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ABSTRACT

Numerical experiments are performed with a highly simplified
model of the general circulation of the atmosphere in an attempt to
gain insight into the physical causes of the surface zonal wind dis-
tribution (and associated momentum convergences) observed in the
atmosphere. With the zonal wind constrained to be of the form

=i2 A 5 +3r2,1jr s (O. 5'Ti) capable
of non-linear interactions with a single wave in the x (zonal) direc-
tion in a two layer quasi-geostrophic model, numerical integrations
are performed for various magnitudes of the thermal forcing (of the
form rf. 'Ccos i ) and the rotation rate. Four broad categories
of flow are observed in the results: a Hadley circulation for suf-
ficiently low rotation or sufficiently high or low thermal forcing;
a west to east motion of the wave without change of shape; a "vacil-
lation" showing periodic changes in the shape of the wave; and an
irregular flow. Further subdivision of the results is made on the
basis of whether the surface frictionally influenced lower layer
shows an "earthlike" character in the zonal wind i.e. mid-latitude
westerlies flanked by easterly winds, or the reverse.

The introduction of the " i effect" into the dynamics of the
wave alters the pattern of the locations of the different flow types
on the thermal forcing-rotation rate plane and alters the qualitative
appearance of the flows moderately, mainly by inducing a greater con-
centration of zonally averaged momentum in the central regions of the
flow. For those regions of the thermal forcing-rotation plane where
the flow is not changed from one broad category to another the
induced changes are not very great in magnitude, however.



The momentum convergence structure of those flows which do not
exhibit severe violation of the quasi-geostrophic assumption, generally
those for moderate and low thermal forcing and moderate and high rota-
tion rates, are examined in some detail. It is found that many of the
salient characteristics of the atmospheric mean state, i.e. eddy momen-
tum transports into the central regions of the flow balanced by diver-
gence due to a thermally indirect mean meridional cell there, a central
maximum in the westerly flow in the upper layer and prevailing westerlies
flanked by -easterly flow in the frictionally influenced lower layer, are
reproduced in the model flows but that no single case captures all of
these characteristics at once. Some of the flows do show a majority of
the characteristics and show the highly simplified model to be capable
of a reasonably good representation of the general circulation within
its self imposed limitations.

From these results certain conclusions are drawn on the nature of
atmospheric flow; in particular a single baroclinic wave by its nature
incorporates sufficient dynamics to induce the zonal wind structure seen
in the atmosphere, or that the dynamic, effect of the many waves of the
atmosphere upon the large scale zonal structure may be considered as
equivalent to the effect of a single wave.

Thesis Superviser: Prof. Edward N. Lorenz

Title: Professor of Meteorology
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1. Introduction: The General Circulation

The problem of offering a physical explanation of the observed

distribution of mean surface winds over the globe, i.e. equatorial and

polar easterlies with the band of middle latitude westerlies between,

has long been a major preoccupation of meteorologists. And it is right

and proper that this should be so in that this distribution is intimately

related to the observed momentum balance and transport of the general

circulation as a whole. Any explanation of the surface wind distribution

will be equivalent to an explanation of the momentum transports and vice

versa. As the extensive observations of Starr and White (1954) clearly

indicate, such a surface distribution is required to be consistent with

the northerly momentum transport through a latitude circle 30 N (in the

northern hemisphere) and a similar transport southward of 300S (Obasi,

1963). But the question immediately presents itself: why not the other

way around? Why should there not be mean surface easterlies in middle

latitudes with corresponding higher tropospheric southward momentum

transports at 300N and similarly in the southern hemisphere? Numerous

investigators have attacked this problem from sundry view points; this

essay attempts to do the same by methods of numerical experimentation.

A philosophical question arises right at the outset of "explaining"

any observed physical phenomenon. Naturally if the equations that are

appropriate to the phenomenon are known, as they would almost seem to be

in the present case, one could argue that all that is necessary is to

point to them and say that there is the explanation - a complete mathemat-
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ical description is available, what more could one ask. Just integrate

the equations on a sufficiently large computer and look at the resultant

answers. And indeed they, the answers, look like the flow observed in

the atmosphere or the laboratory. This is of course rather unsatisfac-

tory; all that has been said is that the equations describing the flow

describe the flow. This is not to disparage the achievement that such

a description would be; its value in practical weather prediction would

be obvious and considerable. Its value as an explanation however is

another matter. In explaining the characteristics of the flow one would

like to be able to argue from the mathematics to the qualitative physical

cause and effect that the mathematics indeed describes quantitatively.

The approach to such an explanation is, of course, to ignore certain

physical phenomena incorporated in the original equations or to simplify

preexisting complete ones. The progression from Richardsonts attempt at

numerical weather prediction with its unrealistic results to the simpli-

fications inherent in the quasi-geostrophic equations, via the methods

of Charney's scale analysis (Charney, 1948) and more recently that of

Phillips (1956), is the example that comes most readily to mind. Although

the practical aim of Charney's work was also weather prediction with

relatively limited computational facilities, its fruitful by-product was

a much increased understanding of the physical processes inherent in the

atmospheric flows considered. Indeed the understanding engendered by

these studies of just what distinct physical phenomena the primitive

equations do describe and how in detail they do this, rather than the
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general statement that the equations describe the atmosphere, has made it

possible for Phillips and many others to return to the original equations

for numerical prediction purposes.

Such methods of more or less drastic simplification with consequent

neglect of some physical processes and spotlighting and clarification of

the effects of others have of course been characteristic of all theoretical

considerations of the general circulation, and similar laboratory circu-

lations.

One set of simplifications that has been most suggestive has been

that incorporated by Kuo (1951) in his studies of the stability of various

zonal flows represented by the linearized quasi-geostrophic equations

appropriate to a barotropic atmosphere and subjected to small perturba-

tions. In these studies the mean flow is disturbed by a small perturba-

tion of the form

where A(y) the amplitude and c the phase velocity may be complex and

A-1 proportional to the wave number is real; second and higher order terms

are then ignored, and the eigenvalue equation for the phase velocity, sub-

ject to appropriate boundary conditions, determines the conditions which

will result in amplifying, neutral or damped waves. Interpreting these

waves in terms of their resultant momentum (and energy) transports, Kuo

finds that for typical atmospheric conditions positive momentum (to the

east) is transported into regions of preexisting positive mean flow momen-

tum and conversely; i.e. the waves are damped, momentum is transferred
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from regions of low to high momentum, and the energy of the waves is

transferred to the mean flow.

The necessary conditions for the reverse process, amplifying

waves gaining energy from the mean flow and transporting momentum away

from momentum maxima, is that the absolute vorticity of the mean flow

o = - + , where is the relative vorticity of the mean

flow and f the coriolis parameter, somewhere has an extremum, i.e.

-r somewhere -- this condition alone is

sufficient for the momentum transport, and >0 in regions

of large mean flow and < 0 in regions of small mean flow.

These conditions would seem to occur only during times of strong jet

stream flow and so are less common than the stable wave case. Indeed

a condition of 70 is typical of the upper troposphere at

most times (except for jet situations) in that dominates the relat-

ive vorticity gradient. This of course is why the damped wave is more

common.

These results, suggestive as they are, are of necessity, just that.

Reasonably simple zonal flows of the type hypothesized are, in actuality,

mathematical fictions, highly useful ones but still fictions. Also, of

course, the use of linearized equations for disturbances that are, by

observation, distinctly finite and hence would have all sorts of nonlinear

interactions with the ambient flow, as well as with each other if more

than one disturbance was allowed at one time, limits the conclusions that

can be safely drawn to the mere beginnings of what might actually happen.
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For example, initially damped disturbances might well evolve into a

state in which they still transfer energy into the mean flow but tend

to spread rather than concentrate mean flow momentum. There is just

no telling. These limitations were of course, recognized in the con-

templation of the linear stability results and a different approach to

the same general problem was attempted by Platzman (1952) and a little

later by Kuo (1953) and by Lorenz (1953) also.

Platzman, considering inviscid incompressible planar flow,

obtains an integral for the second derivative with respect to time of

the space averaged kinetic energy of the flow with a finite single wave

disturbance. In the simple flow considered, such an integral when

positive implies a damped wave and conversely, hence it is a stability

criterion. The single wave considered does not allow for any momentum

transport, but the second time derivative of the latitudinal mean wind

can be found for special cases of the mean flow. In the cases investi-

gated momentum was transported in such a way as to strengthen preexisting

jets for both damped and amplified disturbances. These conclusions are

all reached even though 9 was set equal to zero. The flows and geometry

are rather specialized and their connection with the atmosphere are some-

what tenuous.

Kuo, employing this same approach, that of assuming a specifiable

mean flow with a finite disturbance or disturbances, and computing sub-

sequent changes, considers the flow on a spherical earth in two parts:

the interaction between the disturbances and the earth's rotation (the
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effect), and the disturbance-mean flow interactions. Again, as in Kuo's

previous work, the flow is considered nondivergent barotropic and hori-

zontal. The effect of the earth's rotation is to cause a tendency for

northward momentum transport over the whole northern hemisphere except

for the possibility of southerly transport in the northern reaches and

this is true for any number of arbitrary wave forms considered separately

or in concert. The disturbance-mean flow interactions, disregarding the

earth's rotation, are of such complexity as to require consideration of

particular disturbances and particular mean flows. For a selection of

these, chosen to resemble observational flows, the momentum transport

tendencies are quite similar to actual momentum transports measured in

the atmosphere, i.e. there is a large maximum of northward transport at

300N and an order of magnitude smaller southerly transport maximum around

600 or 70*N.

Finally Lorenz, returning to a nonrotating coordinate system,

while retaining the barotropic nondivergent flow restrictions, has

obviated the necessity of considering particular mean and disturbance

flows in studying the energy tendencies arising from their interactions,

by dealing with the ensemble of all random disturbances with arbitrary

mean flows. Rather than selecting particular flow patterns, one specifies

the statistics of the ensemble of flows, which latter procedure allows of

considerably more generality than the former. The conclusions drawn

indicate that random disturbances are capable of maintaining the mean flow,

at least in so far as the energy tendencies imply. Whether they actually
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exist and do such maintenance work cannot be answered. Kuo's work would

imply that nonrandom disturbances similar to observed patterns can account

for the maintenance of the observed mean flows.

These two sets of simplifications, in the gross sense, the study

of perturbation instabilities and nonlinear energy change and momentum

transport tendencies, have both pointed at in the same direction - a most

heartening result. Both have pointed up the importance of barotropic

flow and its relation to the rotation of the earth, or more exactly to

the variation with latitude of the vertical rotation component, in the

transport of relative angular momentum into middle latitudes from the

south and perhaps also from the north. The conservation of angular momen-

tum for the whole earth atmosphere system will necessitate for consistency

that the region of momentum convergence be characterized by a frictional

loss to the earth by westerly surface winds, and a gain in the momentum

divergent regions. In a study of baroclinic stability Kuo (1952) finds,

among other things, that baroclinically unstable waves, bearing a resem-

blance to observed waves, do transport momentum downward from regions of

high to low momentum, at somewhat less than the rate required by continuity.

In a later study (Kuo, 1956) he finds, also, that there exists a forced

mean meridional cell in the region of eddy momentum convergence which

induces momentum divergence there due to the rotation of the earth. This

divergence serves to partially balance the convergence and reduces the

amount of momentum which must be transported downward ageostrophically by

the baroclinic waves. This rounds out the momentum cycle as implied by

the stability and tendency studies.



-8-

Another type of simplification of the most general problem, one

that has and continues to bear much fruit, is that of modeling the

vertical structure of the atmosphere by various layers, rather than

maintaining a continuous structure. One of the simplest such models

has already been discussed by implication - the barotropic model used

by Kuo in the stability studies alluded to previously. A large number

of such models exist, capable of varying degrees of resolution on the

vertical, and designed for various purposes: day-to-day weather predic-

tion, theoretical studies and general circulation studies of a numerical

nature; the two latter uses are of the greatest present interest.

The theoretical study by Phillips (1954) using the Charney-Phillips

"2k dimensional" two layer plane model (Charney and Phillips, 1952)

initially considers exclusively baroclinic instability with initial zonal

velocities independent of y . Phillips uses the wave with maximum ampli-

fication rate to evaluate terms in the nonlinear tendency equations analo-

gously to the work of Platzman, Kuo, and Lorenz above. The initial assump-

tion of no latitudinal wind variation (initially) eleminates any perturba-

tion vorticity, or momentum, being advected by the perturbation wind field

although thermal effects are observed. However the tendencies do indicate

a modification of the lower layer wind field (exactly compensated for by

one of opposite sign in the upper layer thereby eliminating the possibility

of any net transport of momentum across latitude circles) such as to induce

westerly winds in mid latitudes and easterlies at the northern and southern

extremes.
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Charney (1959) carried this same approach a step further using

the same model with the addition of heating and frictional dissipation.

He computed the steady state symmetric flow, the Hadley circulation,

appropriate to the forcing assumed. For a small wave perturbation the

conditions for instability are ascertained by finite difference approx-

imations; and the most (and next most) initially unstable perturbation

was allowed to grow until a steady state condition resulted in which

the rate at which the perturbations gained energy was just equaled by

the rate at which they lost energy by radiation and by Reynolds stresses

to the surroundings and to the now modified mean flow, respectively.

The form of the steady state mean flow is seen to bear a gross resem-

blance to the atmosphere with middle latitude westerlies and easterlies

at the sides. This is similar to Phillipst results. However the upper

level flow, in Charney's model, is not just a mirror of the lower but

has a strong westerly maximum in mid-latitude of about ten times the

surface wind at that latitude. The easterly flows at the northerly and

southerly sides are about three times the associated surface flow. The

flow for the next most unstable eigenmode with a time constant or ampli-

fying factor only about 2% smaller than the most unstable mode, however

is very definitely not reminiscent of the atmosphere. The surface winds

have the same east-west east character but the upper flow shows strong

westerly winds at latitudes where easterlies were before and a weak easterly

flow over the central latitude. Recent studies of barotropic flow stab-

ility (Haltner and Song, 1962) would indicate that these two flows charac-

terized by single and double maxima tend to be unstable with respect to
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small perturbations and the tendency of the perturbations is to induce

the one from the other. This possibility was excluded from Charney's

work by his steady state assumption for the fully developed perturbation.

The possibility however of such markedly dissimilar flows arising

from such apparently similar initial perturbations tends to give one

pause for there can really be no assurance that the initially most stable

or even next most stable mode will be the dominating one at a later time.

The resolution of this problem can only come by experimental

approaches. The first and most famous of these is that of Phillips (1956),

in which the equations whose stabilities were considered in his earlier

paper were integrated numerically. Initially Phillips allows a symmetric

circulation to grow uninfluenced by any eddies, perturbes it randomly and

allows the unsteady eddies to grow to finite amplitude. In the earlier

stages the resultant "weather" map looks quite similar to the contour map

appropriate to Charney's steady state solution resulting from the initially

most unstable eigenmode. The computed lower level mean zonal wind also

bears resemblance to Charney's wind. However it is not until a later stage

of the computation, a stage at which the kinetic energy of the perturba-

tions remains at an almost constant level, that the jet-like character

including high and low latitude easterly winds, shows up in the upper winds.

One would argue from this that the most unstable mode, the one presumably

first to be seen in the computations, is indeed the one that remains estab-

lished in quasi-steady fully developed flows. However in Phillips computa-

tions the finite difference computational instabilities became predominant

L
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shortly after the quasi-steady state was reached and the experiment ceased,

so this presumption cannot be verified.

Regardless of whether the particular eigensolution or more exactly

the collection of solutions observed, would have been those of a true

steady state solution, the results are of course most significant. In most

general terms they say that the rather extreme simplifications inherent in

the two level quasi-geostrophic prediction equations and the also highly

simplified heating and friction effects used, still leave one with a model

that can and does describe the large scale features of the observed atmo-

sphere. The suggestion that such simplifications would bear fruit even in

their extremity arose of course from the work that went before, partially

outlined here, but the verifying of them, showing that such a set of ab-

stractions from reality were or included the right abstractions was the

major import of the paper.

The way would seem open for extensive studies of the details of

the atmospheric circulation: bigger and better (but never quite big enough)

computing machines will allow for more and greater detail. The direction

in which these studies seem to be tending is one away from the simplicities

incorporated in the prior general circulation work. Smagorinsky's (1963)

integrations for example employed the primitive equations in a two layer

model; projections for further work envision multilayered models with

incorporation of condensation and evaporation as heat sources and sinks,

more realistic details of turbulent energy transformations and transfers,

interactions with the sea and land surface, both thermal and frictional,
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and a host of other physical effects known or suspected to have a signi-

ficant influence upon the general circulation. The rational for this is

obvious. When the computations can reproduce the atmosphere closely

experiments within the computations will take the place of perhaps

unfeasible and presumably undesirable physical manipulation of the

environment.

This tendency to eliminate simplification, though valid for the

ends envisioned, does seem to be tending away from the hope of a physical

explanation for the large scale features of the atmospheric flow. The

very fact that the equations of motion reproduce the flow is taken as

sufficient explanation of the flow. The other direction remains open

however, that of making further simplifications, going beyond those

employed by Kuo and Phillips in an effort to further bracket the physical

causes of the large scale features of the flow.
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2. The Ultimate Simplification of the General Circulation

The method of the present study, as suggested above, is to extract

from the equations appropriate to describe all characteristics of atmo-

spheric flow that portion which is sufficient to describe the gross fea-

tures of the general circulation of interest, i.e. the east-west-east

alternation of the surface zonal wind and the associated momentum conver-

gences. To this end a hierarchy of simplifications are introduced until

such time as it becomes obvious that further ones will eliminate even the

possibility of successfully representing the desired elements of the

circulation.

I. The Quasi-Geostrophic Model in Two Layers

The initial simplification represents a very large step but one

which has been taken many times in the past and hence through familiarity

holds few terrors. It is to represent the atmosphere by a two level

quasi-geostrophic "numerical weather prediction" model. The model selected

is one by Lorenz (1960b), a model that allows for variations in the static

stability of the atmosphere, an effect which would seem important in the

study of the development and character of large scale flow characteristics.

In this model the stream function for the nondivergent part of the wind is

taken as 9 ' and ' - t in the upper and lower layers respectively,

the potential temperature as + c' and S-G9 in those layers and

the velocity potential for the divergent part of the wind as -1( and

With f the coriolis parameter, C p the specific heat of air at constant
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pressure, "J" indicating a Jacobian in any as yet unspecified coordinate

system, the equations for the model become

C ( =r ' k?+ (2)

C)

at (3)

_"Y (tr) 4JI\ , 0)V+Ve V ok. (4)

6 , L1 IV V o (5)

b is a factor arising from the pressure differencing in the model, and

t is the time.

Equations (1) through (5) are respectively the vorticity, the

"thermal" or "shear vorticity", adiabatic, static stability and thermal

wind equations, and form a closed set. Lorenz shows that this set properly

describes the energetical relationships between potential and kinetic

energies, available potential energy and gross static stability, and would

seem to be about the simplest numerical prediction scheme capable of so

doing.

Obviously before equations (1) - (5) can be used in any simulation

of long term atmospheric flows some form of heating and frictional dissi-

pation must be appended. In this model they are expressed in about the

simplest form possible. The heating and static stability forcing are

taken as proportional to the differences between the actual values and
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some constant preassigned values denoted by ( and Qr respectively.

The dissipation is taken as proportional to the flow in the lower layer

and there is also a frictional drag at the interface between the two

layers proportional to the shear, T , at the interface. The constants

of proportionality for the heating and static stability forcing are

denoted by h" and the ground and interface frictional coefficients by

A" and I" respectively. Under this notation the frictional and

thermodynamic terms to be appended to equations (1) to (4) are:

t(2')

(3t)

- (4')

One further modification is introduced into the model: rather than keeping

the detailed structure of the static stability at all times it is smoothed

out by an appropriate horizontal average and this horizontal average static

stability replaces CT in equations (3), (4) and (41). The resulting set

of equations is identical to that studied by Bryan (1959) and similar to

that studied by Lorenz (1962).

A possibly significant dynamic effect has been ruled out by the

approximations introduced to date. There can be no ageostrophic transport

of momentum by any meridional cells. The latter can be inferred to exist,
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in a nongeostrophic sense, by study of the field of '\ , or better 7
proportional to the individual pressure derivative, but their contribution

to the momentum balance of the atmosphere is not recognized by the model.

Making a model which was capable of reproducing this effect would so greatly

unsimplify the study as to obviate the main point of the work. In working

with the quasi-geostrophic model as defined by equations (1) through (5)

it is perfectly possible to force circulations, via (3?), in which this

effect would be important if it were incorporated. The expressions which

would describe this effect and, if appended to equations (1) - (5), would

transform them into the so called "balance equations" are, for

and for

Vt (2")

A term of similar complexity (not however involving ) must be appended

to (5) for energetic consistancy, c.f. Lorenz (1960b). Since these balance

terms are not included in the model forced flows in which any momentum

transports (and energy transformations) by this mode are as important as

other modes could not be modeled properly and any quasigeostrophic model

flows in which the balance terms could be inferred to be important if they

were included would be of questionable significance.
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The choice of a coordinate system with appropriate boundary condi-

tions and appropriate means of dealing with the coriolis parameter is

deferred until after consideration of the next major step in the simpli-

fication procedure.

II. The Spectral Form of the Model

This next step is to express each of the variables in equations (1)

through (5) as a sum of a series of orthogonal functions of space as done

by Lorenz (1963b) the form and number of which will be selected as appro-

priate to the coordinate system and degree of detail in the representation

desired. General statements about the set of functions can be proffered

however. Denoting the set by Fi the following requirements must be ful-

filled:

where L is a constant with dimensions of length and the a are the

eigenvalues. On any boundaries the tangential derivatives, denoted by

4 Fz 0: (7)

d s
We also require F = 1 hence a = 0. As a consequence of the ortho-

gonality and normalization of the functions

.i -- (8)
v0 i *i 0

where the bar represents a horizontal average.
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The jacobian of two orthogonal functions can itself be expressed

as a series thusly

Co

L. T(j pg - cig V (9)

where

Cij L F (10)

Cijk can be interpreted as the coefficient measuring the effect upon F

of the nonlinear interactions of F and F k. Certain relations among

the Cijk's follow directly. From (10)

cijk -Cirg (11

By integrating (10) by parts and taking note of (7)

Cij= Gjfd = CRij

The variables are then expressed thusly:

o1

- (14)
t:j

C0= L cb~(15)

~ Lfc~' i~(16)
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The boundary condition, (7), which states that the flow of the nondiver-

gent wind across any boundaries is zero is not correct for an expansion

of S similar to these for 9+ 't etc. Instead we shall employ

00

(17)
ti I

In this set of expansions f is a constant with dimensions of

inverse time shortly to be related to a constant coriolis parameter and

CF is the horizontally averaged static stability. The coefficients

S , Qi , C~ and \iJZ are nondimensional where we have non-

dimensionalized with respect to the length L and time f~ .

Before the expansions can be substituted into the governing equa-

tions as they are now written some specification of the coordinate system

must be made for purposes of specifying the constant "f" appearing in the

expansions. Again with an aim of introducing as much simplicity as possible

we will settle upon a horizontal coordinate system, as opposed to spherical

for example, with constant f but reintroduce later the terms necessary

to add the " 9 effect" to the stream function equations if this seems

desirable in the light of the later investigation.

Since the assumption of a horizontal average static stability causes

the second jacobian term on the right hand side of equation (3) to drop out,

the third term there to become -r , while equation (4) becomes

simply
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substitution of the orthogonal expansions into the governing equations and

setting equal coefficients of like orthogonal functions result in

co

5,4 C~i i+ (T - tf'T (18)

31

i -lk (20)

-T 0 + -f wQ~ (21)

and

(22)

In equations (18) through (21) the dot indicates the derivative with respect

to the dimensionless time ft and the friction and thermal forcing terms (1')

through (4') have been included with the coefficients 1" j,"? and h' non-

dimensionalized with respect to f ; i.e.

The forcing terms and Yr have been expanded in a series exactly corres-

ponding to 9 and < the expansion for the latter consisting of but one

term. These equations (18) - (21) with the identity (22) are the spectral

form of the two layer model.
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III. The Truncation of the Spectral Expansion

The last major step in the series of simplifications is to truncate

severely the expansions for the variables, following the method introduced

by Lorenz (1960a) keeping only the minimum number of terms needed to repre-

sent the large scale flow in at least an analogous way. Since the ability

to at least characterize the general circulation's largest scale flows is

desired consideration must also be given to the details of the coordinate

system and the eigenfunctions, Fi , for that system. From the point of

view of the spectral equations (18) - (21) however, the actual form of the

F 's is of no direct concern. The functions enter in these equations via

the eigenvalues ai and interaction coefficients Cijk only. Hence if

different coordinate systems with their associated eigenfunctions give rise

to the same a ts and Cijk's the spectral equations would apply equally

in either coordinate system. On the other hand if the use of one coordinate

system resulted in a whole class of interaction coefficients being equal to

zero while another did not do so one would be tempted to prefer the latter

on the basis of physical consistency. Maximum physical simplification is

the aim of the present method of study but it would seem inconsistant to

achieve such simplicity solely on the basis of the selection of a particular

coordinate system. One would hope to have physical processes that are in

a sense invariant under coordinate transformations. This should be a cri-

terion in the selection of a coordinate system.

Two choices of coordinate systems seem to present themselves in the

light of the previous assumption about the constancy of the Coriolis para-
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meter, still allowing for the k effect if desired. The one would be

a cylindrical system, analogous to the rotating dishpan experiments

(Fultz et. al, 1959) and used by Lorenz (1962), for which the F would

be Fourier-Bessel functions, and the other a simple cartesian system in

which a double Fourier expansion would be appropriate (Lorenz, 1963b).

In either case the truncated expansion should be capable of representing

the two predominant modes of zonally averaged surface flow observed upon

the earth. One of these is a flow of westerly (or easterly) winds

throughout the region and the other is easterlies in low latitudes,

westerlies in mid-latitudes and perhaps easterlies in northern latitudes

as well. In any given case the observed flow would be a combination of

these two modes together allowing, for example, the westerlies to be

stronger than the associated easterlies. The simplest possible disturb-

ance of the zonal average would be a single wave capable of interacting

with either or both of the two zonal modes of flow. The existence of two

zonal modes allows for barotropic instabilities and horizontal momentum

transport by the wave which can assume an asymmetric shape about longitude

lines. This would not be possible if only one zonal mode were allowed as

was specified by Lorenz (1962) in his study of baroclinic instability with

equations appropriate to the rotating dishpan.

If we settled upon a cylindrical coordinate system the simplest set

of normalized orthogonal functions appropriate would be (cf. Lorenz, 1962)



-23-

a (i2 ~ T1 (f~-)Cos 0

42- (111 T, (01 1r S Lnt

Fs J- Fa o' (jln T, (, -r~) Cos.0

where Jn is the Bessel Function of order n, jnm is

the equation Jn = 0 and T ( T is the normal

nondimensional dishpan..

(23)

the mth root of

ized radius of the

On the other hand the appropriate functions for a cartesian infinite

strip are

IF3 =2. S ~x

VA4, F2ior- COS *
YYn. > I

In (24) x and y (nondimensional) vary from 0 to J , hence L-=.

with w the length of a side of the (square) region; k represents the

wave number of the single allowed x-direction wave. In both (23) and (24)

the coefficients of the transcendental variables have been chosen so that

the average value of Fi2 equals unity. F and F , hereinafter refer-

(24)
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red to, along with their respective E', T (, and [ expansion

terms, as FA and FC , represent the zonal flow whose structure is

determined by m while F2 (=K) and F3 (= FL represent one mode

of the superposed wave and F5(= FM) and F6 (= FN) is the other mode

of the wave.

The specification of the zonal flow structure via "m" is, as it

turns out, not unrelated to the choice between these two orthogonal sets

(23) and (24), however a few preliminary remarks can be offered here.

It would seem apparent that the choice of m would be between the values

2 or 3, higher harmonics would be superfluous. m = 2 would describe a

simple alternation of flow in the north south direction with westerlies

in the northern half of the region, easterlies in the southern half or

conversely. m = 3 would represent the easterly-westerly-easterly alter-

nation that is familiar from observations of surface and lower tropospheric

winds. The use of m = 2 would not necessarily be an unrepresentative

choice however; it would be equivalent to representing the wind flow from

the equator to 60 N or so, rather than the whole hemisphere. Delaying

further consideration of which m is more appropriate we shall turn to the

coordinate system choice.

The selection of one or the other of the two orthogonal sets depends

upon their respective Cijk . Consideration of (10) indicates that if any

of the i j or k are equal Cijk = 0 . (12) states that circular permu-

tations of Cijk are equal. Since we have six functions to select from,

the number of Cijk possible is the number of circular permutations of 6
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taken 3 at a time, which is 40. Because of (11) half of these are but

negatives of the other. Hence we have 20 Cijk to evaluate and consider.

This reduction from 40 to 20 is equivalent to requiring the double sum-

mations of equations (18) - (20) be made only for k>j and dropping the

"}'s" from those equations.

It is easy to show either by inspection or actual evaluation that,

regardless of which coordinate system is selected, 12 interactions coef-

ficients will be identically zero, either because they measure the

"interaction" of FA and FC , the two zonal components, or because

they fall out during the zonal averaging over X (o'' V) . The eight

remaining coefficients are, using the new AKLCMN subscript notations,

CAKL C^MN )CC RN CCLUM

CeK , CC.Mv CA,V CALM

Also irrespective of the coordinate system, the eigenvalues

GL Q, = .

Further reduction of the number of coefficients, however, can occur

depending upon the selection of m and the orthogonal expansion set.

Consider first the case m = 2. If the Fourier-Bessel expansion is

selected then all eight coefficients remain as written. However if

the Double Fourier expansion is employed the second row of Cijk above

CCKL , CMN , CAKN and CALM all equal zero, a fortuitous result of

the y averaging. A number of rather undesirable, for present purposes,

2
results accrue. For one, as a consequence of the equality of the aK
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and aL2 eigenvalues, all the nonlinear contributions to T are

washed out. This elimination of a physical processes occurs only

because of the coordinate system choice and therefore violates the

suggested criterion of physical invariance under coordinate trans-

formations. Also, of course, the other physical processes represented

by the various permutations of the subscripts of the eliminated Cijk

are likewise removed from the equations. Most important, however, is

that in the full set of equations (see Lorenz, 1963b) certain symmetries

occur such that (numerical) solutions with all variables with subscripts

C, M and N replaced by those of opposite sign will be identical to the

solutions with the original CMN variables except for the sign of those

variables. Thus the equations allow of two equally probable solutions

identical in all respects but for the rather large difference that the

ttclimate", in particular the zonally averaged winds for an observer at

a particular latitude, will be radically different in the two cases.

In that this particular aspect of the climate is of primary interest in

this work it would seem advisable to avoid this particular mode of repre-

sentation in which the wind direction can be arbitrarily specified by

a simple manipulation of the initial conditions.

On the other hand setting m = 3 and using either the Fourier-

Bessel or Double Fourier expansions leaves all eight Cijk intact and

eliminates the symmetries that give rise to the equal probability two

climate solutions. This does not imply however that more than one

solution, dependent upon various initial conditions, is not possible
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either with *n= 2 or 3. Such multiple solutions would not necessarily

be equally probable in the sense that the m = 2 two climate solutions

are equally probable. By this it is meant that a wide range of initial

conditions would lead to or be a part of one numerical solution while

another distinct solution could only be achieved by specifying initial

conditions in a relatively restricted range, if such a second solution

existed at all.

On the basis of the physical consistency and representativeness

arguments above we would seem to be left with a choice of three possib-

ilities: the Fourier-Bessel expansion with m = 2 or 3 or the Double

Fourier m = 3 options. The choice of one of the m = 3 options has the

additional attractions that it can suggest a structure of the wind field

with a distinct maximum in the center of the region as well as leading

to a representation of the whole hemisphere. Also a three cell merid-

ional flow pattern will be representable. Since the physical effects

represented by the equations are essentially the same in either case we

shall settle upon the somewhat more representative m = 3 case. As between

using the Fourier or Fourier-Bessel expansions there seems little to

indicate a preference of one over another; we will settle for the Double

Fourier expansion (24) principally on the basis of the resultant ease

in computing the Cijk '

The selection of m = 3 for the Double Fourier expansion marks the

principal departure of the present study, as far as the formulation

of the model goes, from the study by Lorenz (1963b) of the mechanics of
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vacillation in which m = 2. In that study the symmetries in the equations

which lead to the " two climate" solutions were of no consequence while here

such a possibility had to be avoided. Furthermore although the formulation

of the models in both the vacillation and present studies are along similar

lines one should not anticipate that the numerical solutions will bear any

but the grossest similarities to one another as the details of the final

equations are quite different.

For the Double Fourier expansion with m = 3

c = C AMN - 27 C2A

2 7 2./:E2 (25)

C 1,, L - C A Pl -7 c. c c 'c 7 --C CLY

Defini
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the equations of the model, (18 - 21) with
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In these equations the effect has been readmitted to the

and C equations, in effect making the plane approximation.

is here nondimensionalized by the factor

The nineteen equations (28) - (46) can easily be reduced to

thirteen equations by the elimination of the , terms.

These thirteen equations and their performance in representing the

gross features of the general circulation will be our concern hence-

forth.

IV. Commentary: Momentum Convergence, Energetics and other Details.

A number of auxiliary formularepresenting certain familiar

atmospheric processes, should be noted. One of obvious importance to

the present study expresses the change of zonally averaged momentum due

to various forms of momentum convergence. We shall, for later compari-

son, include the convergence terms arising from the implied meridional

circulations, given by the balance equation terms, (1") and (2"), and

enclose them in curly brackets. If square brackets are taken to indi-

cate the zonal average of a quantity over one or more wavelengths,

a prime the deviation therefrom and a subscript a partial derivative,

it is a straightforward operation to show that the equation for the

change in zonal momentum per unit mass for the upper layer is

(47)+

+ X X~'



-32-

and for the lower layer

(48)

These expressions can be cast into a more familiar form by inte-

grating from y = 0 to y and noting from the definition of the stream

function

-~ (yJtt~(49)

in the upper layer and

L -. 4- -c) (50)

in the lower. Also 1A =- and A 1s' -7 (51)

Before the integration can be carried out we must give some consider-

ation to the boundary conditions at y = 0. Anticipating the substitution

of the expansion formulae (24) into the ultimate mean momentum equations we

see that all but the following two integrated terms will be identically zero

at y = 0:
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The difficulty with these terms arises because is defined

in the expansions only in terms of , hence there can be no

assurance that it is zero at y = 0. However since is a

measure of the northward component of the divergent part of the wind it

would seem consistant with the previously specified boundary conditions

relating to the nondivergent wind field, i.e. % 0 at y = 0, to

set it equal to zero at y = 0 as well. This assumption does not enter

into the dynamics of the quasi-geostrophic model in any way as only

appears in those equations.

Performing the integrations, substituting from (49) - (51) and

rearranging the terms somewhat results in

4 andu] £)l U] (52)

and
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The interpretation of these terms is straightforward. In both

(52) and (53) the first terms on the right represent the momentum

convergence by horizontal eddy transports, the second the transport of

the earth's angular momentum by the mean meridional cell, the third

the vertical interchange of momentum by friction and the fourth term

in (53) the frictional momentum transfer to or from the surface.

Within the curly brackets the first two terms express the ageostrophic

momentum convergence arising from the implied mean meridional circula-

tion, the first being the horizontal transport within each layer and

the second the vertical transport of the vertically averaged mean

zonal wind. The second two terms represent essentially the same effects

except the eddy meridional circulation and eddy momentum are involved.

Substitution of the expansions (13), (14), (17), (24) (m = 3)

and performing the x averaging is straightforward. In the expression

for -[U . -v] the y dependence is of the form (cos2y - cos4y),

o - 'f T . To afford direct comparison with the dynamic equations

this expression is expanded in a sine series and the first two terms

only are retained. The final form of the terms for the upper layer are

- U /Lr - 511 VI s-
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The terms for the lower layer can be deduced by inspection of the upper

layer terms without difficulty.

The truncation of the spectral expansion causes something of

a distortion of reality in connection with the momentum balance of the

model. In a steady state or time averaged flow, by definition, the

rate of loss of momentum to the "ground" by friction in one latitude

band is exactly compensated by a gain in some other band such that the

net momentum flux averaged over x and y (and time) is zero. In

that the zonally averaged velocity in the lower layer where ground

friction acts is a combination of the orthogonal components

tLand l~. c)s % jone might

anticipate that the condition for no net flux of momentum to the ground

would be that the y averages of u and u be equal and of opposite

sign, or that (A" - T, - -(4- Cc) . However the severity of the

truncation prevents this from happening. The dynamic consequence of no
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net flux of momentum is that the zonally averaged wind averaged in the

vertical is constant in time i.e.

K=W = 0(59)

Incorporating (59) into equations (28) and (31) and eliminating the

, etc., terms we obtain

as the condition upon the "surface" (frictionally influenced) winds

corresponding to no net momentum flux. Equation (60) besides being

important for its own sake is also useful in specifying whether a steady

state has been reached in any given numerical computation, or whether

a time average of a varying zonal flow is representative of the true

mean flow.

Another set of physical quantities that are modeled are the

various forms of energy familiar from atmospheric studies and their

modes of interchange by various dynamic processes. In the truncated

model the appropriate forms of the zonal average kinetic energy K

per unit mass and the kinetic energy of the wave disturbances K' per

unit mass are respectively in nondimensional form

-(. (61)

IC/L~ ~ ( c4 ~ +'~ z1Z z~j* (;~ zs~i)(62)

h1 q +Z
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while the spectral forms of the mean available potential energy A per

unit mass and eddy available potential energy At per unit mass are,

nondimens ionally

(63)

(64)

It is easy to show, by substitution of equations (28) - (39) that

o (65)

if the friction and heating coefficients are temporarily set to zero.

Expression (65) shows the equations of the model to have a proper energy

integral conserving total energy in the absence of friction and heating.

By looking at the detailed form of (65) with the dynamic equations

(28) - (39) substituted (and the friction and heating not set equal to

zero) one can identify the terms which appear, say, in . and

- with opposite sign and specify them as the energy interchange

terms appropriate to the spectral model. Also the rate of energy gain,

or loss, from the heating and friction will be expressed in appropriate

terms. Employing the notation employed by Phillips (1956), where TeO BI

stands for the time rate of energy conversion from form A to form B

(all nondimensionalized), we have

T- (66)

... '0z'. ~ 4 w (67)
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- TA\4, V--, (6 " ,)

In these expressions Q represents the thermal source (or sink)

of available potential energy restricted to LAonly and F the fric-

tional sink of kinetic energy. Figure 1 summarizes equations (60) - (73)

in an energy flow diagram. In Fig. 1 the boxes represent the dynamic and

thermodynamic energy forms and the arrows are drawn as though all the

energy interchanges were (arbitrarily) positive.

Q A- K'. K

Fig. 1. Energy Interchange Diagram
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As with the momentum equations these energy formulae will be of

obvious use in the analysis of the behaviour of particular numerical

solutions of the dynamic equations.

In investigating the numerical solutions it turns out to be con-

venient to make a change of the coordinate system. As written in equa-

tion set (24) the waves are viewed with respect to a fixed coordinate

system. For present purposes a more useful system is one that moves

with the first mode wave, the FK, FL wave. The variables in the new

coordinates, indicated by primes, are defined by the following equations

(74)

TK7114 ~ 4 ~I ~ _____

M 41. 2T __ _ __ _ _

The principal reasons for the introduction of this new coordinate system

are for ease of recognition (in the computed results) of particular regimes

of flow and to make averages of time varying flows meaningful. In the

fixed system a time average of a steadily progressing wave would be equiv-

alent to a zonal average and hence zero. This complete elimination of

the wave in the averaging is avoided by presenting the computed results

in the moving coordinates.

The method of numerical integration employed is the same as that

used by Lorenz (1963a), and Bryan (1959), a double forward differencing
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scheme. Letting Xn stand for the set of variables at time nAt ,

At the time increment, the equations to be integrated can be summa-

rized by

xz (75)

Introducing the auxiliary definitions

(76)

the double forward differencing is defined as

or by substitution of (76)

_2L (77)

Lorenz (1963a) has shown for equations similar to the ones

considered here, that this scheme is not computationally stable but

that the degree of instability is strongly dependent upon At . A

solution to the conservative ( h = = = 0 ) equations will event-

ually blow up. However if the nonconservative equation, set is employed

and At is sufficiently small the effects of the instability (an increase

of the kinetic and potential energies in the system) will be equivalent

to a reduced dissipation rate and no damage will be done. The selection



-41-

of an appropriate value of At is made essentially by a cut and try

method; too large a value is immediately detectable in the numeric

results (generally the numbers get, rapidly, too large for the machine

to handle), too small a value, although not causing any instability

will result in the necessity of inordinately long computations. As a

practical matter a At which results in a period of at least twenty

time steps or more, in the shortest of any periodic or quasiperidodic

computational result, seems adequate to the task.

V. Summary: The Simplified Representation

For purposes of review and summary we shall consider how this

highly simplified characterization of the atmosphere is capable of

representing, in gross qualitative form, many of the more prominent

features of the general circulation of present interest.

Starting at the "ground", the surface friction influenced lower

layer, we have noted in some detail how the zonally averaged lower layer

winds, described by - and - in concert,

can represent the familiar easterly-westerly-easterly variation with

latitude ( >0 , cI <O) or the reverse. The former we shall call

an "earthlike" regime, the latter "non-earthlike". Also, as noted, in

a steady state or the time average of a varying state of flow the ratio

of Y9 to -We5 would equal 7/9; this would be true whether the flow

was earthlike or non-earthlike.
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Another prominent feature representable in the model is the

increase of westerly winds with height, the thermal wind, and in

particular the formation of a mid-latitude maximum in the zonal mean,

analogous to a climatological jet with its maximum intensity near

the tropopause. The existence of an increase of westerlies with height

is more or less required in the model by the quasi-geostrophic approx-

imation and the thermal forcing upon the temperature, but the concentra-

tion of the flow into a central maximum is not inherent in the initial

simplifications. For example given, in a steady or average state,

X , I < , then 20, O, 0 <O < <0 would

represent an increase of westerlies with height and also a tendency for

the increase to be concentrated in mid-latitudes, However if >O

and the other terms unchanged, the tendency would be for the westerlies

to be spread latitudinally in the upper reaches of the model atmosphere,

an effect not characteristic of the real atmosphere. Further a configu-

ration such as '> Yc > 0 would represent not only a spreading of

the westerlies with height but an actual tendency for a double maximum

with strong westerlies in the polar and tropical regions, a distinctly

non-earthlike regime of flow.

Of major interest in this study is the structure of the momentum

convergences in various regimes of flow because of their interrelation

with the pattern of the lower layer zonal flow and the upper layer flow

as well.
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Finally, as detailed in the previous section, the energetics of

the atmosphere are modeled by the various energy interchange terms sum-

marized by Fig. 1. Of particular interest, among other things, will be

the sign of the term {AN F 1 , the energy conversion brought about

by the mean meridional cells. Interest has centered upon this term for

some time in meteorological research as opinions of its importance in

the energy cycle have waxed and waned. Consideration of its importance

in the model energy cycle is obviously in order. Also of interest will

be the relative magnitude of all the energy terms in selected cases as

a qualitative description of how the model works, in a quite literal

sense.
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3. Solutions to the Equations

I. A Simple Analytic Solution: The Hadley Flow

Owing to the extreme simplifications introduced, the steady sym-

metric or Hadley flow, familiar from the rotating dishpan experiments,

may be attained analytically for any numerical values of the forcing

conditions when the thermal forcing is restricted to only the )9

term. For this flow we require that all the wave coefficients

etc. and all the time derivatives be zero in equations (28) - (46).

The wave coefficients will then at all times remain zero and equation

set (78) remains:

'kA CA

2. (78)

Solving in terms of

\V ~ (79)

an TP rA

and T^ is the single positive real root of the equation

73-A ~L )J _6 0 J~ kX) L. )q-'AX
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The Hadley flow solution of (79) is essentially the same as that

obtained by Lorenz (1962, 1963b); the differences originate in a slightly

different formulation of the temperature and temperature forcing fields

which do not alter the physics of the solution. That the solution is

the same as those obtained previously even though the complete sets of

equations from which the Hadley solutions are drawn are quite different

is not too surprising; the main reason is the restriction of the thermal

forcing to the C term alone.

As Lorenz (1962) pointed out when discussing the Hadley flow perhaps

the most striking feature of this solution is the ease with which it was

attained while it still contains features reminiscent of much more general

solutions. The surface flow - is identically zero reflecting the

requirement that there be no net frictional accelerations in the steady

state flow.

The momentum convergences are easily written down for the Hadley

flow: from (52) and (55 - 58) the upper level convergence equation is

C) 
- -- 51 (80)F2t \A/L -

2  A Siij V2L ALAp -1' (80)

where again the bracketed terms are the balance equation momentum terms.

Incorporation of (79) shows that the geostrophic convergence terms balance

exactly while the balance terms do not. A measure of the relative importance

of the balance terms may be made by forming the ratio of the sum of the

balance terms to either of the geostrophic terms. This ratio is of the
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order of '4' , hence the magnitude of 4.P determines the validity

of the geostrophic assumption made in neglecting the balance terms in

the dynamic equations.

This observation can be cast into more familiar terms by noting

that for the Hadley circulation the maximum vertically averaged zonal

velocity is given by

vt = LfJI +PA

and recalling that the Rossby number R is customarily defined as

the ratio of a characteristic velocity of the fluid to the absolute

rate of rotation. Hence

o R A (81)

and the previous observation that Y4 A be small for quasi-geostrophic

validity is equivalent to the familiar requirement that the Rossby number

be small.

The energetics of the Hadley flow are also easy to describe. It

is simple to show that IQ' ~ - L-(L . In

effect the single thermally direct meridional cell converts available

potential energy to kinetic energy which in turn is lost from the system

by friction.

In addition to the Rossby number a number of other nondimensional

quantities familiar from studies of thermally forced rotating flows can

be related to the nondimensional variables so far introduced. As T, is



-47-

the coefficient appropriate to the vertical wind shear or thermal wind,

it may be taken as proportional to the thermal Rossby number and

is similarly proportional to the forced thermal Rossby number. A caveat:

these relations are precisely true only when 'd, and 'T 0 e.g. in

the Hadley flow. In more complex flows neither the zonal wind nor the

vertical shear are uniquely determined by q or To, but by a linear

combination of respectively YA and 4t and T, and TL . Provided

however that the thermal forcing is restricted to only, the propor-

tionality of Z3 to the forced thermal Rossby number for the whole regime

of flow is maintained. Furthermore in the more complex flows the require-

ment that WA be small for geostrophicity may not be sufficient. For

greater assurance the complete zonal momentum convergence due to mean cell

advection of the zonal wind, equations (57) - (58), may be computed on an

auxiliary basis from time to time.

The heating and frictional coefficients h, t and Al have been

nondimensionalized, as noted above, by dividing the dimensional coefficients

by f , the Coriolis parameter. In any investigation in which these coef-

ficients are given a range of values, it would seem more logical to interpret

these values as representing changes in the rotation rate rather than varia-

tions in the physical characteristics of the fluid modeled. Hence $~- may

be taken as a measure of the rate of rotation, and 0-2 as the Taylor number.

The ratio t/h may be considered as a sort of large scale Prandtl number

appropriate to the flow as a whole.
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In the remainder of this discussion we shall arbitrarily set

h =.,= 41' resulting in a gross Prandtl number of one. This relation

is the same as that employed by Bryan.

A study of the stability of the Hadley circulation for small

perturbations of the flow could be undertaken by the standard methods of

perturbation analysis cf. Lorenz (1962). In such a study the \A/ terms

would be eliminated from the original equations (28) - (46); the reduced

set of equations would then be solved for '419 * , and ,

and the corresponding t terms as functions of the equivalent undiffer-

entiated terms. In a symbolic notation the equations in matrix form would

be

where 4- represents the 8 x 1 matrix of k?'s and t 's and

the 8 x 8 matrix of coefficients. The MI matrix contains terms depending

upon the Hadley circulation and the forcing and as such determines the

stability of the Hadley circulation. No attempt will be made to determine

analytically the conditions under which M1 has eigenvalues with positive

real parts, partially because of the considerable algebraic (or numeric)

complexity involved and mainly because such an attempt doesn't seem germane

to our present purposes. Also as will be seen shortly, the conditions for

instabilities will be obtained implicitly by the experimental procedure

followed.
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II. Numerical Solutions and Their Salient Characteristics

A. Method of Approach and Outline of Results

The thirteen equations in the thirteen variables, 6 's , Zts
and CT, , were programmed for solution on the MIT Computation Center

IBM 7090 and stepwise time integrations carried out by the forward differ-

encing method described above. In the computations the thermal forcing

was restricted to 'Z only, the forced static stability was set

at zero and the wave number k was set at 2. In the majority of cases

the initial conditions were specified as A LA 'A , 0#O and

the other terms set equal to zero. These initial conditions represent an

approximation to the Hadley flow with a perturbation in the first mode

streamfunction wave. This perturbation was on the order of 15% or less of

the zonal flow. The integrations were allowed to continue until such time

as a discernable pattern was revealed in the printed output of the thirteen

variables.

The two remaining controlable parameters, and J' , ranged over

values of approximately 0.03 to 1.2. If we take the nondimensionalizing

length IVs as the pole to equator distance on the earth and the Coriolis

parameter as that appropriate to 400N latitude the equivalent dimensional

temperature range corresponding to 0.03 5 A < 1.2 is about 420C

1 T 16750C as the range of pole to equator forced temperature

differences. The range of '* considered was dictated by the results of

the computations and not on any a priori considerations of the actual



temperature forcing on the earth. Needless to say the range of 2* is

sufficiently great to include any reasonable guess of its correct magnitude.

The "correct" dimensional value for the ground friction coefficient

J' is even more obscure than that of T * . Bryan uses approximately

1.8 x 10-5 sec~ which when nondimensionalized by f at 40 N gives 0.19,

a value approximately midway (logarithmically) between the extremes of a

considered. Again it would seem that anybody's reasonable guess for the

ground friction can be accommodated.

In the basis of previous work both experimental (Fultz et al., 1959)

and numerical (Lorenz 1963b) it was anticipated that at least four distinct

types of flow would appear in the numerical results. For sufficiently low

rotation rates and sufficiently high or sufficiently low heating the 9/g
perturbation upon the approximate Hadley flow should die out after a while

leaving only the Hadley flow appropriate to the analytic solutions of the

previous section. Such flows when they occur are denoted by a "0" on any

pictorial representation of the computed results. The other three main

types of flow were expected to occur at increased rotation rates and at

heating values intermediate between the high or low values that resulted

in the Hadley circulation. In the first of these the perturbation

spreads to the other variables and they adjust themselves into a state of

motion of the single wave without change of shape. As a result in the

constancy of the wave shape the zonal variables +A , e and Cc.

remain constant in time. This state of motion without change of shape,

often referred to as the "Rossby mode", will be denoted by a "I".

-50-
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The second wave regime, denoted by a "II"t is the one known as

vacillation: a periodic change in the shape of the progressing waves

so as, for example, to add and subtract momentum alternately to the

zonal flow. The periodicity may not be simple but it will be apparent

nontheless. Directly associated with the changing wave form will be

a periodic variation in the intensity of the zonal flow.

The expectation of flows of type I and II was the principal

reason for the introduction of the coordinate system moving with the

wave of the first (t gd) mode (equation (74)). In this moving

system type I flows will appear motionless, the printed results will

show all-thirteen variables as constant. Type II flows will also appear

motionless but with periodic variations in the variables indicating the

vacillations.

The third wave regime, "III", is essentially none of the previous

ories: it appears as an aperiodic or random variation in the thirteen

variables, although the irregularity does diminish somewhat under close

scrutiny.

The results of an extensive series of computations all with the

initial conditions outlined above are presented in Figs. 2 and 3. For

the computations of Fig. 2 was set equal to zero, while those of

Fig. 3 are for a (nondimensional) value appropriate to approximately

40 0N latitude. In these computations = 0.6065. On both figures the

ordinate is LA , the thermal forcing or imposed thermal Rossby number, and

the abscissa is -f proportional to the rotation rate. Both coordinates
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Fig. 2. Results of Computations without effect. Ordinate: nondimensional

forced temperature; abscissa: nondimensional rotation. Solid lines separate

categories of evolved flow. O: Hadley; I: Rossby flow; II: vacillation;

III: irregular. Subscripts indicate Earthlike or Non-earthlike surface zonal

flow. Dashed lines separate certain characteristics of zonal flow structure.



-53-

.2
1.0 - 0 Tr E

o~e - z,& Al.E &

k h4 ~ ~4 s A0.6 -r -----------, 3
O. -E. -T ... -To h s A irk 1f

0.3 a Tr I IF Irk[% <0 T0>]

I- Tzl J 4s G
Az~MMO 'o o 7r, E

IVI

0.10I

ADS,- Ze
dos

.3 0.6065

o.o. -

to 1.5 2 3 'H 56 8Jo .'30 -.

Fig. 3. Same as Fig. 2 but with effect included.



-54-

are plotted logarithmically. In the body of the diagrams an "E" sub-

scripted to the roman numeral indicating the evolved flow type

designates an earthlike surface flow i.e. < ,)

if a subscript N appears the flow was non-earthlike. In the case of

the type II vacillating flows, this determination was made on the basis

of the surface flow averaged over one or more vacillation cycles. The

solid lines indicate the approximate divisions between regimes of flow,

while the dotted lines separate various categories of zonal maximum

structure, in particular whether a single maximum exists at the 500 mb

level of the model, '4" < C , or a double maximum exists there, 9170;P)

and whether the single maximum if it exists is increasing in intensity

with height (trC C 0) or decreasing ('0 2 0) . Again these dis-

tinctions are made on the basis of averages for the II flows.

Differences between the = 0 and # 0 flows are apparent but

the overall similarities are quite marked also. As to the similarities

most prominent among them is the division between the Hadley (0) and the

Rossby (I) Regimes. Together they bear a close qualitative resemblance

to both the experimental discoveries of Fultz et al. (1959) and the theo-

retical results of Lorenz (1962). Such was not unexpected as the same

thermodynamic effects were incorporated into the equations as those used

by Lorenz which in turn were designed to be appropriate to study the

experimental results. Lorenzts work showed that the Hadley-Rossby tran-

sition could be explained in terms of the baroclinic instability alone

of the Hadley flow. The present transition line presumably arises from
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similar causes, at any rate the presence of the possibility of barotropic

stability does not seem to inhibit the development of the Rossby flow in

any apparent manner. Presumably the 0-I transition lines in the two fig-

ures could have been arrived at theoretically by means of the perturbation

eigenvalue method alluded to previously.

In both figures the type III irregular flow is confined to a rela-

tively small area at relatively high thermal forcing and within roughly

similar bounds. The same is true of the upper (higher A ) region of

II flows in the two diagrams.

But there the major similarities end. The lower II regimes are

quite different in shape; the I regime below this lower II regime is to

a large extent earthlike as far as the surface winds go for = 0.6065

while the reverse is true for the = 0 computations; the area for which

there exists a "500 mb" wind maximum, i.e. 9' <0, which increases upward,

T, C 0 , is considerably enlarged when the effect is incorporated

into the equations; other differences (and similarities) will be noted as

the various regimes are studied in detail. The latter difference is, it

may be noted, in a sort of qualitative agreement with the barotropic flow

study of Kuo (1951) cited previously. In this study it was noted that the

effect of was to tend to concentrate momentum either into preexisting

maxima of momentum or into the central portions of the zonal flowsi in the

present study the inclusion of 'k seems to have a similar effect, markedly

increasing the area in which there is a 500 mb maximum that increases upward

and somewhat enhancing the area in which the 500 mb wind has a single maximum

at all.
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B. Momentum Convergences

Both for their intrinsic interest and relevancy to the present

problem and as they are a convenient means of characterizing the various

types of flow encountered, the momentum convergences or mean flow

tendencies (eqs. 52 and 53) will be described and discussed in some

detail. In addition the relative magnitudes of the geostrophic and

ageostrophic momentum convergences will give a more reliable indication

of the validity of the geostrophic assumption than the requirement that

the Rossby number or be small.

i. Motion Without Change of Shape

A few general remarks may be made at the outset. For one the net

momentum convergence at any latitude in either level will be zero for the

type I flows. This of course does not include any of the momentum conver-

gences expressed by the balance equation terms as these are not recognized

by the dynamic equations. Consideration both of the numerical results that

went into the composition of Figs. 2 and 3 and a selected number of conver-

gence figures indicate that within any region set off by solid lines on

Figs. 2 and 3 the qualitative character of the flow and the associated

convergences do not change greatly with a variation of the forcing parameters

or . The magnitudes of the convergence figures do change with

important consequences but the changes appear more or less continuous within

a given region. Discountinuous changes in the character of the numerical

results and momentum convergences are observed across the boundaries
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separating the various regimes of flow. There seems one exception to

this: the small IN region around = 0.15 / = 8.25 on Fig. 3

( = 0.6065) is continuous with the regime below it.

a. High Rotation Rates

Considering first the = 0 results we look first at the momentum

convergence structure for the higher rotation rates and the associated

mean flows. In particular Fig. 4 presents the structures for 2 = 20,

for T = 0.05, 0.1, 0.125 and 0.3. On the figures the ordinate is the

geographic latitude, the abscissa, the nondimensional value of the conver-

gence or mean velocity. The solid lines as indicated, are the eddy momen-

tum convergence (eq. 54) for the upper and lower layers, the convergence

of the earth's angular momentum due to the mean meridional cell in the

upper layer (eq. 55) and on a separate abscissa the mean zonal velocity

in the two layers, the subscript 3 designating the upper layer, 1 the

lower layer. All the various quantities plotted are nondimensional

although they are designated and referred to by dimensional symbols for

simplicity and clarity. The mean cell earth's momentum convergence inthe lower layer is simply the negative of the upper layer value and is
not included in the figures; this is also true of the frictional conver-

gence (or divergence) of upper layer momentum (eg. 56) which in the steady

state I regimes just equals the negative of the sum of -

and ; also not included is the loss or gain of momentum

by the lower layer through surface friction, it simply equals -Xj
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Fig. 4. Nondimensional Momentum Convergences and Zonal Velocities in the two Layers as Functions
of Geographic Latitude. t = 20.0 = 0 T indicated in figures.
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and its form can be inferred by consideration of the (A. figure.

Also as a consequence of the steady state of the flow its value is

given by a linear combination of the plotted convergences, namely

1/1 (82)

Included in the figures and represented by dashed lines is the net

ageostrophic convergence of zonal mean momentum by the mean meridional

cell, the sum of equations (57) and (58) for the upper and lower layer,

indicated by MC3 and MC , respectively. The corresponding conver-

gence arising from the eddy meridional cell (the last term of equations

52 and 53) has not been calculated as the principal reason for computing

the ageostrophic convergence was to afford a check of the geostrophicity

of the flow and not to study in any detail the ageostrophic "dynamics"

of the flow. The mean cell convergences seem adequate to the task.

Reference to Fig. 2 shows that the z = 0.05 and 0.10 cases

belong to the lower I regime while the A = 0.125 and 0.3 flows are
NA

characteristic of the upper IE regimes. Inspection of Fig. 4 indicates

the similarity of the flows except for the magnitudes within the same

region and the dissimilarity of the pairs in different regimes. In the

lower regime we have, of course, the non-earthlike surface flow with

a very distinct double jet ('k' T(' C2) in the upper layer. The eddy

convergence, in the upper layer, is negative at mid-latitudes indicating

a transport of momentum out of the center and into the regions of maximum

flow. This term is slightly more than balanced at mid-latitudes, and



slightly less than balanced at the high and low latitudes by the

C- ~term, resulting in a slight convergence everywhere in

the upper region, balanced by friction. In the lower level the

eddy convergence is positive at mid-latitudes as is the frictional

transfer from the ground and the frictional transfer from above.

The eddy convergence is by far the larger. This convergence is

totally balanced by the term. The ageostrophic con-

vergence is seen to be small, generally an order of magnitude or

more less than the geostrophic terms indicating that the flow is

certainly quasi-gepstrophic.

The IE regime characterized by the 0.125 and 0.3 cases

presents quite a different physical picture beyond the obvious one

that the lower level flow is now earthlike in character, however

there are physical similarities also. The upper flow no longer shows

any double jet character; however , 7;0 indicating that there

is a tendency for the increase of wind with height to be spread rather

than concentrated into a single strong maximum. The upper level eddy

convergence is now positive in mid-latitudes in contrast to the lower

cases, but like them the transport is still into the region of

maximum zonal wind. As previously this convergence is nearly balanced

by the negative (at 450N) and exceeded by this term away

from the center resulting in a net convergence throughout, compensated

for by frictional transfer to the lower layer. In the lower layer the

differences and parallels with the lower case continue. The eddy
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term is now divergent in mid-latitude as is the ground friction, where

they were both convergent previously, and this divergence of momentum

is principally balanced by the convergent - term and to a

lesser extent by the frictional convergence from above. At the extremes

of latitude things are somewhat reversed with the convergent eddy ground

friction and vertical friction terms balanced by the divergent

term.

Consideration of the ageostrophic convergence ,terms for these

flows characteristic of the I regime suggests the beginnings of some
E

difficulties. The magnitudes of these terms are clearly an appreciable

fraction of the geostrophic terms indicating a breakdown of the quasi-

geostrophic assumption. Also they indicate the importance of considering

the ageostrophic transport and not just looking at the Rossby number as

defined by (81). For the = 0.3 case 0= 0.116 which might be

considered to be satisfactorily geostrophic, Perhaps a better indicator

of geostrophies in the model would be to take the Rossby number as the

maximum . Consideration of Fig. 4 shows that the maximum of

JAjj is clearly greater than 0.1 for the ageostrophic cases and

conversely. We shall defer until later further consideration of the

significance of this departure from geostrophicity, returning to the

problem in the context of the discussion of the relevancy of the overall

results to actual hydrodynamic flows.

Figure 5, the momentum terms for = 28.6 T- 0.15, is included

to show the close resemblance between neighboring flows as alluded to
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previously. Except for small differences in magnitudes the patterns

are identical to the two IE flows in Fig. 4.

The effect of including in the dynamic equations is illus-

trated in Fig. 6, which presents the momentum results for 7 20.0

and 0.05, 0.10 and 0.15, all (see Fig. 3) within the lower IE

regime. The effects are most marked in the mean zonal wind structure,

particularly in the lower layer but scarcely discernable in the momen-

tum convergence variations, which seems quite remarkable. The lower

level flow is now earthlike and the double maxima of the upper level

are considerably reduced relative to the = 0 case. For 2T= 0.05,

indeed, there is but a single broad maximum - however ZC is still

positive indicating the tendency for spread rather than concentration

of wind with height. This tendency toward, if not actual achievement

of, a single maximum in the flow is again reminiscent of the result of

Kuo cited previously. The upper level eddy momentum convergence is again

negative in the center, nearly balanced throughout by the f term

with the small convergent residue balanced by vertical friction. The

lower layer flow is, in overall appearance, similar to the I flows

without with, in mid latitudes, the convergent eddy and vertical

exchange terms balanced principally by the divergent -X term

and to a lesser extent the now divergent surface friction term. The

ageostrophic flow remains sufficiently small to assure quasi-geostro-

phicity as the maximum of S13 remain less than or at most equal

to 0.1.



Fig. 5. Same as Fig. 4. A = 28.6 = 0
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Fig. 6. Same as Fig. 4 = 20.0 = 0.6065.
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0
A close look at the convergence terms at 45 N and actual compu-

tational results for the flow r 0.1, for example, shows how the

inclusion of can profoundly alter the lower layer flow without

making any major differences in the momentum convergence structure.

Table 1 gives the nondimensional Y and t values (multiplied by 10 )

-'X
for X =20 LA = 0.1, 0.0 and 0.6065 for the steady states.

4 '
Table 1. Steady State Results xlO . = 20, T= 0.1.

Flow Type Y

0.0 IN 215 152 0 48 -599 136 226 -57 -33 35 -59 315

0.6065 IE 330 253 0 7 -798 -41 314 90 -20 28 -350 181

{ induces mainly three small changes to alter the surface flow. For one

TA is increased, Tc. decreased causing an increase in the vertical shear

at 450 and thus a larger frictional transfer of momentum to the lower layer.

Secondly the relative magnitudes of - and - DA I are

interchanged so that the net of these two terms alone in the lower layer

becomes convergent with where it was divergent previously. And finally

the net of - [ and -DLA,'1,'] shifts to convergent satisfying

equation; (82). These effects are of course not independent of one another

in that they are but different ways of looking at the fundamental results

of table 1.

A further comment should be made on the physics of tie effect

in the model. As introduced has an influence only upon the waves and

only indirectly, via the nonlinear coupling, on the zonal mean flows where
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its effect is most noticeable. The nature of the direct influence

upon the waves can be suggested by the familiar perturbation analysis

of harmonic waves in a barotropic flow with finite lateral extent.

The results of such analysis (see for example Haurwitz (1940)) states

as the formula for the phase speed C of the wave

where D measures the lateral extent of the wave and L the wavelength,

while is the, constant, basic current speed. Thus, in this simple

analysis, one may see that a wave with a smaller lateral extent will

have a larger phase speed than a wave with a larger D . Hence one may

infer that the inclusion of into the system of finite amplitude

waves here considered will alter the phase speeds of the KL wave differ-

ently from the MN wave. This in turn will influence their relative phase

which alters the momentum convergence brought about by these two modes

of the wave. Finally the changes in convergence will induce the changes

in the mean flow structure described above.

The change induced by for 0.15 and above is of course

quite substantial as can be seen from Fig% 2 and 3 involving obvious

changes in the structure of the flow. But for the lower forcing and

the higher rotation rates the effect of can be summarized as causing

small changes in the magnitudes of the momentum convergence terms but

not in their large scale patterns. There small changes nevertheless are

related to rather important differences in the structure of the mean flow.
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b. Moderate Rotation Rates

Returning to the flows with absent we consider typical results

at moderate rotation rates = 6.67, L = 0.05, 0.06, 0.1 and 0.3 all

in Fig. 7. Consideration of Fig. 2 in the light of the previous discus-

sion of the local continuity of the results should lead us to anticipate

that the IN at = 0.10 and IE at T= 0.3 should be similar in form

to their counterparts at Z = 20, and indeed examination of Fig. 7 shows

this to be so. The similarities are so close moreover that there seems

little value in offering any detailed discussion of the momentum and mean

velocity configurations; the previous descriptions are adequate for the

present cases with one important exception. This relates to the relative

changes in magnitude of the eddy convergence and the terms

as the rotation rate decreases. In particular comparison of the 0.1

cases in Figs. 4 and 7 shows that increases more for decreasing

9. than do either eddy convergence terms (the lower level eddy convergence

actually decreases) and assumes a more important role in the momentum

balance. This may be noted as an example of the inhibition of large scale

vertical motions by rotation as described by Starr (Tellus 1959) in that

'21 j , the mean meridional velocity, is by continuity directly a

function of the implicit vertical motion required for geostrophic balance.

The increase in the vertical and associated mean meridional motions

coupled with the quite marked increase in the zonal flow magnitude bring

about also a considerable increase in the ageostrophic convergence terms.

This is most clear in the = 0.3 case when these terms are substantially
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Fig. 7. Same as Fig. 4. 2 = 6.67 = 0.0
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equal to the geostrophic terms. The maximum of the nondimensional

'S43j is seen to be in excess of 0.6 and if this is taken as

a Rossby number it is quite blatantly in excess of any geostrophic

value. Although further discussion of this ageostrophicity is deferred

until later it would seem reasonable to assert that modeled flows in

which the ageostrophic convergences are as large or larger (as they

are for higher 6C, ) than the geostrophic convergences are of highly

questionable validity in the sense that the model is not representing

any real hydrodynamic flows. For this reason flows with r greater

than 0.3 have not been described in any detail other than to indicate

the gross nature of the numerical solution on Figs. 2 and 3.

Figure 7 does contain for t = 0.05 and 0.06 a third variety of

flow dissimilar to the ones encountered previously and deserving of

closer scrutiny. As with the higher rotation rates and higher TA for

the same rotation the zonal flow in the upper level shows a distinct

double maximum but in marked contrast the eddy convergence in the upper

layer is positive in mid latitudes describing a transfer of momentum

out of the maxima of the zonal flow. The double maxima are maintained

against the everywhere negative frictional convergence by the earth's

angular momentum term which as noted previously has grown considerably

in importance over its role in the higher rotation rate cases. In the

lower layer the eddy convergence is also positive in mid latitudes in

contrast to the previous cases where the upper and lower eddy conver-

gences were of opposite sign. In mid-latitudes this convergence plus
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that of the frictional transfer from the upper layer is balanced by

the frictional loss to the ground and the earth angular momentum term.

At the high and low latitudes the convergent terms are the vertical

friction and the ground friction which must be balanced by the others.

The ageostrophic terms are a moderate fraction of the others,

even at the low and in particular are larger than the lower layer

eddy momentum term. This lack of geostrophicity is also reflected in

the magnitude of (MA as it exceeds 0.12. The mean cell convergences

are still small however relative to the principal geostrophic term,

leaving us with some assurance the geostrophic assumption

is not too severely violated.

The reintroduction of is illustrated in Fig. 8. Again where

does not induce a major change in the character of the flow, i.e.

for TA= 0.05 where the Hadley circulation is rendered stable and for

0.15 where the vacillation is changed to a type I flow, its effect

- I
is slight, inducing quantitative changes somewhat greater than at 2 = 20.0

but no qualitative differences except, as before, in the lower layer zonal

flow. This last effect is itself somewhat limited as it is only to induce

earthlike lower layer flows where non-earthlike flows existed previously,

not the reverse. In particular for t" 0.06 the only marked quantitative

change is a considerable enhancement of the eddy convergence of the lower

layer along with a slight reduction: in the ( term and the relative

intensity of the double maxima of (1A3 . Essentially the same observa-

tions are valid for = 0.1 with the additional note of the reversal of
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the flow. The flow at r,= 0.15 is just a quantitative modi-

fication of those at lower forcing as is that at = 0.17 (not shown)

where has become non-earthlike. The induced modifications

of the 0.30 flow are also slight, the only striking change being

the small areas of easterly flow in 143] . This is partially a result

of the flow's being in the region of T < 0 as indicated on Fig. 3.

The effects noted above, in particular the increase of

- E fAor the = 0.06 case, are reassuring with respect to

the geostrophicity of the flow. Although the ageostrophic convergences

are still an appreciable fraction df the others they are no longer

actually larger than any of the geostrophic terms, except as always

over limited latitude bands. This increase in the geostrophicity can

also be noted in the decrease of the (M3 maximum from 0.17 to

0.14 with the introduction of . The magnitude of the ageostrophic

terms themselves diminish also.

c. Low Rotation Rates

Further decreasing the rotation rate to X= 2.5 results in the

flows portrayed in Figs. 9 and 10 (without and with respectively)

for = 0.15 and 0.3. Inspection of the figures quickly shows that no

marked changes in the geostrophic momentum terms occur other than varia-

tions of the magnitudes of the terms. Both with and without the

0.3 momentum structure is almost the same as at the higher rotation

TA
rates and the 2=2.5 'A= 0.15 flows also resemble very closely the

6.67 T= 0.06 flows.
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Moreover the beginnings of a resemblance of the IE flows at

0.15 and 0.3 may be noted in Figs. 9 and 10. This is seen

principally in the { [efj , term which exhibits an increased domi-

nance of the \Ac portion. Inspection of the results for still

lower rotation rates (not reproduced) shows the changes between the

illustrated T *= 0.15 and 0.3 cases to be continuous: W in-

creases in importance in the [i 1  term and - I 'V

changes sign smoothly. This observation was the inspiration for the

previous statement relating to continuous changes resulting eventually

in substantially differing patterns of momentum transport.

As for the ageostrophic transports the figures show them to be

quite as large as the geostrophicones further accentuating the question-

able validity of the geostrophic assumption in the low rotation rate

region of Figs. 2 and 3 under consideration. Similarly the maxima of

A ) ] are substantially above 0.1.

ii. Vacillation

Prior to looking closely at the momentum convergence structure

of a typical vacillating flow we shall give brief consideration to a

means of partially representing the flow short of presenting "weather"

maps synthesized from the computational results. This method, employed

by Lorenz (1963), is to consider the thirteen variables of the equations

(or twelve variables when the moving coordinate system is employed) as

defining a point in phase space, and the solutions to the equations as
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tracing out a 13 (or 12) dimensional trajectory in the phase space.

Viewing a two dimensional projection of the trajectory then gives

a good picture of the vacillation cycle. Figure 11 presents some

quite typical results where qk', (in the moving coordinate system)

and 4/C , both multiplied by 10 are selected as the coordinates.

The relevant forcing parameters are indicated in the figure and the

examples illustrated are seen to come from near the center of the

lower of the two IIE regimes of Fig. 2. In the figures the small

cross within each trajectory is the position of the average of Yi1

and '/ and the small dots and numbers on the trajectories indicate

the iteration step numbers.

The variation, in the nature of the flow with variations in

the forcing parameters, i.e. a decrease in the size of the elipsoids

with increasing and 2. , is typical of the lower IIE regime

for = 0 (Fig. 2) and the left lobe of the same regime with = 0.6065.

The upper IIE regime trajectories both with and without behave

differently; they exhibit the same shape as those of Fig. 11 but show

no marked variation with and tend to increase in dimensions for

increasing 'r A . The right lobe of the lower IIE region, = 0.6065,

shows more marked differences both in shape and behaviour with changes

in the forcing. Figure 12 is a representative sampling of these, and

illustrates the crescent shape of the trajectories in this region as

well as indicating the tendency for increase in dimensions of the pattern

with T and , in direct contrast to the characteristics of the left

lobe flow.
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The sequence of momentum convergences and zonal winds for the

lower vacillating regimes are typified by the series for = 6.67

TA= 0.15 = 0 in Fig. 13 and =20.0 LA= 0.175 % = 0.6065 in

Fig. 14. At first glance these figures appear rather formidable in

their complexity but much of this is reduced on closer examination.

The behaviour of the upper IIE regimes, both with and without is

essentially similar in its qualitative characteristics to Fig. 13

except that the ageostrophic terms are as large or larger than the

geostrophic momentum terms. Because the net momentum convergences

are no longer zero at any given latitude as they were for the type I

flows the net of the three geostrophic terms for the upper layer

(eq. 47) and the four for the lower (eq. 48) have been added to the

figures and indicated by NET 3 and NET1 respectively. Further because

of the over-abundance of lines the convergence figures for the two

layers have been plotted on separate abscissas. As before the ageo-

strophic convergences in the two layers, MC3 and MC, are included as

dashed lines where they are large enough to be discernible and the

zonal winds of the layers are found on a third abscissa.

Both the vacillation cycles of Figs. 13 and 14 can be seen to

be similar in their overall patterns despite differences in detail.

The principal similarity is that both approach a state of flow quite

similar to the higher VA regime of I flow on Figs. 2 and 3, e.g. Fig. 5.vA E

On Fig. 13 this state occurs more or less between iteration steps 710

and 720 and on Fig. 14 at about step 990. Reference to Figs. 11 and 12



O _ 710

00

-4 700 jIU3 ] 0

CC,

NEAET

272

70J70 - ' s ~E s T

TU331350 .-- NE T -90 

-
M3

.30 --

-60 -Yo-20 0203 40 - 46-20 02o10 -20 200 -06 -8D -Y0 -20 0 20 1/0 0 890 /W t -20 0 20 40 -2X 0 2 / 0 0o

)(0~ g10-3 -10~3 x/0~ *Io -10

Fig. 13. Momentum Convergences and Zonal Velocities (nondimensional) for vacillation cycle
with =6.67, = 0.15 = 0.0



-79-

shows that this similarity to IE flow occurs during the upper portion

of the - Ic, trajectory. Elsewhere in the cycles ,the flows

nowhere resemble any of the previously encountered ones. In both cases

the complete cycle is easily described with particular reference to

the upper level convergence and j . Starting with a strong

single velocity maximum the eddy convergence tends to spread the momen-

tum out of the center (Fig. 13 step 690, Fig. 14, 976) until a double

maxima in 174.i} is attained. But by this time the eddy convergence

has reversed itself so that the momentum is tending to be concentrated

in the central latitudes. This process continues (the upper IE state)

until the strong maximum has occurred but again the convergence changes

sign and the process repeats. In the lower layer an essentially similar

cycle takes place except that the zonal wind oscillation is between

earthlike and non-earthlike states (Fig. 14) or an earthlike regime with

varying strength (Fig. 13) rather than an alternation between single and

double maxima of a principally westerly flow. Also in the lower layer

the -f f i term accounts for the momentum convergence to a greater

extent than the eddy term in contrast to the upper layer where the eddy

convergence predominates.

The principal differences between the flows are essentially those

noted in conjunction with the type I flows. Fig. 13 with the lower rota-

tion rate and no exhibits a relatively more important term

than Fig. 14 throughout and, in conjunction with this, ageostrophic terms

of considerably greater magnitude relative to the geostrophic terms than
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in the high rotation flow. One other major difference not allued to

previously relates to the period of the moving wave with respect to the

period of the vacillation. For all of the vacillating cases except

those typified by Figs. 12 and 14, the wave and vacillation periods are

of the same order of magnitude differing by no more than a factor of

two or less. However within the induced high rotation rate vacilla-

tion regime, the wave period is a full order of magnitude or more larger

than the vacillation period.

C. Energetics

Although not as vital to the present study as the momentum con-

vergence and balance, the energetical characteristics of the various

types of flows encountered are of interest. As with the momenta all

the steady state type I flows are in energetic balance, any particular

form of energy is constant in time and the energy interchange terms,

Fig. 1, are so arranged that the net transfer to any particular form

of energy is zero. For ease in comparison of cases the energetics for

the various flows will be presented not in terms of the actual non-

dimensional values but as percentages of the total: i.e. each of the

four energy storage terms will be given as a percentage of the total

energy, the sum of the four, and each of the eight interchange terms

will be given as a percentage of the only energy source for

the system (barring the non physical source of computational instability)

thereby indicating the distribution of energy among the available modes

and showing how the input energy passes through the system.
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The tables which follow give the energetic terms appropriate

to the flows for which the momentum convergences have been investigated.

In the tables the four energy storage term percentages are given along

with the nondimensional value of the total energy and four of the energy

interchange percentages along with the nondimensional value of Q .

are also given. The redundant frictional and thermal energy loss rates

K'. and - A can be easily deduced.

Table 2. Percentage Energetics Corresponding to Figures 4 and 6.

-I

f = 20.0 = 0.0

AA' K'1 jk.4 1 A.i&t~R ________

0.30 10.2 3.8 11.6 74.5 98.4 1.5 68.5 1.3 0.187 0.0072

0.125 46.0 8.5 14.0 31.5 85.9 14.1 36.9 -1.2 0.144 0.0041

0.10 16.0 1.0 32.7 50.2 100.2 -0.2 38.4 0.4 0.064 0.0034

0.05 34.1 0.8 44.2 20.9 99.9 0.0 17.2 0.2 0.054 0.0029

= 0.6065

0.15 12.4 1.2 19.4 67.0 100.0 -0.0 43.1 0.4 0.147 0.0050

0.10 19.6 1.0 32.3 47.2 99.8 0.2 23.2 0.1 0.113 0.0048

0.05 49.0 0.7 36.3 14.0 99.8 0.3 7.1 -0.0 0.116 0.0046

Table 2 contains the energetic terms for the high rotation rate I flows

with and without corresponding to figures 4 and 6. The variation of

the energy terms induced by changes in LA , A decreasing, A increasing

with increasing LA etc., suggested by the table are indeed those which
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are noted in an examination of the energy terms for all the results and

the changes appear continuous within any given region of similar type

flow. This was to be expected as a consequence of the continuity of the

numerical results themselves, noted previously.

The flows are seen to be all baroclinically unstable with ampli-

fying waves, if we may apply the language of stability theory to the

finite amplitude waves, in the sense that \A - 16 is positive,

and barotropically damped with two exceptions in that is

also positive. IK* is considerably smaller than - I<

however indicating that most of the energy reaching K is lost to

friction rather than being changed to zonal kinetic energy. Further,

except at the highest tZ considered, better than 50% of the energy

reaching A , which in turn is virtually all the energy entering the

system via T- as I \- is very small, is lost by

thermal dissipation. Indeed at 7 = 0.03, A - r\ = 99.6% and

\j= 1.1% which is typical of the energy interchanges all along

the lower boundary between the type I flow and the Hadley circulation.

There seem to be no striking differences in the energetic terms

between the upper and lower I regimes nor any induced in the lower I

regime by the inclusion of . An exception might be made for F\. )

which seems to be of greater importance in the upper IE regime than

elsewhere. An additional note should be made relevant to this term

measuring the energy transfer due to mean meridional circulations.

Even though this term is predominantly positive in the upper IE regime
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( = 0) inspection of Fig. 4 does indicate the existence of a strong

indirect cell over the mid latitudes. The direct cells at the extremes

of latitude coupled with the larger latitudinal temperature gradients

there account for the overall positive conversion of mean available

potential energy to mean kinetic energy. In the lower I regime, both

cases, the situation is reversed with a mid latitude direct cell

being very closely balanced in its energetic effects by indirect cells

at the latitudinal extremes.

Table 3 contains the energetics for the moderate rotation rates

corresponding to figures 7 and 8. As noted in conjunction

Table 3. Percentage Energetics Corresponding to Figs. 7 and 8.

=6.67 0.0

0.30 35.8 13.5 5.3 45.5 95.6 4.0 72.4 9.1 0.364 0.0250

0.10 60.4 4.4 12.2 22.9 97.4 1.7 42.6 0.8 0.147 0.0098

0.06 93.5 0.9 5.0 0.6 95.4 2.4 5.9 -0.2 0.422 0.0070

0.05 94.9 0.4 4.5 0.2 97.4 1.1 2.0 -0.0 0.628 0.0089

q = 0.6065

0.30 33.2 13.1 8.0 45.7 103.3 -3.3 67.9 14.8 0.404 0.0275

0.15 48.1 6.1 7.4 38.4 96.1 2.6 58.6 1.4 0.217 0.0128

0.10 57.6 3.6 13.9 24.8 98.2 1.6 34.7 0.6 0.167 0.0110

90.8 0.8 6.9 1.40.06 98.6 0.1 0.394 0.00881.4 5.8
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with table 2, the variations of the energectic terms with and

suggested by the tables is that which is observed in all the results.

The discontinuities in the energetics, if indeed there are any, across

the boundary between the two types of I flow at the lower values of

are not very marked; the relatively lower values of A K for

0.05 and 0.06 than for higher TA and higher rotation do seem

to be characteristic of this third type of motion without change of

shApe. Again the only really noticeable effect of is in the

\ I term for LA = 0.30 where its addition induces a negative

value.

Finally table 4 presents the energetics for the low rotation

rates. The main thing to note in conjunction with these data is the

generally rather small effect that has for these low rotation

results. Otherwise the comments made relative to the previous tables

apply here as well.

Table 4. Percentage Energetics Corresponding to Figs. 9 and 10.

=2.5 =0

0.30 63.6 14.3 4.4 17.7 84.6 12.8 51.1 7.1 0.534 0.0554

0115 90.6 3.4 4.1 1.9 86.1 8.1 14.4 -0.0 0.641 0.0290

= 0.6065

0.30 66.7 14.2 4.2 14.9 86.1 11.9 48.2 12.1 0.603 0.0535

0.15 91.9 3.0 3.3 1.7 89.6 8.5 14.1 0.7 0.738 0.0260
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The energetics of the two vacillating flows of figures 13 and 14

are presented in Fig. 15. In this figure the ordinate is the nondimen-

sional energy or energy transformation rater and the abscissa the itera-

tion step number. The small vertical lines indicate the positions in

the cycle of the flows selected for the momentum convergence figures.

In both cases the "beginning" of the cycle was the step at which YO,

reached a maximum; in that 9% was in general larger than the other

zonal terms the beginning was also the step of maximum K .

The differing nature of the two types of vacillating flow is

quite clearly brought out by figure 15 where Figs. 13 and 14 tended not

to show any very great differences in the momentum structure. Among the

most noticeable of differences is the complete reversal of phase between

A and K from the high rotation case where they are very closely in

phase to the moderate rotation where they are almost 1800 out of phase.

No such change takes place between the eddy energy components. Similar

phase shifts can be noted in the energy interchange rate terms although

these are somewhat hidden by the appearance of double periodicities in

these terms for the high rotation case when only single periodicities

were found at the moderate rotation rates. Most noticeable of these is

the A , pair which are strongly doubly periodic

and clearly out of phase for the high rotation while for the lower rota-

tion the shorter period variation has vanished for {A.P , has been

considerably reduced in { * and the two appear more or less in

phase.
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The gross character of the two vacillating energy cycles can best

be described with reference to the previous description of the momentum

convergence structure. During the spreading of momentum from the single

maximum 0.0 step 690; = 0.6065, step 976) both flows

show barotropically amplifying waves, < I C 0 , while the high

rotation = 0.6065 flow show baroclinically amplifying waves as well

- ' DO . The low rotation case shows a brief period of

baroclinic damping but during most of the time of the extraction of momen-

tum from the zonal maximum it too shows baroclinic amplification of the

waves at the expense of the eddy available potential energy. During the

period of momentum concentration into a single zonal maximum, analogous

to the higher A I E flows, both flows exhibit baroclinic amplification

and barotropic damping of sufficient magnitude that the net effect is seen

to be an increase in R and a decrease in K . It is also during this

time, particularly for the high rotation = 0.6065 case, that fN- R)C<

showing the thermally indirect mid-latitude cell predominating over the

direct cells at the extremes of latitude. Indeed the magnitude of this

term is sufficiently large during this portion of the cycle that the average

over the complete vacillation cycle is also negative. This is true for all

the IIE flows in the right lobe of Fig. 3 as well as the IE flows immediately

-I
to the left of this region ( X = 8.33, A = 0.20, 0.25, 0.30) as well as

the IE flow for 'p = 0.30 noted in table 3.

The inclusion of into the equations can be seen then to have a

marked effect upon the energetics of the higher rotation rate computations
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particularly in the term, much as it had a profound effect

upon the surface flow character at lower

D. Other Features

A number of other not uninteresting phenomena observed in the

numerical solutions could be studied in some detail but it would seem

that by their nature they are of greater interest from the point of view

of investigating the behaviour of the set of equations rather than inves-

tigating various aspects of the general circulation with a simplified

model. We shall note a few of these other features here as a matter of

general interest but not concern ourselves with the details since they

would seem to be of less immediate relevancy to the problem at hand.

One of these is the problem of the nature and cause of the dis-

continuous changes in flow character between the various regimes

portrayed in Figs. 2 and 3. This general problem has been investigated

by Lorenz (1963) for a similar but somewhat simpler set of equations in

terms of instabilities of preexisting regimes of flow. No attempt was

made to do that here but some similar observations can be made empirically

on the basis of Fig. 11. As was noted previously the vacillation decreases

in magnitude as the upper boundary of the lower IIE region (left lobe only

in Fig. 3) is approached. Also consideration of the averages over the

vacillation cycle of the Y4 Is and T 's shows them to be essentially

continuous with their counterparts in the I region above. The same

continuity is noted across the lower boundary of the upper IIE regime,
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and the dimensions of the vacillation trajectories increase with increasing

? in that area. This is not so much suggestive of instability of one

mode of flow with respect to perturbations which induce the other mode but

more that one type of solution simply doesn't exist when the other is found

for particular values of the forcing parameters. This suggestion was partial-

ly confirmed by making an integration with the forcing parameters and

set at values which previously resulted in a II solution near the
E

upper boundary of the lower IIE region but with initial conditions not the

perturbed Hadley flow but the average of the II flow which was clearly

continuous with the IE results at slightly higher 'Z . The solution quite

quickly departed from the initial conditions and returned to the previous

IIE flow.

On the other hand the entire lower boundary of the lower IIE regimes,

and the IE N boundary for high rotation = 0, very definitely suggested

instability characteristics both by the increasing dimensions of the IIE

trajectories for decreasing and the marked discontinuity of the I solu-

tions with respect to the average of the II solutions. Experimental inves-

tigation of the lower boundary discontinuities gave indications of the nature

of the instability of one type of flow with respect to the other. By using

the type I steady state solutions as initial conditions for integrations with

slightly higher , for the same X , it was possible to obtain type I

solutions for T as high as 0.2 both with and without for X greater

than 4.0. It seems worth noting that = 4.0 is the approximate rotation

rare at which the division between the two types of I flow for T less than
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0.15 or 0.1, depending upon , intersects the II- I boundary. It was

the type IE flow. to the left of this division which was noted to have

resemblance to the I flows at higher which in turn could not be extra-
E

polated down into the II region just as the lower I E flows at < 4.0

could not be extrapolated up into the II region.

Similarly a limited number of computations indicated the possibility

that the II regime could be extended downward somewhat, to 'Z= 0.08 for
E

= 0.0 and $= 0.15 for = 0.6065, by a similar extrapolation procedure.

In effect then the region of Figs. 2 and 3 between r= 0.2 and 0.15

or 0.08 (depending upon ) for 4.0 is an area in which the equations

are capable of producing two quite different solutions. At high enough '(

small departures from a possible I solution grow and generate a II solution

and vice versa for low T . Another way of viewing the matter would be to

say that there exists a 12 (or 13) dimensional volume of phase space, for

a given and Z, A such that initial conditions within this volume lead

to type I solutions and outside to II solutions. This volume seems to shrink

for increasing Z, such that eventually there can be no type I solutions of

the type under consideration. The determination of the limits of this volume

would be a formidable task, seemingly of limited value. Finally this implies

that the lower boundary of the lower IIE regime as drawn on Figs. 2 and 3 is

somewhat arbitrary dependent as it is upon the perturbed Hadley flow initial

conditions being within the volume leading to a type I solution or not.

Another matter is the performance of the equations in the type III

irregular flow at rather high values of 7. These flows have not been
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considered in any detail because the ageostrophic momentum transports are

very large, at times substantially exceeding the geostrophic terms; or

looking at the same thing in a different way the Rossby number defined by

equation (81) frequently exceeds 1.0 and the nondimensional D431 often

is greater than 2.0. All this clearly indicates that using the quasi-

geostrophic model with these large values has relevancy only to simply

seeing how the equations behave and not to modeling any physically real-

izable flow. The typical performance of the type III solutions in the

phase space projection is an expanding spiral with the speed of the solu-

tion point increasing until the point is thrown out of the spiraling mode,

wanders about rather aimlessly and then slowly returns to the center of

the spiral. The pattern then repeats, but not exactly, with perhaps a

different number of spiral loops and a differing "aimless" pattern, still

in the same general area of phase space. The number of spiral loops and

overall dimensions are, as would be expected, effected by the value of

~' , 7'p ,and 9 . In terms of the behaviour of the equations it is

good to see that at least some degree of irregularity can be produced by

the equations if only for rather high forcing.
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4. The Atmosphere and the Equations

I. Meteorology or Merely Mathematics?

The major portion of the preceding chapter has, quite naturally,

dealt with the nature and various properties of the solutions to the

highly simplified set of atmospheric modeling equations. In spite of

the amount of simplification the equations are capable of producing a

quite startling variety of solutions, almost an embarassment of riches.

But in all of the solutions there are none which show the highly irre-

gular time dependence so characteristic of the atmosphere, except

possibly for limited portions of some of the III flows. It can be

reasonably argued that the extreme simplification causes such a reduction

in the number of degrees of freedom that highly irregular flows should

not be expected. But this leads to a rather crucial question: have the

simplifications been too drastic? Is it saying too much to claim that

the solutions to the set of nonlinear equations discussed here have any

real relationship to the atmosphere, as we have done implicitly by des-

cribing the solutions with terms like "momentum convergence," "energy

interchange," "zonal wind" etc? Or are they just a set of figures and

diagrams of interest in and of themselves, possibly of value to a mathe-

matician concerned with the behaviour of this sort of equation set, and

more appropriately described in terms of phase space trajectories,

multiple solutions, etc.?
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In order to answer these and related questions and in so doing

draw conclusions about the significance of the numerical experiments

performed we must reconsider what we set out to do in the light of

some of the results achieved. It goes without saying that at no time

was anything approaching a complete representation of the atmosphere

contemplated in the style for example of the recent study by Smagorinsky

(1963). Indeed virtually the opposite is intended. Here we wished to

start with a complete, or nearly so, representation capable of reprodu-

cing many of the features of the atmosphere and then extract from the

representation that part of it which is considered, a priori, to be

sufficient to represent the particular features of the atmosphere of

interest and discard the rest. In the present case the features of

interest are the meridional distribution of zonally averaged surface

and upper level winds including the formation of a single maximum, the

associated convergences of momentum, and to a lesser degree the energe-

tics of the atmosphere. The question to be answered then, by experiment,

is, once the elements of the representation are selected, whether the

desired features of the complete representation, or of the atmosphere

itself, will be correctly generated when the selected elements are incor-

porated into the dynamic equations. It is by no means obvious at the

start that this will happen; some discarded element may have a compelling

and unsuspected implicit dynamic effect necessary to rule out a dynamic-

ally possible but non-atmospheric phenomenon.
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It is in the process of extracting the presumably relevant elements

or discarding the undesired ones that such damage may be done to the

retained elements that the criticism could be made that the end result,

viewed as a set of modeling elements, is not truely a subset of the

original representation. The elements selected may be so distorted by

the selection process as to suppress their ability to represent the physical

phenomena that they were originally designed to do. As a first step, then,

in responding to the question of the relevancy of the numerical results to

atmospheric circulations we should consider in some detail the damage to

representational ability done in making the succession of simplifications

of chapter 2.

The first step of the selection of relevant matter from an (assumed)

complete representation of the atmosphere was the selection of a two layer

model. It would seem that the best argument that this is not a damaging

simplification is in the accumulation of experience using such two layer

models. There seems no need to detail the successes of these models in

representing the atmospheric flow and in particular in reproducing the

gross features under consideration. Some of these were noted on the intro-

ductory chapter. It seems worth noting however, that the present model is

less restrictive in one particular than many used previously: the spacially

averaged static stability is no longer constrained to be a constant in time.

It seemed to be too drastic to discard completely the variability of the

stability in the light of the simplifications to come; on the other hand

neglect of spacial variations would seem consistant with a planned represen-

tation of only large scale features.
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The next step, taken concurrently with the previous one, was

assuming the flow could be described adequately as quasi-geostrophic.

Again experience would seem to indicate that this simplification is

not a damaging one in general, but in the present experiments there is

considerable reason for caution under some conditions. These, of course,

are when the Rossby number or the maximum of ltk3] (nondimensional)

exceed 0.1 by any appreciable amount or, somewhat equivalently, the mean

cell ageostrophic momentum convergences become an appreciable fraction

of the geostrophic convergences included in the model. These conditions

are realized in the experiments generally either when the rotation rates

are low or L' high, or both at once. There would seem to be two ways

of considering and dealing with the fact of-appreciable ageostrophicity.

For one since the atmosphere behaves quasi-geostrophically in the large

scale it is certainly of interest to see how a quasi-geostrophic model

performs for forcing conditions beyond the range of conditions encountered

in the real atmosphere. But in so doing the likelyhood must be born in

mind that the real atmosphere, if subjected to the extremes of forcing,

could no longer be described in quasi-geostrophic terms, and hence the

model would have little relevancy to any physical flows. Thus we can

use the appearance of substantial ageostrophicity to delineate regions

of good or poor representation by the model. This consideration was the

rational for presenting all of the flows encountered on Figs. 2 and 3

but only looking closely at those for which the ageostrophic terms were

not excessively large. A second way of somewhat alleviating concern over
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ageostrophicity is by considering that after all we do have a highly

simplified model which neglects a considerable number of phenomena,

so to express concern over the neglect of one effect with so many

others neglected as well may be a little inconsistent. It would

seem rather extreme to use this observation as a basis for accepting

the high flows as particularly relevant to any real flows but

reasonable to use it as a justification for not ruling out the

relevancy of the lower flows studied in detail simply because

they show ageostrophic terms which are an appreciable fraction of

the terms included in the model. In summary then the geostrophic

approximation could be damaging but if used with discretion the harm

can be minimized.

Also included in the dynamic model was the parameterization

of the heating and friction into rather simple terms. Again it would

seem that previous experience with this sort of simplification would

be adequate justification for its inclusion here. Furthermore in the

light of the simplifications yet to come there would seem to be no

alternative to the present method.

The major simplification or selection of relevant matter from

a complete description of the flow is, of course, the expression of the

field of flow as a truncated series of orthogonal functions. The use

of orthogonal functions is in itself not really any simplification nor

does it involve any loss of generality in the description of the flow;
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the violence to the description is done in the interrelated process of

selecting the particular functions (the choice of geometry) and in the

actual truncation.

We have already described what the particular choice of func-

tions and retained terms can represent: it is in order to consider

the distortions inherent in the representation and the possible signi-

ficance of the modes of motion that are suppressed in the model. The

geometric distortions are obvious but not too grievous if they are

recognized. The choice of the double Fourier expansion for the infinite

channel has eliminated all effects related to the sphericity of the

earth. However the inclusion of the effect in the motion of the

waves would seem to have approximately reinstated the most important

of these eliminated effects. Further the distortion of the pole and

considerable enlargement of the surface area of the northern regions

with consequent large (relative to the earth) surface frictional mo-

mentum convergences makes direct comparison with atmospheric flow

patterns in those regions also somewhat less meaningful.

Another distortion quite noticeable on any "weather maps"

synthesized from the Fourier amplitudes is the symmetry between high

and low "pressure" regions. This is to be expected in view of the

nature of the simplifications introduced. And in spite of this the

qualitative resemblance to major aspects of real weather maps is still

quite apparent, so much so that one cannot feel too disturbed about

the symmetry. The symmetry in the momentum convergence is equally
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apparent, and arises, in a physical sense, from the geometric distortion

of substituting the channel for a sphere. This symmetry leads to momen-

tum transports across, say, 600N that will be unrealistically large in

comparison with observations in the atmosphere. Again if we take this

in stride recognizing it as a limitation of the model it would seem that

this is a not overly serious departure from reality. The damage done by

the geometric simplifications would seem, then to be ones of detail rather

than altering or ignoring any important physical phenomenon when is

incorporated.

The most extreme step in the selection of physical phenomena is

finally the restriction placed upon allowable scales of motion and in

particular the elimination of all but one wave disturbance in the zonal

flow. Completely ruled out by this is the interaction between different

scales of wave motion of the sort studied by Saltman and Fleisher (1960).

This is obviously important in the dynamics of the atmosphere but would

seem of greater importance in the study of the "fine structure" than the

present study of large scale phenomena. The single wave that is retained

is capable of doing, dynamically, all that the collection of waves observed

in the atmosphere can do as a group as far as momentum and energy conver-

gences and transformations are concerned so all that is lost as far as

dynamic capability is concerned is the interactions of the waves with

each other. This may be a significant loss for a proper representation,

even simplified, of the atmosphere; it is part of the experiment to see

if this is so.
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To reply to the question initially proposed, it would seem that

we can reasonably conclude that the set of equations we are working with

do indeed have a relationship to the atmosphere they purport to model.

There are limitations and restrictions, there always will be in any

model, but they do not seem so severe that they invalidate the model

completely. The preceding discussion delimits the range of validity

of the model and leaves us with what appears to be a satisfactory piece

of experimental equipment, so to speak, for the investigation of the

grossest aspects of the general circulation.

II. The Model Atmospheres

A. Qualitative Comparisons

The preceding section argues that the model is capable of repre-

sentating the gross general circulation; the burden of this section is

to see how good a job it does. It is immediately obvious from the dis-

cussions in the previous chapter that, qualitatively, the results are

something of a mixed bag. All of the atmospheric phenomena of principal

interest have been captured by the atmosphere for various sets of forcing

conditions but at no time have they all been caught simultaneously.

From the types of flows considered in detail it can be seen that

two of them capture at least a majority of the phenomena of principal

interest, the lowest L (= 0.05) flows of the moderate rotation (f = 6.67)

and those of the same type at lower rotations both with and without ,

and the higher t ( = 0.125:) flows at the high rotation rates ( = 20.0)
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with = 0. The high flows at lower rotation rates also capture

a majority but the magnitude of the ageostrophicity in those flows

renders them less desirable for direct comparison with the atmosphere

Starting with the high * we see the flow, earthlike at the

surface, increasing with height but not tending to be concentrated into

a single relatively narrow maximum. However the tendency for spreading

is sufficiently weak that a double maximum is not formed. The eddy mo-

mentum transport is "uphill" into the maximum of iA3 and as noted

previously is almost balanced by the momentum transport of the forced

thermally indirect mean meridional cell in mid latitudes. The zonal

wind maximum then, as seems to be the case in the atmosphere, is main-

tained quasi-geostrophically against friction by the eddy momentum

convergence. The lower layer convergences are distinctly non-atmospheric

in form with mid latitude divergences almost as large as the upper layer

convergences. In spite of this the earthlike lower layer flow is main-

tained against the frictional and eddy divergences by the meridional cell.

The ageostrophic momentum terms are seen as suggesting a tendency to move

the upper layer wind maximum somewhat northward of 45 , and in the lower

layer to strengthen the tropical easterlies at 20 and diminish the polar

0
easterlies at 70*. Their effect in the upper layer, if these tendencies

did actually result from inclusion of the balance terms in the model,

would be somewhat contrary to atmospheric experience where the zonal wind

maximum is generally found south of 45 , while their lower layer effect

is one more in agreement with atmospheric circulations.
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With respect to the energetics comparison can be made with other

numerical experiments, principally those of Phillips (1954) and

Smagorinsky (1963). Table 5 presents the average percentage energetics

for those experiments including the energy interchange rates. It seems

worth noting that although Phillips' and Smagorinsky's results here show

Table 5. Percentage Energetics: Other Numerical Experiments

A K1
Phillips 76.5 17.5 1.6 4.4 152.7 -16.1 143.3 60.9

Smagorinsky 74.3 21.6 1.4 2.7 129.8 -4.7 110.5 54.4

rather nice agreement neither is in energetic balance. Presumably this

could be attributed to the computational introduction of spurious energy

of the sort that brought Phillips' experiment to a close; Smagorinsky

noted this to occur as well, although not so violently. Comparison with

the high values in table 2 shows the present results to contain

substantially more energy in K and A than in the above table with

the mean terms reduced accordingly. The interchange terms vary consider-

ably from the values of table 5 principally in considerably smaller

and terms relative to the others. Also -\. l4 is seen to be

positive in table 2, while table 5 gives it as negative as has come to be

accepted for the atmosphere. It would seem safe to conclude that the

positive value is explained by the disproportionately large direct cell

in the polar regions in the simple model.
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For atmospheric comparisons, table 6 has been prepared from data

collected by Oort (1964) and gives approximate values (adjusted to be in

balance) of the percentage energetics for the atmosphere. Except for the

negative value of - R these numbers are somewhat closer to the

Table 6. Percentage Energetics: Approximate Atmospheric

Measurements (Oort (1964))

54 6 24 16 106 -6 85 17

values obtained in the simplified model than the other numerical exper-

iments. This is not to claim that the present model is better than the

others, but only to point out that its gross characteristics do not

depart violently (in the energy terms) from the real atmosphere.

The other flow type that seems to capture a majority of the pheno-

mena of principal interest is the lowest TA(0.06,0.05) flows of the

moderate rotation rate case ( If = 6.67), Figs. 7 and 8. As before the

flow, earthlike at the surface, increases with height, here actually

forming a double maximum, which is less pronounced when is included

in the equations. The eddy momentum transport is into the center this

time in both layers but it appears that the zonal flow is principally

maintained against friction by the mean meridional circulation, again

thermally indirect in mid latitudes. The eddy convergence and mean cell

are quite obviously not in balance, the friction making up the difference.
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Also the central indirect cell is not strong enough to induce a mid-

latitude southerly mean velocity, except for a small region in one

of the cases. The ageostrophic momentum convergences are similar to

those of the high T A flows described above.

Energetically comparison of the relevant portions of table 3

with tables 5 and 6 shows these flows under consideration to be consider-

ably at variance with both the other models and the atmosphere. Almost

all of the energy of the system is contained in A and almost all of

the energy entering the system passes through A' and is then lost by

the GA'dQ process.

In sharp contrast to the others the low A, high rotation

case is the least atmospheric of the flow types encountered. The upper

level shows a double maximum in the zonal wind with the eddy momentum

transport out of the center slightly over compensated for by the conver-

gence from a thermally direct mid-latitude meridional cell. Indirect

meridional cells at the extremes of latitude serve to balance the eddy

momentum convergence there. The overall impression obtained from this

particular type of flow is that it is in many ways a reversal of the

higher ? flow.

In spite of the dissimilarity to the atmosphere this flow would

seem to have importance in the present context because of the previously

noted effect of upon the surface flow, and to a lesser extent upon

the upper flow as well. In this particular case it seems reasonable to
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sary to obtain an earthlike surface wind distribution. The inclusion of

may also be seen to increase the strength (moderately) of the earth-

like surface flows found for lower rotations relative to What they are

when is left out of the equations.

The atmospheric effect most conspicuous by its absence in all of

the type I flows discussed here is of course the variability of the flow.

This is partially captured by the vacillating flows detailed in Figs. 13

and 14 although their periodic character is scarcely representative of

the randomness of the atmosphere. The sequence of dynamic configurations

of Figs. 13 and 14 do not seem to be analogous to any phenomenon of the

atmosphere; however the averages of the various convergence terms and

zonal velocities of the figures are qualitatively and, within a factor

of two or so, quantitatively identical to the higher A. type IE flows

found in the neighboring regions of the , L7 plane. The type II

flows do resemble, of course, the vacillating flows studied by Hide (1958)

and Fultz et al. (1959) in their rotating annulus experiments although

exact comparisons are not possible because of the inability to measure,

in the fluid experiments, momentum convergences and zonal velocities in

the lower portions of the fluids.

One of Fultz's results seems worth noting in conjunction with

the present results. He measures the average zonal velocity and the

momentum convergences at the upper surface of the flow for a vacillating

wave, finding a distinct double maxima in the zonal flow and what appears

-104-
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to be a maximum eddy momentum convergence about midway between the

maxima. The qualitative comparison between this observation and the

present results for the moderate and low rotation lower results

is immediate and quite striking. It would seem then that momentum

balance considerations would require a meridional circulation in the

annulus, in the mean, similar to that seen in the low flows of

Figs. 7 and 8, although the difference in geometry would alter the

qualitative appearance.

B. Quantitative Comparisons

Introduction of quantitative comparisons between the model and

observed atmospheric quantities furthers the impression gained previously

that the results are somewhat mixed although by no means unrepresentative

of major atmospheric phenomena. Table 7 gives values of the various non-

dimensionalizing quantities and the factors which when multiplied by the

nondimensional quantities give the dimensional values in familiar units.

The basic nondimensionalizing length quantity L was defined, it will be

recalled, as with Iv/ the width of the cartesian strip. The

time quantity is the coriolis parameter. If we take -W as the pole to

equator distance, 109 cm, and f as its value at 400N latitude the values

in table 7 follow directly. We must make note of a slight shift of em-

phasis implied by the fixing of f at a particular value. In the previous

discussion we have been describing flow variations as a function of the

nondimensional rotation rate, , nondimensionalized in effect by the
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Table 7. Atmospheric Dimensionalizing Factors

8 -4 -1 7 2 -2 -l
L = 3.185x10 cm; f = 0.926x10 sec ; C = 1.004x10 cm sec deg ;

p
b = 0.124

Dimensional Quantity

Temperature 0C

Zonal Velocity cm sec

Momentum Convergence cm sec-2

" m sec 1 day~-

Energy per unit mass cm2 sec-2

2
Energy transfer per unit mass cm

= Factor

= 6.98x10 2

= 2.95x104

- 2.73

- 2.36x10 3

- 8.70x10 8

-3 4
sec = 8.06x10

Nondimensional

C?

- - /L 3

friction coefficient I , in which f of course

For purposes of quantitative comparison however we

would not be a constant.

specify the rotation

rate at a value appropriate for the earth and seek flows bearing a quanti-

tative similarity to the atmosphere. The discovery of such will effecti-

vely determine the value of the friction and heating coefficients appropriate

to the model, quantities about which a priori guesses would be quite inexact

anyway.

From table 5 then a nondimensional 2 of 0.15 implies a nondimen-

sional pole to equator difference of twice that, or a difference of about

2100C as that which would exist in the absence of any circulation. Virtually

all of the flow types investigated in detail are found at forced temperatures

within a factor of 2 or so of this value and in particular the flows with

many earthlike qualities were found near this temperature with X = 20.0.
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210 0C may be somewhat in excess of the correct value for the earth;

Charney (1959) for example computes the equilibrium temperature differ-

0
ence for the earth at about 100 C; in the light of the drastic simpli-

fications made in the model a factor of two does not seem too serious

a discrepancy. Furthermore in the flows in the neighborhood of = 20.0

= 0.15 the actual temperature difference is on the order of 850 C,

a large value but not outrageously so.

Looking then at the higher large X type I flows, Figs. 4

and 5. the 450N upper layer eddy momentum convergence value is about 0.03

or so, as is the balancing meridional circulation term and the negative

-2 -2
lower layer eddy term. This corresponds to 8.2x10 cm sec or 71 m

-1 -l1
sec day . The zonal velocity maxima in the upper and lower layers

are 0.2 and 0.125 nondimensionally or about 59.0 meters per second and

37.5 meters per second, respectively. Calculations of the mean meridional

velocity, VJV] , by Gillman (1963) (for the southern hemisphere using

IGY data) give maximum values in the upper portions of the atmosphere at

mid latitudes of 23 cm sec 1 which corresponds to a momentum divergence

there of approximately 2 meters sec 1 day~1. Wiin-Nielsen et al. (1963)

compute eddy momentum convergences of 8 meters sec~1 day in the same

region for one month (January) of northern hemisphere wind data. The

experiments of Phillips and Smagorinsky give convergences of about the

same order of magnitude or smaller, the latter being particularly true

in the lower layer of their two layer models. The conclusion is quite

obvious that the present model while representing the zonal wind magnitudes
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reasonably well, grossly over estimates, by an order of magnitude or more,

the momentum convergences. At lower values of , , for the same higher

both the zonal velocities and momentum convergences are larger

still, both being approximately doubled for j= 6.67 and quadrupled

for = 2.5.

The energetics for the flow under consideration do not fare much

better when cast into dimensional values. The data in Oort (1964) (used

in drawing up table 6) suggest a reasonable value for AA' , for example,

2 -3
to be 1.9 cm sec while the nondimensional values, for the higher ' ,

in table 2 give 400 cm sec , very substantially in excess

of the observed values. The other conversion terms are similarly excessive.

Table 8 gives value$ for the energy storage terms from Oort (1964) along

with the values from table 2 with = 0.125 and 0.3.

Table 8. Energy Storage Terms - Units: 106 cm2 sec-2

A K -

Oort (1964) 2.7 0.3 1.2 0.8

Model: Tj = 0.125: 57.5 10.5 17.5 40.5

Model: = 0.3 16.50 6.2 19.0 122.0

Again the model energies appear an order of magnitude or more larger than

observed estimates, particularly the term.
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The other reasonably earthlike flow: k = 6.67 = 0.06 and

0.05 (equivalent to about 750 Pole-Equator) with and without (Figs. 7

and 8), show considerably more reasonable maximum eddy convergence, values,

about 3.5 m sec~1 day-1 in the upper layer (and lower layer as well when

is included) and values about one tenth as large in the lower layer

without . Except for the double maximum formation the mean zonal

velocities seem also quite similar to atmospheric observations approx-

imating 37 m sec~1 in the upper layer and dn the order of 7 or 8 m sec~1

in the lower layer. The mean cell convergences, although not excessive,

approaching 9 m sec~1 day-1 at their largest, are as was noted previously,

simply not arranged in a manner familiar from atmospheric examinations.

The magnitudes of the energy terms for this particular region of

the I , '2 plane are also somewhat mixed. IA. I is approximately

645 cm2 sec-3 again a clearly excessive value, although for this flow,

unlike the previous one, (-\ - is so large that the other energy

transfer terms seem to be of a reasonable magnitude. The energy storage

terms for =0.6065, ' = 0.06 are in table 9 and can be seen to be

generally too large.

6 2 -2
Table 9. Energy Storage terms - Units: 10 cm sec

= 0.6065 / = 6.67 = 0.06

32 I
310.0 2.75 23.7 4.8
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The dimensional values of the various dynamic quantities for the

two vacillation cycles considered are easily seen to be quite generally

in excess, by an order of magnitude or more, of the atmospheric values

cited above. Also comparison with such measurements as are available

from Fultz's experiments (principally the eddy momentum convergences)

shows the present values to be considerably too large both for the

type II flows and the low TA moderate rotation rate type I case that

bore a close qualitative resemblance to the average of the vacillating

flow in Fultz's tank experiments.

It seems reasonable to rationalize the excessive energy values

encountered in the solutions in terms of the geometry of the model, in

particular by noting that the single allowed wave stretches from the

equator to the greatly enlarged polar regions in contradistinction to

the more limited waves in the atmosphere. Hence one might anticipate

that integral properties of the wave, namely the energy and energy inter-

changes, could be larger than their atmospheric counterparts.

III. Summary, Conclusions and Lines of Further Investigation

In brief compass we can summarize the principal results of the

experiments relating to the representation of the general circulation

by the highly simplified model. This model, it will be recalled,

represents the atmosphere by a two level quasi-geostrophic energetically

consistant scheme which allows variation in the horizontally averaged

static stability, constrains the zonally averaged wind to have the form
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'4 sin y +3F JL' sin 3y in a zonally infinite channel with sides

at y = 0 and y = ( 4, and 4% are essentially the nondimensional-

ized magnitudes of the two modes of zonal flow), and constrains depart-

ures from the zonal mean to be in the form of a single baroclinic wave

in the x direction capable of interacting with both modes of the zonal

flow and, at the option of the experimenter, with the latitudinal varia-

tion of the coriolis parameter, the effect. Also in the model is an

impressed equator to pole temperature difference and frictional dissipa-

tion of the motion, both of which are controllable parameters. Because

of the nondimensionalization of the equations it is possible and indeed

more logical to interpret variations in the frictional parameter as

variations in the rotation rate (they are inverses of one another) and

this is done throughout.

For values of the temperature forcing somewhat in excess of a

value appropriate to the earth and relatively high values of the rotation

(with = 0) we obtain a zonal wind structure of a correct form: mid-

latitude westerlies flanked by easterlies in the frictionaly influenced

lower layer and a single mid-latitude maximum of westerlies in the upper

layer. The magnitude of these winds appear to be somewhat larger than

their atmospheric counterparts but not excessively so. The momentum

convergence in the upper layer is also of the correct form with eddy

convergence into the center balanced by divergence from an indirect

mean meridional cell there; however the magnitudes of these terms are

substantially in excess of atmospheric values. In the lower layer the
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momentum convergences depart mardkedly from atmospheric conditions

exhibiting there virtually a mirror image of the upper layer conditions.

The energetics of the flow seem reasonably well distributed in the sense

that their relative magnitudes do not differ too greatly from the relative

magnitudes of atmospheric values but their absolute magnitudes are sub-

stantially too large.

When is introduced with the same forcing conditions the flow

takes on a vacillating character the details of which do not appear to

have any atmospheric parallels although their similarity to the vacillating

flows of the rotating tank experiments is immediately obvious. The average

of the vacillating case is very similar in form and magnitudes to the steady

flow found when k is absent.

For lower temperature forcing, well within a range of estimates

appropriate for the earth, and moderate values of the rotation (both with

and without ) the frictionally influenced surface flow has the correct

form and quite reasonable magnitudes as well, while the upper level flow,

still of reasonable magnitude, shows a double maximum in the westerlies.

The eddy momentum convergences of both layers are in excellent agreement,

both in magnitude and shape, with atmospheric values, while the meridional

cell convergences appear to be less so as far as structure is concerned;

their magnitudes are in good agreement. A mid-latitude indirect cell does

exist but of insufficient strength to induce momentum divergences to balance

the eddy convergences in the upper layer. It is dominated by the overall

direct cell component of the meridional flow. The energetic terms show
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generally rather poor distribution relative to each other and also rather

poor agreement in magnitude in comparison to the atmosphere.

One would be hard pressed to have to make a final decision as to

which of these two flows better represented the atmosphere; there are

certainly desirable features in both as well as features that are not so

welcome. On the basis of the general quantitative agreement between the

model and the atmosphere however and noting that the main discrepancies

of the lower temperature moderate rotation flow case seem only two: the

excessive strength of the direct cell component of the mean meridional

motion which overrides the divergent effect of the center cell, and the

structure of the upper level westerlies, one feels that the better case

could be made for this one as being the more similar to the atmosphere

of the two.

The inclusion of into the wave dynamics, although having con-

siderable effect upon the overall patterns of performance of the equations

(vide Figs. 2 and 3), influences the ability of the model to represent

atmospheric circulations only in some of the details rather than in any

overriding manner. The main effect is to increase the mid-latitude

westerlies in both layers of the model over that which was present without

9 in the equations. This increase can take the form of a reduction of

the relative intensity of a double maximum in the westerlies in the upper

layer and a change of easterlies to westerlies in the lower layer as well

as a simple increase of the central westerlies in both layers. This phe-

nomenon seems certainly analogous to the results of theoretical work of

Kuo cited previously dealing with the effect of upon the momentum

transport tendencies of finite amplitude waves on the earth.



-114-

With this summary in mind we can return to the basic point of

the essay and inquire into what we have learned about the general cir-

culation in the course of the study, and in particular what insight

we have gained for purposes of explaining, physically, why the surface

zonal winds are distributed as they are and not the other way around.

As in all such matters, explanations of a poorly understood phenomenon

are given in terms of more fully understood ones. In this sense Kuo's

(1951, 1952) studies explained the momentum transports (and by implica-

tion the necessarily associated surface winds) of the atmosphere in terms

of the physical nature of barotropically and baroclinically unstable

(or stable) waves. Similarly Platzman's (1952), Kuot s (1953) and

Lorenz's (1953) studies did the same with terms taken from the study of

nonlinear tendencies of various flow configurations. Again Charney

(1959) used terms arising from a study of steady state finite amplitude

motion to explain the existence of the observed wind configuration.

The nature of the explanation given by numerical studies such as

Phillips (1956) and the present one is somewhat different than that of

the analytic studies. It is no longer possible to cite specific proper-

ties of the dynamic systems considered and show how they can account for

the particular phenomena of interest; rather the best that can be done

is to assert that the sundry physical properties incorporated in the

model acting in concert do (or do not) cause the sought after effect.

From the results of the present study, then, we may conclude that

what would seem to be the absolute minimum of the physical properties
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which allow of the possibility of an atmospheric surface wind structure,

as well as a non-atmospheric structure, that can be incorporated into

a dynamically self consistant model, will produce a surface wind structure

corresponding to that of the atmosphere and associated momentum conver-

gences with a pattern more or less like that of the atmosphere. The addi-

tional property of the effect improves the resemblance of the model

and the atmosphere but cannot be said to have an overriding importance

in the model. In effect, then, a single baroclinic wave capable of non-

linear interactions with the zonal flow, by its very nature, can be taken

as the cause of the zonal wind distribution seen on the earth.

Since non-earthlike surface flows were obtained even when the

effect was incorporated (although over rather limited regions) it would

seem too strong a statement to assert that a non-earthlike zonal wind

structure is physically inconsistant with the existence of a single baro-

clinic wave. It would seem definitely worth while to investigate whether

two, or more, waves capable of interacting with the zonal flow, and

possibly with each other, would eliminate the possibility of non-earthlike

surface flows and give some foundation to such an assertion for the case

of more than one wave.

An explanation such as this and the others outlined above can never

be completely satisfactory. In all cases the reasoning is based upon

abstractions from reality and the conclusions strictly, of course, apply to

the abstraction, the model, only. One can only argue that the level of

abstraction is sufficiently close to the reality that the conclusions have
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some connection with the real world. The level of abstraction in the

present study seems somewhat more removed from reality than, say, that

of the others cited above -- that this distance is not so great as to

vitiate the present conclusions is the argument of the first section

of this chapter.

That this highly simplified model does, with reasonable success,

represent many of the salient features of the circulation of the atmo-

sphere allows us to draw some further implications, somewhat tentatively,

about the physics of the general circulation. To state the obvious,

detail in a model is necessary to represent details in the flow being

modeled, but, seemingly, detail in the model is not necessary to induce

the gross features of the flow being modeled. In suppressing the smaller

scale details of the flow while still obtaining, fairly well, the large

scale structure experimentally, we are lead to an hypothesis that the

organization of the atmosphere is in a sense separable - the large scale

features are self contained, driven by the large scale forcings and do

not depend for their existence upon the details of the smaller features

whether the latter be transient or steady with particular geographic

locations. Another way of stating this is to conclude that the effect

of the many waves of the atmosphere upon the large scale zonal structure

is qualitatively similar to the effect of a single wave. The zonal struc-

ture with no waves present, the Hadley circulation, is of course markedly

different from the structure with one, or many, waves present. If a plane-

tary atmosphere existed somewhere whose characteristics were much like the
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earth's except that all but a very few of the long waves were somehow

suppressed the present results would indicate that the gross zonal

features of this atmosphere would not be excessively different from

those of the earth's atmosphere; differences in detail would be quite

obvious, of course.

These statements should be modified somewhat - the smaller scales

of motion are not ignored completely; some sort of motion is implied in

the frictional linking of the two layers and of the lower with the ground.

All other dynamic consequences of this motion are suppressed and it is in

this sense that the hypothesis of the large scale flow and forcing being

sufficient unto themselves is to be taken.

The question of the necessity of the large scale forcing for a

good representation is left uninvestigated by the present study but could

be looked into by means similar to the present methods. More, smaller,

scales of flow could be allowed in the model both in the zonal and merid-

ional directions and temperature forcings could be applied to the smaller

scales only, then whether the larger scale motion took on atmospheric

patterns or not would be of considerable interest.

Such a line of investigation, by increasing the number of degrees

of freedom, might also serve to introduce a greater degree of irregularity

into the flow thereby increasing the verisimilitude of the model in an

area where it seems to be quite lacking. Such randomness apparently is

not necessary for adequate representation of the flow features sought

after. Indeed an investigation of the number of degrees of freedom necessary
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to achieve statistically stationary irregular behaviour in an earthlike

model with thermal forcing in a reasonable range could be of considerable

value. It would seem to be the next step beyond reproducing the mean

state of the atmosphere as was attempted here.

A different means of introducing more degrees of freedom without

adding smaller scales of motion and one which would have a strong physical

rational behind it would be to subdivide the vertical structure into more

than two layers. The study by Gillman (1963) cited previously indicates

that the forced meridional circulations are not symmetric about the 500 mb

surface as they are required to be in the present model but that the lower

portion of the cells (the poleward return flow for the mid-latitude cell)

is concentrated in the lowest 200 mb of the atmosphere while the equator-

ward flow extends from 800 to perhaps 100 mb. This asymmetry could perhaps

be captured by replacing the two level by a four level model. Again such

a process should be viewed as a means of increasing the ability of the model

to represent greater detail of the atmospheric flow.

Both another benefit might accrue from either of these means of

increasing the number of degrees of freedom as well as an assured problem.

The benefit might be that by increasing the physical representativeness of

the model the rather distinctly non-earthlike modes of flow, e.g. those for

low thermal forcing and relatively high rotation, would not occur in the

model as they do not seem to be encountered in more complex general circula-

tion models. The problem is that the addition of only a small number of modes
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of flow will require a substantial increase in the number of terms in

the spectral equations and therefore in the amount of computation

required. The possible benefits to be gained must be balanced off

against the difficulties sure to be encountered and the question of

whether a more complicated spectral model has worthwhile advantages

for purposes of understanding the physics of hydrodynamic flows over

the more customary grid point models.
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