
Verification of Full Functional Correctness for

Imperative Linked Data Structures

by

Karen K. Zee

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2010

MASSACHUSMrS IS E
OF TECHNOLOGY

FEB 2 3 2010

LIBRARIES

@2010 Massachusetts Institute of Technology. All rights reserved.

ARCHIVES

Author ........
Department of Electrical Engineering and Computer Science

January 29, 2010

Certified by.......
Martin C. Rinard

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .................. .......... ..... ............................

Terry P. Orlando
Chair, Department Committee on Graduate Students



9



Verification of Full Functional Correctness for Imperative
Linked Data Structures

by
Karen K. Zee

Submitted to the Department of Electrical Engineering and Computer Science
on January 29, 2010, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

We present the verification of full functional correctness for a collection of imperative
linked data structures implemented in Java. A key technique that makes this verifi-
cation possible is a novel, integrated proof language that we have developed within
the context of the Jahob program verification system. Our proof language allows us
to embed proof commands directly within the program, making it possible to reason
about the behavior of the program in its original context. It also allows us to ef-
fectively leverage Jahob's integrated reasoning system. Unlike conventional program
verification systems that rely on a single monolithic prover, Jahob includes interfaces
to a diverse collection of specialized automated reasoning systems-automated theo-
rem provers, decision procedures, and program analyses-that work together to prove
the verification conditions that the system automatically generates. Our proof lan-
guage enables the developer to direct the efforts of these automated reasoning systems
to successfully verify properties that the system is unable to verify without guidance.

Our specifications characterize the behavior of the data structures in terms of
their abstract state, resulting in verified interfaces that can be used to reason about
the behavior of the data structures without revealing the underlying representation.
The results demonstrate the effectiveness of our proof language and integrated rea-
soning approach, and provide valuable insight into the specification and verification
of imperative linked data structures.

Thesis Supervisor: Martin C. Rinard
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Products.7 She enjoyed her adventures with all of them, and was grateful for their
friendship and kindness.

Although the girl spent many years sojourning in the kingdom of Emeyetee, she
was not forgotten by her family and friends in other parts of the world. These
include her father and mother, Queenie, Jasper, Connie, Amelia, Raymond, Yuna,
Jack, Vikki, Anca, Victor, Nathaniel, and the Wendel family.' She was also helped
by many wise and loving people at Emeyetee, who watched over her and counseled
her on her quest. Their names were Dawn, Lisa, Bina, Ann and Terry Orlando, Lori
Lerman, Denise Lanfranchi, Ann McLaughlin, Mary Thompson, and Kevin Ford.'
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Chapter 1

Introduction

This thesis presents techniques and correctness results for the verification of full func-
tional correctness for a collection of imperative linked data structure implementations.
Specifically, we verify these data structure implementations with respect to formal
specifications that completely capture all aspects of the data structure behavior that
are relevant to a client of that data structure (with the exception of properties involv-
ing execution time and/or memory consumption). Our specifications characterize the
behavior of the data structures in terms of their abstract state, resulting in verified
interfaces that can be used to reason about the data structure without revealing the
underlying data representation.

A key technique that makes this verification possible is a novel, integrated proof
language that we have developed in the context of the Jahob program verification
system. This language allows the developer to direct complex verifications at the
program level, unlike other program verification systems, where developer guidance
occurs at the level of failed verification condition formulas. The integrated proof lan-
guage enables Jahob to provide a unified interface to the developer for the specification
and verification process. The proof language is also able to effectively leverage Jahob's
integrated reasoning system. Where most conventional program verification systems
support a single monolithic prover [51, 56, 110, 14], Jahob includes interfaces to a
diverse collection of internal and external automated reasoning systems-automated
theorem provers, decision procedures, and program analyses-which work together to
prove the verification conditions that the system automatically generates. The proof
language is also able to provide additional coordination to the integrated reason-
ing system, enabling multiple provers to work together to solve a single proof task.
Together, these two techniques enable us to use Jahob to verify complex program
correctness properties that the system would not otherwise be able to verify.

1.1 Motivation and Challenges

Data structure implementations lend themselves naturally to full functional verifica-
tion, not only because they are generally small, making the proof task tractable, but
also because their interfaces are well understood and can be concisely defined for-



mally. The pervasiveness of linked data structures (which include lists, trees, graphs,
and hash tables) in modern software systems also speaks to the practical relevance
of such verification. In particular, the prevalence of data structure libraries increases
the advantage of verifying data structure implementations, as the costs of verification
can be amortized over many uses.

At the same time, imperative linked data structures, the focus of this thesis,
present special challenges. Due to the phenomena of aliasing and indirection, many of
the desired correctness properties involve logical constructs such as transitive closure
and quantifiers that are known to be intractable for automated reasoning systems [70,
86]. In the past, researchers have worked around this problem in one of two ways.
The first is to focus on more tractable goals-verify some (but not all) of the desired
correctness properties [91, 83, 160, 64, 95, 144, 38, 89, 166, 7], work with programs
that do not manipulate recursive linked data structures [153], or use finitization to
check correctness properties within a bounded analysis scope [141, 48]. Another
approach is to embrace the necessary developer effort by focusing on interactive tools
that enable the verification of arbitrarily difficult programs and properties. Research
in this area has led to the development of a diverse collection of interactive theorem
provers, including the popular Isabelle/HOL [122] and Coq [24] proof assistants.

1.2 The Jahob Program Verification System

In this thesis, we adopt a hybrid approach that takes advantage of automated reason-
ing techniques but also enables developers to direct the efforts of automated reasoning
systems where necessary to resolve difficult proof tasks. We have developed Jahob,
a program verification system that uses the standard specification and verification
paradigm, but distinguishes itself from other program verification systems in two
main ways. First, instead of using a single monolithic prover, Jahob includes inter-
faces to a diverse collection of automated provers, decision procedures, and program
analyses, which work together to prove the verification conditions that Jahob auto-
matically generates. Second, Jahob incorporates a declarative proof language that
enables the developer to guide the efforts of the automated reasoning systems to
successfully verify properties that the systems are unable to verify without guidance.

1.2.1 Basic Specification Approach

Verification in Jahob starts with the program (or program component, such as a data
structure) and the specifications that capture the properties we would like to prove
about it. Jahob verifies programs written in a subset of Java. Our specifications
use abstract sets and relations to characterize the abstract state of the program.
A verified abstraction function establishes the correspondence between the concrete
values that the implementation manipulates when it executes and the abstract sets
and relations in the specification. Method preconditions and postconditions written in
classical higher-order logic use these abstract sets and relations to express externally
observable properties of the program.



Classical higher-order logic is particularly effective for specifying data structure
implementations because it naturally supports a number of constructs:

" quantifiers for invariants in programs that manipulate an unbounded number
of objects,

" a notation for sets and relations, which we use to concisely specify data structure
interfaces,

* transitive closure, which is essential for specifying important properties of re-
cursive data structures,

e the cardinality operator, which is suitable for specifying numerical properties of
data structures, and

" lambda abstraction, which can represent definitions of per-object specification
fields and is useful for parameterized shorthands.

By expressing specifications in terms of sets and relations, developers can soundly
hide data structure implementation details and provide intuitive method interfaces.
Data structure clients can then use these interfaces to check that the data structure
is used correctly and to reason about the effect of data structure operations.

1.2.2 Basic Verification Approach

Jahob proves the desired correctness properties for a program by first generating ver-
ification condition formulas, then proving these formulas. The verification conditions
are proof obligations that, together, ensure that the program respects method pre-
conditions, postconditions, invariants, and preconditions of operations such as array
accesses and pointer dereferences. Jahob's verification condition generator requires
loop invariants, which are typically supplied by the developer, but may also be au-
tomatically generated using Bohne [160], an algorithm for inferring loop invariants
using symbolic shape analysis implemented in Jahob.

The verification condition formulas generated by Jahob are expressed in an un-
decidable fragment of higher-order logic, and are therefore beyond the reach of any
automated decision procedure. Simple attempts to improve the tractability by limit-
ing the expressive power of the logic fail because some of the correctness properties
involve inherently intractable constructs such as quantifiers, transitive closure, and
lambda abstraction. But although the verification conditions as a whole can be quite
complex, they can also be represented as a conjunction of a large number of smaller
subformulas, many of which are straightforward to prove. The remaining subformu-
las, while containing a diverse group of powerful logical constructs, often have enough
structure to enable the successful application of specialized decision procedures or the-
orem provers. Specifically, some subformulas can be proved with sufficient quantifier
instantiations, congruence closure algorithms, and linear arithmetic solvers; precise
reasoning about reachability is sufficient to discharge others; still others require com-
plex quantifier reasoning but do not require arithmetic reasoning. Armed with this



insight, we developed an integrated reasoning approach that enables the simultaneous
application of a diverse group of interoperating automated reasoning systems to prove
each verification condition.

1.2.3 Integrated Reasoning

Our integrated reasoning approach is based on the following techniques:

" Splitting: Jahob splits verification conditions into equivalent conjunctions of
subformulas and processes each subformula independently. It can therefore use
different provers to establish different parts of proof obligations. Because it
treats each prover as a black box, it is easy to incorporate new provers into the
system. Moreover, each prover can run on a separate processor core, reducing
the running time on modern workstations.

" Formula Approximation: Advances in automated theorem proving, decision
procedures, and program analysis have produced a diversity of automated rea-
soning tools that are extremely effective on specialized problems. Jahob uses a
variety of new and existing internal and external decision procedures, program
analyses, SMT provers, and first-order theorem provers, each with its own re-
strictions on the set of formulas that it will accept as input. Several formula
approximation techniques make it possible to successfully deploy this diverse
set of reasoning systems together within a single unified reasoning framework.
These approximation techniques accept higher-order logic formulas and create
equivalent or semantically stronger formulas accepted by the specialized decision
procedures and provers.

Our approximation techniques rewrite equalities over complex types such as
functions, apply beta reduction, and express set operations using first-order
quantification. They also soundly approximate constructs not directly sup-
ported by a given specialized reasoning system, typically by replacing problem-
atic constructs with logically stronger and simpler approximations.

Decision procedures such as MONA [67] perform reasoning under the assump-
tion that the models of given formulas are trees. The Jahob interfaces to such
decision procedures recognize subformulas that express the relevant structure

(such as treeness or transitive closure). They then expose this structure to the
decision procedure by applying techniques such as field constraint analysis [159]
and encoding transitive closure using second-order quantifiers.

Together, these techniques make it possible to productively apply arbitrary col-
lections of specialized reasoning systems to complex higher-order logic formulas. Our
implemented system contains a simple syntactic prover, a simple cardinality prover,
interfaces to first-order provers (SPASS [156] and E [149]), an interface to SMT provers
(CVC3 [60] and Z3 [116]), an interface to MONA [132], and an interface to the BAPA
decision procedure [85, 87].

In practice, the syntactic prover quickly disposes of many of the conjuncts in each
verification condition. A complex core of subformulas makes it through to the more



powerful automated reasoning systems. Each of these reasoning systems proves the
subset of subformulas for which it is applicable; together, they prove the majority
of the remaining conjuncts. When the automation does not succeed (typically due
to conjuncts that contain large numbers of universally quantified assumptions), we
manually guide the proof process using Jahob's integrated proof language.

1.2.4 Integrated Proof Language

Jahob's integrated proof language enables users to guide the automated reasoning
systems in proving verification conditions that the provers are otherwise unable to
verify. Many program verification systems, including Jahob, include interfaces to ex-
ternal interactive theorem provers, or proof assistants. In theory, developers can use
these interfaces to interactively prove difficult lemmas, making it possible to solve pro-
gram verification problems requiring arbitrarily complex reasoning. In practice, the
complexity of the verification conditions that the system generates and the difficulty
of using the proof assistant-an external system with very different basic concepts, ca-
pabilities, and limitations than that of the program verification system-hampers the
developer's ability to perform these proofs manually. Using a separate development
environment for proofs also divorces the proofs from their original context within the
annotated program. This approach limits developers to the tools supported by the
proof assistant, and denies them access to the substantial automated reasoning power
available via the Jahob prover interfaces.

In contrast, Jahob's integrated proof language enables developers to control proofs
of program correctness properties while remaining completely within a single unified
programming and verification environment. The proof commands are directly in-
cluded in the annotated program, in a natural extension of the standard assertion
mechanism present in many programming languages. Because the proof commands
occur at the level of the program, the formulas involved are much easier to understand
and verify. Common sequences of proof commands can also be parameterized and
reused using standard Java methods.

The proof commands produce verification conditions which are then verified by the
underlying system as part of the standard program verification workflow. Because
the proof language is seamlessly integrated into the verification system, all of the
automated reasoning capabilities of the Jahob system are directly available to the
developer. We have found that this availability enables developers to avoid the use of
external interactive theorem provers altogether. Instead, developers simply use the
Jahob proof language to resolve key choice points in the proof search space. Once
these choice points have been resolved, the automated provers can then perform all of
the remaining steps required to discharge the verification conditions. This approach
effectively leverages the complementary strengths of the developer and the automated
reasoning system by allowing the developer to communicate key proof structuring
insights to the reasoning system. These insights then enable the reasoning system to
successfully traverse the (in practice large and complex) proof search space to obtain
formal proofs of the desired verification conditions. In particular, our proof language
enables the following techniques, which we have found effective in data structure



verification:

" Lemma Identification: The developer can identify key lemmas for the Jahob
reasoning system to prove. These lemmas can then help the reasoning system
find an appropriate proof decomposition. Such a proof decomposition can be
especially important when multiple provers must cooperate to prove a single
correctness property. In this case separating the property into lemmas, each of
which contains facts suitable for a specific prover, then combining the lemmas,
may be the only way to obtain a proof.

* Witness Identification: The developer can identify the witness that enables
the proof of an existentially quantified verification condition. Because there are,
in general, an unbounded number of potential witnesses (very few of which may
lead to a successful proof), the difficulty of finding an appropriate witness is
often a key obstacle that prevents a fully automated system from obtaining a
proof. Our results show that enabling the developer to remove this key obstacle
usually leaves the automated system easily able to successfully navigate the
proof search space to prove the desired correctness property.

" Quantifier Instantiation: The developer can identify how to instantiate spe-
cific universally quantified formulas. The potentially unbounded number of
possible quantifier instantiations can make developer insight particularly useful
in enabling successful proofs.

" Case Split Identification: The developer can identify the specific cases to
analyze for case analysis proofs.

" Induction: The developer can identify an induction variable and induction
property that lead to a successful proof by induction. This technique is partic-
ularly useful since current theorem provers are not able to automatically prove
lemmas requiring induction.

" Assumption Base Control: Modern theorem provers are usually given a set
of facts (we call this set the assumption base), then asked to prove a consequent
fact that follows from this set. An assumption base that contains irrelevant facts
can produce an overly large proof search space that impedes the ability of the
provers to find a proof of the consequent. Our integrated proof language enables
developers to control the assumption base (and thereby productively focus the
proof search space on the property of interest) by identifying a set of relevant
facts for the provers to use when proving a specific verification condition. We
have found this functionality essential in enabling modern provers to successfully
prove the complex verification conditions that arise in proofs of sophisticated
program correctness properties.

Jahob's proof language complements integrated reasoning by leveraging developer
insight to direct the provers in discharging the lemmas necessary to the overall proof
task. Where formula splitting decomposes proof obligations syntactically, the proof



language enables developers to semantically decompose complex proof obligations
that might otherwise be beyond the reach of any single specialized automated rea-
soning system.

1.2.5 Extending the Standard Verification Framework

The implementation of the integrated proof language soundly translates the proof
language commands into the guarded command language (from which the system
generates verification conditions). The proof commands translate, in effect, to combi-
nations of assert and assume commands, which encode the proof strategy specified by
the proof language commands. Unlike other verification systems, whose verification
conditions specify only what formulas need to be proved to demonstrate the correct-
ness of the program, Jahob extends the standard verification approach to specify not
only what formulas need to be proved, but also how to prove them. In effect, Jahob
generalizes the standard verification condition generation approach to produce not
only proof obligations but also proof strategies for the automated provers integrated
into the system.

We prove the soundness of our translation mechanism using the weakest liberal
preconditions algorithm that Jahob uses to generate verification conditions. Chap-
ter 4 (Section 4.2) and Appendix A present the proofs, which proceed by structural
induction on the proof language commands.

1.3 Verified Data Structures

We have implemented our integrated reasoning approach and proof language within
the Jahob program verification system, and used the system to specify and verify
the full functional correctness of a collection of imperative linked data structures
implementations. The verified data structures include both recursive data structures
such as lists and trees, as well as array-based data structures such as binary heaps
and hash tables. All of the verified data structures were designed to capture the core
functionality of the data structure, including standard but hard-to-verify operations
such as add and remove, and data structure specific operations such as removing
the maximal element from a priority queue. The array list, hash table, and priority
queue data structures were modeled after the corresponding implementation and/or
interface in java.util, typically modified to account for features not supported by Jahob,
such as exceptions and dynamic dispatch. For each data structure, we verified method
interfaces that capture all the properties relevant to the data structure client, as well
as invariants and an abstraction function that together ensure the correctness of the
implementation. The verified data structures are as follows:

* Array List: A list stored in an array implementing a map from integers to
objects, optimized for storing maps from a dense subset of the integers starting
at 0 (modeled after java.util.ArrayList). Method contracts in the list describe
operations using an abstract relation {(0, vo),..., (k, Vk)}, where k + 1 is the
number of stored elements.



* Association List: A singly-linked list data structure that implements a map
interface. Properties verified include the injectivity of both the list contents

(each key maps to no more than one value in the map) and the nodes that form
the underlying structure of the list (a node may be the first node in a list or
else be pointed to by the next field of at most one other node).

" Binary Search Tree: A binary search tree implementing a set, with tree
operations verified to preserve tree shape, ordering, and changes to tree contents.

" Circular List: A circular doubly-linked list implementing a set interface.

" Cursor List: A list with a cursor that can be used to iterate over the ele-
ments in the list and, optionally, remove elements during the iteration. Method
contracts include changes to the list contents and to the position of the itera-
tor. Verified properties include that each complete pass over the list visits each
element exactly once.

" Hash Table: A hash table that implements a map interface modeled after
java.util.Hashtable. The implementation uses separate chaining to resolve con-
flicts. Verified properties include that each key in the hash table is stored in
the correct bucket.

" Priority Queue: A priority queue data structure, implemented using a binary
heap stored in an array. Its interface is modeled after java.util.PriorityQueue.
Verified properties include the binary heap property (an element stored at a
given node has a priority greater than or equal to the elements stored at the
children of that node) and the resulting heap-global property (the root node
contains an element with the maximal priority).

" Singly-Linked List: A null-terminated singly-linked list implementing a set
interface.

1.3.1 Experience

Our experience shows that while simple data structures, such as the singly-linked list
and association list, verify automatically, more complex data structures, such as the
priority queue and hash table, require substantial developer guidance in the form of
proof commands to fully verify. We also found that destructive updates in the form of
methods that directly modify the contents of the data structure are the most difficult
to verify, making up almost the entire verification effort. While it is not surprising
that observer methods (methods that do not modify state) were among the easiest
to verify, we found that methods that indirectly modify the contents of the data
structure (i.e. by calling other methods) also required little or no verification effort.
This result implies that data structure clients that do not directly manipulate the
pointer structure of the program may be good targets for automatic verification.



1.3.2 Empirical Results

The results from our successful verification of these data structures also support
the use of our hybrid approach. We used seven different provers to verify the data
structure implementations, including the first-order prover SPASS, SMT provers Z3
and CVC3, and the decision procedure MONA. All of the data structures required
the use of multiple provers to verify, supporting the use of a diversity of automated
reasoning techniques. Even for the most difficult data structures, the large majority
of the lemmas that needed to be proved were discharged automatically. However, a
small fraction remained that required nontrivial developer guidance in the form of
proof commands. In these cases, Jahob's proof language was effective in providing
the necessary guidance to verify properties that were otherwise beyond the reach
of the automated techniques. We were able to fully verify all the data structure
implementations by incorporating proof commands in Jahob's proof language, without
relying on proofs written using external proof assistants.

Our results also show that, although the large majority of the data structures re-
quire some developer guidance in the form of proof commands, two of the data struc-
tures, including an association list implementing a map interface, verified without any
guidance, highlighting both the effectiveness of the integrated reasoning approach in
automatically verifying complex correctness properties, as well as the utility of our
proof language for guiding the verification of the majority of our data structures. The
resulting verified interfaces capture all the relevant properties of the data structures
from the client perspective, enabling client programs to reason about the behavior of
the data structure without probing into the internal details of the implementation.

1.4 Contributions

This thesis makes the following contributions:

e Verified Data Structures: It presents a verified collection of imperative
linked data structure implementations. To the best of our knowledge, this
is the first verification of full functional correctness for a collection of standard
imperative linked data structures including lists, trees, and hash tables.

o Integrated Proof Language: It presents a declarative proof language for the
Jahob program verification system, a translation of the proof language com-
mands into a simple guarded command language, and proofs that demonstrate
the soundness of our translation. Note that this approach generalizes the stan-
dard specification and verification approach by providing a mechanism by which
developers can guide, directly within the annotated program, the proof of diffi-
cult properties.

o Observations and Empirical Results: It presents our experience using
the Jahob program verification system in the above verification, and empiri-
cal results characterizing the verification process. Our results show that our



integrated reasoning approach and integrated proof language were effective in
verifying our data structure implementations-the large majority of our data
structures required multiple provers to verify, indicating that a diverse collection
of specialized reasoning systems may be more effective than any single prover,
while our integrated proof language enabled us to verify complex properties of
data structures that the system could not verify without guidance. Our results
also show that programs that indirectly manipulate data structures, through
called methods, are substantially easier to verify than data structure implemen-
tations, suggesting that data structure clients may be promising candidates for
automatic verification.

1.5 Summary

In this thesis, we describe the Jahob program verification system and our experience
using this system to verify a collection of imperative linked data structure implemen-
tations. In contrast to fully-automated techniques that verify only partial correctness
properties, our goal is full functional verification. Jahob implements a hybrid ap-
proach that specifically targets this goal, using integrated reasoning to incorporate a
diversity of automated reasoning systems and an integrated proof language to enable
developers to direct the efforts of the combined reasoning system in difficult proof
tasks. Our results show that these two techniques are complementary. By enabling
the combined application of a diverse collection of specialized automated provers,
decision procedures, and program analyses on the generated proof obligations, the in-
tegrated reasoning system is able to prove the large majority of the generated lemmas
automatically. We were then able to use our integrated proof language to guide the
system in proving the remaining lemmas. The integrated nature of the proof language
made it possible to provide only the necessary guidance to the system, which then
leveraged the strength of the automated reasoning systems in performing the result-
ing proof tasks. The result is a verified collection of imperative linked data structure
implementations that capture the behavior of the data structures without revealing
the underlying data representation.

The following chapters illustrate the use of the Jahob program verification system
using examples taken from verified data structures (Chapter 2), and describe the
Jahob verification system (Chapter 3) and integrated proof language (Chapter 4).
They also describe in detail the verification of three of the above data structure
implementations: the priority queue (Chapter 5), the association list (Chapter 6),
and the hash table (Chapter 7). Chapter 8 shows the experimental results from the
verification. Chapter 9 surveys the related work. Chapter 10 concludes, and draws
from our experience to identify promising directions for future work. Appendix A
contains the correctness proofs for the proof language command implementation,
which is a translation from extended guarded command language to simple guarded
command language.



Chapter 2

Examples

This chapter illustrates the use of Jahob specification constructs and proof language
commands using excerpts from verified data structures. We use an association list
data structure to illustrate the use of the specification constructs, and a hash table
data structure to illustrate the use of the proof language commands.

Jahob operates on programs written in a subset of Java and annotated with spec-
ifications, loop invariants, and proof language commands. These annotations are
written as special Java comments of the form /*: ... */ and //: ..., enabling the use
of standard Java tools and compilers on annotated programs. The annotations de-
scribe the abstract and concrete state of the program using formulas in higher-order
logic. From the annotated program, Jahob generates verification condition formulas.
These formulas are then proved by the automated reasoning systems integrated into
Jahob, enabling the successful verification of our data structure implementations.

2.1 Jahob Specifications

Figure 2-1 presents an excerpt from an association list data structure implementation
annotated with Jahob specifications. The association list is a singly-linked list that
implements a map interface. Chapter 6 describes this data structure in more detail,
but here we use it to illustrate some common Jahob specification constructs.

Jahob specifications capture the desired behavior of the program using a fairly
standard specification approach. The main specification constructs are specification
variables, class invariants, and method contracts. Specification variables are variables
that Jahob uses in the specification and verification, but which do not exist in the pro-
gram at run-time. They capture the abstract state of the program. Class invariants
specify additional constraints on the abstract and concrete state that the program
should preserve. Method contracts describe the behavior of the methods in terms of
the abstract state. 1

Most data structures have simple interfaces, but complex implementations. Jahob
allows developers to use the abstract state to specify the behavior of the program

'In some cases, method contracts may also refer to the concrete state of the program. For details,
see Chapter 3, Section 3.1.3.



public /*: claimedby AssociationList */ class Node {
public Object key;
public Object value;
public Node next;
7/: public ghost specvar con "(obj * obj) set" "0"

}

public class AssociationList {
private Node first;
7*:

public specvar contents :: "(obj * obj) set";
vardefs "contents - first .. con"

invariant ConDef: "Vx. x E Node A x E alloc A x f null -+

x..con = {(x..key, x..value)} U x.. next..con A
(Vv. (x . . key , v) ( x . . next . . con )" ;

invariant ConNull: "null .. con = 0";

invariant Map/nv:
"Vk vO v1. (k, vO) c contents A (k, v1) c contents - v v";

*/

}

Figure 2-1: AssociationList Example

in terms of its interface without revealing the (potentially complex) underlying data
representation. Given method contracts that describe the program behavior using
the abstract state, data structure clients can depend on these contracts without being
affected by implementation changes that preserve the original contract.

2.1.1 Concrete State

Figure 2-2 illustrates the concrete and abstract state of the association list data
structure presented in Figure 2-1. The concrete state consists of the Java fields of
the Node and AssociationList classes. Each Node object contains key, value, and next
fields. The key and value fields hold the key-value pair stored at the given Node
object, while the next field refers to the next node in the linked list. The concrete
state of an AssociationList object consists of the first field, which stores the first Node
object in the linked list. The claimedby annotation in the declaration of the Node
class (in Figure 2-1) indicates that its fields may only be modified by methods in the
AssociationList class.

2.1.2 Abstract State

The abstract state of the association list consists of the specification variables of the
Node and AssociationList classes. The abstract state of each Node object consists of



Concrete State Abstract State

AssociationList
first: AssociationList

key:
value: < v-<-v

next:
Node

Figure 2-2: Concrete and Abstract State of AssociationList

the specification variable con. It represents the mappings stored in the linked list
starting at the given node as a set of key-value pairs.

The abstract state of each AssociationList object consists of the specification vari-
able contents. It represents the mappings stored in the association list as a set of
key-value pairs. The value of this variable is defined in terms of concrete Java vari-
ables and/or other specification variables.

2.1.3 Abstraction Function

While the program code determines the actual behavior of the program by operating
on its concrete state, the specification describes the desired behavior using the ab-
stract state. To verify that the program conforms to its specification, Jahob therefore
needs to know the relationship between the program's concrete and abstract state.
This relationship is given by the abstraction function.

In the Association List class, the vardefs declaration for the specification variable
contents gives the definition for contents. It defines contents as the value of con for
the first node in the linked list. The ".." notation used in Jahob formulas for field
dereference is equivalent to the Java "." notation.

The ConDef and ConNull invariants give the relationship between the specification
variable con and the concrete state of the program. The ConDef invariant defines
the value of con for a given node as the union of the singleton set containing the
key-value pair at the given node, and the value of con for the next node in the list.
It additionally requires that the key at the given node not be mapped to a value
in the rest of the list. The ConNull invariant specifies that the value of con for null
is the empty set. Together, the ConDef and ConNull invariants illustrate the use of
invariants for expressing reachability using recursion. The ConNull invariant gives the
base case. The ConDef invariant gives the recursive case.

The association list data structure contains other invariants that specify con-
straints on the abstract and concrete state. For example, the Mapinv invariant re-
quires that each key in the association list map to a unique value. Invariants express
important constraints that the data structure must preserve for its correct operation.
Some invariants express the lack of sharing between the concrete state of different



public Object put(Object kO, Object v)
7*: requires "1k0 f null A vO # null"

modifies contents
ensures "contents = old contents - {(k0, result)} U {(kO, v0)} A

(result = null -+,(]v. (kO, v) E old contents)) A
(result # null -4 (ko, result) c old contents)" */

Figure 2-3: Method Contract for Association List.put()

instances of the same data structure. If these invariants were violated, then changes
to one instance may inadvertently result in changes to another. By explicitly stating
these constraints in the form of invariants, Jahob can ensure that the data structure
operations preserve them. Without them, it may not be possible to verify that the
data structure operates as specified, since the program code may implicitly depend
on the validity of these constraints.

2.1.4 Method Contracts

Figure 2-3 presents the method contract for the putO method of the association list.
In Jahob, a method contract consists of an ensures clause, and, optionally, a modifies
clause, and/or a requires clause, depending on the method. The method contract
for putO contains all three. The requires clause gives the method precondition. It
states that the putO method must be invoked on a key-value pair that is non-null.
The modifies clause gives the frame condition. It states that puto may modify the
contents specification variable of the given association list (this..contents),2 but does
not modify any other public state. The ensures clause gives the method postcondition.
It states that the effect of invoking putO is to add the given key-value pair to the
contents of the association list. It additionally states that put() returns the previous
binding of the given key, if any, and otherwise returns null.

2.1.5 Loop Invariants

In general, loop invariants are required to generate verification conditions for programs
that contain loops. If the properties being verified are sufficiently simple, then it
may be possible to automatically infer such invariants using program analyses or
heuristics. But because Jahob is concerned with full functional correctness properties,
which are, in general, undecidable, the loop invariants for our programs are typically
provided by the developer in the form of annotations. In most cases, the system
automatically identifies the variables whose values do not change across the body
of the loop, so the annotated loop invariant need only capture the loop invariant
properties for the variables whose values do change. Jahob also includes a shape

2 Since puto is an instance method, Jahob automatically resolves the implicit reference to the
receiver in the modifies clause.



private boolean _containsKey (Object kO)
/*: requires " theinvs"

ensures "result = (3v.((kO, v) E contents)) A theinvs" */
{

Node current first;
while /*: inv "(3v.(kO, v) E contents)

(3v.(kO, v) c current..con)" */
(current null) {

if (current.key kO)
return true;

current current .next;

}
return false;

}

Figure 2-4: Loop Invariant in AssociationList._containsKey()

analysis engine Bohne [160] which can infer loop invariants, though we did not use
Bohne for the verifications described in this thesis.

Figure 2-4 presents the _containsKey() method of the association list data struc-
ture. It is a private method that returns a boolean indicating whether a given key
is mapped to a value in the association list. The loop invariant for _containsKey(,
which is designated by the inv keyword, gives the following loop invariant property.
It states that the key kO is in the association list if and only if it is in the portion of
the list reachable from the currently examined node (current).

2.2 Verification

Figure 2-5 describes Jahob's verification process. From the annotated program, Ja-
hob produces verification conditions using a weakest liberal preconditions semantics.
These verification conditions are higher-order logic formulas. If the formulas are
proved correct, then the analyzed program is guaranteed to be correct with respect
to the specification.

Jahob proves the correctness of these formulas using a diverse collection of internal
and external automated reasoning systems-automated theorem provers, decision
procedures, and program analyses. Jahob first translates each verification condition
into an equivalent conjunct of smaller formulas. It then splits the conjunct into
its component formulas, enabling the fine-grained application of different provers
on a single verification condition. Jahob translates the resulting formulas into the
logic subset appropriate for the given prover, using a sound formula approximation
technique described in Chapter 3 (Section 3.3.3). The user selects the desired provers
as a sequence on the command line. Jahob invokes the given sequence as a cascade
on each formula. If the first prover fails to prove the given formula within a specified
time-out, Jahob invokes the next prover in the sequence, and so on, until a prover is
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Figure 2-5: Jahob Verification Process

able to prove the given formula, or until the sequence of specified provers is exhausted.
By default, Jahob processes the given formulas in sequence, but as each formula is
completely independent, Jahob also includes an option for processing them in parallel.
The verification succeeds if all the formulas are proved.

We verified the association list data structure using Jahob's internal syntactic
prover, the SMT prover Z3 [116, 117], and the first-order prover SPASS [156]. Us-
ing these three provers, Jahob is able to completely verify the association list data
structure with respect to its specification.

2.3 Integrated Proof Language

If the verification does not succeed, the developer can prove the failed formulas man-
ually using interactive theorem provers. This is the standard approach used in most
program verification systems. While Jahob includes interfaces to the proof assistants
Isabelle [122] and Coq [24] for this purpose, this approach is challenging in practice.
Interactive theorem provers require a great deal of expertise to use effectively. Be-
cause the formulas in question are mechanically generated, they tend to be large and
heavily encoded, making them difficult to prove manually. Also, extracting these for-
mulas from Jahob and proving them using an external proof assistant means that the
developer cannot take advantage of the many diverse provers integrated into Jahob
to assist with the proof.

Jahob's integrated proof language addresses these problems by allowing proof lan-
guage commands to be embedded directly in the program. Developers can therefore
prove failed formulas without leaving the familiar context of the program and program

.........................................
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public /*: claimedby Hashtable */ class Node {
public Object key;
public Object value;
public Node next;

/*: public ghost specvar con " (obj * obj) set" "0"

}
public class Hashtable {

private Node[] table

public ghost specvar
public ghost specvar

contents :: " (obj * obj)
init ::" bool" = " False";

static specvar h :: " (obj > int #4 int)";
vardefs "h = (Aol. (All. ((abs (hashFunc ol
static specvar abs :: "(int 4. int)"
vardefs "abs = (Ail. (if (il < 0) then (-il

)) mod il)))";

) else il))";

invariant ContentsDeflnv: " in it -4
contents = {(k,v). (kv) e table .[(h k (table.. length))].. con}"
invariant Coherence: "init -> (Vi k v. 0 < i A i < table.. length -+

(k,v) E table .[i .. con -> h k (table.. length) = i)";

Figure 2-6: Hashtable Example

verification system. Like Jahob specification constructs, the proof commands are an-
notations within the program that use Jahob's formula language. Proof commands
can refer to the current program state using the same concrete and specification vari-
ables used by the Java program and specification constructs, avoiding the problem of
manipulating heavily encoded formulas in external proof assistants. The commands
direct Jahob's combined automated reasoning system. This allows developers to pro-
vide only the minimum amount of guidance that the provers need to successfully
complete the proof, avoiding the many manual proof steps that may be necessary
when proving the same formula using a proof assistant.

2.3.1 Hash Table Example

Figure 2-6 presents an excerpt from a hash table data structure that we will use to
illustrate some of our proof language commands. Chapter 7 presents the hash table
in more detail. The hash table data structure is implemented as an array of buckets,
where each bucket consists of a singly-linked list of Node objects. The abstract state of
the hash table is very similar to that of the association list. The contents specification
variable in the Hashtable class characterizes the mappings in the hash table as a set
of key-value pairs. The con specification variable of the Node class characterizes the

set" = "0" ;
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Figure 2-7: Effect of Useful Intermediate Lemma on Proof Search Space

mappings reachable from a given node as a set of key-value pairs. The abstract state
of the hash table also includes a specification variable init, which is a boolean variable
that is true if the hash table is initialized, and false otherwise.

The ContentsDefinv invariant gives the definition for contents. It states that, for
initialized hash tables, the contents of the hash table consist of the key-value pairs
stored in the buckets, considering only those key-value pairs that are mapped to the
correct buckets. The Coherence invariant additionally requires that all key-value pairs
in the hash table be mapped to the correct buckets. The static specification variable
h is a shorthand for the hash function, which is given by the corresponding vardefs
definition. The static specification variable abs is a shorthand for the absolute value
function. The hash table data structure also contains additional invariants, which we
omit here for clarity.

2.3.2 Identifying Intermediate Lemmas

The most common use of Jahob's proof language is for directing the combined auto-
mated reasoning system in proving an intermediate lemma. In general, this would be
an intermediate lemma that is necessary to the successful proof of a desired formula.
The proof command that makes this possible is the note command.

There are two scenarios in which it is helpful to identify a useful intermediate
lemma for the system. First, if the proof of a formula is sufficiently complex, the
provers may not be able to find a proof in a reasonable amount of time. Figure 2-7
illustrates this scenario. Without a useful intermediate lemma, the prover needs to
traverse a large proof search space to find the proof. The size of the search space
may cause the prover to spend so much time exploring unproductive paths that the
proof fails. Identifying a useful intermediate lemma divides the original complex proof

........... .......................................... .



1 public Object get(Object kO)
2 7*: requires " init A kO # null"
3 ensures '(result 74 null -+ (kO, result) c contents) A
4 (result = null - ,(2 v. (kO, v) C contents))" *7
5{
6 77: instantiate " theinv ContentsDeflnv" with " this"
7 7*: mp ThisContentsDef:
8 "this c alloc A this c Hashtable A init - contents
9 {(k, v). (k, v) c table .[(h k (table.. length ))]..con}" */

10
11 int hc = compute-hash(kO);
12 Node curr = table [hc];
13
14 /7: note HCDef: "hc = h kO (table.. length)";
15 /*: note InCurr: "Vv.(((k0, v) E contents) = ((kO, v) E curr con))"
16 from ThisContentsDef, HCDef; */
17
18 while /*: inv "Vv.((kO, v) E contents) ((ko, v) E curr .. con)" */
19 (curr != null) {
20
21 if (curr.key = kO)
22 return curr.value;
23
24 curr = curr.next;
25 }
26 return null
27 }

Figure 2-8: Proof Commands in Hashtable.get()

task into two simpler tasks. The first is that of finding a proof for the intermediate
lemma. The second is that of finding a proof for the original goal from the useful
intermediate lemma and other available facts. This division effectively reduces the
proof search space. As Figure 2-7 illustrates, this reduction can often enable a prover
to successfully prove a formula that it is unable to prove without the relevant lemma.

The second situation in which it is helpful to identify an intermediate lemma is
when the proof of a formula requires the expertise of more than one specialized prover.
In this case, a note command can identify a useful intermediate lemma that can be
proved by a single prover. Once that lemma is proved, it can then be used by a
different prover to prove the original formula. Where Jahob's splitting process is able
to divide large formulas into smaller ones syntactically for the fine-grained application
of different specialized provers, the note command is able to divide complex formulas
semantically.

Figure 2-8 presents the get() method of the hash table data structure. The geto
method takes a key kO, and returns the value corresponding to kO in the hash table. If
the hash table does not contain a mapping for kO, geto returns null. The geto method
does this by first computing the index for the bucket to which kO is hashed. It then
searches through the linked list at that bucket until it either finds kO, or reaches the
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Figure 2-9: Effect of Controlling Assumption Base on Proof Search Space

end of the list. The while loop that searches through the bucket is annotated with a
loop invariant. It states that the key kO has a mapping in the hash table if and only
if it has a mapping in the list reachable from the currently searched node curr.

Jahob verifies loops by checking that the loop invariant holds for both the base and
inductive cases. In the get( method, the base case-proving that the loop invariant
holds on the initial entry into the loop-does not verify automatically. The proof
commands in the method therefore guide the combined reasoning system to prove
this case. We use several proof commands to do this, including two note commands.

The note command in line 14 identifies an intermediate lemma that is useful for
the proof of the base case for the loop invariant. This lemma states that the local
variable hc corresponds to correct index for the bucket to which kO is hashed. The
effect of the note command is to direct Jahob to prove the intermediate lemma, and to
name it HCDef. Once proved, the lemma is available for use in proofs of subsequent
formulas. In this case, it is used in the following note command to prove the desired
loop invariant.

2.3.3 Controlling the Assumption Base

When Jahob presents a formula to an automated reasoning system to prove, it does so
in the form of a sequent. Given a sequent F 1, .. ., F, F- G, the formulas F 1, ... , F,, are
the facts that are available to the prover when proving G. We refer to this set of facts
as the assumption base. The default assumption base for a formula contains all the
known facts about the program at a given program point. This is because the system
has no way of knowing which facts are relevant to the proof of that particular formula.
But when the assumption base is large, the prover has to deal with a correspondingly
large proof search space, which can make it difficult for the prover to find a proof.
In some cases, the presence of unnecessary facts in the assumption base can cause a
prover to fail to prove a formula that it is otherwise able to prove, when presented
with only the relevant facts. Figure 2-9 illustrates this scenario.
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Figure 2-10: Effect of Resolving Key Choice Points on Proof Search Space

Jahob's proof language addresses this problem by giving developers control over
the assumption base using a from clause. The from clause is an optional component
of a proof command that allows the developer to specify, by name, the set of facts
to use in proving a formula. These facts can be named lemmas that previous proof
commands have proved, or known facts about the current program state-such as
class invariants, or method preconditions-to which Jahob assigns default names. By
reducing the size of the assumption base that Jahob passes to the provers, the from
clause effectively reduces the size of the proof search space. As Figure 2-9 illustrates,
this reduction is often sufficient to enable a prover to prove a formula that it is unable
to prove using the original, larger assumption base.

In Figure 2-8, the note command in line 15 contains a from clause that directs the
system to prove the loop invariant using the named facts ThisContentsDef and HCDef.
ThisContentsDef is a named lemma that the proof command at line 7 proves, while
HCDef is the named lemma that the previously discussed note command proves.

2.3.4 Resolving Key Choice Points

In some cases, the proof search space for a given formula can be large even when the
assumption base is not. This occurs when there are key choice points in the proof
search space. Key choice points occur when the prover has to make a decision between
a potentially unbounded number of alternatives. Figure 2-10, which illustrates this
scenario, shows how some parts of the proof search space have few branching paths,
and are therefore easy for a prover to traverse, while others contain many branching
paths due to key choice points. The inability of a prover to make a correct decision
at a key choice point and the time needed to explore the many incorrect alternatives
can cause the prover to fail to find a proof.

Key choice points occur for several reasons. First, they can occur when there
are universally quantified formulas in the assumption base (i.e. formulas of the form
Vs.F). In this case, the prover has an unbounded number of terms with which it can
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instantiate the universally quantified assumption. This can cause a blow up in the
proof search space, which can then result in a failed proof. Another situation in which
key choice points can occur is when the prover is attempting to prove an existentially
quantified goal (i.e. a formula of the form -2.G). In this case, the prover may have
difficulty finding the correct witness for the existentially quantified formula among
the (potentially) many incorrect ones.

Key choice points can also occur when the proof of a formula requires a case split.
In this situation, the proof of a formula proceeds differently depending on certain
conditions. For example, a mathematical proof may require a case split on whether
a variable is even or odd, with different proofs for the two cases. Since there are
many possible conditions on which a case split can occur, the prover may be unable
to identify the correct case split, or to even recognize that a case split is necessary.

Jahob's proof language addresses these problems by supporting proof commands
that allow developers to resolve key choice points for the combined reasoning system.
The instantiate command allows the developer to identify the correct term with which
to instantiate a universally quantified assumption. The witness command allows the
developer to identify the correct witness for an existentially quantified goal. The
cases command allows the developer to specify the correct case split for a proof. By
resolving key choice points, these commands effectively reduce the size of the proof
search space. As Figure 2-10 illustrates, this reduction is often sufficient to enable a
prover to find a proof for a formula that it was previously unable to prove.

In Figure 2-8, the instantiate command in line 6 directs Jahob to instantiate the
ContentsDeflnv invariant with the receiver object. The effect of the command is
to direct Jahob to first ensure that ContentsDeflnv holds, then add the instantiated
formula to the assumption base, making it available in the verification of subsequent
formulas. By doing so, it provides the provers with a fact needed for subsequent
proofs, while avoiding the need for the provers to search through an unbounded
number of potential terms.

2.3.5 Decomposing Complex Goals

To appropriately identify useful intermediate lemmas and resolve key choice points,
it is sometimes necessary to decompose complex proof goals. For example, if the
goal is a universally quantified formula Vs.G, it can be difficult to state the relevant
intermediate lemmas or resolve key choice points without referring to the universally
quantified variables X'. If the goal is an implication F -- G, it may be desirable to
temporarily assume that F holds, prove intermediate lemmas that are consequences
of F, then prove G from those lemmas. In both cases, the provers need access to
components of the goal, making it desirable to have proof language commands that
allow the proof goal to be decomposed appropriately.

The pickAny and assuming commands are the proof language commands that en-
able this decomposition. The pickAny command creates a hypothetical block in which
the universally quantified variables are free, making it possible to write proof com-
mands within the block that refer to the universally quantified variables. The assum-
ing command creates a hypothetical block in which the antecedent of the implication



/*: pickAny ht::obj suchThat
ContentsDefHyp: "ht c alloc A ht E Hashtable A ht.. init";

/*: note ContentsThis: "ht = this -+ ht.. contents =
{(k,v). (k,v) c ht..table.[(h k (ht.. table.. length ))]..con}"
from OldContents, Element/nj/nv, Acyclic , ThisProps , KFound,
VFound, ConDef, FProps, FNonNull, Hash/nv, HCProps; */

7*: note ContentsDefPostCond: "ht.. contents = {(k, v).
(k, v) c ht.. table .[(h k (ht.. table.. length ))].. con}"
from ContentCases forSuch ht; */

}

Figure 2-11: Proof Commands from Hashtable.removeFirst()

holds. This makes it possible to derive intermediate lemmas from the antecedent,
then use those lemmas to prove the consequent of a goal that is an implication. The
pickAny command also supports a shorthand for decomposing a universally quanti-
fied implication, for use in place of a pickAny block composed with an assuming block.
In general, commands that decompose complex proof goals are some of the most
straightforward commands to use, since they follow directly from the structure of the
failed formula.

Figure 2-11 presents an excerpt from a pickAny block in the Hashtable.removeFirst(
method, which is described in more detail in Chapter 7 (see Section 7.6.7). The
proof commands in this block direct Jahob in proving the ContentsDeflnv for the
postcondition of the removeFirstO method, a private method in the hash table data
structure used to remove the first node in a bucket. The pickAny command creates a
hypothetical block in which the universally quantified variable in the ContentsDeflnv
invariant corresponds to the free variable ht. Within this block, the note commands
can therefore refer to ht and state intermediate lemmas in which ht is free. The net
effect of the commands in Figure 2-11 is to prove that the ContentsDeflnv holds, in
the form of the following formula:

Vht.ht c alloc A ht E Hashtable A ht..init ->

ht..contents = {(k, v).(k, v) E ht..table.[(h k (ht..table..length))]..con}

The pickAny command additionally adds the proved invariant into the assumption
base, and gives it the name ContentsDefPostCond, making it available for the verifi-
cation of subsequent formulas.

2.3.6 Other Proof Commands

Jahob also supports other proof commands that are described in more detail in Chap-
ter 4. These include the proof commands we've described here, as well as commands
that encode first-order logic rules of deduction, induction, and commands for control-
ling the assumption base. Together, these proof commands make it possible for us to



formulas

verification condition generation proof commands

hob proved
formulas

proof commands verification condition generation

Figure 2-12: Jahob Proof Commands versus Standard Program Verification Approach

verify the full functional correctness of our data structures without the use of external
proof assistants, even for complex data structures like hash tables, priority queues,
and binary search trees. Using Jahob's integrated proof language, the internal syn-
tactic prover, Z3, SPASS, and Jahob's automated tactic interface to Isabelle [122], we
are able to prove the correctness of the above hash table data structure with respect
to its specification.

2.3.7 Why the Proof Language Works

The key insight that makes Jahob's integrated proof language possible is the observa-
tion that proof commands can, in effect, be pushed backwards through the weakest
liberal precondition mechanism that Jahob uses to produce verification conditions.
Standard program verification systems generate formulas that only tell the provers
what must be proved to verify the correctness of the program. If a formula fails to
prove, the developer must prove it manually at the level of the failed verification con-
dition formula, as illustrated in Figure 2-12. Through the proof language, Jahob not
only tells the provers what to prove, but also how to prove it. In this way, developers
are able to control the proof of complex formulas at the program level, instead of
manually proving failed formulas post verification condition generation. Figure 2-12
illustrates this difference.

.. .. .... .. .............................................. ....



2.3.8 Practical Advantages of the Proof Language

When proving failed formulas post verification condition generation, the formulas
involved are the result of transforming the program and specifications through the
internal processes of the program verification system. These formulas tend to be
large, heavily encoded, and hence, difficult to understand and prove. In Jahob, the
proof commands are embedded directly in the program. The formulas involved are at
the program level, and have not been subject to the internal processes of the program
verification system. As a result, they are much easier to understand and verify. Not
only that, but the effect of the proof commands is to generate verification condition
formulas that can be automatically proved using the automated provers integrated
into the system. This reduces the need for specifying detailed proof steps, since the
provers automate a large part of the proofs.

2.4 Summary

This chapter uses excerpts from verified data structures to illustrate the Jahob spec-
ification constructs and integrated proof language. The excerpts are taken from the
verified association list and hash table data structures, which are described in more
detail in Chapters 6 and 7, respectively.

We use the association list data structure to illustrate the use of Jahob specifi-
cation constructs. Jahob specifications, which take the form of annotations within
the code, describe the desired behavior of the program using specification variables,
class invariants, and method contracts. Specification variables characterize the data
structure's abstract state, providing a mechanism for describing the behavior of the
data structure without revealing the underlying representation. Class invariants and
vardefs declarations give the abstraction function relating the abstract and concrete
state. Class invariants may also state additional constraints on valid program states
that ensure the correct operation of the data structure. Method contracts describe
the desired behavior of methods. From the annotated program, Jahob generates veri-
fication condition formulas, and proves them using a diverse collection of internal and
external automated reasoning systems. If all the formulas prove, then the program
is guaranteed to be correct with respect to its specification. Jahob is able to verify
the correctness of the association list data structure using Jahob's internal syntactic
prover, the SMT prover Z3, and the first-order prover SPASS.

If the formulas fail to prove, Jahob's integrated proof language allows the devel-
oper to guide the provers to successfully verify the correctness of the program. We
illustrate the use of the integrated proof language using the hash table data structure.
The proof language includes commands such as note for identifying useful interme-
diate goals to the combined reasoning system, optional constructs such as the from
clause for controlling the assumption base used to prove a formula, commands such
as instantiate for resolving key choice points in the prover's proof search space, and
commands such as pickAny for decomposing complex goals. The proof commands di-
rect the efforts of the automated reasoning systems in verifying properties that would



otherwise be beyond their capabilities to prove. The key insight that makes this
possible is the observation that proof commands can, in effect, be pushed backwards
through the weakest liberal precondition mechanism that Jahob uses to produce verifi-
cation conditions. In standard program verification practice, developers must proved
failed verification condition formulas manually using external proof assistants. But
because these formulas are the result of applying many transformations to the orig-
inal annotated program, they are often large, heavily encoded, and, hence, difficult
to understand and prove. By allowing developers to embed proof commands directly
in the program, the integrated proof language makes it possible to work with for-
mulas at the level of the program, which are much easier to understand and prove.
The net effect of the proof commands is to produce verification condition formulas
that can be proved automatically using the integrated provers, further simplifying the
proof task. Using Jahob's integrated proof language, the internal syntactic prover,
Z3, SPASS, and Jahob's automated tactic interface to Isabelle, we are able to prove
the correctness of the hash table data structure with respect to its specification.



Chapter 3

The Jahob System

Jahob is based on the standard specification and verification approach [581, in which
verification condition formulas are generated from programs annotated with specifica-
tions. The verification conditions are then proved, either manually or using automated
techniques, to ensure the correctness of the program. This approach is also the ba-
sis of many other program verification systems including ESC/Modula-3 [51], ESC/-
Java [56], ESC/Java2 [39, 77], Spec# [11, 12], KeY [16], and Krakatoa/Why [55, 106].

Jahob differs from these systems in its use of integrated reasoning and an integrated
proof language. Integrated reasoning enables the application of a diverse collection
of automated reasoning systems on the generated verification conditions, while the
integrated proof language extends the standard specification and verification approach
to enable developers to specify proof strategies to the program verification system. In
this chapter, we describe the Jahob system, including the subset of Java that Jahob
supports, our specification language, verification condition generation, the techniques
we use to implement integrated reasoning, as well as the automated provers, analyses,
and decision procedures to which Jahob interfaces. We discuss Jahob's integrated
proof language in Chapter 4.

3.1 Jahob Programs

Figures 3-1, 3-2, and 3-3 describe the format for Jahob programs. Jahob verifies Java
programs annotated with specifications and proof commands written as special Java
comments of the form /*: ... */ and //: ..., enabling the use of standard Java com-
pilers and virtual machines on annotated programs. The subset of Java supported
includes classes, methods, objects, fields, arrays, loops, conditional statements, and
integer and boolean operations. Jahob interprets these constructs according to stan-
dard Java semantics [61]. Our implementation also supports common Java features
such as the implicit use of the receiver parameter this, automatic disambiguation of
field references and operator precedence according to standard scoping rules, multiple
levels of array and field dereferences, and program comments, as well as a number of
useful shorthands specific to Jahob specifications. For clarity, we have omitted these
features from Figures 3-1, 3-2, and 3-3, and focused on a core set of valid Jahob pro-



grams. The current implementation of Jahob does not support dynamic class loading,
exceptions, 1 or inheritance, though techniques exist that should make it possible to
extend Jahob with support for such constructs [68, 11, 77].

Specifications for Jahob programs are written in terms of specification variable
declarations, method contracts, class invariants, loop invariants, and annotations
within method bodies. Many of these specification constructs contain higher-order
logic formulas that capture properties of the program state. In this section, we
describe Jahob formulas as well as the details of each of the supported specification
constructs.

int
bool

class-decl
access
claim
decis
decl

field-decl

static
java-type

const
class-spec

_class-spec_

ghost
type

Integer
Boolean

access claim class class-name {decls}
public I private Ie

/*: claimedby class-name *7
decl decls | c
field-decl | class-spec | method-decl

access static javaltype field-name;
access static java-type field-name = const;
static | e
int boolean | class-name | class-name[]
int bool | null
/*: -class-spec_*7
access static invariant in-name : "form"
access static ghost specvar specvar-name :: "type"
access static ghost specvar specvar-name :: "type" = "form"
access vardefs "specvar-name == form"
ghost | C
obj I bool I int I (type set) | (type * type) | (type -> type)

Figure 3-1: Jahob Programs

3.1.1 Jahob Formulas

Jahob formulas follow the grammar given in Figure 3-3. The syntax and semantics of
these formulas are the same as that of formulas in Isabelle/HOL [122]. Formulas are
simply typed with ground types bool for boolean values, int for integers, and obj for
objects, as well as type constructors = for total functions, * for tuples, and set for
sets. The logic contains polymorphic equality, the standard logical connectives A, V,

'In verified data structures adapted from java.util, where the original java.util implementation
throws an exception, the Jahob implementation generally uses preconditions to guard against the
exceptional behavior.



method-decl

a

m

ret-type
params

ethodspec
requires

modifies
ensures

mods
mod

_mod_

field
stmts
stmt

f ieldexpr
rray-expr
proc-call

exprs
_exprs_

expr

op
spec-stmt

specvar

Figure 3-2: Jahob Methods

access ret-type method-name (params) method-spec
{stmts}
void | java-type
javaltype paramrname, params e
/*: requires modifies ensures *7
requires "form" |e
modifies mods Ie
ensures "form"
mod mods | mod
"mod_"
field | varname..field
new..field I new..arrayState | arrayState

= field-name class -name. field-name
stmt stmts e

java-type var-name; | java-type varname = expr;
varname = expr;
field-expr expr; | array-expr = expr;
while /*: inv "form" */ (expr) {stmts}
if (expr) {stmts} else {stmts}
proc-call; | return expr;

/*: proof _cmd */ /*: spec-stmt *7
field | varname.field

= varrname[expr]
method-name (exprs)
: exprs. I E
expr | expr, _exprs_
varname | f ield-expr arrayexpr
new class-name (exprs) new class-name[expr] const
proc-call
!expr - expr expr op expr | (expr)
+ | - * I / |% I == ! = I && I ||
ghost specvar specvar-name :: "type"
ghost specvar specvar-name :: "type" = "form"
"specvar" := "f orm"
"var-name..specvar" := "form"
havoc var-name suchThat 1: "form"
specvarname | class-name.specvar-name



annot : String
F,G : form

f field
f orm ::= unop G F1 binop F2 | F1; ... ; Fn

Vx.G I 3x.G I Ax.G I {z.G} | {F1,. , Fn} | (F1, .. ,Fn)
Fobj..F1d |Ffld FobS | Fld(FobJ : Fsrc)
Farr . [Find] |Farrst Farr Find | (Farrst Farr) (Find := Fsrc)
cardinality(f orm) I old form I (u, v) E {(x, y).G}* I tree[fi, ... , fn]
0 | arrayState | alloc | hidden I var-name I field I const

| comment "annot" G G:: type | (G)
unop ::= - | ,

binop ::= = == V A -A |->

E | u |I - | + | * I|/ l% I < | > | < | >

Figure 3-3: Jahob Formulas

,, -, V, 3, as well as the A binder, set comprehension {e.F}, and standard operations
on sets and integers. It supports selected defined operations, most notably (u, v) E

{ (x, y).G}* for transitive closure, tree[fi,..., fn] denoting that a data structure is a
tree, and cardinality (card for short) for the cardinality of finite sets. Formulas can be
annotated with comments using the keyword comment, as in comment "c" F, which
annotates the formula F with comment c. The shorthands Fonb.. F and Farr. [Find]

stand for the field and array dereference notations Ffld Fonb and Farrst Farr Find,
respectively.

For annotations occurring within the program code, if an annotation at program
point p contains a formula F, then an occurrence of a program variable v in F denotes
the value of v at p. The old operator changes this interpretation: old v denotes the
value of the variable v at the entry of the currently analyzed method. To denote
values of variables at other program points, developers can use specification variables
to save these values.

Jahob formulas may also refer to special Jahob keywords such as arrayState, which
refers to the array component of the global program state, a Iloc, the set of all allocated
objects, and hidden, the set of objects that are private to a given class. Sections 3.2.1
and 3.2.2 discuss the use of these keywords and the meaning of the corresponding
formula expressions in terms of Java and specification constructs.

3.1.2 Specification Variables

Specification variables are abstract variables that do not exist during program exe-
cution, but are used to represent the abstract state of the program, so that we can
describe the behavior of the program without revealing the underlying data repre-
sentation [56, Section 4]. In Jahob, developers use the specvar keyword to declare
a specification variable, indicate its type, an optional initial value, and whether the



variable is public or private, static or instance, or a ghost variable. For instance spec-
ification variables, Jahob lifts the variable's type from the specified type t to obj => t,
converting it into a variable of function type. A ghost variable is a type of specifica-
tion variable that must be updated explicitly by the developer (using a specification
assignment statement) for its value to change, with Jahob ensuring the soundness
of such updates. A dependent variable (also known as a defined variable [163]) is
designated by the absence of the ghost keyword in its declaration, and is simply a
way to name the value of an expression. Developers use the vardefs keyword followed
by a definition of the form "v == e" to define the value of a specification variable v,
where e is a formula that may contain occurrences of other variables. At any program
point, the value of v is equal to the value of e at that program point. To ensure that
dependent variables are well-defined, Jahob requires that their definitions be acyclic.
For recursive definitions, the developer can use either transitive closure or a ghost
variable with a class invariant that encodes the desired recursive relationship.

3.1.3 Method Contracts

Method contracts in Jahob consist of three parts: 1) a precondition, or requires clause,
stating the properties of the program state and parameter values that must hold
before the method is invoked; 2) a frame condition, written as a modifies clause,
listing the components of the state that the method may modify, while the remaining
components remain unchanged; and 3) a postcondition, or ensures clause, describing
the state at the end of the method (possibly defined relative to the parameters and
state at the entry of the method). Jahob uses method contracts for assume-guarantee
reasoning in the standard way. When analyzing a method m, Jahob assumes m's
precondition and checks that m satisfies its postcondition and the frame condition.
Dually, when analyzing a call to m, Jahob checks that the precondition of m holds and
assumes that the values of state components from the frame condition of m change
subject only to the postcondition of m, and that the state components not in the
frame condition of m remain unchanged. Method contracts of public methods omit
changes to the private state of their enclosing class and instead use public specification
variables to describe how they change the state. In most cases, Jahob does not require
method contracts to specify changes to newly allocated objects. The exception is if a
field f is changed for allocated objects and is otherwise not mentioned in the modifies
clause, then the developer needs to add the special item new..f to the modifies clause.

3.1.4 Class Invariants

In Jahob, a class invariant can be thought of as a boolean-valued specification variable
that Jahob implicitly conjoins with the preconditions and postconditions of every
public method of the class. Class invariants are declared using the invariant keyword,
an optional label, and a Jahob formula that captures the desired invariant. Developers
can declare an invariant as private or public (the default annotation is private), but
typically, a class invariant is private and is visible only inside the implementation
of the class. Jahob conjoins the class invariants of a class C to the preconditions



and postconditions of public methods declared in C when verifying that methods in
C respect their contracts. At method invocations, Jahob conjoins the public class
invariants of the callee to the method preconditions and postconditions. To ensure
soundness in the presence of callbacks, Jahob also conjoins private class invariants of
C to each reentrant call to a method m declared in a different class C1. This policy
ensures that the invariant C will hold if C1.m (either directly or indirectly) invokes
a method in C. To make an invariant hold less often than given by this policy, the
developer can specify the invariant as b -+ F for some specification variable b and
the desired property F, using b as a flag to control when F should hold. To make
an invariant I with label 1 hold more often, the developer can use assertions with
the shorthand (theinv 1) that expand into I. This shorthand can be used in any
Jahob formula, including those in method contracts and loop invariants, to refer to
invariants in scope.

3.1.5 Annotations Within Method Bodies

Jahob supports several different types of annotations within method bodies to refine
expectations about the behavior of the code and to debug the verification process.
Specifically, developers can use these annotations to designate loop invariants, declare
and update specification variables, and add to or release the system from the default
proof obligations. Here we describe the supported annotations.

Loop Invariants

Jahob's verification condition generation algorithm requires loop invariants, which
are typically provided by the developer. The loop invariant for a loop should appear
immediately following the while keyword, and is designated by the keyword invariant
(inv for short). A loop invariant must hold on entry to the loop (i.e. before the loop
condition) and must be preserved by each iteration of the loop. The developer can
omit conditions that depend only on variables not modified in the loop, as Jahob uses
a simple syntactic analysis to conclude that the loop preserves such conditions.

Jahob also supports loop invariant inference using Bohne [160] (though we did
not make use of this support for the data structures verified in this thesis). Bohne
uses a technique based on symbolic shape analysis, and is able to infer complex loop
invariants involving reachability and universal quantifiers.

Local Specification Variables

Local specification variables are similar to specification variables at the class level, but
are local to a particular method. Developers can introduce local ghost and dependent
specification variables by declaring them within the method body. Such variables can
be helpful for simplifying proof obligations and for stating relationships between the
values of variables at different program points.



Specification Assignment Statements

Specification assignment statements enable developers to change the value of a ghost
variable. These assignment statements have the form v := e, where v is the name of
the ghost variable being assigned, and e a formula that may contain occurrences of
variables including v (the value of v in e in that case is its value before the assignment,
as in assignment statements for concrete variables). Jahob also supports specification
assignments of the form x..f := e, which is a shorthand for f := f(x := e). Here

f (x := e) is the standard function update expression returning a function identical
to f except at x where it has value e. To ensure that the verified program is consis-
tent with its unannotated counterpart, specification assignment statements may not
modify the concrete state.

Non-Deterministic Change

Jahob also supports a mechanism for assigning a value to a specification variable
non-deterministically. An annotation of the form havoc x suchThat G, where x is a
specification variable and G is a formula, changes the value of x subject only to the
constraint G (for example, havoc x suchThat 0 < x sets x to an arbitrary non-negative
value). To ensure soundness, Jahob emits an assertion that verifies that at least one
such value of x exists. Consequently, havoc can also be used to "pick a witness"
for an existentially quantified property 3x.G and to make this witness available for
subsequent specification. A specification assignment of the form x := e (for x not
occurring in e) is a special case of a havoc statement whose condition is x = e (its
feasibility condition is trivial).

Assert

Jahob's assertion mechanism allows the developer to add static checks to the body of
a method. An assert G annotation at program point p requires the formula G to be
true at p. Like Java assertions, Jahob assertions identify conditions that should be
true at a given program point. But where Java assertions are dynamically checked
for only the current execution, Jahob assertions are statically checked to hold for
all executions. In particular, Jahob assertions produce proof obligations that Jahob
statically verifies to guarantee that G will be true in all program executions that
satisfy the precondition of the method.

An assert G statement can also optionally contain a clause "from 11, ... , in" to

identify the facts from which G should follow. The identifiers 1i can refer to the
labels of facts introduced by previous assume statements and proof commands, pre-
conditions, named invariants, conditions encoding a path in the program, or parts
of formulas explicitly labeled using the comment keyword. Jahob then passes this
information to the automated provers through the generated verification condition
formulas, by producing formulas that include only the specified facts. In this way,
the from clause provides a means for the developer to guide the provers in establishing
the desired proof. This is a novel aspect of Jahob's assertion mechanism not found
in other program verification systems. By allowing the developer to control the facts



that Jahob passes to the provers, the from clause is, in effect, controlling the proof
search space that the provers have to traverse. The addition of a from clause alone is
often sufficient to limit the proof search space to enable a prover to prove a formula
on which it previously failed. The from clause is particularly helpful for guiding first-
order and SMT provers to an appropriate set of facts to use when the number and
complexity of the invariants become large [27].

Assume

An assume G statement is dual to the assert statement. Whereas an assert requires
Jahob to demonstrate that G holds, an assume statement allows Jahob to assume that
G is true at a given program point. The developer-supplied use of assume statements
may violate soundness and causes Jahob to emit a warning. The intended use of
assume is debugging, because it allows Jahob to verify a method under the desired
restricted conditions. For example, an assume false annotation at the beginning of
a branch of an if statement means that Jahob will effectively skip the verification
of that branch. More generally, assume statements allow the developer to focus the
verification on a particular scenario of interest (e.g. a particular aliasing condition)
and therefore understand better why a proof attempt is failing.

Proof Commands

Jahob's proof language allows the developer to guide the efforts of the automated
provers in the event that the provers are unable to complete the verification automat-
ically. A proof command at program point p in the body of a method directs Jahob to
prove that a given property is true at p, and to use the proved lemma in subsequent
verification. Proof commands may also inform Jahob as to how to prove the desired
property. Chapter 4 describes the details of Jahob's proof language.

Other Annotations

To designate an object as being private to a class, the corresponding Java new state-
ment is annotated with the hidden keyword. The purpose of such designation is for
enabling more accurate contracts for public methods that modify private arrays (see
Section 3.2.2). Jahob also supports the claimedby annotation for designating classes
and fields as accessible only by a specified class. These annotations support access
constraints similar to static nested classes (in the case of claimed classes), but also
enable finer grain access control in the case of claimed fields.

3.2 Generating Verification Conditions

Jahob produces verification conditions by simplifying the Java code and transforming
it into extended guarded commands (Figure 3-4), then desugaring extended guarded



commands into simple guarded commands (Figure 3-6), and finally generating verifi-
cation conditions from simple guarded commands in the standard way using weakest
liberal preconditions (Figure 3-7).

C ::= p
assume 1: F
assert 1: F from h
havoc z suchThat 1: F
skip ci c2 | c1; c2
x := F
if(F) ci else c2

loop inv(I) ci while(F) c2

Figure 3-4: Extended Guarded Commands

3.2.1 Representation of Program Memory

In Jahob, the state of a program is given by a finite number of concrete and specifica-
tion variables. The type of a specification variable appears in its declaration. Jahob
maps the types of concrete Java variables as follows. Static reference variables be-
come variables of type obj, where obj is the type of all object identifiers. An instance
variable f in a class declaration class C {D f} becomes a function f :: obj = obj map-
ping object identifiers to object identifiers. The Java expression x.f becomes fz, that
is, the function f applied to x. Jahob represents Java class information using a set of
objects for each class. For example, Jahob generates the axiom Vx.x E C -+ fx E D
for the above field f. Note that the function f is total. When x is null or of a class
that does not include the field f, fx = null. (Jahob correctly checks for the absence
of null dereferences by creating an explicit assertion before each dereference.) Jahob
represents object-valued arrays as a function of type obj = int == obj, which accepts
an array and an index and returns the value of the array at the index. Jahob also
introduces a function of type obj = int that indicates the array size, and uses it to
generate array bounds check assertions. The type int represents the integer type,
which Jahob models as the set of unbounded mathematical integers.

To account for aliasing between arrays, Jahob uses a special arrayState variable to
represent the array component of the program state at method entry. Array reads
take an array state, an array, and an index, and produce the corresponding value,
while array writes take an array state, array, index, value, and produce the updated
array state.

Jahob also uses a special alloc set to represent the set of all allocated objects. The
set alloc is updated automatically by the system to account for allocations, and may
be referred to, but not modified, by the developer. Unlike the conventional notion
of allocation, alloc is also monotonic. Conceptually, once an object is allocated, it
continues to have been allocated, and is never removed from the set. An object that is



p P1;P2
note 1:F from h
localize in (p; note l:F)
mp l:(F -G)
assuming lF:F in (p; note lG:G)
cases F for l:G
showCase i of l:F 1 V ... V F,
byContradiction l:F in p
contradiction l:F
instantiate 1:V.F with t
witness rfor 1:2.F
pickWitness 7 for lF:F in (p; notelG:G)
pickAny 7 in (p; note l:F)
induct l:F over n in p

Figure 3-5: Integrated Proof Language Commands

c assume 1: F
assert 1: F from h
havoc 7
skip Ic1 l C2 I C1 ; c2

Figure 3-6: Simple Guarded Commands

wlp((assume 1: F), G)
wip((assert 1: F from h), G)
wlp((havoc 7), G)
wlp((skip), G)
wlp((ci l c2), G)
wlp((ci ; c2), G)

SF[1;h] A G
- V7. G

=G
= wlp(ci, G

= wlp(ci, wl

A wlp(c2, G)
p(c2, G))

Figure 3-7: Weakest Preconditions for Simple Guarded Commands



not in alloc is isolated-i.e. all of its fields are null and there are no references to it. The
object allocation primitive new returns an arbitrary new object that was not in the set
of allocated objects before the allocation. For this approach to work, the specification
must require that every object that the program manipulates be an element of the set
of allocated objects. This fact is ensured by the operational semantics of the program,
but must be stated and inductively established for the verification to succeed. Jahob
automatically inserts the appropriate clauses in method contracts to ensure that this
property holds.

3.2.2 Class-Level Encapsulation

Jahob supports enforcement of class-level encapsulation by means of an abstract,
per-class, set of hidden objects-objects that are private to the class. The formula
expression C.hidden refers to a system-defined ghost variable that is automatically
defined for every class C when using Jahob with class-level encapsulation turned
on. Jahob inserts the appropriate checks to ensure that objects in the set do not
escape the class. Jahob also emits the specification assignment statements that modify
membership in the set, in accordance with developer annotations that identify hidden
objects. As with alloc, hidden is monotonic-objects may be added to but not removed
from hidden-and may not be modified except by the system.

In general, the purpose of class-level encapsulation is to enable more accurate
method contracts for public methods that modify private arrays. Without the concept
of a hidden set, or a mechanism that serves a similar purpose, contracts for such
methods would need to list arrayState in the modifies clause, indicating that any
array may be modified, as contracts of public methods may not refer to private
fields. When using class-level encapsulation, the frame condition for arrays allows for
the modification of arrays in the hidden set, making it possible to soundly omit the
mention of arrayState in the modifies clause.

3.2.3 From Java to Guarded Commands

Jahob's transformation of the annotated Java program into guarded commands re-
sembles a compilation process, and is described formally in Figures 3-8, 3-9, and 3-10.
Jahob simplifies executable statements into three-address form to make the evaluation
order in expressions explicit. It also inserts assertions that check for null dereferences,
array bounds violations, and type cast errors. It converts field and array assignments
into assignments of global variables whose right-hand side contains function update
expressions. Having taken side effects into account, it transforms Java expressions
into mathematical expressions in higher-order logic.

Transformations for hidden Objects

Jahob automatically inserts checks to ensure that hidden objects do not escape the
class. A hidden object may not be passed as a parameter, returned from a method,
assigned to a field of an object that is not hidden, or assigned to an array that



v 1 = V21

v = C.f
C.f = ej

v.f = ej
F1 = V2 [e]l

fv[ei] = e2j

[v new C(ei, ... , en)]

v = new C[e]j

V = (e1 op e2)1

v = op e]
Iwhile /*: inv "F" */ (e) {s}]

Eif (e) {s1} else {s2}h

[return v]

where lonely(v)
(for instance fields fi, . f.

and static fields gi,..., gm
of reference type)

binop(!=)
binop(==)
binop(&&)

binop(| |)
binop(op)

unop(!)
and unop(-)

VI := V2

v := C.f
= fresh = ej ; C-f := Vfresh
assert V2 f null ; vi := f v2

Ffresh = ej ; assert v = null ; f := f (v := Vfresh)
ofresh = el ;

assert (v 2 5 null A 0 < Vfresh A Vfresh < length v2 );
vi := arrayState V2 Vfresh

[Vfresh,1 = el ; Vfresh,2 = e2l ;
assert (v , null A 0 < Vfresh,1 A Vfresh,1 < length v);
arrayState := (arrayState V)(Vfresh,1 := ofresh,2)
havoc v;
assume (v f null A v $ alloc A v E C A lonely(v));
alloc := alloc U {v} ;[C(v, e1 , .. . , en)]

ofresh = ej ; havoc v ;
assume (v , null A v ( alloc A v E Array);
assume (length V = Vfresh A lonely(v))
alloc := alloc U {v}

ofresh,1 = e1 ; Vfresh,2 = eA

assert Vfresh,2 / 0 ; (if op is )
V := Vfresh,1 binop(op) Vfresh,2

Ffresh = ej ; v unop(op) Vfresh
loop inv(F) [ofresh = ej while(vfresh) Di
[Vfresh = el ; if(Vfresh) 3s1j else [S2

= result := v

= (Vx. fi x f v) A ... A (Vx. f, x 5 v)A
(gi $ v) A ... A (gm f v)A
(Vy i. arrayState y i : v)A

(f1 v = null) A ... A (fn v = null)A
(Vj. arrayState v j = null)

= A

=op (for all other binary operators)

Figure 3-8: Translating Java Statements into Extended Guarded Commands (contin-
ued in Figure 3-9)



[v = m(ei,. . ., e,,)]
(for old wi,..., old wj

in ensuresm)

where requires'.
public-invs(m)

modifies'

rep-vars(in)

rep-vars(im)

ensures'

frame(f)

hidden(x)
hidden(x)

array-frame(
array-frame(xi, ... , XS)

alloc(y)
alloc(y)

Figure 3-9: Translating Java
ued from Figure 3-8)

= [ofresh,1 = el ; . ; ofresh,n = en ;
assert Vfresh,1 $ null; (if m is an instance method)
assert requires'm[Pi Vfreshi]

i W1 ; :=

havoc modifies' ; havoc v;
assume ensures'm[Pi := Vfreshi; result := v; old wi := w

= requiresm A public-invs(m)
Sinvl A ... A invk

(where m is a method in class C and invi, ... , inVk are
invariants of C that depend on public fields and
specification variables of other classes)

Sfi,. . ., fy, alloc, rep-vars(m)
(where fi, ... , f, are fields in modifiesm)

= gi,. . . , gr (if m is re-entrant)
(where m is in class C, and gi, ... , gr are private fields
of C or public fields claimed by C)

- [] (otherwise)
- ensuresm A public-invs(m) A old alloc C alloc A

frame(fi) A ... A frame(fr) A arrayjframe(xi,... , XS)
(where fi, . . . , fr are fields in modifiesm in the form of
x..f for some x))

SVx. E old alloc A x E C A hidden(x) A x: old yi A ... A
x / old yt - f x = (old f) x
(where f is a field in C and yi..f, ... , yt..f in modifiesm)

- true (if class-level encapsulation is enabled)
= x V hidden (otherwise)
= true

SVy i. 0 < i A i < length y A y E Array A hidden(y)A
y f old xi A ... A y f old xs A alloc(y)-+
arrayState y i = (old arrayState) y i
(where xi..arrayState,... , xs..arrayState in modifiesm)

= y c old alloc (if new..arrayState in modifiesm)
= true (otherwise)

Statements into Extended Guarded Commands (contin-

"g" := "F"I

"v..g" := "F"j
[havoc v suchThat 1: "F"]

= g:=F

= g := g(v := F)

= havoc v suchThat 1: F

Figure 3-10: Translating Specification Assignment Statements and Non-Deterministic
Change into Extended Guarded Commands



is not hidden. For Java new statements annotated with the hidden keyword, Jahob
automatically inserts a specification assignment statement adding the allocated object
to the hidden set.

Receiver Parameters in Specifications

Java makes most uses of the receiver parameter this implicit, with the compiler using
scoping rules to resolve such references. Jahob applies similar rules to disambiguate
occurrences of variables in specifications. When a field f occurs in an expression that
is not immediately of the form x..f and when f is not qualified with a class name,
Jahob converts the occurrence of f into this..f. Jahob also transforms each definition
x = f of a non-static specification variable x into the definition x = Athis.f. If, after the
transformation, a class invariant Inv in class C contains an occurrence of this, Jahob
transforms the invariant into Vthis.this E C A this E alloc - Inv. An invariant stated
for a given object is therefore implicitly interpreted as being required for all allocated
objects of the class, and becomes a global invariant. This mechanism enables Jahob
developers to not only concisely state invariants on a per-object basis but also to use
global invariants that state relationships between different instances of the class.

3.2.4 From Extended to Simple Guarded Commands

The main internal representation of Jahob is the extended guarded command lan-
guage. It contains guarded command statements, simple control structures, and proof
statements. Figure 3-4 presents the syntax of the extended guarded command lan-
guage. We next describe how Jahob transforms such guarded commands into the
simple guarded command language (for which verification condition generation is
standard as presented in Figure 3-7). For the moment, we omit discussion of proof
commands p, which we address in Chapter 4.

3.2.5 Translating Extended Guarded Commands

Figure 3-11 describes the translation of extended guarded commands (modulo proof
commands) into simple guarded commands. We translate assignments into havoc fol-
lowed by an equality constraint, which reduces all state changes to havoc statements.
Conditional statements become non-deterministic choice with assume statements, as
in control-flow graph representations. The Jahob encoding of loops with loop invari-
ants is analogous to the sound version of the encoding in ESC/Java [57].

3.2.6 Accounting for Variable Dependencies

The semantics of extended guarded commands assumes a set D of specification vari-
able definitions (v, D,) where v is a variable and D, is a term representing the defini-
tion of v in terms of other variables. For a list of variables u', we write deps(ui) for the
set of all variables that depend on any of the variables in U', that is, variables whose
value may change if one of the variables U' changes. To define this set precisely, let



khavoc v;assume (v F)
(where v is a fresh variable) havoc x; assume (X = v)
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havoc I; assume F

Figure 3-11: Translating Extended Guarded Commands

FV(G) denote all free variables in G, let the dependence relation be p = (V1, V2 )
(V2 , D 2 ) G D A v, G FV(D 2)} and let p( denote the transitive closure of p. Then
deps(ul, . .. , ut,) = Un 1{VI (ui, v) E p*}* We write defs(il) for the set of constraints
expressing these dependencies, with defs(il) = Afv = DIv C deps(l) A (v, Dv) E D}.
To correctly take dependencies into account during verification condition generation,
it suffices to treat each command of the form havoc ' in Figure 3-11 as the command
(havoc (7', deps(7h)) ; assume defs(F)). The same applies to the translation of proof
commands in Figure 4-1.

Eliminating Unnecessary Assumptions

To simplify the generated verification conditions, some of the internally generated
assume statements indicate a variable that the statement is intended to constrain.
For example, an assumption generated from a variable definition v = Df is meant
to constrain the variable v, as are assumptions of the form v E C where C is a
set of objects of class C. Ignoring an assumption is always sound, and Jahob does
so whenever the postcondition does not contain a variable that the assumption is
intended to constrain. Moreover, in certain cases Jahob reorders consecutive assume
statements to increase the number of assumptions that it can omit.

3.3 Proving Verification Conditions

Jahob generates a proof obligation for each method it verifies. It also generates a
proof obligation to ensure the consistency of the class invariants by verifying that
these invariants hold in the initial state of the program. These verification conditions
are expressed in a subset of the Isabelle/HOL notation. We next discuss how Jahob
proves such verification conditions.
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Figure 3-12: Splitting Rules for Converting a Formula into an Implication List (F[cl
denotes a formula F annotated with a string c)

3.3.1 Splitting

Jahob follows the standard rules of weakest liberal preconditions shown in Figure 3-7
to generate verification conditions. Verification conditions generated using these rules
can typically be represented as a conjunction of a large number of conjuncts. Fig-
ure 3-12 describes Jahob's splitting process, which produces a list of implications
whose conjunction is equivalent to the original formula. The individual implications
correspond to different paths in the method, as well as different conjuncts of assert
statements, operation preconditions, invariants, postconditions, and preconditions of
invoked methods.

The splitting rules in Jahob preserve formula annotations, which are used for as-
sumption selection and in error messages to indicate why a verification failed. Because
Jahob splits only the goal of an implication, the number of generated implications is
polynomial in the size of the original verification condition (the verification condition
itself can be exponential in the size of the method). During splitting Jahob eliminates
simple syntactically valid implications, such as those whose goal occurs as one of the
assumptions, using an internal syntactic prover.

3.3.2 Using Multiple Provers

Figure 3-13 shows the Jahob system diagram including the provers to which Jahob
interfaces. A typical data structure operation generates a verification condition that
splitting separates into a few hundred implications, each of which is a candidate for
any of the provers in Figure 3-13. Each implication generated from a verification
condition must be valid for the data structure operation to be correct. Each proof
can be performed entirely independently.

To prove an implication, Jahob may attempt to use any of the available provers.
In practice, a Jahob user specifies, for a given verification task, a sequence of provers
and their parameters on the command line. Jahob tries the provers in sequence,
so the user lists the provers starting from the ones that are most likely to succeed
or, if possible, fail quickly when they do not succeed. Often different provers are
appropriate for different proof obligations in the same method. Because the generated
proof obligations are entirely independent, Jahob also provides a facility to spawn
provers in parallel, which can significantly reduce the overall proof time on multi-core
machines.
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Figure 3-14: General Formula Approximation Scheme

3.3.3 Formula Approximation

Efficient provers are often specialized for a particular class of formulas. One of the dis-
tinguishing characteristics of Jahob is its ability to integrate such specialized provers
into a system that uses an expressive fragment of higher-order logic. This integration
is based on the concept of formula approximation, which maps an arbitrary formula
into a semantically stronger but simpler formula in an appropriate subset of higher-
order logic. Because the resulting formula is stronger, the approach is sound.

Figure 3-14 presents the general scheme for formula approximation: for atomic
formulas representable in the target logic subset, the approximation produces the
appropriate translation; for logical operations it proceeds recursively; for unsupported
atomic formulas it produces true or false depending on the polarity of the formula. To
improve the precision of this recursive approximation step, Jahob first applies rewrite
rules that substitute the definitions of values, perform beta reduction, and flatten
expressions. The details of rewriting and approximation depend on the individual
prover interface.

3.4 Provers Deployed in Jahob

Jahob supports a number of types of provers, both internal and external. Here we
describe the provers that are deployed in Jahob.

3.4.1 Syntactic Prover

Before invoking any other internal or external provers, Jahob first tests whether a
formula is trivially valid using its internal syntactic prover. Specifically, it checks for
the presence of appropriately placed propositional constants false and true. It also
checks whether or not the conclusion of an implication appears in the assumption



(modulo simple syntactic transformations that preserve validity). In practice these
techniques discharge many verification condition conjuncts. One source of such con-
juncts is checks, such as null dereference checks, which occur (implicitly) many times
in the source code. Another source is sequences of method calls. Specifically, when
class invariants that hold after one method call need to be shown to hold for subse-
quent calls. Sequences of proof commands may also produce proof obligations that
are discharged by earlier commands. For complex formulas the syntactic prover is
very useful because more sophisticated provers often perform transformations that
destroy the structure of the formula, converting it into a form for which the proof
attempt fails.

3.4.2 First-Order Provers

Decades of research into first-order theorem proving by resolution have produced
carefully engineered systems capable of proving non-trivial first-order formulas [152,
156, 149]. Jahob leverages this development by translating higher-order logic into
first-order logic [27]. This translation is very effective for formulas without transi-
tive closure and arithmetic. Such formulas may contain set expressions, but those
expressions are typically quantifier-free, which enables their translation into quan-
tified first-order formulas. Using ghost variables and recursive axioms, we are also
able to use first-order provers to prove strong properties about reachability in data
structures [27]. Our translation uses an incomplete set of axioms for ordering and
addition to provide partial support for linear arithmetic. We found this axiomatiza-
tion effective for reasoning about data structures such as priority queues and binary
search trees, which depend on arithmetic properties.

3.4.3 SMT Provers

Provers based on Nelson-Oppen combination of decision procedures enhanced with
quantifier instantiation have been among the core technologies of past verification
systems [119]. Jahob incorporates state-of-the art solvers in this family using the
SMT-LIB standard format [132]. The approximation for this format is similar to the
approximation for first-order provers, but uses the SMT-LIB representation of linear
arithmetic. We use two SMT provers in Jahob: CVC3 [60] and Z3 [116, 117].

3.4.4 MONA

MONA is a decision procedure for monadic second-order logic over strings and trees
[67]. We use it primarily for the verification of shape properties. Its expressive
power stems from its ability to quantify over sets of objects. Quantification over
sets can in turn encode transitive closure, which is extremely useful for reason-
ing about recursive data structures. Jahob contains a flexible interface that en-
ables the use of MONA even for some non-tree data structures [159]. When prov-
ing an implication A 1, . . . , A, -+ G, this interface identifies assumptions of the form
tree[fi,. .. , f,], then interprets the formula assuming that fi,... , f, form the tree



backbone of the data structure. Furthermore, it identifies assumptions Ai of the form
Vxy.f (x)=y -- H(x, y) (for f ( {fi, . . . , f,}) and soundly approximates a goal of the
form G(f(t)) with the stronger goal Vu.H(t, u) -+ G(u). This enables the approxima-
tion to maintain information about non-tree fields and provides certain completeness
guarantees [159, Theorems 2 and 3].

3.4.5 BAPA

Jahob also implements a decision procedure for sets with symbolic cardinality bounds
[87, 84]. This decision procedure can prove a class of verification conditions that use
set algebra, symbolic cardinality constraints, and linear arithmetic (i.e., quantifier-free
Presburger arithmetic). Such verification conditions arise when checking invariants
on the size of allocated structures and other examples such as tracking the number of
objects that a method allocates [87]. Previous theorem provers have limited effective-
ness for such formulas because set algebra and linear arithmetic interact in non-trivial
ways through the cardinality operator.

3.4.6 Simple Cardinality Prover

Jahob's simple cardinality prover is a fast, efficient solver that uses simple syntactic
rules to discharge verification conditions that involve the cardinality operator for finite
sets, according to the rules in Figure 3-15. These rules correspond to verification
conditions that commonly arise in the verification of data structure implementations.
While the BAPA decision procedure is theoretically capable of proving many of these
formulas, the current implementation of BAPA supports only sets of obj type. Since
sets of tuples often arise in data structures whose abstract state involve relations (e.g.
hash tables, association lists, priority queues, etc.), the simple cardinality prover is
critical to the successful verification of such data structures.

3.4.7 Isabelle and Coq

Jahob provides interfaces to interactive theorem provers Isabelle [122] and Coq [24].
Jahob can invoke Isabelle automatically on a given proof obligation using the general-
purpose theorem proving tactic in Isabelle. In some cases (e.g., for relatively small
proof obligations that involve complex set expressions) this approach succeeds even
when other approaches fail. In general, Isabelle requires interaction, so the user can
prove the implication interactively and save it into a file. Jahob loads this file in
future verification attempts and treats such proved lemmas as true. It determines
whether a given proof obligation is a proved lemma using a matching algorithm that
is able to match not only syntactically identical formulas but also certain classes
of semantically equivalent and stronger formulas by taking into account renamed
variables, and reordered and extraneous assumptions. For example, if the user has
saved as proved a formula of the form f --+ h, Jahob is able to match the formula
f A g -> h and determine that it is proved on the basis of the interactive proof for the
stronger formula.
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Figure 3-15: Simple Cardinality Prover Rules



3.5 Discussion

Certain aspects of Jahob's design make it particularly effective in the verification of
full functional correctness. In particular, Jahob's specification language and use of
integrated reasoning are critical to this application. On the other hand, the generality
of other aspects of Jahob's design may be contributing to the difficulty of verifying
programs in the system. We also discuss the nuances of verifying instantiable data
structures, and note the limitations of the system.

3.5.1 Specification Language

As a specification language for Jahob, higher-order logic offers several benefits. First,
its expressivity enables the specification of arbitrarily complex program properties.
This is important for ensuring that all desired aspects of the program can be captured
in the invariants, abstraction function, and method contracts of the verified program.
Second, because higher-order logic is a standard logic with well-defined semantics,
there are many existing tools for automated reasoning for both higher-order logic and
its subsets. This property is essential for enabling our integrated reasoning approach.

One drawback, however, to the use of higher-order logic as a specification language,
is the lack of concise counterparts for some common concepts in programming. For
example, there is no map primitive in higher-order logic. Instead, maps are modeled
using sets of pairs, with the additional constraint that each key is mapped to a unique
value. Although the desired properties can still be expressed in higher-order logic, the
resulting specifications may be more verbose (and consequently, more difficult to un-
derstand), than the equivalent specifications in a language with the desired primitives.
Jahob also does not currently support the use of method calls in formulas. This ability
can be useful in specifying the behavior of one method in terms of that of another.
Instead, methods must be specified directly in terms of the change in abstract state.
The resulting specifications may, again, be more verbose, and consequently, more dif-
ficult to understand, than the equivalent specifications in a language that supported
method calls. It may, however, be possible to extend Jahob formulas with support
for calls to pure methods (i.e. no side-effects) using assume-guarantee reasoning.2

The system could also provide primitives for concepts such as maps, and internally
translate these primitives to the corresponding higher-order logic representation.

In practice, we were able to use Jahob to specify all the properties needed for veri-
fying the full functional correctness of our data structures. We also found the expres-
sivity of higher-order logic useful for specifying shorthands using lambda expressions.
This ability enabled more concise specifications, offsetting the lack of support for
method calls and programming primitives in formulas. We used quantification over
integers and objects extensively. While we did not use higher-order quantification in
our examples, contexts exist where it may be useful. (For example, to specify that
two representations are isomorphic, it may be necessary to quantify over functions.)

2 Program verification systems that support the use of method calls in specifications typically only
support pure methods, as the semantics for support of arbitrary method calls are unclear. Program
analysis techniques exist for checking method purity [145].



Because we use higher-order logic as both a specification language and internal rep-
resentation, we did not need to translate from one to the other. The generation of
verification conditions was also straightforward. The availability of standard algo-
rithms and tools enabled us to productively focus our efforts on the verification of
more sophisticated properties.

3.5.2 Integrated Reasoning

With arbitrarily complex specifications come arbitrarily complex verification condi-
tions. Our integrated reasoning approach makes it possible to apply highly-specialized
automated reasoning techniques to these verification conditions. Splitting reduces
these verification conditions into smaller formulas to enable the fine-grain applica-
tion of different automated reasoning techniques. Approximation performs the sound
translation necessary for the application of standard automated tools that support
specialized logic subsets. Our approach enables the automated verification of prop-
erties that lie well beyond the ability of any single automated reasoning system to
prove. This ability is essential, as the size and complexity of the verification conditions
generated for full functional correctness verification make fully manual verification
impractical.

We did not find any disadvantages to using the integrated reasoning approach in
the verification of our data structure implementations. The availability of standard
interfaces for first-order and SMT solvers made it easy to integrate new provers into
the system. The integrated reasoning infrastructure also made it easy to incorporate
new internal provers. Although there is some overlap in the abilities of provers in the
same class, there are sufficient differences to make the use of multiple provers more
effective than any single prover. However, there were still some properties that the
system was unable to verify without guidance. These include properties that require
a prover to search an unbounded search space in a bounded amount of time, or the
use of multiple provers to prove. Our integrated proof language, which we describe
in Chapter 4, addresses this problem by enabling developers to provide the system
with the guidance needed to prove these verification conditions.

3.5.3 Overall Design

In general, Jahob was designed with the following philosophy. Whenever there was a
choice between a more general mechanism, which enables the specification or verifica-
tion of arbitrarily complex properties, and a more specific mechanism, which restricts
what could be specified or verified, but made the annotated program easier for the
system to process, we chose the more general mechanism. This philosophy can be
seen in many aspects of the system, including the specification language, the seman-
tics of the memory model, the supported provers, and the proof language. We did
not want to restrict, a priori, the properties or programs that we could verify using
the system. And in practice, we did not encounter any such properties or programs.

However, this generality can result in verification conditions that are more dif-
ficult to prove than what would be produced using more specific mechanisms. For



example, the use of a global arrayState provides the most general mechanism for spec-
ifying properties of arrays. It does not restrict the user's ability to specify arrays
that may be aliased. However, this ability results in verification conditions that may
require the consideration of many possible aliasing scenarios to prove, even though,
in most cases, modified arrays are private to a particular object. Similarly, invariants
asserted at method boundaries are universally quantified for all objects of the class.
This policy allows for instance methods that may modify other instances of the class,
but requires the re-establishment of the invariants for all instances. In most cases,
however, instance methods invoked on one object do not affect the state of other
instances. So although the generality of the system enabled the unrestricted specifi-
cation and verification of properties necessary for full functional correctness, we may
be able to produce verification conditions that are easier to prove, by improving the
system's ability to detect and handle common cases.

3.5.4 Verifying Instantiable Data Structures

A Java class can implement a single static instance of a data structure or an instan-
tiable data structure where multiple instances can be created. In many cases, the
difference between the two implementations is no more than a handful of static key-
words. But because of the possibility of aliasing between fields of different instances,
instantiable data structures can be substantially more difficult to verify. Figures 3-16
and 3-17 illustrate the difference between instantiable and static data structures us-
ing excerpts from an instantiable version and a static version of the association list.
Syntactically, the only difference between the two versions is the static modifier for
the first field, the contents specification variable, and the add() method. The veri-
fication conditions that Jahob generates, however, are very different. In the static
example, the invariant Maplnv is simply as stated. But in the instantiable example,
the reference to contents in the invariant actually refers to this..contents, which Jahob
automatically resolves. Since the invariant must apply to all allocated instances of
Association List, Jahob automatically adds the necessary quantification to produce the
following invariant:

Vthis.this c AssociationList A this E alloc -+

(Vk vO vl.(k, vO) E contents A (k, v1) E contents -+vO = v1)

This additional quantification can make the invariant more difficult to verify, since
the original property must now be proved for multiple instances of the list, and not
just one.

Similarly, the modifies clause of the add() method for the static association list
refers to the static specification variable contents, while that of the instantiable as-
sociation list refers to this..contents. To verify the modifies clause of the instantiable
association list, Jahob must therefore ensure the following additional frame condition,
which is not needed for the static version:

Vx. x E AssociationList A x E old alloc A x # this -+ x..contents = old (x..contents)



public class Association List {
private Node first;

public specvar contents :: "(obj * obj) set"
vardefs " contents = first con ;

invariant Maplnv:
"Vk vO v1. (k, vO) c contents A (k, v1) C contents - vO = v1";

public void add(Object kO, Object vO)
/*: requires "kO # null A vO # null A -(Iv. (kO, v

modifies contents
ensures "contents = old contents U {(k0, v0)}"

) c contents)"

Figure 3-16: Instantiable Association List

public class Association List {
private static Node first;

public static specvar contents '(obj * obj) set"
vardefs " contents = first . con

invariant Map/nv:
"Vk vO v1. (k, vO) C contents A (k, v1) C contents -+ v = v1";

public static void add(Object kO, Object vO)
*: requires "kO : null A vO # null A -,(v. (kO, v) e contents)"

modifies contents
ensures "contents = old contents U {(k0, vO)}" */

Figure 3-17: Static Association List



The correctness of the frame condition depends on the lack of sharing between the
state of the currently modified association list and the state of other instances. For
some instantiable data structures, the developer must write additional invariants, not
needed for the static version of the same data structure, to express this lack of sharing.
In some cases, the additional complexity may cause an instantiable data structure to
require proof commands to verify, where the equivalent static data structure would
not.

While our verified data structures do not make use of any special analyses for
instantiable data structures, Jahob supports analyses for identifying data structure
implementations where different instances do not share state. It is possible to extend
Jahob to use these analyses to generate simpler verification conditions for these data
structures, which could simplify the resulting verifications.

3.5.5 Limitations

We identify several limitations of our verification system. First, we assume that each
data structure operation executes atomically. For this assumption to hold in concur-
rent settings, some form of synchronization would be required. Our current system
also does not support dynamic class loading, exceptions, or inheritance. Techniques
exist, however, that should make it possible to extend our modular verification ap-
proach to support such constructs [68, 11, 77]. Two limitations could be eliminated
by minor extensions. We currently model numbers as algebraic quantities with un-
bounded precision and assume that object allocation always successfully produces a
new object. While these assumptions are often used in the verification field and are
typically consistent with the execution of the program, they are at variance with the
full semantics of the underlying programming language. Finally, we make no attempt
to verify any property related to the running time or the memory consumption of
the data structure implementation. In particular, we do not attempt to verify the
absence of infinite loops or memory leaks.

3.6 Summary

Jahob verifies programs written in a subset of Java and annotated with specifications
written in higher-order logic. Many elements of Jahob's specification and verifica-
tion condition generation approach are fairly standard. The specifications consist
of specification variables, class invariants, method contracts, and annotations within
the method body. In general, the abstract state of the program is described in terms
of specification variables (to provide data abstraction), with method contracts ex-
pressing the behavior of the method in terms of updates to the abstract state. Class
invariants express important properties preserved by operations in the class. An-
notations within the method body enable the developer to express loop invariants
and to refine expectations about the behavior of the method. From the annotated
program, Jahob produces verification conditions using a weakest liberal precondition
semantics. Together, these verification conditions ensure that methods respect their



contracts and preserve class invariants, the consistency of these invariants, and the
absence of runtime errors (such as null dereference and array bounds errors).

Jahob then proves the generated verification condition formulas using a diverse col-
lection of automated reasoning systems in an approach we call integrated reasoning.
In this approach, the verification conditions are first transformed into conjunctions of
smaller formulas in higher-order logic, to enable the fine-grained application of differ-
ent automated provers. Then, to prove the validity of these formulas, Jahob employs
an approximation technique to transform each formula into a stronger formula (to
preserve soundness) in the logic subset appropriate for the specific automated rea-
soning system. Jahob contains interfaces to first-order provers E and SPASS, SMT
provers CVC3 and Z3, decision procedures BAPA and MONA, as well as an internal
syntactic prover and a simple cardinality prover. These automated reasoning systems
are invoked as a cascade, with failing formulas being passed to the next prover in
a user-specified order. Jahob also provides a facility to spawn provers in parallel,
since the generated formulas can be proved completely independently. This facility
can significantly reduce the overall proof time on multi-core machines. Where most
program verification systems rely on a single monolithic prover, Jahob's integrated
reasoning approach makes it possible to leverage a diversity of specialized automated
reasoning systems. Using this approach, Jahob is able to verify program correctness
properties that are beyond the reach of any single technique.
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Chapter 4

The Integrated Proof Language

The combination of aliasing and destructive updates in imperative data structure
implementations can give rise to verification conditions that are too difficult for the
automated provers and decision procedures to prove without user assistance. The
standard solution to this problem is for the program verification system to interface
to one or more external proof assistants so that the user can interactively prove the
verification conditions that fail to prove automatically [55, 22, 110, 14]. Jahob provides
interfaces to the interactive theorem provers Isabelle and Coq so that users have the
option of writing interactive proofs in these systems if they wish to do so.

In theory, this approach makes it possible to solve program verification problems
requiring arbitrarily complex reasoning. In practice, the use of interactive theorem
provers require a great deal of domain-specific expertise. Mechanically generated
verification conditions can be very difficult to understand and manipulate in these
external systems. The exported verification conditions may contain temporary vari-
ables generated by the system, making it difficult to determine the meaning of the
formulas in their original context within the program. The formulas may also con-
tain large numbers of irrelevant assumptions, exacerbating the difficulty of the proof
task. Proving these formulas in an external system also means that the user no longer
has access to the powerful automated reasoning systems integrated into Jahob, but
must learn to use the (potentially) unfamiliar tools available through the interactive
theorem prover.

Jahob's integrated proof language [164] addresses these issues by making it possi-
ble for developers to control proofs of program correctness properties directly within
the programming and verification environment. Proof commands are embedded as
annotations within the program and are verified by the underlying reasoning system
as part of the original program verification workflow. Program variables within proof
commands are interpreted in the standard way-as referring to the value of the vari-
able at the given program point-eliminating confusion about the meaning of the
manipulated formulas. Special constructs for identifying proved lemmas enable users
to exclude unnecessary assumptions in a proof, while proof obligations generated as
a result of proof commands are automatically dispatched to the automated reasoning
systems, avoiding the need to write detailed proofs of supporting lemmas, or to learn
the use of unfamiliar external tools.



In fact, we have found that Jahob's proof language enables developers to avoid the
use of external interactive theorem provers altogether. Instead, developers simply use
the Jahob proof language to resolve key choice points in the proof search space. Once
these choice points have been resolved, the automated provers can then perform all of
the remaining steps required to discharge the verification conditions. This approach
effectively leverages the complementary strengths of the developer and the automated
reasoning system by allowing the developer to communicate key proof structuring
insights to the reasoning system. These insights then enable the reasoning system
to successfully traverse the (in practice large and complex) proof search space to
obtain formal proofs of the desired verification conditions. In practice, the developer
generally needs to provide only a handful of key proof structuring insights (in the form
of proof language commands) to enable the automated provers to verify a verification
condition formula that they would otherwise be unable to prove.

4.1 The Proof Language Commands

Figure 3-5 presents the commands of Jahob's integrated proof language. As with Ja-
hob specifications, these commands appear as special comments embedded within the
Java source code. They are preserved by the translation to the extended guarded com-
mand language, then translated into simple guarded commands. Figure 4-1 presents
the semantics of the language in terms of this translation. Note that although the
proof commands can be translated into guarded commands, the translation makes use
of assume commands, which would be unsound for the developer to use directly in the
program. The soundness of the proof commands, on the other hand, is guaranteed by
the translation. Section 4.2 and Appendix A present the proofs of soundness. Note
also that some proof commands, such as localize and assuming, may enclose other
proof commands, but not executable code. In general, proof commands may also
enclose assert and assume.1

One of our goals in the design of the integrated proof language was to allow the
user to provide the level of proof guidance that was comfortable for the user, and
appropriate for the proof task. Specifically, we want the provers to be able to prove
verification conditions with no user guidance at all if they have this capability. At
the same time, we want the user to have the option of specifying every proof step
explicitly if they wished to do so. Moreover, we want the language to flexibly support
intermediate points at which the user and provers cooperate, with the user providing
the minimum amount of guidance needed to enable the provers to complete the proof.
The integrated proof language supports this wide range of behaviors by providing not
only high-level commands that leverage the substantial automated reasoning power
of the Jahob system, but also low-level commands that allow the user to precisely
control proof steps to enable a successful proof.

'Enclosure of assert is always sound (see proof in Section 4.2 and Appendix A), while enclosure
of assume may introduce unsoundness, and is intended only for debugging purposes.



note l:F from h

[localize in (p; note l:F)]

mp 1: (F -->G)

assuming lF:F in (p; note lG:G)

cases F for l:Gj

showCase i ofl:F1 V ... V F, ]

[byContradiction 1 in Fp]

[contradiction 1F]

instantiate 1 with Vx.Ft]

[witness t for lji.F]

TpickWitness j? for 1F:F in (p; note lG:G)]
(where 7 is not free in G)

TpickAny 7 in (p; note l:G)]

[induct l:F over n in p]

= assert 1: F from h;
assume 1: F

= (skip(&p] ;assert F;
assume false))

assume 1: F
= assert F ;assert (F -> G);

assume 1: G
= (skip g (assume lF: F;

[p] ;assert G;
assume false));

assume lG: (F -+ G)
= assert F 1 V ... V F,;

assert (F 1 -+ G) ;... ; assert (F -G)

assume 1: G
= assert F ;

assume 1: F1 V ... V F,
- (skip (assume -F ;

[p] ;assert false;
assume false))

assume 1: F
= assert F ; assert -F; assume false

- assert Vs.F;

assume 1: F[z := t]
= assert F[z := t;

assume 1: 3i.F
- (skip (assert 11.F;

havoc ';
assume FF;
[p ;assert G;

assume false)) ;
assume iG: G

= (skip (havoc ';
[p] ; assert G;
assume false)) ;

assume l: Vx.G
= (skip (havoc n;

assume 0 < n;
p ; assert F[n 0];

assert (F -> F[n := n+1])
assume false)) ;

assume l: Vn.(0 < n -+ F)

Figure 4-1: Translating Proof Language Commands into Simple Guarded Commands



4.1.1 The Assumption Base

Conceptually, the commands of Jahob's proof language operate over a set of facts
that we will refer to as the assumption base. A verification condition in Jahob has
the form of an implication F -* G where the antecedent F is a conjunction of facts.
This conjunction F is the assumption base that the provers use when they attempt
to prove the consequent G.

The translation of the proof language commands uses assume commands to add
facts to the assumption base.2 While it is possible for the user to introduce unsound-
ness by using assume commands directly in the program, the soundness of the assume
commands in this context is guaranteed by the form of the translation.

Consider, for example, the translation of the assuming command. The command
assuming 11:F1 in (p; note 12:F2) is used to prove formulas of the form F1 -+ F2. 11 and
12 are labels, and p proof commands. It translates into:

(skip 0 (assume 1i: F1 ;[pj ; assert F2 ; assume false)) ; assume 12: F1 - F2

The translated sequence contains the following general pattern:

(skip (c ;[p] ; assert F ; assume false)) ; assume G

The net effect of this pattern is to soundly add G to the assumption base. The
pattern achieves this effect as follows. The first branch of the non-deterministic
choice operator (skip) propagates the original assumption base. The second branch
(c ;[p ; assert F; assume false) generates the proof obligations required to ensure that
G actually holds. The assume false at the end of the second branch conceptually ter-
minates the computation at the end of the branch so that the verification condition
generator does not take the computational path through the second branch into ac-
count when generating the verification condition at the program point after the choice.
This mechanism ensures that the second branch generates no proof obligations other
than those required to ensure that G holds.

In effect, the second branch uses the assume false command to create a new local
assumption base in which the user can guide the proof of the properties required to
ensure that G holds. Because this assumption base is local, none of the assumptions
or intermediate lemmas in the proof propagate through to the program point after
the choice. This local assumption base mechanism therefore ensures that only G is
added to the original assumption base at the program point after the translated proof
language command, and that local assumptions that are only sound in the context of
the proof are not propagated to the original assumption base.

In this pattern, the command c contains commands introduced as part of the
translation, while p contains proof commands provided by the user and originally
nested inside the proof command under translation. The command c can include
commands that may modify the program state, such as assume and havoc commands.
The form of the translation ensures that these commands are used in a sound way.

2 Specifically, the verification condition generation rule in Figure 3-7 for commands of the form
assume 1: F produces a verification condition of the form F11 -+ G, which, in effect, adds F to the
set of facts available to the provers when they attempt to prove the consequent G.



4.1.2 The Note Command

The note command is a high-level proof command used to direct Jahob to prove a
specified formula. It has the general form note l:F from h, which allows the user
both to assign the label 1 to the proved lemma, as well as to specify the set of named
lemmas h from which to prove the specified formula F. In general, the purpose of a
note command is to identify an important intermediate lemma that the system needs
to prove in order to prove a given verification condition.

The note command translates into an assert followed by an assume of the same
formula. The net effect is to direct the system to prove the specified formula, then
add the verified formula to the assumption base. Because Jahob proves the formula
before adding it to the assumption base, the use of note is sound.

Proof Decomposition.

The note command is useful for a number of different purposes, including the ability
to guide the decomposition of a proof. By directing the combined proof system to
prove relevant lemmas and to add them to the assumption base using note commands,
the user is effectively performing a high-level proof decomposition. The availability
of these verified lemmas in the assumption base is often sufficient to guide the provers
through the (usually unbounded) proof search space to successfully find a proof for
the verification condition of interest.

Multiple Provers.

The note command also enables the user to decompose a proof obligation so that
multiple provers (with arbitrarily narrow areas of specialization) can work together
to prove it. Consider, for example, a proof obligation that involves both arithmetic
reasoning and reasoning about the shape of a given data structure. By using one
group of note commands to identify relevant arithmetic properties and another group
of note commands to identify relevant data structure shape properties, the user can
decompose the proof obligation to expose specific parts of the proof obligation to
different provers. A final note command can then combine the results to deliver the
complete proof obligation. A potential advantage of this approach is that the set
of provers, when working together, may be able to provide sophisticated reasoning
capabilities that are beyond the reach of any single general system. In general, Jahob
is designed to incorporate many different provers with arbitrarily narrow areas of
specialization in one complete verification system The note command is part of the
infrastructure for realizing the full potential of this approach.

Controlling the Assumption Base.

Many provers perform a search over a (potentially unbounded) proof space. While
it may appear that increasing the assumption base should increase the power of the
prover (since the prover has more facts to work with), increasing the assumption base
also increases the size of the proof search space, which may make it more difficult for
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Conjunction (A)
Disjunction (V) showCase cases
Negation ()byContradiction

Implication (-)assuming mp
False contradiction

Universal Quantification (V) pickAny instantiate
Existential Quantification (b) witness pickWitness

Figure 4-2: First-Order Logic Proof Commands. (*) denotes first-order logic proof
rules that Jahob applies automatically as part of the splitting process.

the prover to find a proof. In practice, we have found that increasing the size of the
assumption base may degrade the ability of the prover to find proofs for facts that
it is otherwise perfectly capable of proving. The note command makes it possible
for users to give names to specific facts (these facts can either be available directly
in the assumption base or provable from the assumption base), then use the names
in a from clause, to identify a specific set of facts that the prover should use when
attempting to prove a new fact. The net effect is to eliminate irrelevant facts from
the assumption base to productively focus provers on the specific facts they need to
use. In general, Jahob supports the from clause in all proof commands, though for
clarity, we omit it from the discussion of proof commands other than note.

4.1.3 The Localize Command

The localize command creates a new local assumption base for the proof of an arbitrary
formula, then adds only this proved formula back into the original assumption base.
It has the general form localize in (p; note 1:F), where F is the formula being proved,
p the proof commands in the proof, and 1 the optional label for the proved lemma.
The localize command makes it possible to use intermediate lemmas in the proof
of a formula without adding these lemmas back into the original assumption base.
Excluding intermediate lemmas from the original assumption base (when the lemmas
are not relevant for subsequent verification conditions) can help keep the assumption
base (and resulting proof search space) small enough to enable the provers to find
proofs of subsequent verification conditions in an acceptable amount of time. Note
that because the local assumption base is initially the same as the original assumption
base, any formulas verified in the local assumption base also hold in the original
assumption base. This property ensures that the command is sound.

4.1.4 First-Order Logic Commands

The integrated proof language includes a number of first-order logic proof commands
which encode standard rules of natural deduction systems [126, Section 2.12], [59,
Section 5.4]. When combined with the proof rules implicit in the splitting process,
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Figure 4-3: First-Order Logic Rules Applied During Splitting

these commands give our system the completeness of first-order logic. (Note that for
arbitrary higher-order logic formulas we cannot hope to obtain a proof system com-
plete with respect to the standard models [4].) Figure 4-2 shows how the first-order
logic proof commands correspond to first-order logic introduction and elimination
rules. During splitting, Jahob splits top-level conjunctions of assumptions and goals,
eliminating the need for conjunction introduction and elimination commands. Jahob
also incorporates the standard rule for deriving any formula when false is one of the
assumptions. Figure 4-3 shows the rules that Jahob automatically applies as part of
the splitting process.

The Assuming Command

The assuming command encodes the implication introduction rule of first-order logic.
It allows the user to prove a fact of the form F -+ G by hypothesizing F, then deriving
G. It has the general form assuming F in (p; note G), where F -> G is the formula be-
ing proved, while p consists of the proof statements that derive G given that F holds.
The command effectively creates a new local assumption base, which contains all the
facts in the original assumption base, plus F. The sequence p of proof commands can
then use this local assumption base to derive consequences of F and the previously
known facts to guide the proof of G. At the end of the proof, only the proved lemma
F --+ G is added to the original assumption base, ensuring soundness.

The assuming command is necessary for decomposing the components of an impli-
cation. Without such a command, many intermediate lemmas in a proof of a formula
F -* G would themselves be implications that could not be decomposed, increasing
the difficulty of the proof task. In practice, we have found that the assuming com-
mand is particularly useful when G is complex, as the provers often fail to find the
proof in such cases without guidance.

The Mp Command

The mp command is the dual of assuming, and encodes the modus ponens rule of
inference. It allows the user to conclude a goal G by directing Jahob to prove F and
F -+ G, then soundly adding G to the assumption base.

It is also possible to simulate the effects of the mp command using a sequence of
note commands, as follows:

note 11:F; note 12:(F-- G); note G from 11, 12

We find that this use of the note command works well in practice for the automated
provers used by Jahob. However, the mp command has certain advantages over note.



It is more concise, provides precise control over the proof step, and does not introduce
additional facts into the assumption base. Most importantly, it is not dependent on
the ability of the automated provers to recognize the need to apply the modus ponens
rule of inference to obtain the proof.

The ShowCase Command

The showCase command encodes the disjunction introduction rule. It allows the user
to soundly establish a fact of the form F1 V ... V F, by proving a case F in the
disjunction. The command instructs Jahob to prove the ith case of the disjunction,
then soundly adds F1 V ... V Fn to the assumption base.

As with the mp command, it is possible to simulate the effects of the showCase
command using note, modulo the ability of the provers to handle disjunction:

note l:F; note (F 1 V ... V Fn) from l

The use of the showCase command over note offers similar advantages as in the case
of mp, with the primary advantage being the ability to perform the desired proof step
regardless of any limitations in the automated provers' abilities to perform disjunction
introduction.

The Cases Command

The cases command allows the user to prove an arbitrary formula G using case anal-
ysis. It enables the user to specify a set F1,... , Fn of cases to consider in the proof
of G, ensures that the set of cases is complete and that the goal holds in each case
(i.e. instructs Jahob to prove F1 V ... V F, and F - G for 1 < i < n), then adds the
proved goal G to the assumption base.

In principle, it is also possible to perform case analysis using a sequence of note
commands. For example:

note l1 :(F-+G); note l2:((-F)--+G); note G from li,12

In practice, however, we find that the provers are sometimes unable to derive the final
goal G from the set of cases, possibly due to an inability to recognize the need for case
analysis in the given situation. The cases command frees the user from dependence
on the particular abilities of the provers to find a proof by directly applying case
analysis in a sound way.

The PickAny Command

The pickAny command encodes the universal introduction rule. It allows the user to
prove a fact of the form Vx.G by considering an arbitrary x, then proving that G
holds for x. The general form of the command is pickAny x in (p; note G), where p is
a sequence of proof commands for guiding the proof of G. The command causes the
universally quantified variable x to become visible inside the sequence p as a local



specification variable with an arbitrary value. The user can therefore state lemmas
(within p) that involve x as a fixed variable. Note that x is also not a quantified
variable in the verification conditions that result, further simplifying the theorem
proving task.

The effect of the pickAny command is to create a new local assumption base that
starts out as a copy of the original assumption base, but with a local specification
variable x whose value is undefined. Intermediate lemmas added to the local as-
sumption base in the course of the proof remain within the local scope and are not
propagated to the original. At the conclusion of the proof, Vx.G is soundly added to
the original assumption base, which is otherwise unchanged.

The pickAny command can also be used with an optional suchThat clause, as in
pickAny x suchThat F in (p; note G). This combination serves as a shorthand for a
pickAny block enclosing an assuming block, and is used for proving formulas of the
form Vx.F -- G, such as class invariants, replacing the more verbose proof command
sequence pickAny x in (assuming F in (c; note G); note G).

The Instantiate Command

The instantiate command encodes the universal elimination rule. It allows the user to
establish a fact of the form G[F:= t] by proving a fact of the form Vs.G. It instructs
Jahob to prove Vs.G, then soundly adds G[z:= t] to the assumption base.

It is possible to simulate the effects of the instantiate command using note, as the
automated provers used in Jahob are adept at instantiating a universally quantified
formula when given the appropriate term:

note l:Vs.G; note G[z := t from l

However, the more common use of the note command in lieu of instantiate occurs
when combining multiple proof steps, which is possible if the automated provers are
capable of performing each proof step automatically when given the goal and the
necessary facts. Specifically, either of the following two sequences may be used to
prove a goal of the form G[7 := t] by instantiating a universally quantified formula
and applying modus ponens to the result:

note li:V.F -+ G; note l2:F[i:= fl; note G[z! := t] from 11, 12

instantiate Vs.F -+ G with t; mp F[:=t] -> G[:=t]

Both sequences work well in practice. The sequence that uses note takes advantage of
the ability of the automated provers to perform both the instantiation and implication
elimination in a single step using the third note statement, which may result in a more
concise proof when facts 11 and l2 are either already named or necessary for other proof
commands. Where this is not the case, the use of the more specific instantiate and mp
commands is more concise. In general, the more specific commands allow more precise
control over the proof steps, and produce a proof that has greater independence from
the capabilities and limitations of the specific automated provers in use.



The Witness Command

The witness command encodes the existential introduction rule. It allows the user to
establish a fact of the form ]5.G by proving a fact of the form G[5:= fl. It instructs
Jahob to prove G[ t:= l, then soundly add ]5.G to the assumption base.

In principle, it should be possible to provide a witness for an existentially quan-
tified formula using the following sequence of note commands:

note l:G[Y:= t}; note ]5.G from 1

In practice, we find that the automated provers are often unable to derive the exis-
tentially quantified goal even when the witness is provided, as in the sequence of note
commands above. Thus the witness command is critical to the ability of the system
to prove existentially quantified goals.

The PickWitness Command

The pickWitness command encodes the existential elimination rule. It allows the user
to instantiate a formula of the form 25.F (i.e., eliminate the existential quantifier
and name the values that satisfy the constraint F) in a new local assumption base,
guide the proof of a formula G, then add the proved goal G back into the original
assumption base. To ensure soundness, 5-the variable(s) with which the user is
instantiating ]5.F-must not be free in G. The general form of the pickWitness
command is pickWitness S for F in (p; note G).

By enabling the user to name values of S for which the constraint F is true, the
pickWitness command makes it possible to replace an existentially-quantified formula
with an instantiated version, then state additional facts about the named values.
This functionality broadens the applicability of provers with limited ability to reason
about existentially quantified formulas. Without the pickWitness command, every
subgoal Gi that depended on the constrained values would have to have the form
3X. (F -+ Gj). Such a subgoal is beyond the reach of any prover that cannot reason
effectively about existentially quantified formulas. The pickWitness command enables
the user to soundly eliminate the existential quantifier, thereby transforming existen-
tially quantified proof goals into a form that the provers can handle more effectively.

The ByContradiction Command

The byContradiction command allows the user to prove an arbitrary formula F using
proof by contradiction. It enables the user to add -F to a new local assumption base,
then use this assumption base to guide the proof of false. The verified formula F can
then be soundly added to the original assumption base. The user can also use this
command to perform negation introduction by directing Jahob to prove a formula of
the form -,F.



The Contradiction Command

The contradiction command allows the user to derive false from a contradiction. It
makes it possible for the user to guide the proof of a formula F and its negation -,F
to soundly conclude false. (Specifically, it instructs Jahob to prove F and -,F, then
adds false to the assumption base.) Although we did not use the contradiction (or the
byContradiction) command in the data structures that we verified for this thesis, we
provide these commands in the proof language for completeness.

4.1.5 The Induct Command

The induct command allows the user to prove a fact of the form Vn.(O < n - F)
using mathematical induction. Specifically, it allows the user to select an arbitrary
value of n for which 0 < n holds, guide the proof of the base case F[n := 0] and the
inductive case F -+ F[n := n+ 1], then add the proved goal into the assumption base.
The introduction of the constraint 0 < n makes it possible to simulate mathematical
induction over natural numbers using integers.

The general form of the command is induct n over F in p, where p is a sequence
of proof commands for guiding the proof of the base and inductive cases. The induct
command creates a new local assumption base that is a copy of the original assump-
tion, but with a local specification variable n which has an arbitrary value greater
than zero. The proof commands p operate over this local assumption base, where n
is a fixed variable. The induct command then directs the system to prove both the
base and inductive cases, then add only the proved goal Vn. (0 < n -- F) back into
the original assumption base.

The induct command is particularly important because the automated provers are
unable to perform proofs that require mathematical induction, even though they may
be able to derive many of the supporting facts in the proof. The induct command
provides the inductive schema necessary to soundly derive a fact using induction,
thereby reducing the inductive proof to proof steps that the automated provers are
equipped to handle. Without this command, the only recourse for the user would be
to interactively prove the desired goal using an external proof assistant.

4.2 Soundness

Figure 4-1 gives the translation rules that define the semantics of our proof language
commands. We show the soundness of each of these rules using properties of weakest
liberal preconditions [6]. The proof demonstrates that the verification conditions
generated (using weakest liberal preconditions) with the proof commands present in
the program are stronger than the verification conditions that would be generated
for the program without proof commands. As a result, by proving the verification
condition formulas for the program containing proof commands, we are proving a
stronger condition that guarantees the correctness of the original program.

The main idea is as follows. Without proof commands in the annotated pro-
gram, the system produces a verification condition formula G1, that guarantees the



correctness of the program. With proof commands, the system produces a different
verification condition formula G2. To ensure soundness, we need to show that the
verification condition proved by the system, G2, is stronger than the original verifi-
cation condition, G1. In other words, we need to show that G 2 - G1. We prove this
by induction on the structure of the proof commands.

We define the relation El such that c E c' if and only if wlp(c, F) -+wlp(c', F) for
all formulas F. In this case we say that c is stronger than c'. Let skip be the no-op
command. We show that p F skip for all p by induction on p. This is sufficient for
soundness because it ensures that any property provable for the annotated program
containing proof language commands also holds in the unannotated program (which
is equivalent to the annotated program with all proof commands replaced with skip).

The induction hypothesis is wlp(p, H) -> H, where H is an arbitrary formula.
For each proof language command p, we apply the translation rules in Figure 4-1, the
rules of weakest liberal preconditions in Figure 3-7, the induction hypothesis, and the
standard rules of logic to show that wlp([p], H) -> H-i.e., that p is stronger than
skip.

As a sample inductive step, consider the assuming command. By applying the
translation rule for assuming, the rules of weakest liberal preconditions, and the stan-
dard rules of logic, we obtain:

wlp([assuming F in (p; note G)], H)
= wlp(((skip (assume F ;[p ; assert G ; assume false));

assume (F -> G)), H)
= ((F-+G) ->H)A(F-> wIp(Tp],G))

According to the induction hypothesis, ((F -+ G) -> H)A (F -- wlp([p], G)) implies the
formula ((F -> G) -> H) A (F -> G), which in turn implies H. Consequently, assuming
is stronger than skip and its translation is sound.

The proofs for the other commands are similar. See Appendix A for the complete
soundness proofs for all the proof language commands and for assert.

4.3 Proof Reuse and Parameterization

Jahob uses standard Java methods as a mechanism for reusing and parameterizing
proofs. A proof method is simply a Java method that contains only proof commands.
The requires clause of the proof method specifies the necessary precondition for the
proof, while the ensures clause specifies the postcondition that the proof guarantees.
By definition, a proof method has no modifies clause, since proof commands do not
modify the program state.

By enclosing a proof in a proof method, the user can parameterize the proof
using Java method parameters, and apply it anywhere the proof method may be
invoked using a method call. Because Jahob handles all method calls (including those
that invoke proof methods) using standard assume-guarantee reasoning, it checks
that method preconditions are met at invocation sites, ensuring that proofs are only
applied when the precondition of the proof holds. The postcondition of the proof



can then be soundly assumed to hold on return from the method, with soundness
guaranteed by the verified method. Jahob verifies methods (including proof methods)
by checking that they conform to their specification. For proof methods, this ensures
the correctness of the proof.

Although Jahob does not allow proof commands to enclose method calls, it would
not violate soundness if Jahob were to relax this restriction for proof methods. The
main concern is that it is not sound for proof commands to enclose executable Java
code, which proof methods do not contain. To enable this feature in a safe way, it
would be necessary for Jahob to perform an additional check to ensure that a method
call inside a proof command does indeed invoke a proof method.3 It would also be
necessary to extend the soundness proof in Appendix A to take method calls into
account.

4.3.1 Verification Feedback

When the combined reasoning system is unable to prove a verification condition for-
mula, Jahob provides the developer with the failed formula. As part of the verification
condition generation process, Jahob embeds comments within the formulas that iden-
tify the relevant properties and the path through the program that the system is
verifying. Because of the nature of the weakest liberal precondition algorithm that
Jahob uses to generate verification conditions, failed formulas always encode the path
through the program that failed to verify. As a result, the returned formula effec-
tively provides the developer with the property that failed to prove (e.g. a class
invariant, a postcondition, or loop invariant), as well as a counterexample for the
failure. This counterexample can then be used to determine the proof commands
needed to produce a successful proof.

4.4 Summary

Jahob's integrated proof language is a declarative proof language that enables users
to guide the combined reasoning system in proving properties that are otherwise
beyond the reach of the automated provers. It extends the assertion mechanism
available in most program verification systems by allowing the user to embed proof
commands as special comments directly in the annotated program. (This mechanism
also makes it possible to parameterize and reuse existing proofs by encapsulating
proofs within Java methods.) Proof commands produce verification conditions that
are automatically dispatched to the automated reasoning systems, allowing users
to provide only the minimum amount of guidance needed to lead the provers to
a successful proof. The remaining proof steps are handled automatically by the
combined reasoning system. The proof language also supports commands that enable
the precise specification of proof steps, making it possible to write detailed proofs
within the language, and flexibly supporting intermediate points in the design space

3 This can be done in two ways. Specifying an annotation to denote proof methods would enable
modular checking, while a fixed-point interprocedural analysis would avoid the need for annotations.



between completely manual and fully automated proofs, depending on the abilities of
the automated reasoning systems. In this chapter, we presented the proof commands
in our language, defined the semantics of the language by translation into simple
guarded commands, and proved the soundness of our translation according to weakest
liberal precondition semantics. We have implemented our proof language in the Jahob
program verification system, and used it to verify the data structures in this thesis.



Chapter 5

Priority Queue

The next several chapters describe three of the data structures we have verified using
Jahob. Chapter 6 describes an association list, while Chapter 7 describes a hash table
data structure. In this chapter, we describe a priority queue. The priority queue
data structure is an example of an array-based data structure that also maintains
important ordering properties. It is one of the most difficult examples in our collection
of verified data structures. We use it to illustrate some of the techniques for specifying
and verifying array-based data structures with complex correctness properties.

Our PriorityQueue class implements a priority queue using a binary heap stored
in an array [40]. Instead of using explicit pointers, the tree structure of the priority
queue is defined implicitly by the following mathematical relationships between the
array indices of the parent and child nodes.

childleft(i) = 2i + 1

childright(i) 2i + 2

parent(i) = floor 2

The implementation maintains the binary heap property; every node in the tree has
a priority that is greater than or equal to that of its children. As a result, the root
node of the tree is guaranteed to have the highest priority.

5.1 The Concrete State

Figure 5-1 presents part of the PriorityQueue class as well as the Node class that
stores the objects in the queue.1 The concrete state of a PriorityQueue object consists
of an array queue, which stores the contents of the queue using Node objects, and
an integer length, which stores the number of objects currently in the queue. The

1Formulas in Jahob specifications and proof language statements contain mathematical notation
for concepts such as set union (U) and universal quantification (V). Developers can enter these
symbols in Jahob input files using X-Symbol ASCII notation, and view them in either ASCII or
mathematical notation using the ProofGeneral editor mode for emacs [5].



public /*: claimedby PriorityQueue */ class Node {
public Object ob;
public int pr

}

public class PriorityQueue

private Node[] queue;
private int length;

public specvar
public specvar
public specvar
specvar nodes

init :: bool
contents
capacity

:: "obj set";

= " False";
(obj * int) set";

int ;

init (queue null)";
nodes {n.(]i. 0 0 i A
contents
{(x,y).(In.n E nodes A n.
capacity = queue.. Array.

i < length A n

.ob = x A
length";

queue.[ i])}";

n.. pr = y)}";

invariant Ordered/nv: " init -+

(Vi j.(0 < i A i < length A 0 < j A j < length A
(j=2*i+1 V j=2*i+2)) - queue.[ i].. pr > queue.[j ].. pr)";
invariant Card/nv: "init -4 length = card (contents)"
invariant Capacitylnv: " init -- 0 < capacity" ;
invariant InitialLength: "-,init - length = 0"
invariant Length/nv:
"init - 0 < length A length < queue.. Array. length";
invariant NonNull/nv:
"init - (Vi. 0 K i A i < length -- queue.[i] # null)";
invariant Distinct/nv: " init -
(Vi j.(0 < i A i < length A 0 K j A j < length A
queue.[i] = queue.[j]) - i = J
invariant Null/nv: " init
(Vi. length < i A i < queue..Array.length -+ queue.[i] null)";
invariant Hidden/nv: " in it -+ queue C hidden"
invariant /nj/nv:
"Vx y. x..queue = y..queue A x..queue f null -+ x y";
invariant Contents/nj:
"Vel e2. el C nodes A e2 C nodes A el # e2
(el..ob ) e2..ob V el..pr 5 e2.. pr)"; */

Figure 5-1: PriorityQueue Example

vardefs "
vardefs "
vardefs "

vardefs "



concrete state of a Node object consists of an object field ob, which stores an object in
the queue, and an integer field pr, which stores that object's corresponding priority.
The claimedby annotation in the declaration of the Node class indicates that only
methods in the PriorityQueue class may modify the fields of Node objects. We retain
the public access designation for the fields of the class so that the Java compiler would
allow the PriorityQueue class to access them, but augmenting Jahob with support for
static nested classes would make this unnecessary.

5.2 The Abstract State

The abstract state of the priority queue is specified using dependent specification
variables, declared using the specvar keyword in Figure 5-1. The declarations indicate
that the public abstract state of a PriorityQueue object consists of contents, which
represents the contents of the queue as a set of object-priority pairs; capacity, the
maximum number of objects that the queue is currently able to hold; and init, a
boolean flag which indicates whether the queue is initialized. The initial value of init
is set to false to ensure that class invariants are valid in the initial program state. In
general, an init flag is useful for specifying data structures whose invariants are not
guaranteed to hold until the constructor has executed. In such a case, class invariants
would have the form init --+ F, where F is an invariant of an initialized object. Instance
methods would have init as a conjunct in the precondition, while constructors would
have init as a conjunct in the postcondition.

A PriorityQueue object also has private abstract state, which consists of nodes, the
set of Node objects in use by the queue. Private abstract state is useful for reasoning
about the implementation of a data structure at a higher level of abstraction without
exposing implementation-specific details to the data structure clients. In this case,
the specification variable nodes serves as a convenient and intuitive shorthand for its
definition, making it possible to write Jahob formulas within the PriorityQueue class
that are more concise and easier to understand.

5.3 The Abstraction Function and Invariants

For dependent specification variables, the vardefs declarations comprise the abstrac-
tion function that defines the relationship between the abstract and concrete states.
In the PriorityQueue class, the vardefs for the specification variable init indicates that
init is true if and only if the array queue is non-null. The vardefs for nodes defines
nodes as the set of array elements consisting of all queue.[i] for which 0 < i < length.2

The vardefs for contents defines contents as a set of pairs, where each pair (x,y) cor-
responds to a node n in nodes, where x is n..ob and y is n..pr.3 Finally, the vardefs
for capacity defines the capacity of the priority queue as the length of the array queue.

2The expression queue.[i] is Jahob's notation for the Java expression queue[i].
3The Jahob formula expressions n..ob and n..pr correspond to the Java expressions n.ob and n.pr,

respectively.



Although dependent specification variables are conceptually simply shorthands for
their respective definitions, they also serve as an abstraction mechanism. Contracts
for public methods can be written in terms of specification variables without exposing
the data representation, which would not be the case if their definitions were used
directly in the method contract.

The invariant declarations in the PriorityQueue class supplement the abstraction
function provided by the vardefs declarations with data structure invariants that ex-
press additional constraints on the valid abstract and concrete states of the priority
queue. The PriorityQueue class contains the following invariants.

e The Orderedlnv invariant expresses the heap property. It indicates that the
priority of every node in an initialized priority queue is greater than or equal
to the priority of its children.

e The Cardlnv invariant gives the relationship between the length field of an ini-
tialized PriorityQueue object and the abstract state of the queue. It indicates
that length corresponds to the cardinality of contents.

* The Capacitylnv invariant indicates that the capacity of an initialized queue is
greater than zero.

e The InitialLength invariant indicates that the length of an uninitialized queue is
zero.

e The Lengthinv invariant indicates that the length of an initialized priority queue
is in the range [0, queue..Array.length). This invariant is used to guarantee that
accesses to queue are always within bounds. It refers to the fully-qualified name
Array.length to distinguish the Array.length field from PriorityQueue.length.

e The NonNulllnv invariant indicates that, for an initialized priority queue, all ele-
ments of queue that are in use are non-null. This invariant is used to guarantee
the lack of null dereferences when accessing elements of queue.

e The Distinctlnv invariant indicates that, for an initialized priority queue, all
elements of queue that are in use are distinct.

e The Hiddenlnv invariant indicates that, for an initialized priority queue, queue
is in the set Priority.hidden. This invariant makes it possible for public methods
that modify arrays referred to by queue to soundly omit arrayState from their
respective modifies clauses. Jahob ensures that hidden objects remain private to
the class, and generates frame conditions that permit the modification of hidden
arrays.

* The Injlnv invariant indicates that queue is injective (i.e. no two priority queue
objects share the same queue array). This property is necessary to ensure that
when the queue of a PriorityQueue object is modified, all other PriorityQueue
objects remain unchanged.



e The Contentslnj invariant indicates that no two nodes in the queue may store the
same object and priority. This property is related to the fact that the priority
queue exports a map interface that maps objects to priorities. To implement a
queue that could contain more than one occurrence of the same object-priority
pair, either its interface would be a set of triples, where each triple denotes an
object, a priority, and the number the times that object-priority pair occurs
in the queue, or else any remove operation would have to remove all instances
of the same object-priority pair from the queue. Otherwise, it would not be
possible to completely characterize the behavior of the remove operation.

Although the vardefs declarations and data structure invariants of the Priori-
tyQueue class do not contain explicit references to the receiver object this, Jahob
automatically resolves implicit references, as is standard in Java. For example, Jahob
automatically resolves init in Cardinv to this..init. When an invariant contains either
an explicit or implicit reference to the receiver object, Jahob automatically quantifies
that invariant over all allocated instances of the class. For example, Cardlnv contains
init, length, and contents, all of which implicitly refer to this. Since we want to ensure
that Cardlnv holds for all allocated instances of the PriorityQueue class, Jahob auto-
matically quantifies Cardinv to produce the following formula, where alloc refers to
the set of all allocated objects.

Vthis.this E PriorityQueue A this c alloc A this..init

this..length = card(this..contents)

Jahob performs the same transformation for all invariants that contain implicit refer-
ences to the receiver.

Note that many of the invariants in the PriorityQueue class have counterparts in our
other data structure implementations. In general, data structures whose contents are
ordered will have ordering invariants like Orderedlnv. Data structures that support
size operations will have an invariant like Cardlnv that expresses the relationship
between the number of elements stored in the data structure and the field that keeps
track of this value. Data structures implemented using arrays will have invariants
like Lengthinv, for ensuring that array accesses are within bounds, and some form of
Hiddeninv, to enable more accurate method contracts. Regardless of whether the data
structure is array-based, most will require some sort of injectivity invariant, expressing
the lack of sharing between different instances (such as Injinv), and between different
components of the same instance (such as Distinctinv). In some cases, the same
invariant may express both properties. Most data structures will also require some
form of NonNulllnv to ensure the lack of null dereferences. Although many of these
invariants seem obvious, it often took a failing verification condition before we realized
that they were part of our assumptions about the implementation. Because there is
so much overlap between the types of invariants in different data structures, it may
be possible to leverage common patterns to automatically generate these invariants.



public PriorityQueue( int initialCapacity )
*: requires ",init A 0 < initialCapacity"

modifies init , contents, capacity
ensures " init A contents - 0 A capacity = initialCapacity" *

public void add(Object ol, int p1)
*: requires " init A ol : null"

modifies contents, capacity
ensures "contents = old contents U {(o1, p1)} A

capacity 2 old capacity" *7

public void clear ()
*: requires " init"

modifies contents
ensures " contents = 0" *7

public Object peek()
*: requires " init"

ensures "(contents = 0 result = null) A

(contents # 0
(1p. (result ,p) c contents A

(Vx y.(xy) c contents -+ p > y)))" *7

public Object polI()
*: requires "init"

modifies contents
ensures " (old contents = 0 -+

contents = old contents A result=null) A
(old contents # 0 --

(3p. (result ,p) c old contents A
contents = old contents - {(result p)} A
(Vx y. (x,y) c old contents - p > y)))" *7

public int size ()
*: requires " init"

ensures " result = card (contents)" *7

Figure 5-2: Exported Operations of the PriorityQueue Class



5.4 Method Contracts for Public Methods

Method contracts capture the behavior of methods in terms of their effect on the
abstract and concrete state of the program. Figure 5-2 presents the method con-
tracts for all the public methods of the PriorityQueue class. These methods constitute
the interface that the PriorityQueue class exports to its clients. The interfaces for
these methods are modeled after the interfaces for the corresponding methods in
java.util.PriorityQueue.

5.4.1 The PriorityQueue Constructor

The PriorityQueue constructor is a public constructor that takes an initialCapacity and
creates a new, empty, initialized PriorityQueue object. The requires clause indicates
the constructor must be invoked on an uninitialized priority queue and that the
initialCapacity parameter must be greater than zero. The modifies clause indicates
that the constructor may modify the init, contents, and capacity components of the
priority queue under construction. The ensures clause indicates that the resulting
priority queue is initialized and empty, with capacity equal to initialCapacity. By
requiring that the priority queue under construction be uninitialized, the constructor
may omit the initialization of the PriorityQueue.length field, which is known to be
zero under Java semantics, and ensured by the InitialLength invariant, which applies
to uninitialized priority queues.

Note that the init specification variable is user-defined, and, as such, must be
explicitly mentioned in the precondition and postcondition of the constructor, as
Jahob has no special knowledge about its meaning. However, this pattern is quite
common, and it may be useful to make init a system-defined specification variable
that is implicitly conjoined to the preconditions and postconditions of constructors
and methods, either negatively or positively, as appropriate.

5.4.2 The add() Method

The addO method is a public instance method that adds an object ol to the priority
queue with priority p1, and may also increase the capacity of the queue. The requires
clause indicates that the method must be invoked on an initialized priority queue,
and that the argument ol must be non-null. The modifies clause indicates that the
method may change both the contents and capacity components of the abstract state
of the queue. The ensures clause indicates that the method adds the pair (ol,pl)
to the contents of the queue and that the capacity of the queue after the method
executes is greater than or equal to the capacity before the method executes. The
expressions old contents (and old capacity) in the ensures clause refer to the value of
contents (and capacity) before the method is invoked.

Note that we modeled the priority queue with a notion of the current maximum
capacity. It is also possible to strengthen or weaken the method contract, either
by specifying the exact conditions under which the capacity changes, and/or how it
changes, or to remove the capacity component of the abstract state altogether from the



specifications. The weaker specification provides less information, but the stronger
specification may expose details of the implementation that the developer may wish
to change down the line. In this example, we verified an interface that provides some
additional information but does not excessively constrain the implementation.

5.4.3 The clearO Method

The clearO method is a public instance method that removes all the entries from
the priority queue. The requires clause indicates that clear( must be invoked on an
initialized priority queue. The modifies clause indicates that clearO may modify the
abstract state component contents of the given queue. The ensures clause indicates
that invoking clearO results in an empty priority queue.

5.4.4 The peek( Method

The peek() method is a public instance method that returns an element in the queue
with the maximal priority. The requires clause indicates that peek( must be invoked
on an initialized priority queue. The ensures clause indicates that if the priority queue
is empty, then peek() returns null. If the priority queue is not empty, then peek()
returns an element in the queue that corresponds to the highest priority. There is
no modifies clause because peek( does not modify the program state. The keyword
result in the ensures clause refers to the method's return value. Our priority queue
implementation allows for multiple objects in the queue with the same priority. So
while peek( will return an element with the maximal priority, there may be more
than one such element.

5.4.5 The poll() Method

The poll() method is a public instance method that, like the peek( method, returns
an element in the queue with the maximal priority. But, unlike the peek( method, it
also removes the returned element from the queue. The requires clause indicates that
poll() must be invoked on an initialized priority queue. The modifies clause indicates
that poll() may change the contents of the queue. The ensures clauses identifies two
possible cases. In the first case, the contents of the priority queue is empty. In this
case, contents remains unchanged, and the method returns null. In the second case,
the priority queue is not empty. In this case, the method removes and returns an
object from the queue with the maximal priority.

5.4.6 The sizeO Method

The size( method is a public instance method that returns the number of objects
currently in the queue. The requires clause indicates that the method must be invoked
on an initialized priority queue. The ensures clause indicates that the method returns
the cardinality of the queue's contents. The size( method has no modifies clause
because it does not change the state of the queue.



5.5 Method Contracts for Private Methods

Figures 5-3 and 5-4 present the method contracts for the private methods of the
PriorityQueue class. These methods implement various functionalities that are needed
to support the public operations of the priority queue data structure.

5.5.1 The parentO Method

The parentO method is a private static method that computes the parent index for
a node. It takes an index i and returns the index corresponding to the parent of the
node at i. It is used by the private method addOnlyO to access the parent of a newly
added node, to determine whether to move the added node higher up in the binary
heap. The requires clause of the method contract for parentO indicates that it must
be invoked on an index that is greater than zero. This is because zero corresponds to
the root node, which has no parent, while negative indices are invalid.

The ensures clause indicates that the index returned by parentO is in the range
[0, i) and is the index of the parent of the node at i. Although the former property
is a consequence of the latter, it is needed by all the methods that invoke parentO to
ensure that the result is a valid index into the queue array. Including this property
in the postcondition of parent( results in Jahob verifying it once for parentO, instead
of verifying it once for every method that calls parento. The ensures clause also
indicates that parentO does not allocate any objects. This property is necessary in
the verification of methods that call parentO, to prove properties that depend on
the value of alloc. These properties include frame conditions as well as many of the
priority queue invariants, which are quantified over objects in alloc. The parent(
method has no modifies clause as it does not change the program state.

5.5.2 The leftO Method

The left( method is a private static method that takes an index i and returns the
index corresponding to the left child of the node at i. The private method heapify()
invokes leftO to access the left child of a given node (to determine whether that node
needs to be swapped with its left child to restore the binary heap property after the
removal of a node). The requires clause indicates that leftO must be invoked on an
index that is greater than or equal to zero. The ensures clause indicates that leftO
returns an index that is greater than i and corresponding to the left child of the node
at i. It also indicates that leftO does not allocate any objects. There is no modifies
clause because the leftO method does not change the program state.

5.5.3 The right( Method

The right( method is the dual of left(. It is a private static method that takes an
index i and returns the index corresponding to the right child of the node at i. The
private method heapify() invokes right() to access the right child of a given node (to
determine whether that node needs to be swapped with its right child to restore the



private static int parent( int i)
: requires "0 < i"

ensures "0 < result A result < i A
(I 2 * result + 1 V i = 2 * result + 2) A
alloc = old alloc" */

private static int left(int i)
: requires "0 < I"

ensures " result = 2 * i + 1

private static int right(int i)
: requires "0 < i"

ensures " result = 2 * i + 2

A alloc = old alloc" *7

A alloc = old alloc" */

private boolean contains(Object ol, int p1)
*: requires " init A ol # null A theinvs"

ensures " result = ((ol, pl) E contents) A theinvs" */

private void
*: requires

modifies
ensures

resize ()
" init A theinvs"
queue, capacity , arrayState
length < capacity A
(Vx. x E PriorityQueue - x. .contents = old
(Vx. x C PriorityQueue - x.. init = old (x.
(Va i. a f queue -+ a.[i] = old (a.[i])) A

(x..contents)) A
. nmit )) A

theinvs" */

private void addOnly(Object ol, int p1)
*: requires " init A ol f null A (ol, p1) V contents A

length < capacity A theinvs"
modifies contents, length , arrayState , ob, pr
ensures "contents = old contents U {(o1 pl )} A

length = old length + 1 A
(Vx. x E old alloc A x E PriorityQueue A x V hidden A

x f this -+ x..contents = old (x..contents)) A
(Va i. a # queue -+ a.[i] old (a.[i])) A theinvs" *7

Figure 5-3: Private Methods of the PriorityQueue Class (continued in Figure 5-4)



private void
/*: requires

heapify(int i)
" inIt A 0 < i A i < length A
comment ''GlobalOrderingPre
(Vk j .(0 < k A k < length A k # I A 0 < j A j

((j = 2*k + 1) V (j = 2*k +
queue.[k].. pr > queue.[j].

comment ' LocalOrderingPre '
(Vx.((0 < x A ( i = 2*x + 1 V i

(((2* i + 1 < length) -+

queue.[x].. pr > queue.[(2*
((2*1 + 2 < length) -+
queue.[x].. pr > queue.[(2*

comment ''OrderedFrame ' '

< length A
2)) -+

. pr)) A

= 2*x + 2)) -

i + 1)].. pr) A

I + 2)].. pr )))) A

(Vpq. pq E PriorityQueue A pq E alloc A pq.
pq # this -+
(Vi j. 0 < i A i < pq.. length A 0 j A

j < pq.. length A (j = 2*i + 1 V j 2* i
pq..queue.[i]..pr > pq..queue.[j ].. pr))

theinv Cardinv A theinv CapacityInv A
theinv InitialLength A theinv Lengthlnv A
theinv NonNullInv A theinv Distinctinv A
theinv Nullinv A theinv Hiddeninv A theinv
theinv Contentslnj"

modifies arrayState
ensures "(Vpq. pq.. nodes old (pq.. nodes)) A

(Va I. a #A queue -+ a.[i] = old (a.[i])) A
alloc old alloc A theinvs" */

. init A

2) -

lnjlnv A

private void inductProof()
*: requires " init A 0 < length A theinvs"

ensures "(Vk. 0 < k A k < length -- queue.[0].. pr > queue.[
theinvs" */

k].. pr) A

Figure 5-4: Private Methods of the PriorityQueue Class (continued from Figure 5-3)



binary heap property after the removal of a node). The requires clause indicates that
right( must be invoked on an index that is greater than or equal to zero. The ensures
clause indicates that right() returns an index that is greater than i and corresponds
to the right child of the node at i. It also indicates that right() does not allocate any
objects. There is no modifies clause because the right() method does not change the
program state.

5.5.4 The containsO Method
The containsO method is a private instance method that takes an object ol and a
priority p1, and returns a boolean value corresponding to whether the pair (ol, p1) is
in the priority queue. It is used by the addO method, to determine whether an object-
priority pair being added is already in the queue. The requires clause indicates that
contains must be invoked on an initialized priority queue, that ol must be non-null,
and that the invariants of the priority queue (theinvs) must hold. The ensures clause
indicates that contains returns true if (ol, p1) is in the queue, and false otherwise. It
also indicates that containsO preserves the invariants of the priority queue.

5.5.5 The resizeO Method

The resizeO method is a private instance method that increases the capacity of the
priority queue. It is used by the addO method to increase the size of the array queue
to accommodate a new entry beyond the current capacity of the queue. The requires
clause indicates that resizeO must be invoked on an initialized priority queue and that
the priority queue invariants must hold. Unlike public methods, for which invariants
are implicitly conjoined to both preconditions and postconditions, private methods
are not required to either depend on, or restore invariants, since the data structure
may be in an inconsistent state as it is being modified by private methods.

The modifies clause indicates that resizeO may modify the queue field and the
abstract state component capacity of the given priority queue. It also indicates that
resizeO may modify the contents of arrays. The queue field is included in the modifies
clause because resize() is a private method; the modifies clause of a private method
must include all state that may be modified, while that of a public method need only
include public state that may be modified. The ensures clause indicates that the effect
of invoking resize() is to increase the capacity of the queue such that it is greater than
the number of objects currently in the queue. It also indicates that resizeO preserves
the contents and init components of all PriorityQueue objects, that the only array that
the method may modify is the queue array of the given priority queue, and that the
invariants of the priority queue are restored when the method returns.

Jahob automatically verifies frame conditions for unmodified dependent variables,
such as contents and init, but the system does not automatically include such frame
conditions as part of the instantiated postcondition for calls when the variables are
defined in terms of state that is modified. The explicit frame conditions in the post-
condition is therefore used for verifying methods that call resize(. The postcondition
of resizeO also includes an explicit frame condition for arrays. This is needed to verify



the frame condition for add(), whose method contract allows for the modification of
arrays only if they are in hidden.

5.5.6 The addOnly() Method

The addOnly( method is a private instance method that adds an object to the priority
queue, given that the object-priority pair being added is not already in the queue.
It is used by the addo method to perform the actual addition into the queue. The
requires clause indicates that the method must be invoked on an initialized priority
queue, that the object ol being added must be non-null, and that the object-priority
pair (ol, pl) being added must not already be in the queue. It also requires that the
capacity of the queue be greater than the number of objects already in the queue,
and that the priority queue invariants hold.

The modifies clause indicates that the method may modify the abstract state
component contents and the length field of the given priority queue. It also indicates
that the method may modify the contents of arrays, and the values of the Node.ob
and Node.pr fields. The ensures clause indicates that the effect of addOnly() is to
add the pair (ol, p1) to the contents of the queue and that the length field of the
given queue increases by one. It also indicates that the abstract component contents
is unchanged for priority queues other than the receiver object, that the only array
modified is the queue array of the given priority queue, and that the priority queue
invariants are restored at the end of the method.

The purpose of having a separate addOnly( method, as opposed to implementing
its behavior directly in addo, is to simplify the verification task. Methods that
directly examine or modify the concrete state of the data structure are more difficult
to verify, as are larger methods. In this case, the functionality of add( is divided
between containsO, resize(, and addOnly(.

5.5.7 The heapify() Method

The heapify( method is a private instance method that recursively restores the binary
heap property on a priority queue for which the property holds for all but one node. It
is used by the poll() method to restore the binary heap property after the root node has
been removed and replaced with the right-most leaf node. The requires clause indicates
that heapify() must be invoked on an initialized priority queue and that the parameter
i (corresponding to the node for which the binary heap property does not hold) must
be in the range [0, length) of the nodes in use by the queue. The conjunct with label
GlobalOrderingPre indicates that the binary heap property must hold for all nodes in
the queue other than the node at index i. The conjunct with label LocalOrderingPre
indicates that the parent of the node at i must be in the correct position in the
heap relative to the children of the node at i. The conjunct with label OrderedFrame
indicates that the binary heap property holds for all PriorityQueue objects other than
the receiver. The requires clause also indicates that all other invariants of the priority
queue must hold.



The modifies clause indicates that the method may modify the contents of arrays.
The ensures clause indicates that heapify( preserves the abstract state component
nodes for all objects and that the only array it modifies is the queue array of the
given priority queue. It also indicates that heapify() does not allocate any objects
and that the priority queue invariants hold at the end of the method.

Although the size of the heapify() precondition is somewhat daunting, most of the
conjuncts are simply named invariants of the class. The main source of complexity
comes from specifying the partially-violated ordering invariant. The explicit state-
ment of the relevant properties in the precondition is nevertheless useful for precisely
documenting how the ordering invariant is violated and the parts of the state for
which it is maintained. Fortunately, this precondition occurs in a private method, so
clients of the data structure are not affected.

5.5.8 The inductProof() Method

The inductProofo method is a proof method. It is private instance method that
contains no Java statements, only proof commands. It inductively proves that the
root node of the priority queue corresponds to an element in the queue with the
maximal priority and is called by both the peek( and poll() methods. Its requires
clause indicates that the proof in inductProofO applies to an initialized priority queue
with length greater than zero, given that all the priority queue invariants hold. The
ensures clause indicates what the proof guarantees. Specifically, inductProofO shows
that the root node corresponds to an element in the queue with the maximal priority.
It also indicates that the method preserves the priority queue invariants. There is no
modifies clause because the method does not change the program state.

Encapsulating the proof in a method not only makes the code easier to read, it also
makes it possible to reuse the same proof (in other contexts where the precondition
of the proof method holds) by simply invoking the proof method. The inductProof()
method is invoked by both the peek( and poll() methods to establish that the zeroth
element of the queue array holds an element with the maximal priority. Note that
inductProofo has the receiver as an implicit parameter, so that the proof is not only
encapsulated but also parameterized.

5.6 Implementation and Verification

This section illustrates the implementation and verification of the PriorityQueue class
using the example of the peek() and inductProofO methods.

5.6.1 The peeko Method

Figure 5-5 presents the body of the peek( method. The peek( method returns an
object from the priority queue with the maximal priority, or null if the queue is empty.
It does this by first testing the length field of the priority queue. If length is zero, then
the queue is empty, and the method returns null. Otherwise, peek( returns the ob



1 public Object peek()
2 7*: requires "init"
3 ensures "(contents = 0 - result = null) A
4 (contents # 0-
5 (1p.(result ,p) c contents A
6 (Vx y.(x,y) c contents - p > y)))" *7
7{
8 if (length = 0) return null;
9

10 inductProof();
11
12 /*: note InContents: " (queue . [0].. ob,queue . [0].. pr) c contents"
13 from ProcedurePrecondition , FalseBranch , thisType , nodes-def,
14 contents-def; */
15 /*: witness " queue . [0].. pr" for
16 PostCond: "3p.(queue.[0]..ob,p) c contents A
17 (Vx y.(x,y) e contents - p > y)"; *
18 return queue[0].ob;
19 }

Figure 5-5: PriorityQueue Proof Language Example

field of the zeroth element of queue. This element is guaranteed by the binary heap
property to hold an object in the queue with the maximal priority. (Ignore, for the
moment, the inductProof( method, which we will discuss shortly.)

To verify peek(, Jahob must ensure that its postcondition holds. Unfortunately,
the provers are unable to automatically establish the postcondition for the case where
the method returns an object associated with the maximal priority. In part this is
because the relevant portion of the postcondition contains an existentially quantified
formula, and many of the provers have difficulty proving this type of formula. But
the more serious problem is that to show that the zeroth element of queue has the
maximal priority requires an inductive proof, which the automated provers are unable
to perform. In the absence of developer guidance, the provers are therefore unable to
verify the peek( method.

The Witness Command

We solve this problem using the witness and note commands from Jahob's integrated
proof language. The witness command in line 15 addresses the existential quantifier in
the postcondition, by identifying queue. [0]..pr as satisfying the existentially quantified
portion of the postcondition. This command directs Jahob to prove that queue.[0]..pr
is indeed the witness-i.e. that (queue.[0]..ob, queue.[0]..pr) E contents A (Vxy.(x, y) E
contents -+ p > y) holds.

The Note Command

By itself, the witness command is not sufficient for enabling the provers to establish
the desired postcondition. One reason for this is that irrelevant assumptions in the



verification conditions create such a large search space that the provers may fail to
successfully explore it in a reasonable amount of time. The optional from clause in
note commands addresses this problem, by identifying the relevant assumptions. The
note command in line 12 directs Jahob to prove an intermediate lemma and to label
the proved lemma InContents. This lemma captures the first of two conjuncts in the
property Jahob needs to prove to establish that queue. [0]..pr is an appropriate witness
for the existentially quantified portion of the postcondition. The from clause in this
note command eliminates irrelevant assumptions by identifying the properties that
the provers need to use to establish InContents-specifically, 1) the precondition of the
method, 2) the negation of the branch condition, 3) the type of the receiver object and
the fact that it is allocated, and 4) the definitions of the specification variables nodes
and contents. All of these facts are properties that Jahob makes available by default
through standard labels. With this guidance, the theorem provers easily establish
the InContents lemma, which is then added to the assumption base and available for
subsequent reasoning.

Call to inductProof

The second conjunct that Jahob needs to prove requires an inductive proof to establish
that the zeroth element of queue has the maximal priority. This is necessary because
the priority queue ordering property, Orderedlnv, is a local property that establishes
the ordering between a parent and child node in the heap. The property Jahob needs
to establish-that the root node has the maximal priority-is a global property of
the queue that follows inductively from Orderedlnv. 4

The proof of this property is encapsulated in the inductProof( instance method.
The peek() method calls inductProofO using a standard Java method call, which
instantiates the postcondition of inductProofO in peek() for the receiver object. This
postcondition provides the necessary guidance that the provers need to prove the
second conjunct of the pickWitness command. The pickWitness command is then
able to establish the existentially quantified portion of the postcondition. From that
result, the provers are able to prove that the postcondition of peek( holds.

5.6.2 The inductProofO Method

Figure 5-6 presents the body of the inductProofO method. It contains a very detailed
proof, written in Jahob's proof language, which is also the longest proof of a single
property in our set of benchmark programs. The method contract for inductProofO
captures the precondition and postcondition for the proof. The requires clause indi-
cates that the proof applies to an initialized priority queue object with length greater
than zero, provided that all of the priority queue data structure invariants hold. The

4It is also possible to specify the priority queue with the global ordering property as an invariant,
but the local property would still be necessary for inductively re-establishing the global property
whenever objects are added to the heap, effectively moving the inductive proof from the poll()
method to the addo method.



1 private void inductProof()
2 7*: requires " init A 0 < length A theinvs"
3 ensures " (Vk.0 < k A k < length -
4 queue.[0].. pr > queue.[k].. pr) A theinvs" *7
5{
6 {
7 7*: induct inGeneral: "Vx.x < z A 0 < x A x < length -

8 queue.[0]..pr > queue.[x}..pr" over z::int; *7
9 {

10 7*: assuming InductHyp: "Vx.x K z A 0 K x A x < length
11 queue.[0].. pr > queue.[x].. pr"; */
12 {
13 77: pickAny x:: int suchThat "x K z+1 A 0 K x A x < length"
14 {
15 77: assuming EqHyp: " x = z + 1";
16 {
17 77: assuming OddHyp: " x mod 2 1"
18 77: note OddParent: "3 y. y + y + 1 = x" from OddHyp;
19 {
20 77: pick Witness oddp:: int suchThat "oddp + oddp + 1 = x";
21 77: note ParentGe: "queue.[oddp].. pr 2 queue.[x].. pr";
22 77: note ParentInduct: "queue.[0].. pr > queue.[oddp].. pr";
23 77: note OddGe: "queue.[0].. pr > queue.[x].. pr";
24 }
25 77: note OddCase: "queue.[0].. pr > queue.[x].. pr";

26 }
27 {
28 77: assuming EvenHyp: " x mod 2 = 0"
29 ...
30 77: note EvenCase: "queue.[0].. pr > queue.[x].. pr"

31 }
32 7*: note EqConc: "queue.[0].. pr > queue.[x].. pr"
33 from EvenCase, OddCase; *7
34 }
35 77: note InductConc: "queue. [0.. pr > queue. [x] .. pr" forSuch x;
36 }
37 7*: note InductCase: "Vx.x K z+1 A 0 < x A x < length -
38 queue.[0].. pr > queue.[x].. pr"; *
39 }
40 }
41 7*: note MaxinQueue:
42 "Vk.0 < k A k < length -+ queue.[0].. pr > queue.[k].. pr"

43 from InGeneral; *7
44 }

Figure 5-6: PriorityQueue Proof Method Example



ensures clause specifies what the method proves-that the zeroth element of queue
has the maximal priority, and that the priority queue invariants are preserved.

Applying Induction

The proof begins with an induct block which instructs Jahob to apply induction to
the formula Vx.x < z A 0 < x A x < length -+queue.[0]..pr > queue.[x]..pr over z by
proving the base and inductive cases of the induction. The base case of the induction
is Vx.x < GAG < xAx < length -* queue.[0]..pr > queue.[x]..pr. The automated provers
discharge this case automatically, requiring no proof commands. But the provers
are unable to discharge the inductive case automatically. The proof commands that
follow provide the guidance necessary for the provers to successfully prove this case.

The Inductive Case

The inductive case is given by the following formula:

(Vx.x < z A 0 < x A x < length --+queue.[0]..pr > queue.[x]..pr) --+
(Vx.x < z + 1 A 0 x A x < length - queue.[0]..pr > queue.[x]..pr)

Its proof begins with an assuming command. This command creates a hypothetical
block where the inductive hypothesis InductHyp (the left hand side of the above im-
plication) is true. The proof commands that follow work within this context to prove
the right-hand side of the implication.

The PickAny Command

The first command in this block is a pickAny command that selects an arbitrary x for
which x < z + 1 A 0 < x A x < length. The task now is to prove that queue. [0]..pr >
queue.[x]..pr. There are two cases to consider. In the first case, x < z + 1. This
case follows directly from the inductive hypothesis. The provers are able to prove it
automatically without the need for any proof commands. In the second case, x = z+ 1.
The following proof commands provide the necessary guidance for the provers to prove
this case.

The Odd Case

First, an assuming command with the label OddHyp creates a hypothetical block for
the case when x is odd-i.e. when x mod 2 = 1. A note command with a from
clause instructs Jahob to prove the intermediate assertion OddParent using only the
hypothesis Odd Hyp. OddParent indicates that there exists an index corresponding to
the parent of the node at index x. A pickWitness command names this index oddp. A
series of note commands follow. The first note command, at line 21, directs Jahob to
establish that the priority of the (parent) node at index oddp is greater than or equal
to the priority of the (child) node at index x, and to label the proved lemma ParentGe.
This property follows from the local ordering invariant Orderedlnv. The second note
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command, at line 22, directs Jahob to prove that the priority of the (root) node at
index 0 is greater than or equal to the priority of the node at index odd p, and to label

the proved lemma ParentInduct. This property follows from the inductive hypothesis.

Finally, the third note, at line 23, directs Jahob to prove the desired result-that the

priority of the root node is greater than or equal to the priority of the node at x-and

to label the proved lemma OddGe. This property follows from the previous two note

commands. In each of these note commands, the provers are able to establish the

result without a from clause specifying which facts to use. Finally, the note command

at line 25 (labeled OddCase) concludes the proof by closing the OddHyp assuming
block.

The Even Case

The proof for an even index x proceeds in a similar way, and results in the proved

lemma EvenCase. The note command at line 32 combines the even and odd cases

to conclude the EqHyp assuming block. The note commands at line 35 and 37 close

the enclosing pickAny and assuming blocks, respectively, to conclude the proof of the

inductive case. The result is the successful proof of the following property, which has

the label InGeneral from the induct command at line 7:

Vz.0 < z -+(Vx.x < z A 0 < x A x < length -* queue.[0]..pr > queue.[x]..pr)

A final note command at line 41 with label MaxlnQueue directs Jahob to use only
the proved lemma InGeneral to conclude that the zeroth element of the queue has the

maximal priority-i.e., that Vk.0 < kA k < length -> queue.[0]..pr > queue.[k]..pr. This

is the property of interest in the postcondition of inductProofo, which is now proved.

5.7 Discussion

The priority queue is an unusual data structure in that it contains an implicit tree

structure, encoded within an array. In that sense, it is both an array-based data
structure and a recursive data structure. It was one of the more challenging data

structures to verify, due to the combination of structural and ordering invariants

maintained by the data structure, and the use of layered abstraction. Data structures

of similar complexity, such as the hash table and binary search tree, were similarly
challenging to verify.

The verification effort centered on: 1) properties involving the abstract component

content, 2) the cardinality invariant Cardlnv, and 3) the inductive proof showing

that the zeroth element of queue corresponds to the maximal priority. Properties

involving content include frame conditions showing that content did not change for

other priority queue objects, and postconditions describing the updated state for the

given priority queue. Both types of properties involved proving equivalence between

sets. It was often necessary to show this equivalence by considering elements in one set

and proving inclusion in the other set, and vice versa. This pattern occurs sufficiently

often in our verified data structures that it may be beneficial to include a translation
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for set equivalences within Jahob to lessen the proof burden on the developer. It was
also common to use case analysis in proof commands involving content, to direct the
provers to consider the case of the receiver object separately from all other objects. We
also used this pattern for the verification of Cardlnv. Verification for the cardinality
invariant was, in general, straightforward. The proof commands involved identifying
the different cases, and introducing the relevant intermediate lemmas that the simple
cardinality prover needed to re-establish the invariant.

The inductive proof for the priority queue is the only inductive proof in the data
structures we verified. It is also one of the more interesting and involved proofs, due
to properties of the implicit tree structure (such as the need to consider even and
odd cases). The large number of proof commands needed is partly due to the large
number of arithmetic properties involved-both for the array indices, and for the
ordering of priorities. In general, the first-order provers E and SPASS are adept at
handling properties involving universal quantifiers, but are typically unable to handle
arithmetic properties. The reverse is true for the SMT provers and for the Isabelle
proof script. The net effect is that developer guidance is often needed to coordinate
the efforts of multiple provers when the verification conditions involve both universal
quantification and arithmetic properties, as in the priority queue. Since all of the
data structures we verified involve some universally quantified properties, the data
structures that use proof commands most extensively are those that also maintain
arithmetic invariants.

5.8 Summary

In this chapter, we show how we use Jahob to specify and verify a PriorityQueue
class that implements a priority queue data structure. Our priority queue is imple-
mented using a binary heap stored in an array. The abstract state of the queue is
represented using a set of object-priority pairs, corresponding to the contents of the
queue. The specification includes data structure invariants that express constraints
on the concrete and abstract state of the queue. These include constraints on the
ordering of the elements in the queue, injectivity invariants that express the lack of
sharing between different priority queues and different parts of the same queue, as
well as constraints on the values of certain fields. The invariants are necessary for
verifying important properties of the data structure, including method contracts, the
invariants themselves, and the lack of null dereferences and array bounds violations
in the implementation. The PriorityQueue class exports a number of different public
operations on the queue, including addO, peek(, and poll(), which add, examine, and
remove elements from the queue, respectively. These operations are supported by
a number of private methods, which are also verified. We show, in detail, how we
verified the peek() method using Jahob's integrated reasoning system and the com-
mands of the proof language. Part of this proof is implemented as a proof method
which encapsulates a parameterized, inductive proof, making it possible to soundly
instantiate the same proof in two different contexts within the class.

Although the verification of the priority queue is unusual in that it involved an
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interesting inductive property, in other respects, it is similar to other complex data

structures that we have verified. We used proof commands to guide the provers in
considering case splits (between the receiver object and other objects), in proving set

equivalences, and in decomposing the proof into the appropriate intermediate lemmas.

In particular, the combination of universally quantified properties and arithmetic

properties in the verification resulted in the need for proof commands to coordinate

the efforts of different provers to handle the two different types of properties. In

our experience, provers adept at handling universal quantifiers are generally weak in

proving properties involving arithmetic, and vice versa. As data structures that con-

tain an unbounded number of objects often involve universally quantified properties,
those data structures that also maintain arithmetic invariants, like the priority queue,
tend to require a substantial number of proof commands to verify.
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Chapter 6

Association List

In this chapter, we describe an association list data structure which we have verified

using Jahob. The AssociationList class implements a map using a singly-linked list.

In terms of implementation, it is one of the simpler data structures that we have

verified. However, the invariants that it maintains, which enable it to implement a

map interface, are non-trivial. We use the association list to illustrate the specifi-

cation and verification of a recursive data structure with non-trivial properties, that
nevertheless verifies without the use of any proof commands.

6.1 The Concrete State

Figure 6-1 presents part of the AssociationList class and a Node class which stores

the key-value pairs in the list. The concrete state of the association list consists of a

singly-linked list of Node objects, with the private instance field first referring to the

first node in the linked list. Each Node object consists of a key field storing the key

for a mapping in the association list, a value field storing the corresponding value, and

a next field storing the next Node object in the linked list. The claimedby annotation

in the declaration of the Node class indicates that only methods in the Association List
class may modify the fields and specification variables of Node objects.

6.2 The Abstract State

Unlike the priority queue data structure, whose abstract state is represented using

only dependent variables, the abstract state of the association list is represented

using a combination of ghost variables and dependent specification variables. The

specification variables in the priority queue consist of the dependent variable contents,
representing the set of key-value pairs stored in an association list, and the ghost

variable con, representing the set of key-value pairs stored in a linked list starting

at a given Node object. The ghost variable con allows us to use recursion to encode

properties that depend on reachability. 1 The initial value of con is set to the empty

1Alternatively, we could specify con as a dependent variable using the transitive closure operator.

In that case, we would need to use the MONA decision procedure, which is able to handle properties
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public /*: claimedby AssociationList */ class Node {
public Object key;
public Object value;
public Node next;
/: public ghost specvar con "(obj * obj) set" = "0"

public class AssociationList {
private Node first;

public specvar contents :: "(obj * obj)
vardefs "contents = first .. con";

set" ;

static specvar edge :: "obj 4 obj z bool"
vardefs "edge = (Ax y. (x E Node A y = x..

(x E AssociationList A y
next) V
= x.. first))";

invariant ConDef: "Vx. x c Node A x c alloc A x f null -+

x..con = {(x..key, x..value)} U x.. next..con A
(Vv. (x.. key, v) x.. next .. con)";

ConNull: " null .. con

ConNonNull:
z C Node A z e alloc
ll A y # null";
ConAlloc:

z C Node A z c alloc
loc A y C alloc"

Inj/nv:
. y f null A edge x1
Map/nv:

. (k, vO) E contents
NonNull/nv:

= 0" ;

A (x, y) e z.. con

A (x, y) c z..con-+

y A edge x2 y- x1 x2";

A (k, v1) c contents -- vO v1";

, v) E contents - k # null A v f null" ; */

Figure 6-1: Association List Example
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set to ensure that the priority queue invariants hold in the initial state.

The specification also declares a dependent specification variable edge, which is

a static specification variable that serves as a shorthand for a lambda expression.

The result of applying this lambda expression to an object is a boolean value that

denotes whether: 1) a next edge occurs between two Node objects, or 2) a first edge

occurs between an AssociationList object and a Node object. The use of edge in

the invariants of the AssociationList class highlights how specification variables that

serve as shorthands can enable specifications that are more concise and easier to

understand.

6.3 The Abstraction Function and Invariants

Since the abstract state of the association list consists of both ghost variables and

dependent variables, the abstraction function is given by a combination of vardefs dec-

larations and data structure invariants. The vardefs declarations provide components

of the abstraction function pertaining to dependent variables, while data structure

invariants provide the components pertaining to ghost variables, as well as additional

constraints on the concrete and abstract state. As such, the vardefs declaration for

contents indicates that the contents of the association list is given by first..con, the

contents of the linked list starting with the first node.
The invariants ConNull and ConDef give the definition for the abstract state com-

ponent con, using recursion to state a reachability property. The ConNull invariant,
which gives the base case, indicates that the value of con for null is the empty set.

The ConDef invariant, which gives the recursive case, indicates that, for an allocated,
non-null, Node object, con consists of the key-value pair stored at that node, plus the

value of con for the next node in the linked list. The ConDef invariant additionally

states that next..con does not contain a value for the key stored at the current node,
thus ensuring that a key occurs at most once in the list.

In addition to the invariants that comprise the abstraction function, the Associ-

ationList class contains the following invariants that specify the valid concrete and

abstract state of the association list data structure:

" The ConNonNull invariant indicates that every key and value in a pair in the

set con are non-null. This ensures that only non-null keys and values are stored

in nodes.

" The ConAlloc invariant indicates that every key and value in a pair in con are

allocated. This invariant makes it possible to apply other invariants in the class

to a Node object. As described in previous chapters, invariants that contain

implicit references to the receiver are automatically universally quantified over

all allocated objects of the class. Most of the time, the objects used in the

involving transitive closure. Here we demonstrate how to encode transitive closure as a recursive

property using ghost variables. This approach enables the use of first-order provers and other provers

not able to handle properties that contain the transitive closure operator.
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verification are known to be allocated, since Jahob automatically provides the
allocation information for concrete objects in the implementation. But because
con is user-defined, the system is not aware of any particular constraints on the
objects in the set, making it necessary to state this invariant explicitly.

9 The Injlnv invariant expresses an injectivity property. It indicates that every
node is either pointed to by a single first edge from an AssociationList object
or by a single next edge from another Node object. Here we use the dependent
variable edge as a shorthand, to state that Node objects are neither shared
among different association lists, nor among different parts of the same list (i.e.
the list is acyclic).

* The Maplnv invariant indicates that the association list contains no more than
one mapping for every key.

e The NonNulInv invariant that every key and value mapped in the association
list are non-null.

Although the last two invariants follow from other invariants in the class, they are
declared separately to simplify the verification. Specifically, declaring these properties
separately as invariants avoids the need for re-establishing the properties every time
they are needed in the verification. Instead, they need only be re-established when
the invariant is violated by changes in the underlying state. In general, invariants
that follow from other invariants can be useful both for documentation purposes and
for easing verification.

6.4 Method Contracts for Public Methods

Figure 6-2 presents the method contracts for all the public methods of the Association-
List class. These methods constitute the interface that the Association List class exports
to its clients. The interfaces for the AssociationList constructor and the containsKey(,
get(, isEmpty(, putO, and remove( methods are modeled after the interfaces for
the corresponding methods in the java.util.Map interface. The methods addO and re-
place() are methods not found in java.util.Map, but we include these methods because
they offer alternative interfaces that clients may find useful.

6.4.1 The AssociationList Constructor

The AssociationList constructor is a public constructor that creates a new, empty,
initialized AssociationList object. The modifies clause indicates that it may modify
the contents component of the association list under construction. The ensures clause
indicates that the resulting association list is empty. The lack of a requires clause
indicates that the constructor has no precondition.
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public Association List ()
: modifies contents

ensures " contents - 0" *7

public boolean containsKey( Object kO)
: ensures " result = (3v. ((ko, v) E contents))"

public Object get(Object kO)
*: requires "kO : null"

ensures "((result # null) -+ ((ko,

((result null) (-( v.

public boolean isEmpty()
: ensures " result = (contents = 0)"

result) c contents)) A
(kO, v) E contents)))" *7

public Object put(Object kO, Object vO)
*: requires "kO # null A vO J null"

modifies contents
ensures "contents = old contents - {(k0, result)} U {(k0

(result null -+,(3v. (kO, v) E old contents))

(result # null -+ (k0, result) E old contents)"

public Object remove(Object kO)
*: requires "kO 5 null A (3v. (kO, v) c contents)"

modifies contents
ensures "contents = old contents - {(k0, result)} A

(result = null - -,(Iv. (kO, v) c contents)) A

(result # null -+ (k0, result) E old contents)"

public void add(Object kO, Object vO)

*: requires "kO # null A vO # null A -,(Iv.
modifies contents
ensures "contents = old contents U {(k0

(kO, v) E contents)"

vO)}" */

public Object replace(Object kO, Object vO)

*: requires "kO # null A vO : null A (2 v. (kO, v) c
modifies contents
ensures "contents = old contents - {(kO, result)}

(k0, result) E old contents" */

contents)"

U {(kO, v0)} A

Figure 6-2: Exported Operations of the AssociationList Class
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6.4.2 The containsKey() Method
The containsKeyO method is a public instance method that takes a key kO and returns
a boolean value indicating whether kO has a mapping in the association list. The
ensures clause indicates that the method returns true if kO corresponds to a mapping
in the association list, and false otherwise. There is no requires or modifies clause as
containsKeyO has no preconditions and does not modify the program state.

6.4.3 The get( Method
The get( method is a public instance method that takes a key kO and returns the
value to which kO is mapped in the association list. The requires clause indicates that
kO must be non-null. The ensures clause indicates that if get( returns null, then the
association list does not contain a mapping for kO. But if get( returns a non-null
value, then the return value is the value to which kO is mapped in the association list.
There is no modifies clause since get() does not modify the program state.

6.4.4 The isEmpty( Method
The isEmpty() method is a public instance method that returns a boolean value
indicating whether the given association list is empty. The ensures clause indicates
that the method returns true if the association list is empty, and false otherwise. There
is no requires or modifies clause because isEmpty() has no precondition and does not
modify the program state.

6.4.5 The putO Method
The putO method is a public instance method that adds a mapping to the association
list. The requires clause for putO indicates that the key kO and value vO being added
must be non-null. The modifies clause indicates that putO may modify the contents
of the given association list. The ensures clause indicates that the value of contents
after invoking putO is the result of removing the pair (kO, result) from contents, and
adding the pair (kO, v0). It also indicates that if the return value is null, then the
association list did not originally contain a mapping for the key kO. But if the return
value is not null, then it is the value to which kO was originally mapped.

6.4.6 The removeO Method
The removeO method is a public instance method that removes a mapping from the
association list. The requires clause indicates that the key kO being removed must
be non-null. The modifies clause indicates that removeO may modify the contents
of the given association list. The ensures clause indicates that the value of contents
after invoking removeO is the result of removing the pair (kO, result) from contents.
As is the case for putO, the ensures clause also indicates that if the return value is
null, then the association list did not originally contain a mapping for kO. But if the
return value is not null, then it is the value to which kO was originally mapped.
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private boolean -containsKey (Object kO)
7*: requires " theinvs"

ensures " result = (Ev. ((kO, v) E contents)) A theinvs" *7

private void _add(Object kO, Object vO)
7*: requires "kO / null A vA # null A -,(v. (kO, v) c contents) A

theinvs"
modifies contents, first , "new.. key" , "new.. value" , "new.. next",

new . .con
ensures "contents old contents U {(k0, vO)} A theinvs" *7

{ ... }

private Object _remove(Object kO)
7*: requires "kO f null A (Iv. (kO, v) E contents) A theinvs"

modifies contents, first , next, con
ensures "contents = old contents - {(kO, result)} A

(kO, result) E old contents A theinvs" *7

Figure 6-3: Private Methods of the AssociationList Class

6.4.7 The addO Method

The add() method is a public instance method that adds a mapping to the association

list. It is similar to the put( method, but requires that the association list contain

no previous mapping for the given key. It is more efficient than puto and offers an
alternative interface for adding a mapping to the association list when its precondition
is known to hold. The requires clause additionally indicates that the key kO and value

vO being added must be non-null. The modifies clause indicates that it may modify
the contents of the given association list. The ensures clause indicates that it adds a

mapping for the given key-value pair to contents.

6.4.8 The replace( Method

The replace( method is a public instance method that maps an existing key in the

association list to a new value. It is similar to the putO method, but requires that the

association list already contain a mapping for the given key. It is more efficient than

put( and offers an alternative interface for adding a binding to the association list

when its precondition is known to hold. The requires clause additionally indicates that

the key k0 and value v being added must be non-null. The modifies clause indicates

that replace( may modify the contents of the association list. The ensures clause

indicates that replace( removes the previous mapping for the key from contents, adds

a mapping for the given key-value pair, and returns the previously bound value.
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6.5 Method Contracts for Private Methods

Figure 6-3 presents the method contracts for the private methods of the Association List
class. These methods implement various functionalities that are needed to support the
public operations of the association list. Notice that the contracts for these methods,
and in particular, the modifies clauses, refer to private fields and specification variables
(such as con, first, etc.) not mentioned in the contracts for the public methods of the
class. Although the contracts for the public methods are expressed only in terms
of the public state, the constraints between the public and private state of the data
structure are such that these contracts comprise a complete functional specification of
the behavior of the data structure, from the perspective of the association list client.
But for private methods, whose clients are other methods in the AssociationList class,
the contracts must also include references to the private state to be comprehensive.

6.5.1 The _containsKey() Method
The _containsKey() method is a private instance method that takes a key kO and
returns a boolean value indicating whether kO has a mapping in the association list.
It implements the functionality needed by the public containsKeyO method, and is
also invoked by the putO and remove() methods. The requires clause indicates that
containsKey() must be invoked on a non-null key kO, and that the invariants of the
association list must hold. The ensures clause indicates that _containsKey() returns
true if the association list contains a mapping for kO, and false otherwise. It also
indicates that _containsKey() preserves the association list invariants. There is no
modifies clause because _containsKey() does not modify the program state.

6.5.2 The _add() Method

The _add() method is a private instance method that adds a mapping to the associa-
tion list for a key kO that is not already mapped. It implements the functionality of
the add() method and is also invoked by putO and replace(. The requires clause of
add() indicates that it must be invoked on a key kO and a value vO that are non-null,

that the association list must not already contain a mapping for kO, and that the
invariants of the association list hold. The modifies clause indicates that _add() may
modify the abstract component contents and the first field of the given association list,
as well as the key, value, next, and con components of objects that it allocates. The
ensures clause indicates that the effect of invoking _add() is to add the pair (kO, vO)
to the contents of the association list. It also indicates that _add() re-establishes the
invariants of the association list at the end of the method.

Although the modifies clause of the _add() method lists a number of different
components, including the first field, and the key, value, next, and con components
of objects allocated by addO, as being modified, the effect of the modification on
these state components is not given in the ensures clause. Despite this, the contract
is comprehensive from the perspective of the methods that call _addo. The resulting
method contract concisely captures all the relevant functional properties of _addo,
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1 public Object get(Object kO)
2 7*: requires "kG 5 null"
3 ensures "((result $ null) -+ ((kO, result) c contents)) A
4 ((result = null) -+ (,(3 v. (kO, v) c contents)))" *7
5{
6 Node current = first;
7 while //: inv "Vv. ((k0, v) E contents) ((k0, v) e current .. con)"
8 (current != null) {
9

10 if (current.key = k0)
11 return current.value;
12
13 current = current.next;
14 }
15 return null
16 }

Figure 6-4: Body of AssociationList.get(

while providing a form of abstraction by not exposing all the concrete details of the
implementation.

6.5.3 The _remove() Method

The _remove() method is a private instance method that takes a key kO that is known
to be in the association list and removes the corresponding mapping. It is invoked
by the removeO, putO, and replace( methods. The requires clause indicates that
_remove() must be invoked on a key kO that is non-null and has a corresponding value
in contents, and that the invariants of the association list must hold. The modifies
clause indicates that the _remove() method may modify the abstract component con-
tents and the first field of the association list, and the abstract component Node.con
and the Node.next field. The ensures clause indicates that the effect of invoking
_remove() is to remove the pair (kO, result) from contents and that this pair was origi-
nally in contents. It also indicates that _remove() re-establishes the invariants of the
association list at the end of the method.

6.6 Implementation and Verification

This section illustrates the implementation and verification of the Association List class
using the example of the get() and remove() methods. It describes the implementation
and verification of these methods and of all the methods in the AssociationList class
that they invoke either directly or transitively. All the methods in the AssociationList
class verify automatically without guidance from any proof commands.
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1 public Object remove(Object kO)
2 7*: requires "kO # null A (lIv. (kO, v) E contents)"
3 modifies contents
4 ensures "contents - old contents - {(k0, result)} A
5 (result = null -+,(3v. (kO, v) c contents)) A
6 (result # null - (kO, result) e old contents)" */
7 {
8 if (-containsKey(k0))
9 return _remove(kO);

10 else
11 return null;
12 }

Figure 6-5: Body of Association List.removeO

6.6.1 The get( Method

Figure 6-4 presents the body of the get( method. The get( method takes a key kO,
and uses a while loop to search through the nodes of the association list for this key.
If it finds an entry in the list matching kO, it returns the corresponding value. If it
reaches the end of the linked list without finding a match, it returns null. The loop
invariant for the while loop states the pertinent loop invariant property necessary to
verify the postcondition of the method. Specifically, it indicates that the key kO is
bound to a value in contents if it is bound to the same value in the unsearched portion
of the list. This loop invariant is sufficient to enable the automatic verification of the
get( method.

Note that our implementation uses reference equality (=) instead of Java's .equals()
method. This simplification allows us to avoid inter-class dependencies, and simplifies
the verification. It is also possible to verify an implementation that uses .equals(, but
the verified specification would need to refer to the meaning of .equals( as defined by
the implementing class. A sample postcondition for an implementation of get that
uses .equals( might be:

((result # null) -*(3k.(k, result) c contents A (equals k kO))) A

((result = null) -* -,(k v.(k, v) c contents A (equals k kO)))

where equals is a specification variable defining the meaning of .equals( from the class
in which .equals() is specified. We use a similar technique in the specification of our
hash table data structure to handle the use of the hashCodeO method (see Chapter 7).

6.6.2 The removeO Method

Figure 6-5 presents the body of the removeO method. The remove( method takes a
key kO, removes the corresponding mapping from the association list, and returns the
previously bound value. It first invokes the private method _containsKey() on kO, to
determine if the association list contains a mapping for kO. If so, it returns the result
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1 private boolean _containsKey (Object kO)
2 7*: requires " theinvs"
3 ensures " result - (3v.((kO, v) c contents)) A theinvs" *7
4{
5 Node current first;
6 while /*: inv "(]v.(k0, v) E contents)
7 (lv.(k0, v) e current..con)" *7
8 (current null) {
9

10 if (current.key kO)
11 return true
12
13 current = current.next;
14 }
15 return false;
16 }

Figure 6-6: Body of AssociationList._containsKey()

of invoking the private method _removeo, which removes the mapping for kO from the

association list, and returns the previously bound value. Otherwise, remove() returns
null.

6.6.3 The _containsKey() Method

Figure 6-6 presents the body of the _containsKey() method. The _containsKey()
method takes a key kO and returns true if kO is a key in the association list, and

false otherwise. The _containsKey() method uses a while loop to search through the

nodes of the association list for kO. If it finds an entry in the list matching kO, it

returns true. If it reaches the end of the linked list without finding a match, it returns

false. The loop invariant for the while loop captures the pertinent loop invariant

property necessary to verify the postcondition of the method. Specifically, it indi-

cates that the key kO is in contents if it is in the unsearched portion of the list. This
loop invariant is sufficient to enable the automatic verification of the _containsKey()
method.

6.6.4 The _remove() Method

Figure 6-7 presents the body of the _remove() method. The _remove() method takes

a key kO that is known to be in the association list and removes the corresponding

key-value pair. It does this by first assigning a ghost variable vO to the value to which

kO is bound. The purpose of this assignment is to name the value corresponding to

the key kO; this name becomes useful later for removing the pair (kO, vO) from the

nodes whose con component contains the pair.
The method then tests whether kO is stored in the first node of the association

list. If so, it removes that node by assigning the first field of the association list to the

next node in the list. It also nulls out the next field of the removed node and updates
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private Object _remove(Object kO)
*: requires "kO # null A (-v. (ko, v) G contents) A theinvs"

modifies contents, first , next, con
ensures "contents = old contents - {(kO, result)} A

(kO , result) E old contents A theinvs" */

: ghost specvar vO::obj;
: havoc vO suchThat "(kO, vO) C contents"

Node f= first;
if (f . key = kO) {

Node second f.next;
f.next = null;
77: "f .. con" := "{(f .. key, f. value)"
first = second;
return f.value;

} else {
Node
7:

Node
whil

prev first;
" prev .. con" := " prev..con - {(kO, vO)I"

current prev.next;
e *: inv " prev # null A

prev.. con = prev..(old con) - {(kO, vO)} A
current # null A prev..next = current A
prev # current A
contents = old contents - {(kO, vO)} A
(Vn. n E AssociationList A n C old alloc A
n # this -+ n.. contents = old (n.. contents)) A
(kO, vO) E current..con A
comment '' ConDeflnv ' '
(Vn. n E Node A n C alloc A n # null A n # prev -+

n..con = {(n..key, n..value)} U n.. next .. con A
(Vv. (n..key, v) V n..next..con)) A
(Vn. n..con = old (n..con) V
n..con = old (n..con) - {(kO, vO)}) A
null . con =Q" */

(current.key != kO)

77: "current .. con" := "current
prev = current;
current = current.next;

.. con - {(kO, vO)}";

Node tmp current.next;
prev.next = tmp;
current.next = null;
77: "current .. con" := "{(current .. key, current. value)}"
return current. value ;

Figure 6-7: Body of Association List. _remove()
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the value of con for the removed node to restore the ConDef invariant. The method

then returns the previously bound value.
If kO is not stored in the first node, _remove() uses a while loop to search through

the association list. At each iteration, it updates the con component of the currently

examined node to remove the pair (kO, v0). It also keeps track of the previously

examined node. When the method reaches the node that stores the mapping, it
removes it from the list by assigning the next field of the previous node to the next

field of the following node. It then nulls out the next field of the removed node and

updates its con component to restore the ConDef invariant. The method then returns

the previously bound value.
The loop invariant of the while loop captures the pertinent loop invariant property

necessary to verify the postcondition of _removeo. Specifically, it keeps track of

relevant properties about the previously examined and current nodes prev and curr,
and properties about the abstract state component con, which is modified in the

loop. To establish the ConDef invariant at the end of the method, the loop invariant

captures: 1) a frame condition indicating that the ConDef invariant holds for all

nodes other than prev (ConDeflnv), 2) the value of con for prev, 3) that con for all

objects is either unchanged, or else the result of removing the pair (kO, vO) from its

original value, and 4) that the value of con for null is the empty set. The loop invariant

additionally indicates that the value of contents is the result of removing (kO, vO) from

its original value, for establishing the method postcondition. It also indicates that the

value of contents is unchanged for all AssociationList objects other than the receiver,
for verifying the frame condition for contents. Despite the complexity of this loop

invariant, no proof commands are necessary to guide the provers in its verification.

With this loop invariant, the provers are able to automatically verify the _remove()

method.

6.6.5 Ease of Verification versus Efficiency

The association list implementation we have presented in this chapter is easy to

understand and verify, but not the most efficient. The implementation of the removeo
operation examines the list elements twice-first in the call to _containsKeyo, to test

if the key of interest is present, then, if it is, in the call to _removeO, to perform the

actual removal. Although the asymptotic performance is the same within a constant

factor, a more efficient implementation is clearly possible. (The put( method suffers

from a similar inefficiency, and, for that reason, we provide the more efficient addO

and replace( methods for contexts in which the client knows whether the given key

is in the list.)
There are several reasons why we chose this design. First, by dividing the func-

tionality of the removeO operation into the two parts implemented by _containsKey()

and _removeo, we obtain smaller, well-encapsulated methods, which are in general

easier to understand and verify. The _containsKey() and _remove() methods also im-

plement functionality needed by methods other than remove(, resulting in better

code reuse. By determining a priori whether there exists a binding for the given

key, it also becomes possible to name the associated value, and to remove the corre-
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sponding key-value pair incrementally from the con component of the earlier nodes
in the list, as we do in the while loop of _removeo. In this approach, the ConDef
invariant (which gives the contents of the linked list starting at a given node as the
union of: 1) the singleton set containing the key-value pair at that node and 2) the
contents of the next node) is always only violated at the currently examined node,
and is incrementally restored with each iteration of the while loop. Without knowing
whether a given key is bound in the association list, it would not be possible to update
the con component of the earlier nodes in the list (since we have no way to refer to
the value of the key-value pair to be removed) until the node containing the key is
found. At that point, it would be necessary to update the con component of all the
previous nodes in the list, violating the ConDef invariant for many different nodes
simultaneously. To show that the ConDef invariant is restored after these updates,
it would be necessary to keep track of all the nodes that need to be updated, and
the aliasing relationships between them (or lack thereof). This, in turn, would most
likely require the specification of additional abstract state, such as the set of nodes
in use by the list, to successfully verify. In general, it is easier to verify incremental
violations of a class invariant than to re-establish such an invariant for many objects
simultaneously. Although our current design is not as efficient as this alternative
approach, we chose it because it is conceptually simpler and easier to verify. Other
association list implementations and specifications are also possible, including the use
of shape analysis (instead of ghost variables) to specify reachability. We hope that the
discussion of these two particular designs provide insight into some of the potential
trade-offs between ease of verification and efficiency of implementation.

6.6.6 Summary

In this chapter, we show how we use Jahob to specify and verify an AssociationList
class that implements a map. Our association list is implemented using a singly-
linked list. The abstract state of the association list is expressed as a set of key-value
pairs. In contrast to the priority queue example, which uses only dependent variables,
the association list also uses ghost variables (whose values are explicitly updated
using specification assignment statements) to specify its abstract state. We take this
approach to demonstrate how to encode transitive closure as a recursive property,
enabling the use of provers not able to handle the transitive closure operator.

While the implementation of the association list is straightforward, the invariants
of the class capture non-trivial properties necessary for the correct implementation
of the map interface. These invariants include injectivity invariants that express
an acyclicity property and the lack of sharing between different lists. They also
include invariants that guarantee that every key maps to a unique value. Despite
this complexity, the association list verifies automatically, without the need for any
proof commands. Because the verification conditions for the association list involve
universal quantification, but no arithmetic properties, the first-order theorem prover
SPASS is able to prove all the generated verification conditions without guidance.

The Association List class exports a number of different public operations, including
the containsKeyo, get(, put(, and removeO methods. These operations are supported
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by a number of private methods, which are also verified. We show the complete
implementation and specification for the get() and removeO methods, as well as all the
methods on which they depend. The private _containsKey() and _remove() methods,
in particular, include loop invariants that encode the necessary properties to ensure
the correctness of the enclosing methods. The entire AssociationList class, as well as
the supporting Node class, verifies automatically. We discuss the trade-off between
efficiency of implementation and ease of verification that may occur in verifying data
structure implementations, and describe an alternative implementation of association
list that is more efficient but also potentially more difficult to verify.
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Chapter 7

Hash Table

In this chapter, we describe a hash table data structure that we verified using Jahob.
The hash table data structure, like the priority queue data structure, is one of the
more difficult data structures to verify. It is both an array-based data structure, and
a recursive data structure. It additionally maintains invariants that guarantee the
correctness of the hash table operations, including injectivity invariants and invariants
that ensure that the keys in the hash table are stored in the correct buckets. We use
the hash table example to illustrate the specification and verification of a complex
data structure that requires a substantial number of proof commands to verify.

Our Hashtable class implements a standard hash table data structure with separate
chaining. The buckets of the hash table are implemented using singly-linked lists
similar to the association list data structure from Chapter 6, but with a different
specification that takes into account the properties of the enclosing hash table.

7.1 The Concrete State

Figure 7.1 presents part of the Hashtable class, as well as the Node class that stores
the key-value pairs in the hash table. The concrete state of a hash table consists
of an array table, where each entry contains either a linked list of Node objects or
null. Each Node object consists of a key storing the key for a mapping in the hash
table, a value storing the corresponding value, and a next field storing the next Node
object in the linked list. The claimedby annotation in the declaration of the Node
class indicates that only methods in the Hashtable class may modify the fields and
specification variables of Node objects.

7.2 The Abstract State

The abstract state of a hash table consists of the ghost variables contents, the set of
key-value pairs stored in the hash table, init, a boolean flag indicating whether the
hash table is initialized, and con, the set of key-value pairs stored in the linked list
starting at a given Node object. Unlike the association list specification, in which
contents is a dependent specification variable, the contents specification variable in
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public /*: claimedby Hashtable */ class Node {
public Object key;
public Object value;
public Node next;

*: public ghost specvar con :: "(obj * obj) set" ="
invariant ConDef: " this # null -4
con = {(key, value)} U next ..con A (Vv. (key, v) V next .. con)";
invariant ConNull: " null . con = 0" ;
invariant ConNonNull: "Vx y.(x, y) E con -4 x 7 null A y # null";
invariant ConAlloc: "Vx y.(xy) e con -4 x E alloc A y C alloc";

}
public class Hashtable {

private Node[] table = null

public ghost specvar contents :: " (obj * obj)
public ghost specvar init :: " bool" = " False"

static specvar h :: " (obj int > int)";
vardefs "h = (Aol. (Ail. ((abs (hashFunc 01))
static specvar abs :: "(int 4 int)"
vardefs "abs = (All. (if (il < 0) then (-il)

set" = "0"

mod i1)))";

else il))";

invariant ContentsDef/nv: " init
contents = {(k ,v). (k, v) E table [(h k (table . length ))].. co
invariant Coherence: " init -+ (Vi k v. 0 < i A i < table.. len
(kv) c table.[i]..con - h k (table.. length) = )";
invariant Map/nv:
"Vk vO v1. (kvO) E contents A (kvl) c contents -+ vO vl";
invariant TableNotNull: " init table # null" ;
invariant TableHidden: " init -+ table E hidden";
invariant NodeHidden1: " init (Vi. 0 < i A i < table.. lengt
table .[i] / null -+ table .[i] C hidden)" ;
invariant NodeHidden2: "Vn. n E Node A n E alloc A n # null
n.. next # null -- n.. next E hidden";
invariant Hash/nv: " in It -+ (Vk. 0 < (h k (table.. length)) A
(h k (table.. length)) < table.. length)" ;
invariant First/nj/nv: " init -+ (Vi x y. y - x.. next A y :? nu
0 < i A i < table .. length - y f table .[ i]) ;
invariant Next/nj/nv:
"Vx1 x2 y. y # null A y =xl.. next A y x2.. next -+ xl = x2"
invariant Element/nj/nv: " in it -- (Vht i j. ht E Hashtable A
ht c alloc A ht.. init A 0 < i A i < ht..table.. length A 0 <
j < table..length A ht..table.[i] = table.[j] A
table.[j] # null -+4 ht = this A i =
invariant Table/nj/nv:
"Vht. ht.. table = table A table # null - ht = this"; */

n }"
gth -+

h A

A

ll A

j A

Figure 7-1: Hashtable Example
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this case is a ghost variable that is updated using specification assignment statements.
The initial values of contents, init, and con are all set to ensure that the hash table
invariants hold in the initial program state.

The specification also declares the static specification variables h and abs as short-

hands that denote the hash and absolute value functions, respectively. The hash func-

tion h is a lambda expression that takes an object ol to be hashed, and an integer
value il and produces an integer in the range [0, il) based on the hash code of ol. The

absolute value function abs is a lambda expression that takes an integer and returns

its absolute value.

7.3 Abstraction Function and Invariants

The abstract state of a hash table consists of ghost variables, with the static dependent

variables h and abs defining shorthands used in other parts of the specification. The

vardefs declarations give the definition for these shorthands. The vardefs declaration

for h defines it as a lambda expression that takes an object and an integer bound,
and produces the mod of the absolute value of that hash code with respect to the

given bound. (The variable hashFunc on which h depends is a specification variable

separately declared in the Object class, which represents the hash function for the

given object.) The vardefs declarations for abs define it as the absolute value function

with the standard meaning.
Since the abstract state of a hash table consists of ghost variables, the abstraction

function is expressed in terms of data structure invariants. The ConDef and ConNull

invariants give the definition for the abstract state component con. The ConDef in-

variant indicates that, for an allocated node, con consists of the union of the singleton

set containing the key-value pair stored at that node, and the value of con for the

next node in the linked list. It additionally indicates that next..con does not contain

a value for the key stored at the current node, thus ensuring that a key occurs at

most once in a bucket. The ConNull invariant indicates that null..con is the empty

set. This is similar to the corresponding invariants of the same name in the associ-
ation list example, but expressed within the Node class, so that instead of writing

ConDef as being explicitly quantified over allocated Node objects, it is automatically
quantified by Jahob based on the implicit references to the receiver. The resulting

invariants are the same.
In the Hashtable class, the ContentsDefInv invariant gives the definition for contents

in terms of the abstract state component con. It indicates that, for an initialized hash

table, contents consists of the key-value pairs in cons for the buckets in the table,
considering only those pairs that are hashed to the correct bucket. The Coherence

invariant additionally requires that every key-value pair in the hash table be in the

correct bucket. The Mapinv invariant indicates that the hash table contains no more

than one mapping for a given key.
In addition to the invariants that comprise the abstraction function, the Hashtable

class contains the following invariants which specify the valid concrete and abstract

states of the hash table data structure:
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" The ConNonNull invariant indicates that the key and value in every key-value
pair in con are non-null.

* The ConAlloc invariant indicates that the key and value in every key-value pair
in con are allocated objects.

" The TableNonNull invariant indicates that, for an initialized hash table, table is
non-null.

" The TableHidden invariant indicates that, for an initialized hash table, table is
hidden.

" The NodeHidden1 invariant indicates that, for an initialized hash table, the first
Node object in every bucket is hidden. The NodeHidden2 invariant indicates that
if an allocated Node object is hidden, and its next field refers to a Node object,
then that Node object is also hidden. Together, these two invariants guarantee
that all Node objects used by the hash table are hidden.

" The Hashinv invariant indicates that, for an initialized hash table, the result of
the hash function h is a value that is within the array bounds of table (i.e. in
the range [0, table..length)).

" The Firstlnjlnv invariant indicates that, for an initialized hash table, the first
Node object in a bucket is not pointed to by the next field of any Node object.
The Nextlnjlnv invariant indicates that next is injective-a Node object is pointed
to by the next field of at most one Node object. Together, these two invariants
guarantee that every non-empty bucket in the hash table contains an acyclic
linked list.

* The Elementlnjlnv invariant indicates that, for an initialized hash table, the first
Node object in a bucket is not the first Node object in any other bucket in either
this hash table or any other hash table.

" The Tablelnjlnv invariant indicates that, for an initialized hash table, that table
is not shared by any other hash table. Together, the Firstlnjlnv, Nextlnjlnv,
ElementinjInv, and Tablelnjinv invariants guarantee that the table array and Node
objects belonging to a hash table are not shared by any other hash table.

For invariants in the Hashtable class that contain free implicit or explicit references
to the receiver this, Jahob automatically quantifies the invariant over all allocated
Hashtable objects. These invariants apply to all allocated instances of Hashtable. As
with the priority queue and association list invariants, the hash table invariants cap-
ture injectivity properties that express the lack of aliasing, properties that ensure the
lack of null dereferences and array bounds exceptions, and encapsulation properties
involving the class' hidden set.

Note that the invariants ContentsDeflnv, Coherence, and Hashlnv depend on the
specification variable h, which is defined in terms of the specification variable hash-
Func from the Object class. This inter-class dependency means that changes to the

124



state of the Object class may result in violations of the hash table invariants. In our

case, hashFunc is defined as the value of a final hashCode field for objects, so that this
problem does not occur. But in general, inter-class dependencies may result in class

invariants that need to be re-asserted at method boundaries of external classes to

ensure soundness. For example, if the hash code of an object in the hash table were

to change, and the relevant invariants not re-established, then subsequent searches

of the hash table may not find the object, resulting in incorrect behavior. Appropri-

ately re-asserting invariants would identify this problem, as would specifying a policy

disallowing the modification of objects in the hash table, which can be done using
history variables.

7.4 Method Contracts for Public Methods

Figure 7-2 presents the method contracts for all the public methods of the Hashtable

class. These methods constitute the interface that the Hashtable class exports to its

clients. The interfaces for the Hashtable constructor and the containsKeyO, get(,
isEmptyo, putO, and remove( methods are modeled after the interfaces for the corre-

sponding methods in java.util.Hashtable. The methods addO and replace( are meth-

ods not found in java.util.Hashtable. We include these methods because they offer
alternative interfaces that clients may find useful.

7.4.1 The Hashtable Constructor

The Hashtable constructor is a public constructor that creates a new, empty, initial-
ized Hashtable object. The modifies clause indicates that it may modify the init and

contents components of the hash table under construction. The ensures clause indi-

cates that the resulting hash table is initialized and empty. The lack of a requires
clause indicates that the constructor has no precondition.

7.4.2 The containsKey() Method

The containsKey() method is a public instance method that takes a key kO and returns
a boolean value indicating whether kO is a key in the hash table. The requires clause
indicates that containsKeyO must be invoked on an initialized hash table, and that
kO must be non-null. The ensures clause indicates that the method returns true if kO
corresponds to a mapping in the hash table, and false otherwise. There is no modifies

clause because containsKeyO does not modify the program state.

7.4.3 The get() Method

The get( method is a public instance method that takes a key kO and returns the

value to which kO is mapped in the hash table. The requires clause indicates that

get( must be invoked on an initialized hash table, and that kO must be non-null.

The ensures clause indicates that if get( returns null, then the hash table does not
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public Hashtable()
*: modifies contents, init

ensures " init A contents = 0" */

public boolean containsKey( Object kO)
*: requires " init A kO : null"

ensures " result = (lv.((kO, v) c contents))" *7

public Object get(Object kO)
*: requires " init A kO # null"

ensures "(result # null - (kO, result) C contents) A
(result = null --- ,(Iv.(kO, v) c contents))" */

public boolean isEmpty()
*: requires " init"

ensures " result (contents = 0)" */

public Object put(Object kO, Object vO)
*: requires " init A kO 74 null A vO f null"

modifies contents
ensures " contents = old contents - {(kO,

(result null - ,(I v.(kO, v) E
(result # null -+ (kO, result) C

public Object remove(Object kO)
*: requires " init A kG f null"

modifies contents
ensures "contents old contents - {(k0,

(result = null - -,( v.(kO,v) E
(result f null - (kG, result) E

public void add(Object kG, Object vO)
*: requires "init A kO = null A vO f

modifies contents
ensures "contents = old contents U

public Object replace (Object k0, Objeci
*: requires " init A kO / null A vA 5

modifies contents
ensures "contents = old contents -

(kG, result) E old conten-

result)} U {(kO, v0)} A
old contents)) A
old contents)" */

result)} A
old contents)) A
old contents)" */

null A -,(Iv.(kO, v) E contents)"

{(k0, v0)}" *7

t vO)
null A (]v.(kO, v) c contents)"

{(k0, result)} U {(k0, v0)} A

Figure 7-2: Exported Operations of the Hashtable Class
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contain a mapping for kO. But if get() returns a non-null value, then the return value
is the value to which kO is mapped in the hash table. There is no modifies clause
because get() does not modify the program state.

7.4.4 The isEmpty( Method

The isEmpty() method is a public instance method that returns a boolean value
indicating whether the given hash table is empty. The requires clause indicates that
isEmpty() must be invoked on an initialized hash table. The ensures clause indicates
that the method returns true if the hash table is empty, and false otherwise. There is
no modifies clause because isEmpty() does not modify the program state.

7.4.5 The put() Method

The putO method is a public instance method that adds a key-value pair to the
hash table. The requires clause for put() indicates that put() must be invoked on an
initialized hash table, and that the key kO and value vO being added must be non-null.
The modifies clause indicates that putO may modify the contents of the given hash
table. The ensures clause indicates that the value of contents after invoking put() is
the result of removing the pair (kO, result) from contents, and adding the pair (kO, v0).

It also indicates that if the return value is null, then the hash table did not originally
contain a mapping for the key kO. But if the return value is not null, then it is the
value to which kO was originally mapped.

7.4.6 The removeO Method

The removeO method is a public instance method that removes a key-value pair from
the hash table. The requires clause indicates that remove( must be invoked on an
initialized hash table, and that the key kO being removed must be non-null. The
modifies clause indicates that remove() may modify the contents of the given hash

table. The ensures clause indicates that the value of contents after invoking removeO
is the result of removing the pair (kO, result) from contents. As is the case for put(,
the ensures clause also indicates that if the return value is null, then the hash table
did not originally contain a mapping for kO. But if the return value is not null, then
it is the value to which kO was originally mapped.

7.4.7 The addO Method

The add() method is a public instance method that adds a key-value pair to the hash

table. It is similar to the putO method, but requires that the hash table contain
no previous binding for the given key. It is more efficient than putO and offers an

alternative interface for adding a binding to the hash table when its precondition

is known to hold. Its requires clause indicates that addO must be invoked on an

initialized Hashtable, that the key kO and value vO must be non-null, and that the key

kO is not already bound to a value in the hash table. The modifies clause indicates
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private int compute-hash (Object 01)
*: requires " init A ol : null A theinvs"

ensures "result - h ol (table.. length) A 0 result A
result < table .. length A alloc = old alloc A theinvs" *7

private boolean _containsKey (Object kO)
*: requires " init A kO # null A theinvs"

ensures " result = (]v.((k0, v) c contents)) A theinvs" */

private boolean bucketContainsKey (int bucketid , Object kO)
*: requires " init A 0 < bucket-id A bucket-id < table., length A

theinvs"
ensures " result = (]v.((k0, v) E table .[ bucket-id ]..con)) A

theinvs" *7

private Object _remove(Object kO)
*: requires "(comment ''Init ' init) A kO 74 null A

(]v.(k0, v) E contents) A theinvs"
modifies contents, con, next, arrayState
ensures "(contents = old contents - {(k0, result)}) A

((kO, result) C old contents) A
(Va i.a 54 table - a.[i] = old (a.[i])) A theinvs" *7

Figure 7-3: Private Methods of the Hashtable Class (continued in Figure 7-4)

that it may modify the contents of the given hash table. The ensures clause indicates
that the method adds the given key-value pair to the hash table contents.

7.4.8 The replace( Method

The replace( method is a public instance method that binds an existing key in the
hash table to a new value. It is similar to the putO method, but requires that the
hash table contain a previous binding for the given key. It is more efficient than putO
and offers an alternative interface for adding a binding to the hash table when its
precondition is known to hold. Its requires clause indicates that replaceo must be
invoked on an initialized Hashtable, that the key kO and value vO being added must
be non-null, and that kO must be already bound to a value in the hash table. The
modifies clause indicates that replace( may modify the contents of the given hash
table. The ensures clause indicates that the replace( removes the previous binding
for kO from contents, adds the given key-value pair, and returns the previously bound
value.
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private Object removeFirst (Object kO , int hc)
*: requires " init A kO : null A (]v.(k0, v) E contents) A

comment 'KFound'' (kO = table.[hc].. key) A
comment ''HCProps'' (0 < hc A hc < table.. length A

hc = h kO (table.. length)) A theinvs"
modifies contents, con, next, arrayState
ensures "(contents = old contents - {(kO, result)}) A

((ko, result) E old contents) A
(Va i.a # table -+ a.[i] = old (a.[i])) A theinvs" *7

private Object removeFromBucket (Object kO, int hc)
*: requires "comment ''Init ' ' init A kO # null A

(]v.(k0, v) c contents) A
comment 'KNotFound' ' (k0 table.[hc]..
comment 'HCProps' ' (0 < hc A hc < table
hc = h kO (table.. length )) A theinvs"

modifies contents, con, next, arrayState
ensures "(contents = old contents - {(k0, result)}

((kO , result) E old contents) A
(Va i. a # table -- a.[i] = old (a.[i])) A

key) A
.. length A

)A

thei nvs"

private void _add(Object kO, Object vO)
*: requires "comment ''Init '' init A kO # null A v f null A

-:,(v.(kO, v) c contents) A theinvs"
modifies contents, arrayState , "new..con" , "new..next",

"new.. value" , "new.. key"

ensures "contents = old contents U {(k0, v0)} A
(Va i. a $ table -+ a.[i] = old (a.[i])) A theinvs" *7

Figure 7-4: Private Methods of the Hashtable Class (continued from Figure 7-3)
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7.5 Method Contracts for Private Methods

Figures 7-3 and 7-4 presents the method contracts for the private methods of the
Hashtable class. These methods implement various functionalities that are needed to
support the public operations of the Hashtable class. Our experience indicates that
methods that modify state are substantially more difficult to verify than methods
that either do not modify state, or do so indirectly, by invoking other methods. For
this reason, the code in the Hashtable class that modify state is divided amongst
many small methods with well-defined interfaces. These methods are then invoked
by either private or public methods higher up in the call graph to obtain the desired
higher level functionality of the hash table.

7.5.1 The compute-hash() Method
The compute-hash() method is a private instance method that takes an object ol and
hashes it to produce a valid index into table. It is used by all the methods in the
Hashtable class that need to compute the index corresponding to the bucket for a
given key. The requires clause indicates that compute-hash() must be invoked on an
initialized hash table, that ol must be non-null, and that the invariants of the hash
table must hold. The ensures clause indicates that the return value is the effect of
applying the hash function h on ol and table..length and that this value is within the
range [0, table..length). It also indicates that compute-hash() does not allocate any
objects, and that it preserves the invariants of the hash table. There is no modifies
clause because compute-hash() does not modify the program state.

7.5.2 The _containsKey() Method

The _containsKey() method is a private instance method that takes a key k0 and re-
turns a boolean value indicating whether k0 is a key in the hash table. It implements
the functionality needed by the public containsKeyO method, and is also invoked
by the put( and remove() methods. The requires clause indicates that _containsKey()
must be invoked on an initialized hash table, that kO must be non-null, and that the in-
variants of the hash table must hold. The ensures clause indicates that _containsKey()
returns true if kO corresponds to a key-value pair in the hash table, and false other-
wise. It also indicates that _containsKey() preserves the hash table invariants. There
is no modifies clause because _containsKey() does not modify the program state.

7.5.3 The bucketContainsKeyO Method

The bucketContainsKey( method is a private instance method that takes an index
bucket-id and a key kO and returns a boolean value indicating whether kO maps to a
value in the bucket at bucket-id. It is a helper method that implements part of the
functionality of the _containsKey() method. The requires clause indicates that buck-
etContainsKey() must be invoked on an initialized hash table, that bucket-id must be
within the range [0, table..Iength], and that the invariants of the hash table must hold.
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The ensures clause indicates that the method returns true if kO maps to a value in the
bucket at bucketid, and false otherwise. It also indicates that the method preserves
invariants of the hash table. There is no modifies clause because bucketContainsKey()
does not modify the program state.

7.5.4 The _remove() Method

The _remove() method is a private instance method that takes a key kO that is known
to be in the hash table and removes the corresponding mapping from the hash table.

It is a helper method that is invoked by the removeO, puto, and replace() methods.
The requires clause indicates that _remove() must be invoked on an initialized hash

table, that kO must be non-null and have a corresponding value in contents, and that

the invariants of the hash table must hold. The clause that specifies that the hash
table must be initialized has the label Init, which is used in the body of the method for
its verification. The modifies clause indicates that the _remove() method may modify

the contents of the hash table, the Node.con and Node.next fields, and the contents of

arrays. The ensures clause indicates that the effect of invoking _remove() is to remove
the pair (kO, result) from contents and that this pair was originally in contents. It also
indicates that, with the exception of this.table, all other arrays are unchanged, and

that _remove() re-establishes the invariants of the hash table class at the end of the
method.

7.5.5 The removeFirstO Method

The removeFirstO method is a private instance method that removes a key kO and its

corresponding value from the hash table given that the mapping for kO is stored in the

first node in the bucket at index hc. It is a helper method that implements part of the
functionality of _removeo. The requires clause indicates that removeFirstO must be

invoked on an initialized hash table, that kO must be non-null, and that the hash table
must contain a mapping for kO. It also indicates that the mapping for kO is stored in
the first node of its bucket at index hc, that hc is within the bounds [0, table.. length)

and is the result of applying the hash function h to kO and table..length, and that the
hash table invariants must hold. The modifies clause indicates that removeFirst() may
modify the contents of the hash table, the Node.con and Node.next fields, and the
contents of arrays. The ensures clause indicates that the effect of invoking remove-

First() is to remove the pair (kO, result) from contents and that this pair was originally

in contents. It also indicates that with the exception of table, all other arrays are

unchanged, and that removeFirstO re-establishes the invariants of the hash table class

at the end of the method.

As in the labeled clause (Init) in the precondition of _removeo, the comment oper-

ator in the precondition applies the given labels to the conjuncts of the precondition.

Proof commands in the body of the method can then refer to individual conjuncts in

their from clause to enable the verification of the method.

131



7.5.6 The removeFromBucket() Method

The removeFromBucket() method is a private instance method that removes a key
kO and its corresponding value from the hash table given that the mapping for kO is
not stored in the first node of its bucket. As with removeFirstO, it is also a helper
method that implements part of the functionality of _removeo. The requires clause
indicates that removeFromBucket must be invoked on an initialized hash table, and
that kO must be non-null. It also indicates that the hash table must contain a mapping
for kO, that this mapping is not stored in the first node of the bucket at index hc,
that hc is within the bounds [0, table.. length) and is the result of applying the hash
function h to kO and table..length, and that the hash table invariants must hold.
The modifies clause indicates that removeFromBucketO may modify the contents of
the hash table, the Node.con and Node.next fields, and the contents of arrays. The
ensures clause indicates that the effect of invoking removeFromBucketO is to remove
the pair (kO, result) from contents and that this pair was originally in contents. It also
indicates that with the exception of this.table, all other arrays are unchanged, and
that removeFromBucketO re-establishes the invariants of the hash table at the end of
the method.

7.5.7 The _add() Method

The _add() method is a private instance method that adds a binding to the hash table
for a key kO for which the hash table does not already contain a binding. It implements
the functionality of the addO method and is also invoked by putO and replace(. The
requires clause of _add() indicates that it must be invoked on an initialized hash table,
that the key kO and value vO to be added must be non-null, that the hash table must
not already contain a binding for kO, and that the invariants of the hash table hold.
The modifies clause indicates that _add() may modify the contents of the hash table,
the contents of arrays, as well as the con, next, value, and key components of objects
that it allocates. The ensures clause indicates that the effect of invoking _add() is to
add the pair (kO, vO) to the contents of the hash table. It also indicates that with the
exception of this.table, all other arrays are unchanged, and that _add() re-establishes
the invariants of the hash table at the end of the method.

7.6 Implementation and Verification

Of the data structures we verified using Jahob, the hash table data structure was
probably one of the most difficult. While observer methods and methods that did
not modify state directly contain little or no lines of proof, many methods that modify
state contain more lines of proof than code. This section illustrates the implementa-
tion and verification of the Hashtable class using the example of the get( and removeO
methods. It describes the implementation and verification of these methods and of
all the methods in the Hashtable class that they invoke either directly or transitively.
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1 public Object get(Object kO)
2 7*: requires " init A kO ) null"
3 ensures "(result f null -+ (kO, result) E contents) A
4 (result null - ( v. (kO, v) C contents))" *7

5{
6 /7: instantiate " theinv ContentsDefinv" with " this"
7 7*: mp ThisContentsDef:
8 "this C alloc A this c Hashtable A init -> contents =

9 {(k, v). (k, v) e table .[(h k (table.. length ))]..con}" ; *
10
11 int hc = compute-hash(kO);
12 Node curr = table[hc];
13
14 77: note HCDef: "hc = h kO (table.. length)";
15 7*: note InCurr: "Vv.(((kO, v) E contents) = ((ko, v) E curr..con))"
16 from ThisContentsDef, HCDef; *7
17
18 while /*: inv "Vv.((kO, v) c contents) = ((kO, v) E curr..con)" *7
19 (curr != null) {
20
21 if (curr.key -- kO)
22 return curr.value;
23
24 curr = curr.next;
25 }
26 return null
27 }

Figure 7-5: Body of Hashtable.get(

7.6.1 The geto Method

Figure 7-5 presents the body of the get( method. The get( method starts by in-
voking the compute-hash() method on the key kO to obtain an index hc. This index
corresponds to the bucket that would contain kO, if kO were in the hash table. It then
uses a while loop to search through the linked list at that bucket for kO. If it finds an
entry in the linked list matching kO, it returns the corresponding value. If it reaches
the end of the linked list without finding a match, it returns null.

Verifying the Loop Invariant

The body of geto contains several proof commands that provide the guidance that

the provers need to verify the method's loop invariant. The loop invariant states

the following property: there is a value corresponding to the key kG in contents if
and only if such a value is in the unsearched portion of the linked list. Without
proof commands, Jahob is unable to verify that the loop invariant holds in the base

case-when the method first reaches the top of the loop.
The proof of this property is based on the definition of contents as given by

the ContentsDeflnv invariant, which states that all keys are hashed to the correct
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1 private int compute-hash (Object ol)
2 7*: requires " init A ol 6 null A theinvs"
3 ensures "result = h ol (table .. length) A 0 < result A
4 result < table.. length A alloc = old alloc A theinvs" *7
5{
6 int hc ol .hashCode();
7
8 if (hc < 0) { hc = -hc; }
9

10 7/: note LengthPos: "0 < table .. length"
11 7*: note ResLt: "(hc mod table.. length) < table., length"
12 from TrueBranch , FalseBranch , LengthPos; *7
13
14 return (hc % table. length);
15 }

Figure 7-6: Body of Hashtable.computeihash()

public int hashCode ()
7/: ensures "result = hashFunc this A alloc = old alloc"

Figure 7-7: Method contract for Object.hashCode()

bucket. The instantiate command at line 6 therefore directs Jahob to instantiate
the ContentsDeflnv invariant (which is universally quantified) with the receiver this
to obtain the proved lemma this E alloc A this E Hashtable A init -> contents =
(k,v).(k,v) E table.[(h k (table..length))]..con. The mp command at line 7 then di-
rects Jahob to apply modus ponens to this result to establish the right-hand side of
the implication and to label it ThisContentsDef. To apply this result in the proof, it
is necessary to show that the computed index hc corresponds to the correct bucket
for kO. The note command at line 14 therefore directs Jahob to show that the index
hc is equal to h kO (table.. length), and to label the proved lemma HCDef. Finally,
the note command at line 15 directs Jahob to use the proved lemmas ThisContentsDef
and HCDef to conclude that the loop invariant holds.

7.6.2 The compute-hash() Method

Figure 7-6 presents the body of the compute-hash() method, which is invoked by
several methods of the Hashtable class, including get(. The compute-hash() method
takes an object ol and returns an index into table corresponding to the bucket for ol.
It invokes Object.hash Code( on ol, takes the absolute value of the result, then returns
the mod of the absolute value with respect to table.length. To generate the proof
obligations for compute-hash(, Jahob requires the method contract for the invoked
hashCodeO method from the Object class (see Figure 7-7). The hashCodeo method
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1 public Object remove(Object kO)
2 /*: requires " init A kO / null"
3 modifies contents
4 ensures "contents old contents - {(kO, result)} A
5 (result null -,(v0. (kO,v0) C old contents)) A
6 (result # null (k0, result) e old contents)" */

7{
8 if (! -containsKey(kO))
9 return null;

10 else
11 return -remove(kO);
12 }

Figure 7-8: Body of Hashtable.remove()

returns the result of applying the object hash function to the receiver. It does not
allocate any objects, nor does it modify any publicly visible state.

Verifying the Postcondition

While most of the proof obligations for the compute-hash() method prove without
proof commands, one of the conjuncts in the postcondition does not. This conjunct
addresses the property that the return value is less than the length of table. The body
of compute-hash() contains two note commands that provide the guidance that the
provers need to establish this conjunct.

First, the note command at line 10 directs Jahob to establish that table..length
is greater than zero, and to label the proved lemma LengthPos. The note command
at line 11 then directs Jahob to use the labeled facts TrueBranch, FalseBranch and

LengthPos to prove that the return value is less than table..Iength. TrueBranch refers
to the branch condition hc < 0, while FalseBranch refers to its negation -(hc < 0).
Depending on which path Jahob is verifying, only one of these two conditions will
hold. Jahob automatically applies the condition appropriate to the path and omits
the one that does not hold. For both branches, these two note commands are sufficient
to guide the provers to a successful proof of the desired property.

7.6.3 The removeO Method

Figure 7-8 presents the body of the removeO method. The remove() method takes a

key kO, removes the corresponding key-value pair from the hash table, and returns the

previously bound value. It first tests whether kO is a key in the hash table by invoking
the private method _containsKeyo. If kO is not in the hash table, remove( returns

null. Otherwise, it returns the result of invoking the private method _remove(. The

_remove() method performs the necessary removal, and returns the previously bound

value.
The provers are able to discharge all the proof obligations for the removeO method

without any guidance from proof commands. In general, we have found that Jahob is
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1 private boolean _containsKey (Object kO)
2 7*: requires " init A kO # null A theinvs"
3 ensures " result = (]v.((k0, v) c contents)) A theinvs" *7
4{
5 77: instantiate "theinv ContentsDefinv" with "this"
6 7*: mp ThisContentsDef:
7 "this c alloc A this E Hashtable A init -+ contents
8 {(kv). (k, v) E table .[(h k (table .. length ))]..con}"; *7
9

10 int hc = compute-hash(kO);
11 boolean res = bucketContainsKey(hc, kO);
12
13 77: note HCDef: "hc = h kO (table .. length)";
14 77: note InCon: "res (Jv.((k0, v) C table .[hc]..con))";
15 7*: note ShowResult: " res = (1v.((k0, v) c contents))"
16 from InCon, HCDef, ThisContentsDef; *7
17
18 return res
19 }

Figure 7-9: Body of Hashtable._containsKey()

often able to verify methods like removeO-methods that only modify state indirectly
(through called methods) -without proof commands.

7.6.4 The _containsKey() Method

Figure 7-9 presents the body of the _containsKey() method. The _containsKey()
method takes a key kO and returns true if kO is a key in the hash table, and false other-
wise. It first invokes computeihash() on kO to obtain an index hc into the appropriate
bucket in the hash table. It then returns the result of invoking bucketContainsKeyO
on hc and kO.

Verifying the Postcondition

The body of _containsKey() contains several proof commands that provide the guid-
ance that the provers need to verify the method postcondition. Specifically, the proof
commands address the property that the return value is true if kO has a corresponding
value in the hash table, and false otherwise. This property depends primarily on the
invariant ContentsDeflnv. Its proof is similar to the proof of the loop invariant in
get(.

The instantiate command at line 5 first directs Jahob to instantiate ContentsDeflnv
with the receiver object, obtaining the proved lemma this E alloc A this E Hashtable A
init -+ contents = (k, v).(k, v) c table.[(h k (table..length))]..con. The mp command at
line 6 then directs Jahob to apply modus ponens to the result to obtain the consequent
of the implication-that the contents of the receiver object is equal to {(k, v).(k, v) E
table.[(h k (table..length))]..con} -and to label the proved lemma ThisContentsDef. To

136



1 private boolean bucketContainsKey(int bucket-id , Object kO)
2 /*: requires " init A 0 < bucket-id A bucket-id < table length A
3 theinvs"
4 ensures " result = (]v.((k0, v) C table .[ bucket-id .. con)) A
5 theinvs" *7
6{
7 Node curr = table[ bucket-id];
8 while /*: inv " (]v(kO , v) C table . [ bucket-id ).. con)
9 (]v.(kO, v) c curr .. con)" *7

10 (curr != null) {
11
12 if (curr.key - kO)
13 return true;
14
15 curr = curr.next;
16 }
17 return false;
18 }

Figure 7-10: Body of Hashtable.bucketContainsKeyO

apply this lemma, it is necessary to show that hc corresponds to the result of applying
the hash function h to kO and table..length. The note command at line 13 therefore
directs Jahob to prove this property, and to label the proved lemma HCDef. The note
command at line 14 then directs Jahob to prove an intermediate lemma-that the
return value of bucketContainsKeyO is true if kO is a key in the bucket at hc, and
false otherwise-and to label the proved lemma InCon. Finally, the note command at
line 15 directs Jahob to use the proved lemmas InCon, HCDef, and ThisContentsDef
to prove that the value returned by bucketContainsKeyO corresponds to whether kO
is in contents. Together, these proof commands provide the necessary guidance for
Jahob to verify the postcondition of _containsKeyO.

7.6.5 The bucketContainsKeyO Method

Figure 7-10 presents the body of the bucketContainsKey() method, which implements
part of the functionality of _containsKeyo. The bucketContainsKeyO method takes
the index of a bucket in the hash table and a key kO, and returns a boolean value
indicating whether kO corresponds to a key-value pair in the bucket. It uses a while
loop to search through the linked list at the given bucket, starting with the first node.
If kO is equal to the key at the node currently under consideration, then the method
returns true. If the method reaches the end of the linked list without finding kO, then
it returns false. The loop invariant for the while loop consists of the property that
there is a key-value pair corresponding to the key kO in the given bucket if and only
if such a pair is in the unsearched portion of the linked list. No proof commands are
necessary for Jahob to verify this method, which is not surprising for a method that
does not modify the program state.
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1 private Object _remove(Object kO)
2 7*: requires "(comment ''Init '' init) A kO # null A
3 (]v.(k0, v) E contents) A theinvs"
4 modifies contents, con, next, arrayState
5 ensures "(contents = old contents - {(kO, result)}) A
6 ((kO, result) E old contents) A
7 (Va iLa # table -+ a.[i] = old (a.[i])) A theinvs" */
8{
9 77: ghost specvar vO::obj;

10 77: havoc vO suchThat Key/n Contents: "(k0, vO) E contents";
11
12 int hc compute-hash(kO);
13 Node f = table[hc];
14
15 77: note ThisProps: "this E alloc A this e Hashtable"; *
16 77: note HCProps: "hc = h kO (table .. length)" ;
17 7*: note Key/nBucket: "(kW, v) E table .[hc] .. con"
18 from Key/nContents , ContentsDef, Init , ThisProps , HCDef; *7
19
20 if (f.key = kO)
21 return removeFirst(kO, hc);
22 else
23 return removeFromBucket(kO, hc);
24 }

Figure 7-11: Body of Hashtable._remove()

7.6.6 The _remove() Method

Figure 7-11 presents the body of the _remove() method. The _remove() method takes a
key kO that is known to be in the hash table and removes the corresponding key-value
pair. It does this by first invoking the compute-hash() method on kO to obtain the
index to the appropriate bucket. It then tests whether the first node in the linked list
corresponds to the entry for k. If so, it returns the result of the removeFirstO method,
which removes the first node in the bucket, and returns the corresponding value.
Otherwise, it returns the result of removeFromBucketO, which finds and removes the
node for kO from the bucket, and returns the corresponding value.

Verifying that f is Non-Null

The body of _remove() contains several proof commands that provide the guidance
that the provers need to verify _remove(. Specifically, the proof commands address
the null pointer check for the dereference of f in line 20, in the test for the if statement.
The local variable f refers to the reference at index hc of table. If f were null, then
the bucket at that index would be empty. However, kO hashes to that bucket, and
is known to be in the hash table, so f must be non-null. The proof commands show
that the key-value pair corresponding to kO is indeed in that bucket.

To simplify the proof, the _remove() method first declares a ghost variable vO.
The havoc command at line 10 then assigns vO to the value corresponding to kO

138



in contents, and labels this property KeyInContents. The precondition of _remove()
guarantees that such a value exists; naming it eliminates the need for using existential
quantifiers in the proof, which in turn simplifies the proof task for the provers.

The proof depends primarily on the ContentsDeflnv invariant. One way to apply
ContentsDeflnv to the receiver object is to use an instantiate command followed by an
mp command, as is done in get() and _containsKeyo. This method uses an alternative
but equally effective series of proof commands that combines several different proof
steps. The note command at line 15 first directs Jahob to prove that the receiver is
an allocated Hashtable object, and to label this proved lemma ThisProps. Together,
the proved lemma ThisProps and the labeled precondition conjunct Init provide the
necessary facts to apply modus ponens to result of instantiating ContentsDeflnv with
the receiver object. The next note command, at line 16, directs Jahob to prove that
hc is the result of applying the hash function h to kO and table..length, and to label
the proved lemma HCDef. This property is also necessary for applying the Contents-
Deflnv invariant. Finally, the note command at line 17 directs Jahob to prove that
(kO, vO) is in the bucket at index hc, using the facts KeylnContents, ContentsDeflnv,
Init, ThisProps, and HCDef. From this result, the provers are then able to automati-
cally conclude that f is non-null.

7.6.7 The removeFirstO Method

Figures 7-12 and 7-13 present the body of the removeFirstO method, which is invoked
by _remove(. The removeFirstO method removes the binding for a key kO from the
hash table, given that kO corresponds to the first node in the bucket at index hc.
The removeFirstO method first declares a ghost variable vO and assigns it to the value
corresponding to kO using a havoc command. It also uses the havoc command to give
the constraint on vO the label InContents. Next, removeFirst( removes f-the first
node in the bucket at hc-by assigning table[hc] to the next node in the list, and
nulling out the next field of the removed node. To restore the hash table invariants,
removeFirstO performs two ghost variable assignments. First, it assigns f..con (the
contents of the removed node) to the singleton set (f..key, f..value). Then, it assigns
the contents of the hash table to the result of removing the pair (kO, vO) from the
original value of contents. Finally, at the end of the method, removeFirstO returns
f.value-the value to which kO was previously mapped.

Verifying the Postcondition

The body of removeFirst( contains a number of proof commands that provide the

guidance that the provers need to verify the method. The first group of proof com-
mands address the second conjunct in the postcondition-that the pair (kO, result)
was originally in content. To prove this property, it is necessary to show that vO is

equal to f..value, which depends on both ContentsDeflnv and ConDef. Together, these
invariants establish that kO maps to f..value, and that kO has only one mapping in
the hash table. Since kO also maps to vO, then vO and f..value must be the same. To
apply ContentsDeflnv to the receiver object, the note command in line 22 first directs
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private Object removeFirst (Object kO , int hc)
7*: requires " init A kO 5 null A (]v.(kO, v) c contents

comment 'KFound' ' (kO = table .[hc]..key)
comment ''HCProps'' (0 < hc A hc < table.
hc = h k0 (table.. length)) A theinvs"

modifies contents, con, next, arrayState
ensures "(contents = old contents - {(kO, result)})

((k0, result) C old contents) A
(Va i.a / table -+a.[i] = old (a.[i])) A t

: ghost specvar vO :: obj;
: havoc vO suchThat InContents: "(k0,

Node f = table[hc];
Node second = f.next;
f.next = null;
77: "f .. con" := "{(f .. key, f .. value)}";

table[hc] = second ;
/7: "contents" := "old contents

vO) c contents";

{(k0, v)}";

: note ThisProps: "this E alloc A this E Hashtable A init";
: note OldContents: " old contents =

{(kv). (kv) E old (table .[(h k (table .. length ))].. con)}"
from ContentsDef/nv , ThisProps; *7

: note FNonNull: " f z null" ;
7: note FProps: "f E Node A f e alloc"

from unalloc-lonely , array.pointsto ThisProps; */
7: note VFound: "vO = f .. value" from InContents , OldContents,

ConDef, KFound, FProps, FNonNull, HCProps; *7

*: note Acyclic: " fieldRead (old next) f # f"
from FNonNull, HCProps, First/nj/nv ThisProps; *7

Figure 7-12: Body of Hashtable.removeFirstO (continued in Figure 7-13)
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34 {
35 7*: pickAny ht :: obj suchThat
36 ContentsDefHyp: "ht c alloc A ht E Hashtable A ht.. inIt"; *
37 7*: note ContentsThis: "ht = this -+ ht.. contents =
38 {(k,v). (k,v) E ht..table.[(h k (ht..table.. length))]..con}"
39 from OldContents, Element/nj/nv, Acyclic , ThisProps , KFound,
40 VFound, ConDef, FProps, FNonNull, Hash/nv, HCProps; */
41 {
42 /7: assuming NotThisHyp: " ht f this"
43 7*: note OldHTContents:
44 "fieldRead (old Hashtable. contents) ht =
45 {(k, v). (k, v) E (fieldRead (old con) (arrayRead
46 (old arrayState) (ht .. table) (h k (ht . table. .length ))))}"
47 from ContentsDefHyp, NotThisHyp, ContentsDef/nv; *7
48 77: note TableNotEq: "ht.. table # table";
49 7*: note ContentsOther: "ht.. contents = {(k, v).
50 (k, v) c ht..table.[(h k (ht.. table.. length ))]..con}"
51 from ContentsDefHyp, Not ThisHyp, HashInv, Element/nj/nv,
52 HCProps, ThisProps, FNonNull, OldHTContents,
53 TableNotEq; *7
54 }
55 7*: cases "ht = this" , "ht # this" for ContentsCases:
56 "ht., contents = {(k, v).
57 (k, v) E ht.. table.[(h k (ht.. table .. length ))]..con}"

58 from ContentsThis, ContentsOther; */
59 7*: note ContentsDefPostCond: "ht.. contents = {(k, v).
60 (k, v) c ht.. table .[(h k (ht.. table.. length ))]..con}"
61 from ContentCases forSuch ht; */
62 }
63 7*: note CoherencePostCond: "theinv Coherence" from ConDef, ConNull,
64 Coherence, Table/nj/nv , HCProps, FProps, FNonNull, Acyclic; */
65
66 return f.value
67 }

Figure 7-13: Body of Hashtable.removeFirstO (continued from Figure 7-12)
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Jahob to prove that the receiver object is an initialized, allocated Hashtable object
and to label this property ThisProps. The next note command, in line 23, then directs
Jahob to use the proved lemma ThisProps and the ContentsDeflnv invariant to prove
that the original value of contents consists of the set of key-value pairs in the original
hash table, according to the definition in ContentsDeflnv, and to label this property
OldContents. The next two note commands establish the facts necessary for applying
ConDef to f. The note command at line 26 directs Jahob to prove that f is non-null and
to label that property FNonNull. The subsequent note command, at line 27 directs
Jahob to prove that f is an allocated Node object, using the proved lemma FProps,
and the background lemmas unallocilonely and array-pointsto which Jahob provides
by default,' and to label that property FProps. Finally, the note command at line 29
directs Jahob to use the labeled facts KFound, HCProps, and InContents, the invari-
ant ConDef, and the proved lemmas OldContents, FProps, FNonNull, and HCProps to
prove that vO is equal to f..value, and to give the proved lemma the label VFound.

The ContentsDeflnv Postcondition

The next note command in the method (at line 32) directs Jahob to prove an inter-
mediate lemma for use in subsequent proof commands, and to label it Acyclic. This
lemma states that the next field of the removed node did not refer to itself in the
original state of the hash table. This non-aliasing property is important for showing
that the removed node is actually removed from the hash table.

The group of proof commands that follow (starting at line 35 of Figure 7-13)
addresses the ContentsDeflnv invariant in the method postcondition. Because Con-
tentsDeflnv is universally quantified, the proof is enclosed in a pickAny block. This
block gives a name (ht) to the quantified variable and introduces the hypothesis that
ht conforms to the antecedent in the implication within ContentsDeflnv. By nam-
ing the quantified variable, the pickAny block simplifies the proof by eliminating the
outer universal quantifier from subsequent proof steps. It also gives a label, Contents-
DefHyp, to the introduced hypothesis so that later proof commands can refer to it.
It now remains to prove the consequent in ContentsDefHyp.

There are two top-level cases in the proof of the consequent: one case considers the
receiver object and the other considers all other objects. The first note command in
the block (at line 37) addresses the former case. The commands that follow (starting
at line 42) address the latter. Re-establishing the ContentsDeflnv invariant for the
receiver object depends not only on the ContentsDeflnv invariant from the method
precondition, but also on several other properties including injectivity properties, the
definition of con, and properties concerning the index hc and the removed key and
value. The note command at line 37 therefore directs Jahob to use the labeled facts
HCProps and KFound (from the precondition), the invariants Elementlnjlnv, ConDef,
and Hashlnv, and the proved lemmas OldContents, Acyclic, ThisProps, VFound, FProps,
and FNonNull to prove that ContentsDefinv holds for the receiver object. This single

iThe lemma unallocilonely states the property that newly-allocated objects do not point to any
existing objects or vice versa, while array-pointsto provides type information about the objects in an
array.
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note command is sufficient for guiding the provers to prove this property. The note
command also directs Jahob to label this property ContentsThis.

The next part of the proof addresses objects other than the receiver. It begins
with an assuming block that introduces the hypothesis (labeled NotThisHyp) that
ht is not equal to the receiver. The proof for this case consists of showing that
the ContentsDefinv property from the method precondition still holds for ht. There-
fore, the first note command in the block, at line 43, directs Jahob to establish the
relationship between the original contents of ht and the original concrete state of
the hash table. It identifies the necessary supporting facts as the hypotheses Con-
tentsDefHyp and NotThisHyp, and the ContentsDeflnv invariant, and directs Jahob
to label the proved lemma Old HTContents. The note command at line 48 then di-
rects Jahob to prove that ht..table is not equal to table, and to label the proved
lemma TableNotEq. This property distinguishes between the table array for ht from
the table array for this and is important for showing that the ht..table is not modi-
fied. Finally, the note command at line 49 directs Jahob to prove that ht..contents is
equal to {(k, v).(k, v) E ht..table.[(h k(ht..table..length))]..con} for objects other than
the receiver. It identifies the supporting facts as the hypotheses ContentsDefHyp
and NotThisHyp, the invariants Hashlnv and Elementlnjlnv, the precondition con-
junct HCProps, and the proved lemmas ThisProps, FNonNull, OldHTContents, and
TableNotEq, and directs Jahob to label the proved lemma ContentsOther, closing the
assuming block.

The cases command at line 55 then combines the case for the receiver object from
ContentsThis and the case for all other objects from ContentsOther to prove that the
equivalence holds for any object, labeling the resulting proved lemma ContentsCases.
Finally, the note command at line 59 closes the pickAny block, proving from Con-
tentsCases that the ContentsDeflnv invariant holds.

The Coherence Postcondition

The last note command in removeFirstO addresses the Coherence invariant. This prop-
erty depends primarily on the Coherence invariant from the method precondition, but
also on the definition of the abstract state component con(since Coherence is defined
in terms of con), as well as certain injectivity properties. The note command directs
Jahob to prove the Coherence invariant using the labeled fact HCProps, the invariants
ConDef, ConNull, Coherence, and Tablelnjlnv, and the proved lemmas FProps, FNon-
Null, and Acyclic. This single note command is sufficient for providing the guidance
needed by the provers to prove the Coherence invariant in the method postcondition.

7.6.8 The removeFromBucket() Method

Figures 7-14, 7-15, 7-16, 7-17, and 7-18 present the body of the removeFromBucketO
method. This method takes a key kO and an index hc and removes the corresponding
key-value pair from the bucket at hc. It first declares a ghost variable v and uses a
havoc command to assign vO to the value corresponding to kO in the hash table. It
also uses the havoc command to give the constraint on vO the label InContents. It
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private Object removeFromBucket (Object kO , int hc)
*: requires "comment ''Init '' init A kO # null A

(v.(k0, v) E contents) A
comment 'KNotFound'' (kO 4 table.[hc]..key) A
comment 'HCProps' ' (0 < hc A hc < table.. length A
hc = h kO (table .. length)) A theinvs"

modifies contents, con, next, arrayState
ensures "(contents = old contents - {(k0, result)}) A

((kO, result) E old contents) A
(Va i. a # table -+ a.[i] = old (a.[i])) A theinvs"

{
: ghost specvar vO :: obj;
: havoc vO suchThat InContents: " (k0 , vO) E contents";

Node f = table[hc];
Node prev = f;

7: note InBucket: "(k0 , vO) c prev .. con"
ContentsDef/nv, thisNotNull , thisType,

7: note PrevNotNull: " prev f- null"
from InBucket, ConDef, ConNull; *7

: " prev .. con"
: "contents"

prev .. con - {(kO , vO )}" ;
"old contents - {(k0, v0)}"

Node curr = prev.next;

7*: note PrevHidden: " prev C hidden" from NodeHiddeni
thisNotNull, thisType , PrevNotNull , Init , HCProps; */

7*: note ConPreLoop:
"Vn. n C Node A n C alloc A n : null A n 5 prev -+

n..con = {(n..key, n.. value)} U n.. next .. con A
(Vv.(n.. key, v) V n.. next .. con)"

from ConDef, Firstlnj/nv , Init , HCProps, thisNotNull,
thisType , PrevNotNull; */

7*: note ConUnchangedPreLoop:
"Vht i. ht # this A ht c Hashtable A ht E alloc

0 < i A i < ht..table.. length -+
ht .. table .[ i ]..con - old (ht.. table .[ i ]..con)"

from Elementnjlnv, thisType , PrevNotNull , Init

A ht. init A

HCProps; */

Figure 7-14: Body of Hashtable.removeFromBucketO (continued in Figure 7-15)
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while /*: inv

(curr .key

prev E Node A prev E alloc A prev : null A
prev E hidden A comment ' ' PrevCon ' '
(prev.. con = fieldRead (old con) prev - {(kO, vO)}) A
comment ' ' PrevNot ' '
(Vv.(prev..key, v) ( prev..next..con) A
comment ''CurrProps ' (curr E Node A curr E alloc) A
comment CurrNotNull'' (curr # null) A
comment PrevCurr ''
(prev.. next = curr A prev # curr) A
contents old contents - {(kO , vO)} A
(kO , vO) E curr . . con A comment ' 'ConDefinv
(V n. n e Node A n E alloc A n # null A n 4 prev -+

n..con = {(n..key, n..value)} U n.. next..con A
(Vv.(n.. key, v) V n.. next..con)) A
comment '' ConLoop ' '
(Vn. n..con = old (n..con) V
n..con = old (n..con) - {(kO, vO)}) A

(null .. con = 0) A comment ''FConlnv''
(f .. con = (fieldRead (old con) f) - {(kO, vO)}) A
comment ''ConUnchanged '
(Vht I. ht # this A ht c Hashtable A ht E alloc A
ht.. init A 0 < I A i < ht .. table .. length -
ht ..table .[ i ]..con = old (ht.. table .[ i ]..con))" *7

!= kO)

77: "curr..con" "curr..con - {(kO, vO)}";

7: note CurrCon:
" curr .. con = fieldRead (old con) curr - {(k

: note Prev/sNot: " prev . . key # kO"
*: note OldConDef: " field Read ( old con) prev =

(prev. .key , prev.. value)} U
field Read (old con) (prev .. next)" *7

: note PrevConDef:
" prev .. con = {(prev.. key, prev .. value)} U p
from PrevCurr , PrevCon , CurrCon, OldConDef,

0, vO)}"; */

rev .. next .. con"

PrevsNot; */

prev = curr ;
curr = curr.next;

: note FConLem:
"f.. con = (fieldRead (old con) f) - {(kO, vo)}"

from FCon/nv; */

: note ConExceptPrev:
"Vn. n E Node A n E

n..con = {(n..key,
(Vv .(n .. key , v) V n

PrevNot, ConDef/nv,

alloc A n L null A n $ prev -+

n.. value)} U n.. next..con A
.. next .. con)" from PrevConDef,
PrevCurr, Next/nj/nv , CurrNotNull; *7

Figure 7-15: Body of Hashtable.removeFromBucketO (continued in Figure 7-16)

145



93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

}

Node tmp curr. next;
prev.next tmp;
curr.next = null

/7: "curr .. con" : "{(curr .. key, curr .. value)}";

{
7*: pickAny x:: obj suchThat

xHyp: "x e Node A x C alloc A x # null"; */
{

: assuming xlsPrev: "x = prev"
*: note nextNotCurr: "fieldRead (old next) curr

from Nextlnjlnv , CurrNotNull, PrevCurr, Curr
: note prevNextCon:

" prev .. next .. con = fleld Read (old con) (prev
*: note prevOldCon : " field Read (old con) prev =

{(prev.. key, prev..value)} U
field Read (old con) curr" ; */

*: note currOldCon: " fieldRead (old con) curr =
{(curr..key, curr..value)} U
fieldRead (old con) (fieldRead (old next) cu

: note prevKeyNotKO: " prev.. key # kO"
{

.. next)"; *

rr)"; */

*: pickAny k:: obj , v:: obj suchThat
ForwHyp: "(k, v) G x.. con"; *7

: note kNotKO: " k # k0" ;
: note currKeylsKO: c u r r.. key kO"
: note ForwCase:

" (k, v) c {(x.. key, x.. value)} U x.. next .. con"
from xHyp, xlsPrev , ForwHyp, PrevCurr, nextNotCurr,
PrevCon , prevNextCon, prevOldCon, currOldCon
prevKeyNotKO, kNotKO, currKeylsKO forSuch k, v;

}
7*: note BackCase:

"Vk v.(k, v) E {(x..key, x..value)} U x.. next..con --
(k, v) c x..con"; */

7*: note xCon: "x..con =
{ (x.. key , x.. value)} U x.. next .. con"
from ForwCase, BackCase; */

7*: cases "x = curr" , "x = prev" , "x # curr A x # p
XCon: "x..con = {(x..key, x.. value)} U x.. next.

7*: note ConPost:
x..con = {(x..key, x..value)} U x.. next..con A
(Vv.(x..key, v) V x.. next..con)" forSuch x; */

rev" for
.con" ; */

Figure 7-16: Body of Hashtable.removeFromBucketO (continued in Figure 7-17)
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139 {
140 7*: pickAny ht :: obj suchThat
141 CohHyp: "ht c alloc A ht c Hashtable A ht .. Init"; */
142 {
143 7*: pickAny i :: int , k::obj , v::obj suchThat
144 InnerHyp: "0 < i A i < ht..table.. length A
145 (k, v) E ht.. table.[ i ]..con"; */
146 77: note NotCurr: " ht .. table .[ i] # curr"
147 7*: note /nnerConc: "h k (ht .. ta ble .. length) i
148 from CohHyp, InnerHyp , Coherence , NotCurr, ConLoop
149 forSuch i, k, v; */
150 }
151 7*: note CoherencePost:
152 '(Vi k v.0 < i A i < ht .. table.. length
153 (k, v) E ht..table .[i ]..con h k (ht.. table .. length) =
154 from InnerConc forSuch ht; *7
155 }
156 {
157 7*: pickAny x:: obj suchThat
158 ContentsDefHyp: "x E alloc A x E Hashtable A x.. init"; */
159 7*: note OldXContents: "fieldRead (old Hashtable. contents) x =
160 {(k, v). (k, v) C (fieldRead (old con) (arrayRead
161 (old arrayState) (x. table) (h k (x.. table.. length)))}"
162 from ContentsDefHyp, ContentsDef/nv; */
163 {
164 assuming XNotThisHyp: "x this"
165 *:note NotCurr: "Vi.0 I A i < x.. table.. length
166 x..table.[i] 7 curr";
167 *:note ConXUnchanged:
168 "Vi.0 < i A i < x..table.length
169 x..table[I]con - fieldRead (old con)
170 (ar r ay Re ad (old arrayState) (x .. table ) I )" from
171 XNotThisHyp, ContentsDefHyp, NotCurr, ConUnchanged; *
172 7*:note LengthLemma: "Vk.0 < (h k (x.. table .. length )) A
173 (h k (x . . table.. length)) < (x . . table length
174 from ContentsDefHyp, Hash/nv; *7
175 *:note XNotThisCase: "x.. contents = {(k, v).
176 (k, v) c x .. table . [( h k (x .. table.. length ))] .. con}"
177 from ContentsDefHyp, XNotThisHyp, O/dXContents,
178 LengthLemma, ConXUnchanged;
179

Figure 7-17: Body of Hashtable.removeFroBucketO (continued in Figure 7-18)
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return curr.value;

Figure 7-18: Body of Hashtable.removeFromBucketO (continued from Figure 7-17)
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7:assuming X/sThisHyp: "x - this";
7:note O/dContents: 'old contents -- (k,v).

(k,v) E old (table .[(h k (table. length ))] .. con)}" *
{

7:pickAny k:: obj, v:: obj suchThat
ForwHyp: " (k, v) c contents" 
note NotCurr:
" table [(h k ( table .. length curr" from
First/nj/ , ContentsDefHyp, ,sThvsHyp, PrevCurr ,
CurrNotNull, Hash/nv; *7

7*: note ForwCase:
"(k, v) c table .[(h k (table .. length ))]..con"
from ForwHyp, OldContents, NotCurr, ConLoop
forSuch k, v; *7

/*: pickAny k:: obj , v:: obj suchThat BackHyp:
"(k, v) c table .[(h k (table .. length ))].. con"; */

7*: note NotCurr: "table. [( h k (table .. length ))] # curr"
from First/nj/nv , ContentsDefHyp, XIsThisHyp,
PrevCurr, CurrNotNull, Hash/nv; */

7*: note BackCase: "(k, v) c contents" from BackHyp,
OldContents, NotCurr, ConLoop, FConnv, HCProps
forSuch k, v; */

7*: note X/sThisCase: "contents =
{(k, v). (k, v) c table .[(h k (table .. length ))]..con}"
from ForwCase, BackCase; */

note ContentsDefPost: "x .. contents
{(k, v). (k, v) c x.. table .[(h k (x.. table.. length ))].. con}"
from XNotThisCase, X/sThisCase forSuch x; */



then traverses the the bucket at hc using a while loop, starting with the second node
in the linked list. (The method precondition guarantees that the entry for kO is not in
the first node of the bucket.) In each iteration of the loop, a specification assignment
statement removes the pair (kO, vO) from curr..con, where curr is the current node
in the traversal. The loop also keeps track of the previous node on the list. The
loop exits when it reaches the node corresponding to kO. At this point, the method
removes the node corresponding to kO by assigning the next field of the previous
node on the list to curr.next, and assigns curr.next to null. A specification assignment
statement assigns the value of curr..con to the singleton set consisting of the key-value
pair at the current node, restoring the ConDef invariant. Finally, the method returns
curr.value-the value that was previously associated with kO in the hash table.

Note that our implementation of Hashtable.removeo suffers from the same in-
efficiency as AssociationList.remove(), since both _containsKey() and _remove() must
search the hash table for the removed key. As in the case of the association list,
this simplification results in smaller methods, which generally corresponds to a sim-
pler verification. Even so, the verification for the methods involved, which include
removeFromBucketO, is non-trivial. While it is also possible to verify a more efficient
version of Hashtable.removeO, the verification may be more difficult, and may involve
the specification of additional abstract state.

Null Dereference Check

The body of removeFromBucketO contains a number of proof commands that provide
the guidance the provers need to verify the method. The first pair of note commands
(at lines 18 and 20) addresses the null dereference check for the dereference of prev
at line 26. Without the guidance of these proof commands, the provers are unable to
statically verify that prev is not null within Jahob's standard time limit. The value
of prev is guaranteed to be non-null because kO is known to be in the hash table, at
the bucket that begins with the node prev. In addition to InContents, which indicates
that kO is in the hash table, the proof also requires the definition of contents from
ContentsDeflnv, and to apply that definition, certain properties of the receiver object,
as well as the definition of the index hc in terms of the hash function h. The first
note command therefore directs Jahob to prove that the pair (kO, vO) is in prev..con
using the constraint InContents, the invariant ContentsDeflnv, the background lemmas
thisNotNull and thisType, which Jahob provides by default, and the conjuncts Init and
HCProps from the precondition. (The background lemma thisNotNull simply states
that the receiver this is not equal to null, while thisType gives the type of this, in this
case Hashtable, and states that this is allocated.) It also directs Jahob to label the
proved lemma InBucket. To prove from this result that prev is non-null requires the
definition of con. The next note command therefore directs Jahob to prove that prev
is not equal to null using the proved lemma InBucket, and the invariants ConDef and
ConNull. It directs Jahob to label the proved lemma PrevNotNull so it can be used in
subsequent proof commands.
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Loop Invariant Base Case

The next set of note commands (at lines 28, 31, and 38) guides the system in proving
that the loop invariant holds on the initial entry into the loop. Each command
identifies the set of facts to use to prove a particular conjunct in the loop invariant.
The first note command addresses the loop invariant property prev E hidden. This
property becomes important at the end of the loop, when the next field of prev is
assigned, to ensure that references to hidden objects are only written in other hidden
objects. The NodeHidden1 invariant from the precondition ensures this property
for the first node in every bucket of the hash table. But the proof also requires
properties of the receiver object and of the index hc to apply the invariant to prev. The
note command therefore directs Jahob to prove this property using the NodeHidden1
invariant, thisNotNull, thisType, PrevNotNull, Init, and HCProps.

The second note command in this set, at line 31, addresses the conjunct in the
loop invariant with the label ConDeflnv, which is later used in proving that ConDef is
restored at the end of the method. This conjunct indicates that the ConDef invariant
holds at the top of the loop for all nodes except prev. This is because the loop modifies
con of the current node curr by removing the pair (kO, v0), temporarily violating
the relationship between the current node and its successor given by ConDef. This
relationship is restored at the next iteration of the loop, when con of the successor
node is modified. The proof of the desired property depends primarily on ConDef,
but also on Firstlnjlnv, to show that prev is not the successor to any node. The note
command at line 31 therefore directs Jahob to prove ConDeflnv using the invariants
ConDef and Firstlnjlnv, Init, HCProps, thisNotNull, thisType, and PrevNotNull.

The third note command in this set, at line 38, addresses the loop invariant con-
junct with the label ConUnchanged. This conjunct indicates that for all allocated and
initialized hash tables except for the receiver object, the contents of all the buckets-
as defined by the con field of the first node in the bucket-are unchanged from the
beginning of the method. The proof of this property depends on Elementlnjlnv, which
indicates that the first nodes of the buckets of one hash table are not the same as the
first nodes of the buckets of another. Certain properties of the receiver object, prev,
and the index hc are also needed to apply this invariant. The third note command
at line 38 therefore directs Jahob to prove this conjunct using Elementlnjlnv, thisType,
PrevNotNull, Init, and HCProps.

Loop Invariant Inductive Case

The proof commands within the loop body guide the provers in the inductive proof
of the loop invariant. The goal is to show that the loop invariant holds at the end
of the loop body, given the assumption that the loop invariant holds before the loop
test. The note commands at lines 70, 72, 73, 76, and 87 address the ConDefinv
conjunct of the loop invariant. Earlier proof commands guide the provers in proving
this conjunct for the initial entry into the loop. Here, the proof commands guide
the provers in proving that this conjunct holds after every loop iteration. The proof
consists of showing that the modification of con in the current loop iteration restores
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the definition of con for prev, but does not violate it for any node other than curr. The
properties required for this proof therefore include the value of con for prev. The next
three note commands identify intermediate lemmas needed to derive this value. The
first note command (at line 70) concerns the value of con for curr. It directs Jahob to
prove that curr..con is the result of removing the pair (kO, vO) from its original value,
and labels the proved lemma CurrCon. The next note command (at line 72) directs
Jahob to prove that the key associated with the previously traversed node is not kO,
and to label it PrevisNot. The note command at line 73 concerns the original value of
con for prev. It directs Jahob to prove that this value consists of the key, value pair
at prev and the original value of con for the node following prev in the linked list.
The note command at line 76 combines these three proved lemmas as well as the loop
invariant conjuncts PrevCurr and PrevCon to show that the value of con for prev is
consistent with the definition given by ConDef-i.e., it consists of the key-value pair at
prev and the value of con for the next node in the linked list. Finally, the note at line 87
directs Jahob to prove ConDeflnv using the proved lemma PrevConDef, and the loop
invariant conjuncts ConDeflnv, PrevCurr, CurrNotNull, and the invariant Nextlnjinv.
PrevConDef and PrevNot give the definition of con for prev, while ConDeflnv gives the
definition for the unmodified nodes. The Nextlnjlnv invariant from the precondition
guarantees that no other nodes are affected, while PrevCurr and CurrNotNull provide
properties necessary to apply the invariant.

The remaining note command in the loop body, at line 83, identifies the fact that
Jahob should use to prove that the loop invariant conjunct FConlnv holds at the end
of the loop body. In this case, the only necessary fact is the same conjunct from the
inductive hypothesis for the loop invariant indicating that FConlnv holds on entry to
the loop. By identifying this loop invariant conjunct as the only necessary fact for the
proof, this note command enables the provers to prove the desired property. Without
a note command to identify this fact, the provers are unable to find the proof within
Jahob's standard time limit due to the large number of facts in the assumption base.
All other conjuncts of the loop invariant prove without additional proof commands.

The ConDef Postcondition

The proof commands at the end of the method address conjuncts in the method
postcondition. The pickAny block at line 100 guides Jahob in proving that the ConDef
invariant is restored at the end of the method. The pickAny command names the
quantified variable in ConDef, making it possible to state intermediate lemmas that
reference that variable. It also hypothesizes that the antecedent of the implication
within the universal quantifier holds. It gives the name x to the quantified variable
and labels the hypothesis xHyp. It now remains to prove the antecedent, which has
two parts. The first part specifies that x..con consists of the key-value pair at x and
the value of con of the following node in the linked list. The second part specifies the
key at x is not present in the rest of the linked list. There are three main cases in
the proof of the first part: the case for x equal to curr, the case for x equal to prev,
and the case for all other values of x. The first and third cases prove without proof
commands, but the case for prev requires some guidance.
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The assuming block at line 103 addresses the case for prev. It introduces the
hypothesis that x is equal to prev, the node preceding the removed node curr, and
gives the label xlsPrev to the hypothesis. The proof shows that x..con is equal to
{ x..key, x..value} U x..next..con by showing that the two sets have the same contents.

The first set of note commands direct Jahob to prove some intermediate lemmas
used later in the proof. The note command at line 104 directs Jahob to prove that
the next field of curr in the original hash table did not point to itself, and to label the
proved lemma nextNotCurr. It identifies the facts to use as the Nextinjlnv invariant,
and the conjuncts CurrNotNull, PrevCurr, and CurrProps from the loop invariant. The
proved lemma states an injectivity property necessary for showing that the removed
node is actually removed.

The next note command, at line 106, directs Jahob to prove that the con field of
prev..next is the same as it was in the original hash table, and to label the proved
lemma prevNextCon. This property gives the value of con for prev..next, which is
important for showing that the definition of con for prev is restored.

The note command at line 108 concerns the original value of con for prev. It
directs Jahob to prove that the con field of prev in the original hash table is given by
the definition in ConDef, and to label the proved lemma currOldCon. The following
note command, at line 111, directs Jahob to prove the same property for curr, and
to label it currOldCon. The note command at line 114 directs Jahob to prove that
prev..key is not equal to kO and to label the proved lemma prevKeyNotKO.

The pickAny block at line 116 addresses the forward direction of the proof for
showing that the sets x..con and {x..key, x..value} Ux..next..con are equal. The pickAny
command chooses arbitrary k and v and considers the hypothesis that the pair (k, v)
is in x..con. It labels this hypothesis ForwHyp. The goal is to show that (k, v) is also
in {x..key, x..value} U x..next..con. The proof depends primarily on the definition of
con for prev as given by the loop invariant conjunct PrevCon, but also on the values
given by the previously proved lemmas, and the relationships between prev, curr, kO,
and k as expressed by various proved lemmas and loop invariant conjuncts. The next
two note commands direct Jahob to prove two of the intermediate lemmas that are
necessary for the proof. The note command at line 114 directs Jahob to prove that
k is not equal to kO and to label the proved lemma kNotKO. The note command at
line 118 directs Jahob to prove that curr..key is equal to kO, and to label the proved
lemma currKeylsKO. The note command at line 120 then directs Jahob to use the
hypotheses xHyp, klsPrev and ForwHyp, the loop invariant conjuncts PrevCurr and
PrevCon, and the proved lemmas nextNotCurr, prevNextCon, prevOldCon, CurrOldCon,
prevKeyNotKO, kNotKO, currKeylsKO to prove that (k,v) is in {(x..key,x..value)} U
x..next..con for the given k and v. The loop invariant conjunct PrevCurr provides the
definition of con for prev, while PrevCurr and nextNotCurr give the relationship between
curr and prev. The proved lemmas prevNextCon, prevOldCon, and CurrOldCon provide
other definitions of con necessary for the proof, while prevKeyNotKO, kNotKO, and
currKeylsKO give the relationship between kO and other keys. This note command
closes the pickAny block and labels the proved lemma ForwCase. It completes the
forward direction of the proof by showing that an arbitrary pair (k, v) in x..con must
also be in {x..key, x..value} U x..next..con.
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The note command at line 126 then directs Jahob to prove the converse of For-
wCase and to label it BackCase. This proof requires only the single note command,
completing the backward direction of the proof. The note command at line 129 then
directs Jahob to use ForwCase and BackCase to prove the desired equivalence-that
x..con consists of the key-value pair at x and the con field of the following node when
x is equal to prev. This note command completes the proof of the first part of ConDef
for prev, and closes the assuming block.

The cases command at line 133 then directs Jahob to prove the first part of ConDef
for all three cases using case analysis. The case for prev is already proved, while the
other two cases prove without additional proof commands. The final note command
at line 135 closes the pickAny block by directing Jahob to conclude both parts of the
ConDef invariant for the given x. The first part is proved in the previous cases com-
mand, while the second part proves without additional proof commands, completing
the proof of the ConDef invariant in the postcondition.

The Coherence Postcondition

The pickAny block that begins at line 140 guides Jahob in proving the Coherence
invariant. Without it, the provers are unable to prove the Coherence component of
the postcondition within the standard time limit. The outer pickAny block names the
quantified variable at the top level of the Coherence invariant and makes it possible
to state intermediate lemmas that reference that variable. It gives the variable the
name ht and hypothesizes that the antecedent of the top-level implication in Coherence
holds for ht. Specifically, the hypothesis indicates that ht is an allocated, initialized
Hashtable object. The pickAny command labels this hypothesis CohHyp.

The outer pickAny block also encloses an inner pickAny block that names the
variables quantified by the inner universal quantifier of Coherence. The inner pickAny
block names these variables i, k, and v. It also hypothesizes that the antecedent of the
implication in this inner quantifier holds and names the hypothesis InnerHyp. This
hypothesis indicates that i must be in the range [0, ht..table.. length) and that the pair
(k, v) is in the ith bucket of ht, or, more precisely, that it is in ht..table.[i]..con.

It now remains to prove the consequent of the implication-i.e., that the ith bucket
is the correct bucket for k as defined by the hash function h. The proof of this property
depends on the Coherence invariant in the precondition and on the loop invariant.
The loop invariant conjunct ConLoop expresses the property that the abstract state
component con for all objects is either unchanged or the result of removing the pair
(kO, vO) from the original value of con. Therefore, at the end of the loop, any pair (k, v)
in the ith bucket of ht must also have been in the ith bucket of ht in the original state.
According to the Coherence precondition, any such pair is in correct bucket at the end
of the while loop. But between the end of the loop and the current program point,
the value of con has changed for the removed node curr. Therefore, it is important to
distinguish curr from the node corresponding to the head of the bucket that contains k.
The note command at line 146 does this by directing Jahob to prove an intermediate
lemma-that the first node in the ith bucket in ht is not the removed node curr.
This proved lemma, along with the Coherence invariant, the hypotheses CohHyp and
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InnerHyp (which are necessary for applying Coherence to the named variables ht, i, k,
and v), and the ConLoop conjunct from the loop invariant form a sufficient basis for
the provers to show that the Coherence invariant holds. The note command at line
147 directs Jahob to prove the consequent in the inner implication of Coherence using
the above facts, thereby establishing the inner universally quantified subformula, and
closing the corresponding pickAny block. The note command at line 151 directs Jahob
to use the proved result to close the outer pickAny block, successfully proving the
Coherence postcondition, which Jahob can then add to the assumption base.

The ContentsDeflnv Postcondition

The pickAny block that starts at line 157 guides Jahob in proving the ContentsDeflnv
invariant. Without it, the provers are unable to prove this component of the postcon-
dition within the standard time limit. The proof considers two cases-the receiver
object, and all other objects. The pickAny block gives the name x to the quantified
variable in ContentsDefinv, and considers the hypothesis that x is an allocated, ini-
tialized Hashtable object. It gives the label ContentsDefHyp to this hypothesis, which
constitutes the antecedent of the implication in the ContentsDeflnv invariant. It now
remains to prove the consequent of the implication, namely, that the contents of x
is equal to the set of all pairs found in the abstract state component con for the
buckets in x..table, given the constraint that each key is mapped to the appropriate
bucket in accordance with the hash function h. The proof of this property depends
primarily on the ContentsDeflnv component of the precondition. The note command
at line 159 therefore establishes the value of contents for x in the original state, using
ContentsDeflnv and ContentsDefHyp (which is necessary for applying ContentsDeflnv).
It labels the proved lemma OldXContents.

The first assuming block addresses the case for objects other than the receiver. It
considers the hypothesis that x is not equal to this, and gives the label XNotThisHyp
to the hypothesis. The goal of this case of the proof is to show that the ContentsDeflnv
invariant from the precondition still applies. The ConUnchanged conjunct of the loop
invariant already establishes that the abstract component con is unchanged from
before the method executed for the buckets of all hash tables other than the receiver.
But because the con component for the removed node curr is modified between the
end of the loop and the current program point, it is necessary to establish that curr
is not the first node in the linked list of any bucket of x. The note command at
line 165 directs Jahob to prove this property and to label the proved lemma NotCurr.
The next note command, at line 167, directs Jahob to use NotCurr, ConUnchanged,
ContentsDefHyp, and XNotThisHyp, to prove that the contents of the buckets of x are
the same as the contents from the beginning of the method. It also gives the label
ConXUnchanged to the proved lemma. To apply this lemma, which constrains only
valid indices of the hash table, it is necessary to show that the hash function produces
valid indices. The Hashinv invariant from the precondition provides this property.
The note command at line 172 directs Jahob to prove this property from Hashinv
and ContentsDefHyp, which is necessary to apply Hashinv. The note command at line
175 then combines OldXContents, ConXUnchanged, LengthLemma, and XNotThisHyp
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to prove the desired consequent for all objects other than the receiver. It labels this
proved lemma XNotThisCase.

The second assuming block addresses the case of the receiver object. It considers
the hypothesis that x is equal to the this, and gives the label XIsThisHyp to the
hypothesis. The note command at line 182 directs Jahob to establish the value of
contents for this in the original state, and to label the proved lemma OldContents.
This property is very similar to OldXContents, but is made specific to this for use in
this case of the proof. Because the concrete and abstract state for the receiver object
is actually modified by the method, the proof for this case is more difficult than for
the previous case. To prove the equivalence between the set contents and its definition
in terms of the combined contents of the buckets, the proof commands first address
the case of an arbitrary pair (k, v) in contents, and proves that the same pair is in the
set given by the definition. They then prove the converse. The first pickAny block
considers the former case by naming the variables k, v, and considering the hypothesis
that the pair (k, v) is in contents. It gives this hypothesis the label ForwHyp. The proof
for this case depends primarily on OldContents, and on the loop invariant conjunct
ConLoop, which defines how the value of con has changed with respect to its value
at the beginning of the method. But because the value of con has changed for the
removed node curr since the end of the loop, it is again important to establish that
none of the nodes under consideration is equal to curr. The note command at line
187 directs Jahob to prove this property using Firstlnjinv, Hashlnv, ContentsDefHyp,
XIsThisHyp, and the loop invariant conjuncts PrevCurr and CurrNotNull, and to label
the proved lemma NotCurr. The following note command, at line 191, then directs
Jahob to use this proved lemma, the hypothesis ForwHyp, OldContents, and ConLoop
to prove that (k,v) is in table.[(h k (table.length))]..con for all (k,v) in contents. It
gives the proved lemma, which is quantified over k and v, the label ForwCase.

The second case for the receiver addresses the converse of ForwCase, and considers
arbitrary k and v such that (k,v) is in table.[(h k (table.length))]..con. The pickAny
command at line 197 labels this hypothesis BackHyp. It is again necessary, and for
the same reason, to show that the nodes under consideration are not equal to curr.
The note command at line 199, which is identical to the one at line 182, including
the label NotCurr, directs Jahob to prove this property. (The only difference between
the two note commands is that the variables k and v refer to different variables local
to their respective pickAny blocks.) The following note command, at line 202 then
directs Jahob to use NotCurr, BackHyp, OldContents, ConLoop, FConlnv, and HCProps
to prove that (k,v) is in contents for all (k,v) in table.[(h k (table.length))]..con. In
contrast to the note command at line 191, this note command uses the additional
facts FConlnv from the loop invariant, and HCProps from the method precondition.
The former indicates that the pair (kO, vO) was indeed removed from the bucket at
hc, while the latter gives the definition of hc in terms of the hash function h. These
two properties are needed to show that the removed pair (k0, vO) is not present in any
bucket. However, they were not necessary in the note command at line 191, because
the hypothesis ForwHyp constrained k and v such that they could not be equal to kO
and vO.

With both the forward and backward cases proved, the note command at line 167
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combines BackCase and ForwCase to obtain the desired equivalence for this and to
close the second assuming block. It also gives the label XIsThisCase to the proved
lemma. The final note command, at line 210 combines XNotThisCase and XIsThisCase
to complete the proof for the ContentsDeflnv invariant in the postcondition.

7.7 Discussion

Although the verification for removeFromBucketO seems very involved, there are, in
fact, only eight properties that need to be proved using proof commands. Also,
many of the proof commands (in particular, pickAny and assuming commands) follow
directly from the structure of the goal formula. For example, in the proof of the
Coherence invariant for the postcondition, four of the five proof commands follow
directly from the structure of the invariant. The remaining command identifies an
intermediate lemma needed for the proof, stating that the removed node is not the
first node of any bucket in any hash table.

In general, many of the intermediate lemmas used in the Hashtable verification
involve the non-aliasing of modified and unmodified state. Other common patterns
for intermediate lemmas include: 1) frame conditions identifying unmodified state, 2)
lemmas that capture the program state before any modifications, and 3) instantiations
of invariants for either the receiver object, or for a particular quantified object. These
lemmas are used to distinguish between potentially aliased program state, and to re-
establish partially violated invariants for both modified and unmodified objects. The
need for these lemmas support the hypothesis that managing aliased state is one of the
main sources of complexity in verifying imperative data structures. This complexity
is particularly noticeable in the verification of instantiable data structures, like the
hash table, due to the additional layer of potential aliasing.

Of our verified data structures, the hash table was one of the most difficult to
verify. The verification effort was slighter greater than that of the priority queue.
As with the priority queue, part of the complexity stems from the combination of
structural and arithmetic properties, which results in the need for proof commands
to coordinate the efforts of multiple provers. Another source of complexity is the large
number of class invariants. Due to its inherent complexity, the hash table contains
more invariants than any of the other data structures. These additional invariants
result in an increase in the number of assumptions in the assumption base, and a
corresponding increase in the size of the proof search space for the generated sequents.
Consequently, there is a greater need in the hash table verification for note commands
with from clauses. These note commands appropriately limit the assumption base to
the relevant assumptions, enabling the provers to successfully prove the generated
verification conditions.

Note that the verification effort is surprisingly low for methods that indirectly
manipulate the hash table state, like remove() and _removeo. Most of the proof
commands used in the verification occur in methods that directly modify the concrete
state of the hash table. Methods that indirectly modify the hash table state-by
invoking other methods-require few or no proof commands. The main verification
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burden appears to lie in establishing the correspondence between the concrete and
abstract state. Once established for the called methods, the verification for the callers
involved only the sequential composition of updates to the abstract state, which
was much easier to verify. This result suggests that data structure clients, which
manipulate data structures indirectly through called methods, may be substantially
easier to verify than data structure implementations, which directly modify the data
structure state.

7.8 Summary

This chapter describes the specification and verification of a hash table data structure.
Our hash table is implemented using an array with separate chaining, where the
contents of the buckets are stored in singly-linked lists. Its abstract state is modeled
as a set of key-value pairs. The hash table maintains invariants that guarantee the
correct hashing of key-value pairs in the hash table, and the absence of duplicate
mappings for keys. The public operations that it supports include the standard
putO, removeo, and containsKeyo operations, as well as operations like replace(,
that export a slightly different interface.

The hash table data structure was one of the most difficult data structures to
verify. This difficulty is partly due to the combination of structural and arithmetic
properties in the hash table. This combination required proof commands to coor-
dinate multiple provers in the proof of the different types of properties. The hash
table verification was also made more difficult by the large number of class invari-
ants needed to specify the properties that it maintains. These invariants resulted in a
larger assumption base, and consequently a larger proof search space. It was therefore
necessary to use many note commands with from clauses to appropriately limit the
assumption base to enable the provers to successfully prove the generated sequents.

We found it useful to implement the functionality of the hash table in many
small methods, which were easier to verify than larger methods. Top-level methods
invoked private methods that implemented the actual functionality. These top-level
methods, which indirectly modify the hash table state through called methods, were
generally easy to verify, requiring few or no proof commands. The majority of the
proof commands occur in methods that directly modify the hash table state, due
to the difficulty of establishing the correspondence between updates to the concrete
and abstract states. Verification of the callers, which involved only the sequential
composition of updates to the abstract state, was much easier, and, in some cases,
trivial. This result suggests that data structure clients, which manipulate the data
structure state indirectly through called methods, may be substantially easier to
verify than data structure implementations. In that case, the effort of verifying data
structure libraries would not only be amortized over many uses, but would comprise
a significant portion of the effort required to verify larger programs that use these
libraries, further supporting the notion of verified data structure libraries.
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Chapter 8

Experimental Results

This chapter discusses the empirical results that we obtained from the data structure
implementations that we verified and the observations that we made based on those
results. We used Jahob to specify and verify a range of recursive and array-based
imperative linked data structures, including lists, trees, and hash tables. We veri-
fied these data structures with respect to various specifications that capture set and
map abstractions. Our results support our integrated reasoning approach-each data
structure required more than one prover to verify. (The maximum number of different
provers used to verify a single data structure was six.) The integrated proof language
was also essential to the success of the verification. The amount of developer guidance
needed for each data structure (in the form of proof commands) spanned a wide range.
The simplest data structures-the singly-linked list and the association list described
in Chapter 6-required no guidance. The most difficult data structures-the priority
queue and hash table described in Chapters 5 and 7, respectively-required a much
more substantial effort to verify. This effort consists primarily of note commands,
both with and without from clauses. However, the verification also required the use
of many other proof commands, including assuming and pickAny. Although, in some
cases, many proof commands were required for a successful verification, these proof
commands were focused on a small number of difficult formulas. The overwhelming
majority of the formulas generated by the system were verified automatically by the
combined reasoning system.

8.1 Verified Data Structures

We measured the results described in this chapter for the following data structures,
which we specified and verified using Jahob. With the exception of the binary search
tree and circular list, all of the following verified data structures are instantiable.

e Array List: A list stored in an array implementing a map from integers to ob-
jects, optimized for storing maps from a dense subset of the integers starting at
0 (modeled after java.util.ArrayList). Method contracts in the list describe opera-
tions using an abstract relation {(0, vo), . . ., (k, Vk)}, where k + 1 is the number
of stored elements. In addition to the standard list operations for observing

159



and modifying membership, the implementation also supports operations spe-
cific to array lists, including trimToSize(, which shrinks the capacity of the list

to the minimum needed for the currently contained elements, ensureCapacity(),
which increases the capacity of the list, and toArrayO, which returns an array
containing the list elements.

" Association List: The association list data structure discussed in Chapter 6.

" Binary Search Tree: A binary search tree implementing a set, with tree
operations verified to preserve tree shape, ordering, and changes to tree contents.
Supported operations include the ability to obtain and/or remove the maximum
or minimum element in the tree in O(log n) time.

* Circular List: A circular doubly-linked list implementing a set interface.

" Cursor List: A list with a cursor that can be used to iterate over the ele-
ments in the list and, optionally, remove elements during the iteration. Method
contracts include changes to the list contents and to the position of the itera-
tor. Verified properties include that each complete pass over the list visits each
element exactly once.

" Hashtable: The hash table data structure discussed in Chapter 7.

" Priority Queue: The priority queue data structure discussed in Chapter 5.

* Singly-Linked List: A null-terminated singly-linked list implementing a set
interface.

8.1.1 Statistics

Figure 8-1 presents the number of Java and Jahob statements in the verified data
structures in both graphical and tabular form. Figure 8-2 contains a graph of the
same data normalized to the number of Java statements in the data structures. The
first column in the table of Figure 8-1 presents the number of Java statements in
the data structure implementations. The next two columns present the number of
Jahob specification statements. We distinguish between class and method specifi-
cation statements. The former pertain to the entire class, while the latter pertain

to a specific method. Class specification statements consist of specification variable
declarations and definitions (vardefs), class invariants, and class modifiers, such as

claimedBy annotations. Method specification statements consist of method contracts
and annotations within the method body, not including proof commands. The last

column presents the number of proof commands in the verified data structures.
In general, the number of class specification statements stays more or less con-

stant regardless of the number of Java statements in the data structure. The number
of method specification statements, however, tends to grow in rough proportion to

the number of Java statements. This is because the size of the implementation, as
measured by the number of Java statements, often correlates with the number of
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supported operations, as measured by the number of methods in the implementation.
Class specification statements correspond to the description to the abstract state,
which does not typically grow with the number of supported operations. But each
method is associated with a method contract consisting of method specification state-
ments, so the number of method specification statements tends to increase with the
number of Java statements in the implementation.

The number of proof commands is more strongly correlated with the complexity
of the data structure properties than the lines of Java or specification statements
in the data structure. The data structures range from those that require little to
no guidance in the form of proof commands, to those that use proof commands
extensively. The latter, which include the binary search tree, hash table, and priority
queue, represent the most difficult of the data structures to verify. For the binary
search tree, this difficulty is due to the need to coordinate the efforts of multiple
provers. The verification conditions for the binary search tree contain properties
that depend on both shape and ordering properties, which are proved by different
provers. The proof commands are therefore needed to identify intermediate lemmas
encapsulating either shape or ordering properties for verification by the appropriate
provers. The hash table data structure contains multiple levels of pointers that may be
aliased. This complexity is reflected number of proof commands needed to verify the
data structure. For the priority queue, the difficulty of the verification stems partly
from multiple levels of indirection, and partly from the complexity of the implicit tree
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structure. As a result of this difficulty, a substantial number of proof commands are
needed for a successful verification.

Class Specification Statements

Figure 8-3 presents the breakdown of the different types of Jahob class specification
statements in both graphical and tabular form. The class specification statements for
the data structures consist of specification variable declarations, vardefs statements,
class invariants, and claimedBy annotations. Figure 8-4 presents a graph of the same
data, but as percentages of the total number of class specifications statements.

The distribution of the different types of statements shows a surprising uniformity.
In spite of differences in the size of the data structure implementations, type of data
structure, and complexity of the abstract state, the majority of class specification
statements consist of class invariants. They make up between 40% and 60% of the
class specification statements. Specification variable declarations and definitions each
make up about 10-20%. ClaimedBy annotations make up less than 10%. There are
several possible reasons for this uniformity. First, we implemented and specified all
the data structures, so the uniformity may be due to stylistic similarities. Also, even
though the largest data structures are two to four times bigger than the smallest,
they are still roughly the same order of magnitude in size. And because they are all
specified with respect to a set or map abstraction, the kinds of properties that need to
be specified may be sufficiently similar that the resulting class specification statements
have this uniformity of distribution. The complexity of the data structures is not
necessarily well represented by these numbers, as complex data structure properties
can be encoded in as few class invariants as simpler properties.

Method Specification Statements

Figure 8-5 presents the breakdown of the different types of Jahob method specification
statements in both graphical and tabular form. Figure 8-6 contains a graph of the
same data, but as percentages of the total number of method specification statements.
Each method's contract typically contains requires, modifies, and ensures clauses, al-
though some requires and modifies clauses are empty and therefore omitted from the
specification. The remaining types of method specification statements consist of the
declarations of local specification variables, loop invariants, specification assignment
statements, non-deterministic assignment (havoc) statements, and the hidden modifier
for the Java new statement.

The breakdown shows that method contracts, consisting of requires, ensures, and
modifies clauses, make up more than half, and in some cases, over 80% of the method
specification statements in a data structure. Since the number of methods tends to
grow in proportion to the number of Java statements in the implementation, it is
therefore not surprising that the number of method specification statements grow in
rough proportion to the number of Java statements, as shown in Figure 8-1. After
method contracts, specification assignment statements make up the largest portion
of the remaining method specifications statements. These statements update the
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Figure 8-4: Breakdown of Class Specification Statements as Percentages

state of ghost variables that model the abstract state of the data structure. Loop

invariants make up no more than 16% of the method specification statements for

each data structure.

Proof Commands

Figure 8-7 presents the counts for each of the various proof language commands in

both graphical and tabular form. There is one column in the table for each type of

proof command used in our data structures, except for note commands, for which

there are two columns. The first two columns contain entries for the number of note

commands in the data structure implementations with and without a from clause,
respectively. A from clause identifies a set of named facts for the provers to use

when proving the new fact in the note command. Because the typical motivation for

including a from clause is to limit the size of the assumption base so that the provers

can prove the new fact in a reasonable amount of time, these numbers provide some

indication of how sensitive the provers are to the size of the assumption base in each

data structure. Figure 8-8 presents the same data, but as a percentage of the total

number of proof commands in the data structure.

In general, the data structures use note commands (both with and without a

from clause) much more extensively than any other type of proof language command.

This fact reflects the strength of the underlying provers-it is often possible to guide

the provers to an effective proof by either providing the intermediate lemmas that
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Specification
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Array List 23 (31%) 16 (21%) 23 (31%) 0 (0%)
Association List 8 (22%) 7 (19%) 11 (31%) 1 (3%)
Binary Search Tree 8 (18%) 8 (18%) 9 (20%) 5 (11%)
Circular List 4 (17%) 4 (17%) 5 (22%) 1 (4%)
Cursor List 4 (14%) 5 (18%) 8 (29%) 0 (0%)
Hashtable 14 (23%) 9 (15%) 15 (25%) 3 (5%)
Priority Queue 14 (34%) 7 (17%) 14 (34%) 0 (0%)
Singly Linked List 3 (16%) 3 (16%) 6 (32%) 0 (0%)

Loop Specification
Data Structure Invariants Assignments havoc hidden Total
Array List 10 (13%) 0 (0%) 0 (0%) 3 (4%) 75
Association List 3 (8%) 5 (14%) 1 (3%) 0 (0%) 36
Binary Search Tree 7 (16%) 8 (18%) 0 (0%) 0 (0%) 45
Circular List 1 (4%) 8 (35%) 0 (0%) 0 (0%) 23
Cursor List 1 (4%) 10 (36%) 0 (0%) 0 (0%) 28
Hashtable 4 (7%) 10 (17%) 3 (5%) 2 (3%) 60
Priority Queue 4 (10%) 0 (0%) 0 (0%) 2 (5%) 41
Singly Linked List 2 (11%) 5 (26%) 0 (0%) 0 (0%) 19

Figure 8-5: Breakdown of Method Specification Statements
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Figure 8-6: Breakdown of Method Specification Statements as Percentages

effectively guide the proof decomposition or by appropriately limiting the assumption
base. In many cases, this type of guidance is all that is needed to direct the provers
to a successful proof. For some data structures, it was also necessary to direct the
system using other types proof commands. This necessity highlights the need for a
proof language that supports not only high-level guidance, but also detailed proof
steps.

Methods that modify the concrete data structure representation (such as methods
that add or remove elements) tend to require at least some guidance in the form of
proof commands. We attribute this property to the fact that the modifications often
temporarily violate, then restore, key data structure invariants within the updated
region of the data structure. In the absence of developer guidance, the provers must
somehow determine where the invariants continue to hold, where they are violated,
and what properties in the violated region enable the restoration of the invariants at
the end of the data structure update. In our experience, provers often have difficulty
with these tasks.

Methods that simply read data structure state tend to pose fewer difficulties.
In more complex data structures, however, methods that access the concrete state
in a non-trivial way still require some developer guidance to verify. With several
exceptions, methods that only invoke other methods verify without guidance. This
fact suggests that data structure clients, which only invoke data structure methods
and do not access the concrete state of the data structure directly, should require
substantially less developer guidance than data structure implementations.
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Figure 8-7: Proof Command Counts for Verified Data Structures
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Figure 8-8: Proof Command Counts for Verified Data Structures (as Percentages)

8.2 Provers

All of the data structures were verified using a combination of automated theorem
provers, decision procedures, and proof commands written in Jahob's integrated proof
language, without the need for external interactive proofs. Specifically, the provers
used in the verification consist of:

* Jahob's internal syntactic prover

" the MONA decision procedure [67] (for verifying shape properties [159]),

" the first-order prover SPASS [156],

" Jahob's internal cardinality prover,

" the SMT provers CVC3 [60] and Z3 [116, 117], and

" Isabelle [122] (through an automated, general-purpose theorem proving tactic).

These provers are described in more detail in Chapter 3. In previously published
results [163], we also used the first-order prover E [149] and proofs written interactively
using Isabelle.
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Data Structures Provers
Array List Z3 SPASSt CVC3 Isabelle
Association List Z3 SPASS
Binary Search Tree MONA SPASS Z3
Circular List Z3 MONA
Cursor List Z3 SPASS
Hash Table Z3 SPASSt Isabelle
Priority Queue Z3 SPASS Card CVC3 Isabelle
Singly Linked List SPASS
t Invoked with the option :OrderAxioms

Figure 8-9: Prover Order for Verified Data Structures

8.2.1 Prover Order

Figure 8-9 gives the order in which we applied the theorem provers and decision
procedures for each data structure, and the prover-specific options that we used, if
any. It does not include the internal syntactic prover, which is always the first prover
that Jahob applies to a given formula. This occurs as part of the formula splitting
process.

For most of the data structures, we use Z3 as the first prover (after the syntactic
prover), because it is able to prove many sequents quickly. The only data structures
for which we apply a different prover first are the binary search tree and singly linked
list data structures. The binary search tree generates many verification conditions
involving shape properties. We use MONA as the first prover because it is the only
one able to handle such properties. The circular list, which also uses MONA, does not
generate as many verification conditions involving shape properties; we use MONA
as the second prover, after Z3, because the verification completes faster this way. For
many of the data structures, SPASS is the second prover in the sequence. Although
it is not as fast as Z3 on many of the sequents, it is able to prove some sequents that
Z3 is unable to prove. We use SPASS as the only prover for the singly linked list data
structure, because it can prove all the sequents generated, with the help of only the
syntactic prover. (Z3 is able to prove some of the sequents for the singly linked list
faster than SPASS, but there are some sequents it is not able to prove.)

The only prover-specific option used in the verification is the OrderAxioms option
for the first-order prover SPASS. It directs Jahob to add to the assumptions given
to SPASS a set of axioms for arithmetic ordering. We have found that this axiom-
atization, while incomplete, enabled SPASS to effectively reason about arithmetic
properties in the verification of the array list and hash table data structures.

8.2.2 Sequents Proved

Figure 8-10 presents the number of sequents proved by each theorem prover or decision
procedure for each verified data structure in both graphical and tabular form. A
blank entry in the table indicates that the corresponding theorem prover or decision
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Figure 8-10: Number of Proved Sequents for Verified Data Structures
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procedure was not used during the verification. The final column presents the total
number of sequents proved. Figure 8-11 presents the same data as percentages of the
total number of proved sequents.

For many of the data structures, the syntactic prover, together with Z3, discharges
nearly all the generated sequents. The exceptions to this are the singly-linked list and
binary search tree data structures. The singly-linked list does not use Z3. The bi-
nary search tree involves many shape properties, which we handle using MONA. The
syntactic prover, by itself, discharges a large portion of the generated sequents for all
the data structures. In many cases, this is due to formulas in which the consequent
is in the set of assumptions, modulo splitting of conjunctions, and simple syntactic
transformations. This can occur when properties in method preconditions correspond
to proof obligations for checks within the method. Examples include null dereference
checks and checks of method preconditions for method invocations. It can also occur
when there are sequences of method invocations, in which postconditions of called
methods earlier in the sequence fulfill preconditions of methods later in the sequence.
The system also uses the syntactic prover heavily in conjunction with proof com-
mands, as in the priority queue and hash table data structures. The syntactic prover
handles the case where note commands label facts that are already in the assump-
tion base. It also handles the case where a lemma proved using a proof command
corresponds to a sequent from the generated verification conditions that needs to be
discharged.

8.2.3 Verification Times

Figure 8-12 presents, for each theorem prover or decision procedure, the time it spent
trying to proving the sequents it attempted to prove (top table), and the amount of
that time spent on unsuccessful proof attempts for sequents that were later proved
by other provers (bottom table). The difference between those two times is the time
spent on successful proofs. For example, the Z3 entries for Association List are 4.5
and (1.8). This indicates that, for the association list data structure, the Z3 theorem
prover spent 4.5 seconds trying to prove sequents, of which 1.8 seconds were spent
on unsuccessful proof attempts for sequents that were later proved by SPASS. The
remaining 2.7 seconds were therefore spent on successful proofs. The final column in
the top table presents the total verification time, which includes the time spent in the
verification condition generator, splitter, syntactic prover, and any applied decision
procedures or theorem provers. The first column in the same table presents the time
spent in Jahob. The values in this column represent an upper bound on the time
spent in the syntactic prover, which is integrated into the splitter. We computed
these values by subtracting the time spent in the decision procedures and theorem
provers from the total time. Figure 8-12 also includes a graph of the time the provers
spent trying to prove the sequents they attempted to prove (top table). Figure 8-13
presents the same data, but as percentages of the total verification time for each data
structure.

We obtained the results presented in these figures by invoking the provers as a se-
quential cascade, using time-outs. If one prover failed to prove a given sequent within
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Figure 8-12: Verification Times (in seconds) for Verified Data Structures
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the specified time-out, Jahob would invoke the next prover. Jahob provides two mech-
anisms for specifying time-outs. The -timeout command line option specifies a general

time-out for all provers. But each prover on the command line can also be invoked

with a :TimeOut=t option. This option specifies a time-out t for the given prover that

overrides the general time-out specified by -timeout. For example, running Jahob with

the command line options -timeout 30 -usedp Z3 MONA:TimeOut=60 would result in

Z3 being run with a time-out of 30 seconds, and MONA being run with a time-out

of 60 seconds. The results presented were obtained by running Jahob with -timeout

30 except for the binary search tree data structure, which was run with -timeout 50.
The only prover-specific time-out used was for the circular list data structure, which

was verified using a 60 second time-out for the MONA decision procedure.

Discussion

Most of the data structures verify within several minutes. The outlier is the binary

search tree with a total verification time of an hour and two minutes, primarily due to

the amount of time spent in the MONA decision procedure. MONA spends more than

half of that time in unsuccessful proof attempts of sequents that are later proved by
Z3.1 MONA is also responsible for the majority of the verification time in the circular

list. But in that case, it is the last prover in the cascade, so all of the time is spent

on successful proofs. SPASS is responsible for a significant portion of the verification
time in the array list, cursor list, hash table, and priority queue data structures. For

the array list and hash table, SPASS spends much of that time on unsuccessful proof

attempts. But for the cursor list and priority queue, SPASS spends it primarily on

successful proofs. SPASS is only responsible for a small fraction of the verification

time in the other four data structures that use it.
In general, the sequential verification times presented here represent upper bounds

on the time that it would take to verify the data structures in parallel. A prover that

is unable to prove a formula will often time-out, causing the proof of that formula to

require at least the amount of time specified by the time-out, plus the time required for

the successful proof. In the meantime, no other provers can proceed. (Consequently,
the system is more efficient when provers that eventually fail to prove a formula,
do so quickly.) In parallel mode, Jahob creates multiple processes, each of which

is responsible for proving a single sequent. Provers are still executed as a cascade

on a given sequent. But the effect of unsuccessful proof attempts on the overall

verification time is generally significantly reduced, as provers can proceed with other

sequents simultaneously.

Prover Efficiency

Consider the efficiency of a prover as defined by the number of sequents proved per

unit time. Although the syntactic prover is responsible for proving many of the

sequents in the verification, it does so using a small fraction of the total verification

'We use Jahob in sequential mode to measure the time spent in each prover. In practice, we can

invoke the provers in parallel to obtain better performance on processors with multiple cores.
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Figure 8-14: Prover Efficiency (in sequents/s)

time. The same is true for Z3. In contrast, the time spent in SPASS for the array list,
cursor list, and hash table data structures is disproportionately large compared to the
number of sequents proved. This disparity in efficiency is partly due to the inherent
efficiency of the provers, and partly due to the ability of the provers to fail quickly
on sequents they are not able to prove. The syntactic prover and Z3 both tend to
fail quickly on sequents they cannot prove, while SPASS will sometimes execute until
the time-out expires, resulting in a longer total time spent, even though this time
is spent on proofs that do not eventually succeed. However, SPASS is also able to
successfully prove difficult sequents that earlier provers in the cascade fail to prove.
Similarly, the MONA decision procedure takes up much of the verification time in
comparison to the number of sequents proved, both because it spends a lot of time on
unsuccessful proof attempts, and because of the difficulty of the sequents proved. But
it is able to successfully prove sequents involving shape properties that other provers
are unable to prove. In short, the efficiency of a prover is affected by a combination
of its inherent efficiency on successful proofs, its ability to fail quickly on sequents it
is not able to prove, and the difficulty of the sequents it is proving.

Figure 8-14 presents the efficiency of the provers over all the verified data struc-
tures in sequents per seconds. We measure both efficiency on successful proofs and
the overall efficiency, which takes into account the time spent on unsuccessful proof
attempts. We measure efficiency on successful proofs by taking the total number of
sequents proved by each prover over all the verified data structures, and dividing by
the total time spent by that prover on successful proofs. For the overall efficiency, we
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Language Commands Language Commands

Methods Sequents Methods Sequents

Data Structure Verified Verified Verified Verified

Array List 20 of 23 684 of 687 23 721
Association List 11 of 11 340 of 340 11 340
Binary Search Tree 0 of 9 743 of 884 9 1339
Circular List 2 of 5 215 of 229 5 237
Cursor List 7 of 8 330 of 331 8 337
Hash Table 6 of 15 968 of 999 15 1173
Priority Queue 5 of 14 797 of 840 14 1157
Singly Linked List 6 of 6 160 of 160 6 160

Figure 8-15: Effect of Proof Language Commands on Verification

divide by the total time spent by that prover, including time spent on unsuccessful

proof attempts. For the syntactic prover, we compute only the overall efficiency, us-

ing the total time spent in Jahob. We were unable to measure the time spent in the

syntactic prover separately because the syntactic prover is integrated into the formula

splitting process. The overall efficiency for the syntactic prover is therefore a lower

bound on its actual efficiency.
Not surprisingly, the simplest provers-the syntactic prover and the cardinality

prover-were able to prove the most sequents per unit time. Among the remaining

provers, Z3 is the most efficient. MONA was able to prove less than one sequent per

second, but was able to handle shape properties not provable by the other provers.

Because we used the Isabelle proof script as the last prover in the cascade for all the

data structures for which it was used, our results did not include any measurements

for time spent on failed proof attempts for Isabelle. Its overall efficiency is therefore

the same as its efficiency on successful proofs.

8.3 Effect of Proof Language Commands

We next discuss the effect of Jahob's proof language commands on the verification.

Jahob's proof language commands were necessary for the successful verification of all

but two of our data structures. The number of proof commands used spanned a wide

range, from a handful of proof commands for some data structures, to the extensive

use of proof commands for others. We used ten different types of proof commands in

the verification. We used the note command (both with and without a from clause)

more extensively than any other proof command. However, other proof commands

were also necessary for the successful verification of our data structures.

Figure 8-15 summarizes the effect that the proof language commands have on the

verification. The first two columns of the table present the number of methods and

sequents verified without proof language commands. We obtained these numbers by
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removing all proof commands from the program, then attempting to verify the data
structure. In general, the more complex the data structure, the more guidance the
provers need to verify the data structure.

The final column of the table presents the total number of sequents required to
fully verify the corresponding data structure implementations after adding the neces-
sary proof language commands. Note that the number of sequents increases, in some
cases significantly. This is because the proof commands force the provers to prove
additional lemmas, which in turn correspond to additional sequents. The increase in
the number of sequents reflects the difficulty of proving the complex sequents that
failed to verify in the absence of developer guidance.

Figures 8-16 and 8-17 present the data from Figure 8-15 in graphical form. Fig-
ure 8-16 compares the number of sequents proved without and without proof com-
mands for each data structure. It illustrates how the combined reasoning system is
able to prove the large majority of the sequents without the use of proof commands.
At the same time, it also illustrates how many intermediate lemmas are required to
prove the small percentage of sequents that require the use of proof commands.

Figure 8-17 compares the number of methods proved with and without proof
commands. In some data structures, such as the array list and cursor list, the proof
commands needed are concentrated in a small number of methods with difficult proof
obligations. In others, such as the cursor list, hash table, and priority queue, the proof
commands are divided amongst many methods. For these data structures, proof com-
mands are needed in many of the methods that directly modify the concrete program
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Figure 8-17: Methods Verified with and without Proof Commands

state. This is because of the complexity of the data structure properties that need
to be proved. In the extreme case of the binary search tree, all the methods verified
required proof commands. This is because the binary search tree properties combine
shape properties and ordering properties, which are proved by different provers. The
proof commands identify intermediate lemmas that separate out the relevant shape
and ordering properties, so that the appropriate provers can prove them.

8.3.1 Sensitivity to Proof Language Commands

In the process of verifying a data structure, it is not uncommon to accidentally enter
an incorrect proof command. In general, these errors are typically errors in the
formulas given to the proof commands, and not errors in the type of proof command
used. Proof commands asserting formulas that are false are usually quickly identified
when the formula fails to prove. Formulas that are true, but not necessary to the
proof, do not usually affect the ability of the provers to successfully verify the program.
In theory, it is possible for many such formulas, if they were universally quantified,
to blow up the size of the proof search space. However, we have not experienced
this in practice. Due to the power of the automated provers integrated into Jahob,
there are often many possible intermediate lemmas and proof commands that could
be used to guide the combined reasoning system to a successful proof. Some lemmas
and proof commands may lead to a shorter verification time than others. For the
results presented here, we have not performed any systematic optimization of the
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proof commands for verification time, since the verification time is generally small
compared to the development time.

8.3.2 Discussion

We make the following observations:

e Many Sequents: The data structure correctness proofs involve a large number
of sequents. It would be challenging and potentially impractical for a developer
to use an interactive proof system to prove all of these sequents.

e Prover Effectiveness: The provers verify many methods and a large per-
centage of the sequents without developer guidance. This fact reflects the ef-
fectiveness of the provers in verifying even the complex verification conditions
that arise during the verification of imperative linked data structures. Despite
this effectiveness, however, the provers are capable of fully verifying only the
simplest data structures.

Our results therefore support the use of a hybrid approach that uses developer
guidance to leverage the strength of existing provers rather than relying solely on
either interactive proofs or fully automatic verification. We have found Jahob's inte-
grated proof language effective in supporting such an approach to enable the verifi-
cation of the data structure implementations in our benchmark set.

8.4 Summary

In this chapter, we describe the empirical results from our verification of full func-
tional correctness for a collection of imperative linked data structure implementations.
These implementations include both array-based data structures, such as priority
queues and hash tables, and recursive data structures, such as lists and trees. Our
verified data structures implement set and map interfaces, which we specified in terms
of the abstract state of the data structure. The verified invariants capture the internal
correctness properties necessary for the correct operation of the data structure, while
the verified method contracts completely capture the behavior of the corresponding
method in terms of the data structure's abstract state.

Our empirical results support both our integrated reasoning approach and the use
of our proof language. All of the data structures verified required the use of multiple
provers. The combined reasoning system was able to handle properties beyond the
reach of any single prover. The simplest provers were able to discharge many sequents
efficiently. While more sophisticated provers were less time-efficient, they were able
to handle sequents that other provers were unable to discharge.

The combined reasoning system was also able to prove the large majority of the
generated sequents automatically. This result reflects the strength of the underlying
provers. The remaining sequents, however, required the use of proof commands to
verify. In general, these proof commands guided the proof of complex verification
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conditions arising in methods that directly update the concrete state. The large

number of sequents involved in these proofs makes it challenging and potentially
impractical to use an interactive proof system to prove these sequents manually. Our

proof language, however, enabled the effective proof of these sequents through the
use of the integrated reasoning system.
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Chapter 9

Related Work

Jahob builds on a large body of work in program verification, but is unique in its inte-
gration of both a proof language and the diversity of automated reasoning techniques
supported. While many program verification systems focus the verification of partial
correctness properties, this integration has enabled us to use Jahob to verify the full
functional correctness of imperative linked data structure implementations. While
our results are, in theory, obtainable using interactive theorem proving, the expertise
and manual effort required for such an endeavor makes this approach difficult to use
in practice. In equipping Jahob with a proof language, we have attempted to bridge
the gap between program verification and interactive theorem proving, providing a
level of automation and control that makes it feasible to tackle complex functional
correctness properties in the presence of difficult verification issues such as aliasing
and destructive updates. In contrast, techniques not based on theorem proving that
have also been applied to the problem of data structure verification-such as shape
analysis, type systems, and decidable logics-focus primarily on partial correctness,
and are not able to address the full range of correctness properties that we have
verified using Jahob.

In this chapter, we survey existing research in program verification, interactive
theorem proving, and data structure verification, and discuss how the work presented
in this thesis differs from other systems and the results obtained using them. We also
briefly discuss verification techniques based on finitization, such as model checking,
testing, and bounded verification. Systems based on these techniques are able to offer
more automation, but are only able to verify the correctness of programs for finitely
many executions. In contrast, Jahob and other program verification systems based
on theorem proving are able to verify correctness for all possible executions.

9.1 Program Verification

Program verification systems based on assume-guarantee reasoning abound, and in-
clude Hob [92, 83, 91]., ESC/Modula-3 [51], ESC/Java [56], ESC/Java2 [39, 34],
Spec# [11, 12, 97], KeY [16], Krakatoa [55, 106], LOOP [22], Jive [110], and Jack [14,
32]. While many of these systems focus on the verification of partial correctness
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properties, we have applied Jahob to the task of verifying the complex functional cor-

rectness properties that arise in imperative linked data structure implementations.
Although the programs we have verified are small in comparison to those partially

verified using other systems, we find that the results we have been able to obtain

using Jahob successfully address difficult verification issues, such as aliasing and data

abstraction, to an extent not explored in other systems.

9.1.1 Hob

The Hob system [92, 83, 91], Jahob's predecessor, supports verified data structure

interfaces that use sets of objects to summarize the state of the data structure and

the effect of data structure operations. Because the Hob specification language is

based on sets, it is powerful enough to specify full functional correctness only for data

structures that export a set interface. For data structures with richer interfaces (such

as hash tables, lists, priority queues, and search trees) it can specify and verify some,
but not all, correctness properties. Like Jahob, Hob integrates a variety of reasoning

techniques to successfully discharge generated verification conditions, including the

use of arbitrarily precise reasoning techniques within data structure implementations.
But unlike Jahob, which can apply multiple reasoning techniques to a single formula,
Hob lacks the ability to apply more than one technique within a Hob module. Hob

also does not include support for a proof language.

9.1.2 Jahob

Jahob is also the subject of Viktor Kuncak's PhD thesis [82], which focuses on the

techniques that support our integrated reasoning approach, and, in particular, the ap-

proximation techniques for using Jahob in conjunction with first-order logic resolution-

based provers, field constraint analysis, and BAPA. At the time, we were able to use

our system to verify non-instantiable data structures, though some of them were func-

tional, while others did not preserve abstraction (i.e. adding a node to a linked list,
as opposed to adding an object to the set that the list implemented). The system
supported note commands with from clauses, but not the other commands of the proof

language. Proofs that required more detailed guidance were written using external

proof assistants.
This thesis focuses on the application of the Jahob system to the verification of

full functional correctness for imperative linked data structures, and on the integrated

proof language which makes this verification possible. In the time since the comple-

tion of Viktor's thesis, we have continued to improve Jahob's internal algorithms,
interfaces to internal and external provers, and designed, implemented, and proved

the soundness of our proof language. These improvements have enabled us to verify

substantially more sophisticated data structures and specifications than we were able

to verify using the earlier incarnation of the system. The proof language also enables

us to avoid the use of external proofs in the verification. All the examples presented

in this thesis are imperative data structures that preserve abstraction. With the ex-

ception of the two examples that use the MONA decision procedure, all of our verified
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data structures are instantiable.

9.1.3 ESC/Modula-3 and ESC/Java

The family of extended static checking tools includes ESC/Modula-3 [51] and ES-
C/Java [56]. As their names imply, ESC/Modula-3 operates on Modula-3 programs,
while ESC/Java operates on Java programs. Although ESC/Modula-3 and ESC/-
Java are designed to be bug finding tools, and not program verification systems, we
include them here because of their similarity to Jahob in the way in which programs
are specified, and in the way in which they generate and prove verification conditions.
In contrast to Jahob, which is targeted towards proving complete functional interfaces
for data structure implementations, ESC/Modula-3 and ESC/Java were designed for
the purpose of identifying errors in components of large systems programs (e.g. the
Modula-3 runtime system). One result of this design difference is that they are more
fully-automated than Jahob in that they do not require loop invariants, but generate
unsound approximations for loop invariants where needed. As a result, their approach
is not sound. Because the goal is not to prove complex program correctness prop-
erties, but to identify bugs, they do not require the powerful reasoning technologies
that Jahob supports. Both ESC/Modula-3 and ESC/Java support a single prover,
Simplify, and do not provide a mechanism for the user to guide the prover when it
encounters a difficult proof.

Like Jahob, both ESC/Modula-3 and ESC/Java support modular checking of
method contracts, though ESC/Java does not check modifies clauses due to a lack
of support for data abstraction. ESC/Modula-3 provides this support through ab-
stract variables, which are analogous to Jahob's dependent specification variables.
Instead, ESC/Java supports ghost fields and the use of object invariants to estab-
lish the necessary abstraction functions. This is analogous to Jahob's ghost variables
and invariants, though the invariant enforcement policies differ. ESC/Modula-3 and
ESC/Java have both been used to identify bugs in large programs with partial spec-
ifications, but have not been used to verify full functional correctness. Unlike Jahob,
neither supports integrated reasoning or an integrated proof language.

9.1.4 ESC/Java2

ESC/Java2 [39, 34] is an ongoing project based on ESC/Java that adopts JML [94, 93]
(Java Modeling Language) as its specification language. ESC/Java2 supports modu-
lar checking of method contracts, model fields (which are analogous to Jahob's depen-
dent variables), and ghost fields (which are analogous to ghost variables). It currently
interfaces to a single prover, Simplify, though work to incorporate multiple automated
and interactive provers is in progress [77]. One difficulty that arises in incorporating
external reasoning techniques into ESC/Java2 is the need to map the JML specifi-
cation language into the appropriate logics, as work to clarify the semantics of JML
is still ongoing. This difficulty highlights the benefit that Jahob derives from using
HOL as a specification language-HOL has well-defined semantics and, using formula
approximation, maps naturally to logic subsets supported by a variety of automated
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provers, decision procedures, and proof assistants. ESC/Java2 has been applied to a

partially specified electronic voting system [39] and to verify a number of safety and

correctness properties of an implementation of SSH [129]. Unlike Jahob, ESC/Java2

does not support an integrated proof language, and has not been used to verify data

structure implementations comparable to the ones presented in this thesis.

9.1.5 Spec#

The Spec# programming system [11, 12, 97] consists of the Spec# programming lan-

guage, compiler, and the Boogie static program verifier [10]. Spec# takes a combined

dynamic and static checking approach to program verification, with runtime checks

inserted by the compiler and the Boogie verifier comprising the static component.

The Spec# programming language is an extension of C# with contracts. Boogie

operates over its own language, BoogiePL, a simple procedural language to which

Spec# programs are translated after first being compiled into CIL (.NET's Common

Intermediate Language).
Spec# supports modular checking of method contracts and object invariants,

model fields, as well as an ownership system that determines when object invari-

ants are required to hold. Contracts may include pure program expressions as well as

universal and existential quantifiers, though Boogie is able to check only quantifica-

tion over integers. Boogie includes a framework of abstract interpretation that is able

to infer some loop invariants, though explicit loop invariants may also be required.

The current default prover for Boogie is Z3, though the original prover, Simplify, is

still supported.
Spec# supports an assert statement which is similar to Jahob's note command, but

without from clauses. Boogie 2 additionally supports a call-forall statement, which,
in conjunction with lemma procedures (similar to proof methods in Jahob), makes

it possible to provide some guidance to the system in the verification of universally-

quantified lemmas and implications [96]. This support, however, does not include the

ability to control the assumption base, use induction, or apply the other first-order

rules of deduction that are part of Jahob's proof language. Jahob also supports a

greater number and diversity of automated reasoning systems. And because Boogie

does not currently support checking of quantification over objects, which is necessary

for many of the invariants we verified, we expect that Boogie would not be able to

verify the data structures in our collection.

9.1.6 KeY

The KeY tool [16] is an interactive, deductive program verification tool that operates

on Java Card programs annotated with JML or OCL (UML's Object Constraint

Language) specifications. It also supports some Java features not included in Java

Card. KeY compiles specifications into first-order logic, then generates verification

conditions by symbolic execution of the source code, with induction for loops and

recursion. These proof obligations are written in a dynamic logic for Java Card.

They can be proved interactively using KeY, which also supports automated proof

186



search, Simplify, and SMT provers for increasing the automation of proofs. KeY
supports modular verification of method contracts and invariants, as well as the use
of model fields in specifications.

KeY has been used to interactively verify a Java Card implementation of Mondex,
a protocol for electronic purses [148, 153]. The properties verified include functional
properties as well as security properties, but not a verified abstraction. Specifically,
the method postconditions do not preserve abstraction but state the effects of exe-
cuting the method at a concrete level. KeY has also been used to verify a Java Card
API reference implementation [115], but with the assumption that there is no inter-
object data aliasing, one of the challenges addressed in the data structures verified
using Jahob. Although KeY supports multiple provers, it does not include program
analyses such as shape analysis. Unlike Jahob, which supports the direct embedding
of proofs into programs through the integrated proof language, KeY uses a separate
environment for proofs, with integration provided by means of a graphical user in-
terface. While KeY has been used to prove the correctness of an insertion operation
into a TreeMap [142], and can, in theory, be used to prove full functional correctness
for more extensive examples, we are not aware of any results demonstrating its use
on data structure implementations comparable to the ones we verified using Jahob.

9.1.7 Krakatoa

Krakatoa/Why [55, 106] are tools for the deductive verification of Java programs.
Krakatoa interprets Java programs annotated with JML specifications; the related
tool Caduceus interprets C programs annotated with specifications in a JML-like
language. Krakatoa and Caduceus both generate programs that serve as input to the
Why tool, a verification condition generator. These programs are written as functions
annotated with pre- and postconditions written in a polymorphic first-order logic with
built-in equality and arithmetic.

Like Jahob, Why produces verification conditions using weakest precondition se-
mantics [54], and output to a number of different automated and interactive provers,
including Simplify, Z3, CVC3, Isabelle, and Coq. Unlike Jahob, Why does not support
an integrated proof language, or include program analyses such as shape analysis.

9.1.8 LOOP

The LOOP tool [22] verifies programs written in Java and annotated with either CCSL
(Coalgebraic Class Specification Language) or JML specifications. The tool generates
theories in higher order logic that can be proved interactively using either PVS or
Isabelle. The LOOP tool has been used to verify an invariant of the Java Vector
class [69], termination specifications for the Java Card API [130], as well as more
complete functional specifications for Java Card's Application Identifier class [23],
though the verified properties are not as difficult as those addressed in our verified
data structures. For instance, the concrete state of the AID class is immutable, so
issues of aliasing in the presence of destructive updates do not apply. Unlike Jahob,
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it does not support integrated reasoning or an integrated proof language, but uses

external interactive theorem provers to discharge the generated proof obligations.

9.1.9 Jive

The JIVE (Java Interactive Verification Environment) tool [110] was originally de-

signed for the verification of SVENJA, a subset of sequential Java with object-oriented
features, with specifications written in the ISL (interface specification language)

ANJA, which is based on first-order logic. Verification conditions were generated

in a Hoare-style programming logic and verified interactively using PVS. It has been

used to verify a doubly-linked list of integers [88] with respect to a list interface.

JIVE is being reimplemented to verify specifications written in JML, with pro-

grams written in Diet Java Card (DJC). Work is ongoing to define a formal semantics

for JML by translation into first-order logic [42] and into the underlying theories of

a given proof assistant [43].

9.1.10 Jack

The Jack (Java Applet Correctness Kit) tool [14, 32] verifies Java and Java Card

programs annotated with JML specifications, as well as Java bytecode programs an-

notated with BML (Bytecode Modeling Language) [33] specifications. Like Jahob,
Jack generates verification conditions using weakest preconditions. In Jack, these

verification conditions are first-order logic formulas, which can be proved using either

Simplify or the Coq proof assistant. To aid interactive verification, Jack includes

specialized Coq tactics that encode common proof patterns for verification conditions

generated by the system. Jack also includes a tool for generating JML specifications.
This tool infers minimal preconditions for methods based on necessary null derefer-

ence and array bounds checks, and generates annotations based on developer-supplied
security rules. Jack is implemented as an Eclipse IDE, with a proof obligation viewer

and a Coq editor, both of which are also integrated into Eclipse.

Jack has been used to verify memory consumption of Java bytecode programs [15]

and high-level security properties of Java Card programs (such as atomicity of op-

erations within transactions) [127]. Although it is possible, in principle, to verify

functional correctness using Jack, the published results so far demonstrate only the

application of Jack to the verification of security properties. Unlike Jahob, Jack does

not support integrated reasoning or an integrated proof language.

9.2 Interactive Theorem Provers

Interactive theorem provers, or proof assistants, are systems that allow users to define

formalisms and write machine-checkable proofs about their properties. Interactive

theorem provers enable the verification of algorithms and programming languages

as well as logics. The general-purpose nature of these systems makes it possible

to develop custom theories for the verification of executable programs. Because of
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their interactive nature, it is theoretically possible to prove as strong properties using
proof assistants as is possible with program verification systems like Jahob, but at
the cost of a much higher level of user interaction. The environment in which the
verification takes place also tends to be very different from the standard programming
environment of the target language, and may require a great deal of domain expertise
to use effectively.

Jahob's integrated proof language is designed to enable the proof of complex pro-
gram properties within the program verification system, without leaving the context of
the original program or giving up access to the full complement of automated reason-
ing techniques integrated into Jahob. While most interactive theorem provers operate
over functional programming languages in an environment designed for proofs, Jahob's
proof language is integrated into the underlying imperative programming language
and naturally extends its assertion mechanism. This approach provides the developer
with an accessible way of reasoning not only about the effect of executing a method
but also about the intermediate states during the execution, which is often necessary
when verifying complex program properties. Moreover, each proof command is able
to direct the efforts of any of the automated reasoning techniques that are integrated
into Jahob, requiring the user to provide only the minimum amount of guidance that
the provers need to enable a successful proof.

Like many other program verification systems, Jahob also supports the use of inter-
active provers to discharge difficult proof obligations. The advantage of this approach
is that there is, in theory, no limit on the difficulty of the properties that the system is
able to prove. But in our experience, mechanically generated proof obligations often
contain large numbers of assumptions that make it difficult to manipulate the result-
ing sequents in a proof assistant. Moreover, the presence of temporary variable names
makes it difficult to map the meaning of the sequents back into the concepts of the
original program. Jahob's proof language provides an alternative way of decomposing
proof obligations without leaving the context of the original Java program. Its proof
commands make it possible to limit the number of assumptions under consideration,
and to make declarative statements about program and specification variables using
existing names. The fact that these proof commands naturally translate into guarded
commands suggests that they are intuitive for the verification of imperative programs.

We note that some proof assistants support primarily tactic-style proofs. Unlike
declarative proofs, these proofs are scripts that must be executed to show the interme-
diate facts that support the proof, making them difficult to understand. Tactic-style
proofs also suffer from problems of robustness and maintainability in the presence of
changes to the names of intermediate variables and theorem prover tactics.

Here we survey a number of popular proof assistants, and discuss the relationship
between Jahob and these systems.

9.2.1 Isabelle

Isabelle [157] is a generic proof assistant that follows the LCF (Logic for Computable
Functions) approach; it supports a meta logic that enables the formalization of differ-
ent calculi, including, for example, HOL [123, 122]. Isabelle supports both a tactic-

189



style proof language as well as the declarative language Isar [158]. Automation is

provided by means of a classical reasoner that provides a collection of automatic

tactics, as well as interfaces to external first-order provers.
Jahob includes both automatic and interactive interfaces to Isabelle/HOL. The

former allows Isabelle to be invoked as an automatic prover and consists of a collec-

tion of Jahob-specific theories, as well a generic proof script that invokes tactics using

Isabelle's command-line interface. The manual interface generates Isabelle/HOL the-

ory files so users can interactively prove sequents that do not prove automatically.
Jahob reads these theory files to extract proved lemmas, which it matches against

generated proof obligations using a matching algorithm that can match proved se-

quents in the presence of renamed variables, unnecessary assumptions, and different

assumption ordering.
There have been a number of efforts to verify properties of Java and Java programs

using Isabelle. Bali [80] is a collection of theories implemented in Isabelle that model

many of the features of the Java Card programming language. MicroJava [79] is

a reduced model of Java Card that includes the bytecode, bytecode verifier, and

compiler. Both Bali and MicroJava include proofs of various properties of the modeled

systems, and can be used to prove properties of Java Card programs. Isabelle has

also been used to prove certain soundness properties of a model of a Java bytecode
verifier [131].

There have also been efforts to verify data structures using Isabelle, though these

data structures are not implemented in Java. Isabelle has been used to implement
and verify purely functional data structures such as a binary search tree with a map

interface [81] and an AVL tree with a set interface [124]. In the Verisoft project,
researchers have developed Isabelle/HOL proofs of functional correctness for a doubly-

linked list implemented in CO, a C-like programming language [3].
Isabelle has also been used to verify the full functional correctness of a microkernel

written in C and ARMv6 assembler [78]. The proof required 200,000 lines of Isabelle
script and 11 person years, not including the code, tools, and Isabelle extensions on
which the proof is based.

9.2.2 Coq

Coq is a proof assistant [24, 36] for the calculus of inductive constructions. It supports

the formalization and proofs of both mathematical theorems and software specifica-

tions. From the latter, Coq can be used to extract certified functional programs in

Objective Caml, Haskell, or Scheme. Coq supports tactic-style proofs as well as a tac-

tic language for writing user-defined tactics. Although Coq is designed primarily for

interactive use, it includes decision procedures and semi-decision procedures for some

theories including proposition calculus and Presburger arithmetic. It also supports a

language, called Ltac, for implementing decision procedures in Coq. Jahob contains

an interface to Coq for interactively proving sequents that do not prove automatically.

While Coq can only be used to write functional programs that can be proved to

terminate, Ynot [118, 37] is an extension to Coq that enables users to write possi-

bly non-terminating, imperative programs using monads. Executable code for the
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resulting programs can be produced using Coq's extraction mechanism. After the
publication of our full functional verification results [163], the most recent version
of Ynot was used to verify a collection of data structure implementations [37]. The
verified data structures include hash tables, binary search trees, as well as a port
of a Jahob association list example that we had previously verified. Proofs written
using Coq tactics were supplemented by automation in the form of a simplification
procedure for higher-order separation logic. Simple data structures, such as associa-
tion lists, that require no proof commands in Jahob to verify, required, in Ynot, about
twice as many lines of proof and tactics as implementation. More complex data struc-
tures, such as hash tables, required fewer lines of proof and tactics in Ynot than in
Jahob, but this is partly due to different methods of accounting. As measured in [37],
each line of code, proof, or tactic in Ynot may perform multiple operations, while for
Jahob, we count each operation as a single logical line of code or proof. When con-
sidered as a function of the number of lines of implementation, Ynot required about
three times as many lines of proof and tactics as code (to verify a hash table), while
Jahob required only about twice as many.

Coq has also been used to implement and verify purely functional data structures
including binary search trees, sorted lists, red-black trees, AVL trees, and finger
trees [2].

9.2.3 ACL2

The ACL2 (A Computational Logic for Applicative Common Lisp) system [73, 1]
consists of a programming language for modeling computer systems and an interac-
tive proof tool for proving properties about these models. It is the successor to the
Boyer-Moore theorem provers Nqthm and its interactive enhancement Pc-Nqthm [29].
The programming language for ACL2 is an applicative (purely functional) subset of
Common Lisp, which means that ACL2 models can be executed as Common Lisp
programs. The logic used is a first-order, quantifier-free logic of total recursive func-
tions, with induction up to co, and extension principles for ensuring consistency of
the extended logic. The ACL2 theorem prover uses rewriting, decision procedures,
and other standard search proof techniques when attempting to prove a formula. If
the prover is unable to find a proof, the user can provide guidance by directing the
system to prove key lemmas, which is similar to the use of the note command in Jahob
without from clauses. ACL2 also includes an interface that may be used to integrate
external proof tools [133, 74]. Currently integrated tools, which do not yet use the
new interface, include the Cadence SMV model checker [109], SAT solvers Zchaff and
Minisat [134, 165, 53], SixthSense [147, 112], and UCLID [105, 90].

ACL2 has been used to develop models of the JVM, which can be used to verify
properties of Java byte code programs as well as properties of the JVM model [114,
101, 102]. This approach has been used to verify several examples, including recursive
and iterative implementations of factorial, a functional implementation of insertion
sort, as well as a proof of progress for a multi-threaded example involving mutual
exclusion. The challenge in applying this approach is that proofs must necessarily
involve not only the target program, but also the JVM model, increasing the difficulty
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of the proof task. Once proved, lemmas about the JVM may be reused for subsequent
verifications, but the up-front cost of verification appears to be much more substantial

than when using Jahob or other program verification systems.

ACL2 has also been used to verify correctness properties of many other examples,
including models of processor components [31], and functional data structures such

as lists that implement a set interface [113, 44] and record structures [30, 75, 45].

9.2.4 KIV

KIV (Karlsruhe Interactive Verifier) [9, 135] is an interactive tool designed to support

formal systems development, including the verification of Java Card programs [151].

Properties of interest are expressed in a dynamic logic, and proved using a system of

tactics, which also supports automated proof search.

KIV has been used to verify the correctness of a Java Card implementation of

Mondex, a protocol for electronic purses [62, 66, 63]. Although the implementation

of Mondex verified in this case study includes the use of a recursive, linked data

representation in the form of a Document class, the verification focuses on high-

level security properties, and does not cover data abstraction or invariants. The

implementation of the message encoding protocol also required that a fixed bound be

placed on the recursion depth to ensure correctness, as Document objects were not

guaranteed to be acyclic.

9.3 Data Structure Verification

Program verification systems and interactive theorem provers are not the only types

of systems that have been applied to the data structure verification problem. Here
we survey the areas of shape analysis, separation logic, type systems, and decidable

logics as they relate to data structure verification. There is some overlap in these

areas as technologies converge, as evidenced by systems such as SPACEINVADER [161]
and THOR [104], which use separation logic based shape analysis.

9.3.1 Shape Analysis

Shape analysis is a type of static analysis for tracking aliasing and structural prop-

erties of programs. It has traditionally been used to verify properties of imperative

linked data structures, though these properties are generally limited to shape proper-

ties, and do not encompass full functional correctness properties such as data structure

content. While shape analysis is very powerful, issues of scalability have limited its

applicability. The approach we use in Jahob allows shape analysis to be combined

with other reasoning techniques and to be used in a modular way. Data structure

implementations can be verified using shape analysis and other techniques. The ver-

ified interfaces can then be used to reason about data structure clients, enabling

verification of richer properties and avoiding the need for whole program analysis.
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Jahob contains an implementation of symbolic shape analysis [128, 159, 160], called
Bohne, which generalizes predicate abstraction to perform shape analysis. It has
been used to verify operations on various data structures including lists, trees, and
arrays [160]. The analysis successfully inferred loop invariants and proved the full
functional correctness of operations that insert elements into data structures that
implement a set interface. While we did not use Bohne for the examples presented in
this thesis, we were able to verify more difficult properties using Jahob's interface to
the MONA [67] decision procedure in combination with the other prover interfaces.

Here we describe two well-known systems, TVLA [100] and PALE [111], as well as
several more recent shape analysis research systems that have been applied to data
structures.

" TVLA [143, 144, 100, 25, 26] is a generic framework for abstract interpreta-
tion, and, in particular, shape analysis. TVLA has been used to implement
shape analysis extended with ordering information for proving partial correct-
ness properties (shape and sortedness) of C procedures that manipulate and
sort linked lists [99]. It has also been used to implement shape analyses for ver-
ifying singly-linked list and binary search tree implementations with respect to
a set interface [136], not including size properties. One potential source of un-
soundness in these results is the use of manually specified and unverified rules for
updating instrumentation predicates. TVLA has since been extended with tech-
niques for soundly generating predicate maintenance formulas for some classes
for analyses [137]. This approach has been used to verify partial correctness
properties of a number of data structure operations, specifically, shape proper-
ties of singly and doubly-linked lists and binary search trees, and sortedness of
singly-linked list sort operations. More recent results include the verification of
these and other partial correctness properties of list and tree operations [25, 26],
including memory safety and termination for some examples.

" PALE [111] (Pointer Assertion Logic Engine) is a framework for verifying par-
tial specifications of programs encoded in monadic second-order logic. It re-
quires method contracts and loop invariants, and uses the MONA [67] decision
procedure to decide the resulting Hoare triples. As in TVLA, instrumenta-
tion predicates can be used to augment the analysis with ordering information.
It has been used to verify partial correctness properties of singly and doubly-
linked lists, red-black search trees, and threaded trees, including sortedness of a
singly-linked list bubble sort, and the red-black tree invariant for operations on
red-black trees. Other properties verified include the lack of null dereferences
and shape properties.

* Berdine et al. [18] describe a shape analysis based on separation logic for com-
posite data structures (e.g. a cyclic linked list of acyclic linked lists). The
analysis uses higher-order inductive predicates for linear data structures to en-
able the synthesis of new predicates for composite data structures. It has been
applied to a number of list manipulating routines from a Windows IEEE 1394
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(firewire) device driver written in C, and was able to prove the memory safety
of some, and identify several previously unknown bugs in others.

" Chang, Rival and Necula [35] describe a lightweight automatic shape analysis
based on separation logic. The analysis infers the necessary shape invariants
from data structure invariants provided by the developer in the form of data
structure checking code such as that used in testing. A prototype system has
been used to verify structural (i.e. shape) properties of list operations, binary
search tree find, and a Linux device driver that uses a list of doubly-linked lists.
In each case, the system verified that the operations preserved the structural
invariants inferred from the data structure checking code.

* Guo, Vachharajani and August [64] describe an interprocedural shape analysis
algorithm based on separation logic. It does not require loop invariants or
method contracts, and is also able to infer recursive shape invariants for data
structures with a tree-like backbone by analyzing the loop that constructs the
data structure (though the algorithm may not always succeed). The analysis
has been applied to verify shape properties of C programs that manipulate list
and tree data structures.

" SpaceInvader [161] is a tool that uses a separation logic based shape analysis to
verify the absence of pointer safety violations in device drivers that manipulate
shared singly and doubly-linked lists. It has been used to prove the absence of
pointer safety violations in examples, including one that contains over 10,000
lines of code.

* THOR [104, 103] (Tool for Heap-Oriented Reasoning) is a tool that combines
a shape analysis based on separation logic with arithmetic reasoning to ver-
ify memory safety of programs. The shape analysis that THOR uses is able
to reason about doubly-linked lists, while the arithmetic reasoning supported
encompasses stack-based integers, integers in the heap, and the length of lists.
The analysis proceeds in two phases. In the first phase, THOR uses symbolic
execution to explore all paths of the program. For programs that can be shown
to be memory safe using shape analysis, only the first phase is necessary. Oth-
erwise, THOR generates a purely arithmetic program from the results of the

shape analysis. If this program can be shown to not reach a designated error

state, then the original program is guaranteed to be memory safe. The arith-
metic program, which is output as C code by default, must then be checked

using an external tool such as BLAST or ARMC.

9.3.2 Separation Logic

Separation logic is a program logic for reasoning about mutable shared data struc-

tures [138]. It is based on the idea that the program heap can be separated into

disjoint regions. Special operators in the logic make it possible to make statements

about a locally updated region without explicit frame conditions for disjoint portions
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of the heap, enabling compact specifications and more straightforward reasoning.
Separation logic can also be used to enforce abstractions by eliding properties of pri-
vate state from method specifications. While separation logic shows great promise
for dealing with issues of aliasing in the presence of destructive updates, current sys-
tems, with the exception of Ynot, are generally able to verify only partial correctness
properties, and for languages designed for the particular analysis. In basing Jahob's
specification language on classical higher-order logic, we were able to take advantage
of the many off-the-shelf provers not yet available for separation logic. As the field
matures, we expect that more automated tools will be available. Here we briefly dis-
cuss several systems based on separation logic that have been used to verify properties
of imperative linked data structures.

" Smallfoot [20, 19] is an automatic tool for checking lightweight assertions in
separation logic using symbolic execution. The input language contains first-
order procedures with reference and value parameters, and primitives for al-
locating, deallocating, mutating and reading heap cells. Users write precondi-
tions, postconditions, and loop invariants for methods in a specification lan-
guage based on separation logic, from which the system generates verification
conditions, then discharges them by symbolic execution. While the specification
language is not sufficiently rich for full functional correctness verification, it has
been used to verify shape properties of operations on data structures includ-
ing disposal and copying of a tree, appending two linked lists, and adding and
removing nodes from a double-ended queue implemented using an xor-linked
list.

" A prototype system by Nguyen, David, Qin and Chin uses user-defined induc-
tive predicates in separation logic to verify both shape and size properties of
data structures [121, 120]. In this approach, users define predicates that cap-
ture the shape and size properties of the target data structure, write pre- and
postconditions for methods and loops in terms of these predicates, and state
auxiliary relations between predicate definitions in the form of lemmas. The
system operates on a strongly-typed, simple imperative language. The verifi-
cation conditions generated by the system are automatically discharged by the
internal entailment proving procedure, using the external tools Omega calcula-
tor and CVC Lite [13] as arithmetic solvers. The system has been used to prove
shape, size, and sortedness properties on data structures, but not full functional
correctness.

* Bigtoe [108] is a certified verifier for a decidable fragment of separation logic
with Presburger arithmetic, which is able to automatically prove separation
logic triples. It is implemented and verified in Coq, and can be executed either
as a tactic, or a stand-alone OCaml program generated via Coq's extraction
mechanism. The system operates on a language with assignment, lookup, mu-
tation, allocation, deallocation, while loops, and if-then-else. It uses both for-
ward and backward reasoning to automatically discharge generated verification
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conditions. The extracted OCaml implementation has been used to prove shape

properties of simple list operations.

Separation logic has also been used in tools such as MUTANT [21] to prove termi-

nation of loops that manipulate linked lists.

9.3.3 Type Systems

While type systems have traditionally been used to enforce lightweight correctness

properties of programs, more sophisticated type systems such as dependent types

can be used to enforce stronger correctness properties such as sortedness and size

properties of data structures. Systems that support dependent types in combination

with proofs, such as Coq, PVS, and ATS [41], enable correctness properties to be

encoded as types, with the ability to write the proofs necessary for type checking.

These approaches offer types as an alternative specification mechanism.

Standalone type-based approaches have also been used to verify rich correctness
properties of data structure implementations. Stardust [52] is a type checker for a type

system with datasort and index refinement for functional programs, in which users

provide type annotations, along with subsort relations, that are checked automatically

by the system. It has been used to verify data structure invariants including red black

tree invariants of insertions and deletions into a functional red black tree, though these

invariants do not encompass correctness of the tree contents.

Recursive and polymorphic type refinements have also been used to verify proper-

ties of data structure implementations [76]. In this approach, users provide a program

written in NanoML (a functional ML-like language), type specifications, measure def-

initions, and logical qualifiers (where measures are recursive functions that compute

desired correctness properties, and logical qualifiers the predicates of interest), which
are automatically checked by the type checker. Verified examples include functional

map and heap implementations with respect to a set interface, and the correctness

of list sort. While this and other type-based approaches offer, in general, a higher

level of automation than program verification approaches such as Jahob, the proper-

ties that have been verified have not extended to more sophisticated interfaces such

as maps, and do not address the difficulties associated with aliasing and destructive

updates that are essential to verifying imperative programs.

9.3.4 Decidable Logics

Many decidable logics exist which can be used to express important properties of data

structures [67, 17, 71, 146, 162, 50, 84]. In isolation, these logics enable automated

verification, but only of a limited class of properties. Jahob's integrated reasoning

approach enables the combination of decision procedures for such logics with other

reasoning techniques, thereby extending their applicability to a richer class of prop-

erties. Jahob currently incorporates decision procedures for BAPA [84] (Boolean

Algebra with Presburger Arithmetic) for deciding formulas involving cardinality, and
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the external decision procedure MONA [67] for monadic second order logic over trees,
for formulas involving shape properties.

9.4 Finitization and Automated Testing

Jahob and other program verification systems based on theorem proving are able to
verify the correctness of a program for all possible executions. In contrast, verifi-
cation techniques based on finitization (such as testing [107, 28, 155, 150], model
checking [72, 8, 7, 154, 140, 141, 46], and bounded verification [47, 48, 49]) offer a
higher level of automation than program verification techniques, but are able to ver-
ify correctness for only finitely many executions. Nevertheless, these techniques are
useful for detecting program errors, and can be used in conjunction with program
verification techniques to ensure program correctness. In particular, these techniques
can be efficient in early stages of development, for finding errors in the program and
specification, or for software components where the level of assurance required is not
sufficient to warrant the higher cost of verification. Systems that support techniques
based on finitization in addition to theorem proving include the proof assistants Is-
abelle [65], PVS [125], and ACL2 [133, 74].

9.5 Summary

Data structure verification is a difficult problem that has been explored in many areas
of research. Program verification systems, interactive theorem provers, shape anal-
ysis, type systems, and logics have all been applied to this problem, but due to the
difficult issues caused by aliasing in the presence of destructive updates, the large
majority of these systems have focused only on partial correctness properties, or on
functional implementations for which verification is more tractable. To the best of our
knowledge, Jahob is the first system to have been used to successfully verify the full
functional correctness of a substantial collection of imperative linked data structures.
Jahob's integration of a proof language as well as a diversity of automated reasoning
techniques enables a unique combination of automation and control that allows us to
successfully verify the complex correctness properties that arise in imperative data
structure verification. Of subsequent results, only Ynot, an extension to the Coq
proof assistant, has been used to verify properties and programs of comparable diffi-
culty. Although the results that we have obtained are, in theory, possible using other
systems-specifically, proof assistants such as Coq-our integration of a declarative
proof language within the program verification system offers a unique way of embed-
ding proofs in the familiar context of the original programming language not possible
in interactive theorem provers that operate in an environment designed for proofs.
This approach not only enables proofs to be naturally embedded within imperative
code, but also gives the user full access to all the automated reasoning techniques
that are integrated into the Jahob program verification system.
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Chapter 10

Conclusion

In this thesis, we have described the Jahob program verification system and our
experience using it to verify the full functional correctness of imperative linked data
structures. Through the use of integrated reasoning, we were able to leverage the
strengths of a diversity of automated reasoning techniques to prove the full functional
correctness of a collection of imperative linked data structure implementations. We
also made use of Jahob's integrated proof language, which enabled us to provide
the guidance needed by the provers to establish the correctness of properties that are
otherwise beyond the capabilities of the automated techniques. The interfaces that we
have verified capture all the properties relevant to the data structure client (with the
exception of properties involving execution time and/or memory consumption) while
preserving abstraction. Our experience shows that integrated reasoning, together with
Jahob's proof language, was effective in proving full functional correctness properties
that have traditionally been beyond the scope of program verification systems without
the use of external proof assistants.

Our integrated reasoning approach is also supported by our empirical results. All
but one of the data structures verified required the use of more than one automated
reasoning technique, demonstrating that a diversity of automated reasoning tech-
niques can be more effective than any single prover. While examples that verified
without any proof commands-such as our association list implementation of a map
interface-highlight the effectiveness of integrated reasoning in discharging verifica-
tion conditions for non-trivial examples, the verification of even more sophisticated
data structures would not have been possible without the use of our integrated proof
language. The proof language enabled us to provide the guidance that the provers
needed to successfully verify difficult verification conditions that the automated rea-
soning techniques were unable to discharge without guidance.

Our results also suggest that, although programs that directly manipulate linked
data structures are difficult to verify, programs that do so indirectly-by invoking
methods that perform the actual manipulation-may be verified with little or no user
interaction. The majority of the proof commands used in the verification occur in
methods that directly manipulate the data structure state. With few exceptions, we
were able to verify methods that indirectly modify the data structure state with either
few or no proof commands. This somewhat surprising result further supports the
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verification of data structure libraries, where the verification cost may be amortized

over many uses, as it suggests that library clients may be easier to verify, and that

our approach should scale well to larger programs that indirectly manipulate data

structures.

10.1 Future Directions

Our experience using Jahob to verify imperative linked data structures has also given

us insight into promising directions for future work. One such direction is in improv-

ing the ability of the system to handle instantiable data structures. Modifying an

existing data structure implementation in Java to enable multiple instances can be as

easy as removing a few static keywords. But verifying an instantiable data structure

can require significantly more effort than its static counterpart due to issues of alias-

ing. Most instantiable data structures do not share state between instances, and the

verification effort for this common case should ideally be no more than the effort to

verify a single static instance. But in practice, the formulas that need to be proved

to verify the lack of sharing between instances greatly exacerbates the difficulty of

the proof task. While the large majority of the data structures we verified are instan-

tiable, the two data structures that use the MONA decision procedure (the binary

search tree and circular list) are not. This is because the way in which Jahob currently
translates formulas for MONA makes it much easier to verify static data structures

than instantiable ones. We would like to explore ways to improve this translation.

We would also like to incorporate other techniques for handling shape properties-

including techniques based on separation logic and abstract interpretation-that may

be more naturally suited for addressing issues of aliasing. We have already done some

work in applying abstract interpretation to this problem, with promising preliminary

results. 1
Another interesting direction for future work is in applying Jahob to verify prop-

erties beyond functional properties. Examples include system-specific properties such

as time and memory consumption, termination, and safety and security properties.

We have a prototype system for verifying safety properties using Jahob by automati-

cally translating properties that can be encoded as temporal logic formulas into Jahob

specifications, but so far we have applied our system only to small examples.

Other interesting directions include applying Jahob to larger programs, and to

parallel programs. Our results suggest that our approach should scale, especially to

larger programs that indirectly manipulate data structures, and we expect verifying

these programs to be straightforward in most cases. But larger programs may also give

rise to more complex inter-class dependencies than we have seen in our examples. It is

an open question as to whether the techniques we have used to verify data structures

can also handle these dependencies. We are also interested in extending Jahob to verify

properties of parallel programs. Approaches based on assume-guarantee reasoning

enable properties of parallel programs to be expressed and verified in an elegant and

1Jahob can automatically determine whether a static data structure can be made instantiable by

checking whether the implementation correctly encapsulates its private state.
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modular way [98], making them natural candidates for further development within
Jahob's existing assume-guarantee infrastructure.

Last but not least, we are interested in exploring how verified data structures can
be used as the basis for a new class of static program analyses. Because verified spec-
ifications soundly capture the behavior of called methods, it may be possible to use
these specifications as method summaries, thereby avoiding interprocedural analysis
and improving scalability. It may also be possible to improve the precision of some
program analyses using this technique-by purposefully omitting from the specifica-
tions information about the data structure that is not intended to be exposed to the
client. Differences in the concrete structure of data behind the abstraction barrier
may obscure an analysis' ability to recognize structures that are semantically equiv-
alent, but verified interfaces can present only the important semantic information,
improving the ability of the analysis to extract the desired results. We have done
some preliminary work in applying this technique to commutativity analysis [139],
and are interested in continuing to pursue research in this area.

10.2 Summary

Data structure verification is an area of research that has inspired numerous auto-
mated and interactive reasoning techniques. In Jahob, we take a hybrid approach that
enables both the use of state of the art automated reasoning techniques as well as the
suitable application of developer insight in the verification process. Where traditional
program verification approaches have focused only on partial correctness properties,
the application of integrated reasoning and the use of the declarative proof language
in our system has enabled us to verify the full functional correctness of a collection
of imperative linked data structures implementations. The programs and properties
we have verified exceed what previous techniques have been able to achieve, and have
since been matched only by approaches based on interactive theorem proving. The
results we have obtained using our system support our hybrid approach. They also
suggest a variety of new directions in which we could extend our work-to programs
and properties beyond data structure verification, and to new program analyses based
on verified interfaces. Such program analyses have the potential to improve on exist-
ing analyses in both scalability and precision. By demonstrating the feasibility of full
functional verification for imperative linked data structures, we hope that our results
will inspire further research in developing the tools and techniques that enable the
verification of sophisticated properties in larger programs.
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Appendix A

Soundness Proofs

Using the proof methodology described in Section 4.2 of Chapter 4, we prove the
soundness of the translation for each of the proof language commands given in Fig-
ure 3-5, and for assert. Figures A-1, A-2, and A-3 present these soundness proofs.
The simplicity of these proofs illustrates the methodological advantages of defining
proof commands through a translation into guarded command language.

p wp(fp , H)

P1 ;P2 wlp(fp 1 ;P2], H)
= wlp(([pd; [p2]), H)

wp(piA, wlp([p2], H))
-> wlp(p 2], H)

-+H

assert F wlp( assert F , H)
wip((assert F), H)

=FAH
->H

note F wlp(fnote F], H)
= wlp((assert F; assume F), H)
= F A (F --> H)

H

localize in (p; note F) wlp([localize in (p; note F)], H)
= wlp((skip (p ; assert F; assume false));

assume F), H)
= (F -H) A wlp([p], F)
- (F -H) A F

H

Figure A-1: Soundness Proofs for Translation of Proof Language Commands (contin-
ued in Figure A-2)
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p wlp(p], H)

m p (F G) wlp([mp (F -- G)], H)
= wlp((assert F; assert (F - G) ; assume G), H)
= F A(F-G) A (G -- H)
- GA (G- H)

->H

assuming F in (p; note G) wlp([assuming F in (p; note G)], H)
= wlp(((skip 0 (assume F;

p] ; assert G ; assume false));
assume (F -+ G)), H)

= ((F -G) -- H) A (F -wlp([p], G))
((F -G)- H) A (F G)

->H

cases F for G wlp([cases F for G, H)
= wlp((assert F1 V ... V F,,;

assert (F1 - G);...; assert (F.-- G);
assume G), H)

= (F1 V ... V F) A (F1- G) A ... A
(Fn -*G) A (G - H)

- GA (G - H)
-+H

showCase iofF 1 V ... V Fn wlp([showCase iofF1 V ... V Fn], H)
= wlp((assert F; assume F1 V ... V F,,), H)
= F A ((F1 V ... V Fn) -> H)

H

byContradiction F in p wlp([byContradiction F in p], H)
= wlp(((skip (assume -,F;

[p ; assert false ; assume false))
assume F), H)

= (F -H) A ((,F) -- wlp([lp, false))
(F -H) A ((,F) -- false)

-+H

contradiction F wlp([contradiction F, H)
= wip((assert F ; assert -,F; assume false), H)
= F A ,F

H

Figure A-2: Soundness Proofs
ued from Figure A-1)

for Translation of Proof Language Commands (contin-
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p wlp(p], H)

witness Ffor 25.F wlp([witness rfor ]5.F , H)
= wlp((assert F[= tJ ; assume ]5.F), H)
- F[5 := t A ((35.F) -+ H)

-+ (3i.F) A ((E5.F) -> H)
-H

pickWitness 5 for F in (p; note G) wlp([pickWitness 5 for F in (p; note G)], H)
(where 5 is not free in G) wlp(((skip (assert 3f.F; havoc 5;

assume F;
p] ; assert G; assume false))

assume G), H)
- (G-+ H) A ]5.F A

V5.(F --+ wl p(fp, G))
(G- H) A 3F.F AV5.(F ->G)

- (G H) A G
-+H

pickAny 5 in (p; note G) wlp(TpickAny 5 in (p; note G)], H)
- wlp(((skip I (havoc ';

p ; assert G; assume false))
assume V5.G), H)

- ((V5.G) - H) A V5.wIp([p , G)
-+ ((V.G) -H) A V5.G

->H

induct F over n in p wlp([induct F over n in p], H)
- wlp(((skip (havoc n; assume 0 < n;

[p] ; assert F[n := 0] ;
assert (F -> F[n :n+1])
assume false)) ;

assume Vn.(0 < n -+ F)), H)
= ((Vn.(0 < n - F)) -+ H) A

Vn.(0 K n -> wlp(lp, (F[n := O]A
(F -> F[n :=n+1])))

((Vn.(0 < n -> F)) -H) A
Vn.(0 K n->(F[n 0]A

(F -> F[n :=n+l])))
((Vn.(0 < n - F)) ---> H) A
Vn.(0 < n -> F)
H

Figure A-3: Soundness Proofs for Translation of Proof Language Commands (contin-
ued from Figure A-2)
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