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ABSTRACT

The problem of classi�cation of objects located in domain D � R� based on observations
of random Gaussian �elds with a factorized covariance function is considered� The
�rst	order asymptotic expansion for the expected error regret is presented� Obtained
numerical results allow us to compare suggested expansion for some widely applicable
models of spatial covariance function�

�� INTRODUCTION

The notion that data close together in space are likely to be correlated is
natural� And one of the most important sometimes even unique� statisti�
cal characteristic of random �eld which describes the statistical spatial re�
lationship between observations is a spatial covariance function � r� s� �
E fX r��E X r��� X s��E X s���g� where fX t� � t � Dg is an ob�
served random �eld� We restrict our attention on covariance functions� which
depend only on the distance h � r � s between points� i�e� we consider only
second�order stationary random �elds� When � r� s� � � h� is a function on
both the magnitude and direction of h� the covariance function is said to be
anisotropic� otherwise� it is said to be isotropic one�
In geostatistics literature� for the analysis of spatially correlated data the

concept of a variogram is used� see� e�g�� Matheron ������ Cressie ����� and
others� This function is similar to the covariance function� By the de�nition�
the variogram is var X r��X s�� � �� r � s�� r� s � D� The quantity
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�� �� has been called a variogram as � �� � semivariogram� by Matheron
������� There is a simple relationship between the semivariogram and co�
variance function	

� h� � � ��� � h� �

So� we interchangeably can use one of these concepts� In general� using var�
iograms is better than using covariances because the estimator of variogram
obtained by the method�of�moments Matheron� ����� is unbiased�
Obvious� � h� � � �h� and � �� � �� If � h� �� �� � �� as h �� ��

then �� is measurement error� which has been called the nugget e�ect� If
the semivariogram has the property lim

jhj���
� h� � �� � �� then �� has

been called the sill of the semivariogram� The range of semivariogram is
the distance after which semivariogram becomes constant� see� e�g�� Cressie
������
Christensen ������ Cressie ����� present several covariance models� which

are most often used in geostatistics� We consider three of them�
The isotropic spherical covariance function is given by expression

�s jhj � �� �

�����
��

�
�� �

�
jhj
��
� �

�
jhj�

��
�

�
� � � jhj � ���

�� � ��� jhj � ��
�� jhj � ���

����

for nonnegative ��� ��� ��� The nugget e�ect is �� and the sill is �� � ��� For
this model� observations more than �� units apart are uncorrelated� so the
range is ���
The exponential covariance function is

�e h� �� �

�
�� exp

�
���

p
t�h�� � h��

�
� jhj � ��

�� � ��� jhj � ��
����

for nonnegative ��� ��� ��� Here t is the parameter of anisotropy� When
t � �� the exponential covariance function becomes isotropic one� otherwise
it is anisotropic� The nugget e�ect is ��� the sill is �� � ��� and the range is
in�nite� While the range is in�nite� correlations decrease very rapidly as h
increases� Of course� this phenomenon depends on the value of ���
The Ornstein � Uhlenbeck covariance function is de�ned as follows

�ou h� �� �

�
�� exp

�
���

�
t�h�� � h��

		
� jhj � ��

�� � ��� jhj � ��
����

for ��� ��� �� nonnegative� It is anisotropic covariance function� when t �� ��
In the case of t � � it becomes a well known isotropic covariance function
often called the Gaussian covariance function� The behavior of the Ornstein
� Uhlenbeck model is similar to that of the exponential model� However� the
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covariances at distances greater than one approach zero much more rapidly
than in the exponential model� Also� for small distances� the covariance ap�
proaches the value �� much more rapidly then does the exponential�
In our paper we use the correlation functions� which can be easy de�ned

from covariance function by the relation � h� � � h� �� ���

�� CLASSIFICATION PROBLEM

Suppose ��� �� are two mutually exclusive and exhaustive classes of
objects� Let X be a p�dimensional feature vector� which is measured on each
object� For objects randomly chosen from �l� X follows the multivariate
distribution with density function pl x� �l� � pl x�� which belongs to the
parametric family of regular densities Fl � fpl x� �l� � �l � �l � Rmg� l � �� ��
Discriminant analysis deals with the problem of identifying the class of

object for which X is measured� For a zero�one loss function� the Bayes
classi�cation rule BCR� dB x� minimizing the probability of misclassi�cation
is equivalent to assigning X � x to �l if

	lpl x� � max
k����

	kpk x� �

where 	l is the prior probability of �l� Then BCR dB x� could be de�ned as

dB x� � arg max
k����

	kpk x� �

Let PB denote the probability of misclassi�cation for BCR dB x� or Bayes
error rate see� e�g�� �����
In practical applications� the density functions fpl x�g are seldom com�

pletely known� Often they are only known up to the parameters f�lg� i�e� we
may only assert that pl x� is one element of a parametric family of density
functions Fl� Under such conditions� it is customary to estimate �l from the
training sample Tl � fXl�� ���� XlNlg from �l� for l � �� �� Put T � T� � T��
N � N� �N��
Let b�l be the maximum likelihood estimator MLE� of �l from Tl l � �� ���

The estimator of rule dB x� is called a plug�in rule dB

�
x� b��� b��� and is

de�ned by

dB

�
x� b��� b��� � arg max

k����
	kpk

�
x� b�k� �

The actual error rate PA of dB

�
x� b��� b��� is the probability of misclassifying a

randomly selected object with feature X independent on T and is designated
by

PA �

�X
l��

	l

Z �
�� 


�
l� dB

�
x� b��� b����� pl x� dx�
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where 
 �� �� is Kronecker�s delta�

Definition ���� Expected error regret EER� for dB

�
�� b��� b��� is the expec�

tation of the di�erence between PA and PB with respect to the distribution
of b��� b��� i�e��

EER � E PA�� PB �

The purpose of this article is to �nd an asymptotic expansion for EER� The
case of independent normally distributed observations in training sample from
one of two classes with �l � �� l � �� �� was considered in ���� ��� has been
made the generalization for the case of arbitrary number of classes l 	 ��
and regular class�conditional densities�

�� MAIN RESULTS

Suppose that any point r � r�� r�� � D � R� can be assigned to one of
two prescribed above classes ��� �� with positive prior probabilities 	�� 	��
respectively� Here we identify objects by points on D� The class of the point
r is given by the random ��dimensional vector Y T

r � Y�r� Y�r� of zero�one
variables� The lth component of Y is de�ned to be one or zero according as a
class of point r is or not �l l � �� ��� Then Yr 
Mult��� 	�� 	����
Suppose that Xr means the observation of X at point r � D� A decision is

to be made as to which class the randomly chosen point r � D is assigned on
the basis of observed value of Xr� Let

Xr �

�X
l��

Ylr�l � �r� ����

where ��� �� � Rp� �� �� �� and the noise �r �
�
��r� � � � � �

p
r

	
is the observation

of the second�order stationary multivariate random �eld at location r � D
with zero�mean vector�
The essential assumption is that f�rg is Gaussian �eld with spatially fac�

torized covariance� Hence� the common class�conditional covariance between
any two observationsXr and Xs at points r� s � D belonging to �l can be fac�
torized as cov Xr� Xs�r� s � �l� � �lh��� r �� s�� where �l�� is the spatial
correlation function l � �� ��� and h � r � s� � � cov �r� �r��
Also here we assume that the e�ect of cross�correlation between samples

from di�erent classes is negligible� In this paper we suppose� that it is equal
to zero� i� e�� covXr� Xs�r � ��� s � ��� � ��
Let Dl �



sl�� � � � � s

l
Nl

�
� D be the set of points belonging to class �l�

l � �� �� Then Xlj means the observation of X at point slj � i�e� Xlj � X
�
slj
	
�

j � �� � � � � Nl� l � �� ��
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Then the expectation for Nlp� � stacked vector T
V
l �

�
X

�
l�� � � � � X

�
lNl

��
is

��l � �Nl � �l� l � �� ��� ����

where �Nl is the Nl�dimensional vector of ones� and � is the Kronecker prod�
uct� The covariance matrix of T V

l is

��
l � Cl ��� ����

where Cl is the spatial correlation matrix of order Nl � Nl� whose i�j�th
element is �

�
sli � slj

	
i� j � �� � � � � Nl��

Suppose that � and Cl are known and �l are unknown l � �� ��� In this
paper maximum likelihood estimators MLE� b�l of �l based on Tl are used�

Let C��l �
�
cijl

�
�

Lemma ���� For l � �� � MLE of �l based on Tl is

b�l � �

c��l

NlX
j��

c�jl xlj �

where c�jl �
PNl

i��c
ij
l and c��l �

PNl
i�j��c

ij
l �

Proof� The log�likelihood of Tl is

lnLl � �const�
�

�
Nl ln j�j� p ln jCj��

�
�

�

�
c��tr

�
���Sl

	
� c��tr

�
��� �l � xl� �l � xl�

�
��

�

where xl �
�
c��
l

PNl
j��c

�j
l xlj and Sl �

�
c��
l

PNl
i�j��c

ij xlj � xl� xli � xl�
�
�

Solving equation � lnLl
��l

� �� we complete the proof of Lemma� �

MLE under spatial sampling of Gaussian random �elds was studied by ����
They gave the regularity conditions which ensure consistency and asymptotic
normality of the parameter estimators� We assume that these conditions hold�

Put � � ln ��
��
� �b�l � b�l��l l � �� �� and let �� � �� � ���

���� �� � ���
be the Mahalanobis distance� Let  �� and  �� denote standard normal dis�
tribution and density functions� respectively�
The plug�in discriminant function can be written in the form

dB x� b��� b��� � �x� �

�
b�� � b���� b�� � b��� � ����
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Then the actual error rate for dB x� b��� b��� see ���� is
PA � 	� 

������ � �
� b�� � b���	� b�� � b��� � �q
b�� � b����� b�� � b���

�A ����

�	� 

����� � �
� b�� � b���	� b�� � b��� � �q
b�� � b����� b�� � b���

�A � ����

Theorem ���� First�order asymptotic expansion of EER in terms of c��l �
��

for dB x� b��� b��� � using MLE b��� b��� is
EER �

�X
l��

�

�c��l
	l

�
�
�

�
� ���l

�

�


�������

�
�

�
� ���

l �

�

�

� p� ��

�
��

�
� o

�
�

min c��� � c
��
� �



Proof� Since PA is invariant under linear transformations of data we use
the convenient canonical form of � � I and �� � ��� �

�
��� where � �

�� �� � � � � ��
�
see ����� Expand PA in Taylor series about the point b�l � �l

and then averaging with respect to the distribution of b�l l � �� ��� Expansion
for E PA� dropping the third order terms is as follows

E PA� 
� PB �
�X
l��

P
���
l E �b�l� � �

�

�X
l�k��

tr
�
P
���
l�k E �b�l�b�k�� � ����

where P
���
l is the vector of the �rst�order derivatives of PA by b�l evaluated at

�l l � �� ��� Similarly� P
���
l�k denotes the matrix of the second�order derivatives

of PA by b�l and b�k evaluated at �l and �k� respectively� l� k � �� ��� In
considered situation there was obtained see ���� that

PB � 	� 

�
�
�

�
�

�

�


� 	� 

�
�
�

�
�

�

�


�

From Lemma and assumptions stated before we have

E �b�l� � E �b�l�b�k� � �� ����

E
�
�b�l��� � �

c��l
� �����

Then using ���� and ����� in ���� we complete the proof of the stated
theorem� �
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Corollary ���� Whether Tl consists of statistically independent Xlj � j �
�� � � � � Nl� then c��l � Nl in formula �����

The corollary holds since C��l � I for statistically independent Xlj � j �
�� � � � � Nl�
The result of the proved theorem could be used in obtaining the optimal

sampling design that ensures the minimum of asymptotic EER for the �xed
training sample size N�

�� EXAMPLE

As an example we consider the integer regular ��dimensional lattice and use
the second�order neighborhood scheme for training sample�
Also we assume that there are two di�erently taken training samples	 ��

� spatially symmetric observations in training sample for each class� �� �
observations in training sample for the �rst class and � for the second one�

Figure �� Scheme �� Figure �� Scheme ��

Three spatial correlation functions obtained from the covariance functions
de�ned by ����� ���� and ���� are considered�
The asymptotic expected error regret

AEER �

�X
l��

�

�c��l
	l

�
�
�

�
� ���l

�

�


���

�
�

�
� ���

l �

�

�

� p� ��

�
��

�

for each correlation function is computed�
In Table � values of AEER with 	� � 	� � ��� are presented� Here

AEERind is AEER in the case of independent observations considered for
comparison�� AEERs� AEERe� AEERou are AEER for spherical �s�� expo�
nential �e� and Ornstein�Uhlenbeck �ou� correlation functions� respectively�
As it was already mentioned� the spherical correlation function is isotropic one�
We chose the range value �� � � for this function� In general� �e and �ou are
anisotropic functions� but by choosing the value of t � � we obtain isotropic
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Table ��

Values of AEER for di
erent correlation functions�

� PB AEERind AEERs AEERise AEERanise AEERisou AEERanisou
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��� l ������
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functions� In Table � there are presented both isotropic and anisotropic cases
denoted by index is and anis� respectively�� Each cell contains � rows� The
�rst row presents values of AEER when there are no nugget e�ect �� � ���
i�e� ��

�����
� � and the second one gives values of AEER� when nugget e�ect

�� �
�
� is assumed then

��
�����

� �
� �� To calculate quantities presented in

the �rst and second rows the scheme of spatially symmetric observations ���
was used� The third and fourth rows contain AEER for �� � � and �� �

�
� �

respectively� but in training sample � observations for the �rst class and � for
the second one was taken�
For all described cases� the AEER approaches zero when distances � in�

creases� As it was expected� AEER for the case of independent observations
is the smallest one�
The comparison of AEER in the case of independent observations and in

the case of dependent observations three considered schemes of correlation
functions� is presented in Table �� In the �rst row of this table ratios for �� � �
no nugget e�ect� and di�erent training sample schemes upper quantity in
the cell is for the Scheme � and lower one for the Scheme �� are presented�
as in the second row the same situation is presented only the nugget e�ect



Statistical Classi�cation of Random Gaussian Fields ���

�� �
�
� is used�

It can be seen from Table �� that the bigger the nugget e�ect� the closer
ratio to one see the second row of Table ��� because with increasing the
nugget e�ect the situation approaches independent case�
Comparing columns ratios for the same nuggets�� we can determine which

of the correlation functions gives smaller AEER� For instance� AEERIND
AEERS

�

������ and AEERIND
AEERIS

E

� ������ for �� � ��� the ratio of these two ratios is

equal ����� so� Spherical correlation function is better gives smaller AEER�
than Exponential isotropic correlation function for the Scheme �� In a similar
way other functions can be compared� It is easy to see� that Spherical function
gives smallest AEER in all considered cases� Also it can be shown� that
isotropic correlation functions give smaller AEER than anisotropic do�

Table ��

Ratios of AEERind and AEER in the case of dependent observations�

Ratio AEERIND

AEERS

AEERIND

AEERIS
E

AEERIND

AEERANIS
E

AEERIND

AEERIS
OU

AEERIND

AEERANIS
OU

�� � �
������
������

����		
���	��

������
���	��

����
�
������

����	�
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�� �
�

�
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