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ABSTRACT

Fractal analysis was utilized in a manner similar to Lovejoy
(1982) to investigate atmospheric scale selectivity. Midlatitude
cloud and precipitation areas associated with baroclinic, convective
and baroclinic/convective regimes were examined. In addition, 500 mb
isohypse and isotherm fields were studied on a seasonal basis.
Results from the midlatitude cloud and precipitation data were similar
to Lovejoy's findings for analogous tropical structures: fractal
analysis indicates no scale selection for atmospheric phenomena with
horizontal length scales between m10 and 103 km. The upper level
data, however, indicate a change in regime at =10 4 km. This may be
interpreted as representing the change from synoptic scale forcing
mechanisms to planetary scale dynamics.
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BACKGROUND

The research delineated in this paper utilizes a relatively new

mathematical concept, that of the 'fractal.' This neologism was

coined by its creator, Benoit B. Mandelbrot, about eight years ago and

is derived from the Latin adjective fractus, meaning broken (a fairly

apt label, as will be seen).

The determination of an object's fractal character is based upon

a comparison of its topological dimension, DT, to its Hausdorff

Besicovitch dimension, D. The topological, or Euclidean, dimension of

an object is a familiar notion: a line has a Euclidean dimension of

one, et cetera. The Hausdorff Besicovitch dimension (more commonly

referred to as the fractal dimension) is not quite as straightforward.

In practice there are two methods of calculating D. The first

involves a comparison of measurements of an object's perimeter made at

different resolutions. The finer the precision of measurement, the

larger the perimeter. The fractal dimension is represented by the

slope of a plot of perimeter versus resolution. The rougher the

outline of the object, the more sensitive its perimeter value is to

the measurement resolution and, hence, the greater its fractal

dimension. The second procedure consists of a comparison of the

perimeter versus area values for a set of shapes. It utilizes the

formula:



p = AD/2

where P = perimeter

A = area

D = fractal dimension

This is analogous to the previous method described, with the

resolution of measurements on a single object being replaced by the

area values for a set of geometrically similar objects. In this case

the fractal dimension is proportional to the slope of a plot of

perimeter versus area values. A change in the fractal dimension

implies a breakdown in the geometric similarity assumption, which can

be interpreted as representing the transition between two different

physical processes.

A shape is said to be a 'fractal' if its fractal dimension is

greater than its topological dimension. It can readily be seen that

for simple shapes such as circles and squares the fractal dimension is

equal to the Euclidean dimension. Hence, these objects are not

fractals. But, for any more complicated forms the fractal dimension

tends to be greater than the Euclidean dimension, thus qualifying them

for Mandelbrot's classification as fractals. Generally speaking, the

more contorted the outline of an object is, the larger the value of

its corresponding fractal dimension. The Brownian motion of a

particle represents an extreme case (in fact, the limiting case) of

this contortion. If the particle's path were traced out in two



dimensions it would eventually fill the entire plane. Thus its

trajectory, which has a Euclidean dimension of one (that of a line),

has a fractal dimension of two (that of a plane). The outlines of

most objects found in nature lie somewhere between the simplicity of

circles and squares and the complexity of Brownian motion

trajectories. Hence, their associated fractal dimensions range from

one to two. This points out a useful aspect of fractal analysis:

implementation of it makes it possible to precisely quantify the

dimensional chacteristics of any given shape in terms of a

non-integral value, as opposed to being constrained to the very

general integral values of the Euclidean dimension. So the

calculation of D gives one the ability to distinguish between forms

that were heretofore lumped into the same topological category. This

analytic sensitivity is especially important in the examination of the

complex spectrum of shapes that occurs in the natural world.

The question now arises as to the applicability of fractal

analysis. Of what importance is it to have a more refined

determination of an object's dimensionality? Mandelbrot's first

applications of the fractal dimension involved the examination of a

hodgepodge of naturally occurring as well as man-made forms ranging

from soap bubbles to Koch curves. His calculations demonstrated the

flexibility of this anlysis to topologically categorize virtually any

shape. This categorization is scientifically useful if a given

physical process has its own unique value of D. This is intuitively

reasonable since it seems likely that the geometric characteristics of



structures resulting from different processes would not be the same.

Using this idea Mandelbrot showed the role his new concepts played in

the study of specific problems in physics, most notably those

involving turbulent processes. He suggests that fractal analysis may

yield some useful information concerning the boundaries between

different regions of turbulent flows. These boundaries, whichmost

likely constitute a fractal set, could be quantitatively categorized

in terms of the fractal dimension. The next step would be to

theoretically determine the physical significance of the fractal

dimension values and variations (if any) that are found. This

approach would hopefully aid in the interpretation of phenomena such

as intermittency, in which highly turbulent flows contain scattered

quiescent regions. In addition, fractal analysis may be applied to

the solutions of the Euler or Navier/Stokes equations for turbulent

flows, in that the singularities of these flow fields may be a fractal

set. Other aspects of turbulent flows such as particle trajectories

and imbedded vortices may also prove to be fractals, indicating that

fractal analysis might be useful in their examination. Mandelbrot

also hypothesizes that the flow associated with clear air turbulence

is a fractal set. This leads us to the application of fractal

analysis to meteorological studies. The first attempt at this was

made quite recently be S. Lovejoy (1982). . He examined fairly high

resolution satellite and radar data from the Indian Ocean region and

calculated the fractal dimensions of cloud and precipitation areas.

His results indicate that D for both of these quantities is



approximately four-thirds and that this value does not vary

significantly over six orders of magnitude in area.

These findings have some interesting implications. First, the

fact that D turned out to be four-thirds may have some physical

significance in itself, although Lovejoy does not offer any

speculation on this [it should be noted that Kolmogoroff 's

minus five-thirds power law predicts a fractal dimension of

four-thirds for isobars]. Secondly, these results imply that tropical

cloud and precipitation areas have no preferred horizontal length

scale, as indicated the scale independence of D.

This is somewhat disturbing in that it is generally assumed that

atmospheric processes are associated with characteristic spatial

dimensions. Specifically, results from research- concerned with the

determination of the atmospheric kinetic energy spectrum point to the

existence of different energy regimes for different scales. Julianet

alii (1970) used wind data in their examination of the energy spectrum

and found a k- 3 dependence (k being the wavenumber) for systems with

wavenumbers ranging from approximately six to twenty. Desbois (1972)

used covariance functions to analyze Southern Hemispheric wind data

and found that this -3 dependence continued out to approximately

wavenumber thirty-five. By compiling data from a number of wind

variability studies, Gage (1979) extended this analysis to smaller

s-ales and found a k- 5/ 3  variation for disturbances having

wavelengths <-1000 km. The combined result of these studies, then, is

that the kinetic energy of the troposphere exhibits a k-5/3



dependence at small scales and a k- 3 dependence at larger scales

with a transition occurring at a horizontal length scale of about 1000

km. A -5/3 wavenumber dependence is indicative of a three-dimensional

isotropic regime while a -3 dependence indicates a two-dimensional

regime. Gage's data show that the three-dimensional regime extends

well into the mesoscale, something that seems rather unusual. He

hypothesizes that this extension refects the existence of a

two-dimensional reverse energy cascade, with energy flowing upscale

and enstrophy flowing downscale, the opposite of three-dimensional

transfer. The energy transfer is associated with a k- 5/ 3 spectrum

and the enstrophy transfer with a k- 3 spectrum. Actually, this idea

of the existence of a two-dimensional inertial subrange was not new;

it was originally postulated by Kraichnan (1967). Steinberg (1972)

had questioned the validity of explaining the -3 wavenumber dependence

in terms of a two-dimensional, isotropic flow. He argued that in the

wavenumber range 7 < k < 15 the flow is not two-dimensional since the

dominant .energy conversion (eddy available to eddy kinetic) is

three-dimensional and is also not isotropic at scales this large. He

suggested instead that the agreement between Kraichnan's theory and

the actual data may be coincidental and proposed that the -3

dependence may be associated with the imaginary part of the wave phase

speed. This hypothesis is based on purely dimensional grounds, namely

that the dominant spectral parameter has the dimension inverse time.

Desbois (1972) expressed a similar doubt as to the applicability of

two-dimensional inertial theory to waves in the 7 < k < 15 range,



pointing out that the flow is not truly inertial due to its close

proximity to the excitation wavelength of baroclinic instability.

Gage, however, found it reasonable to use this two-dimensional flow

assumption to explain the results of spectral studies and suggests

that phenomena such as individual thunderstorms, wind shear, breaking

waves, et cetera represent the small-scale source of the energy that

is two-dimensionally transferred upscale. Lilly (1983) examined this

proposal by analyzing the wakes of moving bodies in stratified flows.

These wakes evolve in much th'e same way as the processes suggested by

Gage as being associated with the mesoscale energy profile and thus

provide a means of testing the reverse energy cascade hypothesis in

the laboratory. Lilly found that initially three-dimensional

isotropic turbulence divides into approximately equal parts of gravity

waves and quasi-two-dimensional turbulence in the presence of strong

stratification. The gravity waves propagate away from the source

while the two-dimensional turbulence propagates to larger scales and

is responsible for the wavenumber dependence seen in the mesoscale

portion of the horizontal kinetic energy spectrum, thus lending

credence to Gage's hypothesis. Charney (1971) showed theoretically

that the -3 wavenumber dependence for 7 < k < 20 can be explained in

three-dimensional terms by considering the conservation of

pseudo-potential vorticity, analogous to the conservation of vorticity

in two-dimensional systems.

At any rate, the gist of all of these studies is the existence of

preferred length scales for particular atmospheric phenomena.



Lovejoy's initial results seem to provide a counterexample, although

it appears as if the quantities he examined did not extend out to

large enough scales to exhibit the dimensional transition found in the

wind variability studies. Later work by Schertzer and Lovejoy (1983)

expands upon the idea that atmospheric processes have no

characteristic length scales, specifically that there is no transition

from three-dimensional to two-dimensional flow patterns as one goes

from small to large scales. Instead, they hypothesize the existence

of a single dimensional parameter for all scales, something they refer

to as the 'elliptical dimension.' This quantity is somewhat analogous

to Mandelbrot's fractal dimension, although instead of comparing the

perimeter to the area of an object, it involves a three-dimensional

comparison of its horizontal and vertical dimensions. It gets its

name from the fact that it quantifies the transition from small-scale

elliptical eddies with major axes in the vertical to large-scale

elliptical eddies with major axes in the horizontal. The elliptical

dimension ranges from two (for flat objects) to three (for spherical

objects). Schertzer and Lovejoy show empirically and theoretically

that the atmosphere has an elliptical dimension value of 23/9 (-2.56),

indicative of the fact that it consists of flow patterns that are

somewhere between flat and spherical.

As of now it appears as if no definitive conclusions can be drawn

as to scale selection (if any) of atmospheric motions or the dynamical

reason behind any such scaling. Energy spectrum studies are limited

by the paucity of wind data and the inherent errors associated with
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interpolation or covariance calculations. Fractal analysis offers

another method of determining the scale of atmospheric processes.

In the present work, an analysis similar to Lovejoy's (1982) is

made of midlatitude cloud and precipitation areas. Also, in an effort

to extend fractal analysis to larger scales, hemispheric height and

temperature fields are examined.



DATA ANALYSIS

Four meteorological parameters were examined: cloud outlines

obtained from enhanced infrared satellite imagery, precipitation areas

from radar maps, 500 mb height contours and 500 mb isotherms. The

satellite and radar data of nine individual episodes were

analyzed--three from each of the following categories: (1 )

baroclinic/convective, (2) convective, and (3) baroclinic. The

baroclinic/convective cases involve synoptic-scale cyclones containing

what appear to be a significant number of convective cells. The

baroclinic episodes consist of synoptic-scale cyclones associated with

a minimal amount of convection and the convective cases involve no

large-scale disturbances, only relatively large numbers of convective

cells. The baroclinic/convective situations were chosen with the idea

in mind that these events had a reasonable chance of exhibiting a

spatial dependence in the fractal dimension--a phenomenon not observed

in the tropics. Individual convective cells tend to be small in

comparison with rather expansive cirrus cloud shields associated with

mature baroclinic cyclones. Assuming that a given physical process

results in a type of cloud mass with a particular fractal dimension

value, the small-scale cloud elements should have a fractal dimension

representative of convective processes while the larger cloud s hields

should be associated with a dimension characterisitic of baroclinic

phenomena. To contrast the hybrid baroclinic/convective cases, purely



convective and purely baroclinic situations were also examined. It

was hypothesized that these episodes would each yield a different

value of the fractal dimension.

Satellite Imagery

Cloud data were acquired from GOES-East enhanced infrared DB5

satellite photos. The enhancement begins with the -32*C isotherm--id

est, any cloud top with a blackbody temperature <-32 0 C appears as a

flat gray on the satellite picture. A different shade of gray (the

scale actually ranges from white to black) is used for every =10 0C

increment below -32*C. In this study only the -32 0 C contour was

utilized. This choice was made somewhat arbitrarily, with convenience

being a not unimportant factor. There is some physical justification

in examining this particular isotherm, however, as it has been found

to correlate fairly well with precipitation regions (Scofield and

Oliver, 1977). Hence, these cloud areas may be thought of as

corresponding to the physical process of precipitation and their

associated fractal dimension value may then be directly compared with

that obtained from radar map data. It may also be argued that these

cloud regions reflect mid-tropospheric latent heat and advection

patterns, an interpretation that may lead to more far-ranging

implications. With the adoption of this viewpoint, the exact value of

temperature used as a contour outline becomes relatively unimportant.

In a previous investigation of this sort (Lovejoy, 1982),



the -10*C isotherm was used in the examination of tropical cloud

masses. It was found that varying this threshold temperature from

-5*C to -15*C did not appreciably alter the results.

The areal coverage of the satellite pictures used in this

investigation included basically the eastern United States and a

portion of the western North Atlantic: from approximately 25 to 55

degrees north latitude and 65 to 95 degrees west longitude. The

resolution of the enhanced imagery is eight kilometers.

The two quantities of interest in the determination of an

object's fractal dimension are its area and its perimeter. Hence,

measurements of these parameters were made for each of the relevant

cloud masses found in the nine cases that were examined. Measurements

were made by hand, as digitized satellite imagery was unavailable. A

polar planimeter was used to determine areal values and a map measurer

was employed to measure perimeters. Actually, even though the

crudeness of the measuring devices limited the effective resolution of

the data, this would not affect the determination of the fractal

dimension, a fact which seems counter-intuitive. This can be

understood when it is realized that D is basically the slope of a

log-log plot of perimeter versus area. Thus, a change in resolution,

which would result in a change in the perimeter values, would not

alter the slope of a log perimeter versus log area graph and, hence,

would not affect D for a given set of data. Rather, poor resolution

associated with crude measurements would show up as an increase in the



standard deviation of the data from a straight line fit.

The analysis of Case I will serve as a general example of the

techniques used. Figure 1 shows the cloud outline transcribed from

the satellite imagery. In addition to the -32 0 C contour, the -52 0 C

isotherm was included as well. It was felt that this representation

of higher cloud tops may be of interest, especially in convective

situations. Measurements of this contour can be used as a consistency

check for the results obtained from the -32*C outlines, or they may

aid in the determination of the vertical variation of the fractal

dimension, if any. Table I lists the corresponding perimeter and area

values for each of the cloud mass outlines. The graphical

representation of these data is shown in figure 2. A line was

best-fit. to the set of points and the fractal dimension was determined

from the slope of this line; here, the fractal dimension is equal to

twice the slope. The standard deviation and correlation coefficient

were also computed.

The perimeter versus area graphs for the remaining

baroclinic/convective episodes (cases II and III) and the convective

episodes (cases IV, V and VI) are shown in figures 3 through 7; the

baroclinic episodes (cases VII, VIII and IX) were not analyzed on an

individual basis as each case had a rather sparse number of data

points and it seemed as if any line derived from such a limited number

of values would be subject to sampling error.

An examination of figures 2 through 7 reveals that the data of

each episode constitute an extremely linear set over approximately



Cloud mass outlines. outer contours: -324C

inner contours: -52C
FIGURE 1 Y Z k4



TABLE I

Satellite Imagery

Cloud Mass # Perimeter

0000 GMT 3 April 1982

Area

6570

580

360

90

80

80

80

50

230

570

910

840

170

10440

310

60

90

100

696000

9000

3600

600

500

400

600

300

2800

8300

9700

22100

2200

1343200

5200

600

1100

500



TABLE I (continued)

Cloud Mass # Perimeter

440 km

160

50

170

150

120

50

60

Area

10000

2000

500

600

2300

900

200

300
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four spatial orders of magnitude. The correlation coefficients are

consistently high and the standard deviations are rather low. It was

hypothesized that the baroclinic/convective cases would exhibit a

variation of the fractal dimension with size, possibly even a

discontinuity between the small-scale convective regime and the

large-scale baroclinic regime. This definitely does not appear to be

so. In addition to the high degree of linearity, the data of case I

through VI exhibit very consistent values of the fractal dimension,

all within a few percent of the four-thirds value obtained previously

in the study of tropical cloud masses.

The measurements from the three cases representing each

meteorological regime were compiled and appear in figures 8 through

10. The fractal dimension value obtained from the three baroclinic

occurrences is noteworthy in that it deviates noticeably from

four-thirds; it is closer to three-halves. Although the correlation

coefficient of this data set is very high, the somewhat limited amount

of measurements makes one hesitant about drawing any conclusions as to

the significance of this deviation. Actually, the fact that the

fractal dimension associated with the baroclinic episodes differs

appreciably from that found in the baroclinic/convective cases may not

be as important as the result that the convective episodes have the

same fractal dimension as the baroclinic/convective cases.
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Radar Maps

Data for this part of the study were derived from

hourly National Meteorological Center radar maps. These maps

delineate precipitation areas and contour discrete VIP (vertically

integrated precipitation) levels corresponding to particular ranges of

precipitation intensity. In this investigation the VIP level one

isopleths were examined, which represent the boundary between

precipitation and precipitation-free regions. Analogous to the

analysis of the satellite imagery, it may be worthwhile to go back and

investigate the fractal properties of higher VIP level contours.

The analysis used on these maps was the same as that used on the

satellite photos. Although the coverage of the radar maps included

the entire United States, only the area corresponding to that of the

DB5 satellite pictures was utilized in order that these two data sets

might be directly compared.

Figures 11 through 13 show the perimeter versus area graphs for

the compilations of the three individual episodes comprising each of

the three different types of regimes studied. Due to the relatively

low number of measurements associated with a given case, an

examination of each episode individually was not considered to be

statistically meaningful. The results of these compilations are

somewhat different than those gleaned from the satellite cloud

masses. First, the overall fractal dimension of the radar map VIP

regions is somewhat higher than that of the cloud masses. Its



E LOG RITHMIC 3 x 5 CY EsWE KWFFIEL & ESSER CO. MAOS IN U.S.A.

i0

A RA-(km& )

46 752.

9

4-

3--

911
8
7
0--

5-

4--

3.-

in

U)

I0 a
10'



S LORITHMIC 3 x 5 CtESHOE KLUFFEL & LSSER CO. MAI*A W U.6 A.

6 789

1 1 1

,3u K)

13 4 5 6 789
II 1 i I I

46 752f

1

El
5

-4

N

3

2

5 6 7 89

1
6 789

891

III
I,

III
'II
I Ii

9

7 -

6 -

5--

4.

o"--- . llil.

4--
3-T

2~

.z



iE 0 BRLOGARITHMIC 3 x 5 C ~ES
KgWFFgL. & I.5SER CO. MADE INS U&A.

2 3 4 5 6 7891

Ii]7

3-

9
8
7

6 -

4

3---

2

101

1 21 2 3 4 6 7 89

SA A i I I I I I I11 | II

'A RE, (jq')

46752?

6 6 7 89

106los



value is also more consistent from one type of episode to another--the

radar data do not exhibit a higher value of the fractal dimension in

the baroclinic regime as was the case with the satellite data. An

important similarity in the two data sets is the lack of any sort of a

'kink' in the graphs; the radar echo measurements do not appear to

exhibit any spatial dependence of the fractal dimension over

approximately three orders of magnitude.

500 mb Charts

The maps used were NMC's 0000 GMT 500 mb analyses. These charts

were of interest in that they display meteorological quantities on a

large scale, making it possible to extend the fractal analysis to

contours encompassing larger areas.

Two types of isopleths were analyzed; isohypses (lines of

constant height), in six dekameter intervals and isotherms, in 5*C

intervals. Since the flow at 500 mb is to a good approximation in

geostrophic balance, the shape of the isohypses corresponds well with

the wind field. Hence their fractal properties can, in a crude sense,

be related to the advective patterns of the flow field, as can the

fractal properties of the cloud masses that had previously been

analyzed. The fractal characteristics of the isotherm configurations

can also be linked with those of the cloud masses, as well as the

radar echoes, since all of these quantities are directly related to

the spatial distribution of latent heat release.



The 500 mb isohypses for four time periods--January, April, July

and October 1983 (representing each season of the year) were examined

using the previously delineated analysis procedure. Five maps per

month, at weekly intervals, were utilized. This temporal spacing was

felt to be advantageous for comparing individual episodes, as

day-to-day variations of flow patterns at this level tend to be

relatively small. For the January charts, height contours ranging

from the lowest on a given map out to 552 dkm were measured. Although

the 552 dkm contour correlates approximately with the core of the jet

stream at this time of year, its choice as an upper-bound involved

more pragmatic considerations than physical ones (the planimeter used

to determine areas is limited as to the size of what it can measure).

By July the circumpolar vortex has significantly contracted, thus

allowing measurements of contours with values as high as 582 dkm,

although for this study the meaningful aspect of a contour is its

areal extent, not its actual height.

Figures 14 through 17 show the perimeter versus area graphs for

each month's isohypses. The calculated fractal dimension of these

isopleths is quite a bit smaller than the values associated with the

cloud mass and precipitation area contours. This simply reflects the

fact that the height contours are somewhat smoother--id est, the

perimeter enclosing a given area is smaller. This implies that the

shape of the height lines is more circular and/or less convoluted than

the cloud mass and precipitation outlines. In this case it's most
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likely a combination of these two factors. Physically, the difference

in fractal dimension could be interpreted as representing the

difference between large-scale (synoptic and planetary) and

small-scale (mesoscale and convective) processes.

An important difference between the isohypse data and the cloud

mass/precipitation area data is the presence in the former of a

distinct 'kink' in the perimeter versus area graphs at large scales.

This deviation in slope occurs at m2.5-3.0x10 7 km2 (corresponding

to a perimeter of m3x104 km) and represents a significant change in

the fractal dimension value. Table II shows the quantification of

this. Slope and fractal dimension values were recalculated separately

for contours encompassing areas greater than and less than =2.5x10 7

km2 . The change in D at large scales is most likely associated with

a shift from a spatial regime characterized by relatively circular

cut-off features to a larger scale regime characterized by undulating

circumpolar flow. This is a noteworthy result in that it is the first

evidence of the spatial dependence of the fractal dimension on an

episodic basis. A result that is somewhat surprising is that the

isohypse fractal dimension does not appear to have a significant

seasonal dependence. Intuitively it would seem as if D should be

lower in the spring and autumn, when cut-off features are more

prevalent. Actually, the October data did have a relatively low

fractal dimension value, but the April flow patterns did not.

The results from the isotherm analyses are shown in figures 18

and 19. In January, the perimeter versus area plot has



TABLE II

Alternate Best

Parameter

Isohypses

Isotherms

Isohypses

Isohypses

Isotherms

Isohypses

Perimeter

<2.5x104

>2.5x104

<3.0x10 4

>3.0x10 4

<2.5x10 4

>2.5x104

<2.5x10 4

>2.5x10

<3.Ox104

>3.Ox104

<2.5x10 4

>2.5x104

Fits

Area D

<2.5x10 7

>2.5x10 7

1.20

1.00

Date

1/83

4/83

7/83

10/83

1.20

1.08

1.16

0.88

1.18

1.13

<3.0x10 7

>3.Ox10 7

<2.5x107

>2.5x107

<2.0O107

>2.Ox107

<3.0x10 7

>3.xO107

<2.5x10 7

>2.5x10 7

1.34

1.03

1.13

0.92
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characteristics that are quite similar to the corresponding isohypse

graph--specifically, a very linear relationship between log A and log

P values, with a distinct discontinuity at large scales. In July,. the

hemispheric temperature gradient is much smaller and, hence, the

number of isotherms is significantly less. Thus, there are

correspondingly fewer data points. What values there are seem to

indicate that there may not be a large-scale fractal dimension

discontinuity during the summer. The July isohypse graph also hints

at this.



SUMMARY AND CCNCLUSICNS

In this study an extension has been made of the work done by S.

Lovejoy (1982). His investigation involved the application of fractal

analysis in the determination of atmospheric scale selection. He

examined the fractal properties of tropical cloud masses and

precipitation areas and could find no evidence of any scale

selectivity. The present research dealt with midlatitude cloud masses

and precipitation areas as well as analyses of 500 mb flow patterns

and temperature fields.

Three different types of meteorological conditions were chosen in

the examination of cloud masses and precipitation areas: baroclinic,

convective, and baroclinic/convective, in order to adequately test for

the presence of scale selection. 500 mb data were incorporated into

the study so that the characteristics of larger scale phenomena could

be analyzed. Isohypses and isotherms were examined on a seasonal

basis.

It was found that a fractal dimension analysis of midlatitude

cloud mass and precipitation area data yielded no sign of any

atmospheric scale selection, the same result obtained by Lovejoy in

his examination of tropical data. This was surprising in that it was

hypothesized that the presence of different dynamic processes in

midlatitudes (namely, convective and baroclinic) operating at

supposedly different scales would be associated with structures whose

geometric properties varied accordingly with scale. It' can thus



be concluded that either the atmosphere is not scale-selective out to

structures with areal extents of a106 km2 or there is a flaw in

Mandelbrot's premise that different phenomena give rise to objects

with different spatial characteristics, and hence different values of

his fractal dimension.

In terms of the absolute value of the fractal dimension, the

cloud masses from the convective and baroclinic/convective cases were

associated with a D of m4/3, similar to Lovejoy's findings. The

clouds from the purely baroclinic episodes yielded a data set with a

significantly higher fractal dimension value--close to 3/2. Assuming

that cloud masses resulting from purely convective processes and cloud

masses resulting from purely baroclinic processes have different

fractal dimension values (as indicated by these results), the fact

that the hybrid baroclinic/convective situations had an associated

fractal dimension comparable to the convective cases indicates that

convection may be the dominant structural determination mechanism out

to scales well beyond the size of individual convective elements.

This result agrees with Gage's (1979) finding, based on data compiled

from a number of wind variability studies, that the three-dimensional

isotropic regime extends well into the mesoscale.

The precipitation area data had an associated fractal dimension

that was apparently higher than that derived from the cloud mass

information, but was actually comparable when the fact that the

resolution of the radar measurements was greater than that of the

satellite picture measurements was taken into account.



Unfortunately, a physical interpretation of the significance of

the particular value of the fractal dimension associated with a given

structure is 'beyond the scope of this paper.'

The results obtained from the analysis of the 500 mb isohypse and

isotherm data deviate significantly from Lovejoy's findings in that

they definitely illustrate some sort of atmospheric scale selectivity

(assuming, at least, that the basic premise involved in the

interpretation of fractal dimension data is correct). A fairly

well-defined change in D occurs at a horizontal scale of =3x10 4 km,

corresponding to structures with planetary wavelengths. This

deviation occurs in all seasons, although it appears to be less

well-defined. during the summer. It could possibly represent the

transition from synoptic scale forcing mechanisms to planetary scale

dynamics. This result is important in that it indicates that fractal

analysis may be a viable tool in the investigation of atmospheric

scale selection. Currently, atmospheric energy spectra studies

utilize harmonic analyses of wind variability data. Fractal analysis

offers another means of interpreting this as well as other types of

data.
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