
Available on CMS information server CMS CR -2009/112

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
16 May 2009

Usage of the Python Programming Language on
the CMS Experiment

R. Wilkinson, B. Hegner

Abstract

Being a highly dynamic language and allowing reliable programming with quick turnarounds, Python
is a widely used programming language in CMS. Most of the tools used in workflow management
and the GRID interface tools are written in this language. Also most of the tools used in the context
of release management: integration builds, release building and deploying, as well as performance
measurements are in Python. With an interface to the CMS data formats, rapid prototyping of analyses
and debugging is an additional use case. Finally in 2008 the CMS experiment switched to using Python
as its configuration language. This talk will give an overview of the general usage of Python in the
CMS experiment and discuss which features of the language make it well-suited for the existing use
cases.

Presented atComputing in High Energy and Nuclear Physics,21-27 Mar, 2009,Prague,Czech
Republic,15/05/2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44224928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Usage of the Python Programming Language in the CMS
Experiment

R. Wilkinson1, B. Hegner2

1. California Institute of Technology, Pasadena, CA, USA; rickw@caltech.edu
2. CERN, Geneva, Switzerland; Benedikt.Hegner@cern.ch

Abstract. Being a highly dynamic language and allowing reliable programming with quick
turnarounds, Python is a widely used programming language in CMS. Most of the tools used in
workflow management and the GRID interface tools are written in this language. Also most of
the tools used in the context of release management: integration builds, release building and
deploying, as well as performance measurements are in Python. With an interface to the CMS
data formats, rapid prototyping of analyses and debugging is an additional use case. Finally in
2008 the CMS experiment switched to using Python as its configuration language. This talk
will give an overview of the general usage of Python in the CMS experiment and discuss
which features of the language make it well-suited for the existing use cases.

1. Introduction
Many software projects on Compact Muon Solenoid experiment (CMS) have independently chosen to
use Python1, not as a result of a top-down decision from management. When asked why they use
Python, some common reasons emerge. Python is seen to be easy to learn, without the steep learning
curve of C++. Python syntax is seen as simpler and more comprehensible than either C++ or Perl,
which makes it easier to understand code written by others. This simplicity leads to the option of
writing prototype code in Python, and then, once objects and behaviours are determined, translating to
C++ for performance. Finally, many standard tools are native to the language, and many useful
external packages exist, such as cherrypy2 for web programming, PyROOT3 for physics analysis, and
PyQt for graphics.

2. Job Configuration
CMS jobs are defined by configuration files. We use a single executable, “cmsRun”, which loads
modules and runs them as defined by the configuration file. A software release contains over 6000
configuration files. Three quarters of these are fragments, meant to be shared, defining the parameters
for a single module or sequence of modules. The rest are full, executable configurations. Our
standard full-chain release validation job defines over 700 modules, over 150 sequences of modules,
and over 13,000 configurable parameters.

These configurations had been implemented using a custom language syntax, parsed by Flex and
Bison5. This system was designed to be a simple declarative language, but it soon proved too
inflexible. Users commonly wanted to copy and modify sets of parameters and modules, which meant
that we had to provide that syntax for each of the many elements of the language. The production

system especially needed easy access to modify input and output file names and random number
seeds. We needed a full programming language, and since the production system was already written
in Python, it was the natural choice.

To design the language syntax, we tried to mimic the original language as much as possible. The
new Python configuration returns a single Python data structure. This structure was translated to the
framework’s internal C++ data structure using a boost::python6 interface. Note that unlike the Python
frameworks used by some other experiments, our interface is not interactive. The configuration is
completely defined by the configuration file. This decision was made to facilitate provenance
tracking7.

After the transition, which is explained in more detail elsewhere in these proceedings8, the
maintenance burden was indeed reduced. In addition, the new system had powerful new features. The
configurations became easier to debug, because users could inspect the configurations interactively,
and could test their configuration syntax simply by compiling it. It became easier to build
configurations, and to keep the configurations internally consistent by, for example, changing input
and output file names simultaneously. We no longer need separate perl or shell scripts to edit the
configurations. Users can now use command-line arguments, and higher-level python functions such
as loops. Finally, a browsing GUI was created, which uses PyQt9.

We also have configuration builder utilities, written in Python, to assemble common uses, such as
simulation and reconstruction chains, and to add common sets options to them, such as those needed
for fast simulation or cosmic ray reconstruction. This configuration builder is used for release
validation, and to create standard workflows for production.

3. Analysis
CMS stores its data in ROOT files. There are two common methods to access this data10. The most
common is to use the standard framework, creating a C++ “EDAnalyzer” module to read the data, and
perhaps create a new ROOT file, extracting selected data. Another way is to use “FWLite”, a utility
which provides easy access to the objects in the event, and their C++ member functions, in either C++
or Python. FWLite auto-loads the C++ objects it needs, with class dictionaries provided by ROOT’s
REFLEX utility.

 FWLite can be combined with PyROOT to create a powerful and intuitive analysis tool.
The following code can be used to create analysis plots.

from PhysicsTools.PythonAnalysis import *
from ROOT import *
prepare the FWLite autoloading mechanism
gSystem.Load("libFWCoreFWLite.so")
AutoLibraryLoader.enable()
events = EventTree("reco.root")
book a histogram
histo = TH1F("photon_pt", "Pt of photons", 100, 0, 300)
event loop
for event in events:
 photons = event.photons # uses aliases
 print “# of photons in event %i: %i" % (event,len(photons))
 for photon in photons:
 if photon.eta() < 2:
 histo.Fill(photon.pt())

The above code produces histogram windows directly from a Python prompt, with a simplicity
approaching pseudocode. To further simplify the use of Python interactively, the user could save the
first four lines of setup code into a new script, and use that script to start an interactive Python session:

> python –i openRecoFile.py

4. Production
The CMS Data Management and Workflow Management team uses python extensively in data
processing. Clusters of python daemons perform tasks such as request management, allocation, job
submission, tracking, bookkeeping, and error handling11. These daemons use a common Python
framework for event-driven message passing and MySQL persistency.

In this architecture, the processing work is done by “ProdAgents”, independent daemons which act
as front ends to diverse resources, ranging from farms to grid systems. These ProdAgents receive
tasks from a “ProdMgr”, which manages requests, and does the final accounting.

In addition, many web applications use cherrypy servers, for such tasks as data moving12, site
itoring13, data monitoring14, and database browsing15. These tools are being consolidated into a single
framework16.

5. Conclusion

CMS uses python for a wide variety of applications, including scripting, job configuration,
analysis, GUIs, web interfaces, message passing, and database interfaces. We anticipate that Python’s
popularity on the experiment will continue to grow, as more shared utilities and frameworks in Python
become available.

References
[1] http://www.python.org
[2] http://www.cherrypy.org
[3] http://root.cern.ch/root/HowtoPyROOT.html
[4] http://www.riverbankcomputing.co.uk/software/pyqt/intro
[5] http://flex.sourceforge.net , http://www.gnu.org/software/bison
[6] http://www.boost.org/doc/libs/release/libs/python/doc/
[7] C. D. Jones, “File Level Provenance Tracking in CMS”, these proceedings
[8] R. Wilkinson, “Using Python for Job Configuration in CMS”, these proceedings
[9] A. Hinzmann, “Visualization of the CMS Python Configuration System”, these proceedings
[10] C.. D. Jones, L. Lista, and B. Hegner, “Analysis Environments for CMS”, Journal of Physics

Conference Series 119 (2008) 032027
[11] S. Wakefield et al., “CMS Production and Processing System – Design and Experiences”, these

proceedings
[12] V. Kuznetsov, “CMS FileMover: One Click Data”, these proceedings
[13] S. Metson, “SiteDB: Marshalling the People and Resources Available to CMS”, these

proceedings
[14] L. Tuura, “Authentication and Authorization in CMS’ Monitoring and Computing Web

Services”, these proceedings
[15] A. Pierro, “CMS Conditions Database Web Application Service”, these proceedings
[16] S. Wakefield et al., “Job Life Cycle Management Libraries for CMS Workflow Management

Projects”, these proceedings

http://www.boost.org/doc/libs/release/libs/python/doc/
http://www.gnu.org/software/bison
http://flex.sourceforge.net/

