
Dissecting the Spatial Structure of Overlapping

Transcription in Budding Yeast

by

Timothy Danford

MASSACHUSEMS INS E
OF TECHNOLOGy

FEB 2 3 2010

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy ARCHNVES
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

A uthor I.....................

Department of Electrical Engineering and Computer Science
Oct r 19, 2009

-\

C ertified by -.

David K. Gifford
Professor

Thesis Supervisor

A

Accepted by.. '

Terry P. Orlando
..... 7.. V.

Chairman, Department Committee on Graduate Theses

2

Dissecting the Spatial Structure of Overlapping

Transcription in Budding Yeast

by

Timothy Danford

Submitted to the Department of Electrical Engineering and Computer Science
on October 19, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis presents a computational and algorithmic method for the analysis of
high-resolution transcription data in the budding yeast Saccharomyces cerevisiae.
We begin by describing a computational system for storing and retrieving spatially-
mapped genomic data. This system forms the infrastructure for a novel algorithmic
approach to detect and recover instances of same-strand overlapping transcripts in
high resolution expression experiments. We then apply these algorithms to a set
of transcription experiments in budding yeast, Saccharomyces cerevisiae, in order to
identify potential sites of same-strand overlapping transcripts that may be involved
in novel forms of transcriptional regulation.

Thesis Supervisor: David K. Gifford
Title: Professor

4

Acknowledgments

This thesis would never have been completed without the help, both personal and

academic, that I received from a large number of people. Bruce Donald mentored

me as an undergraduate, directed me to graduate school, and remains the smartest

man I've ever met. At MIT, Ernest Frankel, Ben Gordon, Rick Young, Gerry Fink,

and Tommi Jaakkola provided advice, mentorship, and careful instruction. I was

lucky to have wonderful collaborators in Duncan Odom, Divya Mathur, and Sudeep

Agarwala. There were also administrators without whom I never would have survived

even a single semester: Jeanne Darling, Marilyn Pierce, and Janet Fischer. MIT was

where I met a large number of my friends and lab-mates, including John Barnett,

Shaun Mahony, Georg Gerber, Reina Riemann, Bob Altshuler, Chris Reeder, Adam

Marcus, Jason Rennie. and Ted Benson. Finally, my non-MIT friends were just as

instrumental in helping me survive and graduate: John Snavely, Jackson Childs,

Jolene Pinder, Michelle Beaulieu, Christa Bosch, and Jason Elliott. Ale Checka and

Laura Stuart deserve their own, special, acknowledgement.

Alex Rolfe has been my officemate for five years, and I've thanked my luck for

each one. He's been a good friend, a close collaborator, someone to whom I can go

for good and trustworthy advice, and a skilled debugger of LaTeX - in short, the

best officemate a computer science student could have hoped for. Along with Alex,

Robin Dowell has been a friend, collaborator, and mentor throughout the last several

years of school. And, of course, David Gifford has been my advisor throughout my

graduate career. He has shown endless patience, and unwavering support, over my

eight years at M.I.T. The care he takes in his research, and the advice he gives to his

students, speaks to his thoughtfulness and vision.

My parents, Steve and Linda, managed to sit through eight years of watching their

oldest son stumble through graduate school without ever muttering a critical word

within my earshot. They supported me financially when I needed them, provided an

endless stream of encouragement and help the rest of the time, and were the best co-

bloggers a son could hope for. My father taught me to program and was my original

role model as a scientist; and making my mother laugh still makes me incredibly

happy. I hope this thesis makes them proud.

Finally, there's Rachel: who supported me unconditionally through an expen-

sive and emotionally draining experience that (at times) must have seemed as if it

would never end, without whose constant encouragement and help I never would have

finished, and who I love endlessly and dearly. This thesis is dedicated to her.

Contents

1 Represention and Analysis of High-Resolution Genomic Data

1.1 The Spatial Character of Modern Genomics Data

1.2 Gene Expression and Genomic Transcription

1.3 T hesis O utline ..

2 Genomic Spatial Events Database

2.1 D esign outline ..

2.1.1 Genomic coordinates as core schema

2.1.2 Separating mapping from data

2.2 System architecture..... .

2.2.1 Core schem a ..

2.2.2 Microarray schema....

2.2.3 Short-read sequencing schema

2.3 A Dataflow Language for Biological Analysis

2.3.1 Discovering and representing binding events

2.3.2 Genomic visualization

3 Probabilistic Modeling and Segmentation of Tiling Microarrays

3.1 Prior W ork ..

3.2 N otation ..

3.3 Probabilistic Models of Probe Intensities

3.4 Segmentation of Tiling Microarrays

3.4.1 Segmentation Complexity Penalties

3.4.2 Evaluating the SPLIT Algorithm 55

3.5 Probabilistic Models of Differential Expression from Segmented Data 57

3.5.1 Evaluating the hRMA Model . 58

4 Computational Recovery of Overlapping Transcripts 63

4.0.2 Two Insights into Overlapping Transcript Detection 65

4.1 Prior W ork . 67

4.2 N otation . 70

4.3 An Additive Model of Transcription 72

4.4 STEREO: Reassembly of Overlapping Transcripts 73

4.4.1 Evaluating an Arrangement 75

4.4.2 Arrangement Complexity Penalties 76

4.4.3 Assumptions for Overlapping Transcript Detection 77

4.4.4 Enumerating Arrangements.. 78

4.5 Performance and Testing of STEREO 79

4.5.1 Synthetic D ata . 81

5 Computational Detection of Overlapping Transcripts in Saccharomyces

cerevisiae 85

5.1 Introduction . 85

5.2 RNA cis-regulation in S288C and E1278b. 87

5.3 SPLIT identifies expression using multiple constraints 87

5.4 STEREO assembles transcripts from expressed segments 88

5.4.1 STEREO Transcript discovery recovers appropriate SER3 and

SRG1 transcripts . 89

5.4.2 Identification of 1446 overlapping transcripts 90

5.4.3 Northern analysis of overlapping predictions 91

5.5 D iscussion . 92

List of Figures

2-1 GSE Server/Client Structure

2-2 GSE Core Schema

2-3 GSE Microarray Schema

2-4 GSE ChIP-Seq Schema

2-5 GSE Visualizer......

2-6 Example GSEBricks Pipeline....

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

Unbiased Assessment of Transcription via Tiling

Array and Segment Notation

Local Flat Model

Local Linear Model

Synthetic Segment Recovery

Microarrays

Comparison with 3rd Party Dataset: David et al.

Relative Intensity Comparison: David et al.

Differential Transcription in E1278b: ERG13 and PH084

Global Differential Transcription in E1278b

4-1 Overlapping Insight #1: Additivity..

4-2 Overlapping Insight #2: Differential Transcription

4-3 Workflow of Transcript Reconstruction Algorithm

4-4 STEREO Workflow Diagram .

4-5 STEREO Algorithm .

4-6 Pseudcode for Arrangement Enumeration

4-7 Counting arrangements under a K-maximum-overlap constraint. .

. 48

. 49

. 59

. 60

. 61

. 62

.. 62

83

4-8 Synthetic Transcript Reconstruction. 84

5-1 Capturing Regulatory Intergenic Transcripts Upstream of FLO11 . . 88

5-2 Transcript Reconstruction . 90

5-3 Multiple Transcripts at YCR082W 92

List of Tables

4.1 Array and Transcript Notation...... 71

4.2 Transcript Enumeration Assumptions 77

12

Chapter 1

Represention and Analysis of

High-Resolution Genomic Data

The experimental design and analysis of genomic data has, in the past, often been

based on gene annotations or another discrete set of units. Microarray expres-

sion experiments' results are typically summarized by gene-specific intensities or

values. ChIP-Chip transcription factor binding experiments are designed to probe

well-defined promoter regions corresponding to individual genes, and their analysis is

carried in terms of those genes. These discrete analyses were influenced by the cov-

erage limitations of early microarray technologies, which had probe densities roughly

equivalent to the number of genes in bacteria or yeast. Later array technologies

provided genomic coverage sufficient to cover smaller genomes, but only had enough

probes to tile around the start-sites of gene annotations in higher eukaryotes (human

and mouse).

Biological analysis of these experiments begins with gene-based genomic data, then

combines those results with other structured data sources such as protein interaction

networks[28] or transcriptional regulatory networks[25]. Often these analyses look

for paths, cliques, or other graph-theoretic patterns that are reflected in the original

experimental dataset[9]. Even simpler analyses, based on matching experimental

results against large numbers of predefined gene sets or other annotations can be

used as a large-scale screening mechanism[57]. The concept of enrichment, the over-

representation of discrete units (such as genes) defined by a genomic dataset within

a pre-defined collection of sets, is a central concept to much of systems-biological

analysis[43].

These kinds of analyses, in terms of separate and independent units, still only

give us an incomplete picture of the genome's biology. Chromatin structure, or chem-

ical marks applied to histones or the DNA itself, add a second layer of information

that cannot be completely inferred from the chromosomal sequence itself[36]. Genes

have diverse regulatory structures, often with multiple promoters and enhancers that

are located kilobases away from the annotated start of the gene's coding sequence.

Gene transcripts may be spliced into different coding messages or may have alternate

transcriptional forms. More recently, systematic studies have begun to show that

"transcription" is not limited only to the coding regions of the genome, but widely

occurs (and is prevalent, in some genomes) in the intergenic regions. These so-called

"noncoding RNAs" may be functional in their own right or may carry a function

through the act of their production[58].

To take a step beyond simple genes and gene-sets requires spatial analysis meth-

ods. Spatial models and algorithms treat the genome as an experimental landscape,

and only attempt to tie experimental results and observations back to genes or other

annotations during the analysis. A spatial approach to genomic analysis identifies

transcription factor binding, chromatin state or histone marks, and transcriptional ac-

tivity, based on their genomic location which is determined without bias from nearby

sequence annotations.

High-density microarrays and high-throughput sequencing are allowing researchers

to finally measure events at high spatial resolution and across a genome-wide scale.

Microarrays with probe spacings every 50 nucleotides, or even less than the width of

the array's probe itself (so called tiling microarrays), are able to provide measurements

across an entire chromosome from which the fine structure of biological events can

be deconvolved. High-throughput sequencing technologies sample DNA fragments

from an experimental population that are sequenced and mapped back to the target

genome. A deconvolution process can be used to decode the locations of specific

events and biological processes along the genome from the mapped results.

Hand in hand with these novel experimental methods, researchers have created

computational and statistical frameworks for their spatial analysis. Deconvolution

is a popular method for finding the precise locations of biological events which we

expect to have a point-like existence along the genome [50, 66]. The binding locations

of transcription factors are often modeled as occurring at a single base-pair (or regions

of only a few base-pairs in length). Other biological processes are expected to produce

regions of activity; the interpretation of these experimental datasets often requires

a statistical "segmentation" process, in which the active regions are identified and

separated from the inactive or background regions. Examples of experiments which

can be interpreted in this way include CGH datasets, histone density and chromatin

accessibility, or high-resolution transcription datasets. These analysis methods can

be used for either microarray or sequencing-based experimental results.

Segmentation-based spatial analysis methods will overlook overlapping events.

Some biological phenomena cannot be understood solely as individual, independent,

and non-overlapping regions. For example, transcripts may overlap due to the time-

and population-averaged nature of microarray experiments and cell populations. If

two sub-populations of cells within a biological sample are producing different tran-

scripts which cover genomic regions that are not completely disjoint, then these tran-

scripts will appear on a microarray (or other experimental measurement) as overlap-

ping events. Other dynamic genomic phenomena, which could be present at different

locations in different cell populations, will present similar overlapping experimental

signatures. Analysis of these experimental datasets should attempt to recover these

coherent but overlapping regions when at all possible; otherwise, the experimenter

may be led to believe that three transcripts are present instead of (for example) two,

or be mistaken in the relative locations and intensities of the transcripts that are

present.

In this thesis, we describe how to adapt a novel method for the analysis of tiling

microarray transcription data by applying a computational to overlapping genomic

regions: additive transcript re-assembly based on genomic segmentation. We also

demonstrate the use of the software system and the new tiling microarray segmen-

tation and analysis framework to model a new, systematic phenomenon observable

in high-resolution tiling microarray data: the presence of overlapping transcripts in

budding yeast. We conclude by demonstrating how this new computational under-

standing of a genomic dataset allows us to extend our understanding of transcription

and regulation in this same organism.

1.1 The Spatial Character of Modern Genomics

Data

Classical biology understands genomic data in terms of its component pieces - genes

and proteins - and standard biological relations between them. Undirected graphs

are used to model the physical interactions between proteins. Metabolic reactions

that take place within the cell can be modeled as a directed, bipartite graph between

reactant nodes and reaction nodes, where the directionality of the edges reflects the

input/output relationships of reactants and reactions[14]. Genes are associated with

reaction nodes if their corresponding protein product catalyzes that reaction. Genes

are also arranged into regulatory networks, directed graph representations connecting

two genes if the product of the first gene regulates the transcription of the second

gene. Some functional genetics tests, such as experiments that measure genes that

are lethal when deleted in pairs or genes whose expression rescues the effects of the

other deletions, are represented as networks or sets-of-sets[22]. Quantitative experi-

mental measurements of genes or proteins can be represented as sets which satisfy a

pre-determined cutoff: for example, the set of genes whose expression exceeds some

statistically-significant threshold level may be indicated as an over-expressed or up-

regulated set associated with the experimental condition.

Modern genomics, in contrast to this classical understanding, represents genes in

terms of their spatial location along a chromosomal sequence. Associating genes or

other sequence features with their spatial coordinates along a linear chromosomal

sequence enforces a geometric understanding of the structure of the genome. Genes,

promoters, enhancers, transcription factor binding sites, histone locations, accessible

or inaccessible regions of the DNA, noncoding RNAs, enhancers, splicing motifs, and

every other sequence features are points, regions, or intervals along a 1-dimensional

space of coordinates. Consequently, a spatial understanding of genomic data requires

new ways of representing, storing, and querying these geometric coordinates. One-

dimensional regions are characterized by their spatial distance along the genome, and

by their spatial relationships to each other: inclusion, containment, and overlap.

These spatial relationships between sequence features are related to the functional

relationships between the features. The regulatory relationship between a transcrip-

tion factor and a target gene depends on the binding of the factor (that is, the location

of its binding site, a sequence feature) within the promoter or enhancer for the target

gene. Filtering these binding sites by measurements of the accessibility or inaccessi-

bility of the surrounding DNA has been shown to improve the accuracy of regulatory

relationship prediction - if a binding site is contained within an inaccessible region

of DNA, then it is less likely to indicate a regulatory relationship between its binding

transcription factor and any nearby gene[55, 54]. Genes themselves have a spatial

structure reflected in the ordering and spacing of their exons and the relative loca-

tions of sequence signals for splicing. Higher-order spatial patterns of genes along a

longer chromosomal region, such as the Hox gene clusters in vertebrates whose spa-

tial structure reflects the order of their activation and the ultimate patterning of the

organism itself, can produce functional effects and relationships.

The treatment of genomes and chromosomes as one-dimensional spaces is itself an

over-simplification. Recent experimental work has shown that genomes have higher-

order three-dimensional structure. DNA wraps around histones in packed conforma-

tions, and chromosomes contact each other in distinct locations and may even form

loops or other forms of "secondary structure." The physical location of the chromatin

within the nucleus itself (for instance, distance to the nuclear membrane) may even

play a role in the regulation of genomic processes such as transcription[6].

Traditional relational databases for storing proteomic or gene-centric data are

poorly equipped for representing and storing these sorts of spatial relationships in

an efficient manner. In the UCSC relational schema, different sets of gene or se-

quence annotations are stored in separate table sets[31]. While this may reflect the

incremental nature of the UCSC database's growth and the desire to keep separate

datasets in separate locations, it also means that a query to the database which seeks

all annotations within a given region (a "spatial containment query") will be required

to touch many different tables. Even those database schema designs which present

spatial coordinates in a single table, or a very limited set of tables, are often ill-suited

to more complex patterns of spatial query. One prominent use of the spatial contain-

ment query is to produce results which will be used to populate a genomic browser or

automatic annotation mechanism. However a visual browser will present its results

to the user in a manner which depends on the spatial scale of the query - the larger

the scale the less detail will be shown, with more detail presented as the user "zooms

in." The rules which are used to aggregate detailed high-resolution data into results

suitable for visualization are sometimes difficult to encode in a simple relational ag-

gregation or grouping operator. This deficiency has led to the development of special

data structures that exist outside a relational database altogether, allowing multi-

resolution indexing and novel spatial query types which are unsupported by standard

SQL languages.

1.2 Gene Expression and Genomic Transcription

Transcription of the genome, the process by which DNA is turned into mRNA, is

an example of a biological process along the genome which requires a high-resolution

spatial understanding. Transcription is the process by which DNA is turned into

mRNA, the message which is ultimately translated into protein. We say that a gene

is expressed if its sequence is transcribed. We measure the expression of a gene as a

proxy for the presence and relative abundance of the protein for which the gene codes.

This assumption, that expression is a suitable substitute for protein levels, is not

completely accurate: the persistence or degradation of the protein itself, the editing,

regulation, transport, and translation of the mRNA message, and the presence of

gene isoforms and chemical modifications of the protein which affect its functional

status, all mediate the relationship between observed expression of a gene and the

presence or functional efficacy of its encoded protein.

Experimental methods for measuring gene expression are varied in their ability

to detect novel transcripts, produce quantitative information about expression levels,

and to operate at high throughput rate. Before the existence of complete genome

sequences to guide them, investigators used sequencing to determine the sequence of

mRNAs purified from a cell population; these ESTs (or Expressed Sequence Tags)

were organized into libraries and used to enumerate sets of transcripts which were

produced by a given type of cell under particular experimental conditions. From these

ESTs, or from complete genomic sequences available later, researchers could design

probes which hybridized uniquely to a single putative transcript. These probes al-

lowed the use of blots to measure the presence and to give rough relative abundance

estimates for the expression of individual genes. Other techniques, such as qPCR,

were developed as more accurate methods for quantitative measurement of gene ex-

pression.

Gene expression measurements on a genome wide scale first became commonplace

with the advent of microarray technologies. Microarrays are an experimental platform

upon which thousands of probes can be simultaneously fixed; samples of genomic

transcription are then processed, amplified, and labeled before being hybridized to the

array's probes. Probes which show the presence of labeled sample material hybridized

to their location provide an indication of the presence of the corresponding transcript.

Quantitative estimates of expression are also possible from the amount of label present

at a probe location.

A gene is expressed if there is a transcript produced by the cell which contains the

coding sequence of that gene (and which is, presumably, subsequently translated into

protein). Transcription is itself a spatial process. Transcripts may run beyond the an-

notated coding boundaries of the gene, containing the 5' and 3' UTRs (un-translated

regions). Gene expression may be present as a function of a transcript spanning mul-

tiple genes simultaneously. Genes themselves may be multiply transcribed, with alter-

nate promoters or variable endpoints. Transcription is a strand-specific phenomenon,

so the ability to detect the direction in which a gene is transcribed (the presence of

sense and antisense transcripts) can be important for a functional understanding of

that gene's expression. Finally, transcripts themselves may occur outside the bounds

of known gene annotations. Recent studies in yeast and humans have shown that sig-

nificantly higher fractions of the genome are transcribed than are occupied by coding

sequence annotations. Some of the transcribed regions of the genome are believed to

have interactions with the expression of coding regions, or functional roles in their

own right.

The first microarrays allowed expression measurements for thousands of genes

simultaneously by using probes that were unique to each individual coding region.

However, our spatial understanding of gene expression has shown us that only looking

at gene expression gives an incomplete picture of the transcriptional activity along

the genome as a whole. Gene-specific probes provide ambiguous information about

the spatial nature of transcripts overlapping the probe and completely miss any tran-

scripts that fall between the probes.

Tiling microarrays are designed to provide a spatial understanding of transcription

along the entire genome. Microarray technologies allowing designs with large numbers

of probes allow researchers to design arrays that tile an entire genomic sequencing

with closely-spaced probes. The spacing of the probes provides a high spatial resolu-

tion - few transcripts are small enough to remain undetected by falling between the

probes, and detected transcription can be spatially localized to the nearest measured

probe. High-throughput sequencing experiments (RNA-Seq) may also be used to

provide measurements at a similar genomic resolution. By sequencing and mapping

transcripts sampled from the experimental population, RNA-Seq can also determine

the locations and extents of transcription.

Both tiling microarrays and RNA-Seq measure populations of transcripts from an

experimental sample, either by averaging them (microarrays) or sampling from them

(sequencing). These technologies are able to accurately detect the spatial bounds

of transcription, but they are unable to directly indicate the individual transcripts

which are being measured. The computational analysis methods which have been

applied to these experimental results attempt to classify transcribed regions from the

surrounding background or noise, but do not attempt to reconstruct the presence,

locations, or abundance of individual transcripts. This analysis is complicated by

the fact that transcripts in a population may be derived from overlapping genomic

regions, even on the same strand of the DNA. For example, two transcripts of a

single gene which share the same end-point but start from alternate promoters will

share a common suffix (3' end) but the longer transcript will have a prefix (5' end)

that is not contained in the shorter transcript. These overlapping transcripts are

observed as mixtures on the experimental apparatus (sequencing or microarrays),

and are presented as regions of "complex" segmentation in existing computational

analyes.

The goal of the second half of this thesis is to demonstrate a new computational

algorithm for the spatial detection and analysis of overlapping transcripts in tiling

microarray data. This algorithm will be adapted to use the output of standard

segmentation-style analyses of microarray experiments, and will be performed inde-

pendently of existing gene annotations or other sequence features.

1.3 Thesis Outline

Chapter 2 outlines our core platform, the Genomic Spatial Events (GSE) database,

that provides the storage, query, analysis, and visualization framework for the rest

of this thesis. We also outline, in the same chapter, two previously-published uses

of the GSE system for analyzing genomic datasets in the same genome and between

different species. Chapters 3 to 5 describe the application of a system built atop

GSE to analyze strand-senstive tiling microarrays for the detection of coding and

noncoding transcription in budding yeast. Chapter 3 describes the adaptation of a

standard method for normalizing expression microarray datasets (Robust Multichip

Averaging, or RMA) for use with new type of tiling microarrays. In Chapter 4, we

outline how these tiling microarrays can be used to detect a biological phenomenon,

same-strand overlapping transcripts, which has not been previously examined using

systematic computational methods at a global genomic level. Finally, in Chapter 5,

we show how these computational techniques can be used to expand and refine the

existing models of transcription and regulatory control in yeast.

Chapter 2

Genomic Spatial Events Database

Our understanding of experimental data and analysis methods from Chapter 1 has

driven the development of an integrated storage and analysis system for genome-

mapped sequence, annotation, and quantitative data. This chapter describes GSE,

the Genomic Spatial Event database, a system to store, retrieve, and analyze several

types of high-throughput microarray data. GSE handles expression datasets, ChIP-

Chip data, genomic annotations, functional annotations, the results of our previously

published Joint Binding Deconvolution algorithm for ChIP-Chip[50], and precom-

puted scans for binding events. GSE can manage data associated with multiple

species; it can also simultaneously handle data associated with multiple 'builds' of

the genome from a single species. The GSE system is built upon a middle software

layer for representing streams of biological data; we outline this layer, called GSE-

Bricks. We show how it is used to build an interactive visualization application for

ChIP-Chip data. This visualizer software is written in Java and communicates with

the GSE database system over the network.

Some methods simultaneously collect hundreds-of-thousands, or even millions, of

data points. Microarrays contain several orders of magnitude more probes than just a

few years ago. Short-read sequencing produces raw reads whose individual experiment

size is often measured in gigabytes [30]. For example, the Illumina sequencer produces

single-end reads between 30-35 base pairs in length. A single lane of the reads from

the sequencer may produce between 8-10 million reads, which (if we assume that

the bases are bit-packed but that a unique identifier is stored for each read) means

that storing a single lane of reads will require on the order of 120 megabytes of disk

space. The Illumina sequencer has eight parallel lanes, which means that every run

(around three days) will produce nearly a gigabyte of raw sequence data. Those space

requirements are simply for storing the simplest output of the sequencer, without ad-

ditional information as to sequence quality information or mapped genomic locations.

Furthermore, standard data structures for string analysis and pattern matching of-

ten require O(N 2) space, where N is the total length of the strings [1]. Storing

these datasets in flat files, or in naive formats on disk, quickly becomes unwieldy as

the data collection effort extends over months or years worth of data from multiple

investigators and laboratories.

Combining these with massive genome annotation datasets, cross-species sequence

alignments mapped on a per-nucleotide level, thousands of publicly-available microar-

ray expression experiments, and growing databases of sequence motif information, and

we are left with a wealth of experimental results (and large scale analyses) available

to the investigator on a scale unimagined just a few years ago.

Successful analysis of high-throughput genome-wide experimental data requires

careful thought on the organization and storage of numerous dataset types. The

ability to effectively store and query large datasets has often lagged behind the so-

phistication of the analysis techniques that are developed for that data. Many publicly

available analysis packages were developed to work in smaller systems, such as yeast

[53]. Flat files are sufficient for simple organisms, but for large datasets they will not

fit into main memory and cannot provide the random access necessary for a browsing

visualizer.

Modern relational databases provide storage and query capabilities for these vertebrate-

scale datasets. Built to hold hundreds of gigabytes to terabytes of data, they provide

access through a well-developed query language (SQL), network accessibility, query

optimizations, and facilities for easily backing up or mirroring data across multiple

sites.

Most bioinformatics tools that have taken advantage of database technology, how-

ever, are web applications. Often these tools are the front-end interfaces to insti-

tutional efforts that gather publicly-available data or are community resources for

particular model organisms or experimental protocols. Efforts like UCSC's genome

browser and its backing database [31], or the systems of GenBank [3], SGD [15], Fly-

Base [10] are all examples of web interfaces to sophisticated database systems for the

storage, search, and retrieval of species-based or experiment-based data.

2.1 Design outline

2.1.1 Genomic coordinates as core schema

Our system for handling and analyzing genomic datasets is designed around a cen-

tral observation: the way to integrate different experimental platforms and biological

datasets at a genomic level is by establishing a common, comparable mapping of each

dataset to genomic coordinates. Data structures assembled with reference to those

coordinates - points, regions, and alignments, and per-base or per-bin scoring func-

tions - are then manipulated and compared through a common set of one-dimensional

geometric primitives such as overlap, containment, nearest-neighbor detection, and

assignment based on distance metrics.

2.1.2 Separating mapping from data

The GSE system consistently separates the concepts of a dataset from its associated

mapping to a genome. This is a necessary separation for several distinct reasons:

1. Publicly-released genomes are subject to consistent updates and revisions. Sep-

arating the data itself from its mapping to a particular genome saves space and

prevents the data system from storing multiple identical copies of the data for

each independent genome revision.

2. Some data might not be able to be mapped directly to the genome itself

examples include control spots on microarrays, or short-reads from sequencers

that are unable to be uniquely mapped to a genome. In many cases, we would

still like these data to remain a coherent unit, and not be split into categories

based on whether it can be mapped to a particular genome.

3. The mapping of some data (for instance, the short reads from modern se-

quencers) to a particular genome is itself an experimental process with its own

sources of error. Storing the mapping separately from the data allows us to

experiment with different methods for mapping or aligning arbitrary data to a

genome, and provides the basis for apples-to-apples comparisons between dif-

ferent alignment and mapping methods.

2.2 System architecture

Most analysis methods for genomic data can be decomposed into separate processes

for data retrieval and stepwise analysis. Our system should provide a common set of

modular software components, that can be composed in different ways for different

analysis tasks and pipelines. The entire system should be designed to provide imme-

diate visualization to the end-user, and that visualization should be built around the

same components that form the core of any analysis pipeline - this way, the user can

be guaranteed that the same data and analysis results which go into his or her static

visualizations or dynamic figures should be the same as go into the batch analyses

which are reported by the system.

The system that we describe here bridges the gap between the web applications

that exist for large datasets and the analysis tools that work on smaller datasets.

GSE consists of back-end tools for importing data and running batch analyses as well

as visualization software for interactive browsing and analysis of ChIP-Chip data.

The visualization software, distributed as a Java application, communicates over

the network with the same database system as the as the middle-layer and analysis

tools. Our visualization and analysis software is written in Java and are distributed as

desktop applications. This lets us combine much of the flexibility of a web-application

interface (lightweight, no flat files to install, and can run on any major operating

system) with the power of not being confined to a web browser environment. Our

system can also connect to datastreams from multiple databases simultaneously, and

can use other system resources normally unavailable to a browser application.

This paper describes the platform that we have developed for the storage of ChIP-

Chip and other microarray experiments in a relational database. It then presents our

system for intepreting ChIP-Chip data to identify binding events using our previously

published "Joint Binding Deconvolution" (JBD) algorithm[50]. Finally, we show how

we can build a system for the dynamic and automatic analysis of ChIP-Chip binding

calls between different factors and across experimental conditions.

Ora e:Core, MySQL:
Chip-chip, Chip-seq UCSC mirror,

Custom annotations

Web Server

Desktop Java Client

Desktop Web Client

Figure 2-1: GSE is structured as either a "fat" desktop client that connects directly
to the underlying database(s), or a "thin" client that can run in a web-browser.

2.2.1 Core schema

The core of our system is a database schema to represent biological data that is asso-

ciated with genomic loci and associated metadata in a manner independent of specific

genomic coordinates. Figure 2-2 shows the common metadata that all subcomponents

of GSE share. We define species, genome builds, and experimental metadata that may

be shared by ChIP-Chip experiments, expressiod experiments, and ChIP-Seq experi-

ments. We represent factors (e.g. an antibody or RNA extraction protocol), cell-types

(tissue identifier or cell line name), and conditions as entries in separate tables.

chromsequence

enechromosome +rs ne
r+id:

integer

sp m es + integer a char

+td: iteger+desrcrint on- varchar

cells

factors+id: integer

+id: integer

t mepointondition

+time- mnes integer +id: integer
+id integarchars- rder integer+nm acA

Figure 2-2: CORE relational schema for the GSE System

2.2.2 Microarray schema

GSE's database system also allows multiple runs of the same biological experiment on

different array platforms or designs to be so combined. Some of our analysis methods

can cope with the uneven data densities that arise from this combination, and we

are able to gather more statistical power from our models when they can do so.

GSE stores probes separately from their genomic coordinates as shown in Figure 2-3.

Microarray observations are indexed by probe identifier and experiment identifier. A

key data retrieval query joins the probe observerations and probe genomic coordinates

based on probe identifier and filters the results by experiment identifier (or more

typically a set of experiment identifiers corresponding to replicates of a biological

experiment) and genomic coordinate. To add a new genome assembly to the system,

we remap each probe to the new coordinate space once and all of the data is then

available against that assembly. Since updating to a new genome assembly is a relative

quick operation regardless of how many datasets have been loaded, users can always

take advantage of the latest genome annotations.

In our terminology, an experiment aggregates datasets which all share the same

factor, condition, and cell-type as defined in the common metadata tables. Each

Figure 2-3: MICROARRAY relational schema for the GSE System

replicate of an experiment corresponds to a single observation.

2.2.3 Short-read sequencing schema

GSE supports the storage of experimental data from high-throughput short-read se-

quencing machines in its CHIPSEQ schema. The schema for this subsystem is outlined

in Figure 2-4. As with array designs in the MICROARRAY schema, the logical identity

of the reads is stored separately from their alignment and their mapped locations to

a particular genome. This separation of alignment from read sequence permits (a)

the representation of unmapped reads in the database, (b) cleaner handling of reads

which map to a genome multiple times, (c) the ability to map a dataset to the same

genome multiple times (for instance, if different alignment algorithms or parameters

are used), and (d) the ability to maintain mappings for a dataset to multiple genomes

simultaneously.

chipsegreads4-

+id: integer

Fu chipseqexpts +treference
+name: string+id: integer +Aa uf i cal A y

+name: string
+replicate: string
+species: reference
+cells: reference cutiootep n s+condition: reference
+factor: reference o f e inte r s,Object rgument(that i type-prameterzed in avai5) iter erad ite x+numreads: t pr +expt: reference

+name: string
+genome: reference
+numhits: integer
+totalveiaht decimal

CORE package

chipseqhits

+read: reference
+ep:reference

+alignment: reference
+chromosome: reference
+startpos: integer
+stoppos: integer
+strand: string
+weight: decimal

Figure 2-4: CHIPSEQ relational schema for the GSE System

2.3 A Dataflow Language for Biological Analysis

Our software system for the manipulation and analysis of biological data is called

GSEBricks. GSEBricks is a modular software package that allows the user to build

software analysis pipelines by composing smaller, reusable components. These com-

ponents pass data structures representing biological objects between them in well-

defined ways, and provide hooks for managing long-lived resources associated with

the analysis pipeline as well as distributing the execution of the pipeline across mul-

tiple threads or multiple separate machines.

A GSEBricks module is written by extending one of three Java interfaces: Mapper,

Filter, or Expander. All of these interfaces have an 'execute' method, with a single

Object argument (that is type-parameterized in Java 5). The Mapper and Filter ex-

ecute methods have an Object (also parameterized) as a return value. The contract of

Mapper is that it produces Objects in a one-to-one relationship with its input, while

a Filter may occasionally return 'null' (that is, no value). The Expander execute

method, on the other hand, returns an Iterator each time it is called (although the

Iterator may be empty).

Composition of GSEBricks modules is carried out by combining an instance of

one of these three module classes with an existing Iterator in order to produce

a new Iterator. This composition happens using one of three composition classes:

MapperIterator, FilterIterator, and ExpanderIterator. A MapperIterator com-

bines a Mapper with an Iterator, to produce a new Iterator; each element of the new

Iterator is the result of calling Mapper on the corresponding element of the first It-

erator. The FilterIterator class works the same way, although the 'null' values

returned are dropped from the resulting Iterator. The Expander works by concate-

nating the Iterators that result from each element of the original stream into the

single new Iterator.

The second advantage to using the GSEBricks system as the basis for our visualizer

is consistency. The GSE Visualizer is itself written as a modular set of custom Java

Swing components, which read from GSEBricks and draw the data using the Java 2D

graphics library. By building these modular graphical elements as wrappers around

GSEBricks components, we are able to guarantee that the pictures from our visualizer

will exactly match the data used in all our other analysis tools. This consistency is

enforced because the same program code that reads and parses the data for an analysis

tool is running in the visualizer itself.

This suggests the third advantage to our GSEBricks system: easy integration of

analysis tools into the GSE Visualizer. Because our analysis programs are written

from the same components as the visualizer, it becomes easy to simply 'plug' them

into that visualizer (as dynamic options from a menu, or through interactive graphics

on the visualizer itself).

The fourth advantage of the GSEBricks sysem is the easy extensibility and modi-

fication of the GSE Visualizer. Its modular design lends itself to modular extensions.

We have been able to quickly extend the visualizer to handle and display data such

as dynamically re-scanned motifs (on a base-by-base level within the visualized re-

gion), automatic creation of 'meta-genes' (averaged displays of ChIP-Chip data from

interactively-selected region sets), and the display of mapped reads from ChIP-PET

experiments.

The final advantage of GSEBricks is the extensibility of the GSEBricks system

itself. By modifying the code we use to glue the Iterators together, we can replace

sequential-style list-processing analysis programs with networks of asynchronously-

communicating modules that share data over the network while exploiting the parallel

processing capabilities of a pre-defined set of available machines.

2.3.1 Discovering and representing binding events

Modern, high-resolution tiling microarray data allows detailed analyses that can de-

termine binding event locations accurate to tens of bases. Older low-resolution ChIP-

Chip microarrays included just one or two probes per gene[18, 19]. Traditional analy-

sis applied a simple error model to each probe to produce a bound/not bound call for

each gene rather than measurements associated with genomic coordinates[6 1]. Our

Joint Binding Deconvolution (JBD) [50] exploits the dozens or hundreds of probes

that cover each gene an intergenic region on modern microarrays with a complex sta-

tistical model that incorporates the results of multiple probes at once and accounts

for the possibility of multiple closely-spaced binding events.

JBD produces a probability of binding at any desired resolution (e.g. a per-base

probability that a transcription factor bound that location). Figure 2-3 shows the

tables that store the JBD output and figure 2-5 shows a genomic segment with ChIP-

Chip data and JBD results. Unlike the raw probe observations, JBD output refers to

a specific genome assembly since the spatial arrangement of the probe observations is

a key input. GSE's schema also records which experiments led to which JBD analysis.

2.3.2 Genomic visualization

The GSE Visualizer is constructed as a software layer that depends on the GSEBricks

library. This system provides a uniform interface to disparate kinds of data: not only

ChIP-Chip data and JBD analysis, but also genome annotations, microarray expres-

sion data, functional annotations, sequence alignment and orthology information,

and sequence motif data. The system also handles loading the data from multiple

database servers, and smoothly combining the results for any downstream program

code.

There are many advantages to using a modular stream-based data system like

GSEBricks for our Visualizer and analysis software. The first advantage is that it's

easy for new programmers to learn how to use the system. The GSEBricks system

is centered around the Java Iterator interface: this is a Java class which returns a

stream of objects one at a time. GSE's visualization and GUI analysis tools depend

1.0
GCN v. WCE (YPD)

8.0

4.0

1.0
AD Anes

0.75

2.0 K025

YGL186C. TPN1 YGLI8C YGLI84C STR3 YGLI83C YGL81W. GTSI YGL18WATG1

-:- -P W"I I P

Figure 2-5: A screenshot from the GSE Visualizer. The top track represents 'raw'
high-resolution ChIP-Chip data in yeast, and the bottom track shows two lines for
the two output variables of the JBD algorithm. At the bottom are a genomic scale,
a representation of gene annotations, and a custom painting of the probes and motifs
from the Harbison et. al. Regulatory Code dataset. [17]

on a library of modular analysis and data-retrieval components collectively titled

'GSEBricks'. This system provides a uniform interface to disparate kinds of data:

ChIP-Chip data, JBD analyses, binding scans, genome annotations, microarray ex-

pression data, functional annotations, sequence alignment, orthology information,

.

and sequence motif instances. GSEBricks' components use Java's Iterator interface

such that a series of components can be easily connected into analysis pipelines.

A GSEBricks module is written by extending one of three Java interfaces: Mapper,

Filter, or Expander. All of these interfaces have an 'execute' method, with a single

Object argument which is type-parameterized in Java 5. The Mapper and Filter exe-

cute methods have an Obj ect (also parameterized) as a return value. Mapper produces

Objects in a one-to-one relationship with its input, while a Filter may occasionally

return 'null' (that is, no value). The Expander execute method, on the other hand,

returns an Iterator each time it is called (although the Iterator may be empty).

Each GSEBricks datastream is represented by an Iterator object and datas-

treams are composed using modules which 'glue' existing Iterators into new streams.

Because we extend the Java Iterator interface, the learning curve for GSEBricks is

gentle even for novice Java programmers. At the same time, its paradigm of building

'Iterators out of Iterators' lends itself to a Lisp-like method of functional composition,

which naturally appeals to many programmers familiar with that language.

Because our analysis components implement common interfaces (eg, Iterator<Gene>

or Iterator<BindingEvent>), it is easy to simply plug them into visualization or

analysis software. Furthermore, the modular design lends itself to modular exten-

sions. We have been able to quickly extend our visualizer to handle and display data

such as dynamically re-scanned motifs (on a base-by-base level within the visual-

ized region), automatic creation of 'meta-genes'[60] (averaged displays of ChIP-Chip

data from interactively-selected region sets), and the display of mapped reads from

ChIP-PET experiments[37].

The final advantage of GSEBricks is the extensibility of the GSEBricks system

itself. By modifying the code we use to glue the Iterators together, we can replace

sequential-style list-processing analysis programs with networks of asynchronously-

communicating modules that share data over the network while exploiting the parallel

processing capabilities of a pre-defined set of available machines.

Figure 2-6 shows a screenshot from our interface to the GSEBricks system. Users

can graphically arrange visual components, each corresponding to an underlying GSE-

sgdGene Sc Kss1:Sc:YPD vs WCE:Sc:YPD,11/8/06, default paams (BuyesBindhgGenerator)

BindingScanLoader loader = new BindingScanLoadero;

Genome sacCerl = Organism. findGernome (" sacCerl ") ;

ChromRegionWrapper chroms = new ChromRegion~rapper(sacCerl);
Iterator chromItr = chroms.execute();

RefGeneGenerator rgg = new RefGeneGenerator(sacCerl, "sgdGene");
Iterator geneItr = new ExpanderIterator(rgg, chromItr);

GeneToPromoter g2p = new GeneToPromoter(8000, 2000);
Iterator promItr = new HapperIterator(gZp, geneItr);

BindingScan kssl = loader-loadScan(sacCerl, kssl id);
BindingExpander exp = new BindingExpander(loader, kssl);
Iterator bindingItr = new ExpanderIterator(exp, promItr);

while (bindingItr.hasNext) ()

System. out.println(bindingItr.next ());

}

Figure 2-6: A GSEBricks pipeline to count the genes in a genome. Each box represents
a component that maps objects of some input type to a set of output objects. The
circles represent constants that parameterize the behavior of the pipeline. The code
on the right replicates the same pipeline using Java components.

Bricks class, into structures that represent the flow of computation. This extension

also allows non-sequential computational flows - trees, or other non-simply connected

structures - to be assembled and computed. The interface uses a dynamic type system

to ensure that the workflow connects components in a typesafe manner.

Workflows which can be laid out and run with the graphical interface can also be

programmed directly using their native Java interfaces. The second half of Figure

2-6 gives an example of a code-snippet that performs the same operation using the

native GSEBricks components in Java.

36

Chapter 3

Probabilistic Modeling and

Segmentation of Tiling Microarrays

Microarrays have been used to measure the levels of gene expression for over a decade

[20]. As their use became widespread, the need to correct for sources of "obscuring

variation" and to normalize the results for comparison between experiments has been

a key concern for biologists. Without a correction and normalization step, probe-

specific and experiment-level technical effects can obscure the interesting variation due

to biological causes, and make it difficult for microarrays to inform studies of either

comparative or absolute gene expression. Corrected and normalized data, however,

allows the use of statistical tests to detect differential and absolute gene expression

levels and to illuminate biological mechanisms of regulation and transcription. Many

of the techniques which are applied to tiling or other high-density microarrays today

will be extended and applied to sequencing or other high throughput techniques

tomorrow.

One relatively new development in microarray technology is the advent of the

tiling microarray. Unlike earlier array designs, which sought to probe known or puta-

tive transcripts with one or more individual probes on the array, tiling arrays attempt

to probe each region of the entire genome at a nearly-uniform density. Modern bi-

ological understanding of transcription has shown that, in many organisms, much

higher fractions of the genome are transcribed than were previously believed. Much

of that transcription is known to take place outside of confirmed gene annotations or

putative open reading frames. However, microarrays which were designed to probe

known gene annotations will be biased against the measurement of these non-coding

transcripts. The goal of these tiling designs is fill in this blind-spot, and to allow for

the unbiased measurement of transcripts throughout an entire genome.

U

U 0 0

CL '

2 0

(00
-02 00% 0

Figure 3-1: Unbiased Assessment of Transcription via Tiling Microarrays
Older array designs measure only the expression of annotated transcripts. Tiling mi-
croarrays, by providing complete measurements along the entire genome (red probes),
give a view of transcription unbiased by the annotation set.

As the total number of publicly-available microarray datasets has increased, and

as the density of the microarrays themselves has deepened, efficient methods for

normalization have become more important. However, many of these normalization

methods were designed for earlier annotation-based non-tiling microarray designs -

their goal is the determination of unbiased estimates for the expression levels of

individual genes which are probed by the array design. Because tiling microarrays lack

this a priori assignment of probes to annotations that make traditional normalization

methods possible, their analysis often requires an additional pre-processing step: the

segmentation of probes into subsets which are then considered exchangeable witnesses

to the expression of a single underlying transcript.

Modern sequencing techniques have also allowed, in the last three years, a new

experimental technique for measuring transcription and other genome-wide biological

events at a high resolution. RNA-Seq has become an established method to discover

the location, extent, and intensity of transcription throughout an entire genome.

3.1 Prior Work

Before any multi-experiment microarray dataset can be analyzed, it must first be

normalized for inter-array comparison. Computational methods for normalization

have been studied for almost as long as microarray expression data has been pro-

duced [46]. Many normalization methods are based on manufacturer-specific features

of microarray design. Normalization methods for Affymetrix arrays, which contain

perfect-matching and partial mis-matching (PM and MM) probe sets, can be cate-

gorized by whether they use the mismatch probe information in their normalization

calculation. The standard method for averaging multiple Affymetrix array experi-

ments, Robust Multichip Averaging (or RMA), was developed by Irizarray, Bolstad,

and Speed [5]. Other methods are designed for two-color array platforms, or for plat-

forms which contain spots for "spike-in" or other artificial control values [23]. Some

normalization methods attempt to reconstruct relative intensities against a baseline

experiment (often the "zero" time point in a time-series experiment). Other methods

depend on biological assumptions such as the constant expression of "housekeeping"'

genes or the constant level of total RNA content in the sample cell population [65].

The literature on the subsequent analysis, after normalization, of tiling microar-

rays or other whole-genome experimental methods for measuring transcription can

be divided into different categories based on the experimental platform for which

the analysis method was originally designed and the method by which the locations

of gene annotations are incorporated into the analysis. The supervised analyses of

high-density microarrays depends on the locations of the probes relative to the gene

annotations of the measured genome. These methods estimate expression values for

particular genes by summarizing the observed intensities of the array probes that map

within that gene's annotation (or a portion of the annotation, for splice-form specific

estimation). Most methods for the unsupervised analysis for tiling microarrays, in

which gene annotations do not constrain the set of analyzed probes, were derived

from older statistical models for lower-density arrays. The simplest of these methods

emphasize the identification of individual "enriched" or "bound" probes [61]. When

applied to a tiling or other high-density microarray, these methods were adapted to

look for consecutive sequences of enriched probes that would indicate consistently

high levels of expression or binding. Different approaches vary in the complexity of

the model they deploy to detect bound or expressed probes. For example, a study of

noncoding and intergenic expression in Mycobacterium leprae determined expression

based on consecutive runs of four probes with intensities greater than 60% of the

maximum normalized probe intensity score [2].

A second general approach for the analysis of tiling microarrays is derived from

methods in use for array-CGH data. These methods utilize a dynamic programming

(DP) algorithm to induce a segmentation of the corresponding tiling array data. Pi-

card et al. initially described a segmentation algorithm for learning constant-intensity

regions in array-CGH data [48]. Their algorithm could be provided with the require-

ment that segment-level noise be constant across the entire array (homoscedastic)

or could vary from segment to segment (heteroscedastic); their output produced a

sequence of breakpoints, or segment boundaries, which divided the genome into re-

gions of constant experimental intensity in a provably optimal way. The work of

David et al. pioneered the use of the Picard segmentation method to interpret dense

tiling arrays for transcription data in yeast [11, 26]. However, they had to adapt an

additional statistical model for the post hoc classification of segments according to

whether they were transcribed or not. Picard and his collaborators later developed a

hybrid algorithm which included both of these steps in a single iterative expectation-

maximization-style approach [49].

Some algorithmic approaches for identifying transcription in microarray data have

relied on statistical methods for identifying "change-points" in time-series data, adapted

from signal processing and econometrics literature [35]. These methods attempt to

find hinges or "change points" analogous to the breakpoints induced from a segmenta-

tion. Change point regression techniques can utilize statistical tests for the existence

of a hinge or breakpoint at a certain location, related to the relative accuracy of a sin-

gle linear model against two spatially separate linear models for explaining the data

in a given genomic region [34]. Bayesian extensions to classical regression techniques

have also been suggested for the change-point estimation problem [16].

Another algorithmic approach to segmentation uses hidden Markov models (HMMs)

for the discovery of hidden genomic "states" to which genomic regions are jointly as-

signed and which explain the observed array data [56]. Standard HMM inference

algorithms utilize a dynamic programming approach which closely resembles that of

standard segmentation algorithms - the differences exist in how the models are param-

eterized, with HMMs allowing an easier specification of the total number of "states"

in the model but produce spatial effects through an obscure transition matrix param-

eter, while segmentation methods are often easier to parameterize in spatial terms

but are usually only provided with two separate states (a choice which is generalized

in this thesis).

High-throughput sequencing for genome-wide transcription has its own set of stan-

dard analysis methods. Typically, a sequencer produces distinct sequence reads which

are mapped back to unique locations (hits) within the target genome; due to the sta-

tistical sampling nature of the way in which reads emerge from the sequencer, we

expect those target genomic regions with higher numbers of overlapping hits to be

more likely part of the biological phenomenon measured by the experiment. Simple

analyses mapped sequencing data can be performed by shoehorning the hit locations

and counts into a standard microarray-style analysis method. For example, genomic

bins can be defined a priori along the length of the target genome, and those bins

which carry a statistically significant number of hits relative to a model of expected

counts are reported as bound or transcribed [44]. More sophisticated techniques which

rely on the unique nature of sequence data can be utilized as well. In their study of

yeast transcription from cDNA sequencing, Miura et al. determined unique sequence

sigatures indicating the 5' and 3' ends of transcription and mapped those ends by

scanning for regions which were enriched with hits bearing those unique sequence

signals [42].

3.2 Notation

We will adopt the notation shown in Figure 3-2 for tiling array data and segmentation

throughout the rest of this thesis. Taking the design of an array to be understood from

i E I : total set of probes
j E JI total set of experiments

xi :location of probe i
yij : intensity of probe i in experiment j

s E : total set of segments
si segment of probe i

E), :parameters of segment s
5S, 3s : 5', 3' ends of segment s

Figure 3-2: Array and Segment Notation

the context, a probe on an array design will be indexed with the letter i, and the total

set of probes on the array will be denoted]I. We omit the details of multi-chip designs

and assume that all probes are present on a single physical microarray. The location

of probe i will be indicated with variable xi; by "location" we mean the chromosome

name and base-pair offset of the middle of the probe with respect to an understood

global genomic coordinate system. For example, chromosome 8, base 1, 206, 312 in

the mouse genome version mm9 is a complete location, although this level of detail

will be rarely given. Probes are assumed to be of a uniform, negligible width the

physical extent of the probe will not play a role in this analysis. Furthermore, we

assume that the standard set of one-dimensional geometric operations are available

for genomic locations (of probes or other sequence features) on the same chromosome.

Experimental observations of probe intensities will be indexed with the letter j,
and the total set of available experiments (where such an understanding is possible)

as J. The observed value of probe i in experiment j will be denoted sij, and the

normalized intensity of the same probe in that experiment as yij.

The set of genes (which I will take to be equivalent to a set of gene annotations

for the purposes of this work) will be indexed with the letter g, and the total set of

genes will be given the name G. When necessary, the start and end coordinate of

the gene g will be called s9 and eg and will be assumed to have the same form as

the probe location values. The orientation of a gene og is a binary variable taking

either the value W or C (for Watson or Crick, the two complementary strands of the

chromosomal DNA).

Later, as we develop and examine algorithms for segmenting and understanding

genomic data, we will use the notation S for a segmentation of a genomic dataset.

A segmentation consists of a set of segments each segment is a genomic region,

and together the segments partition the total genomic coordinate space (the complete

sequence). For any genomic location 1 we will let s[l] denote the segment in which that

location falls (where the segmentation S is understood); when discussing a particular

probe i, we will let si be a shorthand for s[x2].

Dual to the notion of a segmentation S is the set of breakpoints B of that seg-

mentation. The breakpoints are the genomic locations which form the boundaries

between consecutive segments - any set of breakpoints determines the corresponding

segmentation, and any segmentation gives rise to a set of breakpoints. I will use the

notation bz[s] and b,[s] to indicate the left and right breakpoints, respectively, of the

segment s. If segments s and s' are adjacent along the genome in a given segmen-

tation, then either b,[s] = bz[s'] or b1 [s] = b,[s'], that is, adjacent segments have a

breakpoint in common.

Breakpoints also allow us to define sub-segmentations; a sub-segmentation is a

segmentation of a chromosomal region either before or after a breakpoint. Subscript

and superscript notation will define either the left or the right sub-segmentation:

S={s E S: b,[s] < b} and Sb {s E S : bL[S] > b}.

3.3 Probabilistic Models of Probe Intensities

Every method for manipulating or analyzing microarray data begins with a model of

probe intensities. Normalization methods model observed probe signals as the combi-

nation of a biological signal and different technical or experimental noise components.

Gene summarization methods, on the other hand, treat the normalized probe inten-

sities as measurements of underlying gene expression values. Both normalization and

summarization algorithms attempt to infer these component values from the total set

of observed probe signals or intensities.

In this section, I outline a standard model for probe intensities central to a stan-

dard normalization and summarization algorithm known as Robust Multichip Aver-

aging (RMA). The notation will be slightly different from the presentation given in

the original RMA publications, in order to allow for easy extension, in subsequent

sections, as we relax some of the assumptions inherent in the original RMA formula-

tion.

According to the algorithm's original developers [5], "RMA" is the the proper

name for the last step of a three-step process of estimation and averaging (although

all three steps are available as a packaged standard analysis method for Affymetrix

microarrays in the Bioconductor R software package):

1. Background Correction: Additive "background" terms that are uniform across

a single array are estimated and subtracted from each probe on the array.

2. Normalization: Quantile normalization is performed on a combined set of ar-

rays, under the assumption that the experiments have roughly similar distribu-

tions of expression values.

3. Probe-Affinity Correction and Gene Averaging: The parameters of a linear

model, including parameters for both gene-level expression and probe-level

affinities, are fit using a robust estimation method.

RMA starts by assuming that, on an array j, each probe i has a measured signal

intensity si3 . The first step, background correction, attempts to perform a blind

separation of this signal into two components,

QY = sij - by (3.1)

where bj is the "background" term for experiment j.

These corrected probe signals are then normalized so that the measurements from

all arrays in a sample share a common distribution.

Yij = QJ(Qij) (3.2)

Standard practice in the use of the RMA package identifies QJ with the process of

quantile normalization across the set of experiments J, although other normalization

algorithms could be used in its place where appropriate. Once the yij values have

been determined from background-correction and normalization they modeled as the

sum of a probe-specific intensity term ai and an experiment-specific gene expression

term 7,,:

Yij = ai + -Kgj + Cij (3.3)

The eU, ~if(.; 0, o) is a unit-level error term. -ygj is the expression level of the gene

g in experiment j; it is the value that we wish to estimate, and it is the same for any

probe that is designed to measure the expression of gene g. The a, is a bias term

which captures effects on probe intensity that are specific to the probe (and not the

gene for which it is designed or the experiment in which it is measured). This probe

bias term is intended to encapsulate probe-level biological effects such as non-specific

binding affinity and effects that depend on the sequence of the probe.

In the original formulation of RMA, the terms ai and ygj are jointly estimated

using the median polish. Median polish is an iterative matrix method for estimating

two-factor models that subtracts medians in order to be robust to outliers but is not

guaranteed to converge [33]. After correcting, normalizing, and estimating the probe-

level error terms ai, the final step is to summarize the complete set of probe intensities

into a gene-level expression value: y, . This final summarization step depends on the

set 1g, the set of probes which are designed to measure the expression of gene g.

NjJ L(yi - a1) (3.4)

or the design of the array, is an input to the RMA algorithm and must be known

a priori for the gene-level estimation to be carried out.

The nature of the Affymetrix experimental protocol and designs, in which perfect-

match probes are designed to uniquely interrogate a particular transcribed region and

the experimental protocol priming and reverse transcription (RT) to convert mRNA

into DNA for hybridization with the array, leads to a situation in which each probe is

assumed to be an identically-distributed measurement of the concentration of gene it

is designed to measure. This is the reason that the core RMA model, Equation 3.3,

has no additional covariates per probe beyond the factors for the probe-level error and

gene's expression. This is easily generalized. In Equation 3.5, we give a generalization

to Equation 3.3 that incorporates a vector of probe-level predictors:

y- = ai + ygj + 3xi + c - (3.5)

where xi is the vector of predictors for probe i and # is the predictive coefficients

corresponding to those covariates. Here the a, term from Equation 3.3 has been split

into two terms: #xi, the systematic component, and a new random component az.

An example of this sort of generalization would be to represent the GC content of

each probe as a separate predictor, and use the 3 vector to include a global estimate

of GC content on the observed log-intensity of a probe.

When using this extended model it may no longer be possible to simply estimate

the probe-level covariates by a process analogous to the median polish process of the

original RMA method. Chapter 5 will give an example of when probe-level covariates

are useful. In that chapter, the covariates for each probe will include the genomic

distance from the probe to the 3' end of a given transcript or segment, and the #i
parameter will measure the rate of signal "fall-off" measured in the experiment.

3.4 Segmentation of Tiling Microarrays

RMA, a successful microarray normalization and comparison method, requires the

array design Ig as input. Since tiling microarrays explicitly eschew such an a pri-

ori design for the purposes of unbiased detection of transcription - unbiased, in this

case, by the annotation knowledge that would form the core of an array design. In-

stead of designing the arrays around sets of annotations, probes are taken from the

genome at uniform or nearly-uniform spacings.

Yet the ability to apply an RMA-like algorithm to tiling microarrays is an impor-

tant goal: the uniform nature of tiling array designs does not eliminate the need to

correct for probe-specific errors or to average multiple measurements estimation of

transcript-level values. Instead, we are left with the problem of computationally de-

termining or inferring the array design parameter Ig so that an RMA-style algorithm

can be fruitfully executed.

An algorithm which learns the design of the array from the data itself - a process

which partitions the probes on an array into separate sets which each interrogate a

separate underlying transcript - is called a segmentation algorithm. In this chapter, I

describe the design and implementation of a segmentation algorithm, SEG, for analyz-

ing tiling microarray experiments. The SEG algorithm extends previous computational

segmentation techniques in two specific ways:

1. the ability to jointly segment multiple experiments simultaneously, and

2. the use of distinct shapes for different types of segments (automatic differenti-

ation between transcribed and background regions of the genome.

These extensions have been devised to deal with the particular details and require-

ments of the tiling microarray experiments described in Chapter 5.

At a global level, the goal of a segmentation algorithm is to build a complete,

spatial, probabilistic model for the intensity of every probe on the entire array. This

global model, however, is stitched together out of smaller models which model the

intensities of the probes in a specific, coherent, spatially-localized region: a local

model. A segmentation algorithm may use a single uniform class of local models to

build its global representation, or it may draw its local models from several different

classes. For example, it may have one class of local models for transcribed regions

and a second class for background or "noise" regions; in this way, the segmentation

not only provides a complete probabilistic prediction for the intensity of every probe

on the array, but it also provides an implicit labeling of those probes depending on

which class of local model is chosen for that probe's location.

Regardless of whether the segmentation algorithm uses a single or multiple classes

of local model, its ultimate goal is to stitch together a complete set of local models into

an optimal global model for probe intensities. In this work, as in earlier segmentation

algorithms, the measure of "optimality" will include a likelihood function for the probe

intensities. However, it may also include separate terms such as prior probabilities

on the total number or length of segments and the total number of different kinds of

segments (if we have a prior belief about the total amount of transcription across the

genome, for instance).

Local Models of Transcription

The core of any model for continuous spatial measurements along a genome (i.e.

either a tiling microarray or read-counts from sequencing) is a local model for the

experimental observations in a given genomic region. In this work, these local models

take the form of probabilistic generative models for the intensities of tiling microarray

probes that fall within a given region. A local model is parameterized at least by the

bounds of the region it is meant to model; it may also take other pararameters as

well.

The simplest local model that we will deal with in this thesis is the flat model for

transcription. The flat local model is parameterized by both its region boundaries

00

Io o

Figure 3-3: Local Flat Model
Probes within a region are modeled as iid replicates from a single distribution that
contains no spatial component.

as well as by the mean p and variance a of the probes within it. The probabilistic

model

P(yjI p, o2 , XL, XR) (- i . L2R (3.6)

10 otherwise

The likelihood function of the flat probability model assumes that the probe values

within the region fit by the flat model are independently and identically distributed

according to Equation 3.6, and that every experiment j has its own set of parameters

(p?,) and O= { : j JI}. The boundary parameters XL and XR imply an

A

Figure 3-4: Local Linear Model
The local linear model is parameterized by an intensity (the value of the transcription
at the 3' end of the segment) and a falloff parameter. Together, these form a local
linear model that is sensitive to the spatial location of probes within the segment.

assignment of probes to a local model - a probe is said to be assigned to a local model

if its location xi is in the range [XL, XR). A local model is a probability distribution

assigning positive probability to the observed intensities of all the assigned probes.

Dynamic Programming for Spatial Segmentation

A local model of transcription provides a basic description of the probe intensities in a

particular region; however, we are interested in a global global model for transcription.

A global model for transcription divides an partitions a genomic region (of length L)

into local models - every probe within the complete genomic region must fall within

exactly one segment.

A global model is therefore defined by two elements: a segmentation S, and an

...................... ...

assignment 8 : S -+ 01 that associates a local model likelihood LF(bL (S), bR(S), P,, 0s)

to every segment s. The segmentation provides the complete set of boundaries for

every local model in the global segementing model; the assignment matches a set

of local model parameters to each experiment in each segment of the segmentation.

Together, the two components provide a complete probabilistic description of the

observed intensity of every probe on the tiling microarray, and can be written as a

total data log likelihood:

L(S, 8) = LF(bL S], bR [S , (S)) (3.8)
SES

The goal of a segmentation algorithm is to find the "best" set of local models

for the observed tiling array data. In this thesis, we interpret "best" to mean that

we find the segmentation and assignment function which optimize the total data log

likelihood function in Equation 3.8. The first step is to notice that, since the probes

are conditionally independent of each other given the segmentation and the local

model parameters for their assigned segment, optimizing the assignment function is

easy if we have already determined the segmentation: we can simply find the maxi-

mum likelihood parameters O* = (#*, o*) = arg maxCLF(bL [S], bR[S], , U2) given the

probes which are assigned to that segment. Therefore, our total data log-likelihood

can be written as a function of just the segmentation Es(S) = max9 L(S, 6), and the

segmentation algorithm need only optimize this reduced log likelihood.

Optimizing just a function of the segmentation itself, Es(S) may appear to be

difficult on its own, until we realize that the optimal segmentation has an optimal

substructure: if we choose any breakpoint b E B of the optimal segmentation S,

then the sub-segmentations Sb and Sb must themselves be optimal segmentations of

the sub-regions [0, b) and [b, L). (By contradiction: if they were not, then we could

substitute the better sub-segmentation into the original "optimal" segmentation and

thereby improve its total log likelihood.)

This optimal sub-structure means that we may recursively solve the problem of

finding the optimal segmentation for a region [0, L) by finding the optimal segmen-

tations of successively smaller pieces of the region and then "piecing them back to-

gether." To show how to compute this optimal global log-likelihood function, we

write a recursive expression for the global log likelihood of any region:

J X2=(m1, X2, 9*) + 1F(X1, X2, 0*) (3.9)
IL(x1 , £2) = max(39

1 maxb(L(x1, b) + L(b, X2))

Equation 3.9 defines the optimal total data log-likelihood for a region [xi, X2) of the

genome but to find the optimal segmentation, and not just the log-likelihood score

of that segmentation, we need a corresponding function that records the choice made

at each step in the recursion. We use the FF function to denote a complexity penalty,

which constrain the ultimate size and number of segments as explained in Section

3.4.1. To make this explicit, we write a "choice function" H whose definition mirrors

that of Equation 3.9.

J F if L(x1, x2) = l(X1, X2, 0*) + EF(X1, X2, 90*)

H(xI1, b) + (b) + H(b, X2) if L(x1 , X2) - L(x 1 , b) + L(b. X2)

(3.10)

(Here we use the notation (...) to denote an ordered list.) Notice that in the optimal

segmentation, each segment s gets its own optimal set of parameters which maximize

the likelihood L(bL[S , bR S], Oj) for every experiment j; howeer, the breakpoints IB of

the segmentation are shared across all experiment Ji.

Multiple Local Models for ranscription

So far we have described a form of segmentation that fits only one kind of local

model to the observed data. Our segmentation algorithm fits the data by finding the

optimal arguments (segment boundaries and parameters) to the single local likelihood

function 1F. However, we often find it useful to be able to fit two or more different

kinds of local models. For example, in the E1278b data described in the final chapter

of this thesis, transcripts are distinguished from a "background" or noise level by

a characteristic falloff or slope from the 3' to the 5' ends of the transcript. This is

modeled not with a flat segment but with a linear fit. The likelihood function now

takes three parameters (an intercept, a slope, and a variance term).

2, A ll 2 L R) =(-; y + A s 1, o2) if XL i <_ X R

0 otherwise

We have introduced the notation 6os = bR[S] - Xi.

The local model likelihood ET has the same form as LF, and the total likelihood

is modified to add two separate choices in the optimization.

T(X1, £2, max + T (1, £2, *)(

IL(x1,x 2) = max{ F (X 1, X2,O F F(X1,X2,1 } (12

maxb(L21, b) + L(b, 22))

The "choice" function for this recursive likelihood function can now return either

F, T, or a breakpoint b. I will refer to this hybrid segmentation algorithm with two

forms of local model by the name SEG.

3.4.1 Segmentation Complexity Penalties

We have introduced extra terms in the recursion equation describing the log-likelihood

scoring function which is optimized by the dynamic programming algorithm for seg-

mentation. Both terms, a 7rT(1, X2, 0) and a 7F (1, X2, 0) which are added to the local

model score for the linear and flat models respectively, are additive and are functions

of both the location of the segment and its local parameters. This formulation leaves

unspecified the exact functions which describe these penalties.

There are three choices that the segmentation algorithm must make in order to

build an optimal global model out of segments and local models. The first choice is

whether to split a given region into optimally-explained sub-regions, or to model the

region with a single local model. The second choice is the selectoin of which local

model to use: linear (transcribed) or flat (no transcription)? After having chosen

a class of local model to explain a particular region, the third choice is that of the

parameters of the model which are used to explain the data.

Each of these choices will always be made in one particular way by an uncon-

strained segmentation algorithm. The choice of splitting a region into sub-regions, of

choosing a breakpoint, allows the segmentation algorithm more flexibility by provid-

ing it the ability to multiply the number of degrees of freedom it has to explain the

data almost ad infinitum (we typically assume a minimum segment size of between

three and five, so dictating that breakpoints are only unique up to the location of

their neighboring probes is means that regions are not infinitely divisible). Each time

a breakpoint is chosen, the segmentation algorithm has twice as many parameters to

use to explain the same amount of data; therefore, an unconstrained segmentation

algorithm that attempts to optimize the log-likelihood of the data will always choose

to use as many segments as possible. Furthermore, the local linear model contains

the local flat model any choice of parameters for the flat model will have an identical

log-likelihood score to a linear model with the same intercept 'y as the flat model's

mean y and a zero slope A. An unconstrained segmentation algorithm will therefore

never choose a flat model for any region, since the log-likelihood of the flat model is

strictly dominated by that of the linear model.

A complexity penalization will constrain the segmentation algorithm, and prevent

it from blindly choosing the most complex model (minimally-sized segments that are

all fitted with the linear local model) for the complete set of genomic data. To provide

a complexity penalty, we use a scoring function which independently biases each of

the three choices the segmentation algorithm can make. These scoring functions are

penalties which reduce the log-likelihood score of more complex models, ensuring that

those models are chosen only when they improve our understanding of the data. Each

of these terms contains free parameters which must be independently set before we

apply our algorithm to real datasets.

The first penalty term biases our segmentation algorithm against the choice to split

a region into sub-regions. This function subtracts a value from the log-likelihood that

is linearly related to the size of the local model segment: smaller segments receive

a larger penalty. Segments of length greater than 1000 bp receive no penalty, and

those of the minimum length (a minimum of 50 bp, five consecutive probes) receive

a penalty Cb. Segments of width 50bp < w < 1000bp receive a linearly-interpolated

penalty of (1 - w)Cb.

The second penalty subtracts a constant bias term Ct from the fitted log-likelihood

of the local linear model. This biases the segmentation algorithm against the choice

of local linear models for regions of the genome. The final term of the complexity

penalty is a term on the intensity y of flat segments. To incorporate this bias into

our model, we choose a term Cf that penalizes higher values of the y parameter.

The penalty term for a parameter p is Cfy, which resembles an exponential prior

distribution on the log-intensity of the flat segment.

Taken together, we can now write out functional forms for the pi complexity

penalty functions in Equation 3.12:

7T(X1, X2, 7, A,0) -(Ct Cb X2 - 1) (3.13)

7F (X1, X2, P, 0) = -(Cf P + Cb 2 - X11) (3.14)

The parameters Ct, Cf, and Cb are all free parameters that must be chosen prior to

running the segmentation algorithm. In practice, we choose these parameters by a

gridded search over a bounded subset of the three-dimensional parameter space. For

each setting of the parameters, we generate synthetic data with known transcribed

segments. The segmentation algorithm is run and the settings of the parameters are

scored by the fraction of the transcribed genomic region (which was synthetically

generated, so the "true" segments are known) that was recovered by local transcript

models produced from the segmentation algorithm. Those parameters are chosen

which maximize this fraction recovered. The noise parameters of the synthetic data

generation process were estimated from a limited number of hand-annotated genomic

regions (both transcribed and background regions).

3.4.2 Evaluating the SPLIT Algorithm

Both the simple and hybrid segmentation algorithms were implemented as Java mod-

ules, and run on the data described in 5 as well as synthetically-generated data.

Taking the optimal settings of the free parameters from Subsection 3.4.2, we can

evaluate the performance of SEG and hRMA on two examples of synthetic data. In

these examples, random examples are generated and then the SEG and hRMA algo-

rithms are run on the results. The predicted segment boundaries, and transcript

intensities, are then compared against their true values and the distribution of their

errors is plotted.

Synthetic Data

Evaluating the segmentation algorithm using synthetic data reveals its overall ac-

curacy, as well as its difficulty in recovering the accurate 5' end of a transcript in

high-noise and low-transcript-intensity regimes. In Figure 3-5, we show an example

of synthetically-generated data (Part A) and an evaluation of the SPLIT algorithm's

ability to recover segment identities over the same region at differing levels of noise.

Here we have generated identically-spaced artificial transcripts over a 1000-bp long

region of sequence, tiled at a density comparable to an authentic yeast microarray

(50 base pairs between probes). We generate these transcripts for different levels of

noise, where the noise scale is measured by the variance of a Gaussian distribution

which is randomly added to the log-intensities of the artificially generated probes. For

each level of noise, we discover segments using the SPLIT algorithm, and map their

"coverage" across the window in which the data is located. This is then repeated 1000

times for each noise level. Part (B) of Figure 3-5 shows the fraction of the artificial

replicates, at each level of noise, in which each region of the window is contained

within a called segment. For the levels of noise that we tested, the accuracy of the

segmenter for the rightmost two segments is high, > 99%. The variation comes in the

ability of the segmentation algorithm to correctly identify the leftmost (5') segment,

especially at higher levels of noise. This reflects the trouble that our segmentation

algorithm will have with identifying the 5' end of transcribed regions which descend

"into the noise," a tradeoff induced by the experimental protocol of the yeast data

we have chosen to analyze.

Comparison with David et al.

We can also compare our algorithm by running it on actual microarray data in yeast,

and comparing it against a published set of tiling microarray transcription exper-

iments also in yeast [11]. Figure 3-6 shows our segmentation of yeast microarray

expression data, side-by-side with the corresponding data from David et al. Three

indicated regions are marked for comparison. The first region, A, is a location where

the SPLIT algorithm calls a segment but the segmentation of David et al. is inconsis-

tent and too short. The second region, B, shows a location where both SPLIT and the

segmentation of David et al. are able to accurately capture the same, long transcript.

The third region, C, shows an example of a 5' transcript end which is recovered by

the David et al. data but is (likely) missed by the SPLIT algorithm due to the low

intensity and surrounding noise.

In Figure 3-7, we show a scatter plot of region intensities between our yeast mi-

croarray dataset and the David et al. dataset. To the left axis of the graph are the

marginal David et al. intensities, split by the SPLIT-induced label (transcribed or

not). The Picard and Huber segmentation method relies on an intensity threshold,

either determined post hoc [48, 26, 11] or learned as a parameter of the global seg-

mentation [49], in order to differentiate transcribed from background segments. Such

a threshold would be manifest as a boundary on the y-axis of Figure 3-7; the area

of the blue histogram above that threshold, or the red histogram below the thresh-

old, would be those regions at which our algorithm (SPLIT) and the Picard/Huber

segmenter would disagree on the segment identity.

3.5 Probabilistic Models of Differential Expression

from Segmented Data

Once we have segmented the microarray data, the segment labels provide the re-

quired array design input to an RMA-style normalization and comparison algorithm:

It = {i : si = t}. However, our segmentation algorithm includes the ability to fit

multiple local models to a particular segment, each of which may include additional

probe-level covariates. Furthermore it would be useful to have the ability to make

fully probabilistic evaluations of certain statements (such as the probability of the

differential expression of a particular inferred transcript between two experiments).

Neither of these goals is well-supported by the existing implementations of RMA,

most of which rely on the median polish algorithm and other ad hoc (but empirically

useful) optimizations.

For the purposes of this thesis, I have re-implemented the RMA model as a fully

probabilistic hierarchical linear model. The hierarchical model, designated hRMA,

models transcript-specific (that is to say, segment-specific) parameters as drawn from

a common distribution. This formulation allows for partial pooling between estimates

of transcript expression levels, allowing information sharing between estimates of the

levels for separate probes and transcripts (for robust estimation despite outliers) as

well as handling missing values through standard probabilistic methods (integrating

over their possible values).

Yij oi+ s x i

6 ~r (-; 0, oy)

ai ~ N(-; 0, a) (3.15)

A ~ (-;P,, E,)

7s~j ~Exp(-; A-)

3.5.1 Evaluating the hRMA Model

A method for evaluating hierarchical linear models such as this is through the use

of a Markov-chain Monte Carlo (MCMC) sampling method. Software packages such

as BUGS and UMACS provide the ability to express hierarchical models in a flexible

domain-specific language (DSL), and then to estimate values for the variables in the

model through the use of iterative sampling algorithms.

Instead of using these pre-packaged third-party software packages, we imple-

mented a custom Java interpreter for evaluating hierarchical probabilistic models.

Models are expressed in an embedded Java format, as Java classes whose structure

reflects the model structure itself. The interpreter samples from the distribution spec-

ified by the model using Gibbs sampling; a symbolic expression for the conditional

distribution of each individual variable is calculated when the model is specified and

resampled using a Java implementation of slice sampling. The interpreter returns

samples as instances of the Java class which specifies the model, and thus is eas-

ily integrated into the larger GSE system without requiring data import/export and

external (non-Java) software. Figure 3-8 shows two differentially-expressed genes

identified by the hRMA algorithm in the E1278b expression dataset (described in de-

tail in Chapter 5). ERG13 is a component of the ergosterol biosynthesis pathway and

PH084 is a phosphate transporter; both are known to be related to E1278b-specific

function [13]. In Figure 3-9, we diagram the breakdown of expressed and differentially

expressed regions in E1278b and S288C, as determined by the SPLIT and hRMA al-

gorithms. The SPLIT and hRMA algorithms, used in tandem, are able to discover

functionally important regions of transcription and differential transcription between

two closely related strains of yeast.

o Artificial Expt #1
o Artificial Expt #2

Synthetic Data Window (1000bp)

Synthetic Data Window (1000bp)

Figure 3-5: Synthetic Segment Recovery
Estimating the probability of segment recovery, per-base, from synthetically generated
data with variable levels of noise. Segment recovery varies with the relative level of
noise and segment intensity. Furthermore, the 5' end of segments are least likely
to be accurately recovered under low signal-to-noise ratios; this reflects the primary
disadvantage of an experimental protocol which induces a 3'-to-5' falloff in signal
intensity over transcripts.

A 0
0 0

0 0 0

0 0 000

............................

0

01i0000

A
10.00

.5.00

I I I 1 1

366000 368000 370000 372000 374000 376000 378000 380000 382000 384000

B C

Figure 3-6: Comparison with 3rd Party Dataset: David et al.
Transcribed segments called by the SPLIT algorithm are compared against data from
David et al. Data in the top and bottom-most tracks are segmented by SPLIT; solid
red and blue points indicate probes in transcribed segments, and gray points are
probes in flat (noise) segments. The second and fourth tracks (red dots above the
genes and blue dots below) show strand-specific probes from the David et al. dataset.
Three regions of comparison are indicated with black bars and letters A-C.

lOr-

a)
C

C

CDRg 5-

C

CD

Q - ,,5 10

Transcript Intensity Estimate
(log scale)

Figure 3-7: Relative Intensity Comparison: David et al.
Each SPLIT-discovered segment is represented by a dot: red for those TRANSCRIBED-
labeled segments, and blue for background segments. For each segment, the predicted
SPLIT intensity (-yb, where j indicates the mat-a experimental dataset) and mean
intensity from the David et al. microarray are plotted as the x- and y-coordinates.
The marginal distribution of the y-coordinates are shown to the left.

...........

Os288c mat-alpha
osigma mat-alpha

19000 20000 21000 22000 23000 24000 25000 26000 27000 28000
09~

B
I

Figure 3-8: Differential Transcription in E1278b: ERG13 and PH084
SPLIT recovers two regions of differential expression, over the genes Erg13 and Pho84.
Pho84 is up-regulated in S288C, while Erg13 is up-regulated in E1278b.

Antioense Coding mintergenicS28 Both Sigma

$288s Sigma

GExpressed
UNot Expressed

Indeterminate

Figure 3-9: Global Differential Transcription in E1278b
Bar charts showing the expression of coding and non-coding segments (as determined
by overlap with gene annotations in S288C), and the differential expression of those
segments that are expressed [13].

18000
800

-7,00

-5.00
4.00
3.00
2.02
100

L 0 A % Mimi :11 ------ -% __ I- -L-A.- --- I - L I

Chapter 4

Computational Recovery of

Overlapping Transcripts

Segmentation-based analyses of tiling microarray data suffer from the problem of

spatial averaging. To measure a the expression of a single gene, a single probe with

a sequence unique to that gene would be designed for the array, and hybridization to

that probe would be measured during the experiment. If multiple distinct transcripts

overlap the probe, however, then the probe's measurement will display an intensity

that is a function of the abundance of all the transcripts averaged together. It would

be impossible, from a single probe measurement, to recover the relative abundance

of these transcripts (or even to resolve the number of contributing transcripts at

all). This averaging effect for single probes on a microarray means that gene-centric

expression microarrays are completely insensitive to the issue of spatial resolution and

overlap, and that tiling microarrays require a more careful analysis than segmentation

for the discovery of overlapping transcripts.

The high-resolution measurements of tiling microarrays and high-throughput se-

quencing (RNA-Seq) offer a potential solution to the problem of spatial resolution.

Tiling microarrays use a number of spatially arrayed probes to collect parallel mea-

surements of the transcripts which match or overlap them. High-throughput se-

quencers gather enough reads, and map enough hits, that the spatial resolution of

the changes in the number of hits mapped is often only a few base pairs. Both tiling

microarrays and sequencing experiments would be able to resolve the exact boundaries

of a single unique transcript, by noting where the probe intensities or read densities

appaer to fall.

While these experimental and analytic methods can help resolve the problem

of spatial averaging, there are two kinds of averaging that they cannot correct for:

temporal and population averaging. Temporal averaging refers to the fact that the

experimental sample is not an instantaneous snapshot of the transcriptional activity

in a cell rather, it is a time-average of that activity. Furthermore, the cell itself

is a repository for transcripts which have not themselves been marked and broken

down yet and these traces of past transcription will show themselves in the sample as

well. Population averaging means that the samples themselves are not composed of

a single cell, or even necessarily a completely homogeneous group of cells. Different

sub-populations of cells within the sample may give rise to different transcriptional

behaviors; but these behaviours are, again, averaged together and measured simulta-

neously on the array or by the sequencer.

The problem of spatial resolution for multiple, overlapping transcripts is still not

solved by standard analysis methods on either tiling microarrays or sequencing ex-

periments. Figure 4-1 shows an artificial example of how two overlapping transcripts

(orange and blue arrows) might appear on a tiling microarray dataset (indicated as

red probe intensities). While the probes of the array generate sufficient resolution to

acccurately determine the start of the leftmost transcript and the end of the rightmost

transcript, they are unable to determine on their own the actual spatial relationship

of the two transcripts to each other. An accurate segmentation analysis of this region

could produce the internal breakpoints that indicate the locations of the start or end

of a transcript; however the segmentation analysis only provides us with a spatial

partition of the genome, and it too fails to produce an analysis of this transcribed

regions into overlapping transcripts.

4.0.2 Two Insights into Overlapping Transcript Detection

The work of David et al. [11] identified regions of "complex segmentation," where

multiple segments of transcription were found in adjacent (same strand) configura-

tions to each other. However, the analysis of transcription does not end by identifying

complex or unanalyzable regions; as suggested in the previous section, we would like

to dissect such regions into coherent, overlapping transcripts. But how are we to

tell apart, for instance, three tandem non-overlapping transcripts from two tandem

overlapping transcripts?

Our algorithm, STEREO, is founded on two fundamental insights into way that

overlapping transcripts manifest in the probe intensities (or read densities, from a

sequencing experiment) along the genome. These two insights, which we respectively

term the additivity and differential insights, will allow us to discover regions of same-

strand overlapping transcription.

This first insight we have into the detection of overlapping transcripts from tiling

microarrays comes from our assumption that multiple transcripts overlapping a probe

will produce an intensity at that probe that is somehow the "sum" of the abundances

of the transcripts (although we assume in this work that this relationship is linear, in

general the intensity of a probe is a possibly-nonlinear function of the abundance of the

transcripts which overlap it: yij = f(A, B) where Aj and Bj are the abundances of

two overlapping transcripts). Figure 4-1 shows an example of additivity in a cluster

with three segments: A, B, and C. We might guess that these three segments are

explained by the pattern of two transcripts, Orange and Blue, that are drawn below

the cluster. If these two transcripts are the true pattern which produced this cluster,

we can infer (from the expression of segments A and C alone) estimates of intensities

for each transcript; the estimate at the 3' end of segment C is the expression level of the

orange transcript, while the estimated slope of segment A will be used to interpolate

a 3' expression intensity for the blue transcript. If these are the true transcripts, then

the probes in segment B should display the sum of the falloff-interpolated intensities

of the two transcripts. Our first insight into the detection of overlapping transcription

is that segments whose estimated intensities seem to be the sum of the intensities of

neighboring transcripts are reasonable candidates for explanation by a smaller number

of overlapping transcripts.

000

000

}0000r 00

A B C 000

Figure 4-1: Overlapping Insight #1: Additivity
The orange and blue transcripts might explain the cluster of segments A, B, and C
if the intensity of segment B is the sum of the intensities implied by segments A and
C.

The second insight into overlapping transcription comes from differential expres-

sion of segments between two comparable experiments. If we have multiple exper-

iments, measured on the same array platform, for which we expect that some of

the transcripts are changed in abundance (but not in location or spatial extent),

then we can leverage this second insight into the accurate discovery of overlapping

transcripts that are differentially expressed. Figure 4-2 shows an example of this

phenomenon on the same three-segment/two-transcript arrangement. If the orange

and blue transcripts are the true explanation for the three segments, then transcripts

which are themsevles differentially expressed between experiments should produce

spatially-coherent patterns of differential expression in the probes and segments they

cover. Conversely, if segment A was the only segment to be differentially expressed

(or if segments A and B were differentially expressed with different changes), then

this would argue against the combination of Orange and Blue as a joint explanation

of this transcription in this cluster.

In this chapter, we present the STEREO algorithm, which stands for "Simple Tran-

script Enumeration for the Reconstructionof Expressed Overlapping transcription."

.

000
0

000 0000

0000

AC B C 88 8

Figure 4-2: Overlapping Insight #2: Differential Transcription

STEREO is an enumeration-based method with a model of transcript additivity at its

core, which takes as input a segmentation of tiling microarray data and produces

the locations and relative abundance estimates of transcripts which explain the tran-

scribed regions. The algorithm relies on the prior segmentation analysis to provide

it (through the breakpoints and segment identities) the locations and boundaries

of potential transcripts. Unlike previous computational analyses of tiling microarray

data, the algorithm allows itself to enumerate, fit, and report transcript arrangements

containing overlapping transcripts as simpler explanations for complex transcribed

regions. We believe it is the first computational method for the identification and

re-assembly of overlapping transcribed regions on a genome wide scale.

4.1 Prior Work

Analysis of tiling microarray data by segmentation was originally used for the anal-

ysis of comparative genomic hybridization [48, 59]. Picard et al. described the first

dynamic-programming based segmentation algorithms for discovering regions of copy

number variation in array-CGH experiments [48]. They later extended their algorithm

to provide automatic labeling of segments using a hybrid dynamic programming/ex-

pectation maximization approach [49]. These methods derive their computational

efficiency from the fundamental assumption that the segments they identify form a

............

non-overlapping partition of the genome into spatially coherent intervals, an assump-

tion which allows the use of dynamic programming approaches to discover optimal

segmentations.

Tiling microarrays are also used to measure the transcription of genomic regions,

and segmentation algorithms were similarly adapted to uncover consistently tran-

scribed regions in those datasets [52]. Huber et al. adapted the segmentation algo-

rithm of Picard to identify transcribed regions from tiling arrays [26]. This method

was then used in David et al., which published the first tiling microarray study of

transcription in yeast [11]. One additional feature of tiling microarrays was their abil-

ity to discover strand-specific transcription through the use of strand-specific probes

and experimental protocols which preserved the strand-specificity of the sample. The

array results of David et al. were strand-specific, and so were able to identify regions

of opposite-strand overlapping transcription.

Microarrays are not the only method for analyzing transcription on a genome-

wide scale and in an unbiased manner; sequencing of cDNA has been a standard

way to identifying unknown transcripts. Miura et al. sequenced expressed cDNA

tags to produce a catalog of 5' and 3' transcript end-points throughput the yeast

genome [42]. Sequencing measures single transcripts (and not transcribed regions)

directly, and therefore can give information about the structure of transcript overlaps,

starting, and ending points assuming that the read length is long enough relative to

the transcript lengths.

The use of new, high-throughput short read sequencing machines to investigate

transcription has led to the recent adoption of RNA-seq as a measurement of genome

wide transcription [39, 64]. RNA-seq experiments sequence fragments of transcripts

which are randomly selected from the sample. Nagalakshmi et al. provided the first

strand-insensitive view of transcription through RNA-seq in budding yeast [44]. These

results have been extended in a strand-specific manner in related strains of yeast by

Wilhelm et al. [63]. Unlike traditional sequencing, which produces longer reads, these

unpaired-end short read sequencing techniques are unable to give us a full picture of

the transcripts from which they were taken and suffer from the same problem of

transcript mixture as microarrays. Some sequencing protocols produce reads which

are insensitive to the strand of the underlying transcript, requiring that downstream

computational analyses include strand-differentiation as one of their goals [45].

Transcription itself has traditionally been associated with individual genes [20].

Genes as units were identified by the sequencing and mapping of expressed sequence

tags (ESTs), or through analysis of sequence elements and conservation patterns

unique coding regions. From these distinct annotations of individually transcribed

genes, microarray designs to probe either the expression of the gene or (through

experimental protocols such as ChIP-Chip) events in the proximal "promoter" regions

immediately upstream of the gene's annotated start site [17].

Transcription between genes (so called intergenic or non-coding transcription) is

a well-known phenomenon [47, 8, 21, 27, 62, 32, 58]. With the advent of modern

high-throughput sequencers, the ability to detect these intergenic transcripts on a

global scale became feasible. Sequencing of transcription uncovered transcripts which

did not correspond to known open reading frames or genes. Localized collections

of hits that did not spatially overlap known gene annotations could be consistently

identified. Microarrays with probes specific to these transcripts were designed and

used to probe their expression and regulation in parallel with the genes themselves.

Tiling microarrays have also been used to detect these same noncoding transcripts.

Some of the transcripts, the "cryptic unknown transcripts," were determined to be

quickly degraded by the cell's machinery itself, while other noncoding transcripts were

shown to be more stable [29, 38, 12].

A second extension to the classical measurement of gene expression was the at-

tempt to measure the existence and relative abundance of different splice-forms of

single genes. A gene may be multiply transcribed, or its transcript may be edited

into several different transcripts to be translated into protein. If these transcripts are

separated, purified, and then either hybridized to an array or input to a sequencer,

then we might expect that different splice-forms will lead to different intensities or

hit densities at different portions of the gene itself. Several computational meth-

ods have been deployed to attempt to recover the relative abundance of different

splice-forms given the spatially ambiguous data from microarrays or sequencers [67].

These methods were combined with the advent of tiling array technology, which could

simultaneously screen for noncoding transcription.

Although the sense transcripts of genes are important for understanding which

proteins are produced within the cell, transcription over the antisense gene strand

has also been shown to play an important regulatory role in the transcription of

genes through transcriptional interference. The presence of an antisense transcript

in yeast has been shown to regulate how the cells control their shape and behavior

[24]. This presumably occurs through the interaction of the antisense transcript with

the cellular machinery which promotes transcription of the sense transcript. Strand-

specific tiling microarray data in yeast has revealed a significant number of antisense

transcripts.

Transcripts which overlap on opposite strands are not the only means of overlap-

ping regulatory interaction: several recent studies have also shown that overlapping

transcripts on the same strand can play mutually-regulatory roles through interfer-

ence. In yeast, Martens et al. [40] examined the role of two separate transcripts present

at the SER3 gene a coding transcript, and a second transcript (so-called SRG1)

which was initiated from a cryptic upstream promoter and which has an inhibitory

effect on the expression of the SER3 coding transcript. In humans, the work of Mar-

tianov et al. [41] described a similar system in which a "standard" and an alternate

upstream promoter produced transcripts which appeared to have inhibitory effects

on each other. These results show that a careful, spatial analysis not only of tran-

scription but of its overlapping characteristics is important for the understanding of

which transcripts are produced, and how that transcription is regulated, throughput

the cell.

4.2 Notation

The modeling and analysis of overlapping transcripts from microarray or other dat-

sets will require extending the notation outlined in Section 3.2 with new terms and

i, j, s, t probes i, experiments j, segments s, transcripts t
xi genomic location of probe i

yij intensity of probe i in experiment j
5'[s,t], 3'[s,t] 5' and 3' ends of segment s or transcript t

|x - x'| linear distance along the genome, in bp
ts type of segment s
Os parameters of segment s
6it the distance |xi - 3't| from probe i to the 3' end of transcript t
T set of transcripts that overlap probe i
-ytj intensity of transcript t in experiment j
At 3' log-linear slope of transcript t

Table 4.1: Array, segmentation, and transcript notation summary.

variables for transcripts and other derived array concepts. We begin by outlining

some basic notation for arrays and transcripts, shown in Table 4.1. Figure 3-2 recalls

that notation; i, j, x, and y are all assumed to be given as part of the microarray

experimental data, while s, 6, 5, and 3 are the output of the segmentation algorithm

itself.

For geometric descriptions of locations along the genome, we will use two terms:

points and intervals. A point will be a location of a single nucleotide in a genome

assembly. Probes map to a genome assembly as point locations, based on the center of

the interval to which their sequence is uniquely mapped. Intervals are convex subsets

of the genome, single coherent loci specified completely by start and end positions.

A breakpoint set B = (b, . . . , bN) is an ordered list of genomic locations which

partition the genome into a set of non-overlapping intervals called segments. A seg-

mentation is a set of segments which partition a complete genome. For a given set of

breakpoints B, we use SB to indicate the segmentation defined by those breakpoints.

If s C SB, then s is a genomic interval whose endpoints (5's and 3's) are consecutive

elements of the list B. A segmentation algorithm assigns each segment a type t, and

a set of parameters 0, which provide a local description of the probe values within

that segment.

A transcript is a genomic interval, characterized by its start and end points 5't

and 3't. It is a single, coherent message transcribed from the genome in one or more

cells. It may be edited or it may be present in an unedited form, in which case it will

appear as an interval when matched to the genome which produced it. Overlapping

transcripts will produce complex regions of transcription. Transcribed regions are

sections of the genome which may form part or all of a single mapped transcript or

multiple adjacent and overlapping transcripts.

4.3 An Additive Model of Transcription

One thing which determines how well overlapping transcripts can be inferred from

microarray data is the additivity of the probe intensities: if a single probe is covered by

two overlapping transcripts, how does the probe observation reflect the concentration

of those transcripts? In the Chapter 3, we outlined a model (Equation 3.3) where

the expression of each probe was dependent on the expression of a single underlying

gene. For our segmentation analysis we extended this model with a falloff term, AMij,

which modeled the log-linear drop in probe intensity from the 3' to the 5' end of a

transcript, but the basic model remained the same: one gene (or transcript) for each

probe.

The presence of overlapping transcripts means that we must relax this assumption;

it is possible for a single proble to reflect the abundance of several transcripts which

all overlap it. Furthermore, the falloff term will be a composite as well since the

distance 6it from the probe i to each overlapping transcript t will likely be different

for each different transcript.

What is required is a model of the "additivity" of transcript abundances for probes

on the array. In a particular experiment j, a probe's intensity will be a function of the

intensities of the transcripts which overlap it; if probe i is overlapped by transcripts

A and B, we would write: y.. = f(Aj, Bj) for some function f. But what is to be the

form of function f?

In this thesis, we will assume that the microarray measurements are in the "linear

range" - that is, that the (non-log) values of the probes are linar functions of the

abundances of the transcripts.

ej = Y e * ytj(4.1)
tETi

This is an assumption, and it could be relaxed to produce a more realistic repre-

sentation of the function f between probes and abundances of the overlapping tran-

scripts T. Equation 4.1 can be rewritten as a log likelihood function for a probe,

ij (7tj, A, or) = log p(yjl tj, U2), and we can use that to define a log likelihood func-

tion for the complete set of probe observations in an arrangement:

ICA(IF) iS LX(-ytj, A, U2) (4.2)
jEJ ieC(A)

The variable F = {A, o-} U {tj : t c A} is the complete set of parameters for an

arrangement A.

4.4 STEREO: Reassembly of Overlapping Transcripts

We present a new algorithm, STEREO, for the computational analysis of overlapping

transcription. STEREO is organized into two phases. The first phase implements seg-

mentation and discovers genomic intervals which are transcribed in one of the input

experiments. The identified genomic intervals are classified into transcript or back-

ground classes using both observed probe intensities and the 3' to 5' transcript inten-

sity fall-off caused by reverse transcriptase processivity. The second phase, transcript

reconstruction, resolves this labeled segmentation into consistent arrangements of ex-

planatory RNA transcripts. STEREO performs a combinatorial search of all possible

transcripts given the constraints of transcript additivity and differential expression to

yield a segmentation.

The identification and quantification of overlapping transcripts proceeds in three

steps.

1. Segmentation, and Identification fo Clusters: a segmentation algorithm (such

Segments Arrangements Transcripts

000000 0000

S *0 00
0

0 0 A B C

I__________ A IB IC I'~

Enumeration

310.9

253.2

866.1

00 00 0 0 0

0* p

***~

Evaluation

Segmentation
Transcript
Recovery

Figure 4-3: Workflow description for segmentation and transcript recovery phases of
the STEREO algorithm. The phases operate on sequence in a genomic region tiled by
a microarray. The first phase partitions the genome into intervals and assigns each
interval a local transcription label. The second phase identifies clusters of transcrip-
tion. For each cluster, transcript arrangements are enumerated and evaluated, and
the optimal arrangement is chosen as the explanation for that cluster.

as SEG) is run on the data, and the breakpoints and segment labels are gathered

from that segmentation. These are then used to identify the separate clusters.

2. Enumeration of Arrangements: for each cluster, all possible arrangements are

enumerated.

3. Evaluation of Arrangements: for each cluster and for each arrangement that

has been enumerated for that cluster, the parameters F are estimated for that

arrangement in a maximum-likelihood approach. The "fit" of the arrangement

to the data within the cluster is evaluated and stored.

Ultimately, for any cluster, the arrangement with the best fit to the cluster's data is

returned by the STEREO algorithm as the "explanation" for the transcription within

that cluster.

Data

.......................

0 {data export}
Microarray %
Database

*.raw

*.clusters

Figure 4-4: STEREO Workflow Diagram
The STEREO algorithm works in four steps: (1) Identify Clusters, (2) Enumerate
Arrangements, (3) Evaluate Arrangements, and (4) Choose the Optimally-Scored
Arragement.

4.4.1 Evaluating an Arrangement

Starting from the inside and working out, I first describe how we find the parameters F

for an arrangement and a cluster. The next section will describe how arrangements are

enumerated for a cluster. These two steps comprise the core of the STEREO reassembly

algorithm.

Equation 4.2 gives the total log-likelihood function for the data within a cluster C

depending on the arrangement A. We estimate the parameters for A by maximizing

the function AP(F). The complete set of partial derivatives of the LA function with re-

spect to each component of the parameter vector is calculated, and then optimization

is performed using gradient ascent.

If we let pij eyt+"Ait and zij logpij, then we can write

L 2 (y - Zij) et(4.3)

aBytJ - i
OL I 1it

DE 1
oteA""

OA~ 0- zYi) ti _2 t +MitJ±~ (4.4)

4.4.2 Arrangement Complexity Penalties

As with segmentation, we do not wish to allow our transcript enumeration and fitting

algorithm complete freedom in determining the number and location of transcripts

that best fit a cluster's data. The transcript fitting contains a similar model selection

problem, as any arrangement with more transcripts necessarily contains more param-

eters and more degrees of freedom with which to explain the data in a cluster. A

completely unconstrained maximum-likelihood solution, as we have outlined so far,

will always choose the arrangement with the largest allowable number of transcripts.

In the absence of prior beliefs about the expected intensities of those transcripts, the

algorithm will always choose transcripts which correspond one-to-one with the seg-

ments in a cluster - each transcript will exactly recapitulate the observed data within

a segment, and the transcript algorithm will uncover no additional structure above

and beyond the segmentation.

We therefore impose three forms of complexity penalty on our STEREO algorithm:

a prior distribution over the expected intensities of the segments, and a penalty on

the number of transcripts and on the number of overlapping segments within an

arrangement. Both the penalty on the number of segments and the penalty on the

number of segments which contain overlapping transcripts, 7FM and piv, are affine

penalties an arrangement A which contains m segments that overlap in p locations

will be assessed the penalty mrAI + pwv. The values of 7]M and WV were chosen

from artificially-generated datasets containing segments whose intensity distribution

mirrored that of the S288C mat-a- experiment. The same artificial data was used

to fit a Gamma distribution to the intensities of the segments, and that distribution

was used to penalize the log-likelihood functions maximized above. Assuming that

the likelihood of the data is the product of the likelihood given the intensities of the

transcripts multiplied by the prior probability of those intensities, we can rewrite the

equations above as sums of a prior and a likelihood term. Our maximum-likelihood

(ML) formulation becomes a maximum a posteriori (MAP) estimation, but all later

downstream optimizations are left unchanged.

4.4.3 Assumptions for Overlapping Transcript Detection

To make the detection of overlapping transcripts more precise, we can restrict our-

selves in a few significant ways. In addition to the two insights described above,

necessary for inferring where likely regions of overlapping transcription may occur,

our algorithm also makes several assumptions in order to reduce the size of the prob-

lem and the search space we are required to examine.

1. Segmentation Reliability: all transcripts begin and end at the boundary of
a segment.

2. Transcription Coverage: every transcribed segment (local linear model)
must be explained by at least one transcript.

3. Background Removal: no transcript may explain any background segment
(local flat model).

4. Nonredundancy: no duplicate transcripts will be examined.

Table 4.2: Transcript Enumeration Assumptions
The STEREO algorithm enumerates transcripts for segmented tiling microarray data.
We reduce the total number of transcript arrangements that must be examined us-
ing a few basic assumptions about how putative transcript calls should match the
underlying segmentation and each other.

STEREO is a novel algorithm for the identification of regions of overlapping tran-

scription, and for the recovery and quantification of separate transcripts at regions

where this overlap is detected. This method relies on the output of a segmentation

algorithm (such as SEG) as input, and produces a set of possibly-overlapping tran-

scripts along with observed transcript values as output. The method does not rely

on the presence of genes, sequence features, or any other markers; however, it does

rely on a model of transcript additivity in order to dissect the relative contributions

of different transcripts to a region of overlap.

4.4.4 Enumerating Arrangements

The STEREO algorithm is an enumerative method for evaluating transcript arrange-

ments and finding the arrangement which best fits a particular cluster. When pre-

sented with a transcript arrangement A on a cluster C, optimizing the model log-

likelihood given in Equation 4.2 gives us a means of estimating the transcript in-

tensities -ytj for each experiment j and each t C A. The log-likelihood does not

specify, however, the method by which (for a given cluster C) we should determine

the arrangement A whose parameters we should optimize. The STEREO algorithm

systematically enumerates a complete set of arrangements over a cluster, evaluates

each by its ability to explain (probabilistically generate) the observed data using its

optimal parameters, and chooses the arrangement whose optimal parameters best

describe the cluster data.

The strategy for identifying the optimal A on a cluster C is one of enumeration

with constraints. We systematically generate every arrangement which matches the

given cluster, constrained by the assumptions given in Table 4.2. In addition to these

basic constraints, we also impose a K maximum overlap constraint. For each segment,

we can count the number of transcript calls in an arrangement which overlap that

segment: we call this the overlap count k, of the segment s. When enumerating

arrangements under a K maximum overlap constraint, we require that no segment's

overlap count exceed the bound K.

For a given cluster C with N segments, the STEREO algorithm proceeds through

the steps outlined in Figure 4-5. The pseudocode for the enumeration itself is given

in Figure 4-6.

1. For every possible number k E [1, N] of transcripts, we enumerate all possible
k transcripts over N segments.

2. We remove any arrangement produced by Step 1 which does not satisfy the
coverage requirement of a valid arrangement that is, it leaves one or more
segments of the cluster "uncovered" by any transcript. For example, the ar-
rangement A ={(1, 2) (2, 3)} is not a valid arrangement for a cluster with four
segments.

3. Next, we apply any additional filters and remove any arrangements which fail
those filters (see below for a list of additional filters).

4. Finally, we fit (using the STEREO model) a set of transcript intensities to each
arrangement A that has passed through all the filters, and we return the arrange-
ment which has the highest likelihood (weighted by a factor which penalizes the
number of transcripts used in the arrangement).

Figure 4-5: STEREO Algorithm
An outline of the steps involved in the STEREO algorithm for fitting transcripts to a
cluster of transcribed segments.

4.5 Performance and Testing of STEREO

Unfortunately, the performance of the STEREO algorithm depends on the number of

arrangements it must evaluate, and the number of complete arrangements for a given

cluster is exponential in the size of the cluster itself. We can show an upper-bound

on this number by listing the transcripts in any given arrangement in lexicographic

order, and using that ordering to bound the number of choices possible for all the

transcripts. Assume that a cluster of size N segments is given; this implies that it has

N + 1 breakpoints, which we will number in sequence from 0 ... N. We also assume

that we are attempting to arrange M transcripts over the N segments, in such a way

that no two transcripts are identical and that the total arrangement is complete (that

is, every segment is covered by at least one transcript). Naively, we can choose each

transcript's endpoints in !N 2 possible ways, leading to an O(N 2 M) bound on the

number of transcript choices.

A tighter bound can be achieved by considering the transcripts ordered lexico-

graphically - that is, for each pair of transcripts ti and t 2, we induce an ordering on

the pair by ordering first on the start coordinate and then on the end coordinate:

ti < t2 = (5't1 < 5't2) or (5't, - 5't2 and (3't, < 3't2). If we assume that we have

written out all transcripts in lexicographic order ti < t2 < ... tM, then we can arrange

their starting and ending points in a grid:

1 = 0 y1 E I[x1+1, N]

x2 C [ON-1] y2 E [x2 +1, N]

x3 E [0, N - 1] y3 C [x3 +1, N]

(4.5)

xP C [0, N -1] yp = N

XM E [0, N - 1] y C E [xM +1, N]

The first coordinate x1 must equal 0, and some end coordinate yp must equal N,

otherwise we have an arrangement that is not complete. However, without additional

restrictions, we are left with M - 1 start points, each of which has N possible values,

and M - 1 end points again with N possible values. As before, this is a bound of

O(N 2 1 - 2) for the total number of arrangements.

However, we can restrict our analysis and add an additional constraint: maximum

overlap. A maximum overlap constraint is a number K such that no segment is

allowed more than K overlapping transcripts.

Multiplying the number of options together for an upper-bound, under the K-

overlap constraint we again have descending sequence which are multipled together

factorially. There are N options for x1, and N - 1 options for XK, and N - 2 options

for X2K - this is the upper half of a factorial sequence, and it continues for M factors.K

Furthermore it is repeated K times, leading to an upper bound on the number of

x choices equal to (]IN=N-M M). Rewriting in terms of factorials, the total upper

bound for the number of options on both sides of the table is N-)2

4.5.1 Synthetic Data

We tested the transcript re-assembler on synthetic data generated with an inside-

outside pattern of overlapping transcription, as shown in Figure Figure 4-8B. In

1000 randomly-generated regions of synthetic data, the segmenter and transcript re-

assembler were able to reconstruct the correct number of transcripts 96% of the time.

For those instances in which the correct number (2) of transcripts were inferred in

the synthetic data, our method was able to able to identify the correct boundaries of

transcription to within 500 bp 98% of the time, and for these correctly-localized tran-

scripts our intensity prediction was able to recover the original transcript "intensities"

with high accuracy.

1 TotalA <- {}
2 for i = 1:len(C) {
3 A <- first Arrangement (i)
4 while A != nil {
5 TotalA <- TotalA + A
6 A <- next Arrangement (A)
7 }
8}

9

10 nextArrangement (A) {
11 i <- len(A)
12 while lastcall(j) {
13 j <-i - 1

14 }
15

16 if j 0
17 A[j] <- nextcall(A[j})
18 for k = j:N {
19 A[k] <- A[j]
20 }
21 return A
22 } else {
23 return nil
24 }
25 }
26

27 lastcall(t) { return start(t) = len(C) - 1 and end(t) - len(C) }
28

29 nextcall(t) {
30 s <- start(t)
31 e <- end(t) + 1
32 if e > len(C) {
33 s <- start (t) + 1
34 e <- s +1
35 }
36 return (s, e)
37 }

Figure 4-6: Pseudcode for Arrangement Enumeration

YK

YK+1

YK+2

YK+3

X1 = 0

X2 E [0,N- 1]
X3 E [0,N- 1]

XK E [0,N- 1]
IK+1 E [1, N - 1]
XK+2 E [1, N - 1]
XK+3 E [1, N - 1]

X2K C [1,N- 1]

yp = N

XM-K+1 E [mN-
XAI-K+1 C [G, N -
XM-K+1 [K, N-

XM [II N-]

YM-K+1

YM-K+2

YM-K+3

E [XAI-K+1 + 1, N]
E [XM-K+2 +1, N]

E [XM-K+3 +1, N]

YM C [IM + 1, N]

[I1 + 1, N]
[X2 + 1, N]
[3 + 1, N]

[IXK + 1, N]
IXK+1 + 1, N]
[IXK+2 + 1, N]
[IXK+3 + 1, N]

Figure 4-7: Counting arrangements under a K-maximum-overlap constraint.

Y2K E [X2K + 1,N] (4.6)

0 Artificial Expt #1
o Artificial Expt #2

0
0 0

T1
T2

Artificial Transcripts

Transcript Call
Boundary Distribution

Transcript Call
Intensity Estimation

Number of
Transcript Calls

8 8 Co CD 88
Nearest Transcript
Call Boundary

Figure 4-8: Synthetic Transcript Reconstruction
Reconstruction of artificial transcripts is, given the correct bounds as determined by
segmentation, able to discover the correct number, overlap, and intensities of the
transcripts.

A

Transcript Call
Histogram

0 1

B
100

0

.
......... I

3

Chapter 5

Computational Detection of

Overlapping Transcripts in

Saccharomyces cerevisiae

In Chapter 4 we presented STEREO, a novel algorithm that discovers cis-regulatory

RNA interactions by assembling complete and potentially overlapping same-strand

RNA transcripts from tiling expression data. STEREO first identifies coherent segments

of transcription and then discovers individual transcripts that are consistent with the

observed segments given intensity and shape constraints. Here we show how the use of

STEREO allowed us to identify 1446 regions of overlapping transcription in two strains

of yeast, including the transcripts that comprise a molecular toggle switch controlling

gene variegation. We also discovered 564 transcripts which participated in a same-

strand overlapping region with at least one other transcript. These constitute a novel

collection of overlapping transcripts which may plausibly exert a regulatory influence

on each other.

5.1 Introduction

Evidence has recently emerged from high-throughput expression datasets that over-

lapping RNA transcripts can play an important role in gene regulation. For example,

an antisense transcript can be used to regulate its corresponding sense gene [27, 8].

In budding yeast, a sense/antisense toggle has been shown to regulate the mating

type of the cell [24]. The interference of a transcript on the same strand as a coding

transcript is also sufficient to play a repressive role in the regulation of downstream

genes [40, 41].

Discovering RNA transcript based cis-regulation requires the precise spatial lo-

calization of transcripts and the identification of their overlap with other, nearby

transcripts. Contemporary algorithms for analyzing tiling microarray identify non-

overlapping segments of coherent transcription [48], but they do not attempt to iden-

tify the transcripts that generated and potentially span the observed segments. A

genomic locus which is multiply transcribed may produce a region of complex seg-

mentation, but no additional resolution of such regions into separate, overlapping

transcripts can be provided by dynamic programming or the probabilistic models

used by segmentation algorithms.

The STEREO algorithm is the first computational attempt to discover regions of

complex transcription from segmentation and to resolve those regions into overlap-

ping transcripts. Overlapping transcripts fall into two mutually-exclusive categories,

opposite and same-strand overlap, both of which may be expected to exhibit mu-

tual interference or other regulatory properties. Opposite-strand overlap involves two

transcripts are transcribed from complementary DNA strands and whose spatial ex-

tents overlap despite their different directions. Sense/antisense pairs of transcripts

over the same gene are an example of opposite-strand overlap. Same-strand overlap

occurs when two or more transcripts transcribed from overlapping portions of a DNA

strand.

We tested STEREO on tiling expression data from two strains of yeast and discov-

ered 1,446 instances of transcriptional overlap. Of these, 564 (39.0%) were overlapping

in the same strand, a percentage consistent with previous estimates of alternate pro-

moter usage in known yeast coding regions [42]. Northern blot analysis confirmed

a same-strand interaction predicted by STEREO, and STEREO also identified opposite-

strand transcripts that are organized into a novel form of molecular toggle switch [7]

that controls the state of gene variegaton.

5.2 RNA cis-regulation in S288C and E1278b

Using an array designed to probe the S288C genome at approximately 50 base-pair

resolution, we designed a set of experiments intended to reveal differences in tran-

scription regulation between two closely related strains of Saccharomyces cerevisiae:

S288C and E1278b [13]. Each array had two channels, Cy3 and Cy5, which were

used to simultaneously measure the expression in the two strains. In addition to the

haploid (mat-a) dataset of [13], we generated diploid expression in rich media with a

technical replicate of each experiment. Treating each channel of each array as a sepa-

rate logical experiment, this design provided us with eight total experiments on which

to perform our segmentation and analysis. Data was normalized across experiments

using quantile normalization [4].

5.3 SPLIT identifies expression using multiple con-

straints

We used the segmentation and labeling phase of our algorithm to analyze the tiling

microarray experiments described in Section 5.2. The SPLIT segmentation algorithm

was run on each strand of the tiling microarray dataset separately; we identified

14, 076 segments on the Watson strand and 13, 792 on the Crick strand. From the

segmentation on the Watson strand, we identified 37.0% of the tiled genome as tran-

scribed, and from the Crick strand we identified 40.3%; taken together, accounting

for overlap, we identified 65.2% of the complete genome sequence as transcribed.

The segmentation recovered two noncoding transcripts whose regulatory function

is related to their spatial overlap and interference with the production of a down-

stream coding transcript. In Figure 5-1, we show the locations of two noncoding

transcripts, PWR1 and ICRI, that we showed implement a new type of RNA molec-

ular toggle [7]. We also ran an implementation of the Picard segmentation algorithm

Transcription {-1278b cti6A
PWR1.10.00

W E 5.00

~0

FLO1i MRS1
chr 9

374500 376000 378000 380000
.10.00 8

.0

region not tildIC
on microarrayICR1

Figure 5-1: We are able to discover noncoding transcription which is known to play
a role in the regulation both of a downstream coding transcript (FLO11) and of
each other. ICR1 and PRW1 are noncoding RNAs, reported in [7], whose regulatory
function is related to their spatial overlap. The segmentation phase of our STEREO al-
gorithm is able to find the complete PRW1 transcript and the 3' end of the ICR1
transcript in the Bumgarner dataset. Regions identified as BACKGROUND are shown in
grey, TRANSCRIBED regions are shown in color. Genes are identified as arrowed boxes.
The x-axis is genomic coordinates and the y-axis is log intensity.

on the S288C and E1278b dataset. Although this method can be easily adapted
to handle multiple experiments simultaneously, it lacks the ability to identify regions
with a shape other than a flat regions of transcription; instead, it separates the sloped
regions of transcription into "steps" of multiple flat segments. Therefore, the Picard
algorithm is unable to handle a key feature of our experimental protocol (the 3' falloff)
and unnecessarily splits single units of transcription into artificially complex sets of
segments.

5.4 STEREO assembles transcripts from expressed

segments

STEREO uses an enumeration-based search method to choose the transcript arrange-
ment T which best explains the transcribed regions that are provided as input by

the segmentation and labeling phase, as described in Chapter 4. The penalized

log-likelihood L(FT, AT, OrT) - C(T) provides a score by which to evaluate the fit

of the transcript arrangement T to the cluster. A complexity penalty C(T) =

a|ITI + #cover(T) assesses a constant penalty for the total number of transcripts in

T and for the number of overlaps Cover(T) in the arrangement. The complexity

penalty parameters (a and 3) are chosen to optimize transcript discovery against

synthetically-generated data.

5.4.1 STEREO Transcript discovery recovers appropriate SER3

and SRG1 transcripts

An example of overlapping transcripts with regulatory interactions in yeast is the

SER3 gene and its upstream intergenic transcript, SRG1. The SER3 gene is involved

in serine biosynthesis and under repressing conditions its promoter is bound by sig-

nificant levels of both TATA binding protein (TBP) and RNA polymerase II (Pol

II). The expression of a short transcript that runs through the SER3-proximal TATA

element is associated with decreased expression of the SER3 transcript itself [40].

Furthermore, a nearly 2 kb read-through transcript starting from the SRG1 TATA

element and extending through the entire SER3 gene itself was observed by northern

analysis in the same study.

The SER3 and SRG1 genes, and their observed architecture of overlapping tran-

scription, provide a convenient test of our ability to estimate relative intensities

of overlapping transcripts. In Figure 5-2, we show that our tiling array data in

S288C (red) and E1278b (blue) around the SER3 and SRG1 locus. The figure depicts

the locations of three overlapping transcripts, shown as orange arrows: one from the

upstream SRG1 TATA element extending to the annotated start of the SER3 gene,

the second from the SER3 TATA element extending to the end of the SER3 gene,

and one 2 kb-long transcript starting from the SRG1 TATA element and extending

through the SER3 gene itself.

Using our transcript intensity estimation method we reconstructed relative log-

A . 234 0 Al Adjacent Overlapping

Convergent "_"-B
B > 696 757

C

3220*20 *ER3 Divergent +""""E . -+ >+

A2 o A3 1 1197 125

Tandem --- 00 =-+ .A

- 1 A2458 564

Figure 5-2: A Re-construction of transcript intensities at the SER3/SRG1 locus. Al.
Probes which are included in either the SER3 or SRG1 region and are included in
this analysis are displayed in either red (S288C) or blue (E1278b). Original probes
from Martens et al. enriched for the SRG1 transcript are green. Putative transcripts
A, B, and C are shown in orange and TATA elements with red dots. Transcript
A corresponds to Martens SRG1 transcript while Transcript B corresponds to SER3
transcript. Transcript C is the "readthrough" transcript Martens detected, extending
exactly 2 kb. Transcript intensity analyses were carried out for two arrangements,
(A2) just the A and B transcripts and (A3) all three transcripts. Each transcript has
reconstructed intensities for both S288C (red) and E1278b (blue) experimental data.
B Schematics for each category along with the total number of STEREO transcripts
identified within each category are shown.

intensities of 4.4 and 6.3 for the A and B transcripts respectively; these values are

consistent with previously reported concentrations for SRG1 and SER3 respectively

[40]. Moreover, the fitted intensities are anti-correlated across cell types, between the

two measured strains of yeast. When the SRG1 transcript drops the SER3 transcript

rises, consistent with the claim that SRG1's transcription represses that of SER3.

5.4.2 Identification of 1446 overlapping transcripts

STEREO resolved the collected S288C and E1278b expression datasets into 6609 tran-

scripts. Most transcripts (5233) inferred by our method were strand singletons, cov-

ering a single region without a second overlapping transcript. However, our algorithm

identified 1446 regions of overlapping transcription, of which 564 were same-strand

overlapping transcripts. Figure 5-2 Part B shows a classification of transcript pairs

.

into six categories depending on their relative orientation and overlap, and gives the

number of transcript pairs that fell into each category from our dataset.

The segmentation and labeling phase has also been able to uncover overlapping

transcript pair predictions which show differential expression between different cell

types and strains, and whose variation is consistent with potential repressive regula-

tory interactions between the overlapping transcripts.

5.4.3 Northern analysis of overlapping predictions

In order to confirm one of our predictions we chose three of the predictions made by

our algorithm to test with northern blot analysis. To facilitate northern blot analysis

we chose examples to test that had a larger outer transcript with a smaller inner

contained transcript that would readily be immediately apparent in the experimental

result. In one of the three locations tested northen blot analysis showed same-strand

overlapping transcription with transcript lengths matching those produced by STEREO.

This validated locus, YCRO82W, provides a new example of tandem overlapping

transcripts previously unknown in the literature. Instead of reporting overlapping

transcripts in this location, an alternate explanation would have been two tandem

transcripts aligned head-to-tail; in this case, the transcript discovery algorithm re-

constructs the more complex overlap based on our prior distribution over transcript

intensities and our belief that higher-intensity transcripts are less likely than lower

ones. Zheng et al. have previously attempted to quantify the intensities of multiple

overlapping transcripts using a hierarchical Bayesian model [67]. Their approach is

limited, however, to the quantification of transcript intensities whose locations have

already been specificed from gene annotations or an external datasource. Rochette

et al. have reported a set of overlapping transcripts at a genome-wide level in the

parasite Leishmania [51]. These transcripts were identified by experimental means

(5'-RACE) in a genome significantly smaller than yeast, however, and do not represent

a comprehensive computational approach to transcript discovery.

A B

chr
7

0

_T00~
M 3.0 8 895.3kb- Fo .40 'P 0 0

3b-L-.O 1.00 1Xa0 0 YCRO&2W

253000 254500 256000 257000 258000 259500

4966 bp336
bp

Figure 5-3: Northern analysis was performed at YCRO82W to test for the presence
of multiple overlapping transcripts. Probes were chosen to cover the first 400 bp of
the gene, shown as a blue square. The blot (A) shows two transcripts with lengths
approximately 5 kb and 600 bp. These transcripts correspond (B) to two overlapping
transcripts called by the STEREO algorithm with lengths of approximately 5 kb and
300 bp. For clarity, only the Watson strand is shown. Probes in TRANSCRIBED regions
are shown in color for S288C (red) and E1278b (blue) data.

5.5 Discussion

We introduced several unique features of our STEREO algorithm. In the segmentation
phase, we simultaneously incorporated multiple experiments and utilized the slope of
the transcription data to identify transcribed segments. In the transcript discovery
phase we employed both additive intensity and differential expression to evaluate
likely configurations of transcripts.

STEREO also has certain limitations. While a 3' to the 5' intensity fall off provides
a useful constraint, it also makes it more difficult to accurately locate the 5' ends of
long, low-abundance transcripts. In addition, STEREO is sometimes unable to sepa-
rate same-strand overlapping transcripts without differential expression between con-
ditions or strains. In these cases, overlapping transcript calling depends on our prior
distributions on transcript intensities. A better understanding of the distribution of
transcript abundances will improve the accuracy of our transcript reassembly algo-
rithm. The combinatorial architecture of gene regulation is in part implemented by

.. -

RNA based cis-regulation. We are making our set of 1446 candidate interactions

available for other investigators.

94

Bibliography

[1] Algorithms on Strings, Trees, and Sequences: Computer Science and Computational

Biology. Cambridge University Press, 1997.

[2] Takeshi Akama, Koichi Suzuki, Kazunari Tanigawa, Akira Kawashima, Huhehasi Wu,

Noburu Nakata, Yasunori Osana, Yasubumi Sakakibara, and Norihisa Ishii. Whole-

Genome Tiling Array Analysis of Mycobacterium leprae RNA Reveals High Expression

of Pseudogenes and Noncoding Regions. Journal of Bacteriology, 191(10):3321-3327,

May 2009.

[3] DA Benson, I Karsch-Mizrachi, DJ Lipman, J Ostell, and DL Wheeler. Genbank.

Nucleic Acids Research, 35:21-25, January 2007.

[4] Benjamin Bolstad. Probe Level Quantile Normalization of High Density Oligonu-

cleotide Array Data. Technical report, Division of Biostatistics, University of Califor-

nia, Berkeley, December 2001.

[5] Benjamin Bolstad. Low-level analysis of High-density Oligonucleotide Array Data:

Background, Normalization, and Summarization. PhD thesis, University of California

Berkeley, 2004.

[6] Christopher R. Brown and Pamela Silver. Transcriptional regulation at the nuclear

pore complex. Current Opinions in Genetics & Development, 17(2):100-106, April

2007.

[7] Stacie Bumgarner, Robin Dowell, Paula Grisafi, David Gifford, and Gerald Fink. A

Toggle Involving Cis-Interfering Noncoding RNAs Controls Variegated Gene Expres-

sion in Yeast. PNAS, 2009.

[8] Jurgi Camblong, Nahid Iglesias, Celine Fickentscher, Guennaelle Dieppois, and Fran-

coise Stutz. Antisense RNA Stabilization Induces Transcriptional Gene Silencing via

Histone Deacetylation in S. cerevisiae. Cell, 131:706-717, November 2007.

[9] Gal Chechik, Eugene Oh, Oliver Rando, Jonathan Weissman, Aviv Regev, and Daphne

Koller. Activity motifs reveal principles of timing in transcriptional control of the yeast

metabolic network. Nature Biotechnology, 26(11), October 2008.

[10] MA Crosby, JL Goodman, VB Strelets, P Zhang, WM Gelbart, and Flybase Consor-

tium. Flybase: genomes by the dozen. Nucleic Acids Research, 35:486-491, 2007.

[11] Lior David, Wolfgang Huber, Marina Granovskaia, Joern Toedling, Curtis J. Palm,

Lee Bofkin, Ted Jones, Ronald W. Davis, and Lars M. Steinmetz. A high-resolution

map of transcription in the yeast genome. PNAS, 103(14):5320-5325, 4 April 2006.

[12] Carrie Anne Davis and Manuel Ares Jr. Accumulation of unstable promoter-associated

transcripts upon loss of the nuclear exosome subunit rrp6p in saccharomyces cerevisiae.

PNAS, (9):3262-3267, February 2006.

[13] Robin D. Dowell, Owen Ryan, An Jansen, D. Cheung, Sudeep Agarwala, Timothy W.

Danford, Doug Bernstein, P. Alex Rolfe, Gerry R. Fink, David K. Gifford, and Charlie

Boone. Genotype to Phenotype: A Comparison of Two Interbreeding Yeast Strains

Reveals Complex Genetics of Conditional Essential Genes. in submission.

[14] Natalie C. Duarte, Markus J. Herrgard, and Bernhard 0. Palsson. Reconstruction and

validation of saccharomyces cerevisiae ind750, a fully compartmentalized genome-scale

metabolic model. Genome Research, 14(7), July 2004.

[15] SS et. al. Dwight. Saccharomyces genome database: underlying principles and organi-

sation. Brief Bioinformatics, 5(1):9-22, Mar 2004.

[16] Chandra Erdman and John Emerson. A fast Bayesian change point analysis for the

segmentation of microarray data. Bioinformatics, 24(19):2143-2148, July 2008.

[17] Harbison et al. Transcriptional regulatory code of a eukaryotic genome. Nature, 431:99-

104, September 2004.

[18 Lee et al. Transcriptional regulatory networks in saccharomyces cerevisiae. Science,

298:799-804, October 2002.

[19] Ren et al. Genome-wide location and function of dna binding proteins. Science,

290:2306-2309, December 2000.

[20] Spellman et al. Comprehensive identification of cell cycle-regulated genes of the yeast

saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell.

9(12):3273-3297, December 1998.

[21] Mohammad Ali Faghihi and Claes Wahlestedt. Regulatory roles of natural antisense

transcripts. Nature Reviews: Molecular Cell Biology, 10:637-643, September 2009.

[22] Giaever G, Chu AM, Ni L, Connelly C, Riles L, V6ronneau S, Dow S, Lucau-Danila

A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Ben-

ito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD,

Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Giildener U, Hegemann JH,

Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, K6tter P, LaBonte D, Lamb

DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL.

Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G,

Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G,

Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen

G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, and

Johnston M. Functional profiling of the saccharomyces cerevisiae genome. Nature,

418(6896):387-391, July 2002.

[23] Alex Hartemink, David Gifford, Tommi Jaakkola, and Richard Young. Maximum Like-

lihood Estimation of Optimal Scaling Factors for Expression Array Normalization. In

M. Bittner, Y. Chen, A. Dorsel, and E. Dougherty, editors, Microarrays: Optimcal

Technologies and Informatics, volume 4266, pages 132-140. SPIE International Sym-

posium on Biomedical Optics 2001 (BiOS01), 2001.

[24] Cintia Hongay, Paula Grisafi, Tony Galitski, and Gerry Fink. Antisense transcription

controls cell fate in Saccharomyces cerevisiae. Cell, 127(4):735-745, 2006.

[25] Zhanzhi Hu, Patrick J Killion, and Vishwanath R Iyer. Genetic reconstruction of a

functional transcriptional regulatory network. Nature Genetics, April 2007.

[26] Wolfgang Huber, Joern Toedling, and Lars Steinmetz. Transcript mapping with high-

density oligonucleotide tiling arrays. Bioinformatics, 22(16):1963-1970, 2006.

[27] Thomas A. Hughes. Regulation of gene expression by alternative untranslated regions.

Trends in Genetics, 22(3):119-122, March 2006.

[28] Trey Ideker, Vesteinn Thorsson, Jeffrey A. Ranish, Rowan Christmas, Jeremy Buh-

ler, Jimmy K. Eng, Roger Bumgarner, David R. Goodlett, Ruedi Aebersold, and

Leroy Hood. Integrated genomic and proteomic analyses of a systematically perturbed

metabolic network. Science, 292(5518), May 2001.

[29] Takashi Ito, Fumihito Miura, and Miyuki Onda. Unexpected complexity of the budding

yeast transcriptome. IUBMB Life, 60(12):775-781, 2008.

[30] David S. Johnson, Ali Mortazavi, Richard M. Myers, and Barbara Wold. Genome-wide

mapping of in vivo protein-dna interactions. Science, 316(5830):1497-1502, 2007.

[31] D Karolchik, R Baertsch, M Diekhans, TS Furey, A Hinrichs, YT Lu, KM Roskin,

M Schwartz, CW Sugnet, DJ Thomas, RJ Weber, D Haussler, and WJ Kent. The ucsc

genome browser database. Nucleic Acids Research, 31(1):51-54, 2003.

[32] Mitsuoki Kawano, April Reynolds, Juan Miranda-Rios, and Gisela Storz. Detection

of 5' and 3'-utr-derived small rnas and cis-encoded antisense rnas in escherichia coli.

Nucleic Acids Research, 33(3):1040-1050, February 2005.

[33] J.H.B. Kemperman. Least Absolute Value and Median Polish. In Inequalities in

Statistics and Probability, volume 5, pages 84-103. Institute of Mathematical Statistics,

1984.

[34] Marc Lavielle. Using penalized contrasts for the change-point problem. Signal Pro-

cessing, 85:1501-1510, August 2005.

[35] Emilie Lebarbier. Detecting multiple change-points in the mean of gaussian process by

model selection. Signal Processing, 85:717-736, April 2005.

[36] Erez Lieberman-Aiden, Nynke L. van Berkum, Louise Williams, Maxim Imakaev, To-

bias Ragoczy, Agnes Telling, Ido Amit, Bryan R. Lajoie, Peter J. Sabo, Michael 0.

Dorschner, Richard Sandstrom, Bradley Bernstein, M. A. Bender, Mark Groudine,

Andreas Gnirke, John Stamatoyannopoulos, Leonid A. Mirny, Eric S. Lander, and Job

Dekker. Comprehensive mapping of long-range interactions reveals folding principles

of the human genome. Science, 326(5950), October 2009.

[37] YH et. al Loh. The Oct4 and Nanog transcription network regulates pluripotency in

mouse embryonic stem cells. Nature Genetics, 38:431-440, March 2006.

[38] Jun Ma, Craig Dobry, Damian Krysan, and Anuj Kumar. Unconventional genomic

architecture in the budding yeast saccharomyces cerevisiae masks the nested antisense

gene nag1. Eurkaryotic Cell, 7(8):1289-1298, August 2008.

[39] John Marioni, Christopher Mason, Shrikant Mane, Matthew Stephens, and Yoav Gi-

lad. RNA-Seq: An assessment of technical reproducibility and comparison with gene

expression arrays. Genome Research, 18:1509-1517, June 2008.

[40] Joseph A. Martens, Lisa Laprade, and Fred Winston. Intergenic transcription is re-

quired to repress the Saccharomyces cerevisiae SER3 gene. Nature, 429:571-574, May

2004.

[41] Igor Martianov, Aroul Ramadass, Ana Serra Barros, Natalie Chow, and Alexandre

Akoulitchev. Repression of the human dihydrofolate reductase gene by a non-coding

interfering transcript. Nature, 445:666-670, February 2007.

[42] Fumihito Miura, Noriko Kawaguchi, Jun Sese, Atsushi Toyoda, Masahira Hattori,

Shinichi Morishita, and Takashi Ito. A large-scale full-length cDNA analysis to explore

the budding yeast transcriptome. PNAS, 103(47):17486-17851, 21 November 2006.

[43] Vamsi K Mootha, Cecilia M Lindgren, Karl-Fredrik Eriksson, Aravind Subrama-

nian, Smita Sihag, Joseph Lehar, Pere Puigserver, Emma Carlsson, Martin Ridder-

str-[aring]-le, Esa Laurila, Nicholas Houstis, Mark J Daly, Nick Patterson, Jill P

Mesirov, Todd R Golub, Pablo Tamayo, Bruce Spiegelman, Eric S Lander, Joel N

Hirschhorn, David Altshuler, and Leif C Groop. Pgc-1-[alpha] -- responsive genes in-

volved in oxidative phosphorylation are coordinately downregulated in human diabetes.

Nature Genetics, 34(3), June 2003.

[44] Ugrappa Nagalakshmi, Zhong Wang, Karl Waern, Chong Shou, Debasish Raha,

Mark Gerstein, and Michael Snyder. The transcriptional landscape of the yeast

genome defined by RNA sequencing. Science, 320:1158441-1349, May 2008.

10.1126/science. 1158441.

[45] Dmitri Parkhomchuk, Tatiana Borodina, Vyacheslav Amstislavskiy, Maria Banaru,

Linda Hallen, Sylvia Krobitsch, Hans Lehrach, and Alexey Soldatov. Transcriptome

analysis by strand-specific sequencing of complementary dna. Nucleic Acids Research,

July 2009.

[46] A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. A. Fodor.

Light-generated oligonucleotide arrays for rapid dna sequence analysis. Proceedings of

the National Academy of Sciences, 91:5022-5026, 1994.

[47] Fabiana Perocchi, Zhenyu Xu, Sandra Clauder-Miinster, and Lars M. Steinmetz. An-

tisense artifacts in transcriptome microarray experiments are resolved by actinomycin

D. Nucleic Acids Research, 35(19), 26 September 2007.

[48] Franck Picard, Stephane Robin, Marc Lavielle, Christian Vaisse, and Jean-Jacques

Daudin. A Statistical Approach for Array CGH Data Analysis. BMC Bioinformatics,

6(27), February 2005.

[49] Franck Picard, Stephane Robin, Emilie Lebarbier, and Jean-Jacques Daudin. A seg-

mentation/clustering model for the analysis of array CGH data. Biometrics, 63:758-

766, 2007.

[50] Yuan Qi, Alex Rolfe, Kenzie MacIsaac, Georg Gerber, Dmitry Pokholok, Julia

Zeitlinger, Timothy Danford, Robin Dowell, Ernest Fraenkel, Tommi Jaakkola, Richard

Young, and David Gifford. High-resolution computational models of genome binding

events. Nature Biotechnology, 24(8):963-970, August 2006.

[51] Annie Rochette, Frederic Raymond, Jean-Michel Ubeda, Martin Smith, Nadine

Messier, Sebastien Boisvert, Philippe Rigault, Jacques Corbeil, Marc Ouellette, and

Barbara Papadopoulou. Genome-wide gene expression profiling analysis of leishmania

100

major and leishmania infantum developmental stages reveals substantial differences

between the two species. BMC Genomics, 9(255), May 2008.

[52] Thomas Royce, Joel Rozowsky, Paul Bertone, Manoj Samanta, Viktor Stolc, Sherman

Weissman, Michael Snyder, and Mark Gerstein. Issues in the analysis of oligonucleotide

tiling microarrays for transcript mapping. Trends in Genetics, 21(8):466-475, August

2005.

[53] E. Segal, R. Yelensky, A. Kaushal, T. Pham, A. Regev, D. Koller, and N. Friedman.

Genexpress: A visualization and statistical analysis tool for gene expression and se-

quence data. In Proceedings of the 11th International Conference on Intelligent Systems

for Molecular Biology (ISMB), 2004.

[54] Eran Segal, Yvonne Fondufe-Mittendorf, Lingyi Chen, AnnChristine Tharingstroum,

Yair Field, Irene K. Moore, Ji-Ping Wang, and Jonathan Widom. A genomic code for

nucleosome positioning. Nature, 442(7104), July 2006.

[55] Edward A. Sekinger, Zarmik Moqtaderi, and Kevin Struhl. Intrinsic histone-dna in-

teractions and low nucleosome density are important for preferential accessibility of

promoter regions in yeast. Molecular Cell, 18(6):735-748, June 2005.

[56] Susann Stjernqvist, Tobias Ryden, Martin Skold, and Johan Staaf. Continuous-index

hidden markov modelling of array cgh copy number data. Bioinformatics, 23(8):1006-

1014, February 2007.

[57] Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Ben-

jamin L. Ebert, Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd R.

Golub, Eric S. Lander, and Jill P. Mesirov. Gene set enrichment analysis: A knowledge-

based approach for interpreting genome-wide expression profiles. Proceedings of the

National Academy of Sciences of the United States of America, 102(43), October 2005.

[58] Jay P. Uhler, Christina Hertel, and Jesper Q. Svejstrup. A role for noncoding tran-

scription in activation of the yeast pho5 gene. Proceedings of the National Academy of

Sciences, 104(19), 2007.

[59] Alexander E. Urban, Jan 0. Korbel, Rebecca Selzer, Todd Richmond, April Hacker,

George Popescu, Joseph F. Cubells, Roland Green, Beverly S. Emanuel, Mark B. Ger-

101

stein, Sherman M. Weissman, and Michael Snyder. High-resolution mapping of DNA

copy alterations in human chromosome 22 using high-density tiling oligonucleotide

arrays. PNAS, 103(12):4534-4539, March 2006.

[60] F.C. Wardle and D.T. et al Odom. Zebrafish promoter microarrays identify actively

transcribed embryonic genes. Genome Biology, 7(R71), August 2006.

[61] L Weng, H Dai, Y Zhan, Y He, S Stepaniants, and D Bassett. Rosetta error model for

gene expression analysis. Bioinformatics, 22(9):1111-1121, 2006.

[62] Andreas Werner, Gabriele Schmutzler, Mark Carlile, Colin Miles, and Heiko Peters.

Expression profiling of antisense transcripts on dna arrays. Physiological Genomics,

28:294-300, November 2007.

[63] Brian Wilhelm and Josette-Renee Landry. Rna-seq: quantitative measurement of ex-

pression through massively parallel rna-sequencing. Methods, 48(3):249-257, July 2009.

[64] Brian Wilhelm, Samuel Marguerat, Stephen Watt, Falk Schubert, Valerie Wood, Ian

Goodhead, Christopher Penkett, Jane Rogers, and Jurg Bahler. Dynamic reper-

toire of a eukaryotic transcriptome surveyed at a single-nucleotide resolution. Nature,

453:1239-1243, June 2008.

[65] Yee Hwa Yang, Sandrine Dudoit, Percy Luu, David Lin, Vivian Peng, John Ngai, and

Terence Speed. Normalization for cdna microarray data: a robust composite method

addressing single and multiple slide systematic variation. Nucleic Acids Research,

30(4), 2002.

[66] Ming Zheng, Leah 0. Barrera, Bing Ren, and Ying Nian Wu. Chip-chip: Data, model,

and analysis. Biometrics, 63(3):787-796, March 2007.

[67] Sika Zheng and Liang Chen. A hierarchical Bayesian model for comparing transcrip-

tomes at the individual transcript isoform level. Nucleic Acids Research, pages 1-16,

May 2009.

102

