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ABSTRACT

Using IGY data analyses of Obasi (1963), the mean meridional circulations
for the southern hemisphere are measured indirectly, using the method of charac-
teristics. It is found that the slope of the characteristic curves is propor-
tional to the ratio of the zonal vertical wind shear to the dynamic stability.
The characteristic curves may be approximately identified with the curves of

constant absolute angular momentum. The horizontal and vertical momentum con-
vergences enter as forcing functions, in a manner similar to that of Kuo (1956),
and Mintz and Lang (1955). Certain simplifying assumptions are made about the

vertical convergences. The expression for () , the vertical component of
the circulation, strongly resembles the integrated form of the continuity

equation, the difference being attributable entirely to the inclusion of the
baroclinicity of the atmosphere. Both methods give similar overall [l patterns

but there are differences in details, particularly in the winter season.

The calculations generally confirm Obasi's directly measured three cell
pattern, but there are strong differences in cell intensity and position.

Comparison with northern hemisphere indirect measurements of Mintz and Lang
(1955) shows strong similarities in position and intensity, but with the much

stronger southern hemisphere polar direct cell a marked exception.

Vertical eddy convergences of momentum in the "free" atmosphere are

calculated using the directly measured mean meridional circulations. Large
areas of negative eddy viscosity result, always in a region including the mid-

latitude jet. Similar calculations for the northern hemisphere using data of

Buch (1954) give the same general result. The negative signs do not appear to

be implausible if large scale vertical eddies dominate at higher levels, but

the magnitudes may be too large.
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ERRATA

Page 2 Line 7. "thought as" should read, "thought of as.

Page 5 Line 7. "other methods" should read, " other, 'indirect',

methods".

Page 7 Line 14. " T = wind stress" should read " = zonal wind

stress"

Page 9 Line 14. "then represents" should read "G then represents.

Page 16 Line 2. "from the momentum convergence" should read

"from the vertically integrated momentum conver-

gence. "

Page 20 Line 6. For "(1961)", read "(1960)".

Page 21 Line 10. For "(1961)", read "(1960)".

Page 22 After equation (20), add "where V is the kinematic eddy vis-

cosity".

Page 22 After last formula, insert, "where I is the vertical space

coordinate.

Page 22, 23 Replace " d " by .
j_?: a h
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Page 26 Line 2. For "eddy transports", read "vertical eddy trans-

ports".

Line 7. For " "read "- t .
AP ap

Page 29 Line 7. For "Isabele Cole", read "Isabelle Kole".

Page 48 Top Add reference:

Buch, H. 1954: Hemispheric wind conditions during the year

1950. Final Report, Part 2; M. I. T. General Circulation

Project, Document No. AF 19-122-153.
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INDIRECT MEASUREMENT OF THE MEAN MERIDIONAL

CIRCULATION IN THE SOUTHERN HEMISPHERE

by

Peter A. Gilman

ABSTRACT

Using IGY data analyses of Obasi (1963), the mean meridional cir-
culations for the southern hemisphere are measured indirectly, using the
method of characteristics. It is found that the slope of the character-
istic curves is proportional to the ratio of the zonal vertical wind
shear to the dynamic stability. The characteristic curves may be approx-
imately identified with the curves of constant absolute angular momentum.
The horizontal and vertical momentum convergences enter as forcing func-
tions, in a manner similar to that of Kuo (1956), and Mintz and Lang
(1955). Certain simplifying assumptions are made about the vertical con-
vergences. The expression for 0 , the vertical component of the
circulation, strongly resembles the integrated form of the continuity
equation, the difference being attributable entirely to the inclusion of
the baroclinicity of the atmosphere. Both methods give similar overall

M2 patterns, but there are differences in details, particularly in
the winter season.

The calculations generally confirm Obasits directly measured three
cell pattern, but there are strong differences in cell intensity and
position. Comparison with northern hemisphere indirect measurements of
Mintz and Lang (1955) shows strong similarities in position and intensity,
but with the much stronger southern hemisphere polar direct cell a marked
exception.

Vertical eddy convergences of momentum in the "free" atmosphere are
calculated using the directly measured mean meridional circulations.
Large areas of negative eddy viscosity result, always in a region including
the mid-latitude jet. Similar calculations for the northern hemisphere
using data of Buch (1954) give the same general result. The negative signs
do not appear to be implausible if large scale vertical eddies dominate at
higher levels, but the magnitudes may be too large.



1. Introduction

The earliest modern theories of the generation of the zonal kinetic

energy in the atmosphere (Hadley, 1735) stated in effect that the potential

energy due to the meridional temperature gradient was released by a single

symmetric toroidal cell of circulation comprising rising motion of relatively

warm air near the equator, poleward flow at high levels, sinking motion near

the poles, and equatorward flow near the ground. This kinetic energy of the

mean meridional motion was thought as converted to kinetic energy of the

zonal motion through the action of Coriolis torques.

The introduction in 1859 by Ferrel of the "indirect" cell in middle

latitudes allowed relaxation of the earlier requirements that the winds

near the surface at all latitudes be easterly. Though altered, then, the

mean meridional circulation maintained its central position in the explana-

tion of the mechanism of the general circulation.

In this century, however, following the suggestion by Jeffreys (1926,

1933) both theoretical and observational studies have shown (see Starr, 1958

for the most complete picture of what he calls this "New Outlook" on the

general circulation) that the primary energy conversion process is the baro-

clinic instability associated with the traveling wave cyclones and anti-

cyclones (the "transient eddies") and that in Starr's words "the net energy

release by the meridional circulation is in all probability slightly negative"

Furthermore, the momentum of the westerlies is maintained against frictional

stresses primarily by these horizontal eddies, not the mean meridional cir-

culation.



Finally, Kuo (1956) showed that for earth-atmosphere conditions

the mean meridional circulations must be forced motions, and that the

most important forcing terms involve derivatives of the eddy convergences

of momentum and heat transports. It is evident, then, that the mean

meridional circulations have lost the central role they once played.

In the words of Starr (1954) "... the halcyon, free-wheeling days when

investigators could propound mean meridional cells in a rough and ready

manner to explain each feature of the mean zonal wind distribution, are

irretrievably behind us".

Though less important, the mean meridional circulations are not,

however, unimportant. They still comprise two components of the symmetric

part of the mean wind field. Though they play a smaller role than the

horizontal eddies in the energy conversion and momentum transport processes,

a quantitative knowledge of them is necessary to complete the energy and

momentum balances. They may also be of importance, primarily in the lower

latitudes, in the global hydrological balance (see, e.g., Starr and Peixoto,

1963).



2. Methods of measurement

There are essentially two ways to measure the mean meridional circu-

lation. The first is usually called "direct"; in the most systematic and

objective of such studies, maps of the meridional component of the wind

averaged for a season or a year are analyzed, and values are read at grid

points around latitude circles to obtain zonal averages. Obasi (1963) has

carried out the most systematic such study for the southern hemisphere.

He divided the calender year 1958 into winter (April-September), and summer

(January-March, October-December), using data collected during the IGY.

Many studies, with varying degrees of objectivity and varying latitude

ranges, have been made for the northern hemisphere, in particular by Buch

(1954), Palmen (1955), Tucker (1957) and (1959), Palmen, Reihl, and Vuourela

(1958), and Palmen and Vuourela (1963).

A serious fault, which cannot be escaped by any of these studies,

however, is that errors in observation and analysis of horizontal meridional

winds make the zonal averages very uncertain. This is because meridional

winds vary approximately between + 10 m/sec, while their zonal averages are

of the order of 1 m sec~ 1 , or less*. This fact is a manifestation of the

quasi-geostrophic nature of large scale atmospheric flow. The effect of

these errors can be seen in the fact that meridional winds so calculated

*
With the necessary introduction of a graphical data reduction process to
get the latitudinal averages, it appears to be almost impossible to make
quantitative estimates of the probable error in these latitudinal values.
Rather it seems that the best check on reliability of results is reproduc-
ibility of results using different analysts, or even different years of
data, assuming there are not large yearly differences in these values.



often do not give, even in the grossest sense, zero mass transport across

all latitude circles, a requirement which should hold very closely over

a whole season or year. Spurious drift velocities of 50 cm sec are not

at all uncommon in such calculations (see, for example, Obasi 1963). For

the same reason, the vertical velocities calculated from the continuity

equation using such data are also quite uncertain.

For this reason, it is desirable to devise other methods of measuring

the mean meridional circulations. The general approach is to infer them

from more accurately measurable quantities. This is essentially the method

of Kuo (1956) who solved for the forced mean meridional circulation, in the

form of a stream function, as well as for the axially symmetric temperature

and geopotential perturbations, utilizing derivatives of the eddy transports

of heat and momentum and the diabatic heating as forcing functions.

It is considerably simpler, however, if one's task is to determine

the meridional circulation already known' to be forced, to make use of the

fact that the mean zonal wind and the time and zonally averaged "transient

eddy" transports of momentum are quantities whose measurement does not

suffer the same fate as that of the mean meridional wind (Tucker 1960 not

withstanding). Using the measured zonal wind dispenses with the need for

computing the mean geopotential fields, since the geostrophic assumption

is no longer made. It is no longer necessary to determine the temperature

field either, and the meridional circulation may be found from a single

second order nonhomogeneous partial differential equation for the stream

function, with only the momentum transports as forcing terms.



As an alternative to the stream function approach, in this simple

case, the horizontal and vertical components of the meridional circulation

can be found directly by the use of the method of characteristics. This

method has been used, for example, by Krishnamurti (1961) to determine the

vertical motion field in a steady symmetric hurricane, given the radial

velocity field; and by Eliassen and Hubert (1953) to compute the vertical

motion field in a "blocking" situation.

This method has the advantage in this case of solving a first order,

rather than a second order, partial differential equation, and it avoids

the tedium of solution by relaxation techniques. Further, the solution

for the vertical component bears strong resemblance to the ordinary inte-

grated form of the continuity equation, the difference being due entirely

to the inclusion of the baroclinicity of the atmosphere.
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3. Notation

The following symbols, in most cases well known, will be used ir

the text that follows. Other notation, peculiar to this paper, will be

defined in the text.

p

'A

u

v

M

Q

f

g

a

T

(-)

( )'

( )j

( )

= pressure, in mb

= latitude (from 00 to -900)

= longitude

= zonal wind (+ toward east)

= meridional wind (+ toward north)

= angular velocity of the earth (7.29x10-
5 sec 1)

= Coriolis parameter = 2.c, sin 0

= acceleration of gravity (980 cm/sec2 throughout)

= radius of the earth (6.37x10 meters)

= wind stress on a horizontal surface

= frictional force/unit mass

= - L C 0 S mean zonal vorticity =

dynamic stability

= density

= temperature

= geopotential

2. ( ) -- time average

( ) - ( ) = deviation from time average

( A~X = zonal average

( ) - ( ) = deviation from zonal average

MINI



4. Theoretical formulation

Using the notation defined in 3, and assuming hydrostatic equilibrium,

we may write the zonal equation of motion and the equation of continuity in

the ( A , , p , t ) coordinate system as

49L+ ZL CIW+ I LI+ 1 ' (LA.V O.5') (1)

and

cLt. __ _ v O~ (2)
OLLO$ c0.050

respectively.

Now, if we take the time and then the zonal averages of these equations

and assume a steady state, i.e., -- 0 where X represents any of

the dependent variables, then the first three terms in (1) and the first term

in (2) vanish , and we are left with

7..IOS - 0 (3)

and

*
Here we are assuming that the effect of the mountain torque in the southern
hemisphere is small, mainly because reliable information on its size is un-
available at present. However, it undoubtedly is smaller than in the northern
hemisphere, due to the smaller number and extent of mountain ranges.
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But we may write A W] as

JLLI [ wJ~ +fL 7 U) ] +-FALO(5)

Here the second term on the right represents the contribution of the "tran-

sient eddies", and the third term that of the "standing eddies". Then,

using (5) and an analogous expression for , and the relation

(;L C Oo s' c [s7 af§UjC 0s5 s + L2.
a (.osz 0 s04P c TT -0S-6O 0S 4 C 4

(3) becomes

- (6)J

In order to simplify notation, we shall denote collectively the last

three terms on the left in (6) by G , ,and let G ' 1/ ,and

denote them separately, in order. That is,

I Q-= C + + CG f-

then represents the forcing by the eddy transports of momentum.

Then (6) becomes

]- [-VJ + G-o 0(7)e~P
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Repeating (4), to group the equations to be solved, we have

0.6a P (4)

Equations substantially the same as these in the , .) coordinate

system were written by Mintz and Lang (1955), but their method of solution

was considerably different.

It is more convenient to solve for fw] first, by dividing (7) by

,operating on it with -s ,and adding (7) to (4),

giving

+L + - COs LWJ (8)

Note that (8) is a first order equation. It can be solved easily

using the method of characteristics. Let us introduce the following simpli-

fying notation, defining

>.P>

and C.OS

WWI
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Then (8) becomes

aLP

Here 5 is the slope of the characteristic curves in (P40

cjp
where CV[jJ

C P
is a

directional derivative taken along the characteristic curve.

Equation (9) now becomes

J [LQ -P-rTp K P
ci P

The solution to the homogeneous part

P

U51=Lc17 f

(10)

is simply

(11)

where it is understood that the integral is along a characteristic curve,

not along a line of constant .

By variation of parameters, then, the solution to the nonhomogeneous

equation becomes

[Aj [cI -
+ P~i P

4 It P,) K4 J(P'~

we may write

space, and

(12)

Nils
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Now the characteristic curves, as will be shown (see Figure 1) are

nearly vertical, so that it is quite natural to begin the integration at

the "top" of the atmosphere, using the usual upper boundary condition that

oPnO = 0 . Then (12) becomes

(LS] = e~ TOZO f eo T~ ' p)4' (13)

Note that we are allowed to specify the value of [CO-] at only one point

on each characteristic curve. That is, we cannot also fix LW) at the ground

level. This is not a serious disadvantage, however, since the values of

J((Pj) should be such as to make [M] again small near the ground.

This fact can be seen more clearly if we note that had we solved for IV]

first from (7), neglecting the term [LI, and then inferred

L from the continuity equation (4), we would have obtained

(14)- ~ = A -[1C . P

or, interchanging the integration and differentiation

OLOS - 0 c s (15)

across

The quite closely realized requirement that there be no mass transport

frround
any latitude circle, i.e., f [p] , then implies

(13) differs from (14) only in the addedthat . Now



-13-

factors e , and in that the integration is carried out along

the characteristic curves. Since 0.5 ( 6 2.0 generally, and

since the characteristic curves deviate no more than 40 from their 850 mb

latitude, (13) should integrate giving results rather similar to (14), and

therefore [LOJ from (13) should also tend to zero near the ground. The

basic physical difference between (14) and (13) is that (13) includes the

effect of the baroclinicity of the atmosphere on the calculation of .lO]

Once fjL& has been calculated from (13), [V] is found from (7),

i.e.,

ALL (16)

Equation (16) is essentially the expression first derived by Palmen

(1955), and later used by several authors (Mintz and Lang (1955), Palmen,

Riehl and Vuourela (1958), Dickinson (1962), and others).
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5. Method of calculation and results

The slope of the characteristic curves is given by S
Qt ap

It is easy to calculate the shape of the characteristic curves if we realize

that these lines can be identified with lines of constant absolute angular

momentum, Mr , given by

ML= L CO5 4+ a (X c s (17)

*
as these lines have the same slope

The method used to calculate the position of these curves was to

choose as a reference level the lowest pressure level where Obasi had

calculated EL-U (850 mb, except 700 mb for 4 = 750 and 80.5 ), calculate

the absolute angular momentum /6l0  for that level, and then determine the

latitude of all points with the same angular momentum.

Solving (17) for C, we have

COS 0 = ~2 (18)

Since CO S 4 70 ,we must choose the + sign. Approximating further

by using the fact that ( < , we obtain

COS4 Z 2JF'a -#"o [a (19)
COSL

*
This fact was kindly pointed out to me by Professor N. Phillips.
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Expression (19), strictly speaking, requires the mean zonal wind on

the characteristic curve, the position of which we are trying to determine.

However, since -0 S Ll
0 , the error made in using the mean zonal

wind of the latitude is only of the order of 10%, accurate enough

for the purposes of this study. The characteristic curves so calculated

are presented in Figure 1.

Now to calculate 0) and then [VJ , all of Cr. ,&Vr , and

Gp must be known. &r is known fairly accurately from Obasi's data.

However, very little is known about G , which represents the large scale

vertical eddy momentum convergences, and CG , which represents small

*
scale eddies. In the absence of such knowledge, we have made the assumption,

for the sake of calculating a meridional circulation profile, that in the
**

"free atmosphere", which we shall take to be above 850 mb, there is no

vertical transport of momentum by eddies of any scale. In the region below

850 mb, we will assume, to calculate reasonably representative values of

and of [V] , that the frictional stress decreases linearly from the

surface stress value to 0 at the top of the boundary layer. Then , ,

given by GrF = 3 Lt ,becomes 3 , where A is the pressure
POP

* "

Here "large scale" represents that scale of eddy measurable from a synop-
tic map. "Small scale" then refers to all smaller scales of eddies.

Except near the south pole (67.5 0, 72.5 0, 77.50) where, due to the eleva-
tion of the ice cap, we take the boundary layer to extend to 700 mb at
67.50) and 600 mb at 72.50 and 77.50.

We also extrapolate Obasi's values of M0. and LLLVJ. down into the
surface layer from 850 mb, assuming the variation between 850 mb and
1000 mb is approximately the same as that between 700 mb and 850 mb.
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depth of the boundary layer. The mean zonal surface stress [.t is

calculated from the momentum convergence due to the transient eddies and

the mean meridional motion, using the trapezoidal rule. (The stress due

to the eddies above was calculated by Obasi using a somewhat different

numerical integration procedure). Obasi's momentum transports due to the

standing eddies (the term [EZ -*UV1 ) were not used, because 1) they are

much less important in the southern hemisphere in transporting momentum

than either the transient eddies or the mean meridional motion, and

2) they are considerably harder to measure and therefore, much less reli-

able than the transient eddies. The mean meridional motion transports are

those calculated first using the surface stress from the transient eddies

alone to obtain an approximate set of values for in the lowest layer,

from which the mean meridional transports are calculated to obtain new

surface stresses and new lowest layer values of V7 . The surface stress

values used appear in Table 1.

Finally, slight adjustments were made on the calculated results for

CtVI to ensure no mass transport across any latitude circle. These cor-

recting "drift" velocities were never more than 4 cm sec 1, only 10% of

the typical drifts found from calculating [V directly. The results of

the calculations are presented in Tables 2 and 3, and Figures 2 and 4, with

Figures 3 and 5 being Obasi's directly measured values for the corresponding

season. The LW. results from equations (13) and (14) are presented in

*
Figures 3 and 5 include some relatively minor corrections to Obasi's (1963)
original results.
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Tables 4 and 5 and Figures 6 and 8, with LLAU values calculated from

Obasi's IV] via the continuity equation (4), presented for comparison

in Tables 6 and 7, and Figures 7 and 9.

The results in Tables 4 and 5 indicate that the inclusion by (13)

of the baroclinic effect generally makes a difference of 10 to 20%, and

in some cases much larger differences in the calculated at any one

place, but the profiles of the two calculations are rather similar.
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6. Comparison of direct and indirect measurements

The indirect measurements definitely confirm the 3 cell pattern of

Obasi's observed values. In fact, the three-cell pattern in the indirect

measurements is considerably sharper. The general equatorward shift of

the cells with the change from summer to winter is also clear, though it

is seen more strongly in the [zAJ patterns than in the E'I3 patterns,

implying an accompanying change in shape 'of the cells. The shift generally

ranges from 10 to 200 latitude.

The shift in intensities with season of the calculated and observed

results are not the same, however. The winter indirectly measured circula-

tions are generally somewhat stronger than their summer counterparts,

particularly in the equatorial cell. The directly measured [71 also

show a stronger equatorial cell in winter, but a weaker indirect mid-latitude

cell, and a weaker polar cell. Such a result does not seem compatible with

the decreased intensity of the zonal circulation, and probably reflects the

uncertainty of directly measured [ .

Another general result is that the directly measured iV] indicates

a stronger indirect mid-latitude cell at high levels, and a generally weaker

direct equatorial cell than do the indirectly measured values. In the lower

latitudes, at least, this may be a consequence of the fact that Obasi, in

calculating the drift velocities to be subtracted off to give zero mass

transport, assumed the velocities in the layer 850-1000 mb to be the same as

those at 850 mb, which may be a considerable underestimate (see, for example,



-19-

for the northern hemisphere, Palmen and Vuourela, 1963). Assuming larger

velocities in this lower layer could have strengthened the equatorial cell,

but a similar correction in mid-latitudes would have made the upper branch

diverge even more from the indirectly measured values.

Another point of difference is that the zero lines between the upper

and lower branches of the cells are at considerably lower levels in the

indirect measurements than in the direct ones. This is very likely a con-

sequence of our earlier assumption of no vertical eddy momentum transports

of any scale above 850 mb.

MJIF_
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7. Comparison with northern hemisphere results

Obasi (1963) has made comparisons of his directly calculated [VJ

values with northern hemisphere direct calculations of Buch (1954) and

Tucker (1959), so such comparisons need not concern us further. Seasonal

indirect measurements similar to ours have been done for the whole hemi-

sphere for [V., and the vertical velocity by Mintz and Lang (1955),

and for [] by Murakami (1961). Calculations for the stratosphere

alone have been done by Dickinson (1962) and, for one month periods, by

Teweles (1963).

Before comparing, it should be noted that Mintz and Lang used only

two month averages (Jan-Feb for winter, July-August for summer) which are

the most winter and summer-like months, respectively, so that their winter

circulation is probably more intense, and the summer less intense, than

the corresponding 6 month averages would be.

Comparing the two hemispheres for the winter seaspn, we see that

the direct cells, and the indirect cells, are approximately the same

intensity. Within each hemisphere, the equatorial direct cell is between

two and three times the intensity of the mid-latitude indirect cell. In

addition, within each hemisphere, the cell boundaries are between 30 and

350, and 65 and 70 . The southern hemisphere, however, shows a very much

stronger polar direct cell, and the southern hemisphere equatorial direct

cell appears to extend further into the northern hemisphere than does

Mintz and Langts into the southern. These differences are in agreement with

Obasits general conclusion that the southern hemisphere circulation is the

more intense.



In the summer season, the Northern Hemisphere mean meridional circu-

lations are very much weaker. The poleward direct cell is missing entirely,

and the equatorward cell is very disorganized. These differences are prob-

ably very strongly influenced by the fact that Mintz and Lang's values are

for July and August only. The strong Southern Hemisphere polar cell even

in the summer is probably primarily a manifestation of the "Katabatic wind",

due to the very strong temperature contrast between the antarctic continent

ice cap and the warmer seas around it.

Concerning the vertical component of the mean meridional circulation,

Murakami (1961) inferred [W for the Northern Hemisphere, for the entire

year 1950, via the continuity equation. However, Murakami integrated from

the bottom to the top of the atmosphere. Presumably due to the poorness of

the vj data, his ('s do not tend toward zero near the top. Consequently,

the fact that his values above 700 mb are three or four times as large as

ours is probably not significant. His regions of upward and downward motions

are packed closer together than even the Southern Hemisphere summer, again

indicative of the greater intensity of the Southern Hemisphere general cir-

culation.

The stratospheric values are rather similar to those of Dickinson

(1962) and Teweles (1963). In particular, Dickinson's (yearly averaged,

also for the IGY) cell divisions are about 28 and 66 N, while ours are

at 290 and 640 S.

WPFF_
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8. Vertical eddy convergences of momentum

Even given that Obasi's [VJ have considerable uncertainty,

it is still interesting to calculate what kind of vertical eddy convergences

of momentum are needed to make the indirectly measured meridional circula-

tions agree exactly with them.

One way of doing this, when one lacks separate information on the

large and small scale eddies, is to represent the effect of vertical eddies

of all scales, in an empirical way, by an eddy viscosity proportionality to

the time and zonally averaged vertical shear of the zonal wind. That is,

the frictional stress may be written, in the pressure coordinate system, as

[Tj) .. --- (20)
a p

Now since the frictional stress is related to the frictional force per unit

mass, , by the expression - T , the latter may be

written as

- (21)

where the kinematic eddy viscosity ') has been assumed not a function of

pressure. Now

LP= - I T
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and if we take - = -6.5 K km 1 in the troposphere (taken here to be

below 200 mb), and U 0 in the stratosphere, and let i t

we have

W t (22)

Here 8 then has the values 0.83 and 1.0 in the troposphere and strato-

sphere, respectively.

The two terms in parentheses in (22) are generally the same order of

magnitude, with the curvature term the larger near the tropopause level.

Equation (22) may then be used to represent . and together,

since no separation of the large and small scale vertical eddies can be

made. The eddy viscosity 9 is then obtained from (16), according to

the expression

(23)

where R - Cfp . Here the [VJ are Obasi's values, and the

LA are calculated via continuity from them. The actual numerical results

were not considered to be very significant due to the uncertainty of the

various terms in (23), so that only the signs of "V are presented, in figure

10. Similar calculations were made for the northern hemisphere using Buch's

(1954) data, the signs for which are presented in figure 11.

Note that if f V , the dynamic eddy viscosity, had been held constant,

would be replaced by .9
P ?'

NINAM IIIAMIINII wdiwi
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4 7 2 -1
The magnitudes of the eddy viscosity range from 10 to 10 cm sec ,

with the larger values generally at higher levels, but the striking feature

of all these cases is that there are very large areas of all negative eddy

viscosity, from 150 mb down to 600 or 775 mb, except near the poles. Gener-

ally positive values are found below these levels. Further, given the un-

certainty in IV] , the most reliable signs for V come when both

numerator and denominator of (23) have their largest values, which is

generally the region when the negative values are found. In each case,

the mid-latitude jet stream maximum is well within the negative region

indicating a transport of momentum into the Jet by the vertical eddies in

the vicinity of the jet.

The above result is not implausible if we note that in the lowest

layers of the atmosphere, where the details of orography become important,

presumably the smaller eddies dominate, and momentum in the region of sur-

face westerlies is transported down to the ground, as evidenced by the

positive eddy viscosities there. At the higher levels in the troposphere,

large scale upward motion is usually found to the east of troughs, where

the zonal component of the wind is usually stronger (due to the "tilt" of

these troughs). If these large scale vertical eddies dominate at these

levels, negative eddy viscosities would result.

The eddy viscosities would, of course, be decreased in magnitude by

closer agreement between Obasi's mean meridional circulations and ours.

Indeed, Geostrophic scale theory does imply, and recent calculations by

Starr and Dickinson (1963) indicate that vertical eddy stresses are probably
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smaller than those implied by our eddy viscosities. It is not at all

certain, however, that closer agreement would make the signs all become

positive. Therefore, to the degree that calculations of the eddy viscos-

ity such as ours can be trusted, the usual assumption of a positive

vertical eddy viscosity used in most numerical models of the general

circulation is open to serious question. It should be remembered that

there was a time when it was thought that the large scale horizontal

eddies in the atmosphere had positive eddy viscosities, too.
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9. Energy considerations

Earlier it was assumed that in the "free" atmosphere, there were no

eddy transports of momentum of any scale; i.e., that part of the atmosphere

was assumed to be frictionless. Therefore, all the frictional dissipation

of kinetic energy of the zonal flow would take place in-the surface layer.

The amount of this dissipation is given by

E - l 'D]PCO (25)

or since we assumed [ in the surface layer,

W (26)

rro + we

The results are as follows:

E (winter) = 6.17 x 1020 ergs se-1

F (summer) = 4.02 x 1020 ergs sec1

It must be pointed out that these values have in them the uncertainty gener-

ated by the extrapolation used to estimate [Q in the surface layer.

The energy fed into the mean zonal flow by the horizontal eddies was

20 20 -1
found by Obasi to be 9.63x10 and 9.72x10 ergs sec for the winter and

summer, respectively. The difference of 3.55x10 and 5.61x10 respectively,

must then, under our assumptions, be taken out of the mean flow by the indirect
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mean meridional cell, through the action of Coriolis torques. The energy

taken out by this process would eventually be returned to zonal available

potential energy. In the actual atmosphere, kinetic energy could also be

taken out of the mean zonal flow by vertical eddies of all scales, the

smaller scales eventually converting the energy into heat, and the larger

scales probably converting it to eddy kinetic energy. Had Obasils measured

mean meridional circulations been more reliable, information on the relat-

ive importance of the mean meridional motions and the vertical eddies in

the energy balance could have been obtained. We suspect from other evi-

dence that the meridional motions do contribute the larger part. Starr

(1959) found, from two years of data, that the ratio of the meridional cell

conversion to the horizontal eddy energy input for the northern hemisphere

was about 1/2, which would be approximately our ratio if all of the energy

not dissipated by surface friction were taken out by the mean meridional

motion. Further, calculations by Starr and Dickinson (1963) show that

energy conversions by the vertical eddies from the mean zonal flow for two

separate months were of opposite sign but approximately the same size,

suggesting a small average value for a whole season. The uncertainty in

accuracy of such calculations, however, must be kept clearly in mind, and

these results should not be considered particularly conclusive, pending

the outcome of further measurements.
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10. Concluding remarks

Since this study did not have accurate direct information on either

the mean meridional motion or the vertical eddies, their relative importance

in the momentum balance could not be unequivocably determined. However,

balance requires that the sum of their effects balance the transports by

the horizontal eddies, so that both cannot be small relative to them.

Numerical models generating statistics of the general circulation of an

idealized atmosphere, such as that of Phillips (1956), cannot answer this

question, as they are forced to assume the magnitude of the vertical eddy

transports. Usually it is assumed that in the "free" atmosphere the ver-

tical eddy stresses are at least one, and sometimes two, orders of magni-

tude less than their values at the ground level. This uncertainty in the

relative contributions of the vertical eddies and mean meridional motions

will not, therefore, be resolved until further, more accurate observational

studies are made. If, for example, the mean meridional motions are found

as average values for 5, or even more, summer and winter seasons, the

statistical significance achieved may be great enough to calculate the

vertical eddy stresses as a statistically significant residual. In this

regard, the Planetary Circulations Project, in conjunction with the

Travelers Research Center, is presently undertaking an extensive analysis

of five years of meteorological data for the northern hemisphere. A res-

olution of this uncertainty may be a result.
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Table 1: Surface stress ITI from momentum convergences

units: dyne cm-2

Summer
transient

Latitude eddies
only

77.5

72.5

67.5

62.5

57.5

52.5

47.5

42.5

37.5

32.5

23.5

22.5

17.5

12.5

7.5

2.5

1.39

0.93

-0.23

-1.13

-1.45

-1.62

-1.16

-0.46

-0.10

0.12

0.30

0.42

0.43

0.37

0.25

0.22

transient eddies
and mean meridi-
onal motion

1.35

0.97

-0.10

-1.00

-1.36

-1.57

-1.17

-0.50

-0.17

0.02

0.20

0.38

0.46

0.45

0.35

Winter
transient transient eddies
eddies and mean meridi-
only onal motion

2.00

1.91

0.75

-0.48

-0.83

-1.14

-1.12

-1.07

-0.70

-0.12

0.09

0.67

0.46

0.43

0.36

0.28

1.89

1.88

0.83

-0.36

-0.70

-1.07

-0.99

-1.03

-0.82

-0.27

-0.14

0.52

0.49

0.63

0.65
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Table 2: - Winter

Units: cm sec

Latitude Drift 75mb 150 250 350 450 600 700 775 925

77.5 0 0 -9 -27 -36 -26 -15 129 - -

72.5 4 -9 -14 -23 -29 -21 -17 123 - -

67.5 2 -5 -7 -6 -11 -10 -7 27 -

62.5 0 -1 1 6 6 5 2 0 -19

57.5 0 1 8 14 13 8 3 1 -36

52.5 0 2 14 22 20 13 6 3 -57

47.5 1 3 12 19 21 14 7 5 -57

42.5 0 4 14 23 22 13 7 5 -64

37.5 -1 3 10 22 24 14 7 1 -59

32.5 0 1 0 4 6 6 5 4 -18

27.5 -3 0 -6 -8 -2 5 7 7 -10

22.5 3 -10 -28 -33 -23 -13 -2 2 74

17.5 1 -4 -31 -47 -29 -14 -5 4 85

12.5 2 -8 -37 -61 -35 -19 -17 -6 131

7.5 4 -5 -45 -89 -55 -33 -21 -16 173
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Table 3: 1v1 - Summer

Units: cm see

Latitude Drift 75mb 150 250 350 450 600 700 775 925

77.5 2 -3 -11 -21 -24 -19 -15 90 - -

72.5 4 -4 -8 -10 -15 -16 -12 62 - -

67.5 1 1 4 8 4 0 -5 -9 -

62.5 0 4 11 16 13 9 7 3 -47

57.5 1 7 16 21 16 11 9 7 -65

52.5 -1 6 19 26 20 12 9 11 -71

47.5 0 2 15 24 19 10 5 8 -59

42.5 0 0 9 18 13 6 2 1 -31

37.5 0 3 9 8 2 4 4 -1 -19

32.5 0 3 2 -6 -4 5 4 0 -1

27.5 0 1 -11 -19 -10 3 2 1 22

22.5 0 -6 -25 -30 -20 -5 0 2 51

17.5 0 -10 -31 -38 -23 -9 -5 1 75

12.5 -1 -1 -23 -39 -24 -22 -16 -4 96

7.5 1 12 6 -11 -19 -36 -28 -24 85
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Table

Upper number:

Lower number:

Units:

4:

10-J
10- 5

CoJ- Winter

from characteristic curves

from continuity

mb sec"1

Latitude ( 8)

77.5

72.5

67.5

62.5

57.5

52.5

47.5

42.5

37.5

32.5

27.5

22.5

17.5

12.5

7.5

775 92575mb

0.4
0.4

0.1
.0.1

-0.1
-0.1

-0.1
-0.1

-0.1
-0.1

-0.1
-0.1

-0.1
-0.1

0
0.1

0.1
0.1

0.2
0.1

0.2
0.3

0.1
0.1

0
0

-0.1
-0.1

-0.2
-0.3

150

1.1
1.2

0.2
0.2

-0.4
-0.5

-0.6
-0.7

-0.6
-0.7

-0.5
-0.5

-0.2
-0.3

0.2
0.2

0.5
0.5

1.0
0.8

1.2
1.4

0.8
0.9

0.3
0.5

-0.4
-0.6

-0.7
-1.1

250

1.4
1.5

-0.5
-0.5

-1.7
-2.0

-2.1
-2.2

-2.0
-2.2

-1.3
-1.2

-0.6
-0.6

0.4
0.1

1.9
1.9

3.3
3.1

3.9
4.2

3.3
3.5

2.1
2.4

1.3
0.6

0.9
0.6

350

1.1
1.2

-1.9
-1.9

-4.0
-4.6

-4.1
-4.1

-3.4
-3.8

-2.4
-2.1

-1.2
-1.1

0.3
-0.2

3.4
3.7

5.7
6.3

6.5
7.3

5.8
6.1

4.6
4.3

4.2
3.7

4.5
5.0

450

0.6
0.7

-3.1
-3.0

-6.0
-7.1

-5.8
-5.9

-4.9
-5.0

-3.3
-3.1

-1.6
-1.5

0.2
-0.3

3.9
5.1

6.8
8.6

8.2
9.5

7.5
7.9

6.1
5.1

5.8
5.5

6.9
7.9

600

-4.0
-3.9

-2.8
-3.2

-8.1
-9.4

-7.4
-7.6

-6.0
-6.0

-4.3
-4.1

-1.9
-1.8

0.2
0

4.3
6.1

7.5
10.1

9.5
11.3

9.2
9.5

7.9
6.4

7.6
7.0

9.2
9.2

-4.1
-5.6

-8.5
-8.6

-6.7
-6.5

-5.2
-4.9

-2.2
-1.9

0.5
0.7

4.5
6.6

7.4
10.4

9.6
11.9

10.0
10.3

9.7
8.2

9.8
8.8

11.3
10.4

-4.1
-5.3

-3.6
-3.5

-3.4
-3.0

-1.1
-0.6

1.8
2.3

2.0
4.5

4.1
7.4

2.8
5.2

3.2
3.5

6.0
4.4

2.9
2.1

4.1
3.0
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Table 5: J- Summer

Upper number: [ from characteristic curves

Lower number: from continuity

Units: 10-5 mb sec~ 1

Latitude 75mb 150 250 350 450 600 775 925

77.5 0 -0.3 -1.7 -3.5 -4.2 -4.6
0 -0.3 -1.7 -3.5 -4.3 -4.8

72.5 -0.1 -0.6 -2.3 -4.5 -6.0 -4.3
-0.1 -0.6 -2.3 -4.4 -6.1 -4.5

67.5 -0.2 -0.9 -2.6 -4.6 -6.5 -8.7 -5.1
-0.2 -0.9 -2.6 -4.8 -6.9 -9.3 -5.7

62.5 -0.2 -0.8 -2.2 -3.6 -4.8 -6.3 -7.8 -4.0
-0.2 -0.9 -2.3 -3.8 -5.2 -6.7 -8.3 -4.5

57.5 -0.1 -0.4 -1.5 -2.6 -3.3 -3.9 -4.8 -2.8
-0.1 -0.6 -1.7 -2.9 -3.6 -4.2 -5.1 -3.1

52.5 0.1 0.1 -0.3 -1.0 -1.3 -1.3 -1.4 -0.9
0.1 0 -0.6 -1.4 -1.8 -1.7 -1.6 -1.0

47.5 0.1 0.4 0.7 1.0 1.3 1.8 2.8 1.6
0.1 0.4 0.6 0.7 1.0 1.7 2.7 1.7

42.5 0 0 0.9 2.1 2.9 3.2 4.0 2.4
0 0.1 0.8 1.8 2.7 3.2 4.1 2.6

37.5 -0.1 0.1 1.6 3.2 3.9 3.9 3.9 2.0
-0.1 -0.1 1.1 2.9 3.8 4.1 4.2 2.3

32.5 0 0.8 2.9 4.6 5.2 5.3 5.1 2.1
0 0.4 2.4 4.2 4.9 5.3 5.5 2.7

27.5 0.2 1.4 3.7 5.4 6.4 7.1 7.3 3.4
0.2 1.2 3.5 5.5 6.6 7.5 7.7 3.8

22.5 0.4 1.3 2.8 4.3 5.5 7.0 7.6 3.6
0.4 1.6 3.7 5.3 6.3 7.4 7.8 3.8

17.5 0.1 -0.2 -0.5 0.1 1.3 3.8 6.0 3.2
0.1 0.7 1.8 2.5 3.2 4.8 6.2 3.1

12.5 -0.6 -2.3 -5.2 -6.3 -5.3 -2.6 1.0 1.6
-0.5 -1.6 -3.2 -4.3 -3.9 -1.7 1.5 1.5

-0.9 -3.2 -7.4 -9.7 -9.0 -6.6 -2.5 -0.1
7.5

-0.9 -3.3 -7.6 -10.1 -9.7 -7.6 -3.4 -1.1
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Table 6: - W

from .v]

Units: 10-5 mb sec"

150

1.3

3.2

3.2

5.4

1.1

-1.6

-2.5

-2.8

-2.8

2.6

1.6

1.2

2.0

2.1

0.5

250

-0.5

3.6

5.6

10.5

2.3

-3.6

-5.2

-5.4

-5.2

0.8

1.8

5.8

6.8

6.3

1.5

-1.6 -2.7 -4.5 -7.4 -10.5 -8.7 -3.2

inter

of Obasi

775 925Latitude

77.5

72.5

67.5

62.5

57.5

52.5

47.5

42.5

37.5

32.5

27.5

22.5

17.5

12.5

7.5

75mb

1.0

1.3

0.8

1.7

0.3

-0.4

-0.7

-0.9

-1.1

1.5

0.7

-0.1

0.2

0.5

0.2

350

-2.0

2.9

5.3

15.4

3.1

-6.3

-7.9

-8.5

-7.2

-0.5

2.3

10.3

10.9

10.4

2.8

450

-3.1

4.1

5.3

19.4

2.6

-9.3

-10.7

-11.4

-7.3

-0.4

2.7

12.5

13.6

12.5

2.3

600

-4.0

8.2

3.9

23.1

-0.5

-12.7

-12.7

-11.9

-5.2

0.5

2.1

12.2

16.4

14.7

-0.5

-2.6

24.6

-2.3

-10.7

-9.9

-7.2

-1.8

0.9

1.0

7.5

12.9

12.2

-2.8

-0.4

-4.7

-3.9

-1.2

0.3

-1.5

0.2

2.8

5.0

3.7

-1.9

NMI

2.5 -0.6
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Table 7: - Summer

from of Obasi

Units: 10-5 mb sec~1

Latitude 75mb 150 250 350 450 600 775 925

77.5 0.3 0.7 1.3 0.7 -1.1 -1.5 - -

72.5 -1.8 -5.0 -7.3 -7.5 -4.8 3.5 - -

67.5 -3.0 -8.0 -11.5 -12.5 -11.4 -7.3 -1.8 -

62.5 -1.5 -4.7 -8.5 -10.8 -10.1 -6.9 -3.3 -

57.5 -0.9 -3.5 -8.2 -12.6 -14.1 -13.5 -11.9 -4.8

52.5 -0.5 -2.5 -7.1 -11.2 -12.4 -11.1 -7.9 -2.0

47.5 0.2 -0.1 -1.9 -3.7 -5.2 -5.6 -3.5 -2.3

42.5 -0.8 -1.9 -2.2 -1.9 -3.1 -5.7 -3.5 -0.5

37.5 0.1 0.5 1.6 1.6 1.4 3.3 4.3 1.3

32.5 0.3 1.6 3.2 3.5 2.2 -0.7 -2.0 -3.9

27.5 0.1 0.7 1.9 3.5 4.9 4.9 4.2 5.8

22.5 0.7 3.1 8.4 13.7 17.0 17.6 12.6 4.3

17.5 0.7 1.9 3.4 5.9 8.6 7.2 2.2 0.1

12.5 0.5 0.7 -0.5 -1.6 -1.8 -0.9 -0.6 -1.4

7.5 1.6 3.2 2.5 1.8 1.9 2.0 1.8 0.4

0.5 -0.2 -4.0 -7.1 -9.1 -9.6 -6.1 -1.92.5
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Figure 1:

Characteristic Curves , Winter (April - SeptP(mb)
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Figure 2;,
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Figure 3: V1 from Obasi
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Figure 4:

Summer [V]
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Figure 5: [Y from Obasi
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Figure 6:

P (mb) Winter [0).] From Characteristic Curves
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Figure 7:

Winter [WJ From Directly Measured LVJ (Obosi)
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Figure 8:

Summer Ew ] From Characteristic Curves
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Figure 9:

Summer [a] From Directly Measured [V. (Obosi)
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Figure 10

Winter
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