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ABSTRACT

Samples of surface waters and precipitation were collected on the
Amazon main channel, its major tributaries, and headwater rivers in the
Peruvian and Bolivian Andes. Collection was done between 1976 and 1978.
The bulk of the samples were obtained during traverses of the Amazon
Basin, on the main channel, in the May-July peak discharge period of
1976 and 1977. The intent of the sampling was to identify the dominant
processes controlling the chemistry of rivers within the Amazon River
system and to quantify the relative importance of these processes.

Analyses of precipitation and surface water are used to estimate
the fluxes of marine cyclic salts through that part of the Amazon Basin
draining past Obidos (80% of the basin). Amazon precipitation chemistry
can be divided into two principal components, marine and terrestrial.
The marine component (determined from analyses of marine rain) consists
of Na, K, Mg, Ca, and Cl in approximately seasalt proportions, while
S is doubly enriched relative to seasalt. The excess sulfur is probably
derived from gas-phase inputs. The terrestrial component makes an
important contribution of K, Ca, S, and N, and is in part related to
biological emissions. The chloride content of lowland rivers, which
drain regions lacking significant geological contributions of chloride,
shows a systematic decrease with increasing distance from the Atlantic
Ocean. This trend is used to define the cyclic salt background for
Amazonian surface waters. Cyclic salts, in general, make only a minor
contribution, relative to terrestrial inputs, to the chemistry of Amazon
Basin rivers, even those draining intensely weathered terrains. An
estimated 19.0%-Cl, 7.9%-Na, 1.4%-Mg, 3.8%-S, 0.5%-K, and 0.1%-Ca of the
dissolved load at Obidos during peak discharge is cyclic.

Within the Amazon Basin, the regional geology of highland and low-
land areas contrasts markedly. Major exposures of marine and brackish
water sedimentary rocks are concentrated in the Andes and the southwest
lowlands. The Peruvian and south Ecuadorian Andes exhibit abundant ex-
posures of carbonates and evaporites. The latter are expressed as nu-
merous salt springs, salt extrusions, and intercalations in red beds.
The Bolivian Andes contain a thick section of Paleozoic grey-green to
black shales. Carbonates and evaporites (CaSO4 ) are found in the south-
west lowlands. The remainder of the lowlands are covered by purely
siliceous rock types, excepting narrow strips of Paleozoic carbonates
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and evaporites (CaSO4), exposed along the lower Amazon Valley.

The contrast between the highlands and the lowlands is also re-
flected in differing denudation regimes. In flatlands, denudation rates
are controlled largely by the capacity of transport processes to remove
dissolved and solid materials (the latter generally accumulate as
soils). In the highlands and hilly areas, denudation rates are limited
by the rates at which weathering processes can mobilize materials.

Samples can be separated into four principal groupings based on
relationships between total cation charge (TZ+) and geology: (1) Rivers
with 0<TZ+<200 pEq/1 drain the most intensely weathered materials (Upper
Tertiary sediments, soils of the Negro Basin and similarly weathered
regions). (2) Rivers with 200<TZ+<450 pEq/l drain siliceous terrains.
(3) Rivers with 450<TZ+<3000 pEq/1 drain marine sediments with high
cation concentrations (resulting from the presence of carbonates and
minor evaporites in the Peruvian Andes, and reduced shales and minor
carbonates in the Bolivian Andes). (4) Rivers with TZ+>3000 pEq/l drain
evaporites. Rivers in categories (1) and (2) exhibit an approximately
2:1 (mole) relationship between Si and (Na+K) (corrected for cyclic salt
inputs), which characterizes the weathering of many major primary sili-
cate minerals to kaolinite. In categories (3) and (4), rivers tend to
have 1:1 (equivalent) ratios of Na:Cl and (Ca+Mg):(alkalinity+SO4),
caused primarily by the weathering of carbonates and evaporites.

A mass conservation model is used to predict discharges along the
main channel and on its tributaries. The predicted discharges agree
with measured values, showing that the transport of major dissolved
species down the main channel is conservative with respect to chemical
removal.

The calculated discharges are used to estimate preliminary denuda-
tion rates for various parts of the Amazon Basin. For Na, Mg, Ca, alka-
linity, SO4 and Cl, great contrasts in denudation rates are observed
between areas which drain cation-rich lithologies, such as carbonates,
marine shales, and evaporites (e.g., the Andes and the southwest low-
lands), and areas which drain only siliceous rock types. The Peruvian
Andes contribute 50-60% of the terrestrially derived Na, Mg, Ca, alka-
linity, and SO4 and 90% of the Cl in the Amazon dissolved load. Denu-
dation rates for these species are 10-20 times greater in the Peruvian
Andes than in lowland areas having exclusively siliceous lithologies.
In contrast, Si and K show only small variations in denudation rates
over the basin., reflecting the widespread distribution of their sili-
ceous parent phases. This information is used to calculate the contri-
butions that various lithological groupings (silicates carbonates, evap-
orites) make to the dissolved load for different species.

Thesis Supervisor: Dr. John M. Edmond

Title: Associate Professor of Earth and Planetary Sciences
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I. INTRODUCTION

The earth's surface environment can be viewed as being partitioned into

several major geochemical reservoirs: the atmosphere, oceans, sediments,

regolith, basement rocks, and biomass. A complex interplay of processes

alters material within the reservoirs and transfers material between them.

A primary working hypothesis for the study of global geochemical cycles is

that the transfers between reservoirs are balanced in terms of their inputs

and outputs such that the bulk compositions of the reservoirs change mini-

mally through time.

Continental denudation, the focus of this study, is a major aspect of

global geochemical cycling, involving the transport of materials from bed-

rock and atmospheric reservoirs to the ocean. The transfer is mediated by

a wide variety of chemical, biological, and physical weathering processes,

often involving intermediate storage in soil, biomass, lake and ground waters,

and continental sediment. Due to this complexity, the simple concept of

the transfer between reservoirs becomes excedingly difficult to apply in

actuality. Consequently, many investigations of global geochemistry

do not extend beyond the most basic compilations of transfer rates

between reservoirs.

The great number and diversity of rivers flowing into the ocean nec-

essitates generalization of fluxes and mechanisms using data obtained from

larger rivers draining different environments such as the Amazon, Congo,

and Mekong in the tropics; the Colorado and Nile through deserts; Mississippi

and the Yangtze in temperate regions; and the Mackenzie, Yukon, and the Lena

at high latitudes. Adequate data on the chemistry of these rivers in the

natural state are often lacking as a consequence of a variety of factors

including inaccessibility, human activities, and poor or incomplete analysis.
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Much of what is known about the chemistry and material fluxes of rivers

on a global scale is based on a few compilations of river data, often from

diverse sources, and on models utilizing these data.

Dissolved Solids:

Clarke (1924)
Durum, Heidel, and Tison (1960)
Livingstone (1963)
Meybeck (1976)

Suspended Solids

Fournier (1960, 1968)
Holeman (1968)
Curtis, Culbertson, and Chase (1973)
Martin and Meybeck (1979)

Bed Material:

Potter (1978)

Global Models:

Conway (1942)
Eriksson (1959, 1960)
Gibbs (1970, 1971)
Feth (1971)
Garrels and Mackenzie (1971)
Holland (1978)
Meybeck (1976, 1977, 1979)
Martin and Meybeck (1979)
Potter (1978)

The original data on which these studies are based are inadequate.

Livingstone (1963) notes some of the problems:

(1) Insufficient spatial and temporal coverage: Many rivers show

wide variations in flow and composition, yet are represented

by only a few samples. Data for some of the largest rivers

in the world have not been reported at all.
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(2) Inaccurate or incomplete analyses: Much of the data in the

compilations was not collected for geochemical purposes and is

of poor quality. Even when samples are collected for geochemical

studies, samples are treated and analyzed in different manners.

Varying operational definitions are used to define dissolved,

colloidal, suspended, and adsorbed phases. Finally, samples may

become contaminated by the handling procedure, for example the

storing samples to be analyzed for silica in glass.

The second point must be emphasized, as many of the measurements were

made prior to the advent of modern analytical instrumentation and techniques

having greatly increased sensitivity and precision (e.g. atomic absorption).

In contrast to global modelling, the study of single large river

basins, is far more mechanistically oriented and usually does not suffer

from the inconsistencies of gathering data from diverse sources. Of parti-

cular interest are the large basin studies, as the present work belongs to

this category. Only two river basins have been subject to comprehensive

geochemical investigations: the Amazon (Sioli 1954a, b, 1955, 1957a, b,

1963, 1964, 1968, Gibbs 1965, 1967a, b, 1972) and the Mackenzie (Hitchon

et al. 1969, Hitchon and Krouse 1972, Reeder et al. 1972, Peake et al. 1972).

Studies of large river basins have the advantage of being comparative, due

to the diversity of terrains within a large basin, and internally consistent

since the analyses for a particular property are done in one laboratory.

The Mackenzie River study is the only examination of a large'

river system utilizing modern instrumentation. Like the current Amazon

project the bulk of the data is derived from one part of the year. The

work on the Amazon also includes samples of precipitation, lacking in the



- 16 -

Mackenzie work. Having precipitation measurements permits estimates of

atmospheric inputs, and allows for prior correction for these inputs before

examination of terrestrial controls of surface water chemistry.

This study will be presented in four parts:

(1) Atmospheric Inputs - The chemistry of precipitation will be
examined; this information will be used to establish the
atmospheric contribution to river water. (Chapter II)

(2) Environmental Data - The geology and denudation regimes of
the Amazon Basin will be summarized. (Chapter III)

(3) River Chemistry - Chemical relationships
classification schemes, on thermodynamic
on hypothesized weathering reaction mass
to geological and environmental data for
sampled, so as to establish a consistent
processes in the Amazon Basin.

based on traditional
considerations, and
balances will be compared
the various rivers
view of weathering
(Chapter IV)

(4) Chemical Transport and Denudation - Detailed examination of
discharge and chemical transport will be undertaken for the
two river transects. These information will be applied to
calculating denudation rates. (Chapters V & VI)
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Chapter II

Amazon precipitation chemistry and the marine contribution to
the Amazon dissolved load.
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II.1 INTRODUCTION, AMAZON PRECIPITATION CHEMISTRY

It is widely agreed that the atmospheric contribution to dissolved

materials in surface waters can be substantial, and that corrections for

this input are required prior to calculating weathering mass balances.

Table (II.1) presents examples of estimates of atmospheric inputs

to surface waters. The three global estimates are calculations made on

the basis of reviews of available literature. The examples taken from

small watershed studies were calculated from coordinated measurements of

atmospheric inputs and river outputs. The atmospheric contributions for

several elements are quite large and vary considerably between estimates.

The disparity between estimates suggests that great uncertainty exists

in procedures used to estimate atmospheric contributions to river systems.

There are no direct procedures for measuring the net flux of

atmospherically derived materials being transported out of a drainage

basin in river water, either in an absolute sense or relative to

contributions from weathering. This requires that' two distinct

aspects of the problem be examined. Firstly, the sources of

material in atmospheric inputs to the river basin must be identified,

primarily to determine if all the material is to be considered as being

derived from outside of the river drainage. Secondly, criteria must be

established for calculating the contribution of the atmospheric inputs

to the river water.

In the studies of small river basins, long term sampling of precipi-

tation and dry fallout is assumed to provide a good lower bound to the

net atmospheric input into the basin. The absence of appreciable sulfur,

chlorine, and nitrogen bearing minerals in the bedrock of the basins of the
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TABLE II. 1

PERCENTAGE OF
RIVER-BORNE DISSOLVED MATERIAL REPRESENTED BY

ATMOSPHERIC INPUTS

To the Continefts: To Small River Basins:

E G & M H

43 % 35 % 19 %

4 % 15 % 14 %

9 % 7 % 2.9%

0.4% 0.7%

H.B.

21%

38%

18%

16%1.3%

~0 % 0.2% 60 %*

75 % 55 % 27 %

59 % 6 % 39 %

139%**

107%**

P.B.

45%

42%

48%

71%

10%

100%

100%

E -Eriksson (1960)

G & M -Garrels and Mackenzie (1971)

H -Holland (1978)

H.B. -Hubbard Brook, Likens et al. (1977)

P.B. -Pond Branch, Cleaves et al. (1970)

* includes atmospheric carbon "fixed" by rock weathering

** considered to be 100% within the resolution of the estimates

C.
inorg.
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tabulated examples, means that the net atmospheric input of these ele-

ments would equal river output under steady state conditions. The difference

between combined precipitation and dry fallout inputs, and-river out-

put is assumed to represent material transferred from the atmosphere to

the ground or vegetation by impaction, absorbtion, and surface reaction.

The principal weakness in this assumption is the failure to account for

the possibility that some of the material in precipitation and dry

fallout, perhaps a dominant proportion, is locally derived and is there-

fore not a component of the net atmospheric flux into the basin. Major

locally derived contributions -to atmospheric inputs are expected,

as the bulk of materials contributed to the atmosphere by surface

sources has a short residence time and does not travel long distances

(c.f. Bolin et al. 1974).

The estimates of atmospheric contributions to continental runoff

used assumptions similar to those utilized in the study of small

river basins, however the assumptions are not supported by an adequate

body of data. The net loss of material from continents is taken from

estimates based on data compilations for large river systems (see

Chapter I). Eriksson (1960) computes airborne inputs as the river

output less human and rock weathering contributions. The latter con-

tribution is determined on the basis of geology and does not include

evaporite inputs, which he dismisses as insignificant. Garrels and

Mackenzie (1971) base their calculations on a single, 1937, estimate for

average rain composition, uncorrected for terrestrial inputs. They

ignore later work. Holland (1978), who fails to state his assumptions,

apparently uses winter precipitation chloride data of Junge and

Gustafson (1957) and applies a continental average evaporation correc-
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tion to the data. Why he did not use the annual data of Junge and

Werby (1958) is unclear. He appears to have calculated the marine com-

ponent of other ions using seasalt ratios. The sulfate input is

apparently assumed to be entirely anthropogenic.

The following discussion of the atm6spheric contribution to

Amazonian surface waters is in two parts. The first focuses on the

chemistry of precipitation collected during the period of May to July

1976 and 1977 on transects of the Amazon Basin along the main channel.

Chemical, geographic, and time series relationships are used to estab-

lish sources of various chemical species in the samples and in particular

to distinguish marine and terrestrial components. The second part

establishes the relationship between the distance from the Atlantic

Ocean and the chloride content of rivers which drain terrains lacking

chloride bearing rocks. This relationship is utilized to calculate

cyclic salt contributions to Amazon surface waters.
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11.2:1 COLLECTION AND ANALYSIS

Precipitation samples were collected off the northeast coast of

South America and in Brazil, Peru, Columbia, and Bolivia, (Figure II.1,

Table 11.2). A majority of the samples were collected utilizing a se-

quential sampler. on board the R.V. Alpha Helix in the period of mid-May to mid-

July, which extends from the end of the wet season well into the dry

season for much of the Amazon Basin south of the equator. Additional

rain samples were collected in Peru, using a small funnel collector

placed atop small-town hotel roofs. Snow samples were collected in July

and December on Chacaltaya Mountain, Bolivia (5200m).

The shipboard sequential sampler used a large funnel of approximately

2
0.25m2. Storms prior to 2 June 1976 were sampled utilizing a funnel

consisting of a polyethylene sheet draped over a frame. After this date

an acrylic plastic funnel was used. The 1976 samples were measured and

distributed to bottles by a rocker mechanism of acrylic plastic, analogous

to that of rocker-type rain gauges. To reduce handling, 1977 samples were

collected directly in 500 ml bottles. The funnel was covered with a plastic

sheet between storms, and was rinsed three times with distilled water imme-

diately prior to sample collection. Sampling was done at least 100 meters

from land, but usually greater than 500 meters. The collector was mounted

on the flying bridge (-8 m above the water surface), away from the

rigging and the smoke stack, both of which represented potential sources

of contamination. A person was present during collection to cover the

sampler if rain was passing through the rigging or the exhaust stream,

and to record which samples might be so contaminated. The samples were

biased towards large storms, as each sample represents an equal amount of

precipitation, and it proved difficult to collect uncontaminated samples
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Figure II.1

Sample location map for Amazon precipitation
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TABLE II. 2

SAMPLE DESCRIPTION

DESCRIPTION
OF EVENT

light shower

light shower

intense rain=

light shower

light rain
showers

moderate rain

intense rain=

intense shower=

fresh snow

few day old
snow

DURATION

min.

min.

min.

min.

hr.

31- V-76

5-VI-76

13-VI-76

27-VI-76

29-VI-76

8- V-77

17- V-77

22- V-77

10-VII-77

30-XI-78

NUMBER OF
SAMPLES

1

1

8

1

8

1

11

2

4x

4x

SAMPLE
VOLUME

100

200

all

500

all

ml

ml

500 ml

ml

500 ml

300 ml+

all 500

500+300

2000 ml

2000 ml

refer to Figure II.1 for locations

all samples took less than five minutes to collect

20 cm funnel

acidified + unacidified splits
snow melted in polyethylene bags,
hot leached in distilled water

DATE*

1 hr.

30 min.

5-10 min.
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from showers due to wind shifts. During a heavy rain, the ship could be

directed into the wind for a sufficient period to collect a large number

of samples. Samples suspected of being contaminated usually showed

elevated levels of sulfate, chloride, and hydrogen ions, and to a

lesser extent other species. Only one Peruvian rain sample was free

of insect parts and pieces of vegetation, and was therefore considered

uncontaminated.

Additional sampling bias towards large storms was caused by

meteorological factors. Anderson at el. (1974) show that clouds, and

by inference showers, form preferentially over land in the Amazon Basin.

The large rivers frequently stand out sharply as cloud-free areas in

satellite photographs. The contrast is due to the greater sensible and

latent heating over land. Presumably large storms are not so strongly

affected by surface differences, as can be seen in the spreading of very

active storms in satellite photos.

11.2:2 Analytical Methods

Analytical methods and precisions are summarized in Table (11.3);

a detailed discussion of analytical techniques is found in Appendix (III).

Analytical results are found in Table (11.4). Showers sampled at sea

yielded small volumes (Table 11.2), hence the incomplete analyses and

the lower precisions. Figure (11.2) is a plot of analyzed anions against

analyzed cations, showing that there are no major omissions for charged

species. The failure to analyze for ammonia in 1977 does not have a

significant effect on the charge balance. The 1976 samples show poorer

charge balances than 1977 samples as a result of more handling steps and

lower analytical precisions.
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TABLE

ANALYTICAL

II. 3

INFORMATION

SPECIES INSTRUMENTATION PRECONCENTRATION

PRECISION (est. 26),
the greater of:

0.05 pH units

Na atomic absorpt.

K "t "1

Mg "t "i

Cni it

titration

SO4
colorimetric

<5x 1976
>l0x 1977

5x 1976
lOx 1977

0.2 ymole/l or 2% 1976*
0.1 pmole/l or 1% 1977+

0.1 pmole/l or 1%*

0.1 pmole/l or 1% 1976*
0.03 umole/1 or 1% 1977+

0.1 pmole/l or 1%'

0.8 pmole/l or 1% 1976*
0.3 pmole/1 or 1% 1977

0.8 umole/l or 4% 1976*
0.4 pmole/l or 4% 1977

0.4 pmole/l or 4%

0.5 pmole/1 or 5%

0.3 pmole/l or 2%

0.1 plmole/l or 3%

0.1 pmole/1 or 3%

E/Z+

x occasional random high blanks

+ multiple analyses

* halve the precisions for the 1976 marine rain analyses,
as half volumes were used in the analyses.

# normalized inorganic charge balance (total charge)/(total cations)
its error (E/Z+) is calculated from the analytical precisions

electrode

N03 x

NH4 X

Silica

NICB#
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Figure -11.2

Charge balance in Amazon precipitation

Symbol key:

13-VI -76 --t
27-VI -76 --Oy
29-VI -76 --3
8- V -77 -- +

17- V -77 -- x
22- V -77 --)
10-VII-77 --
30-XI -78
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11.2:3 Discussion of Sampling

Since the objective of this study is to identify the sources of

material in precipitation based on chemical relationships, sequential

sampling is ideally suited. It provides a large number of samples with

a wider range of concentrations than would be obtained by bulk sampling.

In addition, this technique provides information about time variations

within storms, which can be used to infer the part of the atmospheric

column from which the chemical constituents are derived.

Time variations of chemistry during storms reflect in general the

effects of washout and rainout (Junge 1963). Washout involves scavenging

by falling drops and is most effective for particulates of >1 p diameter.

Rainout involves removal onto condensing droplets and affects particulates

of all sizes and gases, though through a variety of mechanisms. The sharp

drop in concentration near the beginning of many storms is a washout

effect. Washout operates on particulates below the cloud base; the chem-

istry of showers is dominated by washout, while in heavy rains it is

dominated by rainout (Junge 1963). Consequently. the chemistry of

washout can be used as a guide to the >1 p aerosol composition of the

lower atmosphere, and rainout chemistry to the composition of particulates

(including > 1,u particulates) and soluble gases more widely distributed

through the air column. From this information, one can make inferences

about the residence times and transport histories of the particulates

involved. Bolin et al. (1974) demonstrate, using a model of a turbulent

boundary layer, that the atmospheric residence time of particulates

increases with altitude, and that the increase is especially rapid as

one passes through the boundary layer. Materials injected at the
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surface would therefore be rapidly recycled within the basin. Much

of the material higher in the column would, in general, be derived

from a more distant source than material lower in the column.

Finally, sequential sampling procedures limit a major source of

error encountered in bulk sampling. Galloway and Likens (1976, 1978)

point out that perhaps the largest source of error in bulk sampling

is that of leaving the sample in the collector for prolonged periods

(they recomend no more than a week), which allows for evaporation,

biological activity, and contamination by falling debris. For

sequential sampling, the residence time of samples in the collector is

short and sources of contamination can be more closely monitored.

This procedure could be followed for bulk sampling, but typically is

not; presumably the work required for the equivalent quantity of

data would be prohibitive.
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11.3 BACKGROUND

11.3:1 Amazon Basin Meteorology

The Amazon River Basin lies entirely within the tropics, being

situated between 60 north latitude and 200 south latitude. Average

temperatures are very uniform over lowland parts of the basin (22 -

260C) and decrease systematically with altitude. Treeline ranges from

3500-4500 meters, while the perpetual snow line occurs from 4000 -

5000 meters. In excess of 3500 mm/yr precipitation falls in the

northwest lowlands. This amount decreases to less than 2000 mm/yr

in the extreme northeastern and southern parts of the basin

(Hoffmann 1975, Salati et al. 1978, Hjelmfelt 1978). Precipitation

amounts increase markedly in the Subandean zone and on the east flanks

of the Andes, due to orographic effects; up to 7000 mm/yr precipitation

is recorded (Hoffmann 1975). Precipitation amounts drop to less than

1000 mm/yr in the central Andes. Moisture and air transport is in

an east to west direction, with moisture taking from 6 days (in July)

to 10 days (in the period January to October) to reach the Subandean zone

from the Atlantic (Molion 1975).

The annual motions of the inter tropical convergence zone

play a significant role in the seasonal distribution of precipitation

(Hjelmfelt 1978, Salati et al. 1978) and cloudiness (c.f. Miller 1971).

South of the equator there is a distinct dry period from June to August,

while to the north of the equator the dry season lasts from January

to. March. In the part of the basin bracketing the equator, the

seasonal drought is less well defined, lasting August to November in the

east and being nonexistant in the west. The recycling of water by

evapotranspiration increases the amount of precipitation falling during
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the dry season in the western part of the basin (Molion 1975, Lettau et

al. 1979). It is estimated that 88% of the water in the precipitation

which falls in the western part of the basin has fallen at least once

before during transit. Much of the eastern flank of the Andes lacks a

pronounced dry season, however the seasonal variations in precipitation

that occur tend to reflect variations to the east.

Typical storms of the Amazon Basin are of a convective type,

driven primarily by local latent and sensible heating. These storms

average about one hour in duration (Hjelmfelt 1978). Their intensity

varies considerably, from light showers to storms producing several centi-

meters of rain per hour. All storms sampled during this study were of

this category. Precipitation associated with frontal events, "friagem",

is comparatively rare, as these occur, on average, five times a year

(Ratisbona 1976).

II.3:2 Previous Studies of Amazon Precipitation Chemistry

Several studies have reported analyses of precipitation from the

Amazon Basin. Ungemach (Ungemach 1969, Anon. 1972b) presents a two year

(1966-1968) time series of plant macronutrient concentrations in precip-

itation, from near Manaus, Brazil. As sampling from the R.V. Alpha Helix

took place during the transition from wet to dry seasons, it is important

to note that Ungemach observes that concentrations do not vary markedly

within seasons, and that the dry season concentrations are generally

higher than wet season concentrations. On this basis, it seem reasonable

to say that concentrations in precipitation collected from the R.V. Alpha

Helix are higher than the annual average. Concentrations from Ungemach

and several studies reporting single analyses (Gibbs 1970, Brinkmann and

Santos 1973, Nortcliff and Thornes 1978) are close to those of this study.
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11.4:1 SOURCES OF MATERIALS IN AMAZON PRECIPITATION

The elements examined in this study (Na, K, Mg, Ca, Cl, S, P, Al,

Si, Fe) have short residence times as particulates or gases, on the

order of 1 to 10 days (Junge 1963, Junge 1974, Junge and Werby 1958,

Rahn et al. 1976). It is assumed that these elements are derived from

sources generating a characteristic mixture of elements, for example

the seasalt aerosol. Furthermore, gases and < 5 p particulates can be

expected to be transported in the same manner in the lower troposphere,

(i.e. they have the same diffusivities and are not affected by

gravity, c.f. Junge 1963). Hence the chemistry of material

being removed from the atmosphere will retain some of the chemical

characteristics of its sources. These can be grouped into the general

categories of marine, terrestrial, and anthropogenic inputs.

Potential sources of elements and species in precipitation falling

in the Amazon Basin are summarized in Table (11.5). Sodium, potassium,

magnesium, calcium, silicon, iron, and aluminum are generated exclusively

as particulates. Nitrogen in precipitation is derived directly or

indirectly from gas phases. Chlorine and sulfur have particulate and gas

sources. Primary element associations are marine inputs, Cl-Na-Mg-S;

soil inputs, Al-Fe-Si-Ca; biological inputs, N-S-K-; burning of

vegetation, Ca-K-P-(N); and industrial pollution (of doubtful significance),

S-N-Cl. The remainder of this section examines the potential inputs

and relates them to the chemisty of precipitation in the basin.

11.4:2 Anthropogenic Inputs

Pollution is unimportant, except on a localized basis. At present,

there are few industries in the lowlands that could act as a major source;
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TABLE II. 5

SOURCES OF TRACE CONSTITUENTS IN THE AMAZON ATMOSPHERE

TERRESTRIAL
INPUTS

POLLUTION
INPUTS*+

reaction of
gas phase
inputs

salt sprayx

salt sprayX

salt sprayx

salt sprayX

salt sprayX
gas phase?

salt spray,
gas phase

gas phase?

reaction of
gas phase
inputs

minor: burning,
soil dust

vegetation,
burning, minor
soil dust

minor: burning, dust

soil dust

gas phase from
decay processes

gas phase from
decay, maybe burning

vegetation,
burning

soil dust

soil dust

soil dust

reaction of
gas phases in
burning

land clearing+

land clearing+

land clearing+

land clearing+

fuel burning

fuel burning

land clearing+

land clearing+

land clearing+

land clearing+

* Only the burning and dust associated with land clearing is considered
to be important.

+ Land clearing is included in this column in that it represents
exaggerated inputs of vegetation combustion products and dust over
what is the normal background. Inputs from land clearing would not
be chemically distinguishable from natural inputs.

x These elements are expected to be found in near seasalt proportions.
Sulfate is expected in higher proportions due to gaseous contributions.

SPECIE$/
ELEMENT

MARINE
INPUTS
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furthermore, mean atmospheric motions into the basin (c.f. Molion 1975,

Ratisbona 1976) do not pass over significant outside sources The several

lowland mining centers, for example Amapa (Mn) and Rondonia (Sn),

process oxide ores (Goodland and Irwin 1975). These would be a minor

source of materials compared to the Andean mining centers where

sulfide ores are processed. Material from the Andes, however, would tend

to be blown to the west, out of the basin. The most important anthropo-

genic input is the burning of vegetation, which will be treated later

as a terrestrial input.

11.4:3 Marine Components in Amazon Precipitation

The importance of the contribution of marine derived materials in

atmospheric gases and aerosols has long been recognized (c.f. Eriksson

1952,1955, 1959, 1960, Junge 1963). Marine materials transported

through the atmosphere to the continents and returned to the oceans

have come to be known as cyclic salts, a term which originally

included evaporite inputs (Conway 1942). Maps of chloride concentrations

and fluxes in precipitation over continents show steep gradients

near the coast (Junge and Gustafson 1957, Junge and Werby 1958, Eriksson

1959, 1960), evidence of a marine source. Other ions show similar gra-

dients, although the pattern is not so clear, being obscured by

terrestrial and anthropogenic inputs. Steepest gradients are seen on

the leeward side of continents and against mountain ranges (where

inland transport is hindered by orographic precipitation). The

concentration of chloride in Amazon precipitation decreases with

increasing distance from the Atlantic (Figures 11.3, 11.4), consistent

with an Atlantic Ocean origin.
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11.4:4 Processes Transferring Materials from the Oceans to the Atmosphere

Two principal mechanisms transfer material from the oceans to the

atmosphere: aerosol formation from bubble bursts and spray, and gas

transfer. All substances dissolved in seawater are transferred during

the formation of the aerosol. It is not precisely known to what degree

fractionation occurs during droplet formation, however evidence suggests

that little fractionation occurs for the major ions (Junge 1963,

MacIntyre 1974); -the more dilute species show greater fraction-

ation.

The release of reduced gaseous sulfur compounds into the marine

atmosphere is thought to be a significant additional source of sulfur.

Compounds thought to be important are hydrogen sulfide and dimethylsulfide

(DMS) (c.f. Graedel 1979). The most probable sources of these compounds

are emissions from reduced coastal sediments and low-level releases

from open ocean metabolism. Both compounds are produced by the decompo-

sition of amino acids containing thiol groups; however sulfate respira-

tion is a far more important source of H2S (Schlegel 1974). Observed

concentrations in the marine atmosphere are in the range of 0.2 to 4

nmoles S/m3 air for H2S (Slatt et al. 1978), DMS (Maroulis and Bandy

1977), and their intermediate oxidation product SO2 (Lodge et al. 1960,

Maroulis et al. 1978). Complete oxidation to SO3 or H2So4 is thought to

take less than a day, and a reduced sulfur flux of about 6 x 1013 g S/yr

would be necessary to sustain these concentrations (Graedel 1979). This

sulfur flux is about one quarter that estimated by Eriksson (1959) for

the transfer of sulfur to the atmosphere by sea spray, as SO4 . The SO3

and H2S04 , produced from H2S and DMS, are thought to react rapidly
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Figure 11.3

Map of the reference line used in calculating distances from the
Atlantic coast. This line is perpendicular to the mean surface
wind direction near the coast (c.f. Ratisbona 1976), where the
marine aerosol is confined to lower altitudes (Junge and Gustafson
1957). A perpendicular to this line is parallel to the lines
of mean air motion farther inland (c.f. Molion 1975), where the
marine aerosol is more widely distributed through the air column
(Junge and Gustafson 1957). Wind directions do not change
appreciably throughout the year.
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Figure II,4

Average value of chloride in different precipitation events
plotted as a function of distance from the Atlantic Ocean.

Symbol key:

13-VI -77 -- A
27-VI -76 -- Q

29-VI -76 -- j

8- V -77 -- +

17- V -77 --X
22- V -77 -- K

Chacaltaya -+
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with water vapor and ammonia to form droplets (Junge 1963), and with sea

spray (Eriksson 1959). Eriksson argues that the second reaction would

cause HCl to be released from sea spray, as evaporation would cause the

pH to drop and the HCl vapor pressure to rise enough to drive off HCl.

Marine aerosol chemical data are consistent with this mechanism. Lodge

et al. (1960) observe a five fold enrichment of sulfur compared to its

seasalt proportions, and Meinert and Winchester (1977) observe a two to

three fold enrichment of sulfur compared to its seasalt ratio to

K and Ca (which are in seasalt proportions), while Cl is 25-40% depleted.

.11.4:5 The Chemistry of the Marine Component in Amazon Precipitation

The ratios of Na, K, Mg, and Ca to Cl in marine precipitation

(samples RA01 and RA02, Table 11.4) range about the seasalt ratios:

mole
ratios Seasalt RA01 RA02

Na/Cl 0.852 0.802 0.921
K/Cl 0.018 0.016 0.030
Mg/Cl 0.101 0.106 0.115
Ca/Cl 0.019 0.015 0.026

This is consistent with a dominantly sea spray origin for these species

in precipitation. The deviations from seasalt ratios suggest that some

degree of fractionation is involved. This is not unreasonable as

these samples are from showers, and their chemistry would tend to be

dominated by the washout of only coarse (>1 p) particulates and would

not represent the bulk composition of the aerosol.

Sulfate is roughly twice its seasalt proportions (SO4/Cl mole

ratios: seasalt-0.052, RA01-0.103, RA02-0.176), an indication that

additional sources of sulfur contribute to marine precipitation. Reduced

gas inputs would be a reasonable source of the excess. If one assumes



that part of the sulfate is derived from sea spray in seasalt

proportions, a roughly equal contribution of sulfur from gas phase inputs

is indicated. The relative contributions from these two sources would

change depending on wind conditions and the generation of spray.

If chemical alterations and differeftial removal are slight, the

marine component in inland precipitation would retain its chemical

identity. Due to turbulent mixing during transport, this marine rain

component would have ion proportions similar to average marine rain

off the northeast coast of South America. As sampling was inadequate

to establish a marine rain average, the assumption is made that the

marine component in inland precipitation has seasalt proportions for

all species relative to chloride (chloride is assumed to be entirely

marine), except for sulfate. For the lack of a better estimate,

a so 4 :C1 ratio of 0.127 = (SO4RA0 +SO4RA02)/(ClRA01+ClRA02) is assumed

to be the best representation of the marine contribution of sulfate in

inland rain.

The chemical contribution of the marine rain component can be

clearly identified in inland precipitation when the data is plotted

against chloride content. This confirms that the composition of the

marine component does not undergo major changes during inland transport.

All data plot about or above marine rain trends drawn through the data

(Figures 11.5, 11.6). The degree to which data plot above the trend

provides an indication of the relative contributions of marine and

terrestrial components. Na and Mg show minimal terrestrial contribu-

tions. All other species are dominated by terrestrial inputs, and

NO3 and NH4 show no marine contributions. The plot of hydrogen ion

- 44 -
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Figure 11.5

Sodium, potassium, magnesium, and calcium versus chloride in Amazon

inland precipitation. The lines indicate ratios for the two

marine rain samples and seasalt.

Symbol key:

13-VI -76 -- A

27-VI -76 -- 0

29-VI -76 -- 0
8- V -77 -- .4-

17- V -77 -- X
22- V -77 --

10-VII-77
30-XI -78
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Figure 11.6

Sulfate, nitrate, hydrogen ion, and ammonia versus chloride in
Amazon inland precipitation. Ratios for the two marine rain
samples and seasalt are indicated in the sulfate graph. Note
that the seasalt line falls well below the data and the two marine
rain ratios. Bicarbonate resulting from the equilibration with
atmospheric CO2 is subtracted from the hydrogen ion data (see
Section 11.4:9). Note that it is possible to envision a diagonal
lower bound for the hydrogen ion data.

Symbol key:

13-VI -76 -- A
27-VI -76 -- )
29-VI -76 --

8- V -77 -- ,+
17- V -77 -- X
22- V -77 -- )K

10-VII-77 -
30-XI -78 -
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against chloride appears to be bounded by a diagonal line, consistent

with the presence of sulfuric acid in marine rain.

Minor fractionation and alteration of the marine component is

apparent in the inland rain samples. Magnesium ratios to

chloride and sodium, in inland rain, show considerable variation

relative to the marine rain ratios. The rain Mg:Na ratio (Na is used,

as it is analyzed to a greater precision than Cl) tends to be higher

than the seasalt Mg:Na ratio in light rain (Table 11.2) and lower than

the seasalt ratio in intense rain (Table 11.2), suggesting that a

physical separation process is occurring, involving rain out and wash

out. The relationships between Na and Cl in 1977 data (analyzed

to greater precision than 1976 data, most samples are from intense

rain) show deviations from the seasalt ratio, perhaps due to additions

of SO3 or H2SO4 and loss of HC1 through the mechanism proposed by

Eriksson (1959, see above). Sodium in 1977 data plots near the seasalt

Na-Cl trend, while the lowest concentrations of sodium and almost all

the magnesium data plot below their respective seasalt trends (Figure

11.7). The one high magnesium point is from a shower, and reflects

the Mg fractionation just mentioned. Regressions through the data

trends are given on the plots.1  For sodium, the slope is not stat-

istically different from 1.0, but is different from the eseasalt slope.

1 All regressions in this study use a reduced axis criterion,
chosen because there is no a priori statistical grounds for selecting
any particular parameter as an independent variable (c.f. Jones 1979).
Briefly, the slope, A = (linear least squares slope)/(correlation
coefficient). The intercept, B = Y - AX, X and Y being data averages.
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The Na-Cl slope of approximately one suggests that chloride in the sea

spray aerosol has been lost to the extent that only NaCl remains. The

Cl intercepts for the two regressions are close, being 1.52 and 1.03

pmoles/1 respectively (these values are greater than blanks treated

like the samples). This C1 intercept is interpreted as representing a

background phase, perhaps HCl displaced from sea spray as the result

of the reaction with SO3 or H2S04. It should be noted that the changes

in the composition of the marine component described here would not

necessarily result in significant deviations from marine rain pro-

portions in time averaged bulk precipitation (being a mixture of light

and intense rain).

11.4:6 Terrestrial inputs

Within the Amazon Basin and adjacent areas, three principal

categories of terrestrial inputs can be identified: biological

emissions, soil dust, and combustion products from burning vegetation.

The first class of inputs is widely distributed in the basin, while

the other two tend to be localized and restricted to drier

conditions.

The principal areas where soil dust inputs might be important

are in grasslands (particularly in burnt over areas), along river

courses (during low water), along dirt roads, and throughout the

Andes above the level of dense vegetation. Most soils in the

Amazon Basin are highly depleted in soluble cations (c.f. Table IV.4).

Principal exceptions are soils from coastal zones, the Andean and

Subandean regions, and the flood plains of rivers which receive

Andean sediments, such as the main channel and the Madeira River.

Lawson and Winchester (1979) attribute Si, Al, Fe, and Ca in aerosols
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Figure II, 7

Magnesium and sodium versus chloride in 1977 inland precipitation.

Symbol key:

8- V -77 -- X
17- V -77 --

22- V -77 --

10- V -77 -- +
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from forested sites near Manaus, Brazil and Zongo, Bolivia to soil

inputs (Table 11.6).

Burning occurs primarily at the end of the dry season in the grassland

areas located in the northeast, south, and southeast parts of the Amazon

Basin, and on the perifery of these areas. The clearing of vegetation

for agriculture and hunting has occurred since precolonial times,

however the practice has greatly expanded as the result of the

recent deforestation of vast tracts of land for the purpose of cattle

raising along highways (Jahoda and O'Hearn 1975, Goodland and Irwin

1975, Sioli 1977). Chemically, fire inputs should resemble ashed

plant material, with roughly equimolar proportions of Ca, Mg, and

K, and about one half as much Na (Stark 1971, Scott 1977, Klinge

1977, Herrera et al. 1978). Significant contributions of P and N

are likely, the latter depending on the chemistry of the combustion

process.

Tropical vegetation has been demonstrated to be a source of

particulates onto which certain elements are concentrated. Lawson and

Winchester (1979) have shown that the aerosol concentrations of

soil derived elements (Al, Si, Fe, and Ca) are suppressed during

rainfall episodes, while other elements (K, P, and S) show this

concentration reduction only in fine (> lp) phases; they associate

these elements with vegetational sources (Table 11.6). Crozat (1979)

reports that high levels of K, relative to other elements are

observed in near-ground-level aerosols from the Ivory Coast, especial-

ly during the rainy season and at night. The source is thought. to be

fluid exudates on leaves (guttational fluids).

Sulfur has been measured on aerosols and both sulfur and nitrogen
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TABLE II. 6

SELECTED TRACE CONSTITUENTS

IN TROPICAL ATMOSPHERES

Manaus, Brazil:

SPECIES/
ELEMENT

NH3 (g)

SO2 (g)

H2S

<1 u S

>1 U S

<1 U P

>1 U P

<1 u K

>1 u K

<1 u Fe

>1 u Fe

>1 u Al

>1 u Si

>1 u Ca

ATMOSPHERIC
CONCENTRATION

umoles/m
3

1000 (1)

=13 (1)

trace(2)

4.3 (4)
2.0 (3)

0.21(5)

2.6 (3)

2.0 (4)

4.7 (3)

1.1 (4)

4.9 (3)

20. (3)

74. (3)

2.7 (3)

PREDICTED RAIN
CONCENTRATION

umoles/l*

50

0.65

0.22

0.10

0.011

0.13

0.10

0.24

0.055

0.25

1.0

3.7

0.14

Ivory Coast:

SO2 (g)

S (s)

60. (6)

18. (6)

3.0

0.9

(1) Lodge et al. (1974)

(2) R. Bradley, I.N.P.A. (personal communication)

(3) Lawson and Winchester (1979), before rainfall

(4) from Fig. 1 and 3, Lawson and Winchester (1979), before rainfall

(5) from Fig. 3, Lawson and Winchester (1979), after rainfall

(6) Delmas et al. (1978), inland station; coastal station displays
higher values

* Predicted assuming complete coprecipitation of water and
trace constituent, assumed moisture content 20 g H20 / m3 air
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have been measured on reduced gas phases in tropical forests (Table

11.6); biogenic inputs are considered to be the most probable sources.

On land, DMS is expected to be produced in soils and other restricted

environments, where conditions are slightly aerobic (Lovelock et al.

1972, Rasmussen 1974), while hydrogen sulfide emissions characterize

more reducing environments, especially where sufficient sulfate is

present to make conditions favorable for sulfate metabolism (Schlegel

1974). Due to the presence of cloud droplets, airborne organic compounds,

and bright sunlight, the complete oxidation of DMS and H2S in a continental

tropical atmosphere may be particularly rapid, perhaps a period of

several hours to a day (c.f. Graedel 1978, Calvert et al. 1978, Hegg

and Hobbs 1978). Soils, particularly more alkaline soils, have been shown

to be a significant source of NHI and of NO, from NH3 oxidation (Junge 1958).

Weakly reducing environments, offering potential sources of reduced

sulfur and nitrogen gases, are widely distributed in the Amazon Basin,

however strongly reducing conditions are uncommon and localized. Nu-

trients in organic litter are processed by rapid decay and assimilation

into the biomass (Went and Stark 1968, Herrera et al, 1978), associated

with a surface mycorrhizal root mat. Presumably the surface root mat

could be the locus of reduced gas generation. There is evidence that

acid reducing conditions are utilized in the surface root mat to retain

nitrogen in the soil as the ammonium ion (Jordan and Medina 1977).

These conditions would facilitate the release of H2 S. The direct input

of H2S into the atmosphere from the occasional overturning of flood

plain lakes of the Amazon main channel has been described by Brinkmann

and Santos (1974). This combination of strongly reducing conditions and

high sulfate levels, found in the lakes, is not described for other
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parts of the Amazon Basin. This is probably due to the lack of widespread

geologic sources of sulfur.

11.4:7 Composition Versus Altitude of Aerosols

The composition of washout relative to rainout suggests that the

seasalt aerosol is concentrated at lower altitudes near the coast and

dispersed to higher altitudes farther inland. The storm nearest the

coast (13-VI-76) shows a sharp drop in chloride concentration with time,

which is a typical washout effect. By inference, the marine phases are

localized in the lower atmosphere.. The far inland storm (17-V-77) shows

a rise in chloride concentration after the first sample, indicative of its

dispersion to higher altitudes and depletion at lower altitudes.

Species which are dominantly terrestrial (e.g. Ca, K, NO3) show a drop

with time in both the 13-IV-76 and 17-V-77 storms, suggesting that ter-

restrially derived components are locallized in the lower atmosphere both

near the coast and farther inland. Showers, which are probably washout

dominated, sampled in 1976, show a high concentration of terrestrial

species. The difference in the altitude distribution of marine and ter-

restrial components reflects the introduction of the latter over the whole

basin. Ungemach (Ungemach 1969, anon. 1972b) reports similar washout

effects for species which are terrestrially derived, the effect being

especially pronounced for phosphorous.

11.4:8 Relationship Between Terrestrial Inputs and Precipitation Chemistry

The precipitation chemistry data from this study, together with data

of Ungemach and of Lawson and Winchester (1979), can be combined to show

that fine particulates are more important that coarse particulates in

contributing terrestrial materials to precipitation. Ungemach (1969)

gives the N:P ratio (mole ratios are used throughout) in rain, which

with data from this study (values are corrected for marine inputs,
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using marine rain proportions relative to chloride), is used to calculate

ratios of S:K:P for comparison. with the particulate data of Lawson and

Winchester (1979) (data are given in Table 11.6). Ungemach reports

equimolar proportions of nitrate, ammonia, and organic nitrogen in rain

near Manaus, with the ratio of total nitrogen to total phosphorous being

63:1. As some of the nitrogen in precipitation is derived from gas

phases, the ratio of N:P in rain should be higher than in particulates.

The ratio of nitrate to ammonia from this study if 4:1, while Ungemach

teports 1:1; the difference may be due to Ungemach's sampling in closer

proximity to vegetation and soils. The S:N ratio in rain is 1.3:1, and

S:K ratio is 5:1. Combining the above ratios, one gets a S:K:P ratio

of 82:16:1. This is quite different from the ratios in >1 p particulates

(Table 11.6) in which the S:K:P ratio is 1:2.4:1.3. However, ratios for

the fine particulate data (Table 11.6) show a S:K:P ratio of about

20:9.5:1, which is much closer to rain proportions. Clearly the fine

particulates must be a major source of these elements in precipitation.

The available atmospheric data for the rain forest suggests that

fine particulate and gas sources are reasonable, as is illustrated in

the case of sulfur. The concentration of water vapor at ground level in

the rain forest is roughly 20 g H20/m
3 air. The combined sulfur dioxide

concentration of Lodge et al. (1974) and fine particulate concentration

of Lawson and Winchester (1979) is about 17 nmoles S/m3 air (Table 11.6).

If all the sulfur is condensed with the water vapor, a solution of 0.85

pmoles S/l would be produced, the right order of magnitude for rain.

This would be an underestimate in that reduced gases and marine inputs

are not accounted for. Predicted concentrations of other species are

summarized in Table (11.6).
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11.4:9 Gaseous Inputs and the Acidity of Rain

A significant fraction of sulfur and nitrogen in precipitation is

derived from gaseous inputs, the primary charged forms found in rain

being sulfate, nitrate, and ammonium ion (Junge 1958, 1963, Junge and

Werby 1958). The oxidation reactions that form sulfate and nitrate

result in acid precipitation unless these anions are neutralized by

basic phases such as the ammonium ion, soil carbonates, or combustion

ashes. The four ions related to gaseous inputs (Hi, NH4+, NO3, S04

approximately charge balance suggesting that major neutralization by

Na, K, Mg, and Ca does not occur. Sulfate is corrected (S04*) for

seasalt (spray) inputs which charge balance with other species. Two

calculations are presented (Figure 11.8): one-includes sulfate and hy-

drogen ion which are analyzed in all samples, and the other

includes all ions when analyses are available. Regressions

through the data are:

(H*) = 1.014(2 S04*) + 0.361 (r=0.805)

(H* + NH +) = 0.897(2 SO4* + NO3 ) + 0.165 (r=0.791)

Where H* is the measured hydrogen ion concentration, H, corrected for

-11.32
equilibration with atmospheric carbon dioxide (H* = H - 10 /H).

Statistically the slopes are not different from one.
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Figure 11.8

Hydrogen ion (corrected for equilibration with atmospheric CO2)
plotted against sulfate (corrected for charge balanced seasalt
component). In the lower diagram, nitrate and ammonia are included
with the 1976 samples, and nitrate with the 8-V-77 and 17-V-77
samples.

Symbol key:

13-VI -76 --

27-VI -76 -- O
29-VI -76 --

8- V -77 --

17- V -77 -- X
22- V -77 -- >i
10-VII-77.-
30-XI -78 -
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11.5 CYCLIC SALT CORRECTIONS

Several estimates of the net contribution of atmospherically derived

materials to Amazon surface waters have been published. Ungemach

(Ungemach 1967, 1968, Anon. 1972a,b) has compared atmospheric fluxes

into (determined from precipitation measurements at Manaus) and out of the

Negro River system. He found rates of input to be similar to rates of

output for all elements (N, P, Ca, Mg, K, Na) except Fe. Ungemach does

not differentiate between extra basin and recycled inputs. Gibbs (1970)

argues that 81% of the Na, K, Mg, and Ca in the dilute lowland rivers of

the Amazon Basin are cyclic. Gibbs (1972), assumes that all the chloride,

in the Amazon River is cyclic (he ignores possible geologic sources) and

calculates that 90% of the sodium at high discharge and 55% of the sodium

at low discharge is cyclic.

It has long been known that chloride in surface waters, with no

terrestrial sources of chloride, declines systematically as a function of

distance from the coast (Jackson 1905). This is a reflection of the loss

of chloride from marine air masses moving inland (Eriksson 1955, 1959,

1960, Gorham 1961). This observation is used as the foundation of a set

of assumptions for calculating the cyclic salt component in surface

waters of the Amazon River system:

(1) The chloride in lowland rivers having little or no marine rock
formations (see Table IV.4 for a detailed summary of their
geology) was assumed to be ocean derived via the atmosphere.
There are two important exceptions:
(a) The Tapaj6s and Trombetas rivers cross narrow surface

exposures of CaSO4 along the flanks of the Amazon Trough.
Steams in these strips are sulfate but not chloride rich
(Sioli 1963).

(b) The Purus, Jurus, and Javari rivers are rapidly eroding
marine formations in their headwaters. Only the lowest
concentrations of chloride observed in these rivers is
assumed to be entirely cyclic (1977 Purus and Jurus),
being close to values in adjacent rivers not eroding these
sediments.
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(2 ) Marine contributions for other components were calculated
from chloride using their seasalt proportions, except for sulfate
where the marine rain proportions were used. To charge balance
the marine component, the extra sulfate was assumed to be sulfuric
acid.

The concentration of chloride in lowland rivers is plotted as a

function of distance from the coast (Figure 11.9). The data trend is

quite smooth, consisting of a steep drop-off inland to 1200 km followed

by a gradual decline. Averaged chloride in precipitation (Figure 11.4)

bears a close resemblance to the distributuion in lowland rivers.

Only the three next most abundant ions in seawater (Na, Mg SO4)

show significant cyclic salt contributions in any of the rivers, with

the exception of one near-coastal river (Matari, S337A), draining strongly

weathered sediments. In this river about 15% of the calcium and

potassium is cyclic; no other river had more than 3% marine contribution

of these two elements.

Measured concentrations of sodium and magnesium and their estimated

cyclic components are presented in Figure II.10. Only the near-coastal

Matari River is dominated by cyclic inputs of both these elements.

The upper Rio Negro has a 50% contribution of cyclic sodium. In all

other rivers the cyclic input of Na and Mg is minor, compared to inputs

from weathering.

Sulfate provides an interesting contrast to sodium and magnesium as

its concentration is lower than the predicted cyclic component in the

Matari and Xingu rivers (Figure II.11), both of which are near-coastal

and lacking in major identifiable terrestrial sources of sulfate. In

lowland rivers with identifiable geological sources of sulfur, the
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Figure 11.'9

Concentration of chloride in selected lowland rivers as a

function of distance from the Atlantic Coast. Rivers having

sulfate containing marine sediments are also plotted. Distances

are measured to the geographic center of the respective basin,
Symbol key:

basins without marine sediments -- A
basins with marine sediments -- v

Rivers

Marari -- MI

Trombetas -- TR

Xingu -- XI

Branco -- BR

Tapaj6s -- TP

All Negro -- NG

Upper Negro -- UN

Coari -- CO

Tef5 -- TF

Jutai -- JT

Purus -- PU

Jandiatuba -- JN

Juru -- JR

Nanay -- NY

Precipitation -- a

see also Fig. 11.4
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Figure II.10

Concentration of sodium and cyclic sodium (predicted from the

Cl data of Figure 11.9), and magnesium and cyclic magnesium,

plotted as a function of distance from the Atlantic coast.

Symbol key:

basins without marine sediments -- A
basins with marine sediments -- v
predicted marine component -- +
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Nanay -- NY
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Figure II.11

Upper:
Concentration of sulfate and predicted marine sulfate
components in lowland rivers plotted as a function of
the distance from the Atlantic coast. Also plotted are
mean concentrations of sulfate in precipitation. Note
that concentrations of sulfate in precipitation are higher
than in many rivers.

Lower:
Ratio of chloride to sulfate in both selected rivers and precipi-
tation, plotted as a function of distance from the Atlantic coast.

Symbol key:

basins without marine sediments --

basins with marine sediments -- V
predicted marine component -- I
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Trombetas -- TR
Xingu -- XI
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sulfate concentrations tend to be relatively high. The average sulfate

concentrations for the storms sampled in this study are considerably

greater than the sulfate concentrations of some inland rivers,

suggesting that a sulfate deficit exists in lowland rivers relative

to precipitation, a deficit not seen if only the marine rain component

is considered. Chloride to sulfate ratios are plotted in Figure II.11

to highlight the sulfate poor character of many lowland rivers, com-

pared to precipitation. It should be emphasized that showers, which show

lower levels of chloride and higher levels of sulfate, are under

represented in the sampling (c.f. Section 11.2:1).

There are several possible explainations for the sulfate-poor nature

of lowland rivers. It may reflect seasonal storage of sulfur in the biomass,

loss of sulfur to the atmosphere, or a major rise in the SO :Cl ratio
4

in the marine component. This latter possibility appears unlikely as the

sulfate in the Matari is even below the concentration predicted using the

seasalt Cl:SO ratio. It seems very unlikely that the marine aerosol Cl:SO4

ratio ever rises above seasalt proportions. It is not possible to test short

term biomass storage without a time series extending over at least one year.

Loss of sulfur to the atmosphere is consistent with observations of precip-

itation chemistry, which indicate major terrestrial contributions to

sulfate in inland precipitation (Figure 11.6). If this is occurring, some

sulfate in inland regions must again be recycled, since the sulfate con-

centration in the most dilute inland rivers is well below values in inland

precipitation (see Figure II.11).
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11.6 CYCLIC SALTS IN THE ENTIRE BASIN

Cyclic chloride concentrations for all the main channel tributaries

not included in Figure 11.4. were calculated from curves fitted through the

trend in the figure. Inland of the Purus River, curves were fit through the

1976 and 1977 data separately to account for slightly higher values in the

1977 inland data. Coverage in the coastal part of the trend was inadequate

for separating the two years (1976 Branco and Matari samples are lacking).

The cyclic chloride concentrations for Andean rivers were taken to be the

same as that of the Nanay River (most inland lowland sample) for the same time

of the year. Main channel values were calculated assuming that cyclic chlor-

ide, along with other major ions, is mixed conservatively when a tributary

joins the main channel (These calculations are discussed in detail in

Chapter V). Cyclic chloride concentrations for all samples are given in

Table 11.7.

The most down-river samples can be used to calculate the cyclic salt

component in the June runoff, using cyclic chloride as a reference. Cal-

culated cyclic salt contributions are:

Element Cyclic Percentage

Cl 19.0 %

Na 7.9 %

Mg 1.4 %

S 3.8 %

Ca 0.1 %

K 0.5 %

C. -0.3 %*
inorg

*negative as a result of hydrogen ions in model
precipitation, does not include inputs via
weathering reactions.

These values are lower than any estimate given in Table II.1, the

closest estimate being that of Holland (1978), which was calculated
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Table 11. 7

Measured chloride concentrations (CL) (pmole/l) and predicted
cyclic Cl contributions (CYCL) for Amazon surface waters.



3AIN CHANNEL (1)

PAPAMETER:
STA. -LOCATION-

HARANON DRAINAGE (2) MADEIRA DRAINAGE (4)

CL CYCL PARAMETER:
STA. -LOCATION-

CL CYCL PARAMETER:
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SHIELD DRAINING (7)

CL CYCL PARAMETER:
STA. -LOCATION-
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S243
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76.6
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65.4
63.5
56.0
57.3
47.4
47.8
30.5
28.0
30. 4

139.2
156.
156.
151.
137.0
122.1
114.8
99.7
83.0
61.0
57.4
42.1
31.0
33.5
31.2
54.9
59.4

188.
158.

3.8
3.8
3.8
3.8
3.8
3.9
3.9
4.0
4. 1
4.4
4.4
4.5
4.5
4.6
4.6
5.4
6.9
6.1
6.8
3.p
3.8
3.8
3.8
3.8
3.9
3.9
4.1
4.4
4.5
4.6
5.5
5.7
5.9
5.4
5.4
2.8

S-2
A-02
A- 03
A-04
A-07
A-05
A-06
A-08
A-09
A-10
A- 12
A-11
A- 13
A-14
A-15
A-16
A-17
A- 18
A-19
BPA 10
BPA16
BPA13
BPA14
BPA15

HU.HUANUCO
HU.HUANUCO
HUIGUERAS
HUACHIPA
HU.TINGO N
SALT SP.
MONZCN R.
ASPASARTA
UCHIZA R.
CACHIYACU
HU.TOCACHE
TOCACHE P.
HU.BALSA Y
HUALLABAMB
SAPOSA R.
MAYO R.
HU.YURIMA-
SHANUSI R.
PARANAPURA
MARANON C-
CANA S.
HU.YURMNA-H
SHANUSI R.f
PARANAPURA

403.
145.0

32.8
16.0

469.
39200.

54.0
10.5
83.0

15400.
505.

6.4
392.
63.7

724.
323.
943.

95.6
438.
123.5

71600.
823.

52.0
124.4

UCAYALI DRAINAGE (3)

PARAMETER:
STA.: -LOCATION-

S-1
A-01
M-08
1-09
BPAO8

UCAYALI R.
MONTARO P.
UHUBAMBA
STREAM A-C
URUBAMBA

3.3 BPAll UCAYALI C-

3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.$
3.3
~3. 3
3.3
3.3
3.3

S212
S328
M-05
M-04
1-03
M-02
M-01
BPAO1
BPA02.
BPAO3
BPA04
BPA05
BPA06

MADEIRA R.
MADEIPA P.
ICHILIO R.
M. DE DIOS
BENI RIVER
MAnOHE GU-
MADEIRA PV
ICHILO R.
SAN MATEO
ESPIPITU S
MAMORE TR-
GUAPAY P.
PIRAY R.

OTHER ANDEAN (5)

PARAMETER:
STA. -LOCATION-

S249
S238
S231
S304
s313
5318

NAPO PIVER
ICA P.
JAPURA R.
NAPO R.
ICA RIVER
JAPUPA R.

CL CYCL NEGRO DRAINAGE (6)

362.
234.

5680.
94.9

2440.
191.

3.8
3.8

PARAMETER:
STA.: -LOCATION-

3.8 S216
3.8 5327
3.3 UN1
3.3 UN2

BR1
BR2
LN1
tN2

NEGRO R.
NEGPO R.
U.NEGRO R.
U.NEGRO R.
BRANCO R.
BRANCO R.
NEGRO R.
NEGRO R.

13.6
12.6
6.4

15.9
52.7
21.3
22.6
5.6

92.2
259.
72.5

470.
75.2

5.9
5.9
3.8
3.8
3.8
3.8
3.8
3.3
3.3
3.3
3.3
3.3
3.3

CL CYCL

8.5
7.1

37.4
9.4
8. 1

49.5

3.8
4.2
5.3
3.8
4.2
5.3

S236
S230
S225

CL CYCL A-21
S309
S309A

6.8 6.8 5315
7.6 7.6 S319
7.6 7.6 S319A
7.0 7.0 S322
15.5 15.5 S337A
16.0 16.0 NAN01
15.2 15.2 BPA12
9.5 9.5

5208
3206
S204
S332
S335
S337

TROMBETAS
TAPAJOS P.
XINGU R.
TPOMBETAS
TAPAJOS R.
XINGU R.

MARINE DRAINING (8)

PARAMETER:
STA. -LOCATION-

S242 JAVARI B.
5233 JURUA B.
5222 PURUS R.
S301 JAVARI B.
S317 JURUA B.
S324 PUPUS H.
S331 STREAM OB-

U. TERT.+,DRAINING

P AR AMETER:
STA. -LOCATION-

JUTAI R.
TEFE PIVER
COARI R.
NANAY R.
JANDIATUBA
VARZEA L.
JUTAI R.
TEFE RIVER
TEFE RIVER
COARI .
MATARI R.
NANAY R.
NANAY R.

CL CYCL

20.6
9.0

19.3
15.7
9.8

27. 1

20.6
9.0

19.3
15.7
9.8

27. 1

CL CYCL

16.1
16. 0
15. 1
22.6
5.9
5.0

53.1

(9)

CL

5.1
5.6
6.2
3.8
4.6
4.6
5.5
7.5
7.4
6.5

32. 1
2.8
3.3

4.1
5.1
5.0
4.1
5.8
5.0

15.5

CYCL

5.1
5.6
6.2
3.8
4.6
4.6
5.5
7.5
7.4
6.5

32.1
2.8
3.3
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using seasalt ratios relative to chloride (see Section II.1). The reason

for these differences include the failure to exclude locally derived

materials from balance calculations (a fault of the small basin studies

terrestrial sources of chloride (as is the case for Eriksson 1960 and Gibbs

1972), and analytical difficulties. It should be reiterated that the global

and analytical difficulties. It should be reiterated that the global

estimates given in Table II.1 are based on data from large river systems,

and can be compared directly with the Amazon estimates given here.

In a sense these global estimates are low in that they do not include

much data from small near-coastal rivers which have particularly high

cyclic salt inputs. Since Conway (1942), this zone has been largely

ignored in cyclic salt calculations.
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Chapter III

Environmental setting of the Amazon Basin, with emphasis on
geology and soils
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III.1 THE GLOBAL SETTING OF THE AMAZON BASIN

This study is directed at obtaining information on the processes con-

trolling the composition and flux of dissolved materials in the Amazon

River System, focussing on the major crustal elements. Garrels and

Mackenzie (1971) present a global model of sedimentary rock evolution, in

part using available river chemical flux data. They treated riverine

chemical fluxes as time invariant. Yet continents have aggregated and

broken up; mountains have uplifted and eroded; continental area has dimin-

ished and expanded with sea level changes. Many oceanic and atmospheric

cycles are characterized by timescales shorter than these events and could

be controlled by them. More recent modeling of geochemical evolution has

tried to take some of these features into account (c.f. Holland 1978).

The Amazon Basin is a particularly interesting area to study. Within

the Basin there is the broadest range of continental geology, with active

orogenic zones, areas of epiorogenic uplift, geologically stable areas, and

active sedimentary basins. In addition, human activities, which have so

thoroughly altered the environments of many large river basins, have yet to

have major impact in the Amazon, a feature now rapidly changing. The Amazon

is the largest river in the world, having an average discharge of 1.75x105

m3 /sec (Oltman 1968), about one fifth of the global river output to

the oceans. Recent studies of Meade et al. (1979) rank the Amazon third in

sediment output to the ocean at 8-9x108 tonnes/year, less than the Yellow

River (20x108 tonnes/year) and the Ganges-Brahmaputra (22x108 tonnes/year)

(data from Holeman, 1968). The Amazon ranks first in output of dissolved

material, transporting at least 2.9x108 tonnes/year versus 1.5x108 tonne/

year for the Ganges-Brahmaputra and 1.3xlO tonnes/year for the Mississippi

(Meybeck, 1976).
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111.2 MAJOR FEATURES OF THE AMAZON BASIN

The Amazon Basin occupies much of the South American continent

between 5* north latitude and 200 south latitude. At the present time the

basin conforms to the classical picture of a large river catchment, being a

large smooth plain, bordered by highlands. To the west is the Andean

Cordillera ranging from 3000 to 7000 meters; to the north lies the highlands

of the Guiana Shield (500-3000 m); and to the south rises the Brazilian

Shield (1000-2000 m). To the east of the Andes there exists a trough in

which the Amazon drainage is separated, by poorly defined divides, from the

Orinoco Basin to the north and the Paraguay Basin to the south.

Four major morphostructural zones can be distinguished within the

Amazon Basin, these being the Precambrian shields, the Andean Cordillera,

the Amazon Trough or Basin, and the Subandean Trough or Depression (Figure

III.1). These four zones characterize regions of distinctive geology,

soils, landscape, and to some degree climate and vegetation. Since the

Phanerozoic the shields have been topographic highs; the Cordillera has

been a locus of intermitant orogenic activity; the Amazon Trough has been

an area of subsidence; the Subandean Trough has had a complex history, most

recently acting as a zone of subsidence. The Andean Cordillera, within the

Amazon Basin,can be further divided into four major subzones: the Western

Cordillera, the Intercordilleran Region, the Eastern Cordillera, and the

Suhandean Uplifts. These four subzones control the river drainage network

within the Andes and correspond to areas of distinctive geology.
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Figure III.1

Morphostructural regions:

1. Amazon Trough
2. Subandean Trough
3. Shields
4. Western Cordillera (Cordillera Occidental)
5. Intercordilleran Zone (includes the altiplano regions)
6. Eastern Cordillera (Cordillera Oriental)
7. Subandean Uplifts

Symbol key:

CONSTRUCTIVE STRUCTURAL RELIEF ELEMENTS

TRENDOFFOLDED YOUNG MOUNTAIN RANGES OF THE ANDEAN SYSTEM

CREST OF HORST MOUNTAINS AND MONOCLINES

Ff FAULT, FLEXURE

LITHOLOGICAL STEP, ESCARPMENT

DESTRUCTIVE NON STRUCTURAL RELIEF ELEMENTS

OLD EROSION - SURFACES OF MESOZOIC TERTIARY AGE

OCCURRENCE OF INSELSERGS

CREST OF RESLDUAL RELIEF

ACCUMULATIVE RELIEF ELEMENTS

QUATERNARY FLUVIALALLUVIAL OR EOLIAN DEPOSITS (IN THE ANDES

INCLUDING GLACI0-ILUVIAL AND VOLCANIC TECTONIC MUDFLOW DEPOSITS)

- OCCURRENCE OFLATE-TERTIARY AND OUATERNARY LACUSTRINE OR MARINEDEPOSITS

Y PLEISTOCENE LOESS WITH ASH-AOMIXTURES

SAND DUNES PLEISTOCENE GLACIAL DEPOSITS

OCCURRENCE OF VOLCANOES SALT FLAT

LAKE
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111.3.1 THE DISTRIBUTION OF ROCK TYPES IN THE AMAZON BASIN

A wide variety of rock types are found in the Amazon Basin (Figure 111.2).

111.2). Representative chemistries are given in Table III.1; bear in mind

that no such data are available for the Amazon region, so the analyses

presented are from outside South America.' The soil analyses (to be dis-

cussed later) are from the Amazon region.

11.3:2 Metamorphic and Igneous Rocks

The bulk of the igneous rocks throughout the Andes (found primarily

in the Western Cordillera) and the shields are acid to intermediate in

composition. The only poorly lithified volcanics are found in the Western

Cordillera in Peru and Eastern Cordillera of Ecuador. The latter occurence

represents the largest exposure of recent volcanics in the Amazon Basin.

In general, metamorphic rocks of the Amazon Basin fall into an acid to

intermediate range, except for some Andean Precambrian exposures (found

in the Eastern Cordillera of Peru and Ecuador) where unmapped but apparently

abundant metabasalt and ultrabasic units are found, and for some small basic

intrusions and greenstone complexes in the shield areas.

11.3:3 Sedimentary Rocks

In the Andes and Subandean Trough, the sedimentary lithologies (old to

young) are dark shales, limestones and sandstones, red beds, and fluvio-lacus-

trine sediments. Briefly, the Eastern Cordillera is composed of Precambrian

metamorphic rocks and Lower Paleozoic dark shales. The other Andean sub-

zones are underlain by younger sedimentary and igneous rocks, with conti-

nental units dominating to the east and marine and volcanic units dominating

to the west (Gansser 1973, Audebaud et al. 1973).

In the Amazon Trough, the sequence is sandstones and dark shales,

limestones and sandstones, evaporites, and shales. This sequence is
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Table III.1

EXAMPLES OF THE CHEMISTRY OF VARIOUS
ROCK TYPES AND SOILS

THOUGHT TO BE IMPORTANT
IN THE AMAZON BASIN

All analyses are in mole f

Igneous and Metamorphic
Element Shield Gabbro Cont.

(1) (2) Basalt
(3)

Na 6.62 4.41 5.21
K 3.67 0.79 0.86
Mg 2.49 12.11 9.62
Ca 4.09 11.95 9.92
Si 59-11 48.74 45-92
Fe III 1.68 1-93 1.94
Fe II 2.28 6.01 5.62
Al 18.50 12.76 19.52
Ti 0.57 1.00 1.07
Mn 0.02 0.15 0.11
p 0.17 0.21 0.21
C inorg. 0-50 -- --
Cl -- -- --

S ox. 0.10 -- --
S red. 0.21 -- --

Element Evaporite Lime- Dolomite
(1) stone (4)

(4)

Na
K
Mg
Ca
Si
Fe III
Fe II
Al
Ti
Mn
p
C inorg.
Cl
S ox.
S red.

19.18
0.27
6.95

22.93
2.29
0.15
0.08
0.68
0.03
0.00
0.00

18.15
18.97
10.32

0.08
0.35
9.68

37.52
4.27
0.11
0.24
0.79
0.04
0.03
0.03

46.66
0.03
0.03
0.14

0.35
0.08

20.59
21.24
13.30
0.24
0.33
1.81
0.09
0.06
0.32

41.37

0.00
0.21

Element Weathering seq., savanna
Granite Hard near
(5) Saprolit surface

Na 6.06 - 0.35 - 0.09
K 5.86 - 4.50 - 0.15
Mg 0.18 - 0.17 - 0.06
Ca 0.86 - 0.02 - 0.03
Si 71.80 - 73.82 - 44.14
Fe 1.63 - 1.54 - 33.61
Al 13.60 - 19.59 - 21.92
Ti
Mn
P
C inorg.
Cl
S.

Diorite Andesite
(2) (3)

6.55 6.65
1.70 1.46
9.17 5.75
9.05 6.76

52.18 53.88
2.07 1.65
5.28 3.39

12.41 19.71
1.14 0.56
0.15 0.08
0.30 0.11

Sedimentary Rocks

Average
Shale

(1)

3.45
3.37
3.93
6-32

54.83
2.98
1.44

16.13
0.34
0.05
0.17
6.24
0.17
0.58

Black
Shale

(4)
1.22
4.13
2.96
1.61
63.37
0.28
3.13
14.31
0.49
0.04
0.16
2.35

6.26

Amazon Soils

Soil profile,
forest (6)

lower

0.10
0.16
0.02
0.02

59.98
10.16
28.60
0.69
0.12
0.08

0.01
0.06

upper

0.01
0.03
0.03
0.00

56.31
12.07
30.36
0.96
0.08
0.08

0.01
0.06

Grano-
diorite

(2)

7.46
3.93
2.35

- 3.82
67.02
1.01
1.95

11.80
0.43
0.06
0.18

Lithic
Arenite

(4)

1.73
1.65
3.56
6.61

65-76
2.84
1.17
9.50
0.23
0.08
0.08
6.79

(6) old
soils.

planato

0.06
0.87
0.23
0.02

40.78
8.95

47.19
1.79
0.00
0.04

0.06
0.01

Sodic
Granite

(3)
6.63
4.46
0.84
2.22

68.65
0-93
1.27

14.58
0-33
0.03
0.03

Potassic
Granite

(2)

5.97
6.96
0.78
1.43

72.07
0.65
1.26

10.42
0.28
0.05
0.15

Arkose Ortho-
(4) Quartzit

(4)

2.80 0.19
3.44 0.25
0.72 0.14
2.78 1.70

74.26 94.80
1.16 0.30
0.56 0.15
9.88 0.82
0.22 0.15
0.16 --
0.08 --
3.95 1.49

Amazon
susp.

(7)

2.1
2.8
2.8
2.4

51.2
5.9

25.6
0.88
0.11
0.32

Amazon
bed sand

(8)

2.3
2.5
1.3
3.5

78.9
1.9
7.5
0.31
0.03
0.05
2.82

0.04

This table is calculated from one or more data tables in the following references:

Holland (1978)
Ernst (1969)
Verhoogen et al. (1970)

(4) Pettijohn (1975)
(5) Pasquali et al. (1972)
(6) Kronberg et al. (1979)

(7) Martin and Meybeck (1978)
(8) Potter (1978)

Tapajos
sand

(8)

0.29
0.21
0.00
0.03

97-85
0.33
0.22
0.31
0.13
0.24
0.00

0.03
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Figure 111.2

Lithologic map, symbol key:

IONEOUs AND METAMORPHIC ROCKS

Metamorphic Precambrian rocks of the shields and the pampean ranges, mainly consisting of various gneisses and
intrusive grantes.

M MetamorphicPrecambrian rocks of the shields, mainly consisting of various schists, quartzites, phyllites, slates, and
M._ carbonate rocks.

Ia Intrusive acid rocks of the Andean system, mainly consisting of granites. granodiorites, diorites.

Ma .Metamorphic rocks of the Andean system, mainly consisting of gieisses, schists, quartzites, phyllites, with subordinate
tntrusives.

Pt Pyroclastic rocks with interbedded outflows of the Andean system and Patagonia.

EA Effusive acid rocks (rhyolite, quartz, and feldspar porphyries).

Eb Effusive basic rocks (basalt, diabase, dolerite, andesite).

+ Precambrian granites in the shield areas.

x Metamorphic rocks with old sedimentaries.

SEDIMENTARY RoCKs

Sc Clastic consolidated sediments (sandstones, siltstones, shales, conglomerates) with subordinate carbonate sediments.

Ca Carbonate sediments (limestone, dolomite) with clastic sediments.

So Aeolian, fluvial and lacustrine Mesozoic sandstones of the Brazilian shield.

Young clastic weakly consolidated and unconsolidated sediments (sands, sandstones, clays, clay-shales, gravels,
S conglomerates).

The oecrrence of loess with ash admixtures i indicated with Iv.

Sandy facies of the clastic consolidated and unconsolidated sediments.

Salt flats.

Land ice.

Lakes.
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completely covered by Tertiary fluvio-lacustrine sediments, except for

two narrow strips bordering the lower Amazon valley. Sandstones and some

dark shales cover areas on the shields. (Bigarella 1973, Loczy 1968)

Grey-green to black shales, mixed with sandstones, constitute the

major lithology of the Lower Paleozoic sediments in the entire Amazon

Basin as well as the upper Precambrian on the shield. The greatest expo-

sures are in the Bolivian Andes, where Ordivician dark shale and sandstones

cover an estimated 75% of the area (Ahlfeld 1972). Black shales are par-

ticularly rich in reduced sulfur, potassium, and magnesium, having a Mg to

Ca mole ratio in excess of one (Pettijohn 1975) (Figure III.1). The Lower

Paleozoic section is partially metamorphosed in northern Bolivia and

in Peru. On the shield, in the mid-Xingu Basin, Upper Precambrian shales

form an area of particularly rich soils (Sombroek 1968, FAO/UNESCO 1971).

Red beds are the predominant post-Permian continental sediments

They are typically red shales and sandstones with a widely varying amount

of limestone, evaporites (mostly CaSO4), reduced shale, volcanic ash, and

conglomerate interlayers. The abundance of evaporites appears to diminish

forward with time. The source of the sulfate sulfur may be marine, volca-

nic, or Lower Paleozoic shales (c.f. Benevides 1968,Ruegg and Rosenzweig

1949). The amount of volcanic material in the red beds increases to the west.

The Tertiary fluvial-lacustrine sediments of the Amazon Trough and

the soils of the shield are products of intense weathering. The cation

depleted nature of these sediments is reflected in a representative

analsis (lower forest-soil profile, Table III.1).
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Sedimentary units, characterized as shales, are mineralogically com-

plex and show wide variations in their composition (red beds represent an

extreme example of variability). Sodium and potassium are present as alumi-

nosilicate minerals (potassium tends to be concentrated in the clays and

micas, and sodium in the feldspars). Magnesium may be present in both

carbonate and sheet silicate minerals, while calcium is thought

to be present primarily in carbonate minerals (c.f. Holland 1978, p. 114).

Note that the inorganic carbon content exceeds the calcium content in all

the shales of Table III-1. The inorganic carbon excess is greatest in the

black shale suggesting that this shale is more dolomitic than the others

(assuming the excess inorganic carbon is balanced by magnesium).

Sandstones in the Andes are typically arenites, while those on the

shields are orthoquartzites and arkoses. The arenites are richer than

typical shield sandstones (orthoquartzites and arkoses) in weatherable

Dhases (Table 111.1).

Carbonate rocks in the Andes are predominantly limestones. In strati-

graphic columns where dolomites are designated, they are a subordinate fa-

cies (perhaps 5 to 10% of total carbonates). There are no massive Paleo-

zoic dolomite units such as one finds in the North American cordillera.

The carbonates with the greatest proportion of dolomites are found in the

Pucara Group of lower Jurassic age (c.f. Bellido 1969), outcropping in the

Intercordilleran Zone in central and northern Peru. The carbonates of the

Amazon Trough also appear to have a higher proportion of dolomites than

most of the carbonates in the Andean section.
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Figure 111.3

Map of the distribution of formations from which evaporite minerals
(halite, gypsum, or anhydrite) are reported. This is not a map of
evaporite exposures, which are far more limited in area and extent
than regions indicated on this map.
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Formations in which evaporite minerals are reported are concen-

trated in the Andes (FIgure 11.3), and those which contain halite

tend to be localized to the Andes of central and northern Peru and

southern Ecuador (c.f. Benevides 1968). -Some of the evaporite minerals

(particularly gypsum and anhydrite) are dispersed in red beds, and out-

crop in the formations in which they were deposited. In north and

central Peru (notably in the Huallaga River Basin) buried evaporites

are brough to the surface as salt plugs or domes and expressed as salt

springs (Benevides 1968). The larger of the domes have diameters in the

order of 5 to 10 km; their aggregate area probably is in the range of

100-200km2. Their extrusion rate is such that they are pronounced topo-

graphical highs, even though the precipitation is on the order of 1.5

meters/year (Figure 111.4). The domes are primarily gypsum and. halite.

Salt springs have also been reported in Ecuador (Benavides 1968, Tschopp

1953). The springs are thought to be caused by the migration of formation

waters up fault planes (c.f. Rigo de Righi and Bloomer 1975, Mabire et al.

1975). The great input of salt to surface waters can be seen by the nume-

rous "Cachiyacu" (salt water) designated on maps of north-central Peru.
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Figure 111.4
(two pages)

first photograph:

Photograph of a salt cliff (about 100 m high) in the interior
of the Pilluana salt diapir. Much of the dark material in the
cliff is shale, while the light material tends to be halite and
gypsum. Rock salt is mined from the cliff, being exposed during
storms. The extremely salty runoff during heavy rains causes
fish kills downstream. The stream, Quebrada Caa (BPA16), has a
salinity of 4560 ppm. Note the thick soil developed on the top of
the cliff; this soil contains abundant gypsum fragments but no
halite.

second photograph;

Photograph of a small block of rock salt. This salt block is
exposed on the bank of the stream opposite the cliff in the
previous photograph, and has therefore been exposed to precipi-
tation for a long time. The salt has a faint pink color.
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III. 4.1 Topography and Denudation Processes

The Amazon lowlands are typically a smoothly undulating terrain.

Some areas are quite flat, however slight hilliness is typical, and

abrupt topographical changes (30* slopes) are found throughout the

Tertiary terrains and the shields, marking boundaries between erosion

surfaces. Steep slopes are also associated with Subandean uplifts

(c.f. photos in Kummel 1948). The Andean front is dramatic and

sharp as seen in Figures III.5 and IV.1l.

If slopes are sufficiently steep, the products of physical and

chemical weathering will be removed as fast as they are produced (barring

complications caused by tectonic and climatic change) and soils will be

thin. Such a situation is said to be weathering limited as opposed

to transport limited, where solid weathering products accumulate

(e.g. soil development on the lowlands) (Carson and Kirby 1972). On

weathering limited terrains a pronounced dependence on the properties

of the substrate is indicated, with the denudation of chemically

unstable and physically unstable material being most rapid. A greatly

reduced dependence on substrate characterizes transport limited terrains.

Relief provides a logical basis for the separation of the

discussion of denudation processes in the Amazon Basin. The discussion

of denudation in the flat lowland areas focuses on both weathering

products and their transport. For steep terrains, the discussion centers

on the importance of lithology, as the transport of materials away from

the site of weathering can be assumed to be effective (note that

valley-fill accumulation and similar short-range transport does occur).
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III. 4:2 Denudation, Soils,, and Vegetation in the Lowlands

A clear relationship exists between vegetation and denudation

processes. Three principal regimes are identified corresponding to

savanna (including all dry grasslands), terra firme forest (or Hylaea)

and campina and Amazonian Caatinga (which is a special class of terra

firme forest).

The savanna environment is characterized by the abundance of grass,

the lack of much shading vegetation, and a climate marked by pronounced

wet and dry seasons, the seasonal drought being sufficient to allow for

the parching of all but deeply rooted vegetation. Currently savanna is

found in the Rio Branco Basin in the north, and through much of the upper

Xingu, Tapajos, and non-Andean Madeira Basins (FAO/UNESCO 1971, Hueck & Seibert

1972, Walter 1972, Sarmiento and Monasterio 1975, Prance 1978). Under-

standing of factors controlling the distribution of savannas has been

gained from comparative studies of savannas and forest near the boundary

(often sharp) between the two environments (Pasquali et al. 1972,

Goldsmith 1914, Zonneveld 197, Scott 19/5, 1977, Sarmiento and

Monasterio 1975, Lopez E. and Bisque 1975). Two factors appear to be of

primary importance, the desiccation of soils and ground cover during the

dry season, and burning either from natural or human causes. Comparative

studies of landforms, soils, and stream transport suggest that both

surface runoff and accompanying physical denudation (splash erosion,

sheet wash, and gully formation) are more pronounced in the savanna than

the forest, with savanna soils being both denser and less permiable

(Pasquali et al 1972, Zonneveld 197b, Scott 1975, and Sarmiento and

Monasterio 1975). Ferruginous crusts and conglomerates (to be referred to

as hardened laterite, also known as plinthite and arecife) cover
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Figure 111.5

Photograph of the Andean Front near the Peru-Bolivia border,
illustrating the abrupt transition from lowlands to steeply
sloping terrain. The east-west flowing river is the Madre de
Dios. The white patch in the meander in the upper right of
the photo is Puerto Maldonado, Peru.
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areas of savanna in Venezuela, Colombia, Ecuador, Guiana,

and Brazil. In other areas hardened laterite is found some distance

beneath the soil surface, where it limits access of roots to the water

table (Walter 1972).

Soils of both the forest and the savanna are similar in mineralogy

consisting of kaolinite, quartz, and iron and aluminum sesquioxides.

Soils found in the savannas are definitely more aluminous than those

found in the forests (Figure 111.6). This is corroborated by observations

of soil mineralogy. Except in areas of unusual substrate, forest soils are

dominantly kaolinite, quartz, and iron and aluminum hydroxides. In most

analyses quartz and kaolinite are overwhelmingly the dominant phases

(Soinbroek 1966, Pasquali et al. 1972, Lopez E. and Bisque 19/5, Irion

1975, Kronberg et al., 1979, Guerrero 1975),, however abundant gibbsite is

reported in some soil profiles in savanna areas (Pasquali et al. 1972,

Lopez and Bisque 1975 (Venezuela), Kronberg et al. 1979 (near Brasilia))

Pasquali et al. (1972) and Lopez E. and Bisque (197-) observe that the

amount of gibbsite relative to kaolinite decreases towards the surface.

This is attributed to the reaction of gibbsite with silica migrating

to and being concentrated near the surface by evaporation (daytime

temperature 600C).

Soil properties show a definite relationship to topography (Sombroek

1966, Van Wambeke 1978), with cation depleted soils being found on topo-

graphic highs and well drained flat terrain, richer (but still cation

depleted) soils on slopes, and a wide variation of soils in the low areas,

depending on the amount of flooding and the nature of sediments being

deposited in the valley. Soils formed on basic rocks and marine

sedimentary rocks are often quite varied in compositon, ranging from



- 96 -

bauxites to cation rich soils (Sombroek 1966, FAO/UNESCO 1971, Lopez

E. and Bisque 1975, Van Wambeke 1978).

The Tertiary sediments of the Amazon Trough (typically kaolinitic

to sand facies) are derived from the surrounding shields, and soils

developed on them do not differ substantially from the upper horizons

of the mature soils of the shield, (Sombroek 1966, FAO/UNESCO 1971).

III.4:3. Mineral Stability and Element Mobility in Amazon Soils

The stability of minerals under tropical weathering has been con-

sidered by Pasquali et al (1972) and Lopez E. and Bisque (1975), who

have examined the mineralogical changes occurring during the transition

from fresh rock to saprolite through the soil profile. The mineral

stability sequence is in agreement with the observations of Goldich

(1938) and is summarized below:

Most Stable Least Stable

Acidic Quartz >>K- dspar >>Na-Feldspar > Ca-Feldspar

Basic Quartz >> Na Feldspar > Ca-Feldspar > Pyroxenes
Amphiboles Chlorite

The following element mobility is observed in granitic rocks:

Most Mobile

Ca> Na > Mg > K>> Si > Fe* > Al

*variable

The distribution of minerals in profiles developed on acidic and basic

rocks show several important features. In the former, plagioclase feldspars

are completely weathered (and most of the Ca and Na lost) while the rock is

still a hard saprolite (Pasquali et al. 1972). The products of this rapid

weathering include kaolinite and gibbsite (gibbsite only in the savanna).

Microcline and mica are lost farther up the profile (in the soft saprolite)

along with much of the Mg and K. Microcline maintains a fresh appearance



- 97 -

Figure 111.6

Graphs illustrating the distribution of Si:Al (clay fraction)
ratios in forest and savanna environments in the southern half
of the Amazon Basin (Data from Camargo and Falesi 1975).
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(along with much of the Mg and K). Microcline maintains a fresh appearance

during theweathering process (taken here to mean no obvious.weathering

rinds form), while biotite bleaches. Quartz persists through the

profile. "Floating" spheroids of partially weathered granite are seen

in some profiles. In two of the profiles developed on basic rocks reported

by Lopez E. and Bisque (1975), unstable primary and secondary minerals

(and mobile cations) are found through much of the section, while a third

profile is intensely weathered to a bauxite.

It should be noted that these studies were done in areas of relatively

young and thin soils where fresh outcrops could be seen. In contrast,

soils developed on the older erosion surfaces are thicker, often many tens

of meters (FAG/UNESCO 1971, Kronberg et al. 1979). Neither feldspars,

micas, nor "floating" less weathered materials are reported in these areas

(c.f. Kronberg et al., 1979, Table II).

Unstable minerals have been reported in soils from sedimentary

terrains. Sombroek (1966) observes muscovite and chlorite in soils of the

lowlands, however no other studies report similar occurrences of chlorite

and it is possible that this observation represents a misidentification.

Irion (1975,1976) reports montmorillonite forming from volcanic ash in

soils found on Cretaceous to Tertiary rocks in the southwest lowlands.

The final major group of soils are those underlying the campina

(sparsely vegetated grassy areas surrounded by forest) and Amazonian

Caatinga, found in extensive areas of the Upper Rio Negro Basin and

in smaller patches elsewhere (Hueck and Seibert 1972). The soils

(giant podzols, tropical podzols, spodzols) are characterized by a

surface layer, rich in humus, a thick (up to several meters) bleached

quartz A horizon, and an underlying layer (ortstein) rich in aluminous
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clays (no iron) and cemented by humic materials (Sioli and Klinge 1961,

Klinge 1965,1967, and Sombroek 1966). These soils can occur where the

substrate is sandy sediment, however in the Rio Negro Basin the podzols

are developed on granites and gneisses. This area is the wettest part of

the Amazon lowlands (>2500 mm rain/year with no dry season) and is

fairly flat. Thus there is a substantial sustained flux of water throu'gh

the environment. Such soils are highly correlated with brown, acidic,

cation poor, sediment free surface waters, which are probably responsible

for the leaching of Fe and Al from the soil as well as the deposition

of humic materials in the soils (Klinge and Ohle 1964, Klinge 1967).

Presumably, the persistent wetness allows the organics to endure in the

environment, by limiting diffusion of oxygen into soil pores. The exact

areal extent of the soils is uncertain. Sioli (1966), Klinge (1967), and

Marlier (1973 ) favor a wide distribution within the upper Rio Negro

Basin, as both the brown waters and the Amazonian Caatinga are

widely distributed through the region (c.f. Hueck and Seibert 1972).

111.4:4 Laterites and Podzols in the Amazon Region

Contrary to popular belief, near-surface laterites are quite rare,

covering about 2% of the basin (Van Wambeke 1976, Sioli and Klinge 1961),

and where laterite does occur it often appears to be "fossil" (Sombroek

1966, Mousinho de Meis 1971, Klammer 1971, Grubb 1979). McFarlane (1976)

describes two classes of laterites reflecting different modes of evolution,

ground water laterites and pedogenetic laterites; in addition some laterites

are secondary, being formed by redeposition of laterized material. Ground

water laterites are thought to for in the zone of a fluctuating water table,

primarily as a result of alternating oxidizing and reducing conditions.
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These may become quite thick if the depth to the mean water table

increases with time. In actively forming ground water laterites,the

concretionary structures (pisoliths) tend to be soft. Pedogentic

laterites form in the upper soil horizon, perhaps assisted by working of

the soil by organisms. These laterites,are thin and form only in a

grassland environment, unlike ground':water laterites-yhich also form

under forested conditions.

The contemporary laterites in the forested areas of the Amazon

region are groundwater laterites (Sombroek 1966). They typically

exhibit a sandy horizon over a soft laterite B horizon. In its advanced

form the A horizon can become thoroughly bleached (with sparse overlying

vegetation). Ground water laterites are invariably observed in:

(1) Lowlands intermittently covered with rain water
(2) Lowlands flooded by rivers not carrying a sediment load
(3) Terrains along rivers, only slightly above river level

The profiles observed by Sombroek showed Si:Al rations around one

(kaolinitic) with profiles developed on crystalline rocks always showing

ratios greater than one. No profile could be considered highly leached

of silica. These laterites differ from typical laterites described by

MacFarlane (1976) in their high silica content and the climatic conditions

(neither as dry nor as seasonal in their precipitation) in which they

form.

Sombroek (1966) observes that there are great similarities in giant

podzol and advanced groundwater laterite profiles. The primary differences

between the two are that the former has humic materials in the horizon

below the sand and a freer horizontal drainage, capable of transporting

materials out of the soil zone. Grubb (1979) suggest that all of these

soils should be considered podzols rather than laterites.
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The pisoliths found in detailed savanna profiles of Pasquali et al.

(1972) and Lopez E. and Bisque (1975) appear to be typical of eroded fos-

sil ground water laterites as per MacFarlane (1976).

111.4.5 Ground water Circulation

The surface soils in the Amazon lowlands are intensely weathered; few

primary minerals are found in the surface horizons, yet dissolved products of

primary rock weathering are found in all the rivers examined in this study.

Ground water circulation is a means of bringing material to the surface.

Ground water circulation has been studied on representative clay-rich

forest soils (Nortcliff and Thornes 1978, Nortcliff et al. 1979) and

giant podzol soils (Reichardt et al. 1975). Both types of soils are

extremely well drained. The fluxes in the forest soil are vertical, even

near the soil surface on a hill slope, while fluxes in the podzol are

horizontal due to the presence the ortstein layer. Nortcliff et al. (1979)

conclude that the free draining nature of the forest soils requires that

river water be derived primarily from ground water inputs rather than

overland flow

111.4:6 The Significance of the Three Weathering Environments

The three environments: savanna, forest, and Amazon Caatinga when

developed on shield terrains, probably correspond to a sequence of increased

intensity of chemical weathering and reduced intensity of physical

weathering, respectively. The sequence clearly corresponds to one of

increasing precipitation and runoff, which has been shown to correspond

to increased rates of chemical weathering and more effective dissolution

of the original substrate in tropical environments of Kenya (Dunne 1978).
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The soil data indicate that the effectiveness of chemical weathering

increases with precipitation. For savanna soils, the decreased permea-

bility and increased levels of surface runoff imply that precipitation

is much less likely to interact chemically with weatherable materials

than is the case with forest soils. However, due to greater overland

flow physical weathering is more effective.

The presence of almost pure quartz, the complete loss of iron and

the partial loss of aluminum in the giant podzol soils developed on

granites suggests very effective and rapid dissolution (referred to the

rate of dissolution of quartz) of the original rock. Dissolution or col-

loid stabilization of aluminum and iron in black water rivers is supported

by observations from this- study as well as work of Sioli (1954), Sioli

and Klinge (1961), Klinge and Olhe (1964), Ungemach (1967), and anon.

(1972a). Evidence of the destruction of quartz includes the solution

pitting of quartz from tropical sands (c.f. Potter 1978) and the break-

down of quartz grains in savanna soils (c.f. Pasquali et al. 1972).

Loughnan and Bayliss (1961) describe a soil developed in a monsoon

climate (with a mean annual precipitation about half that of the central

Amazon) on sandy shales (similar to the Tertiary fluvio-lacustrine sed-

iments), where quartz is entirely dissolved from the upper profile, leaving

an iron and aluminum hydroxide residual. Unlike the Amazon giant podzols,

it is apparent that the dissolution rate of Si, from quartz in the soil,

has exceded the dissolution rate of Fe and Al from clay minerals.

Assuming that quartz dissolves at an equal rate in laterite and podzol

soils, the overall rate of dissolution of minerals in the latter soil

must be greater than in the former.
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The above weathering sequence for siliceous rocks (seasonally

moist = sequioxides/kaolinite, super moist = podzols) differs considerably

from that described for basic rocks from Hawaii (Sherman 1949, 1952).

Under a climate having similar wet and dry seasons as the Amazon,

ferrugenous laterites are seen forming on basic rock, while under

permanently wet (Negro Basin-like) conditions aluminous laterites develop.

Clearly a difference is the role of quartz as a structural element in

rapidly weathering granitic soils. Other differences must include the

lesser stability of the minerals in basic rock.

111.4:7 Slope Processes.

Slope processes (weathering limited denudation) in the lowlands

and the Andes will be considered separately, as the former reflect a

more tranquil history of development and are less subject to active

tectonic controls.

Two classes of steep relief can be seen in the lowlands. In n-ny

areas hills are protected by a laterite or quartzite caps, a clear lithologic

control, which reduces erosion rates of underlying material. In contrast

other slopes and scarps between erosion surfaces do not exhibit horizontal

or vertical lithologic control.

Retreat of slopes is thought to be more rapid under drier, less

vegetated conditions (Garner 1968, Holm 1977). Rapid weathering how-

ever, is possible under moist conditions. A likely mechanism for rapid

slope retreat under wet conditions is the chemical weathering of the parent

rocks followed by sliding of the resultant soil (Scott 1975b, Scott and Street

1976, Pain 1972, Garwood et al. 1979) or other forms of solifluction (e.g.soil

creep, piping, tree-falls etc.) (Zonneveld 1975). Carson and Kirby (1972) show
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that the form of such a slope should be stable through time (parallel

retreat).

Holm (1977) describes an erosion scarp, which separates two erosion sur-

faces in the Branco Basin. Both of the surfaces have been peneplaned and

little topographic variation is seen marking contrasting lithologies, implying

that transport limited denudation is occurring. The scarp itself

(having a 30-350 slope) is not associated with faults or a lithologic

break, and is in fact quite sinuous. Ridges on the scarp consist of

resistant rocks, while valleys are associated with zones of weakness,

implying weathering control. It is therefore suggested that the scarp

is the locus of erosion for the region.

111.4:8 Andean Slopes

Weathering in the Andes is extremely complex due to tectonism and

wide variations in both climate (spatially and temporally) and rock

types. On many of the lithologies in the well watered part of the Andes

(below about 4000m on the Amazon flank), chemcial weathering of the

sort discussed for non-Andean slopes, is thought to be the main process

controlling denudation (Garner 1959). Even at glacial altitudes, chemical

weathering can still make important contributions to surface waters

(Reynolds and Johnson 1971).

Very poorly lithified deposits exist throughout the Andes. Accelerated

chemical inputs to stream water during the rapid erosion of

such deposits has been demonstrated in the Rocky Mountains (Colby

et al. 1956, Hembree and Rainwater 1961). Rapid removal of Andean

Pleistocene sediments has been observed (Garner 1959, 1968b, Ballivan

et al. 1978) and suggested as a major source of solid materials in

rivers. The erosion of continental red beds has Pot been studied. These



- 1o6 -

are very soft rocks which consist primarily of shales and sandstones and

contain thin limestone, evaporate (sulfate), and volcanic ash interlayers

(bentonite beds). The effect of redibed erosion is easily seen.

All Andean rivers observed during this study acquired an intense red color

only after crossing exposures of red beds.

The presence of unstable and cation-rich minerals in the suspended and

bed loads of rivers which drain the Andes suggests that extraordinarily rapid

erosion is occurring. This is evidenced by the presence of carbonates in the

bed load of the lower Amazon (c.f. Potter 1978), the only source of which

could be the Andes. The lower Ucayali and Maranon contain a very large per-

centage of montmorillonite in their clay load (Gibbs 1965, Irion 1975, 1976),

while rivers of the high Andes contain primarily chlorite and illite (Irion

1975, 1976). Rivers in the Madiera Basin, which drains the Bolivian Andes,

contain high percentages of illite.

The above distribution of clay minerals in the suspended load reflects

the geology of the respective basins. Irion (1975, 1976) shows that much

of the montmorillonite is derived from the weathering of volcanic glass.

Bentonite beds (paleo-volcanic ash layers) being eroded out of red beds

may also be important, hence the contrast between high Andean rivers,

which have not yet crossed red beds, and their lower courses. Finally,

the Paleozoic sediments, which make up the Bolivian Cordillera Oriental,

are very rich in illite and biotite (Brockmann et al. 1975), and are

undoubtedly the principal source of illite in the Madeira Basin rivers.



- 107 -

111.5 BIOLOGICAL PROCESSES IN AMAZON GEOCHEMISTRY

Roots and root-fungi symbiotic associations (mycrorrhiza) play a

significant role in the geochemistry of many biologically important

elements which are depleted in lowland soils (e.g. Ca, Mg, and K), by

transporting the elements to and maintaining them in the biomass through

recycling. In savanna, forest, campina, and Amazonian Caatinga, a dense

root mat is typically found near the surface of the soil, except in

isolated areas of exposed sand, rock, or laterite. The root mat in

savanna (dominantly of drought resistant grasses) is utilized for water

acquisition during rains, while trees tend to develop deep feeder roots

to access water (Walter 1973). In contrast, the root mat in the other

soils is composed of tree roots and mycrorrhizal tree roots (Went and Stark

1968). On clay soils, roots are concentrated near the surface, with 25%

being found in the surface humus layer (Klinge 1973). The root mat can

sometimes be rolled off the soil like a carpet. Roots form about 25% of

the living biomass in the forest (Klinge and Rodrigues 1973), although

in some instances the figure may be as high as 60% (Herrera et al. 1978a).

On giant podzols, 80% of the roots are confined to the surface humus

layer, and the root biomass is about one quarter that of the forest

(Klinge 1973). Deep feeder roots are only seen in forest soils where

unweathered minerals are not found far underground (Went and Stark 1968,

Stark 1978, Pasquali et al. 1972).

The geochecmical implications of the surface root mat are significant.

Organic matter is primarily decomposed by bacteria, decay animals (e.g.

ants), and mycrorrhiza (Stark and Holley 1975). Mycrorrhizal rootlets are

observed to cover and attach to forest litter, softening and eventually
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assimilating it, leaving only a shell of roots (Went and Stark 1968,

Herrera et al. 1978a, b). Leaves tagged with 32P have been used to show

that direct transfer from litter to roots occurs (Herrera et al. 1978b).

If solutions containing 32P and 45Ca are sprayed onto the root mat, from

99% to 99.9% is assimilated by organic materials in the root mat and

eventually transferred to the roots and thence the rest of the biomass.

(Stark and Jordon, 1978). The ability of mycrorrhizal roots to retain a

wide range of elements in a non-labile form has been demonstrated (Stark 1972),

an effect clearly seen in the data of Pasquali et al.(1972), who observe that

the bulk concentration of Ca and K in the organic rich.(root) zones is 2 to

10 times that of the soil below. In addition, they do-not see retention in

savanna soils. The mass of K, Ca, and Mg in the total biomass is about

3 to 5 times that of the-weathered solid below (c.f. Stark 1971a,b, 1972,

Herrera et al. 1978a).

The effect of element recycling and storage on river geochemistry

for an ecosystem that is in steady state should not be great, however if

the cycle is broken large amounts of certain elements could be released.

For example, in slash-burn agriculture (Brinkman and Nascimento 1973,

Scott 1977, Stark 1978), great quantities of nutrient elements are released

into the air (as smoke), surface water, ground water, and soil. The

seasonal storage of nutrients in the biomass is important in temperate areas

(e.g. Likens et al. 1977), and could possibly be significant in the Amazon

Basin, especially in areas where pronounced seasonal variations occur.

The behavior of deep forest root systems has been described by

Pasquali et al. (1972). They observe roots penetrating as much as nine

meters, clustering along granite surfaces and around granite sphereoids
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in the profile. Presumably these roots transport nutrients to the surface.

The roots are also found oriented with the water table. Mottled bands

(Tigrito), sometimes containing an axial root, are observed

Mottled bands (Tigrito), sometimes containing an axial root, are observed

throughout most soil profiles. The bleaching, which is the result of

the loss of iron, is thought to be caused by root exudates and decay.

Evidence suggest that the organic matter, produced by vegetation,

has a direct chemical role in soil processes. Sombroek observes that

all the ion exchange capacity in Amazon soils can be accounted for by

organic matter (39 Eq/g per %C). Furthermore, when the carbon content

of the soil drops below 0.5% the amount of readily dissolved phosphorous

in the soil drops dramatically, being tightly bound instead to iron

and aluminum. Lopez and Bisque (1975) observe that in surface horizons

of savanna and forest soils, amorphous iron oxides will recrystalized into

goethite only when the carbon content drops below 0.5%. These observations

indicate that iron and aluminum hydroxides in soils are rather effectively

bound by soil organics

Laboratory studies have shown that at room temperature and pH's

resembling those in the Amazon, recrystallization of iron (Kodama and

Schnitzer 1977) and aluminum (Violante and Jackson 1979) is inhibited

by organics in solution. However, they assist in the formation of

crystaline kaolinite, perhaps by forming an Al-0 bond thereby

facilitating coordination with silica (Linares and Huertes 1971, Hem

and Lind 1974). If organics are not present, amorphous aluminum

hydroxide or gibbsite forms. In the Amazon region, savanna soils tend to

be lower in organics than forest soils (Lopez and Bisque 1975, Sombroek

1966, Scott 1975), and it is possible that the prevalence of kaolinite

in the latter relative to the former may be due to organics.
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Chapter IV

Examination of the processes controlling the chemistry of the
dissolved load of the Amazon River.
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IV.l SAMPLING

Lowland river sampling centered around two transects of the Amazon

Basin, on the main channel, by the R.V. Alpha Helix (June-July 1976 going up-

river, May-June 1976 going downriver, Figure IV.1). Boston whalers were used

to sample tributaries above the Tefs on the first transect and all but the

Iga, Negro, and Madeira rivers during the second. Samples from several

lowland sites were obtained for other parts of the year (see Acknowledge-

ments). Sample locations, handling procedures, and analytical methods are

given in Appendices I, II and III, respectively.

Samples were collected in Andean rivers, lowland Madeira and Peruvian

rivers after transect (1), before and after transect (2) and during Novem-

ber-December 1978 (Figure IV.1). Handling procedures for these are given

in Appendix II.

Sampling had three principal objectives:

(1) to sample the principal tributaries of the main channel

and of the largest main channel tributaries (Marafion, Ucayali,

Madiera, and Branco Rivers)

(2) to sample rivers draining the extremes of rock type in the

Amazon Basin

(3) to obtain time series of flows and chemistry from various

main channel sections

The first objective was attained for the main channel, and to a lesser

degree for the large tributaries. The large tributary subsampling is ade-

quate to delimit source regions for major water types. The second objec-

tive was met satisfactorily, although few one-rock-type rivers were sampled.

The last objective was not met satisfactorily due to political and logis-

tical problems. For this reason, the data interpretation focuses on the

two transects of the system.

-- -- ------------
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IV.2 PREVIOUS OBSERVATIONS ON REGIONAL WATER CHEMISTRY

The earliest chemical studies of surface waters in the Amazon region

recognized the geographical contrasts in chemical properties. Raimondi

(1884) observed that the Maranon and Ucayali Rivers were impoverished in

dissolved inorganic species and enriched in organics compared to many waters

from the Andes. He attributed these observations to biological activity.

Katzer (1897, 1903) noted that the lowland tributaries are more dilute than

the main channel, which is in turn extraordinarily dilute compared to

other rivers.

Waters from the Brazilian Amazon region have long been classified on

the basis of their appearance. Three types are observed: white waters,

which are rich in dissolved and suspended materials; clear waters, which

are poor in dissolved and suspended material; and black waters, which are

intensely colored by humic matter, and are typically more dilute than clear

waters (c.f. Sioli 1967).

The white water type is characteristic of all rivers that have substan-

tial drainage in the Andes, especially the main channel of the Amazon and

the Madeira River (Sioli 1957, 1964, 1968, 1975, Gibbs 1965, 1967, 1972,

Schmidt 1972a, Furch 1976). These are much closer compositionally to typ-

ical river waters than any of the rivers originating in the lowlands.

Clear waters are the most widely distributed water type in the Amazon

Basin. These rivers originate in the shield and raised Tertiary terrain

characterized by clay rich soils (Sioli 1954 a,b, 1964, 1968, Klinge and

Olhe 1964, Schmidt 1972b, Furch 1976).

The black waters originate in extremely flat areas, and have been

linked to distinct vegetation types (Campina-Amazonian Caatinga), and the

nutrient poor giant podzol soils. (Sioli 1954a, 1955, 1964, 1968, Sioli

and Klinge 1961, Klinge and Olhe 1964, Klinge 1965, 1967, Ungemach 1967,
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Figure IV.1

Sample location map. For collection dates and location
descriptions refer to Appendix I.
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anon. 1972, Schmidt 1972b, Furch 1976).

In previous studies, Na > K > Mg > Ca is typically reported for black

and clear waters (Mg > Ca is observed only once in this study for these

water types), while Ca > Na > Mg > K is observed in white waters. The pH

of clear and black waters is often less than 5.5. It has been observed that

waters originating on Tertiary lake sediments and the quartzites of the

shields are depleted in dissolved materials relative to the waters origina-

ting on Precambrian igneous and metamorphic terrains (Sioli 1968, Fittkau

et al. 1975, Schmidt 1972b, Furch 1976). This is attributed to the weathered

nature of the sedimentary substrates. Clear waters with exceptionally high

concentrations and near neutral pH drain the isolated bands of carbonates

and sulfates of the lowest Amazon Basin (Sioli 1963, 1968).

Studies of Andean and Subandean rivers have been confined to Peru.

Patrick (1966) and Swabey (1966) note the wide range of concentration and

chemistry. Swabey (1966) suggests that the range of Mg:Ca ratios might be

explained by variations in limestone chemistry. Furthermore, salt deposits

[e.g. "salt hills" of Herndon (1954) and the "saline waters of the Huallaga"

of Spruce (1908)] are suggested to be the principal source of chloride in

the Amazon. It is noted that the Amazon at Iquitos is about three times

as concentrated as the lower Amazon (due to either seasonal differences

in river composition or the incorporation of dilute rivers). Hegewald et

al. (1976) observe that lakes in the northern Peruvian Andes are more dilute

than those to the south, and that their Mg:Ca ratio increases to the south.

Throughout the Amazon Basin, bicarbonate is the dominant anion in so-

lution. Published analyses for sulfate and chloride show a high degree of

inconsistency. Chloride and sulfate concentrations higher than bicarbonate

are reported only for some tropical lowland rivers (U.S.G.S. unpublished,

Klinge and Olhe 1964, anon. 1972a), and from rivers draining evaporites.
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IV.3:1 INTRODUCTION TO CHEMICAL DATA

Various schemes exist for describing and classifying river water che-

mistry. Chemical classification of river water is of particular value as

it provides a means of linking the interpretation of data from watersheds,

where environmental factors (vegetation, soils, geology, etc.) affecting

water chemistry are poorly understood, with watersheds where such factors

are better studied. With this in mind, three types of classificational

schemes will be examined using Amazon data:

(1) Those based on ion dominance. The global geochemical model
of Gibbs (1970) and the water types of Meybeck (1979) are
essentially of this type. Both consider relative ion abundances
as a function of total dissolved material.

(2) Classification based on methods of multivariate analysis.
Examples include the multi-component graph of Hill (1942) and
Piper (1944); and factor analyses such as those used in the
Mackenzie River study by Reeder et al. (1972).

(3) Those based on the concentrations of various species as a
function of the concentration of dissolved material. Examples
of its use (Garrels and Mackenzie 1971, Holland 1978) have
not focussed on classification but on description. It is
versatile and will serve as the primary introduction to Amazon
data.

IV.3:2 Chemistry of the Amazon Main Channel in Relation to World Averages

The Amazon is not a chemically remarkable river. A summary of recent

estimates of "world average" compositions of dissolved, suspended and bed

materials for world rivers is presented in Table IV.1. The solid phases

are given as mole percent of the elements analyzed, and all three phases

are tabulated normalized to silicon, the element most evenly distributed

between the three components. Average river water could be described as

a weak bicarbonate solution in which solid silicate phases are transported.

There is a pronounced partitioning of elements between phases relative to

silica. Alkalis and alkaline earths are preferentially included in the

dissolved material, while aluminum, iron, and manganese are
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Table IV.1

COMPARISON OF THE CHEMISTRY
OF DISSOLVED, SUSPENDED, AND

BED MIATERIALS FROM THE
AMAZON RIVER

WITH
WORLD AVERAGE VALUES

World Average Values

Susp. Bed
mole mole %

(1) (2)

1.9
2.9
3.2
3.1

61.5

5.2
21.1
0.12
0.71
0.23

Element

Na
Mg
Ca
K
Si
Cl
S
Cinorg*
Fe
Al
Min
Ti
P
N

Element

Na
Yg
Ca
K
Si
Cl
S
Cinorg*
Fe
Al
Mn
Ti
P
N

0.44
1.5
1.2
1.4

83.4

0.02
0.72
2.0
8.6
0.03
0.58
0.02

Amazon River

Bed
mole %

(2)****

2.3
1-3
3.5
2.5

78.9

0.04
2.82
1.9
7.5
0.03
0.31
0.05

Diss.
normal.

to Si
S250

1-50
0.52
2.58
0.16
1.00
0.99
0-39
6.06
0.005
0.004
0.001

0-003
0.051

Diss.
normal.

to Si

1.47
0.82
1.99
0.20
1.00
1.07
0.56
5.00
0.004
0.011
0.001
0.001
0.008
0.092

Diss.
normal.

to Si
S209

0.53
0.33
1.07
0.17
1.00
0.25
0.15
2.69
0.016
0.006
0.003

0.003
0.040

Susp. Bed
normal. normal.

to Si to Si

0.030
0.048
0.053
0.050
1.000

0.085
0.343
0.002
0.012
0.004

0.005
0.018
0. 014
0.017
1.000

0.000
0.009
0.025
0.103
0.000
0.007
0.000

Susp. Bed
normal. normal.

to Si to Si

0.036
0.048
0.042
0.048
1.000

0.104
0. 448
0.002
0.015
0.006

0.029
0.016
0.044
0.019
1.000

0.000
0.036
0.024
0.095
0.000
0.004
0.001

* assumed Cinorganic - HCO~ 3 titration alkalinity

** Main channel, upper course
** Nain channel, lower course
* ain channel, lower course

(1)
(2)

at Iquitos, Peru
at Obidos, Brazil

artin and Meybeck (1978)
Potter (1978)

Diss.
pmole/l

(1)

254.
142.
344.

34.5
173.
185.

97.
865.

0.7
1.9
0.2
0.2
1.3

16.

Susp.
mole 5

2.1
2.8
2.4
2.8

51.2

5.9
25.6
0.11
0.88
0.32

Diss.
pUmole/l

5250**

278.
96.7

477.
28.9

185.
183.

73.
1122.

1.0
0.8
0.1

0.6
9.4

Diss.
pmole/l
S209***

63.4
39.6

128.7
20.8

120.
30.5
17.8

323.
1.9
0.7
0.3

0.3
4.8
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found in the solid matter. An analogous set of analyses from samples taken

on the Amazon mainstem is presented in Table IV.l. Water samples from both

ends of the main channel are included.- A comparison with the global aver-

ages demonstrates the typical nature of Amazon mainstem chemistry, being

quite close to the world average. Note especially the similarity between

world average river chemistry and water from Iquitos. This close similarity

belies the great variety of water types found in the Amazon basin. The

ranges of concentrations observed during this study for surface waters from

the basin are presented in Table IV.2. The range of total dissolved solids

(TDS) represented by these samples is roughly 6 ppm to 4000 ppm, comparable

to the range of 37 ppm to 8000 ppm for rivers within the United States

(Holland 1978).

IV.3:3 Ion Dominance

Meybeck (1979) presents a tabular classification of river waters based

on ion dominance (Table IV.3). Meybeck groups surface waters (expressed

as the percentage of global river flow to the ocean) into categories based

on ion proportions and total dissolved solids (TDS). TDS is parameterized

into three classes: (1) rock dominated, (2) precipitation dominated (3)

evaporitic.

These classes were originally proposed by Gibbs (1970), who observes

that if TDS is plotted against Na/(Na+Ca) for waters from throughout the

world, a distinctive pattern results. Rivers low in TDS tend to be enriched

in Cl and Na relative to HCO3 and Ca. This Gibbs argues is due to atmos-

pheric inputs dominating the water chemistry. Intermediate levels of TDS

are accompanied by enrichment in Ca and HCO 3, while high levels of TDS cor-

respond to enrichment in Cl and Na. Gibbs asserts that these two groups

.are dominated, respectively, by rock weathering and evaporation of waters

derived from rock weathering with accompanying precipitation of less soluble



Table.IV.2

OBSERVED RANGES
FOR VARIOUS PARAMETERS

lowland
precip. precip. river
minimum maximum minimum

pH
Sodium
Potassium
Magnesium
Calcium
Alkalinity
Chloride
Sulfate
Nitrate
Silica
Iron
Aluminum
Color @270nm
Total cations
Tot.diss.sol.

4.71
0.3
0.2
0.17
0.0

1.1
1.6
0.0

11.
0.5

5,75
74.7

2.7
8.6
4.6

89.2
12.7

4.9

121.
6.9

4.64
8.1
3.8
2.6
3.6

-16.
2.6
0.0
0.0

40.5
0.0
0.1

65.
51.

4.8

+ Analytical parameters, see Appendix
++ Andean minimum

lowland
river
maximum

7.50
278.

36.6
98.6

552.
1285.

183.
76.2
16.0

196.
7.3
4.4

627.
1570

133.

Andean
river
maximum

8.5
71400

178.
2660
8290
2976.

71600
9320

61.
244.

3.1
20.
19.

77200
4560

units and
standard precision
range+ (est. 95%)

4.01-10.
0-100
0-100
0-50
0-200

0-1000
0-300
0-50
0-300
0-15
0-12

0.02 pH units
0.2 umole/l, 2%
0.1 umole/l, 1%
0.1 umole/l, 1%
0.2 umole/l, 1%
2 uEq/1, 0.2%
0.3 umole/l, 1%
0.3 umole/l, 4%
0.4 umole/l, 4%
0.3 umole/l, 3%
0.1 umole/l, 3%
0.1 umole/l, 3%
1 cm Abs x 100

uEq/l
mg/1

III for details



MAJOR CHEMICAL TYPES OF SURFACE WATERS

(Order of dominant ions expressed in eq./l)
(Adapted from Meybeck 1979), along with example of Amazonian river of that type.

Cations

Ca++ > Na+ > g++ >

Ca++ > Mg> Na+ >K+

Na+ > Ca++> Mg++ > K

Na+

Na+

Na+

Mg++

Mg >g+4->
Ca >

Ca >

Ca

Ca+

Na+

Mg4++

Mg
>Kg+

Anions

HCO >> Cl-

HCOI > SO0~

SO~ > HCO3

SO~ > Cl-

Cl- > HCO

HCO3 > S04~

HCO~ > Cl~

SO- > HCO~

HCO~ > Cl-

SO ~ > Cl~

Cl~ > HCO3

Cl~ > so ~

Cl~ > 50~

Cl~ > SO~~

HCO~ > Cl~

SOZ- > HC0 3

Percentage#
(1) (2) (3)

S077

Cl-

Cl-

HCO3

5077

Cl~

so--

Cl~

HCO~so--

HCO~BO3

HC0~
HCO~3

S0~

CF-

33.7

2.3

0.3
*

*

43.4

1'

Amazonian'
Example

-- -- Marafton

0.5
*

*

.6 --- --

* * *

-- 0.5 1.0

-- -- 0.1

-- -- 0.1

* * *

* * *

* * *

* * *

* * *

Ucayali

n/o

Urubamba

lower Negro

Napo

Solim6es

Mamor6

Branco

n/o

lower Negro

Cachiyacu

Matari

upper Negro

Tefd

Guapay

# Percentage of global river flow,

(1) Rock-dominated type,
(2) Rain-dominated,
(3) Evaporitic

+ n/O = not observed

* not classified by Meybeck

H

'-I

I



- 121 -

Figure IV.2

Graphs of Amazon River data, drawn according to Gibbs (1970).
The dashed field and designations are taken from Gibb's Figure
(3). The graph on the left is of the Amazon Basin data, uncor-
rected for atmospheric inputs. Note that the data conform
adequately to the field defined by Gibbs. The graph on the right
is of the same data, corrected for cyclic salt inputs (c.f. Section
11.9). If the cyclic salt contribution to the dissolved phases in
the sample was large, the points in the precipitation dominance
field should shift down and to the left. This occurs for only one
sample (S337A), from a near coastal river. Therefore, precipitation
inputs do not explain the shape of the field.

Symbol key:

+ - (1) Main Channel
- (2) Maranon Drainage
- (3) Ucayali Drainage

4- - (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

0 - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments

- (10) Varz&a waters
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salts. Feth (1971) points out that the high TDS waters are also influenced

by dissolution of evaporites.

Samples from this study conform in a general way to the field defined

by Gibbs (Figure IV.2), however at low concentrations the samples are not

nearly so sodium enriched. The cyclic salt correction, discussed in Sec-

tion 11.9 provides a test (Figure IV.2) of whether precipitation dominates

the chemistry of those rivers which fall into the "precipitation dominance"

field. It is clear that correction for precipitation inputs makes only a

minor change in the appearance of the graph. A marked shift downward and

to the left would be expected if precipitation made a significant contri-

bution to the dissolved solids in a sample. The data, however, show only

a slight shift to the left and downward for samples in the "precipitation

dominance" field. The greatest TDS drop was 42% in the near-coastal, Matari

River (S337A), followed by 16%, 10%, and 8% drops for different Negro River

samples. Clearly the vague boomerang shape of the Amazon data field must

have other origins.

When Amazon samples are compared to Meybeck's scheme, categories must

be added (Table IV.3) to accommodate water types not included by Meybeck.

Rivers in the latter category include some very substantial systems such

as the Negro (with perhaps 4% of the world's river flow), the Mamor6, the

Urubamba, and the Guapay. Sulfate rich water types in the Amazon are appa-

rently different from those found elsewhere, perhaps because of the lack

of pollution, a major source of sulfate. Clearly this classification is

inadequate, both because it is not comprehensive and because the assumption

that low concentration rivers are necessarily precipitation dominated is

invalid.
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IV.3:4 Multivariate Analyses

The second category of data classification involves identification of

characteristic relationships in the data (multivariate analysis) and by so

doing effecting the reduction of the complexity of the original data. The

relationships are taken to reflect underlying controls, which can be interpreted

with auxiliary information (geology, vegetation, soils), and used to construct

a description of the system. Two approaches will be examined, graphical

and factor analysis. Both forms of multivariate analysis normalize para-

meters, thus eliminating some information.

The graphical method of Hill (1942) and Piper (1944) utilizes a

three field graph (Figure IV.3). The two triangular fields are used to

identify relationships among the cations and among the anions, respectively.

The diamond field serves to compare cation and anion data; it is simply a

skewed version of a graph of (divalent cations)/(total cations) versus

(weak acid anions)/(total anions). The diamond shaped field is chosen only

to facilitate the appearance and plotting of the graph. Relationships are

interpreted as follows: Points plotting along a line through a vertex

(e.g., specie Z) represents the situation Y=aX (X,Y being on the opposite

vertices); points paralleling a side (e.g. side opposite vertex Z) repre-

sent the situation Z=a(X+Y); a straight line, in general, represents the

situation z=aX+bY (a plane through the origin in concentration space). A

cluster of points is equivalent to both Z=aX and Z=bY being fulfilled. A

line in the diamond shaped field represents the situation (Ca+Mg)=a(HCO3 )+b.

Data from two end member mixing plot as straight lines in these 'diagrams.

The vertices in the diamond shaped field are chosen so that the data

can be interpreted in terms of the chemical parameters of Palmer (1911)

(see insert, Figure IV.3), assuming a charge balance. These are:
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Figure IV.3

Multivariate graph of major ion data done according to Hill
(1942) and Piper (1944). The guide for the classification of
water types in the diamond shaped field is given in the insert.
The numbers represent:

Differentiation of water-types

Area 1, alkaline earths exceed alkalies; Area 2, alkalies exceed
alkaline earths; Area 3, weak acids exceed strong acids; Area 4,
strong acids exceed weak acids; Area 5, secondary alkalinity exceeds
50 per cent--that is, chemical properties of the water are dominated
by alkaline earths and weak acids; Area 6, secondary salinity ex-
ceeds 50 per cent; Area 7, primary salinity exceeds 50 per cent--
that is chemical properties are dominated by alkalies and strong
acids--ocean water and many brines plot in this area, near its
right-hand vertex; Area 8, primary alkalinity exceeds 50 per cent--
here plot the waters which are inordinately soft in proportion to
their content of dissolved solids; Area 9, no one of the cation-
anion pairs in Palmer (1911) exceeds 50 per cent.

Symbol key:

+ - (1) Main Channel

* - (2) Maranon Drainage
- (3) Ucayali Drainage

4- - (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

o - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varzia waters
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(1) Primary salinity (alkali salinity): The fraction of total
cations representing monovalent cations balanced by strong
acid anions.

(2) Secondary salinity (permanent hardness): The fraction (if any)
of total cations representing divalent cations balanced by
strong acid anions (not balanced by monovalent cations).

(3) Acidity: Strong acids (if any) not balanced by cations other
than hydrogen.

(4) Primary Alkalinity (permanent alkalinity): The fraction of total
cations representing monovalent cations (if any) not balanced by
strong acids.

(5) Secondary Alkalinity (temporary alkalinity): The fraction of
total cations, representing divalent cations (if any) not
balanced by strong acids.

Palmer is an early advocate of transforming analyses into chemical units

to facilitate interpretation. The five parameters represent a reduction

of the number of degrees of freedom to a manageable few. Palmer justifies

the choice of parameters on engineering and geological grounds and in

conjunction with silica analyses, observes that:

(1) Waters from igneous and metamorphic terrains have high
primary alkalinities and frequently have high silica
concentrations.

(2) Waters from limestone terrains have high secondary alkalinity
and low silica.

(3) Subtle variations in the proportions of silicate and carbonate
rocks are detectable in the relationship between primary and
secondary alkalinity.

Amazon data are presented in Figure IV.3. Note the wide variations in

properties. Samples exist in which each of HCO3, So4, and Cl are over-

whelmingly the dominant anion, and Na and Ca are overwhelmingly the domi-

nant cations. Magnesium is the dominant cation in only two samples. The

diamond field shows that no clear relationship exists between (Ca+Mg) and

HCO3 in normalized data.

Factor analysis can be viewed as an extension of triangle, ratio, and



- 128 -

polygonal field graphing to higher dimensions for the purpose of exploring

more complicated multivariate relationships (Joreskog et al. 1976). The

principal example of the application of factor analysis to river data is

the Mackenzie River study of Reeder et al. (1972); the techniques used are

partially described in Hitchon et al. (1971). Factor analysis as used by

Reeder et al. (1972) and many others is purely descriptive, and the mathe-

matical basis for making inferences about other populations (e.g. other

rivers) is not well established (Joreskog et al. 1976).

There are two methods (modes) of factor analysis: R-mode and Q-mode.

R-mode examines relationships between variables (e.g. chemical species)

and identifies a set of factors (less than the number of variables)

which if desired can be used to reconstruct the original variables.

These factors can be correlated with environmental phenomena.

Q-mode examines relationships between samples (e.g. rivers). The number

of factors is less than the number of variables, if that is less

than the number of samples (as is usually the case). These factors

can be related to actual samples through suitable rotations. A clas-

sic application (c.f. Imbrie and Van Andel 1964, Joreskog et al. 1976)

is to resolve end-members in mixing of sediments. Joreskog et al.

(1976) point out that Q-mode analysis is particularly valuable in

geologic work, "especially where there is little a priori knowledge

of the genetic significance of constituents."

One of the primary weaknesses of factor analysis of river chemistry

is that the mathematical manipulation required to transform the data into

a "correct" form leads to the creation of parameters not readily interpre-

ted, except qualitatively, in terms of physical reality. In R-mode analysis,
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any linear transformation of the data for a given sample will affect the

results, while the same is true for Q-mode analysis in the case of a trans-

formation of an analytical variable. All non-linear transformations of

variables (e.g. logarithmic transformations) will alter the results. In

particular, if non-linear transformations are applied in Q-mode analysis,

meaningful end members need not be (and probably are not) generated. In

the case of the Mackenzie River, the data are approximately log-normally

distributed (Reeder et al. 1972). Data in such a form are not ideally suited,

mathematically, for R-mode factor analysis, as high concentration values

will essentially drive the results (this is not such a problem with sediment

mineralogy where weights total 100%). Reeder et al. (1972) chose to trans-

form the data logarithmically. Consequently their Q-mode results are not

interpretable as end members, from which other water types could be formed.

An alternative transformation, (for the Q-mode analysis alone) would be to

normalize each variable to its range. End members so generated could be

used to generate the observed samples.

Reeder et al. (1972) use the principal R-mode factors (derived from

the chemical data), geological data, and other sample properties (pH, tur-

bidity etc.) to perform a second R-mode factor analysis. The end result

is a qualitative statement that various chemical and geological properties

are related, observations which in the case of major species differ little

from those of Palmer (1911). The principal value of factor analysis comes

in relating constituents for which little a priori knowledge of their ge-

netic significance exists, as is the case with many trace species.

IV.3:5 Concentration Versus Total Cations

The above methods of classification of river chemistry or chemical

properties either consider only a few parameters (ion dominance schemes,
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multivariate graphs) or manipulate parameters to a degree that information

is lost or obscured (factor analysis). As a preliminary to relating river

chemistry to basin geology, analyses will be plotted against total cations

(TZ+). One geological observation must be made beforehand. Rivers having

a TZ+ less than about 450 pEq/1 drain very little marine sedimentary rock

while samples with TZ+ greater than about 3000 pEq/l have major exposures

of evaporites or salt springs in their drainage; these lithological contrasts

are quite sharp.

Five groupings of data are identified:

(1) Na and Cl - These elements show a systematic increase in concen-
tration, with the slope becoming steeper (i.e., the Na or Cl ratio
to TZ+ becomes greater) at higher concentrations (evaporite
inputs) (Figure IV.4).

(2) Ca, Mg, SO - These species show a systematic (almost linear) in-
crease in concentration, the slope becoming less steep at highest
concentrations (showing predominance of NaCl in evaporites (Figure
IV.5).

(3) HCO3 + 2C03 (Carbonate Alkalinity - Alk(C)), NO3 , P04 - These
species show a wide range of concentrations at low TZ+. (This
may reflect biological influence via production of organic acids
and production/consumption of nutrients). This is followed by a
smooth rise in concentration and a leveling off (likely due to a
lack of evaporite inputs) (Figure IV.6).

(4) Si, K - These two species are grouped together because for most
samples they show similar behavior, a TZ+ dependent rise
at lower concentrations (note that this is a log-linear plot).
There is no subsequent rise with increasing TZ+, for rivers
draining marine sediments, except for those rivers with major
evaporite inputs, in which K is considerable enriched (Figure IV.7).

(5) H, Fe, Al, Color - These parameters show a decrease in concen-
tration or intensity with increasing TZ+. The plots of iron
and aluminum are complicated by high levels in some Andean rivers.
This is thought to be due to passage of fine clays through the
.45y filters and subsequent dissolution during storage as a result
of acidification (see Appendix II) (Figure IV.8).

Charge balance of inorganic species, represents an additional para-

meter, as it can be taken as an estimate of the abundance of charged organic

species (c.f. Cronan et al. 1978). Since the error in the charge balance
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Figure IV.4

Sodium and chloride (pEq/1) versus total cations (pEq/1).

Symbol key:

+ - (1) Main Channel

* - (2) Maranon Drainage
- (3) Ucayali Drainage

- (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

o - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varzsa waters

Note that main channel points on this and all subsequent graphs
are from stations: S209, S219, S234, S240, S250, S302, S311, S316
S326, S329, SOL1, SOL2, AMI01, and BPA09. These samples (see
Appendix I for station locations and dates) were chosen to represent
the full range of spatial and seasonal coverage.
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Figure IV.5

Calcium, magnesiun and sulfate (iEq/l) versus total cations

(puEq/1).

Symbol key:

+ - (1) Main Channel

* - (2) Mara'on Drainage
- (3) Ucayali Drainage

-4~ - (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

o - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
)A - (10) Varz&a waters
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Figure IV.6

Carbonate alkalinity, nitrate (pEq/l), phosphate (pmole/1)
versus total cations (pEq/l)

Symbol key:

+ - (1) Main Channel

* - (2) Maranon Drainage
- (3) Ucayali Drainage

4- - (4) Madeira Drainage
+ - (5) Other Andean headwater rivers
<> - (6) Negro Drainage

0 - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varzsa waters
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Figure IV.7

Silica and potassium (ymole/1) versus total cations (pEq/1). Note
that these graphs are log-linear.

Symbol key:

- - (1) Main Channel
* - (2) Marai1on Drainage

- (3) Ucayali Drainage
- (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

S - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments

- (10) Varz&a waters
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Figure IV.8

Hydrogen ion, iron, and aluminum (pmole/1) and color (absorbance
at 270nm, 1 cm cell, units x1000) versus total cations (pEq/I).
Note that the scale is log-linear.

Symbol key:

+ - (1) Main Channel

* - (2) Maranon Drainage
- (3) Ucayali Drainage

4- - (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
( - (6) Negro Drainage
o - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varzsa waters
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is roughly proportional to TZ+, the net inorganic charge will be normalized

by TZ+.

Two normalized inorganic charge balances (NICB) will be examined:

one assuming that iron and aluminum are not charged species, the other as-

suming that they are triply charged. This is necessary as the speciation

of iron and aluminum is uncertain, and may range between uncharged stabil-

ized colloids and the trivalent form. These two NICB's are plotted in Fi-

gure IV.9. Rain samples are included, as they demonstrate that the large

inbalances are clearly not an analytical artifact. Errors of the NICB,

calculated using estimated analytical errors (Figure IV.9) also support this

contention. Like iron, aluminum, hydrogen ion, and color, the NICB show

a drop with increasing TZ+. Some of the organic charge represented by the

NICB includes ions other than hydrogen, which could be conceivably be

derived entirely from organic acids. If the NICB is recalculated

(for low TZ+ rivers) without hydrogen ion (NICB' = NICB - H/TZ+), the

values of NICB' are positive. The ratio of imbalanced charge (20-40

uEq/1) to organic carbon, in low TZ+ rivers, is roughly 0.04-0.08 Eq/mole.

The exchange capacity of soil organic carbon at pH 7 is roughly .05

Eq/mole C (see Section 111.7).
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Figure IV.9

Normalized inorganic charge balances (NICB) versus total cations
(jEq/1). The first graph is plotted assuming that iron and aluminum
are uncharged species, while the last graph is plotted assuming
that they are positive trivalent. 1977 precipitation is included
to show that inorganic atmospheric inputs are charge balanced.
The estimated error is based on analytical precisions of the individual
species.

Symbol key:

4- - (1) Main Channel
* - (2) Mara'on Drainage

- (3) Ucayali Drainage
4- - (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

[ - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments

- (10) Varzia waters

a - - Precipitation (first and last graphs)
a - - predicted error (middle graph)
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IV.4:1 RIVER CHEMISTRY AND ROCK TYPES

Rock types in the catchments corresponding to each sampling location

are summarized in Table IV.4 (analyses are found in Table IV.5 ). The major

features of the relationship between water chemistry and substrate lithologies

will be examined focusing on specific geological features that characterize

each area and the relation of these to the chemistry of the waters. The

following are the main regions or specific water types:

(1) Main Channel
(2) Marafnon Drainage
(3) Ucayali Drainage
(4) Madeira Drainage
(5) Other Andean Headwater Rivers
(6) Negro Basin
(7) Rivers draining shields (other than Negro)
(8) Lowland rivers with extensive areas of marine sediments
(9) Rivers draining only Upper Tertiary and Quarternary Sediments
(10)Virzea lakes.

IV.4:2 Main Channel (1)

The chemistry of the main channel is controlled by mixing of the waters

from the various tributaries (c.f. Chapter V). The tributaries with grea-

test concentrations of dissolved material are the Ucayali, Marafuon, Jurua

and Madeira, in order of decreasing load. All the tributaries, except the

Ucayali, are less concentrated than the main channel at their junction with

the main channel; as a result, the concentration decreases going down river.

IV.4:3 Marafnon Drainage (2)

Of the two rivers (Marafion and Ucayali) combining to form the main

channel, the Marafion is the largest in terms of flow (Raimondi 1879). The

Maranon-Pacific divide lies in the western ranges of the Andes. The entire

Central Andean geologic column outcrops within its drainage. There are,

however, only limited outcropsof Paleozoic; instead Precambrian Rocks form

the cores of the Cordillera Oriental in the drainage. Abundant volcanic

rocks and extensive marine sections are found in the western part of the
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Table IV.4
(4 pages)

GEOLOGIC SUMMARIES OF RIVER BASINS

Major lithologies include the one to five lithologic associations
that cover most of the respective basin (>-10%)

Minor lithologies are those that cover small fractions of the basin

Trace lithologies are those that cover sufficiently small fractions
of the basin that they are typically not mapped, however they are
described in stratigraphic sections. Those lithologies that might
be important are tabulated.

Abbreviations:

Rocks

shales
sandstones
conglomerates
limestones
dolomite
fluvial
lacustrine
glacial

grey-green
green
black
brown
dark

and. - andesitic (to ryolitic)
ryl - ryolitic

volc - volcanics

calc - calcareous

susp - suspended

sed - sediment

yel
wht
lgt
cln
clr

yellow
white
light
clean
clear

Precambrian
Lower Paleozoic
Carboniferous-Permian

(M)
(MT)
(PQ)

- Mesozoic

- Mesozoic-Tertiary (orogenic)
- Post-Quechua (Plio-Pleistocene

to Quaternary)

Mineral stability indicates those minerals that are thermodynamically
stable in the water sample from the river in question.

sh
ss
cg
ls
dol
flu
lac
gla

Colors

gg
grn
blk
brn
drk

Time

(PC) -

(LP) -

(CP) -
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River, Location Major Lithologies Minor Lithologies Trace Lithologies Special Features Mineral Stability

MARA0N DRAINAGE (2), mostly Huallaga subbasin:

metamorph (PC)
gg-blk sh/ss (CP,
M)

drk l. (CP,M)

granite (PM)

metamorph (PH)

metamorph (PC)
granite (PM)
limest. (CP,M)

metamorph (PC)
granite (PM)

Salt Spring, evap source?:
Tingo Maria a drk limest. (M)
A-05 dra shales (M)

red beds (CP)

Aspasarta, L.C.
A-08

limestone (M)
red beds (M,MT)

Uchiza, L.C. drk limest (M)
A-09 red beds (M,MT)

Cachiyacu, L.C.
A-10

Huallaga,
Tocache :tA-ll

drk limest (M)
red beds (M,MT)

metamorph (PC)
granite (PM)

Tocache, Tocache metamorph (PC)
A-ll

Huallaga,
Balsayacu
A-13

Huallabamba,
confluence t
A-14

metamorph (PC)

metamorph (PC)
and. volc (M)
limest (CP,M)
granite (PM)
red beds (M,MT)

Saposoa, L.C. red beds sh/ss
A-15 (M,MT)

limestone (M)

Mayo, L.C.
A-16

CaYa, Pilluana
BPA16

red beds sh/ss
(M,MT)

limestone (M)

sandst (M)
drk shales (M)
red beds (M)
evaporites (CP)

Huallaga, metamorph (PC)
Yurimaguas : red beds (M,MT)
A-17, BPAl3 limestone (M)

Shanusi,
Yurimaguas t
A-18, BPAl4

Paranapura,
Yurimaguas :
A-19, BPAl5

Maraon, Nauta
BPA10

red beds sh (M,
MT)

red beds sh/ss
(MIMT)

metamorph (PC)
limestones
gg-blk sh/ss
red beds
flu-lac sh/ss/cg

evaporites (M)
dolomite (M)

drk limest. (CP) dolomite (M)
gg-blk sh/ss (CP)
metamorph (PC)

granite (PM)

grey-brn susp
sed

lt grey-brn
susp sed

limpstone (M) grey-brn susp
ultrabasics (PC) sed

gg-blk sh/ss (CP, dolomite (M)
M) red beds (M,MT)

red sandst (MT)
flu-lac (PQ)

sandst. (M)
drk shale (M)

drk shales (M)
evaporites (M)

limest (CP,M)
red beds (CP,M,
MT)

granite (PM)
limest (CP,M)
red beds (CP,M,
MT)

cln sandst. (M)

cln sandst (M)
gg-blk shale (M)

cln sandst (M)

grey-brn susp
sed

Huallaga,
Huanuco : S-2,
A-02

Huigueras,
Huanuco : A-03

Huachipa, L.C.
A-04

Huallaga, Tingo
Maria A-07

Monz6n, Tingo
Maria a A-06

dolomite? (M) major fault w/
salt spring

grey susp sed

calcite
dolomite
montmorillonite

montmorillonite

montmorillonite

calcite
montmorillonite

montmorillonite

calcite
dolomite
montmorillonite

calcite
montmorillonite

calcite
dolomite
montmorillonite

major fault w/ calcite
salt extrusion dolomite

clear water montmorillonite

dolomite (M)
evaporites (M)

drk shale (M)
red beds (CP,M)
drk limest (M)

dolomite (M)'
evaporites- (M)

evaporites (M)

evaporites (M)

granite (PM) evaporites (CP,
and, volc (M) M)
gg-blk sh/ss (M) dolomites (M)

cln sandst (M)
limest (M)

cln sandst (M)
limestn (M)

mar volc
granites

evaporites (M) .

calc sh/ss
dolomites
evaporites

red-brn susp
sed

clear water

red-brn susp
sed

red-brn susp
sed

montorillonite

montmorillonite

calcite
montmorillonite

montmorillonite

2 salt domes calcite
red susp sed dolomite

montmorillonite

salt doses calcite
red susp sed montmorillonite

salt dome
clear water

red-brn susp
sed
salt domes

calcite
montmorillonite

montmorillonite

red susp sed kaolinite/
major fault montmorillonite

major fault w/
salt springs

red susp sed

red-brn susp
sed

montmorillonite

montmorillonite

red beds (CP) salt springs
limestone (M) grey-red-brn

susp sed

----- faint H2S
pebbles w/
carbonate
coatings
clear shallow

----- major fault
grey-red susp

sed
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River, Location Major Lithologies Minor Lithologies Trace Lithologies Special Features Mineral Stability

UCAYALI DRAINAGE (3)

Chulec : limestone (M)
drk shale (M)
red beds (M)
and.tuffs (MT,PQ)
flu-lac-gla ss/sh
(PQ)

Stream, Aguas
Calientes
M-09

Urubamba, Machu
Picchu : M-08,
BPA08

Ucayali, Pucallpa
S-l

granite/
granodiorite (M)

red beds (CP,M)
and. volc (MT,PQ)
limestone (M,MT)
meta gg-blk sh

(LP)

meta gg-blk sh
(LP)

limest (CP,M,MT)
red beds (CP,M,
MT)

and. volc (MT,PQ)
flu-lac sh/ss/cg

(PQ)

gg-blk sh (LP)
evaporites

(bedded) (M)
granite/
granodiorite (M)

metamorph (PC)
shales (CP,M)
sandst (CP,M)
granite/
granodiorite (M)

gg-blk sh (LP,CP,
M)

coal (M)
dolomite (M)
sulfide minerlz
evaporites (M)

evaporites (M)

brn susp sed
mining-Cu
salt extrusion

hot springs w/
"mineral water"
clear stream

salt springs,
evaporite out-
crops

red susp sed

red susp sed

montmorillonite

montmorillonite

calcite
dolomite
montmorillonite

calcite
dolomite
montmorillonite

MADEIRA BASIN (4)

Espiritu Santo,
Villa Tunari
BPA02

gg-blk sh/ss (LP) red beds CMT)
limest (LP,CP) flu-lac (PQ)
dolomite (LP)

San Mateo, Villa gg-blk sh/ss (LP) red beds (MT)
Tunari : BPA02 limest (LP,CP) flu-lac (PQ)
BPA dolomite (LP)

evaporites w/
NaCl, Na2C03,
MgC03, CaSO

4

(LP)

evaporites w/
NaCl, Na2C03,
MgC03, CaSO4
(LP)

grey-brn susp
sed

montmorillonite

grey susp sed montmorillonite

Ichilo,
Villarroel a
M-05, BPA01

Piray, Santa
Cruz : BPA06

Guapay or Grande,
Pailas: BPA05

gg-blk sh/ss (LP) red beds (MT)
flu-lac (PQ)

gg-blk sh/ss (LP) flu-lac (PQ)
red-blk mudst limest (CP)

(CP)
red beds (MT)

gg-blk sh/ss (LP) marls (M)
red-blk mudst limest (CP,M)

(CP)
meta gg-blk sh/ss
(LP)

red beds (MT)
flu-lac (PQ)

evaporites (M)

red-brn susp
sed

red susp sed
1st day of
rainy season

red susp sed
1st day of
rainy season

salares to south
of basin

kaolinite

montmorillonite

dolomite
montmorillonite

Madre de Dios,
Riberalta a
M-04

Beni, Riberalta,
M-03

meta gg-blk sh/ss1
(LP)

flu-lac (PQ)

grey-yel-brn
susp sed

red beds (M,MT)
granite/
diorite (M)

ryol volc (MT)
grn sandst (CP)
limest (CP,M)

gg-blk sh/ss (LP) limest (CP,M)
meta gg-blk sh/ss

(LP)
mudstone (CP)
red beds (M,MT)
flu-lac-gla sh/
ss/cg (PQ)

montmorillonite

brn susp sed montmorillonite

Mamor6, Trinidad
BPA04

Mamor(i,
Guayaramerin
M-02

Madeira, Porto
Velho : M-01

Madeira,
confluence
S212, S328

gg-blk sh/ss (LP)
flu-lac (PQ)
red beds (MT)
shield (PC)
qtzites (PC,M)

shield (PC)
flu-lac (PQ)
red beds (MT)
gg-blk sh/ss (LP)
qtzites (PC,M)

shield (PC)
flu-lac (PQ)
red beds CMT)
gg-blk sh/ss (LP)
qtzites (PC,M)

shield (PC)
flu-lac (PQ)
qtzites (PC,M)
arkoses (PC)
red beds (MT)

mudstones (CP)
limestone (CP)

mudstones (CP)
limestones (CP)

limestones (CP)
mudstones (CP)

gg-blk ss/sh (LP)

evaporites
(very loc)

evap (loc) (LP,M)
ultabasics (loc)

(PC)

grey brn susp
sed

grey brn susp
sed

evap (loc) (LP,M) red-brn susp
ultrabasics (ioc) sed

(PC)

mudstones (CP)
limestone (CP)
evap (v.loc)
ultrabasics
(v.loc)

red-brn susp
sed

Montaro,
A-01

kaolinite

kaolinite

kaolinite

kaolinite

1- 1 --- ----- ------ ----
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River, Location Major Lithologies Minor Lithologies Trace Lithologies Special Features Mineral Stability

OTHER ANDEAN HEADWATER RIVERS (5)

Napo, confluence
S24 9, S304

Japur&,
confluence
S231, S318

red beds (MT)
flu-lac (PQ)
metamorph (PC)
and. volc (MT,PQ)

flu-lac (PQ)
red beds (M,MT)

flu-lac (PQ)
red beds (M,MT)

NEGRO DRAINAGE (6)

Upper Negro,
confluence
UNl, UN2

Branco,
confluence
BRl, BR2

Lower Negro,
Manaus : S216,
S327, LNl, LN2

shield (PC)

shield (PC)

cln sandst (M)

shield (PC)
qtzites (PC)
metamorph (PC)

shield (PC)
qtzites (PC)
metamorph (PC)

flu-lac (mostly
sands) (PQ)

flu-lac (mostly
sands) (PQ)

shield (PC)
flu-lac (mostly
sands) (PQ)

granites saline springs
limest (MMT) (v. loc)
gypsum (M) brn susp sed

and. volc (MT,PQ)
cln sandst (M)
limest (M,MT)

clr-blk water

and. volc (MT,PQ) sample contains
cln sandst (M) main channel
limest (M,MT) water, Sec V.3

qtzites (PC)

qtzites (PC)
argillites (PC)
basic intr (Pu)

qtzites (PC)
argillites (PC)
basic intr (PC)
shales (LP)
sandstones (LP)

clr-blk water

wht susp sed

kaolinite/
montmorillonite

kaolinite

kaolinite

kaolinite

kaolinite

clr-blk water kaolinite

OTHER SHIELD RIVERS (7)

shield (PC) argillites (PC)
flu-lac (PQ) drk shales (LP)

shield (PC)
arenites (PC)

Xingu, confluence shield (PC)
S204, S337 flu-lac (PQ)

qtzites (PC,M)
qrn shales or
argillites (PC)

red sandst (M)

grn shales or
argillites (PC)

gg-blk sh/ss (LP)
red sandst (M)

red ss/sh (CP,MT) clr water
limestones (CP)
dolomites (CP)
gypsum (loc) (CP)

red ss/sh (CP,MT) clear water
limestone (CP)
dolomites (CP)
gypsum (v.loc)
(CP)

red sh/ss (CP,MT) clear water
limestones (CP)
dolomite (CP)

RIVERS DRAINING TERTIARY AND PRETERTIARY SEDIMENTS (8)

Javari,
confluence
S242, S301

Jurud,
confluence
S233, S317

Purus,
confluence
S222, S324

Stream, Obidos
S331

red sh/ss (MT)
flu-lac (PQ)

red sh/ss (MT)
flu-lac (PQ)

flu-lac (PQ)
red sh/ss (MT)

red beds w/
volc ash (MT)
limestones (MT)
cln sandst (NT)

red beds w/
volc ash (MT)

limestones (MT)
cln sandst (MT)

cln sandst (MT)
limestones (MT)
gypsum (MT)
gg-blk sh (MT)

drk shales (MT)
gypsum (economic
deposit (MT)

shield (PC)

drk shales (MT)
gypsum (economic
deposit (MT)

shield (PC)

flu-lac (PQ) over
ls-dol-evap (CP)

yel-brn susp
sed

yel-brn susp
sed

yel-brn susp
sed

clear water

kaolinite

kaolinite/
montmorillonite

kaolinite

kaolinite

RIVERS DRAINING TERTIARY AND LATER SEDIMENTS (9)

Nanay, Iquitos
A-21, NANl,
BPA12

Jandiatuba,
confluence
S309

Tef6, Tef6
S230, S319,a

Coari, Coari
S225, S322

Matari,
confluence
S337A

flu-lac (PQ)

flu-lac (PQ)

flu-lac (PQ)

flu-lac (PQ)

clr-blk water kaolinite

yel-wht susp
sed

kaolinite

clr-blk water kaolinite

clr-blk water

flu-lac (mostly
sands (PQ)

kaolinite

clr-blk water kaolinite

Trombetas,
confluence
S208, S332

Tapaj6s,
confluence
S206, S335

kaolinite

kaolinite

kaolinite
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Table IV.5

Analytical results for surface water samples collected for this
study. Also included are some parameters calculated from the
analytical results. This table should be used in conjunction
with Table Iv.4 and Appendix I.

TZ+ -- Total cations pEq/l (Fe and Al are assumed to be not charged)
PH -- pH
NA -- Sodium pmole/l
K -- Potassium pmole/l
MG -- Magnesium pmole/l
CA -- Calcium pmole/l
ALK -- Titration alkalinity pEq/l
CL -- Chloride ymole/l
S04 -- Sulfate imole/l
SI -- Silica imole/l
FE-T -- Treated iron pmole/l

FE-U -- Untreated iron imole/l
AL-T -- Treated aluminum pmole/l
AL-U -- Untreated aluminum pmole/l
NICB -- Net inorganic charge balance
TDS -- Total dissolved solids ppm
CYCL -- Cyclic chloride umole/l
TEMP -- Temperature OC

P04 -- Phosphate pmole/l

P-T -- Total phosphate pmole/l
N03 -- Nitrate pmole/l
N02 -- Nitrite pmole/l

NH4 -- Ammonia pmole/l
CO2 -- P P

CO2river / C02atmosphere
COL -- Absorbance at 270 nm in 1 cm cell times 1000
TOC -- Total organic carbon pmole/l

AB. -- above

AM. -- Amazon

SO. -- Solimbes
HU. -- Huallaga
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UCAYALI DRAINAGE (3)

PARAMETER: TZ+ PH
STA. -LOCATION-

NA K MG CA ALK CL S04 SI FE-T FE-U AL-T AL-U

S-1 UCAYALI R. 3590. 7.82 552. 47.8 299. 1197.
A-01 MONTARO R. 5150. 7.40 423. 41.1 544. 1800.
M-08 URUBAMBA 13200. 8.20 5720. 178. 884. 2770.
M-09 STREAM A-C 1011. 7.50 195. 52.9 98.1 284.
BPA08 URUBAMBA 7360. 8.31 2610. 97.4 545. 1780.
BPAl UCAYALI C- 1940. 7.37 296. 34.3 123.6 682.

2711. 362. 262. 194. -- 0.2 -- 0.8
1557. 234. 1690. 141. 0.1 0.0 0.4 0.5
2976. 5680. 2230. 208. 0.6 0.0 0.9 0.2
770. 94.9 52. 197. 0.1 0.0 0.6 0.3

2103. 2440. 1350. 177. 0.1 0.0 0.7 0.6
1459. 191. 133. 140. 0.4 0.4 0.5 0.3

PARAMETER: TZ+ NICB TDS CYCL TEMP P04 P-T N03 N02 NH4 CO2 COL TOC
STA. -LOCATION-

S-1 UCAYALI R. 3590. -0.0012 285.1 3.8 -- --
A-01 MONTARO R. 5150. -0.0054 373. 3.8 13. --
M-08 URUBAMBA 13200. 0.0034 880. 3.8 16. --
M-09 TREAM A-C 1011. 0.0340 85.9 3.8 12. --
B T AMBA 7360. 0.0135 498. 3.3 17. 1.12
BPAI1 UCAYALI C- 1940. 0.0029 156.2 3.3 28. 0.65

-- 6.3
-- 35.6
-- 7.4
-- 21.4
-- 19.1

-- 8.13
-- 9.76
-- 2.92
-- 4.05
-- 1.68
-- 12.83

42. --
73. --
23. --
41 . --
54. --
91. -

MADEIRA DRAINAGE (4)

PARAMETER:
STA. -LOCATION-

S212 MADEIRA R.
S328 MADEIRA R.
M-05 ICHILO R.
M-04 M. DE DIOS
M-03 BENI RIVER
M-02 MAMORE GU-
M-01 MADEIRA PV
BPA01 ICHILO R.
BPA02 SAN MATED
BPA03 ESPIRITU S
BPA04 MAMORE TR-
BPA05 GUAPAY R.
BPA06 PIRAY R.

PARAMETER:
STA. -LOCATION-

S212 MADEIRA R.
S328 MADEIRA R.
M-05 ICHILO R.
M-04 M. DE DIOS
M-03 BENI RIVER
M-02 MAM1ORE GU-
M-01 MADEIRA PV
BPAO1 ICHILO R.
BPA02 SAN MATEO
BPA03 ESPIRITU S
BPA04 MAMORE TR-
SPA05 GUAPAY R.
BPA06 PIRAY R.

TZ+ PH NA K MG CA ALK CL S04 SI FE-T FE-U AL-T AL-U

405. 6.70
437. 6.71
728. 6.20
998. 7.20

1303. 7.00
569. 6.50
620. 6.50
517. 5.28

1231. 8.04
1339. 7.81
1231. 6.91
6920. 7.70
2211. 7.71

71.5
64.5

135.
156.
172.
117.
114.
104.
185.
393.
221.

1240.
537.

28.4 61.2
31.1 63.6
25.2 114.1
27.8 102.5
34.6 224.
47.2 90.3
41.1 91.7
21.9 83.0
21.5 168.
25.2 170.
32.8 216.

139.9 1400.
117.5 244.

90.9
106.8
170.
305.
324.
111.7
140.9
110.0
344.
290.
273.

1371.
534.

272. 13.6 37. 145.
304. 12.6 35.5 142.
116. 6.4 279. 168.
831. 15.9 67. 208.
828. 52.7 195. 152.
403. 21.3 47. 156.
450. 22.6 58. 157.

10. 5.6 247. 139.
669. 92.2 233. 114.
652. 259. 197. 137.
511. 72.5 306. 121.

1970. 470. 2190. 163.
1527. 75.2 254. 204.

TZ+ NICB TDS CYCL TEMP P04 P-T N03 N02 NH4 C02 COL TOC

405. 0.0892
437. 0.0935
728. 0.0545
998. 0.0119

1303. 0.0158
569. 0.0834
620. 0.0469
517. -0.0126

1231. -0.0060
1339. 0.0167
1231. 0.0201
6920. 0.0071
2211. 0.0225

35.6
37.5
55.8
89.2

103.5
47.7
53.7
43.5
97.4

101 .2
92.1

480.
176.9

-- 0.22 -- 8.4 --
27. 0.27 0.51 8.1 0.07
21. -- -- 6.3 --
27. -- -- 5.2 --
27. -- -- 11.8 --
27. -- -- 3.4 --
28. -- -- 3.4 --
23. 0.09 -- 9.2 --
22. 0.95 -- 11.4 --
22. 0.82 -- 12.5 --
27. 0.50' -- 11.6 --
27. 0.31 -- 61. --
26. 1.92 -- 51. --

0.4 11.43 77.
-- 12.47 127.
-- 14.08 42.
-- 10.86 42.
-- 17.0 96.
-- 26.6 130.
-- 30.2 156.
-- 15.7 19.
-- 1.16 23.
-- 1.91 54.
-- 12.94 41.
-- 7.49 89.
-- 5.95 136.



OTHER ANDEAN HEADWATER RIVERS: NAPO, ICA, JAPURA (5)

PARAMETER:
STA. -LOCATION-

S249
S238
S231
5304
S313
5318

NAPO RIVER-
ICA R.
JAPURA R.
NAPO R.
ICA RIVER
JAPURA R.

PARAMETER:
STA. -LOCATION-

S249
S238
S231
S304
S313
5318

NAPO RIVER
ICA R.
JAPURA R.
NAPO R.
ICA RIVER
JAPURA R.

TZ+ PH

400.
194.
453.
493.
159.
605.

6.70
5.99
6.52
6.94
5.95
6.59

NA K MG CA ALK CL S04 SI FE-T FE-U .- T AL-U

53.6
26.7
71.3
73.
27.0
89.

29.4
14.6
19.3
29.6
13.3
23.8

48.0
16.1
36.8
55.3
14.7
48.2

110.3
59.1

143.8
139.5
44.0

198.

341.
80.

351.
427.

95.
494.

8.5
7.1

37.4
9.4
8.1

49.5

14.7 191.
2.5 115.

17.5 122.
23.7 200.

3.1 112.
21.3 137.

1.4 0.2
1.4 2.4
1.2 0.1
0.8 0.1
1.4 0.5
1.8 0.3

TZ+ NICB TOS CYCL TEMP P04 P-T N03 N02 NH4 C02 COL TOC

400.
194.
453.
493.
159.
605.

0.0396
0.4986
0.0568

-0.0002
0.2899
0.0250

41 .3
11.6
39.4
51 .0
13.7
53.5

0.20
0.18
0.25
0.37
0.23
0.28

0.47
0.26
0.49

0.06
0.04
0.05
0.05
0.03
0.05

14.34
17.6
22.3
10.22
23.0
26.6

78.
113.
ill.

82.
155.
221.

585.

NEGRO DRAINAGE (6)

PARAMETER:
STA. -LOCATION-

S216
S327
UN1
UN2
BR1
BR2
LN1
LN2

NEGRO R.
NEGRO R.
U.NEGRO R.
U.NEGRO R.
BRANCO R.
BRANCO R.
NEGRO R.
NEGRO R.

PARAMETER:
STA. -LOCATION-

TZ+ PH

68.
68.
51.
57.

179.
285.

74.
56.

5.36
4.95
4.80
4.64
6.61
6.66
5.07
5.03

NA K MG CA ALK CL S04 SI FE-T FE-U AL-T AL-U

17.6
17.3
10.4
13.5
62.0
85.
20.8
17.8

10.1
10.1

7.9
6.6

24.3
30.1

8.1
7.3

6.8
6.1
3.2
2.6

21 .7
40.8

5.6
4.6

10.5
8.3
5.2
4.2

24.7
44.2
12.7
6.1

9.
9.

-16.
-5.

128.
252.

8.
12.

6.8
7.6
7.6
7.0

15.5
16.0
15.2

9.5

70.9
65.3
64.3
56.9

191.
192.

72.0
67.7

TZ+ NICB TDS CYCL TEMP P04 P-T N03 N02 NH4 C02 COL TOC

0.02 -- 2.9
0.11 0.22 5.3

-- -- 1.6
-- -- 1.8
-- -- 2.6
-- -- 5.2
-- -- 1.7
-- -- 3.4

5216
S327
UNI
UN2
BR1
BR2
LN1
LN2

NEGRO R.
NEGRO R.
U.NEGRO R.
U.NEGRO R.
BRANCO R.
BRANCO R.
NEGRO R.
NEGRO R.

68.
68.
51.
57.

179.
285.

74.
56.

0.6172
0.4049
0.7290
0.4559
0.1519
0.0218
0.4231
0.3256

6.3
6.1
5.3
4.8

22.5
33.5

6.9
5.9

6.8
7.6
7.6
7.0

15.5
16.0
15.2
9.5

1.0
0.12

763.12.21
52.5

0.50
89.6
6.69
11.68
31.2
42.2

371.
396.
369.
627.
188.

30.
332.
344.



OTHER SHIELD RIVERS: XINGU, TAPAJOS, TROMBETAS (7)

PARAMETER: TZ+
STA. -LOCATION-

S208
S206
S204
S332
S335
S337

TROMBETAS
TAPAJOS R.
XINGU R.
TROMBETAS
TAPAJOS R.
XINGU R.

281.
160.
215.

99.
129.
281.

PH

6.50
6.91
7.09
5.87
6.72
6.44

NA K MG CA ALK CL S04 SI FE-T FE-U AL-T AL-U

46.6
32.7
76.
35.9
30.6
68.3

18.0
19.1
27.0
18.1
19.6
25.3

24.1
18.9
24.0

8.6
17.8
28.0

83.7
34.9
31.8
13.2
21.5
65.4

159.
82.

176.
63.

109.
190.

20.6
9.0

19.3
15.7

9.8
27.1

7.9 112.
1.6 150.
1.0 192.
4.9 116.
3.3 147.
3.0 173.

1.0 0.3
0.8 0.3
0.9 0.1
2.4 1.2
0.9 0.2
1.3 0.6

PARAMETER: TZ+ NICB TDS CYCL TEMP P04 P-T N03 NO2
STA. -LOCATION-

S208
S206
S204
S332
S335
S337

TROMBETAS
TAPAJOS R.
XINGU R.
TROMBETAS
TAPAJOS R.
XINGU R.

281.
160.
215.

99.
129.
281.

0.2930
0.3945
0.0767
0.0504
0.0154
0.1960

18.8
14.1
26.7
14.1
18.9
25.9

20.6
9.0

19.3
15.7
9.8

27.1

0.10
0.01
0.0
0.01
0.03
0.06

0.03
0.06
0.14

0.08
0.11
0.02
0.03
0.03

NH4 C02 COL TOC

10.65 132.
2.15 101.
3.04 91.

18.5 193.
4.43 105.

15.2 146.

940.

LOWLAND RIVERS DRAINING MARINE SEDIMENTS: JAVARI. JURUA, PURUS (8)

PARAMETER: TZ+ PH
STA. -LOCATION-

S242
S233
$222
S301
S317
$324
S331

JAVARI R.
JURUA R.
PURUS R.
JAVARI R.
JURUA R.
PURUS R.
STREAM 08-

298.
642.
374.
357.
490.
217.
307.

6.45
6.80
6.39
6.34
6.51
5.99
6.26

NA K MG CA ALK CL S04 SI FE-T FE-U AL-T AL-U

51.0
81.
49.8
48.5
64.5
34.3
74.

17.2
30.5
23.9
19.6
28.0
21.9
29.8

29.6
57.1
34.7
30.3
44.2
24.3
27.8

85.2

208.
114.7
113.1
155.

55.7
73.4

250.
570.
265.
304.
447.
169.
245.

16.1
16.0
15.1
22.6

5.9
5.0

53.1

6.2
7.5
9.9

10.7
7.4
7.3
3.3

156.
167.
142.
134.
161.
133.

79.

PARAMETER: TZ+ NICB TOS CYCL TEMP P04 P-T N03 N02 NH4 C02 COL TOC
STA. -LOCATION-

S242
S233
S222
S301
S317
S324
S331

JAVARI R.
JURUA R.
PURUS R.
JAVARI R.
JURUA R.
PURUS R.
STREAM OB-

298.
642.
374.
357.
490.
217.
307.

0.0237
0.0550
0.1928
0.0084
0.0360
0.1178

-0.0005

32.1
57.1
29.4
35.8
46.9
22.2
28.5

4.1
5.1
5.0
4.1
5.8
5.0

15.5

0.01
0.34
0.30
0.23
0.34
0.29
0.05

0.42
0.93
0.83
0.16

12.6
5.8
1.6
5.9
4.7
2.0
1.1

0.14
0.06
0.06
0.07
0.06
0.04
0.0

18.8
18.9
22.8
29.3
28.9
37.5
28.6

85.
97.

115.
161.
194.
183.
158.
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VARZEA WATERS (10)

PARAMETER:
STA. -LOCATION-

5246
S245
S244
S308
5312
S317A
S320
S325
S330
LJ1

CAYARU R.
VARZEA L.
VARZEA L.
VARZEA L.
VARZEA L.
MINERUA P.-
CAIAMBE L.
CABOLIANA
MAMAURU L.
JANAUARY L

PARAMETER:
STA. -LOCATION-

5246
S245
S244
S308
S312
S317A
S320
S325
S330
LJ1

CAYARU R.
VARZEA L.
VARZEA L.
VARZEA L.
VARZEA L.
MINERUA P.
CAIAMBE L.
CABOLIANA
MAMAURU L.
UANAUARY L

TZ+ PH

1135.

657.
1009.

391.
126.
600.
413.
584.

6.60
6.90
6.79
6.44
6.87
6.41
5.91
6.56
6.58
7.10

NA K MG CA ALK CL S04 Si FE-T FE-U AL-T AL-U

173.
175.

90.
148.

48.2
41.0
89.
58.0
99.

36.6
33.7

25.6
30.4
29.3
23.3
26.5
25.2
22.4

87.2
84.9

51.0
72.3
35.4
12.4
51.4
43.7
49.1

401.
378.

220.
343.
121.3

17.8
191.
121 .3
182.

1015.
946.
898.
553.
826.
345.
92.

509.
320.
467.

103.5

54.0
96.8

5.8
10.1
39.7
33.0
50.3

31.6
37.

17.4
38.

4.2
1.2

21.5
24.9
30.5

183.
189.
196.
142.
164.
153.
184.
119.
129.
148.

TZ+ NIC8 TDS CYCL.TEMP P04 P-T N03 N02 NH4 C02 COL TOC

1135.

657.
1009.

391.
126.
600.
413.
584.

0.0109

0.0204
0.0029
0.0808
0.1590
0.0138
0.0255
0.0036

98.0

58.3
87.6
36.9
18.8
53.2
38.4
53.8

3.8
3.8
3.8
4.3
3.9
5.8

10.1
4.6
7.6
5.4

0.40
0.43
0.40
0.29

,0.46
0.35
0.06
0.14
0.13

0.36
0.47
0.46
0.25
0.46
0.24

0.02
0.0
0.0
0.03
0.03
0.02
0.04
0.0
0.0

55.2
24.6
31 .5
42.0
22.9
28.5
24.4
30.8
17.7
7.77

109.
95.

163.
153.
260.
213.
211.
195.

88.

MAIN CHANNEL (1*): SAMPLES FROM TRIBUTARY MIXING ZONES

PARAMETER:
STA. -LOCATION-

S248
S239
S221
S218
S214
S213
S211
S210
S205
S310

AM.B.NAPO
SO.AMATAU
SO.IUARA
AM.CONFL.
AM.AMATARI
AM.AMATARI
AM.ITACOA-
AM.PARANT-
AM. ITUQUI
SO.SAO PA-

PARAMETER:
STA. -LOCATION-

5248
S239
5221
S218
5214
S213
S211
S210
S205
S310

AM. B.NAPO
SO.AMATAU
SO. IUARA
AM.CONFL.
AM. AMA TARI
AM.AMATARI
AM.ITACOA-
AM.PARANT-
AM. ITUQUI
SO.SAO PA-

TZ+ PH

976.
1041.

444.
441.
554.
246.
488.
397.
404.

1210.

7.27
6.59
6.61
6.68
6.18
6.65

6.64
7.04

NA K MG CA ALK CL S04 SI FE-T FE-U AL-T AL-U

174.
163.

66.4
66.1
81.
39.9
73.
61.4
58.0

178.

28.4
28.2
24.2
19.0
23.1
14.0
24.9
20.5
20.7
33.4

74.1
74.7
41 .0
35.5
44.9
20.3
51.8
38.3
37.9
82.4

313.
350.
135.2
142.2
179.
74.8

142.8
118.8
124.4
417.

766.
828.
364.
344.
443.
155.
344.
283.
295.
971.

102.2
92.8
25.8
33.5
41.5
18.2
28.8
34.9
21.3

110.9

48.
51.
15.6
15.0
18.9

7.4
25.9
16.7
15.1
47.

187.
176.
141.
118.
137.
93.

136.
119.
124.
175.

TZ+ NICB TDS CYCL TEMP P04 P-T N03 N02 NH4 C02 COL TOC

976.
1041.

444.
441.
554.
246.
488.
397.
404.

1210.

0.0037
0.0080
0.0469
0.0690
0.0491
0.2167
0.1181
0.1043
0.1299
0.0194

85.9
90.1
40.8
37.9
48.2
18.3
39.1
32.9
32.8

101 .5

0.40
0.46
0.32
0.23
0.36
0.20
0.30
0.29
0.28
0.52' 0.57

0.10
0.04
0.05

0.09
0.02

9.20
19.7
17.8
19.4
21.9
16.2

14.24
18.3

71.
67.

109.
185.
110.
284.

99.
133.
124.
141.

449.

753.

257.
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basin: limestones, red beds, and igneous and metamorphic rocks are concen-

trated in its center, while in the east the river flows across the fluvial-

lacustrine sediments of the lowlands. Tributaries from the north drain large

areas of igneous, metamorphic and recent volcanic rocks.

Most of the sampling was in the Huallaga Basin. The Huallaga rises on

the north end of the Peruvian altiplano (Figure IV.10) (Intercordilleran Zone)

in a region of complex geology, featuring carbonates (Jurassic), lithified

red beds (Permian), dark shales (Paleozoic), Precambrian basement, and exten-

sive sulfide mineralization. The river crosses the Cordillera Oriental and

flows into the Subandean Trough, with Precambrian and Paleozoic of the Cordi-

llera on the left and the post-Paleozoic, Subandean, on the right. The river

turns to the northeast, and crosses a thick section of red beds and carbonates

before flowing over the fluvio-lacustrine cover of the lowlands (Figure IV.ll).

The influence of evaporites primarily of Permian and Jurassic age are

seen throughout the basin. All rivers with high chlorides have either out-

crops of Permian and Jurassic red beds, faults from which salt springs can

issue, or salt diapirs. A salt spring (A-05) and two streams draining salt

(A-10, BPA16) were sampled. Water draining the diapirs is very chloride

rich with a Cl:S04 mole ratio of about 15:1 (A-10) and 34:1 (BPA16) (sea

water is 19:1), suggesting rapid dissolution of NaCl versus CaSO4 . Water

from the spring had a Cl:SO ratio of 4:1, a SO4:Ca ratio of 1.1:1, and

smelled faintly of H2S, suggesting that an additional contribution of sul-

fur, perhaps reduced, was present. In the stretch of river that passes

through the main area of salt domes, A-13 (Cl=392 pmoles/l) to A-17 (C1=940

pmole/1), the chloride concentration increases 2.4 times, suggesting that

salt extrusions and springs are a major chloride source in the Huallaga

Basin. In contrast, sulfate concentrations increased only slightly (136 to
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Figure IV.10

Photograph of the headwaters of the Huallaga and Maranon Rivers.
The canyon, with the sharp bend to the right of the center of the
picture is the valley of the Huallaga River. The bend to the east
is followed by a sharp turn to the north. The bright valley in the
upper left of the photograph is the canyon of the Mara-on. Both
rivers rise near the north end of the altiplano, which is the white
area in the lower right.
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Figure IV.ll

Photograph of the lower course of the Huallaga and Ucayali Rivers.
The Huallaga is the river crossing the upper left. The other large
river is the Ucayali. The hills in the picture represent the edge
of the Andean uplift. The uplift of the Pilluana salt dome, sampled
in this study (see Figure 111.4), has resulted in the
formation of the lake (black patch) down and to the right of the
large sharp bend in the Huallaga River.
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151 pmole/1). Sulfur is widely distributed through many rock types in the

basin, and salt extrusions are apparently of lesser importance as a sulfate

input.

The importance of salt springs or minor extrusions can best be seen

by comparing the Aspasarta (A-08) with the Uchiza (A-09) and the Shanusi

(A-18,BPAl4) with the Paranapura (A-19,BPA15). Each of these pairs has sim-

ilar geology and a major fault running through the basins, however the Uchiza

has higher chloride concentrations than the Aspasarta, and the Paranapura

has higher concentrations than the Shanusi. This contrast is thought to be

due to minor salt springs and perhaps salt extrusions on the faults in the

Uchiza and Paranapura basins. Much of the salt input in the latter basin

is localized on the Cachiyacu (salt water) tributary.

Carbonate rocks are found in most of the rivers sampled in the Huallaga

Basin. The chemistry of only two of the sampled rivers, the Aspasarta (A-08)

and the Uchiza (A-09), appear to be dominated by carbonate weathering. Both

basins drain primarily carbonates (Jurassic and Cretaceous respectively)

and red beds (Cretaceous). (Ca+Mg) constitute greater than 90% of the cat-

ions and HCO3 greater than 80% of the anions in the samples. The Aspasarta

has a Ca:Mg mole ratio of 9.7:1 and the Uchiza has 7.5:1; equivalent ratios

of (Ca+Mg):(Na+K) are 26.2:1 and 10.7:1 respectively.

Red beds are such a conglomeration of lithologies that it is hard to

characterize their contribution to the dissolved load. Red beds apparently

contribute little to the Aspasarta and the Uchiza. The Shanusi and Parana-

pura drain mostly red beds. They have low silica concentrations, 96-135

pmole/l, compared with Huallaga tributaries draining other rock types. If

NaCl and CaSO4 are subtracted from the data, their TZ+ average values are

725 pEq/l and 658 pEq/l respectively, still much higher than lowland tribu-

taries.
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Precambrian sediments and igneous rocks are the primary lithologies

in the Chapira (A-04), Monz6n (A-06), and Tocache (A-ll) Basins. All have

low levels of Ca and Mg compared to Na and K [(Ca+Mg):(Na+K) equivalent

ratios are 5.8:1, 3.1:1, and 2.2:1 respectively], low TZ+ (852, 613, 462

pEq/1) and high silica (203, 203, 244 pmole/1). All of these rivers have

minor sedimentary outcrops in their lower courses (Chapira-limestones; Mon-

zon-limestones, Paleozoic red beds and salt springs; Tocache-Paleozoic red

beds); the Tocache Basin has negligible carbonates. The sulfate and chlor-

ide present in these rivers may be due to the weathering of the sedimentary

rocks and locally mineralized zones in the Precambrian, along with minor

precipitation inputs. The substantial increase in the silica between

Huallaga samples A-02 (123 pmole/1) and A-13 (225 pmole/1) and drop in

TZ+ (2894 to 1862 pEq/l) is probably due to inputs from rivers draining ig-

neous and metamorphic terrains.

All other samples taken in the Huallaga Basin come from geologically

complex catchments. The chemistry of these rivers and the Huallaga itself

is consistent with the observations that high silica and low (Ca+Mg):(Na+K)

ratios, chloride, sulfate, and TZ+ values characterize rivers draining sili-

ceous terrains, that high alkalinities, calcium, magnesium, and TZ+ charac-

terizes rivers draining carbonate terrains, and that high sodium, chloride,

TZ+, and sometimes calcium and sulfate characterizes rivers with even small

salt deposits. The steep topography maximizes the exposure of all rock types,

as a consequence relatively small areas of carbonate or evaporite rocks make

a large contribution to the dissolved load of the rivers.

The Marafion is more dilute than its tributary, the Huallaga, especially

with repect to Na and Cl, consistent with observations that extensive eva-

porite exposures are not characteristic of the geology of the Marafion Basin

as a whole.
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IV.4:4 Ucayali Drainage (3)

The principal differences between the Ucayali Basin and the Marafion

Basin are the increased abundance of Lower Paleozoic sediments (slightly

metamorphosed), red beds, Upper Tertiary to recent volcanic sediments, bedded

evaporites, and the reduced area of lowland fluvio-lacustrine sediments.

The major element solution composition of the Ucayali and the Huallaga are

similar except for sodium and chloride, which are more concentrated in the

latter river. The geologic layouts of the Ucayali and Huallaga rivers are

quite similar, draining from the Intercordilleran Zone, across the Cordi

llera Oriental into the Subandean Trough. The only tributaries sampled were

from the Intercordilleran Zone. Samples from the Urubamba River (M-08,BPA08)

show the effects of the great Mesozoic evaporite deposits near

Cuzco. These evaporites are either bedded or brought to the surface

as large springs (c.f. Benevides 1968, and Section 111.3:3). This drainage

has very extensive exposures of recent (andesitic) volcanics and lesser ex-

posures of Lower Paleozoic shales, limestones, and granite-granodiorites.

The high silica and alkalinity suggest that rapid weathering of both carbo-

nate and silicate rocks is occurring.

IV.4:5 Madeira Drainage (4)

Lower Paleozoic sediment dominates the entire Andean drainage of the

Madeira Basin. Samples were taken (M-04,M-03,BPA04) representing a north-

south transect of large rivers draining the southern Peruvian and Bolivian

Andes. These samples cover a transition from moderately metamorphosed Lower

Paleozoic, in southern Peru, to unmetamorphosed Lower Paleozoic in central

Bolivia, and a corresponding thickening of the Lower Paleozoic section.

These geologic trends are paralleled by changes in river chemistry, notably

a drop in the Ca:Mg ratio (3.0, 1.4, and 1.3, respectively) and the Alk:SO 4
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ratio (12.4, 4.2, 1.7). Several of the rivers in the Madeira basin (M-03,

M-05,BPA01,BPA02,BPA03,BPA04,BPA06) stand out above the SO -TZ+, MG-TZ+ and

K-TZ+ trends and below the Cl-TZ+ and the alkalinity-TZ+ trends in Figures IV.4,

IV.5, IV.6, Landi IV.7. In view of the geology (i.e. no evaporites, few

limestones and dolomites), the only reasonable explanation for these separ-

ate Madeira Basin trends is the weathering of sulfur-containing Lower Paleo-

zoic shales. The weathering of reduced sulfur-containing rocks has been

described by Holland (1978 p. 46), who suggests that sulfuric acid genera-

ted by the weathering of pyrite should react with silicate minerals in a

manner analogous to H2CO3. This is best seen in sample (BPA01 - the Ichilo,

draining Devonian shales, see also M-05) where the sulfate is present in

excess of the amount needed to balance calcium and magnesium. The high po-

tassium and magnesium trends are a reflection of their greater abundance in

black shales than is typical for other rock types (Table III.1). The waters

from the Madre de Dios River (M04) are the least sulfur enriched, an indi-

cation that metamorphism of the Lower Paleozoic may have lowered the concen-

tration of reduced sulfur in the rocks, or may have made them less prone to

weathering; alternatively there may be a significant sedimentary facies

change going north, although no change is described in the literature.

The inputs of chloride from Cambrian evaporites is evident in samples

from the San Mateo (BPA02) and Espiritu Santo (BPA03) rivers. The Guapay

or Grande River (BPA05) and Piray River (BPA06) are compositionally unusual.

If sodium is corrected for its NaCl component, a large sodium residual re-

mains (770 and 462 pmole/l, respectively), greater than twice the residual

for any other sample. Furthermore, the samples have very high potassium,

however the silica concentrations are not exceptionally high. These samples

include flash flood runoff from the first day of the rainy season. A down-

stream sample (BPA04), taken the day before, shows none of the sodium bicar-
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bonate enrichment of these samples. It is thought this chemistry is due to

partial re-solution of soil salts during rains in a semi-arid climate, as

described by Drever and Smith (1978), who demonstrate that resolution results

in a preferential release of rapidly soluble salts. Silica is the species

most slowly redissolved. Salares (saltpans) are observed in the lowlands

immediately to the south of the Guapay Basin, showing that conditions for

concentrating soil salts exist in the area. The Guapay has some evaporites

in the highland part of its basin.

IV.4:6 Andean Magnesium and Calcium Inputs

Inspection of the Mg-TZ+ plot shows that for rivers draining Andean

sedimentary terrains, two distinct Mg-TZ+ trends exist. All the samples

from the upper trend are either from the Intercordilleran Zone in Peru (Mara-

ion: S-2,A-02,A-03,A-04,A-07,Ucayali: A-01,M-08,BPA08) or the Madeira Basin

(listed above). The samples in the lower trend are from rivers rising in

the Subandean Trough, and from main channel and the lower courses of the

Marafion, Huallaga, and Ucayali. This latter observation suggests that fore-

land weathering inputs dominate the chemistry of Andean contributions to the

Amazon River. The apparently overwhelming contributions of dissolved ma-

terials from the foreland areas undoubtedly reflects the combination of high

precipitation (c.f. Hoffman 1975) and runoff on steep slopes developed on

easily weathered lithologies (c.f. Section 11.4:8). The foreland contri-

bution is well illustrated by the Huallaga samples A-02, A-07, A-12, cor-

responding to the Cordillera Oriental, and first and second Subandean sam-

ples, respectively. The corresponding sequence of Mg:TZ+ ratios is observed:

1:4.5, 1:5.2, and 1:7.9. The high proportions of Mg in the Madeira compared to

the main channel, at their confluence, reflects the presence of high magne-

sium rivers rising in the foreland.
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There does not appear to be a single cause for the high magnesium

trend. In the north and central Intercordilleran Zone of Peru, the high

magnesium may be derived from the Lower- Jurassic, Pucara Group, (sequence

of limestones with dolomites, and dolomitic limestones) and perhaps outcrops

of Lower Paleozoic, in the regions to the south, the Lower Paleozoic shales

appear to be the only likely source; these may have dolomitic matrices.

IV.4:7 Other Andean Headwater Rivers: Napo, Iga, Japurn (5)

These rivers begin in the Northern Andes, in a region with much less

exposed marine sediment than in the Peruvian and south Ecuadorian Andes.

The Napo River has the most extensive mountain drainage of the three

rivers. The Andean drainage rises in the Precambrian-cored Cordillera Cen-

tral, an area of much recent volcanic activity; ash forms a ubiquitous co-

ver. The rivers cross a thinned Paleozoic and Mesozoic section, with little

evaporitic material, and then flow over young fluvial-lacustrine sediments.

Chemically the Napo at its confluence with the mainstem resembles the rivers

draining the Precambrian in the Huallaga Basin.

The Iga River has a very small Andean drainage compared to its low-

land drainage. The Andean part of its drainage is similar to that of the

Napo. The dilute nature of the Iga indicates that lowland inputs dominate

its chemistry.

The Japuri River has a geology very similar to the Iga, and on this

basis would be expected to have a similar chemistry, however this is not the

case, as the Japura is richer in dissolved materials. In Chapter V, it is

shown that, at the time of sampling, a 50:50 mixture of Iga-like and main

channel water (supplied to the Japura through the Aranapu Parana), .

provides a better fit to water and chemical discharge data, than does an

assumption of no main channel contribution. This contribution undoubtedly

varies in magnitude during the year. Tastivin (1929) observes that upriver
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of the confluence betwen the Japura and the Aranapu, the waters of the Jap-

urA are clear (like those of the Iga).

IV.4:8 Negro Drainage (6)

The Negro River drains primarily Precambrian Shield. Tertiary fluvial-

lacustrine sediments are found on the soith side of its lower course. The

basin can be divided into two parts: (1) The upper and lower Negro Basin,

and (2) the Branco Basin. The former region is essentially a peneplain,

bordered on the north by the highest elevations in Brazil (Figure IV.12).

The soils are the most intensely weathered in the Amazon Basin

(c.f. Section 111.4:2). The upper Negro Basin has no dry season, and the

Negro Basin as a whole has the greatest runoff of any lowland region. The

Branco Basin (Figure IV.13) has moderately developed topography, with seve-

ral erosion surfaces separated by scarps. The basin is far drier than the

rest of the Negro Basin, having a large area of savanna, a pronounced dry

season, and rather low runoff. The Branco carries an appreciable sediment

load (kaolinite, Irion 1976), while the Negro has very little suspended

sediment; this sediment has a very low Si:Al ratio (Price and Sholko-

vitz 1978). The Negro River waters are sufficiently acid that they facili-

tate the flocculation of Branco sediment, having a pH near the zero point

of charge for kaolinite (Leenheer and Santos 1979).

The Negro River is the most dilute of all large Amazon tributaries,

and is completely unlike any other river draining the shields. The Branco

Basin contributes significantly to the dissolved load of the Negro as can

be seen by comparing samples from UN2, BR2, and LN2, taken from the upper

Negro, Branco, and lower Negro near Manaus, respectively, within the period

of a few days. When normalized to silicon, the major element compositions

of upper Negro River water and "average shield" rocks are quite similar:
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(UN1 UN2)/2 Shield

Na 0.095 0.112

K 0.119 0.062

Mg 0.035 0.042

Ca 0.073 0.069

Si 1.000 1.000

Fe 0.057 0.067

Al 0.067 '0.313

This is indicative of very efficient weathering of rocks in the Negro Basin,

including significant dissolution of iron and aluminum from the parent

rock. The quartz residual (giant podzol) soil (described in Section

111.4:5) is probably the principal solid residue of this intense weathering.

A source for the high potassium in the Negro samples may be the degradation of

residual potassium-bearing minerals in more clay-rich soils, which are also

found in the basin. If this is the case, present weathering in the Negro Basin

must be more intense than were the conditions under which the clay-rich soils

accumulated.

IV.4:9 Other Shield Rivers: Xingu, Tapajos, Trombetas (7)

These rivers are geologically and climatologically similar to the

Branco Basin. All start in elevated shield terrains. The Xingu and Tapaj6s

also have savanna in their headwaters, and all have pronounced wet and dry

seasons. The Xingu is in the driest basin. The Trombetas and Tapaj6s cross

the Paleozoic sediments of the Amazon Trough, and both have some exposed gyp-

sum (c.f. Sioli 1963). Higher sulfate is seen in the analyses of the water

from the Trombetas (S208, S332) than from the Tapajos (S206, S335). Presumably

this difference is because Paleozoic sediments cover a larger fraction of

the Trombetas Basin. The Xingu is much more cation rich than the Tapaj6s,

which is adjacent to it. This may be due to the drier climate in its basin

or to the extensive area of Precambrian sediements found in its basin

(Sombroek 1966, FAO/UNESCO 1971), associated with catio-rich soils.

1- 1-
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Figure IV.12

Photograph illustrating the flatlands of the Upper Negro River
Basin. The river crossing the middle of the photograph and turning
north is the Upper Negro, and the large river coming in from the
center left is the Uaupes River. Erosion escarpments can be seen
in the upper right of the picture.
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Figure IV.13

Photograph of the upper Branco Basin. This photograph should be
compared to the previous picture. Savanna areas (bright) can be
seen in the southern half ot the photograph. Several erosional
steps can be seen, marked by changes in color and the courses of
roads and rivers. A very high escarpment can be seen in the upper
left part of the photograph, as the border of a smooth black patch.
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IV.4:10 Lowland Rivers Draining Marine Sediments: Javari, Jurus, Purus (8)

The headwaters of these rivers drain marine and continental sediment,

deposited in the Subandean Trough (separated topographically by uplift), as

well as large expanses of Tertiary fluvial-lacustrine sediment. Present

headwater topography reaches 1000 meters. The three rivers have the high-

est dissolved solid levels of rivers not originating in the Andes. The Jurua,

which drains the center of the uplifted area, has the highest level of dis-

solved solids, and except for lower levels of Na, Cl, and SO4 , and higher

levels of Si, it resembles the Shanusi (A-18,BPA14), a river draining similar

sediments in the Huallaga Basin. Both the Jurua and Purus have

economic gypsum deposits in their basins, and all three rivers have consider-

able montmorillonite in their suspended load (c.f. Gibbs 1965, Irion 1976).

When compared to rivers from the shield, the most notable characteristic of

these three rivers is the higher concentrations of Ca, Mg and alkalinity,

an indication of the importance of carbonate rocks in their basins.

A small stream near Obidos (S331) has been included in this group.

This stream rises in Tertiary sediments overlying evaporites. The high

chloride in this sample may indicate leaching from the evaporites.

IV.5:ll Rivers Draining Upper Tertiary Sediments (9)

All of these rivers are extremely dilute and are comparable to the

Negro in composition. There is considerable variation in their major ele-

ment composition. As Tertiary sediments are unmapped, however, it is not

possible to relate these variations to any specific geological features.

When compared to the Negro River, after cyclic salt corrections, the ratio

of (Ca+Mg):(Na+K) is higher in the rivers draining Tertiary sediments. The

Tef5 (S230,S319,S319A) and the Matari (S337A), like the Negro, have K:Na ratios

close to one. After cyclic salt corrections, the (near coastal) Matari
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River has the lowest concentration of Na, K, Ca, and Si of all rivers sam-

pled. The Nanay River (A-21, NAN01, BPAl2), which drains Upper Tertiary

sediments deposited near the rising Andes, shows low concentrations of all

species, indicating that the sediments which it drains are weathered to

a degree comparable to sediments in the Amazon Trough.

IV.4:12 Vnrzea Waters (10)

The highly productive nature of virzea (floodplain) soils and lakes

is well known, being a consequence of the supply of nutrients from water

and sediment of the main channel. Much of the water transferred to the

floodplain during rising water eventually returns to the river, and biolo-

gical processing in the vArzea may affect chemical budgets in the basin.

Compositions of these lakes range from mainstem water composition to

the composition of streams draining the adjacent (usually Tertiary) high

ground (Terra firme) (Sioli 1951).

Samples collected during this work can be compared to the chemistry

of water from the adjacent main channel:

Similar to main channel:
S244,S245,S246,S325,S330,LJl

Intermediate:
S308,S312,S317A

Similar to Tertiary Rivers:
S3205,309A

The samples from varzea lakes similar in chemistry to the waters of

the main channel provide a means of evaluating the potential effects of bio-

logical activity on the composition of surface waters. The nitrate concen-

tration in these samples is greatly reduced, while phosphate, sulfate,

and silicate are low in only some samples. This is thought to indicate

clear biological effects for nitrate and possible effects for the other

three species.



- 189 -

IV.4:13 Terrestrial Biological Effects

There is no direct way to identify the effects of terrestrial bio-

logical reservoirs (c.f. Section 111.5) on the chemical budgets in the

Amazon Basin without a detailed time series from lowland rivers. If

biogeochemical budgets were constant and'balanced, there would be no

sensible effect on geochemical fluxes, however if there are seasonal

gains and losses of elements in the biomass, one-time sampling of the

type used in this study would not detect the effects. Elements for

which a large proportion is found in the biomas, compared to soils,

are Ca, Mg, K, N, and perhaps S (c.f. Section 11.5). Nitrate and

sulfate show substantial variations in lowland rivers between 1976 and

1977 samples. All rivers which were sampled twice and which do not

have marine sediments in their catchments (Negro, Tefe6, Coari, Jutai,

Nanay) show factor of two variations in calcium (the Coari also show a

factor of two variation in magnesium). Other species do not show such

great variation in these rivers. The variability in sulfate, nitrate,

calcium, and magnesium may reflect changes in biological reservoirs.
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IV.5 GEOLOGICAL CONTROLS OF HIGH TZ+ RIVERS

Only a few readily weathered minerals are commonly found in marine

sedimentary rocks and marine and continental evaporites in the Amazon Basin.

These minerals are calcite (CaC03 , with some Mg), dolomite (CaMg(CO3)2),

gypsum or anhydrite (CaSO4-2H20, CaSO4 ),, and Halite. Some evaporite

in the Amazon may contain potassium and magnesium salts at low concen-

trations (most of the high K points in Figure IV.7 are from rivers draining

evaporites).

All of these minerals weather congruently (have no solid weathering

products):

(1) NaC1 = Na + Cl

(2) CaSO4 = Ca + SO4
*

(3) CaCO3 + H2CO3 = Ca + 2HCO3

(4) CaMg(C03 )2 + 2H2C03 = Ca + Mg +4HC03

(5) CaC03 + H2SO = Ca + SO + H2CO3

(6) CaMg(C03) + 2H2So4 = Ca + Mg + 2SO + 2H2C03

A source of protons is necessary for rapid weathering of the carbonates.

This is typically carbonic acid (Eq. 3 and 4), however sulfuric acid (Eq.

5 and 6, found in precipitation and in the products of the weathering of

reduced sulfur minerals, e.g. from black shales) nitric acid (oxidation of

ammonia and organic nitrogen), and organic acids (evidenced by NICB) are

also probable proton sources. Only HCO3 and SO are abundant anions in high

TZ+ waters. Note that without additional geologic information it would not

be possible to differentiate situations where combinations of Reactions (2)

to (6) are occurring, there being only three conservative dissolved phases

(Ca, Mg, and HCO 3=Alk).

The analyzed inorganic species are charge balanced at high TZ+ (Figure
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IV.9). If the above reactions are the sources of inorganic ions in these

samples, then stoichiometric balances would be expected between (Na+K) and

Cl (assuming evaporitic potassium is in a chloride salt), and between

2(Ca+Mg) and (Alkalinity + 2SO4). A stoichiometric balance might be expec-

ted between 2(Ca+Mg) and Alkalinity in terrains where sulfur containing

minerals are not common, as is the case in many of the carbonate areas in

the Andes.

The graph of (Na+K) versus Cl (Figure IV.14) demonstrates that at

high concentrations, the data distribution approaches the 1:1 trend charac-

terizing a pure evaporite source. The dispersion of samples above this

trend, at lower chloride concentrations, undoubtedly reflect inputs from

the weathering of sodium and potassium aluminosilicates which, like carbonate

weathering, need a source of protons to proceed efficiently (Section IV.6:5).

The plot of 2(Ca+Mg) versus (Alkalinity + 2SO4) (Figure IV.15) shows

a high correlation throughout the entire data range, becoming particularly

tight and approaching the theoretical 1:1 limit at higher concentrations.

The tendency for data to fall below the 1:1 trend reflects the requirement

that a portion of the anions balance Na and K produced by silicate rock

weathering. Silicate rock weathering is a minor contribution in high TZ+

waters, hence the convergence to the 1:1 trends in Figures IV.14 and IV.15.

The greater scatter of the data at low concentrations in Figure IV.14 re-

flects the opposing effects of an increased contribution of Na and K relative

to Ca and Mg, causing a downward shift in the data, and an increased contri-

bution of NO and organic anions relative to Alk and SO causing an up-3 4'

ward shift.

It is not possible to distinguish inputs of calcium and magnesium from

silicate rocks from products of reactions (3-6) on the basis of chemistry
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alone (c.f. Garrels 1967, Garrels and Mackenzie 1971, Holland 1978). How-

ever, inputs from the weathering of calcium and magnesium silicates should

be similar in spatial distribution and magnitude to inputs from the weather-

ing from sodium and potassium silicates, as there are no terrains dominated

by silicates that are extremely rich in either alkalis or alkaline earths.

There is apparently an upper limit of alkalinity input from the

weathering of carbonates, clearly seen in a plot of (Ca+Mg) versus alkalin-

ity (Figure IV.16). The concentration of (Ca+Mg) varies independently of

alkalinity, at high concentrations. In these samples, sulfate replaces al-

kalinity as the principal species in the charge balance. This is illustra-

ted in a ternary plot of (Ca+Mg), Alkalinity, and SO4 (Figure Iv.17). Note

that the samples tend to be confined to a field defined by charge balance

trends for (Ca,Mg)(HCO3)2 and (Ca,Mg)SO expected from reactions (3-6). The

weathering of calcium and magnesium silicates would be expected to also fall

in this field, however only rivers draining marine sediments are identified

with large symbols on this graph, and silicate contributions are expected

to be minimized in these rivers.
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Figure IV.14

Sodium plus potassium versus chloride (pEq/1). Note that all the
samples fall on or above the one to one trend. The low
concentration sample falling on the trend is from the Matari
River, a river dominated by cyclic salt inputs.

Symbol key:

+ - (1) Main Channel

* - (2) Maranon Drainage
- (3) Ucayali Drainage

- (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
() - (6) Negro Drainage

D - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varzsa waters
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Figure IV.15

Calcium plus magnesium versus carbonate alkalinity plus sulfate (pEq/1).
This graph illustrates the charge balance between these para-
meters for rivers draining marine sediments, as is seen by the
dense clustering of points along the one to one trend.

Symbol key:

+ - (1) Main Channel

* - (2) Maranon Drainage
- (3) Ucayali Drainage

4 - (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

E - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varzia waters
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Figure IV.16

Calcium plus magnesium versus carbonate alkalinity (pEq/1).
This graph demonstrates that the charge balance seen in the
previous graph is between the carbonate species, calcium and
magnesium for most of the samples. There are two major exceptions to
this, being samples with alkalinities above 1000 pEq/l which have
a major sulfate component from evaporites, and samples from the
Madeira Basin, in which sulfuric acid from the weathering of
reducing sediments is a significant proton source in the weathering
process. The upper limit for alkalinity is roughly 3000 pEq/1.
Since the concentration of calcium and magnesium is not similarly
limited, it is suggested that carbonate solubility ultimately
defines the maximum concentration of carbonate alkalinity in
Amazon waters.

Symbol key:

4- - (1) Main Channel

* - (2) Marafion Drainage
- (3) Ucayali Drainage

-4- - (4) Madeira Drainage
+ - (5) Other Andean headwater rivers

- (6) Negro Drainage

o - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments

- (10) Varzia waters
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Figure IV.17

Ternary diagram for calcium plus magnesium, carbonate alkalinity,
and sulfate, calculated with concentrations in 1Eq/1. The bulk
of the samples draining marine sediments fall within a field

bounded by the trends defined by the weathering of carbonate
and sulfate minerals (note that the dots are rivers not draining marine
sediments).

+ - (1) Main Channel

4 - (2) Maranlon Drainage
e - (3) Ucayali Drainage

- (4) Madeira Drainage

V - (8) Lowland rivers with extensive areas of marine sediments
X - (10) Varxna waters
a - Rivers not draining extensive areas of marine sediments
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IV.6:l WEATHERING REACTIONS

This section expands the discussion of water chemistry to include a

more detailed examination of weathering reactions occurring in the Amazon

Basin. Two interpretative procedures are utilized: (1) thermodynamics is

used as a means of delimiting possible weathering reactions, and (2) rock

and soil data are used to identify possible chemical relationships between

chemical species through use of reaction mass balances.

The use of chemical relationships has been introduced in the previous

section, where it is demonstrated that only a few weathering reactions are

required to explain the major ion chemistry of high TZ+ surface waters.

In low TZ+ waters, complications arise due to contributions of materials from

silicate rock weathering. The solution products of silicate weathering are

not as well defined because the degradation of silicates generates a variety

of solid phases, typically clays and sesquioxides, and dissolved phases (in-

congruent reaction).

IV.6:2 Applicability of Thermodynamic Models to Amazon Chemistry Data

Despite the complexity of the weathering environment, thermodynamics

may provide a means of testing whether a particular (clay) mineral or mine-

rals might be forming as a result of weathering. Examination of Amazon River

data using thermodynamic models is rather attractive, however certain quali-

fications must be discussed prior to application of models.

One might ask if thermodynamics can be validly applied to systems that

are so clearly heterogeneous as are the river catchments within the Amazon

Basin. This complexity is of course unavoidable, as the only geologically

homogeneous basins sampled were in the lowlands. It seems reasonable that

in basins which have silicate rocks or carbonate and silicate rocks as domi-

nant lithologies, an assumption of homogeneity would be valid: (1) The wide
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distribution of silicate rocks of acid to intermediate composition (which

contain roughly the same minerals, but in different proportions) restricts

the number of silicate reactions which can occur. (2) Carbonates are very

widespread in the Andes, and are commonly associated with shales and other

siliceous rock types, furthermore in catchments where carbonates are a

major lithology, carbonate weathering controls the chemistry of the river

(Section IV.5).

Ultimately, the applicability of thermodynamic calculations to river

water can only be validated if thermodynamic models are consistent with in-

dependent observations. The validity of the interpretation of any particu-

lar sample is often hard to justify due to the lack of detailed environ-

mental data, and the chemical data must be viewed in terms of trends indi-

cating that certain broad controls might be important.

IV.6:3 Carbon Dioxide and pH

A second difficulty in interpreting data thermodynamically is that of

possible nonconservative changes in the concentration of species used in the

models. Note that thermodynamic models treat data logarithmically, conse-

quently a nonconservative change must be large to have a sensible effect in

results. Observations from varzea lakes (Section IV.4:12) suggest that bio-

logical effects on the major ions and silica are inconsequential. The most

significant changes are seen in the case of hydrogen ion, caused by changes

in the carbon dioxide vapor pressure (PCO2 ) of the sample.

Garrels (1967) demonstrates that the chemistry of groundwaters draining

igneous rocks is best explained by weathering in an environment closed with

respect to CO2 exchange with the atmosphere. High initial CO2 vapor pres-

sures are involved, perhaps 10 to 100 times the P CO2 of the atmosphere. PCO2
in temperate soils ranges from 5 to >20 times that of the atmosphere (Holland

1978 p.22). Johnson et al. (1975) report soil PCoe values from a Costa
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Rican rainforest, with values averaging 70 times atmospheric.

River PCO will be assumed to be in the same range as soil PCO'2 C 2

When soil and ground water enter a river, the water becomes an open

system with respect to gain and loss of CO2 Garrels and Mackenzie (1971,

p.125) observe that the P of rivers averages about ten times that of the

atmosphere, comparable to levels observed in soils, and speculate that the

high PCO is the result of a balance between organic generation of CO2 by

2
decay in river water and its loss to the atmosphere. These observations in-

dicate that major errors in thermodynamic calculations involving stream

water should not occur, as soil and river PCO2 values are comparable.

The distribution of carbon dioxide vapor pressures in Amazon surface

waters reflects both productivity and the dynamic state of the river from

which the samples were taken (Figure IV.18). Waters from swift Andean rivers

and high productivity lakes fall below the range typical of soil PCO2, sug-

gesting that pH's from these rivers are probably not representative of the

soil environment.

The relationship between pH, Alkalinity, and PCO2 for waters having

alkalinity and pH values typical of Andean rivers can be approximated by:

log(Alk) + pK0 + pK1 - pH = log(PCO2) or -Alog(PCO2) = ApH

where K0 and K1 are Henry's law and first association constants for carbon

dioxide. The rise in pH of water moving from Andean soils into rivers may

be as much as 1 or 2 pH units. As no estimates are available for

PC in-lowland and Andean soils, no attempt will be made to correct
CO

2

pH values in. subsequent calculations.

IV.6:4 Carbonate Rocks

Prior to delving into silicate weathering, the simpler chemistry of

carbonates will be examined. With carbonates the problems of varied secondary
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solid phases need not be considered; furthermore, samples of interest come

only from the Andes.

Several studies have shown that thermodynamic controls of ground water

chemistry in carbonate terrains are straightfoward. Typically these ground

waters are just under or at saturation with respect to calcite, dolomite,

or both, and exhibit high PCO2 values (approximately 10 to 100 times

the atmospheric value) (Holland et al. 1964, Thrailkill 1972, Langmuir

1971).

The plot of carbonate alkalinity versus magnesium plus calcium (Figure

IV.19) suggests that an upper limit to alkalinity exists for the river water.

The high (Ca+Mg) waters are from rivers in which carbonate rock and evapor-

ite inputs dominate the chemistry.

The carbonate dissolution reactions to be considered are:

CaCO3 = Ca2+ + C02 ~3 3

Ca~g(C03)2 = Ca2+ + Mg2+ + 2CO2~

Following Langmuir (1971), the thermodynamic state of the water sam-

ples can be parameterized using saturation indices (or satability or dis-

equilibrium indices) for calcite and dolomite, given by:

Calcite: SIC = log(aCa - a C03 / Kspcalcite

Dolomite: SID log(aCa aMg -,a2CO3 / Kspdolomite)
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Figure IV.18

Histograms of carbon dioxide vapor pressures in selected
categories of samples. Productivity information is taken
from Wissmar et al.(1979). The figure shows that
carbon dioxide vapor pressures in Amazon surface waters are
related to the dynamic and biological conditions in the
waters. It should be noted that the vapor pressures on the
main channel increase down river.
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Figure IV.19

Saturation index for dolomite versus saturation index for calcite.
Note that most of the samples that are saturated for dolomite are
also saturated for calcite. Station numbers have been identified
for all the Andean samples to facilitate comparison with Table IV.4.
In doing this comparison it should be noted that all of the rivers
supersaturated with respect to calcite have limestone as a major
lithology in their drainage, while very few of the undersaturated
samples have limestone as a major lithology.

Symbol key:

+ - (1) Main Channel
- (2) Maranon Drainage

-Y - (3) Ucayali Drainage

- (4) Madeira Drainage

X - (10) Varzsa waters
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Constants are from Langmuir (1971)2.

When SID is plotted against SIC (Figure Iv.19), the samples fall on

a clearly defined 2:1 trend. The occurence of a 2:1 trend depends primarily

on the limited range of variation in the log(Mg/Ca) of the samples, as:

SI D= 2SIC + log(Mg/Ca) - pKsp + 2pKsp
dolomite calcite

Any phenomena which change Mg and Ca proportionately (dilution by much

fresher waters, evaporation) will shift the sample along a 2:1 trend. In

contrast, inputs of CaSO4 (such as those occurring in the Peruvian Andean

rivers) would shift data along a 1:1 trend. Waters draining carbonate or

siliceous rocks having different Mg:Ca ratios would be expected to fall on

different 2:1 trends. The distinct 2:1 trend in Figure (IV.19) reflects the

approximately inverse relationship of hydrogen ions with calcium, magnesium,

and alkalinity, as can be seen by approximating SIC and SID in terms of

these variables:

2Pertinent equations

Alk(titration) = [HCO] + 2[CO] + [0H] - [H+] (c.f. Appendix III)

KO 2 C0]/PCO K1 = 2[H+][C0 ]/[HCO~] K2 =2[H+][CO=]/[HCO ]

K [H+][0H~]/[H20] H =

Activity coefficients,T , are calculated using the Davies Equation (Butler
1964). Equilibrium constants are from Langmuir (1971). Temperature cor-
rections are included for all samples. Temperatures in some lowland rivers
were not measured, and are assumed to be 250C. Calculations for the most
concentrated samples (A-05, A-10, M-08, BPAl6) indicate that significant ion
pairing for Mg and Ca with SO4 is occurring, but not with HCO3 ( 2%).
Consequently only ion pairing for Mg and Ca with SO4 are considered in the
calculations.
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SIC =log(aCa) + log( Alk) + pH + pK2 + pKspcacite

SI D =log(aCa) + log(aMg) + 2log( Alk) + 2pH + 2pK2 + pKspdolomite

A change in pH caused by a gain or loss 6f CO2 due to atmospheric exchange,

or a decrease in pH and increase in alkalinity during weathering, would

shift a water sample along a 2:1 trend.

The data for Andean rivers (Figure IV.19) clearly fall on two trends.

One is a Madeira Basin trend, which intersects both the dolomite and calcite

supersaturation fields at the same point. The other trend, including all

Peruvian Andean samples (except the Huachipa River, draining Precambrian

metamorphic rocks, see Table IV.4), intersects the calcite field first. All

of the samples that are supersaturated with respect to calcite have lime-

stones as a dominant lithology in their catchments (compare Figure IV.19 with

Table IV.4). Sample BPA05 (Guapay River) of the Madeira group is the only

sample saturated solely with respect to dolomite. Redissolution of soil

salts is thought to control the chemistry of this sample (see Section IV.4:5).

The high magnesium content of the Madeira Basin rivers is thought to be

due to the magnesium rich dark shales in the drainage (Section IV.4:5),

which may have dolomites in their carbonate component (Section ~111.3:3).

Howeve.r Peruvian rivers having dolomitic carbonates (Section TV..4;6) do not

fall on the Madeira trend.
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Figure IV.20

Carbonate alkalinity plotted against the saturation index for
calcite.

Symbol key:

- - (1) Main Channel

* - (2) Maranon Drainage
- (3) Ucayali Drainage

4- - (4) Madeira Drainage

+ - (5) Other Andean headwater rivers

- (6) Negro Drainage
D - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments

- (10) Varzsa waters
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Figure IV.21

Calcium plus magnesium plotted against the saturation index for
calcite. Compare this figure with Figures IV.20 and IV.16.

Symbol key:

+ - (1) Main Channel

* - (2) Maranon Drainage
- (3) Ucayali Drainage

4- - (4) Madeira Drainage

f - (5) Other Andean headwater rivers
- (6) Negro Drainage

O - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varzsa waters
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The supersaturation seen in these samples is not characteristic of

ground waters from carbonate terrains, where saturation or undersaturation

is typically observed. Both loss of carbon dioxide in the transition from

soil to river environments and addition of CaSO4 (A-05, A-10, A-16, M-08,

BPA.08) may bring about supersaturation.

Sample A-05 , from a salt spring, is particularly interesting,

as carbonate coatings are observed on pebbles in the spring. The cal-

culated PCO2 of the sample is 13 time the atmospheric value, and the sample

is supersaturated with both calcite and dolomite. The coatings are likely

due to the precipitation of calcite caused by supersaturation

induced by losses of carbon dioxide. Similar coatings were not observed

elsewhere during this study, however they are reported for a tributary of

the Huallaga, Quebrada de Puente Perez, by Patrick (1966), who attributes

them to deposition by blue-green algae.

When log(Alk(C)) is plotted against SIC (FigureIV. 2 0), a simple

linear relationship is observed, while if log(Ca+Mg) is plotted against SIC

(Figure IV.21), some samples plot independently of SI once supersaturation

is reached. This is taken as indicating that the alkalinity is limited by

either saturation with respect to calcite in soils, calcite precipitation

in rivers or both. It should be noted that if pH values of supersaturated

samples are adjusted so that SI = 0, the calculated P values increaseC CO2

from an average of 2.73 times the atmospheric value to an average of 6.38

times the atmospheric value. The latter value is in the low end of the

range of PCo' levels of soils.
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IV.6:5 Silicate Weathering

A general description of the silicate weathering process has been

developed over the past two decades. Cation rich primary minerals are dis-

solved at disequilibrium, releasing the cations, silica, and some iron and

aluminum into solution. It is accepted that the weathering rate of primary

mineral grains is in part controlled by the availability of a source of

protons in solution. The proton source is typically carbonic acid, but may

also be sulfuric, nitric, and organic acids. The hydrogen ions displace

exchangeable cations and hydrolyze the Si-O-, Al-O-, and Fe-0- bonds.

The interpretation of other controls on the dissolution rate are some-

what controversial, and two groups of models have been developed. The

earliest models assume that dissolution rates are partly controlled by dif-

fusion through either a protective weathering rind consisting of cation

depleted silicates (clays) (Correns and von Engelhart 1938, Wollast 1967,

Helgeson 1971, Busenberg and Clemency 1976), or through cation depleted outer

layers of the primary grain (Paces 1973). Recent models suggest that feld-

spar dissolution is controlled by surface reaction kinetics (Petrovic et al.

1976, Berner and Holdren 1977, Berner 1978), occurring on a surface of mini-

mum Lattice energy. This mechanism is supported by observations, including

chemical measurements and electron microscopy of the outer layers of soil

feldspars, which show no alteration and no weathering rinds, instead the soil

feldspars exhibit well developed crystallographically controlled etch pits

on otherwise fresh surfaces. These observations parallel those of Pasquali

et al. (1972, p.2 272 , see Section 111.6:2) who report fresh appearing micro-

cline in weathered parts of soil profiles in Venezuela. Pasquali et al.
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(1972) also observe that unlike microcline, biotite is bleached in soil

profiles, an indication that cation loss may occur in some minerals. In

certain silicate phases, notably volcanic glasses, rinds are observed to

form during the weathering process (Loughnan 1968).

Some of the cations, silica, iron and aluminum released from the de-

grading primary grains reprecipitate as clay minerals in the immediate

vicinity of the primary grains (if not as a weathering rind). These clay

minerals are thought to be near to thermodynamic equilibrium with the soil

and ground water solutions in contact with them. Thermodynamic equilibration

in ground and soil water systems has been subject to numerous studies (Feth

et al. 1964, Garrels and Christ 1965, Keller 1967, Polzer 1967, Garrels

1967, Bricker and Garrels 1967, Garrels and Mackenzie 1967, Paces 1972,

1974, Weaver et al. 1971, Norton 1974, Hemley et al. 1977, Nesbitt and

Bricker 1978). The usual approach is to construct stability fields for

various soil minerals (graphically or as solubility indices) as a function

of the activity of dissolved species in the soil solution. Typically iron

is assumed to be equilibrated with hydroxides or oxides, and aluminum activ-

ity is treated as a dependent variable, with phases being chosen so that it

is minimized. Consequently only the major ions, silica, and the hydrogen ion

are used in calculations. This standard approach is quite reasonable as no

method for measuring or calculating the activity of iron and aluminum in

soil solutions exists, due to organic reactions involving Fe and Al. Chem-

ically, water from most soil and groundwater samples falls in kaolinite or

montmorillonite fields on stability diagrams.

A major shortcoming of thermodynamic studies of soil and groundwater

systems is a failure to adequately characterize clays, particularly the

more cation rich clays. Thermodynamic models generally fail to treat amorphous
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and mixed layer clays commonly observed in soils. Data exist, however,

that suggest that the amorphous clays have similar stoichiometries and

occupy similar stability fields as the more crystalline phases (c.f.

Weaver et al. 1971, 1976).

Kaolinite represents a class of cation depleted aluminosilicates, which

also includes haloysite and metahaloysite, and poorly crystalline alumino-

silicates, all having a 1:1 aluminum to silica stochiometric ratio. Kaoli-

nite is associated with acid, well drained soils. Very little substitution

of other elements for silicon and aluminum in its lattice is observed. These

clays are representative of forested lowland soils, while savanna soils are

more aluminous.

Montmorillonites (smectites) are associated with poorly drained soils

(where cations build up due to long residence times), calcareous soils, or

soils with a high volcanic ash content. Unlike kaolins, montmorillonites

are chemically an extraordinarily heterogeneous group of minerals (Ross and

Hendricks 1945). Common montmorillonites have compositions intermediate

between three end members:

Beidellite M0.33 - Al (Si3.67A0.33)010(OH)2

Montmorillonite 0.33 - (Al 1 . 6 7 Mg0 .33)Si4010(OH)2
NontroniteN - Fe 3+ Si A )0 (H+3+ A 0 3)1(1)

0.33 2 3.67A0.33)10( 2

None of these end members represents a reasonable estimate of the compo-

sition of a "typical" montmorillonite, as situations where iron and/or

magnesium are lacking in the environment are atypical. Early studies of

soils and groundwaters assumed that beidellites were representative of typi-

cal montmorillonites, and thermodynamic constants for beidellites were cal-

culated using ground and soil water chemical data (Garrels and Mackenzie 1967,

Norton 1974). Most early investigations only examined one exchangeable ion
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at a time (M = Ca, Na, or Mg), as more complicated situations cannot be

treated conveniently on two dimensional diagrams.

Thermodynamic parameters for more complex montmorillonites have been

obtained in laboratory equilibration studies (Kittrick 1971a,b, Weaver et

al. 1971, 1976). A particularly well studied montmorillonite is the Colony-

I montmorillonite from Wyoming (Weaver et al. 1971, 1976, Tardy and Garrels

1974). Laboratory derived thermodynamic constants from the Colony-I have

been shown to be applicable to soil systems in which the mineralogy (that is,

the presence of kaolinite and/or montmorillonite) and soil water chemistry

are known (Weaver et al. 1971). The Colony -I montmorillonite has the fol-

lowing stoichiometry:

Mg - (Al1 .5 2Fe. 2 2Mg0 .2 9 )(A1. 1 9 S 3 .8 1 )01 0 (OH)2
0.20

Note that beidellite has a low silica to aluminum ratio compared to the

Colony-I (1.57 versus 2.23) and a high silica to cation equivalent ratio

(11 versus 3.9).

Geologic data suggest that montmorillonites might be forming in the

Andes. The Colony-I is assumed to be analogous to modern Andean montmoril-

lonites, as the Colony-I was formed at a time (Early Tertiary) when condi-

tions of climate, geomorphology, structure and volcanism of the North Amer-

ican cordillera and precordillera resembled those of the contemporary Andes

and lowlands (c.f. Clark et al. 1967).

The examination of silicate weathering in the Amazon is treated in two

steps. Firstly thermodynamic aspects of silicate weathering in the Amazon

are examined, and a saturation index for montmorillonite is established.

Secondly, the possibility of montmorillonite formation is then tested using

an alternative non-thermodynamic reaction mass balance model.
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IV.6:6 Recapitulation of Silicate Occurrences in the Amazon

Igneous and metamorphic rocks in the Amazon Basin tend to be

intermediate to acid in nature. Siliceous sediments of the Andes and Sub-

andean Trough contain abundant cation rich clays and micas such as illite,

chlorite, muscovite, paragonite, biotite, and some montmorillonite (in

younger sediments). Andean sands frequently contain unweathered rock frag-

ments and feldspars. Exposed lowland sediments are cation depleted, with

the exception of sediments in southwestern Brazil and in Paleozoic outcrops

along the lower Amazon. Soils and river sediment loads in the lowlands are

kaolinitic (tending to gibbsitic in the savanna areas), while kaolinite,

montmorillonite, and other cation rich clays are reported in Andean soils

and suspended sediments in rivers.

IV.6:7 Amazon Data and Activity-Activity Diagrams

Stability diagrams for the systems: (Na-H-Si-Al), (K-H-Si-Al),

(Ca-H-Si-Al), and (Mg-H-Si-Al-Fe) at 250C are presented in Figures IV.22, IV.23,

IV.24, and IV.25. The reactions and equilibrium constants used are

summarized in Table IV.6. All these diagrams, except for Mg, use only stan-

dard aluminous end member phases, which are free of other cations and iron.

Inspection of these figures shows that most of the data fall in the stabil-

ity field for kaolinite when the aluminous end member phases are considered.

However, in the magnesium stability diagram, a complex montmorillonite (Col-

ony-I) is included. Magnesium and iron are partially substituted for silica

and aluminum in the lattice; the effect is to shift the montmorillonite

stability field to encompass more data.

Most non-aluminous end member phases cannot be treated on these dia-

grams, as substitution and ion exchange typically involve several cations.

The formulation of stability indices, analogous to the saturation indices
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Figure IV.22

Stability diagram for end-member sodium-aluminosilicates.

Symbol key:

- - (1) Main Channel

* - (2) Mara'on Drainage
- (3) Ucayali Drainage

4- - (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

- (7) Rivers draining shields

V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varzsa waters
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Figure IV.23

Stability diagram for end-member potassium-aluminosilicates.

Symbol key:

+ - (1) Main Channel

* - (2) Maranon Drainage
- (3) Ucayali Drainage

4- - (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage
- (7) Rivers draining shields

V - (8) Lowland rivers with extensive areas of marine sediments
- (9) Rivers draining only U. Tertiary and Quaternary sediments
- (10) Varzsa waters
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Figure IV.24

Stability diagraum for end-member calcium-aluminosilicates.
H-constant from Helgeson (1969)
N-constant from Norton (1974)

Symbol key:

+ - (1) Main Channel

* - (2) Maranon Drainage
- (3) Ucayali Drainage
- (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

0 - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments

- (10) Varzia waters
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Figure IV.25

Stability diagram for end-member magnesium aluminosilicates, also
including thermodynamic data for a complex montmorillonite, the
Colony-I montmorillonite (discussed in text). The Colony-I
montmorillonite has iron and magnesium substituted into the lattice
and probably represents a more realistic composition of
montmorillonites occurring in the Andes. Note that the
use of a non-idealized phase results in major shifts in the
phase boundaries. The montmorillonite phase boundary in this

diagram is still idealized in the sense that exchangable ions
other than magnesium are not considered.

Symbol key:

+ - (1) Main Channel

* - (2) Maranon Drainage
- (3) Ucayali Drainage

-4 - (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

- (7) Rivers draining shields

V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments

- (10) Varzsa waters
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Reaction Reactants

(1) 7NaAlsi 308 t 61H* + 4H20

(Na-feldspar)

(2) 7CaAl2Si208 + 12H+ + 8Si(OH1)4

TABLE Iv.6

Thermodynamic
Constants used in Text

Products log K

Beidellite in Droducts

= 3Na0 .3 3A12-33313 67010(011)2 + 6Na* 8.52

+ 1osi(ol)
4

= 6Ca0 .1 67Al2 33 Si3. 67 01 0 (OH) 2 + 6Ca++ 135.73

(Ca-feldspar)

(3) 7Mg5A12Si301 0 (0 H)8 + 68H+ + Si(0H)4 = 6Mg0.1 6 7Al2 .33Si3 .67 01 0 (OH)2 + 34Mg++ 475.8

Si/(Na+K) References

1.667 (1)

-o (1)

0 -cO (1)

(chlorite)

(4) 3KAlSi3 O + 2H + + 12H20

(K-feldspar)

(5)

(5) 2NaAlSi 308 + 2H+ + 9H2 0

(6) 6Nao-33Al.2 3 3Si3.67 010 (OH)2 + 2H*+

23H20

(7) 2KAlSi 3 08 + 2H'+ 9H20

(8) 2KAl Si 010 (0H)2+ 2H + 3H20

(9) CaAl2 Si208 + 2H+ + H20

(10) 6Cao. 1 6 7 A 2 3 3 Si 3 . 6 7 010 (OH) 2 + 2H1+

+ 23H20

(11) Mg5A12Si3 010 (OH)8 + 10H+

(12) 6Mg0.1 67 Al 2 .33Si 3 .67010 (OH) 2 + 2H*

+ 23H20

+ 58H2 0

Illite in products

= KA1 3 Si3 010 (OH) 2 + 2K+ + 6Si(OH) 4

Kaolinite in products

= A12Si205 (01) 4 + 2Na* + 4Si(0H)4

= 7Al2 Si2 05 (0H)4 + 2Na* + 8Si(OH)4

= A12Si205 (H) 4 + 2K* + 4si(OH)4

= 3A12Si205 (0H1)4 + 2K+

= Al2Si205 (0) 4 +Ca++

= 7A12Si2 05 (01) 4 + Ca'* + 8Si(OH)4

= A12Si205(01) 4 + 5Mg+* + Si(OH)4

+ 5H20

= 7Al2Si205 (OH)4 + Mg4 * + 8Si(OH)4

(13) 2Mg 0.2 0 (si3.8 1Al 0 .19 )(Al1 52 Fe0.22 .g0 .29 )010 (oH) 2 + 8.85H20 + 1.96H*

(Mg-Montmorillonite, Colony I) 1.71A12 Si20 5(01) 4 + 0.22Fe203
+ 0.98Mg++ + 4.2OSi(OH)

4

(14) K0.64 .(Al5 4 Fe0.29 )(Al 0.49S'3 51 )010 (OH)2 + 1.02H* + 3.485H20

(Fethian Illite) = 1.015A12Si2 05 (OH)4 + 0.145Fe203
+ 1.48Si(OH)4 + 0.64K+ + 0.19Mqg++

(15) 4Mg2 F
4eAl 2Si0 10(OH)8 + 302 + 16H = 4Al2S1205 (0H) + 8Mg*+ + 4Si(OH)4

+ 6Fe20 + 8H20

Gibbsite in products

(16) NaAlSi3 08 + H + 71120 = Al(OH) 3 + Na+ + 3Si(OH)4

(17) KAl3 Si3 00 (0H)2 + H+ + 9H20 = 3Al(OH)3 + K + 3Si(OH)4

(18) CaAl 2Si2 08 + 2H+ + 6H20= 2Al(OH)3 + Ca++ + 2Si(OH )4

(19) Mg5A12Si3010(011) 8 + 1011 = 2Al(OH)3 + 5Mg + + 3Si(OH)4

(20) Al2Si2 05(0)1 + 5H20 = 2A1(OH)3 + 2Si(OH)4

Congruent reaction

-13.27 3 (1)

0.25 2

-15.29 4

-5.11

11.22

17.06

-16.31

65.57

-16.81 C (1)

-6.304 m (2.3.4)

-0.327 2.31 (2)

279.88 c (2)

-4.75

-9.02

7.31

55.82

-9.75

co (1)

(21) Si0 2 (quartz) + 21120

(22) S102(amorphous) + 21120

= Si1OH)
4

=Si(OH)4

(1) Helgeson 1969
(2) Tardy and Garrels 1974
(3) Weaver et al. 1971

Weaver et al. 1976

-3.7- c

-2.7 0c
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presented earlier for calcite and dolomite, provides a means of identifying

single phase boundaries between complex phases. Stability indices were for-

mulated and tested for the montmorillonite (Colony-I)-kaolinite, illite

(Fethian)-kaolinite, and Fe-chlorite 2+ Al2Si301(OH)2)-kaolinite phase
(Mg92Fe3 A 2Si3 1 0(H 2)-alnt

boundaries (thermodynamic constants in Table IV.6). Illite and chlorite are

not stable in any of the samples from this study. Consequently, only the

derivation of a stability index for the montmorillonite-kaolinite boundary

is developed below; the main extension from the magnesium stability diagram

is the inclusion of exchangeable cations other than magnesium.

IV.6:8 Montmorillonite Stability

Data for the thermodynamic treatment of exchangeable cations is pre-

sented in Tardy and Garrels (1974, p. 1108). Using this data it is possible

to calculate equilibrium coefficients for exchangeable cations relative to

magnesium on montmorillonites:

,H -5.85
Kg = 10

Na -1.37
K% = 10

K -1.45
K = 10

Ca
K = 1.0

2/n
Mn+ XMn+ Mn + aM

is defined by: XMn+ KMn 2Xg Kg aMg

where XMn+ is the exchanged fraction of M. Sayles and Mangelsdorf (1979,

Ca
Fig. 3) show a range of Kg of between 0.8 and 1.2 for montmorillonites.

Using these coefficients, the exchanged fractions for other cations

relative to magnesium can be determined for montmorillonites equilibrated

with Amazon waters. In no case are exchangeable hydrogen ion or potassium
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Figure IV.26

Stability index for a complex montmorillonite (Colony-I) plotted
against total cations (pEq/l). This saturation index was calculated
using both calcium and magnesium as exchangable ions. Nearly- all the
samples draining the Andes fall into the montmorillonite stability
field with the exception of samples from the Madeira Basin and
rivers with Andean headwaters crossing an expance of lowlands.
See Table IV.4 for comparison.

Symbol key:

- - (1) Main Channel

- (2) Mara'on Drainage
- (3) Ucayali Drainage

- (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
( - (6) Negro Drainage

O - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments

- (10) Varz~a waters
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significant relative to exchangeable magnesium. Exchangeable sodium is com-

parable to calculated exchangeable magnesium only in two salt river samples

(A-05), BPA16). Exchangeable calcium is greater than or equal to exchange-

able magnesium.

Because calcium and magnesium are the dominant exchanged cations, the

stability index can be formulated using the simplifying assumption that

these are the only exchangeable ions. That is

Ca
XMg+ X = 1 and K g9will be assumed to be 1.0.

g Cag

Therefore

X = 1 / (1 + aCa / aMg

The stability indices for magnesium and calcium saturated (Table IV.6,

Reaction 13) montmorillonites on the kaolinite boundary are given by:

SIM = 0.20 lo g( ag/a ) + 0.29 log( ag/a ) + 2.10 log( a ) + 3.15

SI = 0.20 log ( 2a/aH2) + 0.29 log( a /a2 ) + 2.10 log( a ) + 3.15
Ca aCa/aH D~H Si

These reactions are combined assuming: SImont= gSIMg + XCaSCa

Giving:

-0lo2a C'2 022o
SImn 0.20 [ X log ( aMg/a2 ) + X log a aH ) ] + 0.29 log(ag/a)
mont 20 Ca CaMgHH"Mg H

+ 2.10 log ( aS. ) + 3.15

The Mg/(Ca+Mg) ratio of the montmorillonite is given by: Mg/(Mg+Ca) =

(0.29+0.20 XMg)/0.4 9

When the montmorillonite saturation index is plotted against total

cations (Figure IV.26), it is seen that its value exceeds one (that is

montmorillonite is stable) only in basins with significant marine sedimen-

tary deposits in their drainage (TZ+ >400-500). This relationship is rea-

sonable as montmorillonite stability requires a great supply of magnesium

and calcium ions.
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Thermodynamic parameters such as the stability index have two disadvan-

tages. Firstly, there are all those discussed earlier pertaining to hetero-

geneous systems and CO2 exchange. A change of one pH unit will change the

stability index for montmorillonite roughly one unit in the opposite sense.

Secondly, it is not possible to tell whether montmorillonites are being

formed or degraded. The high values for the stability index suggests that

montmorillonites are forming, however this cannot be seen as unambiguous

evidence.

IV.6:9 Reaction Mass-Balance Relationships

Chemical mass-balance relationships have been used as an independent

test of thermodynamic models; in this case they are used to test the plausa-

bility of the montmorillonite saturation index. The most sophisticated

application of mass-balance relationships is found in Garrels (1967), who

shows that the mineralogical composition of igneous rocks can be calculated

from the composition of coexisting ground waters and the composition of the

solid weathering products (kaolinite in the case of examples presented by

Garrels 1967). Garrels (1967) observes that this approach is not possible

in complex terrains, for example many sedimentary and metamorphic terrains

(such as the Andean tributary basins).

Two simple mass-balance derived parameters, the alkalinity:silica

ratio and the sodium:silica ratio have been used as a test of whether mont-

morillonites are forming during the weathering process (Feth et al. 1964,

Polzer 1967, Garrels 1967). The essential observation is that the alkalin-

ity:silica ratio and sodium:silica ratios are lower in soil solutions, when

montmorillonite is the weathering product, than when kaolinite is the weath-

ering product. These two ratio parameters have not been generalized to

examine sedimentary terrains (the alkalinity:silica ratio is obviously not

usable in carbonate terrains).
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* * *
The ratio Si/(Na + K - Cl ) is the parameter chosen in this study

to test if the weathering reactions are producing montmorillonite and/or

* * *
kaolinite in a particular catchment. Na , K , and Cl are the Na, K, and

*
Cl concentrations corrected for cyclic salt inputs (Section II.5-6). Cl is

*
subtracted from Na to correct for terrestrial NaCl inputs. It is assumed

* * *
that (Na -Cl ) and K represent material derived solely from silicate rock

weathering. In general Na and K are not incorporated in clays produced in

Amazonian weathering, with the possible exception of partially degraded

illites where potassium is readily reincorporated.

The Si/(Na+K) ratios for a variety of silicate weathering

reactions are given in Table IV.6. With the exception of the

weathering of paragonite, muscovite, or end member illite, all reactions pro-

ducing kaolinite have dissolved product Si/(Na+K) ratios near two; reactions

producing gibbsite have ratios greater than two; and those producing mont-

morillonite have ratios of less than two.

* * *
The limitation of the Si/(Na +K -Cl ) parameter, in interpreting wea-

thering processes, can be best illustrated through model "weathering" of

standard lithologies. The "average shield" and "average shale" chemistries

of TableIII.1 are recalculated into normative igneous rock and micaceous

sediment lithologies, respectively (Table IV.7). These are weathered three

ways, producing gibbsite, kaolinite, or montmorillonite (of Colony-I compo-

sition). It is assumed that no iron, aluminum, or silicon from normative

quartz are lost in the weathering. The products of the reactions are item-

* **
ized in Table IV.8. The Si/(Na +K -Cl ) ratio is near two for kaolinite

weathering of the igneous lithology, however it is near one for the weathering

of the micaceous lithology. If the potassium in the micaceous lithology had

* * *
been included in normative K-feldspar rather than muscovite, the Si/(Na +K -Cl )
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ratio would have been nearer two, for the weathering of the average shale to

kaolinite. Note that the silica and magnesium concentrations are negative

in both examples of montmorillonite formation, as there simply is not enough

silicon and magnesium available to produce a montmorillonite of this compo-

sition without supplying materials from elsewhere. If montmorillonite were

forming, kaolinite would also be expected to form.

* * *
When silica is plotted against (Na +K -C1 ) for Amazon data, two dis-

tinct groups of data are seen (Figure IV.27). Rivers draining igneous and

high grade metamorphic rocks and Tertiary fluvio-lacustrine sediments all

* * *
fall on or above the 2:1, Si : (Na +K -Cl ) trend. This is taken to mean

that weathering to kaolinite is occurring, along with weathering to gibbsite

* * *
or the dissolution of quartz or kaolinite. The higher Si/(Na +K-Cl ) ratios

of the lowest silica samples suggests that gibbsite formation, or quartz or

kaolinite dissolution are of greater relative importance as a source of sil-

ica than the weathering of primary minerals to kaolinite. The most dilute

samples are undersaturated with respect to quartz (Ksp = 100 pmole/l).

Rivers draining terrains having marine sediments fall on a broad

horizontal trend, lying below the 2:1 ratio line (Figure IV.27). As was

shown in the model rock weathering (Table IV.8). this could be due either

to the weathering of micas or the formation of montmorillonites, and is in

fact probably attributable to both processes. Weathering of mica-

ceous Paleozoic shales occurs in the Madeira Basin, where high levels of

degraded micas (and usually low levels of montmorillonite), are seen in soils

and river sediment. The lithologies in the Peruvian Andes are not notably

micaceous, and montmorillonite is typically reported in soils and river load.

The contrast between the Madeira and other Andean rivers is best illu-

strated by comparing the saturation index for montmorillonite with the
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Table IV.7

NORMATIVE MINERALOGIES*

Formula Name

Shield:

mole %

0.10

0.057

0.050

0.105

0.649

0.383

0.623

1.200

5.617

1.579

2.091

22.819

Shale:

mole %

0.17

0.58

0.057

4.647

0.783

0.480

0.437

3.37

0.911

2.369

32.128

1.49

CaSO
4

Ca5 (P04)30H

CaC03

FeS
2

Fe
304

NaCa2Fe
2 Fe3+Si 6A12022 (OH)2

NaCa2Mg4Al Si6Al2 022 (OH)2

CaAl2Si2O8

NaAlSi308

K Al Si308
KA13Si3 010(OH)2

Si02

Formula

NaC.

CaSO
4

Ca3 (PO4)30H

CaCO
3

CaMg(C0
3)2

Mg2Fe3Si3A1010 (OH)8

Mg5 Si 3 Al 010(OH)3

KA13Si3O 10 (OH)2

NaA13Si3O10 (OH)2

NaAlSi
208

Si02

Fe203

*units are in mole %, calculated from the original analyses found in Table IV.4

Anhydrite

Apatite

Calcite

Pyrite

Magnetite

Hornblend

Plageoclase

Microcline

Muscovite

Quartz

Name

Halite

Anhydrite

Apatite

Calcite

Dolomite

Chlorite

Muscovite

Paragonite

Na-Feldspar

Quartz

Hematite
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Table IV.8

MODEL WEATHERING PRODUCTS*

Shield:

Final Clay +

Products +

Na+

Mg 2+

Ca2+

Si(OH)
4

HC03 ~

SO4 2-

SL02 (quartz)

Fe203 (hemetite)

Fe304 (magnetite)

Al(OH)3
A12Si2 05 (OH)4

Ca0.20-Mg0 .29A1ii7 Fe0.2 2Si3 .8 1010

Si/(Na + K)

Gibbsite Kaolinite Montmorillonite

6.62

3.67

2.49

4.09

36.29

22.83

0.31

22.82

2.01

0.65

18.50

(OH)
.3

6.62

3.67

2.49

4.09

17.79

22.83

0.31

22.82

2.01

0.65

-- 9.25

2 --

3.5 1.7

Shale:

Final Clay +-

Products +

Gibbsite Kaolinite Montmorillonite

Na+ 3.45

K+ 3.37

Mg2+ 3.93

Ca2 + 6.32

Si(OH)4  22.70

HCO3- 25.99

So4 2- 0.58
Cl 0.17

Si02 (quartz) 32.13

Fe203 (hemetite) 2.21

Al(OH)3 16.13

A12Si205(OH)4  --

Ca0.20-Mg0 .29Ali.l7Feo.22Si3 .8101 0(OH)2
Si/(Na + K - Cl) 3.4

*units are in mole %, calculated from the original analyses found in Table IV.4

6.62

3.67

-2.10

0.93

-23.95

7.33

0.31

22.82

-1.47

0.65

15.81

-2.3

3.45

3.37

3.93

6.32

6.57

25.99

0.58

0.17

32.13

2.21

8.07

1.0

3.45

3.37

-0.07

3.56

-29.83

12.47

0.58

0.17

32.13

0.69

13.78

4.5

--
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* * *
Si/(Na +K Cl ) ratio (Figure IV.28). Samples in which the saturation index

is greater than zero and the ratio less than two are considered to be most

likely to have montmorillonite forming in their catchments. Observe that

about half of the Madeira Basin samples in which the ratios are less than

two have saturation indices less than zero; in these samples the weathering

of mica (muscovite/illite or paragonite) would be a preferred explanation

for the low ratio, as this also agrees with geological observations. The

* *
ratios Si/(Na -Cl ) are generally less than two for Madeira samples, indica-

ting that there must be a significant contribution of sodium from paragonite

weathering. Montmorillonites must also be forming in the Madeira Basin, as

* * *
the two samples with the lowest Si/(Na +K -Cl ) ratio are from the Guapay

and Piray rivers. The chemistry of these samples is thought to be controlled

by the dissolution of soil salts (Section IV.4:5); such cyclic wetting and

drying of soils apparently contributes to montmorillonite formation in soils

(Drever and Smith 1978). Obviously, in a given area, many different

silicate weathering reactions are occurring, and some cannot be unambig-

uously differentiated from others using only water chemisty data. Available

soil and sediment data for the Amazon Basin is clearly inadequate to make

this differentiation. To reiterate, the existing data suggest only that

the weathering of mica (to degraded micas or kaolinite) is an important

process in the Madeira Basin (this does not rule out significant montmoril-

lonite formation), and that montmorillonite formation (along with kaolinite

formation) is an important weathering process in the Peruvian Andes

(mica degradation can also be occurring). These processes are consistent

with observations regarding both the Si/(Na*+K*-Cl*) ratio and thermo-

dynamic models (SImont)'

The Si/(Na*+K*-Cl*) ratio provides a means of testing whether mont-
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Figure IV.27

Two graphs of silica versus sodium plus potassium minus chloride
(pEq/1). The latter species are corrected for cyclic salt inputs,
"*". The chloride is included to correct for evaporite inputs,

primarily of sodium. In the first graph, only rivers draining
terrains having little or no marine sediments are emphasized
In the second graph, rivers draining marine sediments are
emphasized. The trend indicated in the graph would result
from the weathering of feldspars to kaolinite.

Symbol key:

+ - (1) Main Channel

* - (2) Mara'on Drainage
-* - (3) Ucayali Drainage

4- - (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
( - (6) Negro Drainage

o - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments

A - (9) Rivers draining only U. Tertiary and Quaternary sediments

- (10) Varzsa waters

* - - Rivers draing marine sediment in the first graph
Rivers not draining marine sediment in the second graph
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Figure IV.28

The stability index for montmorillonite (Colony-I) plotted against
Si/(Na*+K -Cln), the "*" signifying cyclic salt corrected data.
The two parameters represent independant weathering reaction
"indicators", the first based on thermodynamics, the second on
reaction mass balances. Both parameters suggest that montmorillonite
formation is occurring in the Peruvian Andes.

Symbol key:

+ - (1) Main Channel
- (2) Maranon Drainage

- (3) Ucayali Drainage

4- - (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

o - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments

- (10) Varz&a waters

note that the long axis of the graph is horizontal,
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morillonites are forming or are being degraded to a highly cation depleted

clay (note that kaolinite is observed in Andean rivers). The Si/TZ+

ratio in solutions associated with degrading montmorillonites is very

high (see Table IV.6). Since mostly bivalent ions are in the mont-

morillonite structure, the Si/(Na+K) ratio would be greater than two

(far greater than two, if kaolinite was forming). Si/(Na*+K*-Cl*) ratios

much greater than two are not observed in any Andean samples (see Figure

IV.28), suggesting that montmorillonite formation is occurring in the

Andes, and that significant montmorillonite degradation is not going on.
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IV.7 CATION RATIOS AND SILICATE WEATHERING

To this point, the chemical data for the Amazon samples has been used to

generate parameters that emphasize that certain silicate weathering reactions

are occurring, in spite of variations in chemical composition that might

be caused by rock type. Other parameters can be chosen to emphasize

differences in lithology, and relate the weathering process to the denudation

regimes (transport limited and weathering limited) discussed in Section

111.6.

The principal chemical difference between transport and weathering

limited conditions, is that the physical products of weathering have

a longer time to react with soil and ground waters in the former, while

partially weathered, disaggregated material is generated in the latter.

The erosion of partially weathered material may lead to very significant

fractionation of Na, K, Mg, and Ca. Potassium and magnesium are not strongly

weathered from saprolite developed on acid to intermediate rocks

(Section 11.4:3). Solifluction processes and soil sliding act on the

the less coherent layers from which Na and Ca have been preferentially

removed. As a result. Na and Ca should be partitioned into liquid phases

and K and Mg into solid phases. Under weathering limited conditions,

this relative mobility trend would be expected of the acid to intermediate

rocks. No fractionation is expected for complete weathering to kaolinite

or gibbsite, which is expected in the lowlands.

The relative mobility trend is quite unlike the composition trend

for common igneous rocks. As one goes from basic (not common in the

Amazon) to acidic rocks, the Mg/(Ca+Mg) ratio decreases and the K/(Na+K)

ratio increases.
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* * * * "1*"

The ratio (Na +K -Cl )/(TZ+ -Cl), where signifies cyclic salt

corrected, represents the ratio of monovalent ions, derived from silicate

rock weathering, over the total cations derived from the weathering of sili-

cates, carbonates, and gypsum. This ratio drops systematically with in-

creasing TZ+ (Figure IV.29). Samples derived from terrains free of

carbonates and sulfates have a ratio averaging 0.38. This value is reason-

able for silicates described for the Amazon region (c.f. Table III.1).

The K /(Na +K-Cl ) and Mg /(Ca +Mg ) ratios in water samples provide

a basis for comparing rock and solute compositions in the Amazon Basin. The

* * * * * * *
K /(Na +K -Cl ) ratio represent only siliceous inputs, while the Mg /(Ca +Mg )

ratio also includes contributions from carbonates and evaporites. When these

ratios for Amazon data and various rock types (Figure IV.29) are plotted

agsinst one another, two features can be seen. Firstly, samples from parti-

cular regions plot as distinct groupings. Secondly, samples from the lowlands

plot in a general field encompassing intermediate to acidic igneous rocks,

"average" shield, and "average" shale compositions (reflecting conditions

where relative mobility is less important), while Andean samples are sodium

and calcium enriched compared to typical igneous rock and shale compositions.

* * * * * * *
The particularly high K /(Na +K -Cl ) and Mg /(Ca +Mg ) ratios for some lowland

rivers must reflect reweathering of soils and fluvio-lacustrine sediments,

already enriched in K and Mg (c.f. Sections IV.4:8, IV.4:ll).

In the Andean samples, calcium enrichment is largely due to contri-

* *
butions from limestones and evaporites, however the (Na -Cl ) enrichment

can only be due to the partitioning of potassium, during silicate weathering,

into solid phases of soils and river suspended load. This partitioning is

particularly pronounced in the case of the Madeira samples, draining Lower

Paleozoic shales, where water ratios are quite low compared to "average" shale

and black shale ratios, reflecting stability of potassium bearing micas.
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Figure IV.29

First graph:

Cation ratios in water samples with cyclic salt and halite
corrections. The first graph is of (Na*+K*-Cl*)/(TZ+*-Cl*)
versus total cations (uEq/l). The drop in the ratio with
increasing total cations reflects increasing contributions
of bivalent ions from carbonates and evaporites.
Second graph:

Mg*/(Mg*+Ca*) versus K*/(Na*+K*-Cl'). Ratios for samples from
Amazon surface waters are included along with ratios predicted
or the weathering of siliceous lithologies (Table IV.4) to
kaolinite. Note that all of the lowland samples fall into a
grouping, consistentwith lithologies known to be present in
their drainages. In contrast Andean samples are strongly sodium
and calcium enriched compared to any reasonable silicate lithologies
in their drainages. This can be attributed to two factors: (1)
the weathering of carbonates and evaporite minerals, rich in calcium
(note NaCl inputs have been corrected for), and (2) preferential.
weathering of calcium and sodium silicate minerals and the
transport of potassium and magnesium on solid phases.

1-average shield 5-andesite 9-average shale
2-gabbro 6-granodiorite 10-black shale
3-continental basalt 7-sodic granite 11-fresh granite
4-diorite 8-potassic granite 12-weathered granite

Symbol key:

+ - (1) Main Channel

* - (2) Maranon Drainage
- (3) Ucayali Drainage

-4 - (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
( - (6) Negro Drainage
O - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments

- (10) Varz&a waters
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IV.8:1 IRON AND ALUMINUM

Iron and aluminum have not been discussed up to this point as the be-

havior of these elements is so clearly unlike other species examined (see

Figure IV.8), exhibiting an inverse relaitonship with total cations. Two

parameters also showing an inverse relationship are color and hydrogen ion.

The decrease in hydrogen ion with increasing TZ+ reflects equilibration with

increasing concentrations of bicarbonate. Color in Amazon waters is derived

from small molecular weight organics (relative to typical humics) character-

ized by aromatic nuclei quinone groups, or free-radical groups, (J. Leenheer,

U.S.G.S., personal communication). Correlations between color and iron con-

tent of rivers has been observed in surface waters of the United States

(Lamar 1968).

Organic materials have been shown to be very active chemically in soils

and surface waters, serving as chelators, colloid stabilizing agents, reducing

agents, and simply as acids. Various studies have shown that soil and water

organics possess chelating properties (Deb 1949, Hem 1960,

Wright and Schnitzer 1963, Schnitzer and Skinner 1963a, 1963b, 1965, and

others). The correlation of iron and aluminum with organics in surface waters

is cited as evidence of chelation (Martin et al. 1971, Beck et al. 1974,

Reuter et al. 1976). Other studies suggest that trace metals, stabilized in

the aqueous phase by organics, exist as colloids and not in true solution.

Deb (1949) observes that colloidal iron oxide can be stabilized by humic ma-

terials with a Fe:C mole ratio as high as 4:1. Ong and Bisque (1968) note

that humic complexes coagulate according to colloid precipitation theory

and are likely hydrophobic colloids. Benes et al. (1976) observe that tri-

valent ions and many trace divalent ions are removed from lake water by

ultrafiltration and are therefore either colloids or macromolecular complexes.
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In recent work on the esturarine geochemistry of several trace metals (Eckart

and Sholkovitz 1976, Sholkovitz 1976, Boyle and Shoklovitz 1977) demonstrate

coupled behavior of iron, aluminum, manganese, and phosphorous and experi-

ments using ultracentrifugation and filtration suggest that these elements

exist as colloidal material, stabilized by organics. Organics (glucose)

have been used as reducing agents to produce material resembling soft later-

ite in water saturated soils (Beadle and Burgess 1953), and tannic mater-

ials (colored products of leaf and bark decay) have been shown to stabilize

FeII under oxidizing conditions and to be capable of reducing iron at a pH

below 3 (Theis and Singer 1974).

Materials stabilized or dissolved by organics can be destabilized or

precipitated by various mechanisms. Precipitation of humic complexes as a

result of increasing cation concentrations with depth in soils is thought

to be a cause of hydroxide rich layers in podzol soils (Wright and Schnitzer

1963). Ong and Bisque (1968) observe that the effectiveness of the coagu-

lation of humic materials increases greatly with increasing ion valency.

Organic acids can be strongly adsorbed on clay minerals and even more so on

amorphous aluminium and iron hydroxides (Bloomfield 1953, Greenland 1971).

Passage through such materials could immobilize complexes or stabilized col-

loids; this mechanism is thought to explain the greatly reduced coloration

of waters draining terrains having clay rich soils in the Amazon (J. Leenheer,

U.S.G.S., personal communication).

IV.8:2 Properties of Amazon Iron and Aluminum Phases

The chemistry of iron and aluminum in Amazon waters will be examined

in terms of relationships between these elements and other measured proper-

ties. No laboratory experiments were done to characterize their chemistries.

Iron and aluminum samples were treated in two ways:
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(1) One split was treated by filtration followed by acidification
in the field (see Appendix II for details).

(2) Another split was untreated and allowed to settle for several months
prior to analysis.

Samples of the first type show very high concentrations in some Andean rivers,

thought to be due to dissolution of clayspassing through the (.45p) filter.

Several lowland samples in the second group show exceptionally high concen-

trations. This is thought to be due to low density phases which are fil-

terable, but which do not settle out. Procedural blanks for both treatments

were satisfactory. Because the high iron and aluminum values are attri-

buted to a particulate phase in treated Andean samples, these cannot be

used directly to examine solution properties.

Treated and untreated aluminum in lowland rivers are highly correlated

(Figure IV.30), and on this basis it appears that aluminum exists in rather a

stable form in lowland river waters. The slope of the trend between treated

and untreated samples is 0.93 ± 0.7 with an intercept of 0.00 ± 0.05 y1mole/l

(r=0.979, S=0,43), essentially a 1:1 trend.

Treated and untreated iron in lowland samples is also correlated

(Figure IV.31). The unusually high values in the untreated samples are

thought to be a low density particulate phase which is filterable but which

does not settle on storage. A line fit through the trend of data, excepting

these high values, has a slope (untreated versus treated) of 1.04 ± 0.16 and

an intercept of 0.83 ± 0.16 (r=0.894, s=0.96). The intercept on the Fe-treated

axis is 0.80. This offset is taken to be caused by a form which remains in

solution or suspension only upon acidification.

A reasonable explanation for the behavior of iron and aluminum in

lowland rivers is that iron exists as both a complex and an organic-stabilized

colloid, while aluminum exists exclusively as a complex. Boyle (personal

communication) states that the organic-stabilized colloid observed by Boyle
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and Sholkovitz (1976) is lost from suspension upon storage. Such loss

could therefore explain the non-zero treated iron intercept. Treated

iron and treated aluminum are loosely correlated (Figure IV.32) and show

the same non-zero iron intercept seen in the graph of treated versus

untreated iron (Figure IV.31).

Both iron and aluminum are stable in solution on short time scales

under conditions of changing ionic strength. Waters from the Negro River

(I=65 ymole/l, pH=5.36) mix with those of the main channel (I=873 pmole/l,

pH=6.74), over a distance of about 200 km, prior to merging with waters

from the Madeira. This represents a period of mixing of about 40 to 50

hours prior to sampling, filtration, and acidification. Figure IV.33 pre-

sents plots of four parameters Ca, Si, Fe, and Al against alkalinity. Cal-

cium, silica and alkalinity are presumed to be conservative, and simple

two-end-member mixing is evidenced by linear plots of one parameter against

another. Stations S213 and S214 are from opposite sides of the main

channel upriver from the Madeira confluence. Both iron and aluminum show

conservative behavior. The scatter on the iron graph is greater than the

analytical error, however it is not systematic.

IV.8:3 Relationships of Fe and Al With Other Species

The relationship of iron and aluminum with hydrogen ion and color and

net inorganic charge balance (NICB) were examined with the intent of

identifying the "best" relationship between parameters in lowland rivers.

Since there is no apparent difference between treated and untreated alumi-

num concentrations the untreated values were used where treated samples

were not analyzed. Only analyses of treated iron were used. Lowland iron

and aluminum concentrations are plotted against total cations in Figure

IV.34.
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Figure IV.30

Treated (filtered and acidified) aluminum versus untreated

aluminum. Note the excellent, one to one, correlation between

these parameters.

Symbol key:

- - (1) Main Channel

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

[ - (7) Rivers draining shields

V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varzea waters
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Figure IV.31

Treated iron versus untreated iron (umole/l). Note that a
background iron phase apparently is preserved in treated samples,
but is not observed in the untreated samples. If the high untreated
points are excluded, a reasonable correlation exists between treated and
untreated iron.

Symbol key:

- - (1) Main Channel

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

u - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varz'a waters
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Figure IV.32

Treated aluminum versus treated iron (pmole/1).

Symbol key:

- - (1) Main Channel

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

o - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varzaa waters
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Figure IV.36

Calcium, silica, treated iron, and treated aluminum versus
titration alkalinity for samples from the mixing zone for
Nergo River water with main channel water. The linearity
of the first two graphs is taken to mean that the chemistry
of conservative species in these samples can be described by
simple two end-member mixing. The linearity of the second two
graphs suggests that iron and aluminum are conservative on
short time scales (40-50 hours). Of all large tributaries,
the Negro River shows the greatest chemical contrast to the
main channel.
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Figure IV.34

Iron and aluminum versus total cations for lowland rivers.
Only treated iron samples are included, however because of the
good correlation between treated and untreated aluminum, untreated
values have been substituted where treated analyses are not
available (mostly Negro Basin samples).

Symbol key:

- - (1) Main Channel

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

D - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varz~a waters
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The best correlations observed were between iron and color (FigureIV.35)

and between aluminum and hydrogen ion (Figure IV.36). suggesting that

slightly different mechanisms are responsible for mobilizing iron and alu-

minum. In Amazon soils, iron is typically found as amorphous hydroxides

and as goethite distributed throughout the profile, with goethite

tending not to be present in the surface root-containing zone,

when the soil organic carbon content excedes 5% (see Section 111.5).

Aluminum, on the contrary, is typically found in a crystalline form, kao-

linite. It may be that the colored soil organics are capable of mobilizing

iron over a wider pH range, and that aluminum mobilization is facilitated

by higher acidity, which would aid in hydrolizing the kaolinite lattice.

Once mobilized into surface waters, aluminum and iron are stable, on the

time scale of a few days,as is seen in the mixing of the Negro and Solimoes.

Ultimately, controls on iron and aluminum concentrations are exerted

by the presence of cation rich phases in the soil. The weathering of these

phases and concomitant hydrogen ion consumption and bicarbonate formation

increases the pH. Furthermore, these solid phases serve to bind and immo-

bilize soil organics. Once pH is raised and organics are fixed, iron and

aluminum mobility should be low.
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Figure IV.35

Treated iron versus hydrogen ion, color, and net inorganic charge
balance (NICB2). The NICB2 is calculated assuming that
iron and aluminum are trivalent species. Note that the best correlation
is between iron and color.

Symbol key:

-+ - (1) Main Channel

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

D - (7) Rivers draining shields

V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varz&a waters
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Figure IV.36

Aluminum versus hydrogen ion, color, and net inorganic charge balance.

Note that the best correlation is between aluminum and hydrogen ion.

Symbol key:

- - (1) Main Channel

+ - (5) Other Andean headwater rivers
(6) Negro Drainage

D - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments
X - (10) Varzsa waters
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IV.9 SUMMARY

This chapter demonstrates that to a good approximation, the chemistry

of rivers within the Amazon Basin reflects the geology of the terrains

which they drain. Secondary effects such as the precipitation of salts in

soils and stream beds, biological uptake and generation, and cylic salt

inputs are more difficult to discern, especially in more concentrated

samples. With this in mind, the main relationships between dissolved

load and geology is summarized:

TZ+ <200 pEq/1

Rivers draining the most weathered materials, the Upper Tertiary and

the intensely weathered shield in the Negro, and perhaps Tapajos Basins.

The (Ca+Mg):(Na+K) equivalent ratio is less than one for the most dilute

rivers.

TZ+ <400-500 yEq/1

Rivers draining siliceous terrains. Highest silica concentrations are

seen in rivers draining igneous or metamorphic rocks.

TZ+ >400-500 pEq/1

Rivers in this range drain marine sediments. The high contribution

of dissolved material comes primarily from the weathering of carbonate

rocks and evaporites in Peruvian rivers, and from the weathering of

shales, containing reduced sulfur, in the Madeira Basin.

TZ+ >2000-3000 pEq/1

These rivers show the effect of large evaporite inputs (using the

term loosely to include dissolution of soil salt of the Guapay and Piray

rivers). At highest TZ+, NaCl is the dominant dissolved mineral.

Consequently, the boomerang shape of the Na/(Ca+Na) versus TDS plot

(Figure IV.2, Gibbs 1970) can be seen to be the result of
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the higher Na:Ca ratio of slower weathering rock types (silicates), the

low Na:Ca ratio of more rapidly weathering rock types (carbonates) and the

high Na:Ca ratio of extremely rapidly weathering rock types (evaporites).

The relationship between TZ+ and inputs from siliceous, carbonate domi-

nated, and evaporite dominated terrains-can be clearly seen in a ternary

diagram relating silica, alkalinity, and sulfate plus chloride (Figure IV.37).

Silica is taken as an indicator of contributions from siliceous terrains;

alkalinity is taken as an indicator of inputs from carbonate terrains, and

cation bearing silicates; and the sulfate plus chloride is taken

as representing inputs primarily from evaporites, but also from reduced

sulfur weathering. The data are corrected for cyclic salts (Section 11.6).

The TZ+ increases systematically from the Si vertex to the alkalinity

vertex, thence to the (Cl+0 4) vertex. The two less concentrated samples

above the Si-(Cl+SO4 ) axis are from a river draining black shales (M-05,

BPA01, Tables IV.4 and IV.5), where sulfuric acid from the oxidation of reduced

sulfur has replaced carbonic acid as the proton source for silicate and

carbonate (associated with the shales) rock weathering. The weathering by

sulfuric acid is slow compared to evaporite dissolution. These two sam-

ples can be seen as defining a separate weathering trend for the black

shale terrains, indicated in the insert of Figure IV.37, however the trend

not as well defined on this graph as it is in graphs of alkalinity

versus (Ca+Mg) and alkalinity versus TZ+ (Figures IV.16 and IV.6,

respectively).

The next chapter examines the mixing of tributaries with the main

channel to calculate their discharges. This exercise provides the

necessary information for the calculation of the relative contribution

to the dissolved load made by different terrains and lithologies in

the Amazon Basin
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Figure IV.37

Two ternary diagrams for silica, carbonate alkalinity, and
chloride plus sulfate. The data have been corrected for cyclic
salt inputs. In the first diagram the samples are keyed to the
standard sample-river basin scheme used previously. In the second
diagram , samples are keyed to their total cation concentration.
These diagrams illustrate the systematic relationship between
sample composition, the concentration of total dissolved materials
and geology. The major trends are indicated on the insert.

Symbol key, first diagram:

- (1) Main Channel

# - (2) Maranon Drainage
- (3) Ucayali Drainage

- (4) Madeira Drainage

+ - (5) Other Andean headwater rivers
- (6) Negro Drainage

o - (7) Rivers draining shields
V - (8) Lowland rivers with extensive areas of marine sediments
A - (9) Rivers draining only U. Tertiary and Quaternary sediments

X - (10) Varzsa waters

Symbol key, second diagram; units are TZ+ in pEq/l:

- 100 - - 2154. - 4642.
M - 100. - 215. -- - 4642. - 10000.

A - 215. - 464. + - 10000. - 21544.
V - 464. - 1000. -Y- - 21544. - 46416.
X - 1000. - 2154. + -- 46416. - 100000.
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Si (Cl* + So4*)

T7+ keyed '
Si pmole/l
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Chapter V

Model of Discharges for the Amazon and its Tributaries Based

on Chemical Data
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V.1 FLUX MODEL INTRODUCTION

Geographers and hydrologists have long expressed an interest in de-

termining the absolute and relative discharges of the mainstem and tribu-

taries in the Amazon system. The enormity of the Amazon River was recog-

nized as the result of the Orellana expedition in 1541-42. The basic layout

of the principal tributaries along the main channel was understood during

the early 17th century as the result of the penetration of missionaries into

the Peruvian Amazon and of the Teixeira expedition of 1637-38. The main

channel was determined to start at the confluence of the Ucayali and Mara-

fion rivers in Peru, however geographers were unable to decide which of these

two rivers was the "mother river" of the Amazon. Many chose the Ucayali,

as it is the longer. of the two rivers. The matter was confounded in 1879,

when Raimondi demonstrated, using the concept of conservation of dissolved

load, that the Maranon has the greater discharge. More recently, Matsui

et al. (1976), utilized conservation of hydrogen isotopes in water to de-

termine the relative fluxes of the main channel and the Negro tributary,

throughout the year.

Various observers have tried to indirectly estimate the discharge of

the Amazon (c.f. Oltman et al. 1964). The first direct measurements of

the discharge were done in 1963 by a U.S.G.S.-Brazilian team (Oltman et al.

1964, Oltman 1968), on the Obidos section. Obidos is the

most downstream gageable section on the main channel not strongly affected

by tides. Consequently, it is the basic reference point for the entire

Amazon system. Oltman (1968) observes that the average discharge at this

point is 157,000 m3/sec and that the discharge at the mouth probably aver-

ages 175,000 m3/sec. Subsequently, a hydrological network was established
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through much of the Brazilian Amazon. Efforts to obtain data from this

network for the period of this study have, for the most part, been frustra-

ted. However, discharges have been obtained for the dates of sampling of

several sections along the main channel. It must be pointed out that the

lower courses of the tributaries where samples were taken are not measured

for discharge in the network, as the water levels are controlled by the rise

and fall of the main channel.
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V.2 THEORY

This paper extends the application of mass conservation in determining

relative flows to include all the major tributaries of the main channel.

To illustrate the concepts, the two river model utilized by Raimondi (1879)

and Matsui et al. (1976) will be examined.

Suppose that river B (e.g. Ucayali) and C (e.g. Marafion) mix to form

A (e.g. Amazon):

B

A

C
Furthermore, assume that cross sections at A, B, and C are well mixed. The

assumption that water discharge (Q ) is conserved is expressed as:

(a) QWA WB +WC

The transport of dissolved phase of concentration D is given by:

QD = DQW

If D is conserved during mixing:

(b) DAQWA = DBQWB + DCQWC

Equations (a) and (b) are sufficient to determine the discharges of water

past B and C relative to A:

QWB DA - DC aWB DB - DA
- ~and

QWA DB - DC WA DB - DC

Example:

Raimondi This study
early June 1876 10 December 1978

TDS relative TDS relative
discharge discharge

Ucayali 160 .174 156.2 .447
Marafnon 45 .826 98.0 .553
Amazon Iquitos 65 1.000 124.0 1.000

If either QWA' WB or QWC are known, the other two discharges may be determined.
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During this study many chemical parameters were measured, and since

any conservative chemical parameter can be used in calculations, the prob-

lem of estimating discharges is "over determined." Mass conservation equa-

tions such as those describing the mixing of two rivers (Eqn. (a) and (b))

are linear equations, and as such can be advantageously treated using simul-

taneous linear least squares (SLLS) (see Cramer 1945). The use of SLLS

will provide not only best estimates of fluxes but also the errors of

these estimates.

The procedure for setting up the necessary linear equations can be

illustrated using the previous example of two rivers mixing. Suppose that

instead of parameter D parameters DD2,D3 and so on, are measured. Further-

more, suppose the water discharges at A and B (Q'WA and Q'WB, respectively)

are measured directly. The conservation equations can be rewritten with

all unknowns on the right hand side:

(1) Q'WA WZ +el

(2) Q'WB WB + e2

(3) 0 = -QWA + QWB +QWC + e3

(4) 0= -QWADlA + QWBDlB QWCDIC + e4

(5) 0 = -QWAD2A +WBD2C +WCD2C + e5

(6) 0 = -QWAD3A QWBD3C +WCD3C + 6

Where el, e2 ... are errors to be minimized. As can be seen, all these

equations are of the form: Z = QWA-W + Q YWB* + QWC-Z where W,X,Y, and

Z are all known.

One refinement is essential, namely all the above equations must be

weighted to favor the best measured parameters. For calculations of Ama-

zon data, the inverse of the estimated analytical error of the concentration
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(Table IV.2) of the downriver sample at each confluence was used as a weight.

i.e.. if DIA is measures to + dlA, the weight is simply W1 = 1/d1A. Equa-

tion (4) can be rewritten:

(7) 0 =-QWA (WDlA)+QWB (W1D1B) + QWC (WlDlC) + el

Leaving coefficients in Equations '(1), (2), and (3) as zeros and ones

is totally unsatisfactory, as these equations would be diminutively

weighted compared to the equation for a well determined chemical parameter.

Insufficient weighting is a particularly critical problem in the case of

the water conservation equation (Eq. 3), the basis of this model, and in

that sense the most fundamental equation of the model. To allow for this,

an arbitrary weighting factor (W0) is applied to Equation (3) that is as

great as the combined chemical weights for any station, i.e., W0 is

max.(WOM), where WOM = ZnWnDnm, over all species, n, for stations, m.

Equation (3) can be rewritten as:

(8) 0=-QWAW0 + QWBW0 + QWCWO + e3

The errors of the measurements Q'WA and Q1WB can be used to determine

weighting factors for equations (1) and (2), respectively, however error

measurements are not available. If the quality of the regression is good,

the resultant model discharges QWB and QWC relative to QWA should not be

sensitive to variations in the error of the flux measurement, since the

relative fluxes are in theory determined by mass conservation alone. It is

assumed that if the relative discharges predicted by the model are dependent

on the errors of the measured fluxes, then the mass conservation. assumptions

are weak (due to poor station selection, time variation of discharge, time

variation of chemistry, etc.). Mathematically, a test of the sensitivity of

the model to the variation of the errors of the flux measurement can be

written as:
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(9) Q'WAWO WAQ0 "e 1

(10) Q' WOr = QW 0 r + e2

where WO is the weight defined for Equation (8) and r is the test parameter,

which is varied between 0 and 1. The weight on Equation (9) is held at WO

(i.e., r = 1 always) to serve as a fixdd reference discharge (anchor point)

to which other discharges are compared. QWA QWB, and Qwc are considered

well determined, if there is agreement between measured fluxes and fluxes

predicted by mass balances alone (that is r-0), and if the values of QWB

and QWC are not sensitive to changes in r.
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V.3:1 APPLICATION OF FLUX MODEL OF AMAZON DATA

A schematic of the lowland Amazon main channel stations and tributaries

used in modeling is shown in Figure (V.1). All of the largest tributaries

were sampled, as were several smaller tributaries. The model discharges

of smaller tributaries are seen as representing not only their own dis-

charges, but also inputs from other small rivers from the same reach of

the main channel. There is no way to distinguish small river inputs of

relatively similar chemistry in this model.

The most critical stretch of the main channel for model calculations

is that between the mouth of the Jutal and the Coari. To the left of the

main channel, lies a complex system of channels which has been referred to

as the "delta" of the Japuri (Tastevin (1928)). According to Tastevin

(1920, 1928), water from the main channel feeds into the Japurn' through the

Auati and Aranapu parands, with the second being by far the largest of the

two main channel distributaries. Water from the Japurd is discharged into

the main channel through its primary mouth and its own distributaries

with a major secondary discharge point opposite the mouth of the Coari.

Geologically the drainage of the Iga and Japurn Rivers is quite similar

(Table IV.4),yet the Japurn is much richer in dissolved solids due to main

channel inputs (Table IV.5). Only the Aranapu Parana was included in

the model to avoid introducing too many equations, and thereby mathemati-

cally destabilizing the solution to the model. As it is, the confluence

of the Japurs with the main channel is very complex, being opposite the

mouth of the Tefe river. In 1977 no sample was obtained upriver of this

confluence, consequently for 1977, the combined effects of the Aranapu dis-

tributary and confluence of the Jurui, Japuri, and Tefe rivers is treated

as one equation.
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Figure V.1

Stations used in constructing the discharge model of the

Amazon River system. The stations (numbers in boxes) are
described in Appendix III, and analyses are given in Table
IV.5.
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Stations used in flux model calculations for 1976 and 1977

Available
Ucayali >-K Mara-non Discharges:

Iquitos
S250,S303 1976,1977

S249,$304 Napo

S247,S305

Javari S242,S301 
Sao Paulo

S240,31976,1977
Jandiatuba S309, S309

S239 ,S311

s238,s313 Ipa Santo Antonio

237, S314 19761977

Jutai S236,S315 S328,S313 Japuri

S234,S316

Jur ud S233 ,S317 S 23 4, S3161

S232,-- Aranapu Parani

Tef6 S230,S319 S238,s313 C

S227,S1Japuri

Coari S225,S322------
Itap6u~a

S223,S3231977

Pur us 222,S3 4 - - -- -

S219,INT* Solim'nes

Madeira S212,S328 S216,S327 Negro

S209, 329

S208,S332 Trombetas

S207, S334 1976,1977

Tapaj~s 32I6,S33t5

Xingu

Atlantic
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The main channel also feeds into the Trombetas , and the Madeira

has a large distributary which feeds into the main channel (Figure V.2).

,Sampling coverage was inadequate to examine these features.

Table (V.1) summarizes all the equations used in modeling the Amazon

system.

V.3:2 Selection of Stations

The assumption that the main channel is well mixed is not valid and

accomodations must be made for this feature. The gradual mixing of the

differently colored tributaries with the main channel has been described

since the first expedition down the Amazon. Matsui et al. (1976) demonstrate

that the waters of the main channel and the Negro River are not fully mixed

100 km downriver of their confluence. The contrasts in color can be traced

in satelite photographs for tens of kilometers (Figure V.2).

Figure (V.3) presents alkalinity measurements from several cross sec-

tions of the main channel, taken with either Nisken samplers or U.S.G.S.

depth integrating samples (Meade et al. 1979). Alkalinity is an ideal

measurement because the mainstream alkalinity is always higher than the

tributaries, and because alkalinity is measured by titration in the field,

it is particularly precise (Appendix III). While no cross section shows

complete mixing, only the Santo Antonio section, lying 8 km down river of

the Ica River confluence shows extreme variations of alkalinity. The

Iquitos section and the Obidos section are similar distances down river of

small tributaries, the Nanay and Trombetas respectively, and are not so

strongly affected. The Sao Paulo section is far down river of the nearest

large river, the Javari, and alkalinity variations must be the influence of

small jungle streams.

The samples used in model caluclations were taken immediately upriver
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* this table gives coefficients, X , of mass conservation equations, where n is the equation number,

A is the cross section, and X is either 0, 1 or -1. The equations are in the form:

0 = XnAQWA nDnA ) + XnBQWB(WnDnB) + XnCnC (nDnC) +. .

** these equations and cross secions are not utilized when the Aranapu Parana is not considered.
+ these equations represent those with measured discharges
++ measured discharge, the model is forced through the Obidos discharge (Eqn. 18).

abbreviations: ab.-above, conf.-confluence, Am.-Amazon, So.-Solimoes
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Figure V.2

Photograph of the confluence of the Madeira river with the main
channel. The Madeira river is the grey river in the bottom
center right of the photograph, the lighter colored waters can
be seen occupying the right side of the channel, downstream of
the confluence. The confluence of the Negro River with the main
channel occurs to the right of the area in the photograph. The
very black waters of the Negro can be seen hugging the left bank
of the main channel. The river crossing the lower right of the
photograph is actually a distributary of the Madeira River,
called Parana Uraria.
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Figure V.3

Titration alkalinity (pEq/l) for various cross sections of the
Amazon main channel. Up river contributions are indicated in
several cross sections.
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Alk(t). pEq/l
for various cross
sections of the
Amazon main channel

Nanay 40 left middle right

T 1079 1213 1284

M11114
B 1236 1265 1285

T
1071 1 1043 J1977

B 1063 1033 976

SANTO ANTONI

Ipa 9

T
[0

B

1013 Solim-es

443 .913 992

457 914 998

Solim-es 603

MANACAPURU

169 Purus

T 577

B 582

558

557

438

442

576 577 575 562 543 485 438

U.S.G.S.

Trombetas 63

OBIDOS

integrated samples

386 Amazon

347 342 388 377 391 1387 j391j

U.S.G.S. integrated samples

IQUITOS

SAO PAULO

I

iv
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of larger tributaries and therefore must represent the most thoroughly

mixed sample of upriver tributaries. Every attempt was made to collect

samples in the full flow of the main channel, thus minimizing the effect

of bank inputs.

The sample upriver of the confluence of the Rio Negro with the

mainstem in 1977 (S326) does not give the same alkalinity as is deter-

mined from the flux weighted average alkalinity from the Manacapuru section

depth integrated samples. The alkalinities are (S326) = 501 UEq/1 and

(flux weighted) = 531 ,uEq/1. Apparently the confluence sample (S326) was

sampled from the "Purus side" of the river. A hypothetical sample falling

on the mixing curve between the main channel and the Purus, at Alk = 531

uEq/l was substituted for (S326).

The Obidos section was used as the 'Uanchor point" (r=l, always) for

the model. The samples (S209 and S329) from this section represent a mixture

of water from the Solimoes (mainstem), Negro, and Madeira Rivers, and do

not contain water from the Trombetas. The flow measurement includes the

effect of the Trombetas. However no location exists where a complete mix-

ture of all four rivers can be found, and one must be satisfied in assuming

the flow of the Trombetas is small, as it drains a far smaller region.

The model calculation used Na,K,Mg,Ca, alkalinity, Cl, and SO4 as con-

servative parameters. Concentrations are found in Table IV.5; analytical

precisions are given in Appendix (III).

V.3:3 Time Variations of Discharge

Time variations of discharge or water chemistry can contribute to ap-

parently nonconservative results for a mass conservation model of a large

river system, simply because the output of the system does not respond
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instantaneously to inputs. In 1977, the expedition followed the

discharge peak downriver, essentially seeing the evolution of the

same body of water as a result of tributary inputs. In contrast, the

1976 expedition was longer in duration and travelled upstream. It

therefore did not sample a single body of water. Consequently,

the effects of time variation in end-member composition are super-

imposed on effects attributable only to mixing. The effects of time

variation are not expected to be serious due to the large number of

tributaries and their close spacing, which would lessen the effects

of time variations between the sampling of successive tributaries.
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V.4 RESULTS OF FLUX MODEL

Model calculations were performed both with and without the Aranapu

Parana for each year. The flux measurement parameter r was varied between

0 and 1 to test the stability of the four sets of calculations. When the

Aranapu was included, the Iga composition was assumed for the Japuri'

on the basis of their similar geology. Model results are presented assuming

5% measurement error on discharges, that is rWo = 20.

When the Aranapu Paran- was not included, the models were unsuccess-

ful (that is, for changes in r, the variations in the predicted discharges

exceeded the model errors, and measured and predicted discharges disagreed

at r=0) for both years, and predicted and measured discharges diverged

considerably up river of the Japuri confluence (Figures V.4, V.5).

The two models (Figures V.6, V.7) that included the Aranapu Parana

were both successful. The 1977 model had the smaller errors, but the

1976 model was more stable with respect to changes in r. The 1977 model

discharges were in general not sensative to changes in r, except for

the Aranapu Parana, and Jurun, Japurs, and Tefe rivers; negative fluxes

were generated when r was greater than ~ 0.3, as a consequence of treating

measured fluxes too rigidly (this is equivalent to assuming a discharge

measurement error of 0.6%). Time variation of end-members may account

for the slightly greater error in the 1976 model.

Main channel concentrations, predicted from Iquitos mainstem and

tributary concentration measurements and model Iquitos mainstem and

tributary fluxes, agree with observed concentrations for both years (Figure

V.8:); predicted Na and Cl tend to be high while predicted Ca, Mg, and alka-

linity tend to be low. This is best explained by a time variation of

relative inputs from evaporite and carbonate rock sources in the Andes, and
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variations of Andean versus lowland river inputs. If any particular con-

fluence is examined, down river concentrations agree with concentrations

predicted using model discharges with tributary and up river concentrations.

Note that the fluxes of the main channel down river from Obidos are

not well determined because a section containing a resonably homogenous

mixture of water from the Trombetas and other left bank tributary inputs

does not exist.
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Figure V.4

Results of the discharge model (1000 m3/sec) for 1976, not
including the Aranapu Parani in the calculations. Errors
are one sigma. This model assumed a 5% error on measured
discharges, rW0 = 20.
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1976 Model Discharges (103 m3/sec) without the Aranapu Parana

Ucayali Mara-non Measured
Disehargess
I
Iquitos

40.0

apo

Javari

Jandiatuba

Jutai

Jurui

Tef6

Coari

Purus

Madeira

Sa'5 Paulo

F54. 0

Iga Santo Antonio

74.0

Japura

Manacapuru

133.0 -
Negro

Trombetas

Tapaj6s

W = 962, rW0 = 20
Xingu

Atlantic
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Figure V.5

Results of the discharge model for 1977 without the Aranapu ParanA.
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1977 Model Discharges (103 m3/sec) without the Aranapu Parana

Measured

Ucayali )- Marafon Discharges:

Iquitos

37.3±5.4 , 48-Z
-5.31.7 Napo

42.6*6.7

Javari 6.1±1.6 Sao Paulo

48.7±7.5 70-0

Jandiatuba 2.4±1.2

51.0*7.9

Santo Antonio

58-4*9-00

Jutal 9.8±1.9

68.2±10.5

Jurui' 19.8±5.3

.88 . 0-+13. 0
Tefe 5-4*-6.811.8±19.1 Japura

105.2±2.2

Co ar iCoari-Cai 7.221.1 I tap5ua
112.42.1 

10. 0:

Purus 24.6*1.4--Manacapuru

137.0*2.1 Solim'es 133-0
Madeira 49.1±3.2 43.9*1.7] Negro

230.0*.03

4.3±1.6 Trombetas Obidos

234.2*1.6 230.0

Tapaj6s 15.8±1.9

250.0±2.5

Xingu -0 = 935, rW0 = 20

Atlantic
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Figure V.6

Results of the 1976 model with the Aranapu Parana. Note
that while the errors of the model in the vicinity of the
confluence of the Japura are high, the discharge results
are coupled through the model and cannot be varied independently.
For example if the model discharge for the Tefe is reduced to
1000 m3/sec, the discharges for the other rivers would have
to be increased for there to be water conservation.
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1976 Model Discharges (103 m3/sec) with the Aranapu Parana

Ucayali

Javari

Jandiatuba

Jutal

Jurui

Tef6

Coari

Purus

Madeira

Measured
Discharges:
Iquitos

40.0

Sao Paulo

54.o

Santo Ant6nio

74.0

Japura'

Manacapuru133.0

Tapajos

Xingu

Atlantic
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Figure V.7

Results for the discharge model for 1977 with the Aranapu
Parana.
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1977 Model Discharges (103 m3/sec) with the Aranapu Parani

Measured

Ucayali >.C<MaraTion Dischargest

Iquitos

40.2*2.6 I48.0o -I1
5.8*1.5 Napo

46.012.6

Javari 6.6*1-3 Sao Paulo

52.5*2.6 70.0

Jandiatuba 2.6±1.0

0 55.1+2.6

8.0±-. IgaSanto Antonio

Juta 10.6.410.7 Japur

Jurua 20.3±4.8

TefeTee 5.6*7.7I11.± .0_

Coari Coari-
F7.2±1.1 tap -

Purus 24.7±1.3 , a uru

136.±2.0 Solim~es30 j

Madeira 49.23.1.

4-3±1-6 Trombetas .Obidos

Tapa j6s 15.8±1.8

Xingu > W 0 -<8v.OWl5'1g

Atlantic
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Figure V.8

Concentrations at Obidos predicted by the discharge model, assuming
conservative mixing of the tributaries, versus measured concentrations
for the respective species.

Symbol key:
Na -C>

K -o
Mg -A
Ca -g
Alk - Y

Cl -+

SO 4 
-+

Si -$
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V.5 SUMMATION

This discussion demonstrates the successful application of chemical

mass conservation concepts to the determination of tributary and main

channel discharges for the Amazon River system. When a sufficient number

of chemical properties are analyzed, major diversions of flow from the

main channel, such as the Aranapu Parana can be successfully modeled. It

is unlikely that large rivers with major rapid variations of discharge,

such as are caused by spring runoff, weirs, cyclonic storms etc., could be

modeled along their entire length as instantaneous measurements of flow

would not be conservative.

In terms of geochemistry, the discharge model shows that there is no

need to hypothesize that the dissolved phase transport of any species used

in the model (Na, K, Mg, Ca, Alk(t), Cl, SO4 , Si) is chemically non-

conservative. Inspection of the data show that nitrate, total inorganic

carbon, and hydrogen ion are not transported conservatively; the iron and

aluminum data are ambiguous in this regard.
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Chapter VI

GENERAL CONCLUSION
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VI GENERAL CONCLUSION

This section summarizes the results of the previous chapters into an es-

timation of the rates at which various processes contribute dissolved materi-

als to the discharge of the Amazon River system. The standard procedure, to

be followed here, is to correct the original data for cyclic salt contribu-

tions, and to calculate denudation rates from water discharge. These rates

can then be related to geological features. Chapter II establishes the

cyclic salt contribution; Chapter IV identifies the relationships between

chemistry and geology; and Chapter V provides the rate calibration in

terms of water discharge.

Without additional assumptions, the results from this study would

not be applicable on an annual basis, as discharge measurements corres-

ponding to samples collected at low discharge during this study are not

available. Note that chemical measurements made during different seasons

of the year on the larger rivers (Solimoes at Manacapuru, Negro at Manaus,

Amazon at Iquitos, Huallaga at Yurimaguas) suggest that seasonal variations

in chemical composition are small, less than a factor of two, with low

discharge concentrations being somewhat higher than high-discharge concen-

trations. Consequently, reasonable estimates of denudation rates should

be obtained using the discharges determined in this study normalized to the

mean annual discharge at Obidos (c.f. Oltman 1968). This procedure would

tend to underestimate denudation rates for rivers draining from the south

of the main channel, as these are at falling stage when the main channel is

at peak discharge, and would overestimate denudation rates for regions

north of the main channel, which are near peak stage when the main channel

is at peak discharge.

Estimated discharges, flux weighted mean concentrations, and denuda-
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tion rates are presented in Table (VI.1), for the drainage regions establish-

ed in Chapter IV. In calculating denudation rates, the model discharges

determined in Chapter V, normalized to the annual mean discharge, have

been used with the exception of discharges from the Xingu, Tapaj6s, Trombetas,

Tef;, Japura, and Juru rivers. The latter discharges were obtained from

a regression of model discharge against basin area for the remaining rivers

(except for the Negro River basin, a region of exceptionally high precipi-

tation, Hoffman 1975 and runoff, Matsui et al. 1976). The concentration for

the Amazon system discharge is a flux-weighted predicted value and includes

estimated contributions from the Xingu River and left bank tributaries, which

never fully mix with water from the main channel prior to its mixing with

salt water, due to islands at the river mouth.

The Peruvian Andes have the greatest denudation rates of any major

region of the Amazon Basin. Roughly 40-60% of the dissolved Na, Mg, Ca,

Alk(t) (hence inorganic carbon), and S, transported by the Amazon into its

estuary and 90% of Cl, after cyclic salt corrections, are derived from the

Peruvian Andes. This high contribution is reflected in the denudation rates,

where estimates for the Peruvian Andes are about four times the Basin average

for Na, Mg, Ca, Alk(t), and S, and about 7 times the basin average for Cl.

Other regions draining marine sediments (regions 4, 5, and 8) have denudation

rates for Na, Mg, Ca, Alk(t), and S comparable to the basin average, while

Cl denudation rates are well below the basin average. Regions 4, 5, and

8 have extensive areas of shields and nonmarine sediments, which lower the

basin average. It is expected that the areas of uplifted marine sediments

in these regions have denudation rates comparable to those calculated for

the Peruvian Andes. In contrast with the above species, the denudation

rates for dissolved K and Si are fairly uniform over the entire basin. These

results are consistant with the geology of the Basin. Carbonates, sulfates,
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Table VI.1

ESTIMATION OF CONTRIBUTIONS FROM VARIOUS SOURCE REGIONS IN THE AMAZON BASIN

percentage of

Region TDS

2+3 48.
4 15.
5 6-3
6 3.1
7 11.
8 12.
9 2.5

cyclic 1.4

flux weighted
TDS-ppm, TZ+,

Region TDS

2+3 127.
4 36.2
5 22.1
6 5-7
7 19.1
8 32.1
9 11.1

Amazon 35-9

net discharge contributed by various source areas

TZ+ Na K Y Ca 'Alk Cl

50. 48. 20. 36. 59. 55. 69.
16. 13. 21. 26. 13. 15. 3-3
6.3 4.9 8.9 7.2 6.2 6.0 1.2
2.8 3.1 8.9 3.0 1.5 0.7 0.0
8.9 6-3 21. 11. 6.9 4.4 0.0
7.1 8.5 14. 12. 12. 13. 2.7
2.6 2.4 5.2 2.5 1.9 1.9 0.0
2.4 9.4 0.7 2.2 0.1 -0.4 24.

for different

S0,4 Si
52. 18.
29. 16.

3.8 11.
1.3 9.9
1.6 24.
5.5 14.
0.9 6.2
5.4 0.0

mean concentrations, and water flux in 103m3/sec:
Alk(t)-pEq/1, all others pmole/1 (cyclic salt corrected,

TZ+ Na K L Ca Alk C1 S04

1507. 249. 32.0 96-7 514. 1198. 165. 71.
414. 62.9 29.7 61.8 98.6 289. 7.2 35.7
246. 33.6 18.2 25.2 70.8 174. 3.9 6.9
59.5 11.3 10-0 5.7 9.1 11. 0.0 1.1

172. 34.3 21.3 18.9 39.2 133. 0.0 1.4
340. 44.8 23.2 32.7 103. 282. 4.8 '7.6
115. 22.3 14.7 11.7 25.1 64. 0.0 0.9
411. 71-1 21.8 36.7 120. 301. 32.9 18.6

except

Si

179.
143.
137.

67.9
153.
144.
109.
134.

denudation rapes, cyclic salt inputs,2water runoff (m/yr): 2
TDS-tonnes/km /yr, TZ+, Alk(t)-kEq/km /yr, all others-kmole/km /yr

TDS TZ+

132. 1562.
24 281.
25.4 283.

9.0 94.2
16.1 145.
38-3 405.
10.5 109.

0.5 9.8
35.2 399.

salt component

Na _K

258. 33.2
42.6 20.1
38.7 20.9
17.9 15.8
28.9 17.9
53.4 27.6
21.2 14.0
6.6 0.1

64.2 21.5
excluded)

denudation rates, above, normalized

Region TDS TZ+ Na K

2+3 3.71 3.92 4.02 1.54
4 0.69 0.70 0.66 0-93
5 0.71 0.71 0.60 0.97
6 0.24 0.23 0.28 0.74
7 0.45 0.36 0.45 0.83
8 1.07 1.01 0.83 1.28
9 0.29 0.27 0.33 0.65

Region

2+3
4
5
6
7
8

to Amazon average:

Z Ca Alk

2.80 4.45 4.13
1.17 0.56 0.65
0.81 0.68 0.67
0.25 0.12 0.06
0.45 0.28 0-37
1.09 1.02 1.12
0.31 0.20 0.20

Mara-ion Drainage + Ucayali Drainage = Peruvian Amazon
Madeira Drainage
Other Andean headwater rivers
Negro Drainage
Shield draining rivers
Lowland rivers draining marine sediments

9 Lowland rivers draining U. Tertiary and later sediments

species:

H120
14.
15.
10.
19.
21.
13.
7.6

for Amazon)

H22
26.9
30.0
20.4
38.1
41-6
26.4
15.0

197.

Region

2+3
4
5
6
7
8
9

cyclic
Amazon
(cyclic

yl
100.
41.9
29.0
9.0

16.0
39.0
11.1
0.8

35.7

Ca

533.
66.8
81.4
14.4
33-0

122.
23.8

0.1
120.

Alk

1241.
196.
200.

17.
112.
336.

61.
-1.

300.

Cl

171.
4.9
4.5
0.0
0.0
5.7
0.0
7.8

25.0

Egg
73.5
24.2
8.0
1.7
1.2
9.0
0.8
1.0

17.5

Si

186.
97.2

158.
108.
129.
172.
103.

0.0
134.

H22
1.04
0.68
1.15
1.58
0.84
1.19
1.95

1.00

Cl

6.85
0.20
0.18
0.0
0.0
0.23
0.0

S04
4.19
1.3
0.45
0.10
0.07
0.52
0.05

Si

1.39
0.73
1.18
0.80
0.97
1.29
0.77

H120
1.04
0.68
1.16
1.59
0.85
1.20
0.95
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and reduced marine shales are found in regions 2, 3, 4, 5, and 8, which have

high denudation rates for Na, Mg, Ca, Alk(t), and S, while halite bearing

rocks are particularly concentrated in the Peruvian Andes. In contrast, sili-

ceous lithologies, the principal sources of K and Si, are distributed through-

out the basin.

It has been pointed out that much of the halite exposed in the Peruvian

Andes is found in rapidly extuding salt diapirs (Section 111.3:3). The

aggregate exposed areas of these salt extrusions is probably 200 km2. if

the entire flux of chloride from the Peruvian Amazon is attributed to these

salt extrusions, a loss of 62-mmoles/cm2/yr of NaCl (1.7 cm/yr) would be re-

quired. This figure must be tempered by the observation that significant

contributions of NaCl are being derived from salt springs and bedded evapo-

rites, particularly in the Ucayali Basin.

The near average denudation rates for potassium and silica in regions

5, 7, and 9, which are otherwise low contributors in dissolved materials,

suggests that the weathering of silicate minerals is important, in well-

watered tropical regions, even after thick cation depleted soils have form-

ed. The proportions of major elements in these waters is not too unlike

the proportions found in "average" shield or shale, suggesting that the

intense weathering is effectively dissolving the basin substrate, perhaps

in the most extreme cases, like the Negro Basin, leaving a quartz and alu-

minous clay residue (Section 111.4:1 and IV.4:8, IV.4:ll).

In examining these fluxes, it is important to note that the inorganic

carbon flux in the river, while large, is comparable to carbon fluxes to

the atmosphere from surface waters. An approximate flux of carbon dioxide

out of the river is given by a Lewis-Whitman stagnant boundary layer gas

exhange model where evasion (moles/m2yr) (E) is given by (c.f. Emerson 1975):
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E = ( CO2river/ CO2atmosphere - 1)'600/D

where D is the boundary layer thickness in microns. It is assumed that D

on the free flowing main channel resembles that of a lake under windy

conditions or about 400 microns (c.f. Emerson 1975). No allowance is made

for reequilibration in the boundary layer. The P CO ratio averages 13.
1Co 2

Assuming an area of 3,000,000 x 3,000 m2  for the main channel alone,

a carbon dioxide flux from the river to the atmosphere of 1.6x10 mole/yr

is calculated, compared to a flux of about 1.7x102 mole/yr being discharged

from the river. The main channel constitutes only a fraction of the exposed

water surface in the Amazon Basin, consequently it is expected that the

water-to-atmosphere carbon flux, caused by in situ decay of organic carbon,

is comparable to the river to ocean flux of inorganic carbon.

It is possible to estimate the contributions that different lithologies

make to the Amazon dissolved load from the observations of Chapter IV,

relating river chemistry and geology, and the fluxes given in Table VI.1

after making a cyclic salt correction. There are two major ion groupings

for high TZ+ rivers (Section IV.4 ), Na-Cl and Ca-Mg-SO-HC0 3, for which

ion relationships can be established on the basis of simple stoichiometry

(Section IV.5). The relationship between Si, Na, K, Ca, and Mg can only be

determined from field observations (Sections IV.6:5-IV.7). The calculated

contributions are given in Table VI.2. In constructing this table the follow-

ing assumptions were made:

(1) All silica in the Amazon is derived from silicate rock weathering

(2) All chloride, after the cyclic salt correction, is derived from
halite.

(3) All potassium, after cyclic salt correction, is derived from
silicate rock weathering. The Cl:K ratio of waters derived from
evaporites (A-05, A-ll, BPAl6) averages 360:1 suggesting that
the evaporite contribution is insignifiant.

(4) All sodium remaining after a cyclic salt correction and subtraction
of a NaCl component is derived from silicate rock weathering.



ESTIMATION OF CONTRIBUTIONS FROM VARIOUS SOURCE LITHOLOGIES IN THE AMAZON BASIN
expressed as a percentage of the net material discharged from the Amazon system

Region TDS TZ+ Na K M Ca Alk Cl So

cyclic
silicates 5
carbonates 3
evaporites

discharge 2

1.4 2.4 9.4 0.7 2.2 0.1 -0.4
3. 42. 55. 99. 57. 29. 41.
8. 44. 0.0 0.0 40. 62. 59.
7.9 12. 35. 0. 0. 9.4 0.0

.23 256. 44. 14. 23. 75.

24.
0.0
0.0

76.

187. 20.

+ reduced sulfur is included with silicates, as geological data suggest that it
is most often associated with siliceous lithologies

# TDS-108 tonnes/yr TZ+, Alk-1010 Eq./yr Na,K,Mg,Ca,Cl,SO4 ,si-10 moles/yr

5.4
34.+

0.0
61.

12.

0.0
100.

0.0
0.0

83.
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(5) The average (Na+K):(Ca+Mg)/mole ratio for rivers draining silicate

terrains is 1.2:1 (see Section IV.8. It is assumed that this
ratio is applicable to calculation of the silicate contribution
to (Ca+Mg) in lithologically mixed terrains, using Na and K
calculated in (3) and (4) above.

(6) It is assumed that all S04 in rivers which drain regions 2, 3, 5,
and 8 (Andean and Subandean of Peru, Ecuador, and Brazil) is from
evaporite CaSO4 (slight overestimate), that all sulfur in region
4 (Madeira Basin) is from reduced shales (a slight overestimate), and
that S04 from lowland rivers draining regions 6, 7, and 9 is from
reduced metamorphic and sedimentary sources (perhaps a major over-
estimate if the sulfur is largely recycled marine sulfur).

(7) The Ca:Mg ratio for rivers draining carbonate terrains is assumed
to be 6:1, based on averaging this ratio for A-02, A-08, A-09,
A-14, A-15, and A-16 after correcting for cyclic salts and a
CaSO4 contribution. This ratio is used in calculating the Ca:Mg
ratios from the weathering of csilicate rocks in regions 2,3,5, and 8.

(8) The Ca:Mg ratio for silicate rocks in the Madeira Basin (4) is
assumed to be 1.2:1 (average of samples M-05 and BPA01, after
cyclic salt correction). The use of the silicate rock ratio in
the Madeira Basin is necessitated by the relatively small contri-

bution of Ca and Mg from carbonate rocks.

(9) The alkalinity derived from carbonate rock weathering is assumed
to balance the Ca and Mg calculated as being derived from carbon-
ates. The remaining Alkalinity is assumed to be derived from
silicate rock weathering: this will not balance the remaining cat-
ions due to the presence of other anions (NO3 and organic anions).

It is hoped that the reader will not be overzealous in the use of the

calculations given in this conclusion. These results will undergo further re-

finement when more detailed discharge measurements become available and as a

greater number of analyses are included in the calculations.

Bear in mind that the Amazon River which is chemically so similar to

world average river as it flows past Iquitos, Peru, does not drain a terrain

of world average rock, weathering in steady state. Rivers draining ad-

joining segments of the Andes have very different chemistry; an example is

the Madeira, which is the size of the Mississippi. Some inputs are ex-

tremely localized and derived from the subsurface. For example, the Amazon

(and also the Mississippi and Mackenzie) has remarkably localized chloride
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inputs, with salt extrusions and saline springs playing a major role; for

these, geologic change has been rapid. Eight m.y.B.P. the Amazon Basin bore

little resemblance to its present appearance, being drier and having small-

er mountains, probably lacking salt extrusions. Some extrusions today are

referred to as "dead salt", having had mineable halite in the historic past

but lacking it now. Clearly the Amazon Basin is not in a geochemical steady

state.

It is hoped that someday, before the Amazon Basin is completely and

irreversibly altered, more work might be done, especially to fill in the

the vast spatial and temporal gaps in these data, and to apply the results

to the benefit of the peoples of the Amazon.
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Appendix I

Tabulation of sample locations. To be used in conjunction with
Tables IV.4 and IV.5.



--DATE-- DEPTH - CHANNEL LOC. - SAMPLE CATEGORY

5201
S202
S203
S204
5205
S206
S207
S208
S209
S210
5211
5212
S213
S214
S215
5216
S217
S218
S219
5220
5221
5222
S223
S224
S225
S226
S227
S228
S229
5230
5231
S232
S233
5234
S235
5236
5237
S238
S239
S240
S241
5242
S243
5244
S245
5246
S247
S248
S249
S250

PARA RIVER BELOW BREVES
AMAZON NEAR ISLA URUTAI
AMAZON ABOVE GURUPA BELOW XINGU
XINGU RIVER ABOVE CONFLUENCE
AMAZON NEAR ISLA ITUQUI
TAPAJOS RIVER ABOVE CONFLUENCE
AMAZON RIVER NEAR APIXUNA
R. TROMBETAS RIVER ORIXIMINA
AMAZON RIVER ABOVE OBIDOS
AMAZON - PARANA URARIA MIX (PARANTINS)
AMAZON RIVER AT ITACOATIARA
MADEIRA RIVER ABOVE CONFLUENCE
AMAZON RIVER AT AMATARI
AMAZON RIVER AT AMATARI
AMAZON RIVER, UNANALYZED
NEGRO RIVER ABOVE MANAUS
AMAZON RIVER UNANALYZED
AMAZON RIVER AT CONFLUENCE OF NEGRO
SOLIMOES ABOVE CONFLUENCE WITH NEGRO
SOLIMOES RIVER AT MANACAPURU
SOLIMOES RIVER NEAR ISLA IUARA
PURUS RIVER ABOVE CONFLUENCE
SOLIMOES RIVER NEAR ANORI
SOLIMOES RIVER NEAR CAMARA
COARI RIVER NEAR COARI
SOLIMOES RIVER-PARANA COPEA CONFLUENCE
SOLIMOES RIVER NEAR LARANJAI
SOLIMOES RIVER NEAR JUTICA
SOLIMOES ABOVE TEFE RIVER CONFLUENCE
TEFE RIVER AT TEFE
JAPURA RIVER ABOVE CONFLUENCE
SOLIMOES RIVER ABOVE ALVAREZ
JURUA RIVER ABOVE CONFLUENCE
SOLIMOES RIVER AT FONTE BOA
SOLIIOES RIVER BELOW JUTAI CONFLUENCE
JUTAI RIVER ABOVE CONFLUENCE
SOLIMflES RIVER ABOVE JUTAI CONFLUENCE
ICA RIVER ABOVE CONFLUENCE
SOLIfZ 'ES RIVER NEAR AMATAURA
SOLIMiES RIVER AT SAO PAULO DE OLIVENCA
SOLIMOES RIVER NEAR ISLA ASSACAIO
JAVARI RIVER ABOVE CONFLUENCE
AMAZON RIVER NEAR LETICIA
VARZEA LAKE NEAR LETICIA
VARZEA LAKE NEAR LETICIA
CAYARU RIVER ABOVE CONFLUENCE
AMAZON RIVER NEAR PEVAS
AMAZON RIVER BELOW NAPO CONFLUENCE
NAPO RIVER ABOVE CONFLUENCE
AMAZON RIVER AT IQUITOS

10/06/7G
11/06/76
11/06/76
11/06/76
13/06/76
13/06/76
13/06/76
14/06/76
15/06/76
16/06/76
17/06/76
17/06/76
17/06/76
17/06/76
17/06/76
21/06/76
21/06/76
21/06/76
21/06/76
23/06,/76
23/06/76
23/06/76
23/06/76
24/06/76
24/06/76
24/06/76
24/06/76
25/06/76
25/06/76
25/06/76
26/06/76
26/06/76
27/06/76
27/06/76
08/06/76
28/06/76
28/06/76
30/06/76
30/06/76
01/07/76
01/07/76
02/07/76
03/07/76
04/07/76
04/07/76
04/07/76
07/07/76
07/07/76
08/07/76
08/07/76

SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE

MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
LEFT SIDE
LEFT SIDE
MID-CHANNEL
MID-CHANNEL
LEFT SIDE
RIGHT SIDE
MID-CHANNEL
MID-CHANNEL
LEFT SIDE
LEFT SIDE
MID-CHANNEL
MID-CHANNEL
RIGHT SIDE
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
LEFT SIDE
MID-CHANNEL
MID-CHANNEL
RIGHT SIDE
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
LEFT SIDE
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
RIGHT SIDE
MIDDLE
MIDDLE
MID-CHANNEL
MID-CHANNEL
MIDDLE LEFT
MID-CHANNEL
MID-CHANNEL

UNANALYZED
MAIN CHANNEL
MAIN CHANNEL
SHIELD DRAINING RIVER
PARTIALLY MIXED MAINC
SHIELD DRAINING RIVER
MAIN CHANNEL
SHIELD DRAINING RIVER
MAIN CHANNEL
PARTIALLY MIXED MAINC
PARTIALLY MIXED MAIN(
MADEIRA DRAINAGE
PARTIALLY MIXED MAINC
PARTIALLY MIXED MAIN(
UNANALYZED
NEGRO DRAINAGE
UNANALYZED
PARTIALLY MIXED MAINC
MAIN CHANNEL
MAIN CHANNEL
PARTIALLY MIXED MAINC
LOWLAND RIVER DRAININ
MAIN CHANNEL
MAIN CHANNEL

CH. AND TRIB. WATER

CH. AND TRIB. WA.ER
CH. AND TRIB. WvrER

CH. AND TRIB. Wr!ER
CH. AND TRIB. W.iER

CH. AND TRIB. WATER

CH. AND TRIB. WATER
G MARINE SEDIMENT

(16)
(01)
(01)
(07)
(15)
(07)
(01)
(07)
(01)
(15)
(15)
(04)
(15)
(15)
(16)
(06)
(16)
(15)
(01)
(01)
(15)
(08)
(01)
(01)
(09)
(16)
(01)
(01)
(16)
(09)
(05)
(01)
(08)
(01
(01)
(09)
(01)
(05)
(15)
(01)
(01)
(08)
(01)
(10)
(10)
(10)
(01)
(15)
(05)
(01)

RIVER DRAINING U. TERT. AND LATER SED.
UNANALYZED
MAIN CHANNEL
MAIN CHANNEL
UNANALYZED
RIVER DRAINING U. TERT. AND LATER SED.
ANDEAN HEADWATER RIVER

MAIN CHANNEL
LOWLAND RIVER DRAINING MARINE SEDIMENT
MAIN CHANNEL
MAIN CHANNEL
RIVER DRAINING U. TERT. AND LATER SED.
MAIN CHANNEL
ANDEAN HEADWATER RIVER
PARTIALLY MIXED MAIN CH. AND TRIB. WATER
MAIN CHANNEL
MAIN CHANNEL
LOWLAND RIVER DRAINING MARINE SEDIMENT
MAIN CHANNEL
VARZEA WATERS
VARZEA WATERS
VARZEA WATERS
MAIN CHANNEL
PARTIALLY MIXED MAIN CH. AND TRIB. WATER
ANDEAN HEADWATER RIVER

MAIN CHANNEL

STA. -SAMPLE LOCATION-



--DATE-- DEPTH - CHANNEL LOC. - SAMPLE CATEGORY

S301
S302
S303
S304
S305
S306
5307

5309
S309A
S310
S311
5312
S313
S314
S315
S316
S317
S317A
S318
S319
S319A
S320
5321
S322
S323
S324
S325
S326
S327
S328
S329
5330
S331
S332
5333
S334
S335
S336
S337
S337AI
UN1
UN2
BR1
BR2
LN1
LN2
SOL1
SOL2
LJ1

JAVARI RIVER ABOVE CONFLUENCE
AMAZON RIVER AT IQUITOS
AMAZON RIVER ABOVE NAPO CONFLUENCE
NAPO RIVER ABOVE CONFLUENCE
AMAZON RIVER BELOW PEVAS
AMAZON RIVER AT LETICIA
SOLIMOES ABOVE SAO PAULO DE OLIVENCA
VARZEA LAKE NEAR S. PAULO DE OLIVENCA
JANDIATUBA RIVER ABOVE CONFLUENCEE
LAKE ON THE JANDIATUBA RIVER
SOLIMOES AT SAO PAULO DE OLIVENCA
SOLIMOES RIVER ABOVE ICA CONFLUENCE
VARZEA LAKE IN FRONT OF TONANTINS
ICA RIVER ABOVE CONFLUENCE
SOLIMOES RIVER ABOVE JUTAI CONFLUENCE
JUTAI RIVER ABOVE CONFLUENCE
SOLIMOES ABOVE JURUA CONFLUENCE
JURUA RIVER ABOVE CONFLUENCE
MINERUA PARANA ABOVE JURUA CONFLUENCE
JAPURA RIVER ABOVE CONFLUENCE
TEFE RIVER IN MIDDLE OF MOUTH BAY LAKE
TEFE RIVER AT TEFE
LAKE CAIAMBE
SOLIMOES ABOVE COARI CONFLUENCE
COARI R. IN LOWER MIDDLE OF MOUTH BAY L.
SOLIMOES ABOVE PURUS CONFLUENCE
PURUS RIVER ABOVE CONFLUENCE
CABOLIANA LAKE NEAR MANACAPURU
SOLIMOES RIVER ABOVE NEGRO CONFLUENCE
NEGRO RIVER AT NARROWS ABOVE MANAUS
MADEIRA RIVER ABOVE CONFLUENCE
AMAZON RIVER AT OBIDOS
MAMAURU LAKE
SMALL STREAM ENTERING AMAZON AT OBIDOS
TROMBETAS RIVER ABOVE ORIXIMINA
AMAZON RIVER BELOW OBIDOS (UNANALYZED)
AMAZON RIVER ABOVE TAPAJOS CONFLUENCE
TAPAJOS R. IN MIDDLE OF MOUTH BAY LAKE
AMAZON ABOVE XINGU CONFLUENCE
XINGU RIVER AT PORTO DE MOZ
MATARI RIVER AT CONFLUENCE WITH XINGU
UPPER NEGRO ABOVE BRANCO CONFLUENCE
UPPER NEGRO ABOVE BRANCO CONFLUENCE
BRANCO RIVER ABOVE CONFLUENCE
BRANCO RIVER ABOVE CONFLUENCE
NEGRO RIVER AT MANAUS
NEGRO RIVER AT MANAUS
SOLIMOES ABOVE CONFLUENCE WITH NEGRO
SOLIMOES RIVER ABOVE NEGRO CONFLUENCE
JANAUARY LAKE

17/05/77
20/05/77
20/05/77
20/05/77
20/05/77
21/05/77
22/05/77
22/05/77
22/05/77
22/05/77
22/05/77
23/05/77
23/05/77
23/05/77
24/05/77
24/05/77
24/05/77
24/05/77
24/05/77
25/05/77
25/05/77
25/05/77
25/05/77
26/05/77
26/05/77
06/05/77
26/05/77
27/05/77
27/05/77
2B/05/77
01/06/77
02/06/77
02/06/77
02/06/77
03/06/77
03/06/77
03/06/77
04/06/77
05/06/77
05/06/77
05/06/77

/08/77
/04/78
/08/77
/04/78
/01/78
/04/78
/01/78
/04/78
/01/76

SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SUR FACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE

MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MIDDLE
MID-CHANNEL
MIDDLE
RIGHT SIDE
MID-CHANNEL
MIDDLE
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MIDDLE
MID-CHANNEL
MIDDLE
MID-CHANNEL
MIDDLE
MIDDLE RIGHT
MID-CHANNEL
MIDDLE
MIDDLE RIGHT
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MIDDLE
MID-CHANNEL
MID-CHANNEL
MIDDLE LEFT
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MIDDLE

(08)
(01)
(01)
(05)
(01)
(01)
(01)
(10)
(09)
(09)
(16)
(01)
(10)
(05)
(01)
(09)
(01)
(08)
(10)
(05)
(09)
(09)
(10)
(01)
(09)
(01)
(08)
(10)
(01)
(06)
(04)
(01)
(10)
(08)
(07)
(16)
(01)
(07)
(01)
(07)
(09)
(06)
(06)
(06)
(06)
(06)
(06)
(01)
(01)
(10)

LOWLAND RIVER DRAINING MARINE SEDIMENT
MAIN CHANNEL
MAIN CHANNEL
ANDEAN HEADWATER RIVER

MAIN CHANNEL
MAIN CHANNEL
MAIN CHANNEL
VARZEA WATERS
RIVER DRAINING U. TERT. AND LATER SED.
RIVER DRAINING U. TERT. AND LATER SED.
UNANALYZED
MAIN CHANNEL
VARZEA WATERS
ANDEAN HEADWATER RIVER

MAIN CHANNEL
RIVER DRAINING U. TERT. AND LATER SED.
MAIN CHANNEL
LOWLAND RIVER DRAINING MARINE SEDIMENT
VARZEA WATERS

ANDEAN HEADWATER RIVER
RIVER DRAINING U. TERT. AND LATER SED.
RIVER DRAINING U. TERT. AND LATER SED.
VARZEA WATERS
MAIN CHANNEL
RIVER DRAINING U. TERT. AND LATER SED.
MAIN CHANNEL
LOWLAND RIVER DRAINING MARINE SEDIMENT
VARZEA WATERS
MAIN CHANNEL
NEGRO DRAINAGE
MADEIRA DRAINAGE
MAIN CHANNEL
VARZEA WATERS
LOWLAND RIVER DRAINING MARINE SEDIMENT
SHIELD DRAINING RIVER
UNANALYZED
MAIN CHANNEL
SHIELD DRAINING RIVER
MAIN CHANNEL
SHIELD DRAINING RIVER
RIVER DRAINING U. TERT. AND LATER SED.
NEGRO DRAINAGE
NEGRO DRAINAGE
NEGRO DRAINAGE
NEGRO DRAINAGE
NEGRO DRAINAGE
NEGRO DRAINAGE
MAIN CHANNEL
MAIN CHANNEL
VARZEA WATERS

STA. -SAMPLE LOCATION-



--DATE-- DEPTH - CHANNEL LOC. - SAMPLE CATEGORY

AM 101
NANDI
S-1
S-2
A-01
A-02
A-03
A-04
A-05
A-06
A-07
A-08
A-09
A-1 0
A-1Il
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-21
M-01
M-02
M-03
M-04
M-05
M-06
M-08
M-09
BPA01
BPA02
BPA03
BPA04
BPA05
BPA06
BPA07
BPAB 0
BPA09
BPA1O
BPAI11
BPA12

BPA13
BPA14
BPA15
BPA16

AMAZON RIVER AT IQUITOS
NANAY RIVER AT IQUITOS
UCAYALI RIVER AT PUCALLPA
HUALLAGA RIVER AT HUANUCO
MONTARO RIVER AT CHULEC
HUALLAGA ABOVE HUIGUERAS (HUANUCH,
HUIGUERAS RIVER AT HUANUCO
HUACHIPA RIVER-LOWER COURSE
SALT SPRING, LEFT BANK OF MONZON .
MONZON RIVER ABOVE CONFLUENCE
HUALLAGA ABOVE MONZON (TINGO MARIA)
ASPASARTA RIVER-LOWER COURSE
UCHIZA RIVER-LOWER COURSE
CACHIYACU RIVER-LOWER COURSE
TOCACHE RIVER-LOWER COURSE
HUALLAGA ABOVE TOCACHE R.(TOCACHE)
HUALLAGA AT BALSAYACU
HUALLABAMBA RIVER AT CONFLUENCE
SAPOSOA RIVER-LOWER COURSE
MAYO RIVER-LOWER COURSE
HUALLAGA ABOVE SHANUSI R. (YURIMAGUAS)
SHANUSI RIVER YURIMAGUAS
PARANAPURA RIVER YURIMAGUAS
NANAY RIVER IQUITOS
MADEIRA RIVER AT PORTO VELHO
MAMORE RIVER AT GUAYARAMERIN
BENI RIVER ABOVE MADRE DE DIOS RIVER
MADRE DE DIOS RIVER ABOVE BENI RIVER
ICHILO RIVER AT PUERTO VILLARROEL
CHACALTAYA SNOW
URUBAMBA RIVER AT MACHU PICCHU
STREAM AT AGUAS CALIENTES
ICHILO RIVER AT PUERTO VILLARROEL
SAN MATEO RIVER AT VILLA TUNARI
ESPIRITU SANTO RIVER AT VILLA TUNARI
MAMORE RIVER AT TRINIDAD
GUAPAY RIVER AT PAILAS
PIRAY RIVER AT SANTA CRUZ
CHACALTAYA SNOW
URUBAMBA RIVER AT MACHU PICCHU
AMAZON RIVER AT IQUITOS
MARANON RIVER AT CONFLUENCE (NAUTA)
UCAYALI RIVER AT CONFLUENCE
NANAY RIVER AT IQUITOS
HUALLAGA ABOVE SHANUSI R. (YURIMAGUAS)
SHANUSI RIVER AT YURMAGUAS
PARANAPURA RIVER AT YURIMAGUAS
CANA STREAM BY MINES, PILLUANA SALT DOME

15/10/78
15/10/78
11/07/76
13/07/76
04/05/77
05/05/77
05/05/77
06/05/77
07/05/77
07/05/77
07/05/77
07/05/77
07/05/77
07/05/77
08/05/77
08/05/77
10/05/77
10/05/77
1 1/05/77
11/05/77
12/05/77
12/05/77
1 2/05/77
14/05/77
15/06/77
17/06/77
18/06/77
18/06/77
25/06/77
10/07/77
22/07/77
22/07/77
22/11/78
23/11/78
23/11/78
26/11/78
28/11/78
29/11/78
30/11/78
06/12/78
10/12/78
10/12/78
10/12/78
11/12/78
13/12/78
13/12/78
13/12/78
15/12/78

SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE

SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE

SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE

LEFT BANK
RIGHT BANK
LEFT BANK
RIGHT BANK
LEFT BANK
LEFT' BANK
LEFT BANK
RIGHT BANK
BANK
LEFT BANK
RIGHT BANK
RIGHT BANK
RIGHT BANK
LEFT BANK
RIGHT BANK
LEFT BANK
LEFT BANK
RIGHT BANK
LEFT BANK
LEFT BANK
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
RIGHT BANK
LEFT BANK
MID-CHANNEL
MID-CHANNEL
LEFT BANK

MID-CHANNEL
MID-CHANNEL
LEFT BANK
LEFT BANK
RIGHT BANK
RIGHT BANK
LEFT BANK
RIGHT BANK

LEFT BANK
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
RIGHT BANK
MID-CHANNEL
MID-CHANNEL
MID-CHANNEL
RIGHT BANK

(01)
(09)
(03)
(02)
(03)
(02)
(02)
(02)
(02)
(02)
(02)
(02)
(02)
(02)
(02)
(02)
(02)
(02)
(02)
(02)
(02)
(02)
(02)
(09)
(04)
(04)
(04)
(04)
(04)
(14)
(03)
(03)
(04)
(04)
(04)
(04)
(04)
(04)
(14)
(03)
(01)
(02)
(03)
(09)
(02)
(02)
(02)
(02)

MAIN CHANNEL
RIVER DRAINING U.
UCAYALI DRAINAGE
MARANON DRAINAGE
UCAYALI DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
RIVER DRAINING U.
MADEIRA DRAINAGE
MADEIRA DRAINAGE
MADEIRA DRAINAGE
MADEIRA DRAINAGE
MADEIRA DRAINAGE
SNOW
UCAYALI DRAINAGE
UCAYALI DRAINAGE
MADEIRA DRAINAGE
MADEIRA DRAINAGE
MADEIRA DRAINAGE
MADEIRA DRAINAGE
MADEIRA DRAINAGE
MADEIRA DRAINAGE
SNOW
UCAYALI DRAINAGE
MAIN CHANNEL
MARANON DRAINAGE
UCAYALI DRAINAGE
RIVER DRAINING U.
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE
MARANON DRAINAGE

TERT. AND LATER SED.

TERT. AND LATER SED.

TERT. AND LATER SED.

STA. -SAMPLE LOCATION-
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Appendix II

Collection procedures



- 325 -

Appendix II Sample Collection

The philosophy of sample collection was to obtain samples in a variety

of ways so as to eliminate concentration changes during storage. Previous

investigations have indicated (Section IV.2) that all major elements are

found at trace levels in at least some Amazon surface waters. Thus, bottle

preparation and sample handling procedures are crucial in obtaining good

results. For example, one would not want to analyze chloride in a HC1

leached bottle. Sample collection differed slightly between the shipboard

work and ground-based studies, however all attempts were made to establish

similar procedures foi the two.

Shipboard Samples

Sampling from the R.V. Alpha Helix utilized a shipboard system for

collecting uncontaminated underway samples. A polyethylene tube led from a

"fish", towed on a boom extended from the side of the ship, to a collection

container. Samples were collected by suction. The system was rinsed,

prior to collection, by pumping water through it.

When sampling from a Boston Whaler, bottles were submerged, shaken,

.then emptied three times before collecting the sample.

Alkalinity, pH, Si, P04 , Total-P, NO3 , NO2 , and NH4 were all run with-

in 24 hours of collection. Temporary storage was in glass at near zero

temperatures. Alkalinity, Si, and NO3 were also run on stored samples,

and provided a method for checking the stability of these samples. Samples

analyzed for pH, TCO2 and TOC were processed immediately upon receipt

of the samples. The remaining subsamples were typically split from a single

Gerry-jug. Four classes of subsamples were split into 500 ml polyethylene

bottles:

(1) Untreated sample - this split was stored in a bottle which had
been nitric then distilled water leached. This subsample was
taken separately if collected from a whaler. It
was analyzed for Na, K, Mg, Ca, Alk, Cl, SO4, Si, Fe, Al.
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(2) Trace element sample - this split was filtered through a
preweighed .4 5,p Nucleopore D filterinto a HCl or HNO3 leached
bottlethen acidified with 1 ml, 6N, 2x distilled, HCl. The sub-
sample was analyzed for Fe, Al and other trace elements.

(3) Acidified sample - this split was filtered through a rinsed .45,U
millipore @ filter ,into an HC1 leached bottle, then spiked with
1 ml, 6N 2x distilled HC1. It was analyzed for cations and NO3.

(4) Unacidified sample - this split was filtered through a .45pU glass
fiber filter into a hot-distilled-water leached bottle. The
subsample was analyzed for Na, K, Mg, Ca, Alk, Cl, SO4, Si.

Ground-Based

The only ground-based field measurements were of pH and temperature,

which were done in situ. Remaining analyscs were done in the laboratory.

An analagous set of four bottles was collected, however all volumes

were halved to increase portability during numerous public transportation

connections.. In addition a sample was collected for PO4 in a 50ml ground

glass milk sampling bottle and spiked with 200pul of chloroform. It should

be noted that sediment passed throught the .45p filtersevidenced by haze

and color. This sediment apparently dissolved upon acidification.

Storage

Storage for Fe and Al is discussed in detail in section IV.8. Alkalinity

and silica measured on shipboard agreed with the unacidified sample and ,

in the case of sediment poor rivers, with the untreated samples. For Na, K,

Mg, Ca, Cl, SO4 the unacidified sample was stable over several years , if

stored in the dark. Slight increases ( 5%) in cation concentrations are seen

in untreated samples from sediment-rich waters. pH appears to be stable in

untreated samples where the initial pH is below about 5.5. NO3 was not as

stable on storage, and it appears that storage in excess of about 6 months

involves increased scatter and some, apparently systematic loss of NO3 '
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Appendix III

Analytical methods
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APPENDIX III ANALYTICAL METHODS

Analytical methods were selected and modifed for the low concentrations

encountered, yet adaptable to a wide concentration range without undue

handling of samples. Concentration ranges for waters from the Amazon Basin,

analytical ranges, and measurement precisions are presented in Table (IV. 2 ).

Most of the analyses followed a basic scheme. All labware was leached

in 20% nitric acid. Blanks and standards were prepared using water that

had been distilled in a Barnsted metal still, passed through an ion ex-

changer, and then distilled in a Corning borosilicate glass still. The con-

centrations of the primary standards were selected such that multipoint

standard curves for the analytical ranges in Table (IV.2 ) could be pre-

pared using the same volumetric apparatus and dilution procedures (exceptions

being alkalinity and shipboard analyses). Blanks and (at least partial)

standard curves were run after every 5 to 15 samples. All runs were braketed

by complete standard curves. If necessary, quadratic fits were used to

account for nonlinearity in standard curves. Drift in instrument readings,

if observed, was assumed to be smooth, and concentrations were calculated

using linear interpolation. Most dilutions were done gravimetrically,

except for samples whose concentrations fell into the range of the primary

standards. These were diluted with the same equipment as was used for pre-

paring the primary standards. In addition to prepared standards, certain

samples, covering the range of concentrations found in lowland rivers, were

rerun with most analyses. These were used to check the consistency of the

data, and to provide an estimate of analytical variability.

Sodium, Potassium, Magnesium, Calcium

These elements were analyzed using a Perkin-Elmer 403 Atomic Absorption

Spectrophotometer, following Fishman and Downs (1966). Interference suppres-
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sors were adjusted to the following concentrations in the samples and

standards:

Element Suppressor

Sodium Potassium 20 mmole/l
Potassium Sodium 20 mmole/l
Magnesium Lanthanum 36 mmole/l* + (0.IN) RCl
Calcium Lanthanim 36 mmole/l* + (0.IN) HC

* higher concentrations caused deposits on the burner head

Samples containing the lowest concentrations of the above elements were

also run without suppressors to reduce noise in the blanks, and this proved

significant for only precipitation samples.

Silica

Silica was analyzed according to the molybdenum blue method of Strickland

and Parsons (1968). All samples and standards were diluted simultaneously

by a factor of four prior to analysis. Precisions for laboratory analysis

were an order of magnitude better than shipboard analyses, consequently the

former are utilized in this study; laboratory and shipboard analyses agree

within the analytical precisions. Sample concentrations are reported relative

to a Baker Dilut-it standard. These concentrations are 1.089 times values

calculated relative to sodium silicon hexafloride standards. A Beckman DU-2

was used onboard ship and a Perkin-Elmer Model 55E Spectrophotometer was used

in the lab.

.pH

pH measurements were either done in situ or in a closed system, con-

sisting of a 125 ml ground glass-stoppered flask with electrode ports, due

to high CO2 vapor pressures in the samples. Samples were siphoned from

the ground glass collection bottles into the bottom of the flask; 100 to 200
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ml of the sample was allowed to overflow. Shipboard measurements utilized

Corning model 110 and 130 digital meters. Andean rivers (stations S-1 and

Al-A21) were measured using an Orion model 401 pH meters; (stations M01-

M09) were measured using Merck pH strips; and (stations BPA01-BPA16) were

measured using a Chemtrix model 600 digital pH meter. Precipitation samples

were measured on 5 ml volumes, in an open 10 ml beaker. Measurements were

done at 25- 30C. Corning or Fisher prepared standards were used. Estimated

precisions are:

Stations Precision (est 26)

S201-S328 0.03
S-1, A01-A21 0.1
MOl-M09 0.3
BPA01-BPA16 0.05
Precipitation 0.05

Alkalinity and Total Carbon Dioxide

All alkalinities were measured in duplicate or triplicate, mod-ified

from the titration method of Edmond (1970), for an open system and 100 ml

volumes for lowland samples and 50 ml volumes for remaining samples.

Total carbon dioxide was measured using Beckman models 215 and 865

non-dispersive infrared analyzers. Samples, collected in ground glass-

stoppered bottles, were transferred to 20 ml ampoules using a syringe. Care

was taken to remove bubbles from the syringe and to introduce the samples

slowly into the bottom of the ampoule. The samples were then poisoned

using 100 ul saturated HgC1 2 , acidified with 100 pl of concentrated H3P04'

and promptly flame sealed. The samples were introduced into the CO2 analyzer

through a closed loop recycling system, in which the ampoule was sealed into

the system; the neck was broken; and air was recycled through the sample until
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Figure AIII.1

Graph of total CO2 predicted from Alk(t) and pH versus
measured total CO2
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the instrument reading stabilized. Standards were prepared with individually

weighed calcite crystals and 20 mlof C02 -free distilled water, treated and

sealed in the same manner as the samples.

TCO2 can be calculated from pH and alkalinity, assuming that the

alkalinity is derived from bicarbonate and carbonate ions:

TCO = (Alk + (H) - Kw/(H)) - ((H)/K1 + 1 + K 2 /(H)) pK = 14

21
(1 + 2/K2/(H)) pK1 = 6.352 25 C

pK2 = 10.329

Alk (H), in practice calculated TCO2 agrees with measured TCO2 (Figure

AIII.l), demonstrating that the titration alkalinity involves dominantly CO2

system species, the effects of other weak acids being unimportant.

Sulfate and Chloride

Most methods for sulfate and chloride analysis cannot be used reliably

for Amazonian waters. Both species are often found near the detection

limit for many techniques, furthermore organic materials in the samples

interfere with many sulfa-te procedures. To raise detection limits samples

were preconcentrated by evaporation, and to eliminate organic interferences

all samples analyzed for sulfate were completely evaporated and heated to

525 C. Chloride was also measured in the latter samples. Batches of 20

to 40 samples were processed at one time, the entire procedure, including

analysis taking 3-4 days. Samples were treated with base to avoid losses

of volatile salts.

Preliminary chloride concentrations were obtained by direct

analysis of samples, and initial estimates of the sulfate concentrations

were calculated from charge balances of all other species. All samples



- 334 -

whose concentrations did not fall into the middle of the analytical range

(Table AIII.1) were adjusted into that range by preconcentration (up to

15 fold) or by dilution. The preconcentration was done on a hotplate in

a laminar flow bench. Samples to be preconcentrated were measured into

50 ml borosilicate flasks. Samples were evaporated in borosilicate

vials, which were periodically brought up to about 10 ml with sample

from the flask. Five umoles-of NaC03 wereadded to the samples in the

vials to prevent the loss of chloride, if the samples

to dryness (Howard 1933). The hotplate temperatures were adjusted such that

the samples were held at the boiling point, with at the most very slight

bubbling. Sixteen to eighteen hours were required to reduce 100 ml to 10 ml.

After the sample was transferred from the flask to the vial, the flask was

rinsed with 5 ml distilled water. Blanks for this distilled water (important

for Cl) were determined by preconcentrating the distilled water along with

the samples. Concentration factors for chloride samples not evaporated to

dryness were determined gravimetrically.

Samples analyzed for sulfate were heated to 5250C in a Lindburg

muffle furnace. These were heated from a cool start, taking one half

hour to reach temperature, where they were maintained for another half hour.

Samples were covered with a glass plate during heating. If samples were

placed directly in the hot oven, they lost chloride, perhaps due to a thermal

over-shoot or to sputtering. This phenomenon shows on the glass plate as

a film, and was not observed in slowly heated samples. For both chloride

and sulfate, standards and samples spiked with standards showed 100% recovery

to within the analytical error. In addition, chloride samples that were

heated in the oven agreed with samples which were not.
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After samples were cooled, they were redissolved in 10 ml of 0.02N

acetic acid solution. Dissolution was aided with an ultrasonic bath

(2 minutes) and a shaker table (1 hour). The acetic acid, combined with

the added NaCO3 , and the alkalinity of the samples, served to buffer the

samples into the pH range of 4.0-4.3. This 10 ml could be analyzed 2-3 times

for sulfate and 1-2 times for chloride. Blanks and standards were prepared

with the same NaC0 3 -acetic acid mixture.

Sulfate was analyzed by the indirect colorimetric method of Archer

(1975), using 2-aminoperimidine (2-AP), modified for high molar absorptivity.

This method was particularly advantageous as it offered potential for re-

solving small variations in concentration, and required a small (2 ml) sample,

however in untreated samples organics inhibited the precipitation of 2-AP

sulfate. This was circumvented by the above heat treatment. A second major

problem stemmed from this being an indirect method in which the maximum volume

error for transfer and spiking occured at lowest concentrations. To circum-

vent this problem samples were transferred with an Eppendorf pipette, and

reagents were added with microburettes. 200 ul of 550 umole/l K2SO was added

prior to the 2-AP bromide to insure precipitation of 2-AP sulfate and to test

recovery (a highly recommended step if this method is to be used on unpro-

cessed samples). The variance of the standard curve (0-300 umoles/1) was

typically 2-3 umoles/l. All samples were run in duplicate, and if these did

not agree within the variance, they were rerun.

Chloride was analyzed on a Butchler Chloridimeter. Three ml of sample

were spiked with one ml of reagent. The reagent consisted of 40% acetic

acid, 0.4 N nitric acid, and 280 umole/l NaCl. The NaCl was added to

insure an inflection in the titration curve a low concentrations. The vari-

ance of a standard curve (0-1000 umole/1) was typically 2-3 umole/l.
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Iron and Aluminum

Iron and aluminum were analyzed using colorimetric methods modified

from Stookey (1970) and Dougan and Wilson (1974) respectively. Modifica-

tions were done to ensure that similar phases were being analyzed for both

elements.

The principal modification involved extending the heating step of

the above iron method and adding an identical heating step to the above

aluminum procedure. Both original procedures utilized an initial step

which involved complexing the iron present in the sample under acid (0.2

N HCl) conditions, in the presence of a reducing agent (hydroxylamine hydro-

chloride). The Fe II complex is analyzed in the iron method, and is used

to eliminate iron interference in the aluminum method. In the iron analysis

the initial step is assisted by heating. Boyle et al. (1977) observe that if

the heating is extended from the recommended 10 minutes to at least one

half hour, colorimetric results agreed with atomic absorption results.

Iron released by the additional heating may be initially bound or stabilized

by organics in the sample, furthermore clays, not eliminated by filtration,

would be more thoroughly digested.

Volumes for both methods were changed so that analyses could be done

using preweighed borosilicate scintillation vials. Samples to be analyzed

for aluminum were acidified to the recommended concentration. Following

the addition of the reducing and complexing agents, all samples were heated

for one hour in a 110 0C oven. Samples were cooled and brought to their

initial volume gravimetrically. Remaining steps conformed to the published

procedures. Standards were processed identically to the samples.

Color

Color (being the absorbance of the water sample at a certain wavelength)
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has been measured in Amazonian water samples at a variety of wavelengths

(Klinge and Ohle 1964, Santos and Santos 1970) as a guide to the organic

carbon content and the humic acid content. In reality it is a direct

measure of neither, and is instead the measure of one particular component of

the dissolved organics in the sample (J. Leenher, U.S.G.S., personal communi-

cation), that is, to a degree, independent of the total organic carbon content.

A wavelength of 270 nm was chosen for the color measurement in this

study. The absorbance of a typical sample is sufficiently high to be easily

measured in a 1 cm quartz cell, and the ultraviolet absorbance of nitrate

is insignificant. This permits extremely rapid measurements, using the

sipper system of the Perkin-Elmer spectrophotometer.

Samples were generally not measured in the field, so the slight decay

of color with time was corrected using an empirical formula determined from

measurements of the samples separated by about 1.5 years. The formulae

are:

Abs. = Abs. x e(at)
(t=0)

a(filtered samples) = 7.1 x 10-5d~1

a(unfiltered samples) = 3.3 x 10~4 d~1

Comparison with shipboard measurements of the Rio Negro suggest that the

corrected absorbances are within 5% of their original values.

Nutrients

Phosphate, nitrate, nitrite, and ammonia were run according to standard

methods:
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Phosphate: molybdenum blue method of Strickland and Parsons (1968)
Total P: persulfate oxidation following Menzel and Corwin (1965)

Nitrate: reduction to nitrite on cadmium columns,
pre-1978, Strickland and Parsons (1968)
subsequent, Gardner, Wynne, and Dunstan (1976)

Nitrite: Sulfanilamide and N-1-N, Strickland and Parsons (1968)

Ammonia: indophenol blue method
pre-1977, Solorzano (1969)
subsequent, Scheiner (1976)

Notes: The nitrate method was changed as the second method used a smaller
volume, 15 ml versus 50 to 150 ml

The ammonia method was changed because the first method proved
somewhat erratic in the river samples

Organic Carbon

Organic carbon was measured using the wet oxidation method of Menzel

and Vaccaro (1964). Briefly, samples were glass pipetted into 20 ml ampoules,

spiked with100 ul concentrated H3PO4, bubbled with CO2 free N2 , spiked with

a small scoop of potassium persulfate, and promptly sealed. Samples were

then run like TCO2 '
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