unit) is used. For each half-shell
of the supply tube a CCU-board, with 9 CCUs and 9 LVDS-MUX chips is used. More details can be found in [8].

The supporting elements of the structure are the stainless steel cooling tubes with a wall thickness of 0.1 mm run-
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Figure 5: Pixel barrel detector (on the left) connecting to the supply tube (on the right). The ”L” shaped cooling
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Figure 6: Illustration of the pixel barrel supply tube half-shell. It is subdivided into three logical sectors. Sector
A is the leftmost part. The part in the middle (the four segments are visible) is Sector B. The innermost part
(connecting to the endflange) is labelled Sector C.
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ning along the z-direction. They are connected to the stiffener rings (fiberglass) and the inner and outer aluminum
flanges. The gaps in-between are filled with foamed material (Airex R©) to guarantee the required rigidity. All
power and slow control lines are embedded in the supply tube body. This allows a clear layout of the wiring and
makes the system also more reliable.

3 Material Budget
The amount of material given in the following tables was partially obtained by direct weight measurements of the
components and partially calculated from design drawings. For instance, only the final total weight of the endflange
support structure (without aluminum manifolds, electronics and coolant) could be determined by measurement due
to the complexity of the construction process. Another example is the fraction of copper in the printed circuit boards
which needed to be estimated based on the design drawings. Therefore the detailed composition of the various
material fractions is subject to uncertainties in several cases. The calculated total weights of the substructures
agree within a few percent with the real weights of the detector components. The obtained precision is therefore
sufficient for an adequate description of the detector in the Monte Carlo simulation.

The following tables summarize the amount of material in all of the detector components, according to the order
of discussion in the previous sections.

The material budget for the central barrel support structure is summarized in Table 2, which shows the total amount
of aluminum, carbon fiber and coolant. The total material budget of the modules is given in Table 3.

Table 2: Material budget for the central barrel support structure (without modules and endflange) per half-shell in
units of [g].

Layer 1 Layer 2 Layer 3
carbon fiber 40 65 91
aluminum 52 86 120
coolant 75 126 176

Table 3: Total amount of material contained in the detector modules in [g] per detector half-shell. The sensors
and ROCs are made of silicon. The module baseplates are made of silicon nitride and steel for screws and nuts.
The materials Kapton R©, copper, nickel, gold and solder belong to the HDI and its electrical components. Barium
titanate is contained in the capacitors.

Layer 1 Layer 2 Layer 3
silicon 100 166 232
silicon nitride 43 67 90
steel 7 12 17
glue 2.3 3.6 4.8
Kapton R© 5.6 9.2 12.9
copper 4.1 6.8 9.6
nickel 0.9 1.4 2
gold 0.4 0.7 1
solder 4.8 7.7 10.6
barium titanate 12 19.7 27.4

Table 4: Material budget of signal and power cables in the central barrel region in [g] per detector half-shell.

Layer 1 Layer 2 Layer 3
Kapton R© 15 24 34
copper 12 19 27
aluminum 7 11 15
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Since a ladder holds eight modules, there are four different cable lengths in the central barrel region: 23, 16, 9
and 3 cm. The power cables consist of an aluminum core with a copper and Kapton R© coating, while the signal
ribbon cables are made of 22 copper tracks and a Kapton R© coating. Together, the cables have a mass occupancy
of 0.034 g/cm. Since the total cable length in the barrel is about 50 m per half-shell, they contribute to around
170 g to the material budget. The decomposition of the various materials for these cables is given in Table 4.

The inner shielding of the PXB detector weighs 65 g (17 g aluminum and 48 g Kevlar R©), while the outer shield
weighs 320 g (87 g aluminum and 233 g Kevlar R©).

The endring PCBs mounted on the detector endflange (Table 5) consist of standard epoxy substrate in five layers
of 68 µm thickness and two (four) copper layers of 18 µm (25 µm) thickness. Their material budget is given in
the upper rows of Table 6.

As mentioned earlier, the signal cables connecting the modules with the endring electronics are running parallel to
the beam axis above and below the modules until the cables reach the endflange (this material is given in Table 4).
Depending on the longitudinal module position, a part of the cables is attributed to the central barrel region, while
the remaining part belongs to the endflange. The length fractions on the endflange depend on the radial position of
the corresponding connectors and the position of the feedthroughs. The material fraction which is attributed to the
endflange is given in the middle part of Table 6.

A similar type of Kapton R© cables, but with different width and length is used to connect the endring prints with the
supply tube. In addition, power cables made of copper and aluminum, are connected at the edge of the endflange.
These are summarized in the bottom part of Table 6.

The enflange and supply tube are also connected by cooling pipes. The pipes are made of silicone rubber (46 g per
half-disk) reinforced with fiberglass, containing 53 g of coolant.

The material decomposition for the three sectors of the supply tube is shown in Table 7.

4 Monte Carlo Simulation
In this section we describe the implementation of the material budget in the simulation software.

In the CMS software framework, the passage of particles through matter is simulated by the GEANT4 toolkit
[12, 13]. Therefore, the exact position, amount and type of materials need to be specified. The access to the
detector components and their geometry is provided by the Detector Description Database (DDD) [14]. The
master data source for the DDD is a collection of files implemented in the Extensible Markup Language (XML)
using the Detector Description Language. The detector is divided into logical volumes of one particular type of
material. In many cases this is a mixture of the materials contained in the defined volume. For instance, screws
are usually not represented as single volumes, but their material is mixed into the definition of a larger structure
containing them.

The description in the Monte Carlo simulation needs to be as precise as possible in order to reproduce the exact
amount of material interactions. Such interactions deteriorate the trajectories of particles and influence the mea-
surements in the outer detectors (strip tracker, calorimeters and muon detectors). The sensitive volumes in the
barrel have been described with the highest possible accuracy (Section 4.1). Also the endflanges are described
with a high level of detail, since they are located directly in front of the sensitive volumes of the pixel forward
detector. This is discussed in Section 4.2.

The supply tubes extend to the very forward region up to a pseudo-rapidity of |η| = 3.4, and are described in less
detail in this region (Section 4.3).

In the following, the implementation of the detector geometry is outlined. The software representation is based on
the material content discussed in the previous sections.
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Table 5: Material decomposition of the PXB endflange in [g] per half-disk.

Layer 1 Layer 2 Layer 3
carbon fiber 4 8.5 75
glass fiber 5.6 9 17
Airex R© 0.4 1.3 21
aluminum 5.3 8.4 12
coolant 8 15.5 17.5
steel 5 7.5 12.5

Table 6: Material decomposition of the endring electronics including the cabling going to supply tube and modules
in [g] per half-disk. The amount of solder is estimated. The term “plastics” refers to various types of polymers of
similar density which are used in connectors and cable insulations.

boards layer 1+2 boards layer 3
copper 32 27
FR4 26 22
plastics 33 15
solder 2.6 2.2

cables to modules
signal cables power cables

copper 12.1 9.2
Kapton R© 26 1.25
aluminum - 11.7

cables to supply tube
power cables signal cables

copper 29 24
Kapton R© - 28
aluminum 16 -
plastics 55 8

Table 7: Material decomposition of the three sectors of the supply tube in [g] per half-shell. The term “plastics”
refers to different kinds of polymers of similar density such as polyesther, polyvinylchloride and polyoxymethy-
lene.

sector A B C
aluminum 610 746 470
FR4 653 517 517
Airex R© 80 69 30
steel 351 223 94
copper 51 283 150
plastics 610 1740 720
coolant 330 828 346
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4.1 Central Barrel
A pixel barrel module is represented by several boxes of different thicknesses stacked on top of each other. Their
dimensions are:

• base plates: 0.45 cm×6.6 cm×300 µm, There are two baseplates per full module positioned at the module
edges,

• silicon sensors: 1.9 cm× 6.6 cm × 285 µm,

• High Density Interconnect (HDI): 1.9 cm× 6.5 cm× 44 µm,

• Read-Out Chip (ROC): 2 cm× 6.5 cm× 180 µm.

Four additional cuboidal volumes are defined for each module to describe localized components such as capacitors
and TBM chips. These are visualized in Figure 7. The capacitors along the module edge are implemented as strips
of 6.5 cm length and 0.5 mm× 0.5 mm cross section.

Figure 7: A full barrel pixel module in the Monte Carlo simulation.

The modules are replicated to form ladders and then layers, starting from the single module description contained
in the XML.

The cooling pipes of the central barrel support structure have trapezoidal cross sections with various inclination
angles (see Figure 2). The angles are computed automatically by the software given the number of ladders and the
corresponding radius of the layer. The carbon fiber ladders holding the modules are represented as rectangles of
2.6 cm width and 250 µm thickness, running along the full length of the barrel (53 cm). There are 16 holes in the
ladders, two under each module, of 2.2 cm length and 1.1 cm width to reduce the amount of material.

For the cables, we use four different types of volumes to account for the different lengths (23, 16, 9 and 3 cm),
reaching modules at different longitudinal positions. Cable volumes are boxes with cross sections of 300 µm ×
0.67 cm running from the module (at a distance of 1.93 cm from the module edge) to the endflange. The remaining
length of the cable is accounted for in the endflange description. The volumes of the cables are replicated in their
proper positions to form the layers.

The half-ladders are described in a similar way and their volumes are located in the top and bottom edges of each
half-shell.

4.2 Endflange
The logical volumes forming the endflange are implemented as circular disks and rings, except for the cooling,
which only covers an azimuthal angle of ∆φ = 140◦ (Figure 8). They are located at a distance z = ±28 cm from
the detector center.
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The parts labelled “inner flange” represent the arcs belonging to layers 1 and 2. Their material is composed of the
glass fiber and carbon fiber frame, including the aluminum manifolds, and the contained coolant. The innermost
part of the outer flange is implemented analogously (third ring in Figure 8). The second part of the outer flange
extends further in radius (up to 18.6 cm) and does not contain any cooling manifold.

The endring prints and cables are mounted onto the outer flange. The cables between the detector modules and the
endring prints are labelled “radial cabling”. The radial cabling extends up to a maximal radius of 17 cm as visible
in Figure 4. This volume contains the remaining fraction of the central barrel signal cables.

There is an additional volume (not shown in Figure 8) implemented as a ring at z = ±30.5 cm and r = 18 cm
which contains the signal and power cables connecting the endring prints with the supply tube. This ring also
includes the innermost part of the supply tube which is labelled “Inner Flange” in Figure 6.

Figure 8: Cross section of the endflange in the Monte Carlo simulation. The various volumes are clipped for better
visibility (except for the radial cooling).

4.3 Supply Tube
The representation of the supply tube is straightforward. Each of the three sectors described in Section 2.3 and
Figure 6 is represented as a single volume with an average material content according to Table 7. There are three
cylinders, one for each sector with inner radius of r = 18 cm and wall thickness of 2.5 cm. The lengths of Sectors
A, B and C are 48.5, 120 and 49.3 cm, respectively.

As discussed in the last paragraph of the previous section, the circular “Inner Flange” of the supply tube is imple-
mented as a separate ring which also contains the steel connections for the cooling pipes and cabling.

5 Results and Summary
After the final assembly of the pixel barrel detector, the weight of one completed half-shell was measured (without
coolant). Figure 9 shows one final half-detector on a balance. The cables and cooling tubes between supply tube
and detector endflange were not included in this measurement. The result was 2598 g ± 0.5 g.

For comparison, the weight of this configuration in the Monte Carlo simulation is 2455 g. The remaining disagree-
ment is around 6% and is due to the unavoidable approximations as discussed in Section 3.

Figure 10 shows a r − z profile of the detector as it is implemented in the Monte Carlo simulation. In Figures 10
to 12, the material is averaged over the azimuthal angle φ.
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The integrated material as experienced by particles emerging from the interaction point and traveling on straight
lines through the detector is shown in Figure 11.

Figures 12 and 13 show the integrated material budget in terms of radiation lengths for all components of the
CMS tracker, including the pixel detector. The main pixel contribution to the material budget is in the region at
|η| > 1.2 and is due to the material in the endflange and the inner part of the supply tubes. Therefore, future
detector upgrades will concentrate on the reduction of the material in these components.

Figure 9: The completed PXB half-shell on a balance which shows the weight of 2598 g. Not included are the
coolant and the signal cables to the supply tube.
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Figure 10: r − z profile of the PXB detector (as implemented in the simulation). The grayscale indicates the
inverse of the radiation length 1/X0(r, z, φ) averaged over φ, at a given point in space. The pseudo-rapidity η is
visualized near the upper, left and right edges of the diagram.

Figure 11: Integrated radiation length x/X0 experienced by particles emerging from the interaction point as a
function of pseudo-rapidity, averaged along φ. The grayscale indicates the number of radiation lengths traversed
by a particle propagating on a straight line.
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Figure 12: Left: total integrated material budget of the CMS tracker in terms of radiation lengths x/X0 as a
function of pseudo-rapidity, including the forward pixel detector. The contributions of the various subdetectors are
stacked. Right: material budget for the pixel barrel detector only, showing the various categories of material.
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Figure 13: Total integrated material budget of the pixel barrel detector in terms of radiation lengths x/X0 as a
function of the azimuthal angle φ, averaged over the pseudo-rapidity η. The two gaps at |φ| = ±1.6 are due to the
asymmetry of the supply tubes.
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