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ABSTRACT

Paleoproterozoic intracratonic compression across the Slave province
resulted in eastward indentation of the wedge-shaped Slave craton into the
Thelon orogen. Indentation was accommodated by shortening and crustal
thickening at the apex of the Slave wedge, bounded to the south by the right-
lateral McDonald fault and to the north by the left-lateral Bathurst fault. The
Paleoproterozoic, non-marine Et-Then Group in the East Arm of Great Slave
Lake records the history of this indentation.

The Et-Then Group consists of two formations. The older Murky Formation
is an alluvial fan conglomerate deposited unconformably over older
Paleoproterozoic sedimentary and igneous rocks and Archean metamorphic
and igneous rocks. Clast composition indicates that the Murky Formation
was derived from these older rocks, eroded during initial translation and
uplift on the McDonald fault system. The Preble Formation conformably
overlies the Murky Formation and is a braided fluvial sandstone. The modal
framework composition of QFL 66, 28, 6; QmFLt 65, 28, 7 and P/F 0.37
indicates a granitoid source. On the basis of west-southwest paleocurrrents,
modal composition and depositional style the Preble Formation is interpreted
to be derived from the Thelon orogen. Isostatic uplift at the apex of the Slave
craton due to crustal thickening provided sufficient amounts of sediment to
effectively bury local relief in the East Arm and change the depositional style
from one of locally derived alluvial fans (Murky-style) to a westward-sloping,
regionally extensive braid plain (Preble-style).

Thesis Supervisor: Dr. John Grotzinger
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Depositional Facies and Detrital Composition of the Paleoproterozoic Et-Then Group, NWT,

Canada: Signature of Intracratonic Indentation Tectonics

Introduction

The analog model of plane indentation has been used extensively to explain the Cenozoic

collision between India and Asia (Tapponnier and Molnar, 1976; Molnar and Tapponnier, 1975,

1977), and the present relationship between the Arabian plate and the Eurasian plate

(McKenzie, 1972). The geometries of certain older orogenic belts also have been accounted for by

indentation tectonics. A notable Proterozoic example is the Thelon orogen in the northwestern

Canadian shield (Fig. 1).

Indentation tectonics first was proposed as an explanation for the Thelon orogen, the suture

between the eastern Slave province and western Rae province, by Gibb (1978). Gibb noted the

wedge shape of the Slave craton, the probable rheological difference between the older, more

rigid Slave crust and younger, less rigid Rae crust, and the existence of large-scale structures

matching the orientation and shear sense of slip lines in the indentation model (see figure 1 of

Gibb, 1978). Hoffman (1980) first recognized the intracratonic nature of the indentation that

was accommodated by the McDonald and Bathurst faults and linked the indentation to island

arc accretion in Wopmay orogen. Hoffman (1987) advanced this analysis given the benefit of

new information concerning the structure and kinematics of the Great Slave Lake shear zone,

geochronologic constraints (Hanmer and Lucas 1985; Bowring et al, 1984), and regional

paleomagnetic information (Geological Survey of Canada, 1987).

Hoffman (1988b, 1989) proposed a two-phase indentation model for the Slave-Rae collision.

The first phase of indentation occurred along the Great Slave Lake shear zone during the

attempted eastward subduction of the Slave craton beneath the Thelon orogen. The second

phase of indentation was the result of post-collisional convergence between the Slave and Rae

provinces along the younger Bathurst (north-northeast-striking, left-lateral) and McDonald

(east-northeast-striking, right-lateral) transcurrent faults. This second indentation
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corresponds temporally to the accretion of the Nahanni terrane in Wopmay orogen (Hoffman,

1988b) and occurred approximately 150 My following the initial Slave/Rae collision.

Henderson et al (1990) examined geophysical, isotopic and metamorphic evidence for the

second, intracratonic indentation of the Slave craton into the Thelon orogen. They determined

that between 1735 and 1840 Ma regional compression caused the Slave craton to indent farther

into the Thelon orogen; indentation was accompanied by partial underthrusting of the eastern

Slave craton beneath the Thelon orogen. This underthrusting and compression caused

shortening and crustal thickening in the apical region (focus of the McDonald and Bathurst

faults) of the Slave craton, as evidenced by the large paired gravity anomaly at the apex of

the wedge. The thickening caused isostatic uplift in the eastern Slave province and Thelon

orogen.

This paper addresses the sedimentary response to the second, ca. 1800 Ma, intracratonic

indentation of the wedge-shaped Slave craton into the Thelon orogen along the Bathurst and

McDonald fault systems. Siliciclastic sedimentary rocks of the syntectonic Et-Then Group

record the tectonic development of the eastern and southern margins of the Slave craton during

this phase of indentation. The Et-Then Group was deposited as the final phase of

sedimentation in the Athapuscow basin, located in the East Arm of Great Slave Lake (Table 1).

The sedimentology and provenance of the Et-Then Group provide additional geological

constraints on the indentation event; this information may help to guide the interpretation of

other tectonically similar sedimentary basins.

Regional Geology

The northwestern Canadian shield (Fig. 1) is subdivided into two Archean provinces,

formerly isolated micro-continents, and two Paleoproterozoic orogenic belts. The northwestern-

most province in the Canadian shield is the Slave province. The Rae province lies to the south

and east of the Slave province, separated by the Thelon-Taltson orogenic belt. Wopmay orogen

flanks the western margin, and extends south and west of the Slave province.



The Slave province consists of greenschist to amphibolite facies 2660-2722 Ma metavolcanic,

and 2.66-2.7 and 2.61 Ga metaturbidite complexes, associated with 2.58-2.7 Ga gabbroic to

granitic plutonic rocks. 2.81-4.0 Ga granitoids, orthogneisses and metasedimentary rocks

unconformably underlie the metavolcanics and metaturbidites in the western Slave craton

(Bowring et al, 1990; Isachsen and Bowring, in review). The Slave province is bounded to the

west by Wopmay Orogen, which includes several terranes accreted to the western margin of the

Slave craton between 1.9 and 1.7 Ga (Hoffman, 1988b, 1989). The eastern and southeastern

margins of the Slave abut rocks of the 2.0-1.9 Ga Thelon-Taltson orogen. On the southeastern

edge of the Slave, the adjacent Thelon-Taltson rocks are deformed within the ca. 1900 Ma

Great Slave Lake shear zone (Hoffman, 1987; Hanmer, 1988). The Great Slave Lake shear zone

is a 25 km wide, right-lateral mylonite zone along which the Slave indented into the Thelon-

Taltson magmatic arc during the ca. 1.9 Ga Slave/Rae collision (Grotzinger and McCormick,

1987; Hoffman, 1987, 1988b, 1989; Tirrul and Grotzinger, 1990).

The Rae province lies east of the Thelon orogen, and south of the Great Slave Lake shear

zone. The Rae province consists of 2.6-3.1 Ga gneisses and meta-volcanics (Hoffman, 1989). The

Rae is extensively deformed by Paleoproterozoic transcurrent faults, such as the Amer Lake

shear zone and Ellis fault; some, including the Norman, Maclnnis and King faults, formed non-

marine pull-apart basins such as the Nonacho basin (Aspler and Donaldson, 1985).

The Bathurst and McDonald transcurrent faults form the northeastern and southeastern

boundaries of the ca. 1800 Ma Slave wedge, respectively. The Bathurst fault system can be

traced for about 350 km along a trend of 150* (Thomas et al, 1976). The most reliable estimate

of the magnitude of left-lateral separation is 115 km, based on the projection of stratigraphic

truncations across the Bathurst fault (Tirrul and Grotzinger, 1990). The McDonald fault system

is traced for 550 km along its 060* trend (west of Great Slave Lake the interpretation of the

fault is based on high-level aeromagnetic anomalies (Haines et al, 1971). Aeromagnetic

anomalies suggest alternate interpretations of 125 km or 70 km of right-lateral separation

(Thomas et al, 1976). Offset of geologic features in the East Arm suggest a right lateral



separation of about 70 km (Hoffman et al, 1977; Hoffman, 1988a), agreeing with the lesser

estimate of Thomas et al (1976).

The Slave and Rae provinces contain several remnants of Paleoproterozoic sedimentary

basins. The Kilohigok basin (Grotzinger and McCormick, 1987) is a remnant of a regionally

extensive foreland basin formed during initial collision and underthrusting of the Slave craton

in the Thelon orogen. The Et-Then Group, Athapuscow basin, in the East Arm of the Great

Slave Lake (Hoffman, 1969, 1981; Hoffman et al, 1977; Ritts, 1994) and the Tinny Cove

Formation of the Elu basin in Bathurst Inlet (Campbell, 1979) were deposited during the ca.

1800 Ma intracratonic indentation of the Slave into the Thelon. The Tinny Cove Formation is

poorly exposed and not well studied. In contrast, the Et-Then Group is well exposed in the East

Arm of the Great Slave Lake (Fig. 2) and has been the subject of study by Hoffman (1969) and

Ritts (1994; this study).

Previous Work: Et-Then Group

The Et-Then Group is a sequence of non-marine, siliciclastic sedimentary rocks and minor

basaltic volcanics and is formally divided into two formations (Stockwell, 1936). The older

Murky Formation is 200 to > 1000 m of alluvial fan conglomerate (Hoffman, 1969). The Murky

Formation grades into the overlying Preble Formation through a transition of approximately 20

m of interbedded pebble to cobble conglomerate and sandstone. The Preble Formation consists of

fluvial sandstones and has a maximum thickness of at least 3000 m (Hoffman, 1969, 1988a). The

volcanics occur primarily on the southern shore of Preble Island, intercalated with Murky

Formation conglomerates. They are subaerial basalt flows of the continental tholeiitic type

(unpublished data from S.E.R.U. Nucleaire (Canada) Limitee, cited by Gandhi and Loveridge,

1982).

Et-Then Group deposition is demonstrably contemporaneous with deformation on the

McDonald fault zone. Murky and Preble Formation sediments are cut extensively by strands of



the McDonald fault system, and also depositionally overstep strands of the fault system (Fig.

3) (Hoffman, 1988a).

Previous work on the Athapuscow basin by Hoffman (1%9) was the first to indicate that the

Et-Then Group was deposited in response to deformation on the McDonald fault. Hoffman

(1969) recognized the local provenance for much of the detritus in the Murky Formation,

paleocurrent trends for the Preble Formation, proximal to distal and thickness relations in the

Murky Formation, and correctly interpreted the alluvial depositional system. This data was

cast into the geosynclinal model as a Taphrogeosyncline (normal fault bounded basins,

deposited on older, deformed rocks; e.g. the Triassic Newark basin of the Appalachian orogen

- Hoffman, 1969). Since then, developments in the regional geology of the Slave province and

bounding Paleoproterozoic orogenic belts, the structural geology of the McDonald fault system

(e.g.: Thomas et al, 1976; Gibb and Thomas, 1977; Hoffman et al, 1977; Gibb, 1978; Hoffman,

1987, 1988a, 1988b, 1989; Henderson et al, 1990; Tirrul and Grotzinger, 1990; Hanmer et al, 1992),

and the sedimentology, stratigraphy and provenance of the Et-Then Group (Ritts, 1994; this

study) have required the data to be recast into a new tectonic model.

Sedimentology

The sedimentology and lithofacies of the Et-Then Group are briefly described here. More

detailed descriptions are provided by Ritts (1994), including 950 m of measured sections.

Locations of measured sections and other observation stations are shown in figure 4. Facies codes

generally follow Miall (1978), and are explicitly defined by Ritts (1994).

Murky Formation

Description: The Murky Formation is composed of five lithofacies assemblages: Gmm, St/Sh,

Sm/Sh/Sl, Gcm and carbonate/siltstone/Sr. The Gmm lithofacies assemblage (LA) is dominant.

It consists of one to five meter-thick beds of red or buff colored, poorly bedded, massive, very

poorly sorted, matrix-supported, cobble to boulder conglomerate (Fig. 5). Maximum clast sizes



are typically 30 to 50 cm in diameter, ranging to well over one meter. A few thin, silty mud

layers, some with distinct to partly coalesced limestone nodules and/or desiccation cracks also

are present. Bedding is lenticular to tabular on outcrop scale (Fig. 7a).

The remaining LAs make up only a minor amount of the Murky Formation. The St/Sh LA

consists of 0.3 to 2.5 m thick beds of buff-colored, medium to well sorted, medium to granular,

trough cross-stratified and plane-bedded sandstones. Beds have erosional bases and often

pinch and swell, with an overall lenticular to tabular geometry on outcrop scale (Fig. 5). Some

beds show distinct fining or coarsening-upward sequences (Fig. 7b). The Sm/Sh/Sl LA consists of

buff-colored, decimeter-scale beds of medium to very coarse, medium sorted, plane-bedded and

low-angle cross-bedded sandstone with sharp bases. Also present are meter-scale beds of

massive, very coarse, very poorly sorted sandstone with floating pebbles and non-erosional

bases. Primary current lineations and small-scale ripple marks often occur in the plane bedded

and low-angle cross-bedded lithofacies. Uncommon desiccation cracks and limestone nodules

are found in finer grained interbeds associated with the two sandstone LAs. The Gcm LA

consists of 0.5 to 3 m thick beds of poorly bedded, massive, poorly sorted, very angular,

monolithologic, pebble to boulder, clast-supported breccia (Fig. 5).

The carbonate/ siltstone/Sr lithofacies (carbonate LA of Ritts, 1994) consists of 0.5 to 2 m

thick beds of stromatolitic limestone or dolomite and bulbous 2 m high stromatolite heads

surrounded by red siltstone matrix (Hoffman, 1969, 1976). Most are fine grained and

recrystallized. The carbonate beds are often associated with rippled, massive and laminated,

red silts and clays, some with desiccation cracks, up to 10 meters thick (Hoffman, 1969, 1976).

The Sr lithofacies is red, medium grained, well sorted sandstone with small-scale, two-

dimensional, symmetric and asymmetric ripple marks and horizontal lamination, often with

desiccation cracks.

Interpretation: The silty beds with limestone nodules are interpreted as calcretes (Theriault

and Desrochers, 1993). The interpretation of the limestone nodules as an early pedogenic

feature is supported by the presence of intrabasinal soil pisoliths as detrital grains in



interbedded sandstones (discussed below). Hoffman (1969) also interpreted some of the

calcareous horizons in the Murky Formation as paleosols. The desiccation cracks and paleosols

found in the Murky Formation are interpreted to indicate subaerial exposure. The mechanisms

for deposition of the Gmm, St/Sh and Sm/Sh/Sl LAs are interpreted to be debris flow,

channelized, sub-aqueous traction (stream flow), and a combination of mud flow (Sm) and

sheetflood (Sh and S), respectively (Hooke, 1967; Bull, 1968; Hooke and Rhorer, 1979) These

LAs are interpreted to represent an alluvial fan depositional system. The debris flows are

characteristic of inner and mid-alluvial fan environments and the mud flows and sheetfloods

would be typical of a mid to outer alluvial fan (Hooke, 1967; Bull, 1968; Hooke and Rhorer,

1979). The streamflow deposits of the St/Sh LA are typical of an entrenched fan or

distributary channels on an outer fan (Hooke, 1967; Bull, 1968; Hooke and Rhorer, 1979). The

Gcm LA is interpreted to be a talus breccia, based on its monolithologic, very angular, clast

supported nature and because it is found only adjacent to fault strands. The limestones,

dolomites, and silty mudstones of the carbonate/siltstone/Sr LA are interpreted to be lacustrine

sediments (Hoffman, 1976) based on the presence of stromatolites, laminated sediments

(generally low energy conditions) and association with alluvial fan and fluvial strata. The

rippled and laminated sandstones of the carbonate/siltstone/Sr LA are interpreted to be

shallow water and shoreline lacustrine equivalents of the carbonates and siltstones (Picard and

High, 1981).

Preble Formation

Description: The Preble Formation has a dominant St/Sh/Sl LA and a minor Gmm/Sh/Sl/Sm

LA. The St/Sh/Sl LA consists of medium to very well sorted, fine to very coarse, red and buff

mottled sandstone (Fig. 5). Primary sedimentary structures include trough cross-stratification,

primary current lineation, planar lamination, and uncommon small-scale, two-dimensional

ripple marks (mostly asymmetrical, few symmetrical and interference) and ripple cross-

lamination. In the lower 300 -400 m of the formation grain size is coarser and 0.4-2.5 m thick,



coarsening-up beds are common. In stratigraphically higher parts of the formation grain size

fines slightly, bed thicknesses remain fairly consistent and fining-upward beds become more

common. Beds have sharp or scoured bases, often with mud chips or a gravel lag at the base of

the bed. Bedding on outcrop scale has lenticular geometry. A few interbedded millimeter to

centimeter-scale red and green mud layers, some with desiccation cracks (Fig. 6), occasionally

overlie rippled or planar-laminated beds (Figs. 5, 7d).

The Gmm/Sh/Sl/Sm LA consists of the Gmm/Sm and Sh/Sl sub-LAs. The Gmm/Sm sub-LA

consists of 1.5 to 2 m thick beds of poorly sorted, massive, matrix-supported, pebble to cobble

conglomerate and 0.5 to 1.5 m thick beds of very poorly sorted, coarse to granular, massive, red-

buff sandstone with floating pebble and cobble clasts. Beds are roughly tabular on outcrop scale

with sharp bases. The Sh/Sl sub-LA consists of centimeter to decimeter-scale beds of medium to

well sorted, fine to medium grained, planar-laminated and low-angle cross-stratified

sandstones with primary current lineations and asymmetric and (few) symmetric, two

dimensional, small-scale, straight crested ripple marks. Bedding is tabular on outcrop scale

with sharp bases (Fig. 7e).

Soft-sediment deformation, including convolute bedding, overturned cross-bedding

(recumbent-folded of Allen and Banks, 1972), and load casts, is common in the Preble Formation,

particularly the St/Sh/Sl lithofacies. Liesegang banding is also characteristic of the Preble

Formation.

Interpretation: The St/Sh/Sl LA is interpreted as channelized, sub-aqueous, traction deposits

formed within a sandy braided fluvial system (Miall, 1978; Rust, 1978). Interbedded mudstones

with desiccation cracks indicate subaerial exposure and are interpreted as overbank deposits.

The depositional process for the Gmm/Sm and Sh/Sl sub-LAs was debris and mud flow, and

sheetflood, respectively. The depositional system of this LA is interpreted to be relatively

small sediment lobes debauching into the fluvial system from minor rejuvenated relief on the



mostly buried McDonald fault system. Many of the rippled sandstones occur as waning-stage

flood deposits in overbank areas and on bars. However, on the two islands 8 km northeast of

Snowdrift and on the large island south of Basile Bay (and east of Union Island) meter-scale

sections of thin, planar beds of fine-medium sandstone with asymmetric, symmetric, and

interference ripple marks, planar lamination and desiccation cracks are interpreted to be

shallow water and shoreline lacustrine deposits (Picard and High, 1981).

The soft-sediment deformation features in the Preble Formation fit the description of

deformation features caused by liquefaction during seismic activity (Keunen, 1958; Allen and

Banks, 1972; Sims, 1973, 1975; Hempton and Dewey, 1983). The types of deformation features,

close association with the McDonald fault zone, and restriction of deformed zones to discrete

stratigraphic horizons, sometimes involving more than one bed, suggest the role of seismicity in

producing the soft-sediment deformation (Sims, 1973, 1975).

Facies Trends

Murky Formation facies become more proximal to the southeast, nearer to the McDonald fault

system. The most proximal facies are talus breccias and thick, poorly-bedded debris flow

deposits. These facies grade northwestward into more distal fan facies with significant fluvial

sequences and minor lacustrine rocks (Ritts, 1994). Furthermore, maximum clast sizes decrease

from southeast to northwest (Hoffman, 1969). Along the length of the East Arm these

relationships remain consistent within the Murky Formation. In the Preble Island area, the

Murky Formation consists entirely of proximal debris flow conglomerates. These trends are

consistent with the interpretation of the Murky Formation as a transverse filling alluvial fan

or bajada system draining from the McDonald fault system.

The Preble Formation records a sandy, braided fluvial system along the length of the East

Arm, generally showing no discernible along-strike facies changes. This observation is

consistent with the interpretation of the Preble Formation as a longitudinal fluvial system

draining from a distal source. In the southeastern part of the basin, very dose to strands of the



McDonald fault system, the sheetflood sandstones, mud-flow sandstones and debris flow pebble

conglomerates, interpreted as transverse sediment lobes, occur as minor components relative to

the fluvial facies.

Paleocurrent Directions

Paleocurrent data were collected from trough cross-stratification, primary current lineations,

small-scale ripple marks, and imbricated, clast-supported, pebble-cobble conglomerates.

Between 10 and 50 indicators from any given bed were measured, then averaged to give a

paleocurrent direction for that bed. Trough cross-stratification yields paleocurrent data from

the direct measurement of trough axes, as well as the measurement of limb sets. Paleocurrent

directions are derived from trough limbs by measuring the orientations of ten left and ten right

limbs per cross-bed set. These limb attitudes yield a paleocurrent direction, using method I of

DeCelles et al (1983). Correction for tectonic dip was made on all raw data.

Paleocurrent directions in the Murky Formation are interpreted from trough axes and limbs,

and imbricated, clast-supported, pebble-cobble conglomerates. Throughout the basin, Murky

Formation paleocurrents are dominantly to the northwest. Most are between 282* and 001*,

with a mean vector of 3320 (see figure 8a). All of the paleocurrent indicators show flow in a

radial pattern to the northwestern side of a line trending 0520. These data are consistent with

an alluvial fan depositional system draining from a 060*-trending paleohigh on the McDonald

fault.

Paleocurrent directions in the Preble Formation are interpreted from trough axes and limbs,

and primary current lineations. The mean paleocurrent vector for the Preble Formation is 2660

(see figure 8b). Hoffman (1969) derived a mean paleocurrent direction of 2570 from over 1000

paleocurrent indicators. This west-southwest paleocurrent is consistent with an axial fluvial

system parallel to the trace of the McDonald fault.

The northward-directed component of Preble Formation paleocurrents were measured

primarily from traction deposits in the LA interpreted as sediment lobes debauching into the
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fluvial system from the McDonald fault system. These paleocurrents confirm a minor transverse

input of sediment from the McDonald fault zone during Preble deposition.

Sedimentary Petrology

The petrology and provenance of the Et-Then Group was determined with conglomerate clast

counts in the Murky Formation and sandstone point counts in the Murky and Preble Formations.

Conglomerate Petrology

Methods

Counts were made of at least 100 pebble to boulder-size clasts per bed. Clast counts were made

in the Murky Formation at Murky Channel, Et-Then Island, Preble Island, and the islands 8 km

northwest of Snowdrift. Clast types, briefly described below, were defined at the outset of the

study. However, any distinguishing characteristics such as heavy mineral bands in quartzite

clasts also were noted. A special effort was made to match clasts to their sources in the Great

Slave Supergroup, Wilson Island Group and Great Slave Lake shear zone.

Clast Types

Quartzite: Variably cemented or recrystallized quartzose sandstones. Many are micaceous or

have heavy mineral bands and/or cross-bedding. Most are derived from the Sosan Group,

particularly the Kluziai and Hornby Channel formations, but also from the Wilson Island

Group.

Shale: Red, green, dark gray shale, mudstone or fine siltstone. Some of the gray shales are

graphitic, while others have cleavage. Red and green shales primarily are derived from the

Kahochella Group; gray shales mostly are from the Wilson Island Group. No clasts of typical

Union Island Group black, graphitic shale were observed.



Carbonate: Grey, tan or reddish limestones or dolomites, often with chert stringers and

microbial? lamination. These probably are derived from the Duhamel Formation of the Sosan

Group.

Granitoid: Undeformed, orange granitoids, typical of the Slave lithologies found in the

basement to Athapuscow basin sedimentary rocks, and mylonites, characteristic of the Great

Slave Lake shear zone. In most cases mylonite clasts can be matched with specific source belts

in the Great Slave Lake shear zone (Hanmer, 1988).

Conglomerate Compositional Trends

Histograms showing the conglomerate clast lithology of the six measured sections are shown

in figure 9, from data in table 2. East of 112* the Murky Formation has a lower shale-clast

"member" (0 to 450 meters thick), replaced by a quartzite-clast "member" (250 to 450 meters

thick). At Murky Channel, proximal to the McDonald fault system, the shale-clast

conglomerate accounts for about the lower fifty percent of the formation. The shale-clast

conglomerate thins away from the McDonald fault system and pinches out before Et-Then

Island. West of 112* over 90% of the Murky Formation consists of granitoid and mylonite-clast

conglomerates. The remainder of the formation consists of randomly intercalated 20-40 m thick

carbonate-clast conglomerates. In sections on the south shore of Preble Island, associated with

the volcanics, carbonate-clast conglomerates are missing.

The disparity in Murky Formation petrofacies between east of 112* and west of 112* is the

result of a complex source terrane. The lack of a uniform composition in the Preble Island area,

in contrast to the consistent composition east of 112*, is the result of deposition being quasi-

partitioned into small basins controlled by splays of the McDonald fault system (Hoffman,

1969). This partitioning is manifested in the abrupt changes from sections with carbonate clasts

to those without carbonate clasts, and thickness variations over fault strands.



Ptovenance

Clasts in the Murky Formation east of 112* are all derived from the Great Slave Supergroup

(Sosan and Kahochella Groups) and the Wilson Island Group. The shale clasts in the shale-

clast conglomerate are derived from the Kahochella and Wilson Island groups. The quartzite

clasts in the quartzite-clast conglomerate are derived almost entirely from the Kluziai and

Hornby Channel Formations of the Sosan Group. The Wilson Island Group also was a minor

source for the quartzite-clast conglomerate.

In the Preble Island area, Murky Formation clasts are derived mostly from the Great Slave

Lake shear zone and Archean crystalline rocks of Slave basement with minor, but locally

significant input from the Great Slave Supergroup (Sosan Group). Undeformed granitoid clasts

are derived from Archean Slave basement and Paleoproterozoic Thelon-Taltson protoliths of

the Great Slave Lake shear zone. The present-day erosion level exposes abundant Archean

granite in the Preble Island area (Slave), as well as the Taltson granitoids unaffected by the

Great Slave Lake shear zone. Similar lithologies were exposed to erosion during deposition of

the Murky Formation. The mylonitic and foliated granitoid clasts are derived from the Great

Slave Lake shear zone. Clasts derived from each belt of the shear zone (Hanmer, 1988) can be

identified. The carbonate clasts are derived from the Duhamel Formation of the Sosan Group.

All of these sources are local to the East Arm.

The mix of clast lithologies, with no apparent systematic variation related to unroofing, is

accounted for by the complexity of the eroding source terrane. The East Arm had experienced at

least one phase of fold and thrust deformation and one phase of transpressional deformation

prior to McDonald fault-related transcurrent faulting (Table 1). These deformations resulted in

a complex exposure pattern in the East Arm.



Sandstone Petrology

Methods

Sandstone samples were collected from measured sections in the vicinity of Preble Island, Et-

Then Island, Redcliff Island, Murky Channel, Basile Bay, Union Island and the two islands 8

km northwest of Snowdrift (Fig. 4). Samples were cut into thin sections and half of each was

stained for plagioclase and potassium-feldspar. 105 stained thin sections were point counted

(450 grains/slide) on a flat-stage petrographic microscope with an automatic point-counter

using the Gazzi-Dickinson point-counting method (Dickinson, 1970; Ingersoll et al, 1984). Grain

parameters are briefly described below (Table 3). The raw data (Table 4) were then

recalculated into QFL%Q, QFL%F, QFL%L, QmFLt%Qm, QmFLt%F, QmFLt%Lt and P/F for

each sample, as well as mean values and standard deviations for the data and various subsets

of samples (see table 4).

Grain Types

Monocrystalline Quartz: Monocrystalline quartz (quartz crystal 0.0625 mm in diameter)

totals about 56% of the grains counted. A few grains, restricted to the Murky Formation, show

secondary quartz overgrowths (Fig. 10). About 83% of the monocrystalline quartz grains show

undulose extinction.

Potassium Feldspar: K-feldspar (K-feldspar crystal > 0.0625 mm in diameter) makes up about

16% of the grains counted (Fig. 10). Many grains show partial alteration to phyllosilicates

and/or corroded boundaries replaced by quartz.

Plagioclase: Plagioclase (plagioclase crystal > 0.0625 mm in diameter) makes up about 9% of

the grains counted (Fig. 10). Plagioclase is often partially altered to phyllosilicates.

Sedimentary Lithics: Fine grained shale, siltstone and mudstone fragments make up about 3%

of the grains counted. Most are aggregates of phyllosilicates, sub-sand-sized quartz and iron

oxides.



Volcanic Lithics: Fine grained quartz or feldspar groundmass with plagioclase or

phyllosilicate micro-laths made up approximately 1% of the grains counted.

Other Lithics: Fine grained lithic fragments that could not be confidently placed into Ls, Lv

or Lm make up 2% of the grains counted. These were typically aggregates of microcrystalline

quartz, phyllosilicates and/or sub-sand-sized quartz and/or plagioclase that could not be

distinguished as Lv or Ls or vaguely foliated varieties that could not be distinguished as Lm or

Ls.

Others: Grains that were counted, but made up less than 1% of the modal framework were (in

decreasing abundance): polycrystalline quartz (quartz aggregate with counted sub-grain <

0.0625 mm in diameter), metamorphic lithics, chert and phyllosilicates (phyllosilicate grain

0.0625 mm in diameter).

Other grains, not counted in the modal framework, include detrital accessories: amphibole,

zircon, tourmaline; and intrabasinal, calcitic pisoliths (Fig. 10). The detrital accessories are

those commonly found in sandstones. The pisoliths are 0.5-2 mm, concentrically layered,

inclusion-rich calcite grains. The centers of the pisoliths are either dark mud, or calcite-

cemented pellets of silt-size quartz grains. Many of the pisoliths are broken or penetrated by

other detrital phases. These grains are interpreted as pedogenic calcrete pisoliths (similar to

features described by Pelechaty and James, 1991, and Theriault and Desrochers, 1993) eroded

from overbank areas and deposited in nearby channels, macroforms or sediment lobes.

The constituent minerals of coarse-grained rock fragments were counted, in accordance with

the Gazzi-Dickinson point-counting method (Dickinson, 1970; Ingersoll et al, 1984). Sandstone

grains are the most common coarse-grained rock fragments in the Murky Formation (Fig. 10).

These sandstone grains contain potassium feldspar and lesser plagioclase, but are dominantly

monocrystalline quartz. Aggregates of two to four crystals of monocrystalline quartz, potassium

feldspar and/or plagioclase are not uncommon, in the Preble Island area. The Preble Formation

has rock fragments consisting of two to four crystals of monocrystalline quartz and potassium

feldspar (rarely plagioclase). The coarse quartz/feldspar aggregates in the Preble Formation



and Murky Formation (near Preble Island) are granitoid rock fragments. Quartzose mylonite

rock fragments are very common accessories in the Preble Formation, and in the Murky

Formation near Preble Island (Fig. 10), but are counted as Qm or Qp depending on sub-grain size.

The feldspars observed during this study were all identifiable by staining, twinning and/or

alteration. Most altered feldspar grains were still clearly recognizable, based on a gradation

from pristine feldspar crystals, to those that were almost completely altered to

phyllosilicates. Even highly altered grains commonly retained ghost twinning and accepted

the appropriate feldspar stain.

Modal Sandstone Composition

Et-Then Group sandstones have a mean QFL of 66,26,8 and a mean QmFLt of 65,26,9. The

Murky Formation sandstones have mean QFL 68,20, 12 and mean QmFLt 67,20,13 (Fig. 11).

Preble Formation sandstones have mean QFL 66,28,6 and mean QmFLt 65,28,7 (Fig. 11). Mean

P/F ratio for the Preble Formation is 0.37. The mean P/F ratio for the Murky Formation is 0.24.

Compositional Trends

Compositional trends of Murky Formation sandstones generally reflect those established for

the conglomerates. Samples from east of 112*, interbedded with sedimentary clast

conglomerates, show an enrichment in Q and L relative to F (Fig. 12a). This confirms the

petrofacies defined by clast compositions in the Murky Formation conglomerates. Samples from

the Preble Island area, interbedded with mylonite and granitoid clast conglomerates, show an

enrichment in F relative to Q and L. In addition, they show an enrichment in plagioclase

relative to K-feldspar, with a P/F ratio of 0.57 ± 0.09.

The Preble Formation has a uniform QFL and QmFLt composition throughout the East Arm.

All of the localities lack systematic vertical variation in composition. Samples from the

Preble Island area display a slight enrichment in F relative to samples from the Preble

Formation east of 1120. The Preble Island area samples have mean QFL 56, 37, 7 and QmFLt 55,



37, 8 relative to mean QFL 65, 30, 5 and QmFLt 64, 30, 6 for the other localities (Fig. 12b). The

P/F ratio of the Preble Formation shows no systematic vertical or lateral trends.

Provenance

Murky Formation sandstone compositions plot in the "Recycled Orogen" field of the QFL

diagram and straddle the "Transitional Basement", "Mixed" and "Recycled Orogen" fields of

the QmFLt diagram of Dickinson et al (1983) (Fig. 11). These data agree with the

conglomerate-based interpretation of a local East Arm provenance for the Murky Formation.

The wide scatter and mix of provenance types, as with the conglomerates, is explained by the

complexity of exposure in the East Arm source terrane. Sandstones found interbedded with the

mylonite and granitoid clast conglomerates of the Preble Island area are also interpreted to be

derived from the Great Slave Lake shear zone. These sandstones are enriched in F and have

high P/F ratios.

Preble Formation sandstones plot in the "Transitional Basement" field on the QFL and

QmFLt diagrams of Dickinson et al (1983) (Fig. 11). Given west-southwest-directed

paleocurrents and more distal facies relative to the Murky Formation, Preble Formation

sandstones are interpreted to be derived from the crystalline rocks uplifted at the apex of the

Slave wedge, rather than from similar lithologies in the Great Slave Lake shear zone.

Additional evidence suggesting derivation from the Slave apex for the Preble Formation is

provided by contrasts in P/F ratio in the Et-Then Group. The P/F ratio of the Preble Formation

is a uniform 0.37 ± 0.13. In contrast, the P/F ratio of Murky Formation sandstones interbedded

with mylonite clast conglomerates, known to be derived from the Great Slave Lake shear zone

is 0.57 ± 0.09 (Fig. 13). This difference in P/F ratio may reflect differences in source rock

mineralogy or preferential loss of plagioclase relative to potassium-feldspar over the longer

transport distance from the apex of the Slave indentor. In either case the difference is

significant and allows the distinction of Great Slave Lake shear zone-derived petrofacies from



Thelon orogen-derived petrofacies, supporting the hypothesis that the Preble Formation is

derived from the apex of the Slave indentor.

The tendency for Preble Formation samples in the Preble Island area to be slightly enriched

in F and for samples from east of 112* to be slightly enriched in Q (Fig. 12b) may be due to

dilution of the apex-derived sediment with minor input from local sources. Minor input of local

East Arm detritus into the Preble Formation is supported by the sedimentologic observations of

transverse-filling sediment lobes, marked by the Gmm/Sh/Sl/Sm LA, and a component of

northward directed paleocurrents. This input would skew modal sandstone composition toward

the Q pole east of 112* where local sources are sedimentary rocks of the Great Slave Supergroup

and Wilson Island Group. The local input would shift modal composition toward the F pole in

the Preble Island area where source rocks are dominantly Archean and Proterozoic granitoids.

East of 112*, mylonite grains occur only in the Preble Formation. They occur in both the Murky

and Preble formations near Preble Island. This supports the conclusion that east of 112* the

Murky Formation is derived from sedimentary cover while the Preble Formation is derived

from mylonitized granitoids at the Slave apex. The mylonite grains in the Murky Formation

are derived from the adjacent Great Slave Lake shear zone.

Discussion

The sedimentology and petrology of the Et-Then Group (Fig. 14, table 5) records shifting

areas of deformation and source area during the intracratonic indentation of the Slave province

into the Thelon orogen. Compression across the Slave craton activated the McDonald and

Bathurst transcurrent faults and displaced the Slave to the east, relative to the Rae province.

In the East Arm this initial deformation produced relief on the southern side of the McDonald

fault system due to a south-side-up component of dip-slip, creating a sediment source and

accommodation space in the proximal Athapuscow basin. The McDonald fault system supplied

coarse, local detritus from the Great Slave Supergroup, Wilson Island Group, and Great Slave

Lake shear zone to northwest-prograding alluvial fans of the Murky Formation.



At the apex of the Slave wedge, indentation of the Slave craton into the Thelon orogen

resulted in underthrusting of the Slave craton, crustal thickening, and isostatic uplift

(Henderson et al, 1990). Uplifted rocks exposed an extensive source of granitic rocks to erosion.

This detritus was supplied to the Athapuscow basin by west-southwest flowing braided rivers,

restricted to the southeast by uplands south of the McDonald fault zone. The volume of

sediment supplied in this manner was sufficient to bury most of the strike-slip relief in the East

Arm and deposit a thick blanket of sand over the basin. Continued deformation on the

McDonald and Bathurst fault systems sustained uplift and sediment supply from the Slave

apex and locally rejuvenated uplift on the McDonald fault system, adding minor sediment

sources within the East Arm.

Sedimentary Response to Indentation Tectonics

It should be emphasized that the Et-Then Group is an example of the sedimentary record of

intracratonic indentation. That is, the two micro-continents (Slave and Rae) had sutured over

100 My in advance of this post-collisional convergence and reactivation of the suture

(Henderson et al, 1990). The sedimentary record associated with a collisional indentation

scenario (such as the initial Slave/Rae collision and indentation of Hoffman, 1987, 1988b, 1989)

may be different from the one described below, because in the former case uplift would be

maintained in the collisional orogen throughout the indentation, possibly obscuring early

transform-related sedimentation.

It is difficult to develop a general model for sedimentation in response to intracratonic

indentation. Depositional systems, sediment composition and vertical succession of facies,

provenance and paleocurrents will vary greatly depending on tectonic influences, such as rates

of uplift and subsidence, source rock lithology and location relative to the apex of the indentor,

climatic influences and sea level. However, sedimentary signatures can be predicted for basins

in some critical areas relative to the apex of the indentor (Fig. 15).



Perhaps the best place for interpreting a tectonic indentation from the sedimentary record is

at the indentor margin, along the transcurrent structures that accommodate the indentation.

This position, relative to the apex of the indentor, gives evidence for the early transcurrent

faulting in the immediate vicinity of the basin, and also will eventually show detrital input

from the apex of the indentor. The Et-Then Group in the Athapuscow basin occupies this

position for the Slave/Rae indentation. There is one particularly important aspect of Et-Then

sedimentation that may be applicable to other similar basins in the geologic record. This is the

change from sediment derived locally from drainage systems transverse to transcurrent faults to

exotic detritus delivered by a longitudinal drainage system tapping distal sources. In the

former case, sedimentation is dominated by proximal depositional systems and deposited in

relatively narrow, strike-slip basins (Christie-Blick and Biddle, 1985). This contrasts with

the latter case, in which sedimentation is dominated by broad, relatively distal depositional

systems that fill strike-slip basins in addition to forming a widespread blanket deposit.

Since the indentation model predicts the extrusion of crustal blocks by transcurrent faulting in

the indented plate, one expects to see the development of trans-tensional pull-apart basins in

the indented plate. However, an isolated pull-apart basin preserved in the ancient record is

not necessarily the result of transcurrent faulting due to indentation.

Immediately to either side of the uplifted apex, one would expect to see a coarse clastic

wedge prograding from the area of uplift. In the case of the Slave indentor, no sedimentary

rocks are preserved directly adjacent to the inferred area of uplift on the Slave craton. The

Thelon basin occupies this position on the Rae craton and may be of the same age (Loveridge et

al, 1988). However, available data from Donaldson (1965) suggest that these units were

derived from the east. In general, one would expect the record in these adjacent basins to show

uplift and erosion, not unlike the record that might be found in a foreland basin.

Composition of the sediment will be governed by source rock lithology (which is in turn

dependent on previous tectonic history and erosion levels) and climate. For this reason

compositional data can not be used independently to identify transform and indentation



settings, as Dickenson and Suczek (1979) and Dickinson et al (1983) have successfully done for

other types of basins (Ridgway and DeCelles, 1993).

Conclusions

The final phase of deformation in the Thelon orogen was a ca. 1800 Ma indentation of the

Slave microplate along the McDonald and Bathurst fault systems. In the Athapuscow basin,

the Et-Then Group was deposited concurrently with motion on the McDonald fault and thus

represents synorogenic sedimentation related to this post-collisional convergence. Et-Then

Group lithofacies and petrofacies demonstrate the progression of tectonic indentation.

The first record of continental transcurrent deformation associated with the McDonald fault

system are the proximal alluvial fan deposits of the Murky Formation, derived from the

uplifted southern side of the McDonald fault system. Sedimentary evidence for continued

deformation on the McDonald fault system occurs in the Preble Formation as possible seismites,

and minor rejuvenated sediment lobes derived from the McDonald fault system to the southeast.

For the most part, however, the Preble Formation is characterized by a sandy braided river

depositional system that buried the Athapuscow basin and most of the McDonald fault system

in northeasterly-derived, granitoid detritus indicating uplift in the Thelon orogen and eastern

Slave craton at the apex of the Slave wedge.

In general, sedimentary rocks derived from uplifts caused by indentation may be widely

variable in depositional systems and compositions, depending on rates of uplift, source rock

lithologies, location relative to the apex of the indentor, sea level, and climate. However,

basins located along transcurrent margins associated with indentation may be expected to show

a change from local, transverse (relative to the transcurrent structures) sedimentation to more

distal, longitudinal (relative to the transcurrent structures) sedimentation that overwhelms

local relief and sediment supply.



Figure Captions

Figure 1: Tectonic map of the northwestern Canadian shield, modified after Hoffman (1989)

and McCormick and Grotzinger (1992).

Figure 2: Geologic map of Athapuscow basin. Dark lines indicate right-lateral transcurrent

faults. Geology by Hoffman (1988a). PI, Preble Island; UI, Union Island; BB, Basile Bay; ET,

Et-Then Island; MC, Murky Channel; RC, Redcliff Island; SD, Snowdrift. Box centered on MC

indicates area of figure 3.

Figure 3: Detailed geologic map of the Murky Lake area. Dark lines are right-lateral

transcurrent faults, dark lines with barbs are thrust faults, dark lines with balls are normal

faults. Map shows unconformable relationship between the Et-Then Group and the older Great

Slave Supergroup, Wilson Island Group, Compton laccoliths, and thrust faults. The Fortress

gabbro intrudes all units, and cross-cuts the transcurrent faults. East of Basile Lake, the upper

Murky Formation depositionally oversteps the first splay fault; the upper Preble Formation

depositionally oversteps the second. Geology by Hoffman (1988a).

Figure 4: Location map for measured sections and other important localities.

Figure 5: Representative lithofacies of the Murky Formation (A, B, C, D) and Preble Formation

(E, F). A) boulder Gmm near Preble Island; B) pebble to cobble Gcm breccia near Murky Channel;

C) channelized debris flow Gmm on Et-Then Island; D) channelized sandstone of the St/Sh LA

in debris flow Gmm on Et-Then Island; E) St/Sh/Sl LA on Et-Then Island (arrow points to rock

hammer for scale); F) rare mud interlayers on Et-Then Island.

Figure 6: Sandstone casts of desiccation cracks from the St/Sh/Sl LA of the Preble Formation on

the island south of Basile Bay and east of Union Island.

Figure 7: Representative measured sections through important Et-Then Group facies. A)

proximal Murky Formation Gmm LA from Murky Channel; B) distal Murky Formation fluvial

sequence at Et-Then Island; C) Murky Formation/Preble Formation transition south of Murky

Channel; D) typical Preble Formation fluvial facies from of Basile Bay; E) Preble Formation

Gmm/Sh/Sl/Sm LA along the south side of Murky Channel. Arrows indicate paleocurrent



directions. Horizontal axis shows mud, fine, medium, and coarse sand, pebble, cobble and

boulder grain size increments.

Figure 8: Et-Then Group paleocurrent directions. The perimeter of the circle equals 20%.

Figure 9: Stacked pie diagrams showing clast compositions for the Murky Formation. Outer

circle is the lowest sample in the section (Table 2), inner circle is highest. Section locations: A)

north side of Murky Channel; B) south shore of Et-Then Island; C) islands 8 km northwest of

Snowdrift; D) islands off southwest corner of Preble Island.

Figure 10: Photomicrographs from Murky Formation (A, B, and E) and Preble Formation (C, D,

F) sandstones. Scale bar (lower right) is 1 mm in each photograph. A) Qm grain from Murky

Formation with secondary quartz overgrowth (arrow); B) sandstone rock fragment; C and D)

mylonite grains; E) calcitic pisolith with silt-sized quartz grains in center; F) recrystallized

calcite pisolith (center, large arrow), plagioclase crystal (center bottom, small arrow), and

microcline crystal (center top, small arrow).

Figure 11: Framework sandstone compositions from the Et-Then Group. Crosses represent

individual samples; polygons show standard deviation; means (not shown) plot at centers of

polygons. Grid lines and provenance fields are from Dickinson et al (1983).

Figure 12: Mean and range of sandstone compositions west and east of 1120.

Figure 13: P/F ratio for Great Slave Lake shear zone-derived sandstones in the Murky

Formation (Emg) versus P/F ratio for the Preble Formation sandstones (Ep).

Figure 14: Summary of Et-Then Group stratigraphy, facies, composition and paleocurrent

directions. Arrows represent paleocurrent directions. Dark lines indicate dominant

composition: s, shale; q, sandstone or quartzite; c, carbonate; and g, granitoid. Grain size axis

and lithofacies are the same as for figure 4.

Figure 15: Map of expected distribution of sedimentary basins formed during intracratonic

indentation.
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Table 1. Summary, Proterozoic sedimentary, igneous, structural and age information in Athapuscow basin
Stratigraphy Igneous events Deformation episodes Geochronology

MacKenzie Dikes 1270 Ma.
Fortress Gabbro dikes

Et-Then Group minor basalt flows McDonald Fault
System

Compton Laccoliths 1865 Ma. 2
East Arm fold and thrust
belt

Christie Bay Group basalt
Pethei Group

gabbro intrusions
Kahochella Group basalt/rhyolite
Sosan Group and 1928- ?? Ma.2
Wilson Island Group

Great Slave Lake shear 1970-1930 Ma.3
zone

Thelon-Taltson 2050-1920 Ma. 3
magmatic arc

Union Island Group basalt normal faulting
Hearne Dikes ??
Blachford intrusive 2085 Ma. 2
suite, late phase
Blachford intrusive 2170 Ma. 2

suite, early phase
Simpson Island dike
Archean crystalline >2550 Ma. 4
basement

The Great Slave Supergroup consists of the Sosan, Kahochella, Pehtei and Christie Ba groups.
Geochronology sources are: 1LeCheminant and Heaman (1989); 2Bowring et al (1984); Hanmer et al
(1992); '4Foss et al (1991). Table adapted from Hoffman et al (1977). n/c, nonconformity; a/c, angular
unconformity.



Table 2. Raw clast count data
Section Sample Strat. level Quartzite Shale Carbonate Crystalline
Snowdrift CC1 top of Em 97 3

Murky Channel

Et-Then Is.

1MRKO
1MRK23
1MRK82

1MRK186
1MRK349

CC6
CC7
CC8

1 ETI
1 ET23
1 ET60

1ETup9
2ET55
2ET80

2ET106

0
23
82

186
349
611
800
960

1
23
60
69

124
149
175

Preble Is.
1 PlO

1P121
1 P148

1 P1102
1Plup118

STA 8
STA 9

1 PItop2
1Pltopl17
1 Pltop271

Note: stratiaraphic level is measured from the base of

7
14
2
2

the Murky Formation



Table 3. Point-Counting Parameters
Code Definition
Qmu Undulose, monocrystalline quartz
Qmnu Non-undulose, monocrystalline quartz
Op Polycrystalline quartz
Cht Chert
P Plagioclase feldspar
K Potassium feldspar
Lv Volcanic/hypabyssal lithic grains
Lmh High-grade metamorphic grains; foliated

quartz-mica aggregates
Lml Low-grade metamorphic grains; foliated,

illite-rich, fine grained
Ls Sedimentary lithic grains: shale, siltstone
Lu Unidentified lithic grain
M Phyllosilicates

Om Monocrystalline quartz (Qmu+Qmnu)
Q Quartzose grains (Qm+Qp+Cht)
F Feldspar (P+K)
L Labile lithic grains (Lv+Lmh+Lml+Ls+Lu)
Lt Lithic grains (L+Qp+Cht)

QFL%Q = 100Q/(Q+F+L)
QFLF = 10OF/(Q+F+L)
QFL%L = 10OL/(Q+F+L)
QmFLt%Qm = 10OOQm/(Qm+F+Lt)
QmFLt%F = 10OF/(Qm+F+Lt)
QmFLt%Lt = 1 OOLt/(Qm+F+Lt)
P/F = P/F



m

IrW

W cz

P "PO Mp3PONM "Fo "Po3 NMMM M - - - 9 2 EW Kg K K E M M - - - - - - - g a E E ~ (3Pob.

MNMMMM@MM OAMMWOc :74OM m ~ a g a am s ~ s n

4 - 34 4 0 O 3 4 (3 . ( (3l (3P3 P M M - 0 Of (3( 4 (3(3( ( .n 4 ( ( (30 O 3 -- J .... ( ( 3 -4 -( -3 C 4
0 (A3 a (3 O 34.M (3(3(3(3 P3(3(3(3(34(3 000(3(O 0(3(34O 3P3P3(M P (MEn 3(34(ta10( n 4( 3n 3O O

4. (3 O3 .4( (3 (3) 3 -J ( & (3O.4J4 ((3P3 (3( (3(3 -4 4 (3 (33( 3 ........ i O (3(3 .4-4(3 4 (3(3 (3 ( (3) (3O 3(3* (3 -

(3.0 CD us (3 (3P w3 op 4 0 0 3(P 3 0 04 ( 3( 3 33.( 0 w333 4( 3'4 ~ ~~~(~0( 343-

-. (3 00P300 o33-00 P3P p300 4--0 C-. CP o 0 43.P 00P w0w0 3P300 0P3

0 4 0 an a6 co ip a 4 F0 to(3 aC 4 0 4 a 34 as CID( P a. O4 (3 in V3 a a ,4 (33( us 40 (3 ca (33 ,P 4 P ( PO (( -34

us b . ) w h CA 0 w a,) . 0 - . * &n 4 A. : j w 4 0 TJ w 6 in "n .8. M c a n C.) L" w " w 4. " w Ms n()M&M aMOi
fD -4 (t -4 CD ( 3O0(30-(340P3P3(GoP3P3"4(3 O-4&340,W& V . op j~

a 0 - - J - W W O @ O J -& 4 to FO 4 AJ - 3 & (3. (3 0 ( 3J (& J & 0 -( -4 -3 W F0 ( W - C

0-.00-(3 &000C- 400w 0 0 0 w O w 0 0 00 30 - O0 - -. 0 P 4 3 .0 30~

mP m m -0,4(33( (344J3.( C3 P334(. (3 w P3a.J(m36(3(3w m0 4 (3(3(3(3(Q3(3(3(3 omb

-000"P o0--- 0 0 3 - P 0 0 0 0 0 0 - 0 0 0 0 3"( P P 0 3

. n & n ft & "&"f & .8 .1 & &n . 16O "&@@aa J&@N@@w J@ J" n&m M n&Mi

4 4 4 40 4 40 42 40 0 4 0 0 4 0 0 4 = 4 04 4 0 40 CD 0 0 0 0 444 4044 44004444 40

00000000 0 0 0000000 C mG"0 00 00 0 0 0 0- 000 000 000 0000w v 0000000 0

O3 P3 ( P b 3 (3( P4 (3(3(3 G" L ) P m 41245bN-POM NAO3 O M3 0( (3 &O Ol (3 ( 3
WO (am 0 (3& M M63)mADm3w w0 e.0.a.3 3o w3 JpP03( 4( P (33 A.

0 M - W O -s -0 O O - O -j O 4 Os M a O - W O O O O w O O l O4 OD OJ O -4aa Ob -4 O

CD cJ t 0 n CD .) a Ct"h PO tD W w (w ( O r ,MOM JMM-sO@ & M&Ga-

a iO iO i4 O a. M a * in O ia io w io w w L@ w i n O e w io A w ^s " - a. J w - i 4 in -6 w4 a, i" L

-3 n 4 z -4 s (P 3 o" :34(3)J 3 M t(3 (WA COD I O3M ;O0( 3(OCCOO4046( 3 CD OC-. w -.

P3 P3s D (33PP3( ((3(3(3 ( P3 P3 P3 P3 P3 3 P3 P3 3 P3 (3( O O (3(3P3 ( ((3((3O P3 P3 P3 (3)aO(( ((33 (3(3 P3 (3 3 (3(3O (3-

M M (34 . (3((3 MMt(4(3) . (3 .4((33MMNNMMMM9 -(3 (. )3( ( - '4 P3) (J 0 4(3)(300 -3 0 ) .4 (3 fPM3 -(30 (3 t)(340 (3-ta 00(a P ((a)()34 -

is - -OOO - - --O- - - - - - - - - - - - --OO- Ot? OEs OEs J@ JEnN s MM ' Jt) @-.-4-
(n ts as -aM J 3(34(34(3(3(O .4.4P3J 3(D P30P3MPJO 30m( 3 O-0O(3 t4 0- nO (n&. aO ( s

(34.4.O -(33'1(.430.(3-.(3340 3((3(3MO(0MO0 (33.4 .4 .4 (34

(333(03 33 J.P ((((3.44(3(3(3(3-(3(3(3aP3J ONJ& - Jinin& M (3(3(3(330O @ O P.3P3O3O3t()

03 .(.(3- .4.4- 0(30- - (3(3(3(3(3(3 - P3(3-.4(3(-3(-3(3-P3- 4-a. (3 (3.4(30(30 P3M 00.404(340(-3(e0(3- P-*(-(3(3



CIO 14 "a . 4;
wI &w

gso omo 
CoAfl1

(3(3 U' (3 -a -J ( 0 0 -a 0 . - P0 - 0 J - O 0 0 P3 0 U' - 0 0 U' 00 UC D 3 M 0 0 00
0 ( 3 0 M 0 P - 0 0 P U' ( 0 ( M 0 0 ( 0 0 - 0 U' - M 0 0 (3M UA ( U' (3 w . 0 C "4 P O 0-4

W33 W ' PO M 3 W -W " 4- W3 0-P 0 U'0 (33333 .J 00 -J 00 M3 -3(3 -4M ob3P 3- 30
0 A U' M3 C.b U ( 0 - 0 M 0 0 U 0 P 0 & 0 d 0 0 U' P0 0O 0 a 0 cn-. 0 0 UL"U' 0. .3 0 0 (3 a a 0

(3U'P~b~ U' 'U'.S~bP3W a3''3 '3. C"a 0 0 j j 0- U' ' 3 '.3 3. ' 3 ( U( (. 0 P -4 -J -4 3

OmO-:OO- 0 O O O O - O-(4-aM --m MO OO OP O*OU'-JJ0J0O
3

0 WU''O - O UM 4 0 C O M - U0 M 0 0 4 M 4

w333 -0w P 0 P3 ), 0 U (P330 3-W 0- - 0 :: U' - U' - 0 - " w 00 3 P3 P -c

W W W - O - 4,U M O W 0 - 0 W W Ut W a -0 O -a6 0 - -4 MUt-U &- M a, O O 0 O -a " 0 - O

w Um -4 m m w W" 3P3P3P3P3woo ( & O 3- a O 3 0 O

(3U'0P30 3(3 0P3((m0(.bw(300 30( P 0 0 00

W3'P 0 (A 4 '" 0 (0 -4 00 A. 0 0 w0 ~ - 0 P3 -
0

0
0 0 

" 3* C2 ,a 00 U' U' -0 - 0

& & & (3A & A & (3s & A & & A& AA
00000000000000 00000-00000000000000000000000-0000 0

3 :j00(3 -: t 0W P & -L 0 0 -: ( P 0 C. ( ((3 - J (3 & O 00 & P3 P3 -0 - U' 0 & & (3U @ P3 &3
;- P U' 0 U' U' O & 00 0 U' 0 (3 0 U: (3 - 0 (3 & P3 0 0- U- 000 W (30- -: ( 300 a O

O& 3 O3 -4 0-c 4 '"" a 0 - M W co %n (a M U 0& 0" .OMO -O

wMMMP in3M((-. Mb MMw Min --. sP3 l (3(3 3 (3 (3W3( ( PI 33M 3 MMM w3p.P 3w3wm MMMM"MM w
J. 0 - 0- 0 P3 -00 r OD P3 C, -0 I a, 0 0 ( U -LP 0 i000 - w 160D

wb3 3 0 3 
0 

0 ' 0 .... 'U 0 & P3 b 3 ~ ~ ( ......~O4 OD C, I O " Mt tO -4 UO Pog 0- t&Gta ta4 -a o Nb

(3O"ODP3C" (" 0OO -- ~.- w 0 ob 0oo lwb D Z;" Z; j :1 Z OP3(3:: 5 O;-;

0r P3 000 Z; 00 -J1 000D0h) I C 0000000 LJ 0 U 40-3 U'L". 0A (3000 D -j0 -0 0 b P3 W 3 -''31 C

t.)0&U 0 MO000"000P 000000P30(3'.&U'b'PN(3U'0'J!(*!3"U'&

UM ( I U w ID C a a a O O O4 O A3 O (A) -- -b W co 0 U (" 0 U W M 6 t*) 4 1-3 (n U ob A .(3-JOO(3m(3C)U' & h P3-- (3 t)N--bb(30 eU' &O 0-OU'0O- U' & 0 0P3-0O00.bOO-w0(U 3b .)
0'.-.U' & 0 -. 0(30a (300) J NM UwM @U-0 ( 3GP3 O-00bO wU00 0P3U0U &b(3P3M 0U - 0



Table 5. Evidence in the Et-Then Group for Intracratonic Indentation Tectonics

Criterion Description

Formation and Member
Thickness

Facies Trends and
Depositional Systems

Paleocurrent Trends

Compositional Trends

Textural Trends

The Murky Formation thins from over 1000 m near the
McDonald fault to less than 300 m at Et-Then Island, on the
northwest side of the Et-Then basin. The shale-clast
conglomerate "member" thins from over 400 m in the
southeast to zero at Et-Then Island in the northwest. Preble
Formation thickness is relatively uniform over the basin.

Murky Formation alluvial fan facies become more distal to the
northwest, away from the McDonald fault. The Preble
Formation is a sandy braided fluvial deposit over the entire
basin.

Murky Formation paleocurrents are directed to the
northwest, away from the McDonald fault. Preble Formation
paleocurrents are directed to the west southwest, parallel to
the McDonald fault and away from the apex of the Slave
indentor.

Murky Formation sediments largely are derived from
sedimentary, local East Arm lithologies. Preble Formation
sediments are derived from granitoid rocks (some mylonitic);
probably from the apex of the indentor.

Murky Formation mainly consists of cobble to boulder
conglomerate and fines to the northwest away from the
McDonald fault. Preble Formation consists almost entirely of
sandstone and shows no discernible lateral textural trends.



600

Figure 1

960



.......... 
.....

......... 
.....

as .............
................

* 
%%
%
O

%
 %

C
 

%

N
 

.........

-
.
.
.
 

.
.
.
 .
.

0~ 
A

n

'
.
.
.
.
 

.
s
 

e
 

e

.71 
41



figure 3



figure 4



JI!.

em
m

rw

X
44

44-s



figure 6



B C D

,. - * -

- o

0 0'

0 C o 7 --

mfmcpcb mfmcpcb mfmcpcb

St

~Sh

Sm

oGmm

Gcmi

- Sr

mud

desiccation cracks

soft-sediment
deformation

figure 7



Murky Formation Preble Formation
(a) (b)

figure 8



quartzite clasts

shale clasts
C D carbonate clasts

% crystalline clasts

figure 9



figure 10



a0cc0

LL 
L

L

010
O

P0

e 
22

qy~

o*-

11P
 

0

+~ 
i

i 
L

L



F
Murky

* mean composition west of 1120
= mean composition east of 1120

polygons indicate range of each subset

0

L F L
Formation Preble Formation

(a) (b)

figure 12



0.6 mean+SD
t mean

0.5- mean-SD

0.1-
P/F

0.2

0.1-

0-i

Ep Emg

figure 13



-

04



Strike-slip basin,
proximal setting,
ocal provenance

Clastic wedge,
apical provenance

Pull-apart basin

Uplift

Overlap between
clastic wedge and
strike-slip basin

Sediment dispersal

#I I.,

figure 15

0.... .

A


