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ABSTRACT

The Valles Caldera lies at the intersection of the Jemez Lineament and the

western edge of the Rio Grande Rift in northern New Mexico. The caldera and its

immediate surroundings comprise one of the world's largest and most complex vol-

canic centers, with a long history of eruptive activity extending up to geologically

recent times. In this thesis we present the results of two different forward model-

ing methods used to determine the local 2-dimensional seismic structure directly

beneath the caldera. In the first method we modeled observed P-wave delays by

ray-tracing. In the second method we modeled spectral amplitude variations using

the Aki-Larner discrete wavenumber spectral synthesis technique.

We used six portable seismic event recorders to collect teleseismic data at sites

placed along a line bisecting the caldera. The azimuth of the array was approxi-

mately on-line to seismically active regions to the northwest and southeast, so that

our observations would be for plane waves arriving nearly parallel to the plane used

to specify a 2-D vertical cross-section of the caldera directly beneath the array line.

This design minimized the effects of 3-D structure in the recorded data. Two sepa-

rate deployments of the six instruments along the same line yielded 24 high quality



teleseismic signals for on-azimuth events recorded at most of the sites. The most

useful data were obtained on the second array, which had 4 sites on the resurgent

dome and 1 each on the northwest and southeast ring fractures.

Using spectral ratio techniques to characterize the amplitude variations for the

vertical and radial components across the array, we found that the amplitudes for

both components were much lower inside the caldera than at the ring fracture sites.

This dominant behavior did not vary significantly with incidence angle or direction

of the events. We modeled this dominant behavior using synthetic spectral displace-

ment solutions for the P-SV scattering problem in irregularly layered models, solved

using the Aki-Larner method. The model which best fit the data required a zone of

strong attenuation and low velocity approximately 16 km wide, 4 km high and 1 km

deep, centered beneath the caldera. We interpret this feature as a zone of highly

fractured and partially water-saturated material created by the deformation which

must have accompanied caldera collapse and dome resurgence, and by subsequent

hydrothermal activity.

For each recorded event we also measured P-wave delays across the caldera,

relative to the earliest site. The dominant behavior in these observations was that

the delays are much stronger at the dome sites for southeastern events than for

northwestern events. We used a standard ray-tracing method to model these ob-

servations and found that a large lens-shaped low velocity inclusion was required

at significant depth beneath the caldera. We constrained the inclusion's width to

be about 17 km and its average depth to be 10-13 km. We could not constrain its

maximum height and velocity, but minimum values for these were found to be 8

km and 3.5 km/sec, respectively. We interpret this feature as a zone of partial melt

related to the original Valles magma chamber, which has cooled considerably since

the caldera and resurgent dome were created.
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CHAPTER 1

Introduction and Review of the Valles Caldera

1.1 Introduction and Outline of Thesis

Seismological investigations into the processes and crustal structure associated

with volcanic features at the earth's surface have been on the increase in recent

years. Of particular interest to many earth scientists is the understanding of the

mechanisms governing magma emplacement in the crust, transport to the surface

and the resulting evolution of topographic surface features which are commonly

identified with volcanic systems. The vast majority of scientific studies on vol-

canoes have been carried out using non-seismological methods and data. This is

due largely to the complexity of volcanic structures and the unpredictable char-

acteristics that seismic data display after interacting with the fine details of these

structures. Typically the upper-crustal structure beneath volcanoes varies strongly

in all three space dimensions, and to adequately constrain the parameters of this

structure, using traditional seismic imaging methods, would require data from a

very dense 2-D network of surface stations. Often the logistics of installing and

maintaining such an array on volcanoes are prohibitive because of limited accessi-

bility and extremely rugged terrain. This problem has been alleviated somewhat by

the development of sophisticated waveform modeling methods which can be applied

successfully to seismic data recorded on just a handful of instruments installed at

key diagnostic locations on and around a volcano. This is the approach we have

used in the present study for the Valles Caldera. Although accessibility was not a

17



problem in our case, we had only six portable event recorders to work with. So our

field experiments were restricted to 1-D linear arrays, and our modeling efforts were

concentrated on reproducing the observed variations in amplitude and P-wave de-

lay, using 2-dimensional representations of the vertical structure beneath the array

lines.

The Valles Caldera is one of the largest and most complex resurgent calderas

in the world. Its topographic rim varies between 25 to 30 km in diameter, and from

aerial photographs and topography and geology maps, it is seen very distinctly

as a sub-circular depression in the Jemez volcanic highlands, containing a large,

central resurgent dome and at least eight subsidiary volcanic domes which outline

the approximate locations of the ring fracture. The topography of the region is

so complex that there are few accessible vantage points on the ground where the

bowl-like shape of the caldera can be clearly viewed. The caldera has frustrated

all attempts to date at determining its detailed seismic crustal structure, for the

simple reason that it lies entirely within the boundaries of a privately-owned ranch

and, until recently, it has been difficult to obtain permission to install temporary

seismic recorders there. The present study represents a major breakthrough in this

respect, because the results we obtained would not have been possible without the

generous cooperation and freedom of movement within the caldera that was granted

to us by the owners, the supervisor and foreman of the ranch. We were allowed

to place all six of our instruments entirely within the caldera and thus, the data

we collected are by far the best obtained to date for the purposes of studying the

seismic sub-structure.



In this thesis we give a detailed presentation of our seismic experiments in the

Valles Caldera, carried out during the summer of 1987. We describe the types of

data collected, the analysis methods used for data reduction and the major patterns

observed which we used to infer the crustal structure. We give detailed descriptions

of the modeling techniques used, as well as in-depth presentations and discussions

of the best models we obtained which were capable of reproducing the majority of

our observations. We then discuss possible interpretations of these results in terms

of the known volcanic history and structural evolution of the caldera presented in

numerous non-seismological studies of the region.

The remainder of the present chapter is devoted to a brief review of the vol-

canic history of the Valles Caldera and its geologic and tectonic setting. This is

not intended as a comprehensive detailed review, since this has already been done

by Felch [1987], among others. It is meant primarily to give enough background

information on the region so that continuity can be maintained between the known

history and geology of the caldera and possible interpretations of our results for

seismic structure.

Chapter 2 is entirely devoted to the data. We discuss the design of the field

experiments, describe the instruments used and the logistics of site reconnaissance,

installation and maintenance. We discuss the types and quality of data recorded and

describe the methods used to characterize and reduce or remove various forms of

noise from the recorded seismograms. We then describe the data-reduction methods

used to obtain information about the relative amplitude and P-wave delay variations

across the caldera. Finally, we discuss the observed patterns in the data and the

features of these patterns that we will attempt to model.
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In Chapter 3 we present a detailed description of the Aki-Larner method used

to synthesize spectral amplitudes for candidate structural models. The problem is

formulated to solve for 2-D scattering and attenuation effects caused by plane P-

SV wave interaction with layered models having irregularly shaped interfaces. The

formulation and solution of the problem is presented in a generalized form which

may be used to obtain solutions for models with an arbitrary number of irregular

layers, although current computing capabilities limit the total number of interfaces

to 4. Appendix 1 gives the detailed expressions needed to program the algorithm.

We also present, in Chapter 3, the formulas needed to include anelastic attenuation

in the models in terms of the seismic quality factor, Q.

In Chapter 4 the P-wave delays are modeled using a standard ray-tracing tech-

nique. We give a brief description of the method and how we used it for determining

the major features of the P-velocity structure beneath the caldera. We then describe

the forward modeling process which led to the best-fitting model and discuss the

best model in terms of which parameters are or are not well constrained by the ob-

served delays across the caldera. We show that a low velocity lens-shaped inclusion

at depth, centered beneath the caldera, is required to explain the strong differences

in observed delays between recorded events from the northwest and southeast.

Chapter 5 presents the major results obtained for the Aki-Larner modeling

of the amplitude data for scattered waves. We find that the amplitudes are not

sensitive to the deep low velocity inclusion found in Chapter 4, but they can be

best reproduced by a large zone of very strong attenuation near the surface beneath

the caldera. We discuss the internal reliability of the synthetic solutions for this

model and demonstrate that the most important model parameters are reasonably

20



well constrained by the data. We also discuss possible implications of 3-D struc-

ture and demonstrate that our model is in fact a reasonable representation of the

2-D vertical structure for the caldera cross-section beneath our instrument array

line. We conclude the chapter with a discussion of alternative mechanisms of wave

interaction which might also be capable of reproducing the data. We eliminate

these alternatives one-by-one, largely through counterexample, and conclude that

our low Q effect is the only reasonable way to produce synthetic amplitudes that

are consistent with the observations.

Finally, in Chapter 6 we discuss the differences between the two models ob-

tained for the P-delay and amplitude data and conclude that these may be resolved

in terms of the major differences between the ray-tracing and Aki-Larner meth-

ods and between the approaches we took for converging on the best models. We

then discuss possible interpretations of the major features in each model by relating

them to the known thermal and structural evolution of the Valles Caldera, based

on previous non-seismological studies of the region. We conclude that the deep, low

velocity inclusion is consistent with a zone of partial melt representing the remnant

portion of the cooling magma chamber which was responsible for the formation of

the caldera. The near-surface low Q zone is interpreted as a highly deformed and

fractured portion of the caldera fill layer created by the process of dome resurgence.

The extremely low value of Q that was obtained for this zone is a unique result.

It is partially supported by the existence of a well-developed hydrothermal system,

which, due to water-saturation of the fractured region, may be capable of producing

strong attenuation effects for fairly low frequency waves.
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1.2 Overview and Tectonic Setting of the Valles Caldera

The Valles Caldera and the surrounding Jemez Mountains volcanic field has

long been the subject of diverse areas of scientific research. The earlier works of Ross

[1938], Smith et al. [1961] and Smith & Bailey [1966, 1968] were aimed primarily at

the geologic mapping of the region and studies of erupted volcanic material, eruption

processes and ring fracture and resurgent dome formation [Goff & Gardner, 1988].

From the 1960's onward, increasing interest has been shown in the geothermal and

hydrothermal properties of the region [Dondanville, 1971, 1978; Goff & Grigsby,

1982]. Almost 40 geothermal wells have been drilled in and around the caldera.

Also, numerous wells have been drilled at Fenton Hill on the western flank of the

caldera, to search for geothermal energy sources in hot dry rock (HDR) [Heiken

et al., 1981]. The combined stratigraphic information obtained from all of these

wells has allowed the construction of detailed lithologic sections for a large portion

of the caldera region [Goff et al., 1986]. The result is that more is known about

the near-surface structure of the Valles Caldera than any other resurgent caldera

in the world. During the past decade or so there has been a noticeable increase

in the publication rate for studies in and around the caldera. This in part has

been due to the interest of the Continental Scientific Drilling Program (CSDP) in

drilling exploration core holes in the caldera. The knowledge of the caldera's history

and volcanism has increased remarkably during this current period of research. As

stated in Goff 8 Gardner [1988]: "Only in the last 5 years has it been possible

to view the region as a dynamic, integrated magma-hydrothermal system having a

complex evolution lasting more than 13 m.y."
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The caldera is located in a section of the southwestern United States where

four major tectonic provinces nearly meet. These are the Basin and Range, the

Colorado Plateau, the Southern Rocky Mountains and the Great Plains. Felch

[1987] has reviewed the crustal structure in each of these provinces. Since the

structure is different in all four tectonic provinces, it is in general useful to have

some knowledge of how the regional structure may affect seismic data recorded near

the caldera. We did not consider regional effects in our data because the instruments

were confined mainly within the caldera itself, and the major variations among sites

on this scale should be due primarily to local structure.

Superimposed on this provincial setting are two additional tectonic features

which intersect each other at the location of the Valles Caldera. These are the Rio

Grande Rift and the Jemez Lineament. Figure 1.1 is a schematic map showing

the general tectonic setting of Valles Caldera. The wedge-shaped Basin and Range

Transition zone corresponds to a region where the tectonics are a mixture of features

characteristic of the Rio Grande Rift, the Colorado Plateau and the true Basin and

Range to the west.

The Rio Grande Rift is a classic example of active continental crustal rifting.

It is a nearly linear feature characterized by crustal thinning beneath its axis, active

extensional tectonics, low gravity, high heat flow and recent volcanism along much

of its length. The surface expression of the rift is a very clearly defined series of

grabens extending from central Colorado into southern New Mexico with vertical

offsets as large as 6 km [Baldridge et al., 1984]. The locally thinned crust beneath

the rift is underlain by upper mantle material with anomalously low P-wave velocity

[Davis et al., 1984]. The wavelength of this anomaly is about 150 km, however, so
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we should not see its effects on our seismic arrays, which had maximum apertures

of 14 km and 32 km. The Valles Caldera lies on the western flank of the central

portion of the rift, just north of the point where the rift takes a jog to the east.

The Jemez Lineament is a roughly northeast-trending tectonic feature passing

through the southeastern Colorado Plateau and defined by a series of late Cenozoic

volcanic fields. This trend extends from eastern Arizona to the Valles Caldera, where

it then bends more eastward and tapers out after crossing the Rio Grande Rift. It

appears to be linked to a region of weakness or a stress boundary in the Precambrian

lithosphere [Aldrich & Laughlin, 1984; Aldrich, 1986], but the lineament cannot be

attributed to a single fault or fracture zone or to some simple structural anomaly

in the upper crust [Baldridge et al., 1984]. In the vicinity of the Valles Caldera,

the Jemez lineament is expressed clearly in the Jemez Fault Zone southeast of the

caldera and in the apical graben slicing through the center of the resurgent dome.

It is probably no coincidence that the Valles Caldera formed near the intersection

of this feature with the Rio Grande Rift.

1.3 Formation and Evolution of the Valles Caldera

Caldera formation in the Jemez Volcanic Field occurred as two separate and

distinct phases of Plinian ash and ignimbrite eruptions. The first occurred about 1.4

Ma, erupting about 200 km3 of material which formed the Guaje Pumice bed and

the first, or Otowi, member of the Bandelier Tuff [Nielson & Hulen, 1984]. Rapid

volumetric depletion of the silicic magma chamber caused collapse of the crustal

block above it along pre-existing ring-fractures [Smith & Bailey, 1968], forming the

Toledo Caldera. After a 300,000 year hiatus, renewed activation of the magma
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chamber resulted in a repeat of the first cycle. The upper, or Tshirege, member of

the Bandelier Tuff was erupted, preceded as before by a Plinian ash plume which

deposited the Tsankawi Pumice at about 1.1 Ma. Subsequent collapse of the magma

chamber formed the Valles Caldera (Figure 1.2). Until recently it was believed

that the Toledo Caldera was a smaller feature located just northeast of the Valles

Caldera. It is now known that the two calderas are approximately coincident [Goff

et al., 1984] and the obvious semi-circular depression to the northeast is now referred

to as the Toledo Embayment.

After collapse of the Valles floor block and deposition of alluvial and volcanic

caldera fill material, renewed magma rise caused the uplifting of the central caldera

floor, creating the resurgent structure known as Redondo Dome. The dome is the

dominant structural feature within the caldera, rising almost 1 km above the alluvial

valleys surrounding it. It is riddled by a complex system of extensional fractures

at its surface, which are dominated by a large longitudinal graben parallel to the

Jemez Lineament. Following resurgent doming, volcanic activity continued in the

caldera with the formation of a series of circumferential rhyolite domes beginning at

about 1.04 Ma on the eastern ring fracture. Proceeding counterclockwise from this

oldest post-resurgence dome, ages decrease steadily to about 0.5 Ma on the west

and southwest ring fractures [Doell et al., 968]. The youngest erupted material,

at 0.13 Ma, is the Banco Bonito Obsidian flow in the southeastern corner of the

caldera [Self et al., 1988].

The history of volcanic activity in the Jemez Volcanic Field, prior to the Toledo

eruptions, dates back to earlier than 13 Ma [Gardner et al., 1986]. The youngest

eruptions which contributed to the major high peaks of the Jemez Mountains to

26



VALLES CALDERA TOLEDO EMeAYbENT

INTRACALDERA VENTS

NEW MEXICO

GRABEN*

FENTON HILLAMOS

REDONDO PEAK *EUGNTDN

10KM!IOKM

Figure 1.2 Schematic map showing location and major stuctural features of the Valles Caldera.

The Jemez Fault Zone is shown to the southwest of the caldera, and the Pajarito Fault Zone is to

the east, passing through Los Alamos. The Toledo Caldera is approximately coincident with the

Valles Caldera. This figure is reproduced from Felch [1987].



the north and east of the caldera have ages of 7 to 2 Ma. The Toledo and Valles

calderas were thus emplaced in the midst of an already well-developed and highly

complex volcanic system. But, since our present study is entirely confined to the

caldera vicinity, we will not be concerned with the surrounding volcanic setting in

which it was formed. We will assume that the Bandelier events represent such major

disruptions to the previous structure that, on the scale which we will be modeling,

the features related solely to caldera formation should dominate.

Since the cessation of volcanic activity at about 0.13 Ma, the dominant behavior

in the caldera has been hydrothermal activity and gradual cooling of the upper crust.

However, there is evidence from temperature logs taken at the Fenton Hill drilling

site that the age of heating at moderate depths within a few kilometers of the site

is probably less than 40 ka [Harrison et al., 1986]. The main implication here is

that the second caldera-forming event of 1.1 Ma does not represent the most recent

introduction of heat to the region. Any consideration of how long it would take for

the Valles magma chamber to completely crystallize must take this into account.

We will discuss this further in Chapter 6.

The complex hydrothermal system of the caldera and its immediate surround-

ings has been studied in detail by numerous investigators. Goff & Grigsby [1982]

and Truesdell & Janik [1986] have suggested that hot fluid reservoirs may originate

at depths in excess of 2 km near Redondo Dome. These studies were based primar-

ily on deep exploration drilling near the dome and on the chemical compositions of

fluid outflows. Goff & Grigsby [1982] estimated an average production depth, for

a well near Redondo Dome, of about 1500 meters, with temperatures of 260* to

300* C, but they suggested that producing zones may also exist in the underlying
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volcanics, sediments and Paleozoic formations. Truesdell & Janik [1986] have sug-

gested that fluids may originate from parent sources in the Precambrian basement

rocks. Figure 1.3 depicts a recent estimation for the size and configuration of the

hydrothermal system along a SW-NE cross-section of the southwestern portion of

the caldera and its surroundings. The presence of a large volume of fluid-saturated

rock beneath Redondo Dome bears strong implications for the attenuation of seismic

waves passing through this region. This will be discussed in Chapter 6.

We will see in Chapters 4 and 5 that the modeling of the caldera's sub-structure

in terms of simple homogeneous components is a rather formidable undertaking,

given the complex volcanic and tectonic history of the area. Fortunately we were

able to reduce the number of free model parameters that we need to adjust by

making use of existing detailed information concerning the near-surface structure

beneath the central caldera locality. By combining stratigraphic information from

a number of exploration wells with gravity profiles from Segar [1974] (reproduced

in Nielson 84 Hulen [1984]), a cross-section of the near-surface structure down to

the Precambrian granite basement was constructed by Self et al. [1986]. Figure 1.4

shows the cross-section they obtained. The drill hole data constrain the northwest-

ern section extremely well, and this structure agrees with the gravity profile given

in Nielson & Hulen [1984] for the same cross-section. The southeastern portion was

constructed from the continuation of the same gravity profile, which indicates a

significant low Bouguer anomaly in this area. There is thus a well-established trend

of increasing depth to the Precambrian basement along this section.

In Chapter 2 we will see that the line we chose for our seismometer arrays

was nearly coincident with the line A - B in Figure 1.4. In Chapters 4 and 5
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we will use this known structure to guide our initial modeling efforts. One of the

few seismic surveys in the region, that of Ankeny et al. [1986], yielded average

P-wave velocities for this surface layer in the range of 3.0 to 4.5 km/sec, and we

will also use this a priori information in our initial models. We will see that the

details of this a priori structural and velocity information is more important for

removing predictable effects from observed P-wave delays across the caldera than for

constraining model parameters based on the amplitude variations. This is because

the cross-section in Figure 1.4 is more closely representative of the velocity structure

than of the Q structure beneath the caldera. Thus, we will see that the two different

types of data yield different types of best-fitting models. After presenting our models

in Chapters 4 and 5, we will discuss their differences in some detail in Chapter 6.



CHAPTER 2

Data Collection and Processing

2.1 Field Experiments

The data used in this thesis were collected during the summer and fall of

1987. Six portable digital event recorders were used to record teleseismic earthquake

signals along two array lines passing through the Valles Caldera. Both arrays used

the same azimuth line but differed in the spacing of the six recorder sites. Figures

2.1a and 2.1b show both of these arrays on a schematic map view of the Jemez

Mountains region with major topographic and structural features labelled. Figure

2.1a shows the site locations for array 1 and 2.1b shows array 2. A vertical cross-

sectional view (looking northeast) of the surface topography across the array line

(section A-A') is shown at the bottom of each array map with the six sites indicated.

The topography profile was digitized from the USGS 7.5' quadrangle maps for the

region, and elevations at each site were compared with altimeter readings taken

in the field. The profile is referenced to an arbitrary zero-datum of 2290 meters

elevation above sea-level. The vertical z-coordinates are given as depth (positive

downward) relative to the zero-datum. The horizontal position axis shown will

be used for the x-coordinates in the synthetic calculations in Chapter 5. This

will require the definition of model structures over some fixed interval for the x-

coordinate and, for reasons which will become clear in Chapter 3, we will use an

interval of x = 0 to x = 256 km with x increasing from northwest to southeast. The

caldera structure and free surface topography will be centered at x = 128 km and
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this will correspond to the site RDT. The aperture width for array 1, from CAC

to CAP, was approximately 32 km and covers the range x = 113 to x = 145 km.

For array 2 the aperture width, from SAM to CLJ, was approximately 14 km and

covers the range x = 121 to x = 135 km, which spans the caldera's ring-fracture

zone. Results of the synthetic modeling can be compared directly to the observed

data by calculating the expected free-surface motion at x-coordinates corresponding

to the site locations shown in Figures 2.1a and 2.1b.

Site coordinates, elevations and other information relevant to both arrays are

listed in Table 2.1. The linear geometry was chosen with the intent of obtaining

observations of amplitude and phase variations across the caldera which might be

explained by anomalous upper crustal structure beneath the arrays. This choice

of linear geometry was dictated primarily by the limited number of instruments

available. It would be hopeless to attempt to characterize waveform variations due

to 3-dimensional crustal structure with only six instruments. So our study here

will be strictly limited to 2-dimensional models for the caldera structure within the

vertical cross-section beneath the array lines. In order to minimize the effects of 3-

dimensional structure in the data it is necessary to have the incident waves arriving

along an azimuth nearly parallel to the trend of the array. For this reason the array

azimuth was chosen to be approximately on line to seismically active regions to the

northwest, such as Alaska, the Kuril Islands and Japan, and to South America to

the southeast. We will consider only data from events that lie within - ±20* of

the array azimuth. Rather than spacing the sites evenly across the aperture in each

case, it was decided that it would be more useful to space them closely on one side

of the caldera to obtain better spatial resolution. This is not unreasonable since
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we expect to collect data for both positive and negative incidence angles and the

caldera on a large scale may be assumed to be essentially axi-symmetric. The wide

aperture array 1 was used to characterize variations on a regional scale with the

hope that at least one of the two outer sites (CAC or CAP) would be relatively free

of near-caldera effects. The narrow array 2 was used to observe the local variations

within the ring-fracture zone of the caldera.

TABLE 2.1
Site Information for 1987 Jemez Field Experiments

Site Instr Array Latitude Longitude Elevation X-Position
Name # # (degrees) (degrees) (meters) (kn)

CAC 3 1 +35.987 -106.676 2617 113.0

PNY 6 1 +35.962 -106.651 2672 116.0

SAM 4 1 & 2 +35.932 -106.612 2965 121.0

SOS 3 2 +35.926 -106.596 2635 123.0

ALM 5 1 & 2 +35.915 -106.579 2678 125.0

REB 6 2 +35.901 -106.561 2916 127.0
RDT 2 1 & 2 +35.895 -106.552 2916 128.0
CLJ 1 2 +35.856 -106.493 2617 135.0

CAP 1 1 +35.799 -106.404 2562 145.0

There are two important reasons behind the need to use teleseismic data for

this study. First, it is essential for the recorded waveforms to have sampled the

deep structure beneath the caldera and this will be true only for steep incidence

angles, 60, which occur for teleseismic distances, i.e., A > 20*. Secondly, we wish to

restrict our attention here to only the large scale features, on the order of 1 km in

scale-length or larger, and this requires the use of intermediate-period data which

are very typical in large teleseismic events. The finer scale structure of the caldera

is extremely complex, and it would be impossible to model higher frequency data

with such limited instrument coverage. So we will only be concerned in this thesis
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with steeply incident source waves, for which 8o6 I, 45*, and we will examine only

the intermediate-period content of the data from 0.1 to 1.0 Hz.

The six instruments used for the field experiment were digital event-detecting

recorders built nearly ten years ago at MIT. Since then, they have been used in

numerous field studies, including a very successful experiment at Mount St. He-

lens in 1981. The equipment is described briefly in Fehler & Chouet [1982] and

in Fehler, Roberts & Fairbanks [1988]. The instruments record 3-component seis-

mic data, digitized at 240 samples per second, on 1/2 inch 9-track magnetic tape,

with a maximum storage capacity of 3 hours. Analog voltage signals are recorded

as 12-bit digital numbers, which gives a dynamic recording range of 72 db. The

event detection circuit uses simple long-term and short-term averages. An event is

detected when the short-term average of the rectified signal amplitude rises above

the long-term average. Due to false triggering on spurious background noise, wind,

thunder storms and wildlife disturbances, the tapes typically need to be changed

every two weeks. Time is kept using a 5 MHz crystal oscillator as an internal fre-

quency standard. The clocks typically will drift between 1.0 and 5.0 msecs per day

and, if checked regularly against an external time standard, the absolute timing of

recorded signals can usually be obtained to within t10 msecs, including the uncer-

tainty due to the sampling interval. The instrument velocity amplitude response is

flat up to ~ 50 Hz and decays sharply above this frequency due to the anti-aliasing

filters. The flat portion of the response normally has a low-frequency cutoff at the

natural frequency of the sensor and decays as w2 below this corner. The sensors

used were 3-component geophones with a natural frequency of 1.0 Hz, and this

makes the equipment ill-suited for recording intermediate-period signals. In fact,
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an experiment similar to those described above was attempted with this instrument

configuration in 1986 with very poor results. During three months of deployment

in the caldera, only two teleseisms were recorded by all six instruments. This was

due partly to the 1.0 Hz cutoff of the geophones and partly to the 3.0 to 5.0 Hz

bandwidth setting used for the event detector circuitry, both of which made it very

difficult to detect and trigger on small signals with dominant frequencies of 1.0 Hz

and lower. To remedy this problem for the 1987 experiments, an equalization cir-

cuit was designed, built and installed in all six recorders in order to increase the

signal level below 1.0 Hz. Also, the event detector bandwidth was shifted down in

frequency to cover the range of 0.5 to 1.0 Hz. Briefly, the equalization circuit applies

a gain boost to the geophone output signal. This boost is inversely proportional

to the geophone rolloff below 1.0 Hz. The specific design used here successfully

extended the flat portion of the instrument amplitude response curve down to 0.1

Hz. This circuit is described in detail in Roberts [1989, in press]. Since this paper

is currently in press, it is included in this thesis as Appendix 2 for reference. As a

result of these two instrument modifications, the 1987 experiment was much more

successful than in 1986. During four months of operation, approximately 40 tele-

seisms were recorded on at least five instruments. From these, a total of 24 events

were selected which fell close enough to the array line azimuth to be used here.

Twelve of these were recorded on array 1 and the rest on array 2. Table 2.2 lists

the locations, origin times and other relevant information for these 24 events. This

information was obtained from the monthly NEIS listings (PDE) published by the

U.S. Geological Survey.



TABLE 2.2
Information for Teleseismic Events Recorded in 1987 in the Jemez M:untains

Event Origin Time Latitude Longitude Depth # of Array
Region (mo:dy:hr:mn:sec) (degrees) (degrees) (km) Sites #

Coast of Honshu 06:26:07:11:59.7 +37.086 +142.116 21 5.4 4 1
Coast of Oregon 06:27:06:01:36.7 +43.486 -127.094 10 5.2 6 1
Kuril Islands 07:08:22:56:02.7 +46.437 +149.558 152 5.4 5 1
Kommandorsky I. 07:10:18:49:53.9 +55.137 +165.525 33 6.1 6 1
Kuril Islands 07:11:05:13:15.1 +50.201 +156.278 75 5.4 5 1
Kommandorsky I. 07:11:14:52:27.5 +55.141 +165.496 33 5.3 6 1
Southern Peru 07:13:19:14:57.9 -15.332 -070.061 241 5.1 5 1
Sea of Okhotsk 07:14:23:46:03.5 +49.631 +147.828 576 5.7 5 1
South of Honshu 07:16:05:46:29.5 +33.059 +138.096 310 5.3 5 1
Kodiak Island 07:24:05:25:10.5 +56.231 -153.650 33 5.5 6 1
Coast of N. Calif. 07:31:23:56:58.0 +40.415 -124.407 16 5.6 6 1
Central Chile 08:04:15:04:40.0 -40.469 -073.189 38 5.9 6 1
Fox Islands 08:29:22:12:11.2 +52.840 -168.892 33 5.2 6 2

Jujuy, Argentina 09:01:04:26:07.4 -23.052 -066.529 199 6.0 6 2

Kuril Islands 09:04:04:27:08.8 +49.293 +156.410 33 5.9 6 2

Kuril Islands 09:06:15:27:22.4 +49.262 +156.266 43 5.7 6 2

Kuril Islands 09:08:13:35:16.1 +49.612 +156.360 83 5.6 6 2
Andreanof Islands 09:10:03:48:44.8 +51.931 -176.006 49 5.1 6 2

Northern Chile 09:11:00:34:52.1 -22.329 -068.384 130 5.4 5 2

Guatemala 09:13:11:20:52.2 +14.272 -089.979 123 5.1 6 2

Coast of Honshu 09:13:14:07:43.6 +39.429 +144.732 34 5.6 6 2
Chile-Argentina 09:13:20:08:51.6 -34.333 -069.971 10 5.8 5 2

Ecuador 09:22:13:43:37.6 -00.978 -078.050 10 6.1 6 2

Kuril Islands 09:23:07:15:43.2 +45.960 +149.519 131 5.9 6 2



Figure 2.2 shows the theoretical and measured response curves for the vertical

channel of one of the six instruments with the equalization circuit installed. The

theoretical curves were calculated using the transfer functions for all frequency-

dependent circuits in the configuration. The top of this figure shows the voltage

amplitude response one would observe at the instrument output, with the system

gain set to unity, for an input ground velocity of 1/G (cm/sec), where G is the

geophone sensitivity in volts/cm/sec. The bottom plots show the corresponding

phase response. The measured curves were obtained from the Fourier transform of

a recorded input step in acceleration to the geophone's calibration coil. Due to noise

contamination the measured curves are plotted only up to 3.0 Hz, which is adequate

for the low frequency study in this thesis. The measured amplitude response has

been normalized to unity at f = 0.2 Hz for comparison with the theoretical curve.

More details on this are given in Roberts [1989] (Appendix 2).

We will not be concerned with absolute measurements of ground velocity in

this thesis because we only need to deal with spectral amplitude ratios throughout.

So the normalized response shown in Figure 2.2 is adequate since we only need to

know the relative differences in response among all six instruments up to ~ 1.0 Hz.

In fact, we do not even need to know the shape of the individual response curves to

accomplish this. Figure 2.2 is shown here only to demonstrate the extended band-

width of the instruments down to 0.1 Hz and that the actual response of at least

one instrument agrees well with the theoretical response. Similar measured curves

were also obtained for the two horizontal channels. To obtain the relative instru-

ment corrections a huddle test experiment was performed with all six instruments

installed at a common site. This is described in detail in the next section.
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The nine sites used in 1987 were chosen carefully for their location and quality.

The two most important criteria for site selection were, first, to keep all instruments

lying as close as possible to the azimuth line and, secondly, to make sure that these

sites were installed on hard rock to minimize the chances of anomalous site effects.

This second criterion is less important than it would be for a higher frequency study

in terms of site effects, but it is always desirable to obtain the best coupling possible

between the ground and the geophones. So hard rock sites were considered to have

higher priority over precise location. The spacing between successive instruments

was considered less important because the method used here for modeling ampli-

tude can be solved for any arbitrary location along the array line. Fortunately the

caldera and its surroundings are well serviced by a system of dirt access roads, and

suitable rock outcroppings are easily come by. Site reconnaissance and instrument

installation for array 1 were completed in two days in mid-June. After two months

of operation, the outer three sites, CAC, PNY and CAP, were moved inside the

caldera to SOS, REB and CLJ for the remainder of the field season, which ended

in mid-October. The remaining three sites, SAM, ALM and RDT were common to

both arrays.

The two ring fracture sites, SAM and CLJ, were located on rhyolitic domes.

The sites outside the caldera were on very densely welded Bandelier tuff. The

remaining four sites were on the central resurgent dome on rock outcrops of similar

hardness as the ring fracture sites. Since the quality of all nine site installations was

similar and since we will be looking only at frequencies below 1.0 Hz, any observed

amplitude variations across the caldera for a given event should be attributable
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mainly to large-scale sub-surface structural anomalies rather than to small-scale

near-surface site effects.

2.2 Data Quality and Instrument Correction

Before reducing the observed time series to a form which may be reliably in-

terpreted in terms of modeling results, the data must be inspected and corrected

for contaminating effects which are not relevant to the particular study at hand

but which may influence the analysis results. The two most common forms of data

contamination are caused by the instrument response and noise. In many types

of seismic studies an accurate knowledge of the absolute instrument response is of

paramount importance for avoiding erroneous interpretation of data. Because of

this, there has been a steady increase over the years in the sophistication of in-

strument calibration methods [e.g., Sauter & Dorman, 1986]. Often, though, much

simpler methods may be employed, depending on the type of experiment being per-

formed and on the frequency band being considered. Most instrumentation experts

flatly shun the step acceleration test used here to obtain the measured response

curves in Figure 2.2. This is because the equivalent velocity input for this type of

signal has an amplitude spectrum which decays as w- 2 and thus is a poor test signal

for obtaining the response at higher frequencies in the presence of background noise.

On the other hand, this method is clearly adequate for frequencies around 1.0 Hz or

lower, as evidenced by Figure 2.2. We mentioned further in the last section that the

absolute response of each instrument is not required when spectral ratios are being

used. The differences in the responses of all instruments relative to one reference
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instrument are all that are needed in this case. This allows all spectra to be cor-

rected so that they will appear as if they were recorded by the reference instrument.

The response of the reference instrument will then be removed by forming spectral

ratios as described in Section 2.4.

The relative instrument response corrections were obtained by performing a

so-called huddle test. This is a very simple and effective means for removing the

instrument response from the observations and has been used successfully in the

past by other investigators such as Bard & Tucker [1985]. The idea is to install all

instruments at the same location with the geophones placed closely together and

wait until all have recorded a seismic event having a frequency content in the range of

interest. Then for each component of motion the Fourier spectra are computed and

complex spectral ratios are calculated relative to one chosen reference instrument.

These spectral ratios can then be used to correct the spectra of any other event

recorded on the other instruments. Let us write the (complex) Fourier Transform

of recorded data for a single component of motion as a combination of a source

factor, receiver function, additive background noise and instrument response:

Djk(w) = [Sj(w) - Rk(w)+ Nk(w)] - Ik(w), (2.1)

where: j = source index, k = site and instrument index, Dik = recorded data for

event j at site k, Si = source factor for event j, Rk = receiver function for site k,

Ik = instrument response for site k and N& = additive background noise at site k

at the time when event j was recorded.

Ultimately we wish to isolate Rk from the data by removing the source and

instrument effects and reducing the noise through averaging. For the moment we
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wish only to demonstrate how to remove the instrument response. Clearly, any data

recorded by all six instruments in a huddle test will share the same source, receiver

and background noise effects, S(w), R(w) and N(w). The relative instrument cor-

rections, Ck(w), may be obtained simply by forming the ratios of the spectrum for

one reference instrument divided by all of the rest. Using k = 1 as the reference

instrument we can write:

Ck(W) D (w) Ii(W)
Dik(w) Ik (w)

Then, for the Jemez data, we can replace all instrument response functions

with that of the reference instrument using the huddle test ratios above and then

write the resulting corrected spectra as:

D'k (W) = Dik(W) -Ck (w) = [Sj(w) - Rk (w) + Njk(w)] -Ii(w). (2.3)

Now, all corrected spectra will share the same instrument response and this clearly

will be removed in any spectral ratios formed using Djk for different sites or events.

Figure 2.3 shows the 3-component huddle test results for the instrument am-

plitude response corrections, l|Ck |, that will be used throughout this thesis. Figure

2.4 shows the corresponding phase corrections, arg[Ck]. The data used were for

a magnitude mb = 6.2 earthquake from California. The recorded time series were

all windowed beginning at the same absolute time and the window width used was

34.133 secs. These plots show the corrections only for the 0.2 to 1.0 Hz frequency

band that will be used in the modeling. Instrument # 1 was used as the reference

and thus its amplitude correction is unity for all frequencies and its phase correction

is zero. These plots show maximum variations in amplitude response, relative to
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RELATIVE INSTRUMENT CORRECTIONS FROM HUDDLE TEST
REFERENCE INSTRUMENT: # 1
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Figure 2.3 Relative instrument corrections for spectral amplitudes obtained from huddle test

for 0.2 to 1.0 Hz. Instrument # 1 was used for the reference.
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RELATIVE INSTRUMENT CORRECTIONS FROM

REFERENCE INSTRUMENT: # 1
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Figure 2.4 Relative instrument corrections for phase difference obtained from huddle test.
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instrument # 1, of ;< 10% for the vertical component, ~- 25% for the radial, and

50% for the transverse. The maximum phase correction for the vertical com-

ponent is < i10*, ~ -10* for the radial, and ~. -30* for the transverse. Notice

that the transverse components are significantly worse than the vertical or radial.

Inspection of the seismograms and spectra for the transverse component revealed

that the signal level was much smaller than for the vertical or radial components.

This was due to the orientation of the geophones used for the huddle test, which

happened to be aligned nearly on-azimuth for the event used. Thus the larger er-

rors in the transverse component are probably due mainly to instrument noise in

the equalization circuit, since the largest differences among the instruments occur

at lower frequencies. Fortunately we will not be using the transverse components

in the modeling, so we will not worry about these huddle test results here. The

vertical and radial components are clearly more trustworthy. We will, however, be

showing amplitude ratios for the transverse component to demonstrate that the ob-

served pattern is similar for all three components. So we must bear in mind that the

transverse ratios for data recorded on instruments 4, 5 and 6 are probably smaller,

relative to instrument 1, than they will appear to be, since the signals recorded in

the Valles Caldera for this component were at least as large as for the other two

components, and the system noise was probably not as significant as it was for the

huddle test.

Before the instrument corrections are applied, the raw data must be examined

very carefully to ensure their suitability for analysis. First, one must make sure

that all sites recorded the same signal. It is also preferable, but not critical, that

the first motion is recorded clearly at all sites. Secondly, one must recognize and
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deal with various forms of spurious noise. These types of transient noise include

wildlife disturbances (most commonly elk stampedes and foraging bears in the Valles

Caldera), logging trucks passing nearby, oceanic tremor or wind noise and electronic

glitches or recording dropouts. For digital data, glitches and dropouts are usually

the most prevalent form of noise, but there were several situations in 1987 where

a teleseism was recorded while an elk herd or a log truck were also passing by.

Fortunately, recording glitches can be removed rather easily since they usually occur

as isolated samples in the signal. Animal noise is harder to remove because it usually

persists through an entire recording and consists of a large number of closely spaced

high-amplitude spikes, corresponding to hooves hitting the ground or paws hitting

the instrument. In some cases the animal noise is of high enough frequency content

not to have a devastating effect on the data spectra below 1.0 Hz. But usually it

is not worth the risk of using such data, especially if enough other useful events

have been recorded clearly. Log truck noise is by far the worst form of noise and

renders any recording completely worthless. This is due mainly to the large amount

of energy a fully loaded log truck on a bumpy, dirt road can put into the ground, as

compared to a teleseismic signal. Even at distances up to 1 or 2 km a log truck can

completely saturate the recording if the instrument gain is high enough. So these

recordings are routinely discarded.

It is somewhat odd to note that such a mundane phenomenon as digital glitches

continues to hound instrumentation and data analysis experts to this day. Over

the years several clever methods have been developed which attempt to remove

glitches from digital data automatically. One of the more successful methods is

the running median filter technique of Evans [1981]. However, we know of no one
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single automatic method which works perfectly under all circumstances. It is always

necessary to re-inspect the data afterwards to see if any glitches were missed and,

more importantly, if the data have been degraded in some way by the de-glitching

process itself. Weighing all of these issues against the rather modest volume of

data collected, we decided to avoid all automatic methods and remove glitches

manually, using an interactive graphics program written explicitly for this purpose.

This approach is clearly very tedious and time-consuming but in the end yields

meticulously appraised data of the highest possible quality.

The final type of noise that we will address here occurs at the low end of

the frequency band and is caused by two phenomena that can be attributed to

weather conditions. These are oceanic tremor and long-period wind noise. Oceanic

tremor should be familiar to readers of Aki & Richards [1980] and is manifested in

seismic recordings as stationary sinusoidal oscillations at frequencies around 0.07

and 0.14 Hz. It is believed to be generated by ocean wave action and its amplitude

as observed on continents correlates well with periods of calm or storms at sea and

with distance from the recording site to the nearest ocean. Long-period wind noise,

on the other hand, appears to be caused by cyclical wind interaction with large, tall

trees and, at various sites used in 1987, had periods of about 10 to 20 secs. This

appraisal is based on numerous personal observations made on-site while watching

the instrument signal outputs on an oscilloscope. Good correlation was observed

between the noise cycles in the signal, changes in wind strength and the motion

of the largest trees. Typically this type of noise is less monotonic and more site-

dependent than ocean tremor, so it is usually possible to discern the two in recorded

signals.



Since we are interested in low frequencies in this thesis it is very important to

either remove the long-period noise or at least use it to limit the low end of the

usable frequency band for the teleseismic data. Long-period noise can be removed

from a signal either by high-pass filtering or by subtracting a running amplitude

average from the signal. The running average method is preferable in this case be-

cause, if used with care, it will only remove additive trends from the recorded signal.

This is usually how ocean tremor and wind noise manifest themselves. The useful

teleseismic signal will be seen superimposed on a clearly separate and distinguish-

able noise signal. If the noise signal is reasonably stationary and monotonic, then it

is almost always possible to calculate a running average of the original signal which

adequately represents only the smooth additive long-period noise component. This

will be true, however, only if the width of the averaging window used is large enough

not to affect higher frequency components of the teleseismic signal. Typically one

should choose the window width to be at least half the period of the lowest frequency

desired. The increment between successive windows should be narrow enough to

produce a smooth average versus time. Throughout this thesis we will use a win-

dow width of 5 secs and an increment between windows of 1 sec. This will leave

frequencies of 0.2 Hz and higher relatively unaffected and will adequately remove

any additive signals with frequencies below 0.2 Hz.

Figure 2.5 shows one example of the running average procedure performed on a

vertical component seismogram for an event from the Andreanof Islands, recorded at

site SOS. The original seismogram at the top of the figure contains a large additive

long-period wind noise signal. We believe this signal is not oceanic tremor because

it was not present at any other site when this event was recorded. The seismogram
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EXAMPLE OF LONG-PERIOD NOISE REMOVAL USING THE RUNNING-AVERAGE METHOD
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Figure 2.5 Example of long-period additive noise removed by the running-average method.

Vertical component data are shown for an event from the Andreanof Islands recorded at site SOS.

Top figure shows the original seismogram containing a large noise component caused by wind

interaction with trees and the same signal after subtracting a 5.0 sec running average incremented

by 1.0 sec intervals. The amplitude spectrum for each seismogram is plotted in the bottom of the

figure. The major effect on the spectrum is a reduction in amplitude for frequencies below 0.2 Hz.
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below this is the same signal after subtracting a running 5 sec average from it. The

uncorrected velocity amplitude spectrum for each is plotted in the bottom of the

figure to demonstrate that the only major changes in spectral content occur below

0.2 Hz.

The various types of noise discussed in this section can be easily recognized by

visual inspection of the seismograms, primarily because they contain large frequency

components well outside the dominant frequency band of the recorded teleseismic

signal. All recorded data were examined for these noise types and treated accord-

ingly before being used in the spectral analysis. However, it still remains to examine

the ambient background noise within the dominant band of frequencies that we wish

to use in the analysis. This is discussed in the next section.

2.3 Recorded Seismograms and Signal-to-Noise Estimation

Of the 12 events listed in Table 2.2 for array 1, only 6 were recorded at all six

sites. Two of these 6 events had problems with either signal clipping or log truck

noise at one site. The 4 remaining events were all from the northwest, so we have

no complete 6-site amplitude observations for any southeastern events on array 1.

On array 2, however, 10 of the 12 events listed were recorded on all 6 instruments

and 3 of these were from the southeast. So the data from array 2 are much more

complete than for array 1 in terms of site and azimuth coverage. Also, the closer

spacing and more localized caldera coverage of array 2 is more desirable than the

wider aperture of array 1 because this allows our modeling efforts to be confined

to a smaller area around the caldera. For these two main reasons we will focus

attention for modeling amplitudes much more on the data from array 2 than array
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1. We will, however, consider as many data as possible from both arrays to see if

any stable systematic patterns may exist as functions of incidence angle, azimuth

and site location.

Figures 2.6 through 2.11 show some examples of 3-component seismograms

recorded in 1987. Each figure shows one event recorded at all six sites for either

array 2 (Figures 2.6 through 2.9) or array 1 (Figures 2.10 and 2.11). For each event

the traces all begin at the same absolute time and are plotted on identical amplitude

scales for comparison. The length of all plots is 34.133 secs and corresponds to

the time window we will use to compute Fourier Transforms. Positive motion for

the vertical components is upward. The horizontal components are rotated so that

radial is parallel to the array line azimuth and positive motion is to the southeast for

radial and to the northeast for transverse. In most cases the array azimuth is within

±10* of the true radial direction for northwestern events. Obviously the horizontal

components for southeastern events are inverted relative to the true radial.

Figure 2.6 shows P-wave seismograms for a magnitude mb = 5.1 event from

the Andreanof Islands recorded on array 2. The epicentral distance is 5600 km, or

A = 51*, and using tables from Richter [1958], the incidence angle is 60 ; +24*.

The convention for incidence angles used throughout this thesis is that positive

angles correspond to waves arriving from the northwest and negative angles from

the southeast. Figure 2.7 shows seismograms for a magnitude 6.0 event from Jujuy,

Argentina with A = 70* and 60 ; -21*. Already, by comparing these first two

events, two very clear patterns begin to emerge which are independent of the event

direction. First, the horizontal components are very large for the long train of

scattered waves following the first arrival and are often larger than the vertical.
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EVENT REGION: ANDREANOF ISLANDS Mb= 5.1
ORIGIN TIME: 1987/09/10 03:48:44.800 4=51*

START TIME: 1987/09/10 03:57:52.858 Vm.&= 3.3880 microns/sec
UNFILTERED

SITE: SAM x=121.0 SITE: SOS x=123.0 SITE: ALM x=.
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Figure 2.6 Seismograms for an Andreanof Islands event recorded on array 2. Distance and

origin time of event are listed at the top. Also listed at top is the time at which all plots begin and
the maximum velocity to which all plots are scaled. This amplitude scale is indicated on the two
leftmost plots. Site codes and horizontal positions are indicated above each 3-component plot.
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EVENT REGION: JUJUY, ARGENTINA Mb= 6.0
ORIGIN TIME: 1987/09/01 04:26:07.400 A=70*

START TIME: 1987/09/01 04:36:56.448 V ,,,=26.6749 microns/sec
UNFILTERED

SITE: SOS x=123.0
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Figure 2.7 Seismograms for a Jujuy, Argentina event recorded on array 2.
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EVENT REGION: HONSHU, JAPAN Mb= 5.6
ORIGIN TIME: 1987/09/13 14:07:43.600 A=80*

START TIME: 1987/09/13 14:19:52.702 Vmu= 3.4534 microns/sec
UNFILTERED

SITE: SAM x=121.0
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Figure 2.8 Seismograms for a Honshu, Japan event recorded on array 2.
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EVENT REGION: ECUADOR Mb= 6.1
ORIGIN TIME: 1987/09/22 13:43:37.600 A=45*

START TIME: 1987/09/22 13:51:56.528 V .,=13.0357 microns/sec
UNFILTERED
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Figure 2.9 Seismograms for an Ecuador event recorded on array 2.
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EVENT REGION: KOMMANDORSKY ISLANDS Mb= 6.1
ORIGIN TIME: 1987/07/10 18:49:53.900 A=60*

START TIME: 1987/07/10 18:59:58.867 V .,=26.5440 microns/sec
UNFILTERED

: CAC x=113.0 SITE: PNY x=116.0 SITE: SAM x=J
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Figure 2.10 Seismograms for a Kommandorsky Islands event recorded on array 1.
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EVENT REGION: CENTRAL CHILE Mb= 5.9
ORIGIN TIME: 1987/08/04 15:04:40.000 A=82 0

START TIME: 1987/08/04 15:16:55.000 Vma = 5.6781 microns/sec
UNFILTERED
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Figure 2.11 Seismograms for a central Chile event recorded on array 1. Note the logging-truck

noise dominating the records at site RDT.
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Second, the amplitudes of all components are significantly lower for sites inside the

caldera (SOS, ALM, REB, RDT) than for the two ring-fracture sites (SAM, CLJ).

We will see later that this second pattern is by far the most important observation

concerning amplitudes, since it means that the low amplitudes in the caldera must

be caused by a shallow structural anomaly. Figure 2.8 shows seismograms for a

magnitude 5.6 event from Honshu, Japan with A = 80* and 9o - +18*. Figure 2.9

is for a magnitude 6.1 event from Ecuador with A = 45* and 0o - -26*. Once

again the pattern of low amplitudes in the caldera is exhibited in both cases, and

now the observed stability of this pattern is extended to both steeper and shallower

incidence angles.

The data from array 1 show a similar pattern. Figure 2.10 shows seismograms

for a magnitude 6.1 event from the Kommandorsky Islands with A = 60* and

9o ; +230. Note that the amplitudes are still lower at ALM and RDT than at SAM.

But on this larger scale we can see that SAM also has larger amplitudes than sites

outside of the caldera (CAC, PNY, CAP). The smallest radial amplitudes actually

occur at the two outermost sites, CAC and CAP. The modeling will show that this

is reasonable in terms of a shallow, local anomaly beneath the caldera because the

scattering effects on a nearly vertically incident P wave will diminish away from the

caldera as the structural complexity decreases, and thus less energy is converted

to horizontal motion. This, as mentioned, is one reason why it is more useful to

concentrate attention on the array 2 data, since then we will be concerned less

with the relative degree of scattering and more with what happens to the scattered

waves after they have been generated. Finally, Figure 2.11 shows seismograms for a

magnitude 5.9 event from central Chile with A = 82* and 0 0 - -18*. Again, SAM
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has the highest amplitude and ALM is much smaller. This is the event mentioned

earlier which was recorded at all six sites, but recorded logging-truck noise at one

site, RDT. The recordings at RDT axe shown here only for reference since these

data cannot be used.

At first glance, the array 1 data in Figures 2.10 and 2.11 might lead one to

propose that the primary amplitude anomaly occurs at SAM rather than at the

inner caldera sites. Perhaps we are observing mainly an amplification effect on the

ring fracture rather than anomalously low amplitudes within the caldera. Although

the scattered wave amplitudes at ALM and RDT are larger than at CAC, they

are qualitatively similar in comparison to the large amplitudes at SAM. However,

if one examines the first arrival for the vertical components in Figure 2.10, it is

clear that the direct P-wave amplitude is much smaller at ALM and RDT than

at the remaining sites. Also, there is the following evidence in the data that, as

mentioned above, the strength of scattering and resonance effects increases toward

the caldera. First, the near absence of a transverse component at CAC indicates that

the scattering process is much simpler near this site than at the caldera sites, which

have a strong transverse component. Secondly, there is a distinct trend of increasing

scattered-wave amplitude from CAC to PNY to SAM for all three components

of motion. Finally, at SAM, ALM and RDT the scattered-wave amplitudes are

comparable to or larger than the direct P-wave amplitude at the same site, whereas

at the three outer sites the P wave is significantly larger than the scattered waves.

In light of the four qualitative observations discussed above, the waveforms observed

inside the caldera have a much different character than those at the outer three sites.

Although there may be some additional amplification at SAM, we still must view the
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amplitudes within the ring frecture as being anomalously low, rather than "normal".

So in this thesis we will make the assumption that the strength of scattering and

resonance effects is similar at all sites in array 2, and we will focus our attention

on modeling the low relative amplitudes within the caldera. In Chapter 5 we will

discuss the array 1 data further, in terms of their consistency with the modeling

results.

In order to quantify the amplitude variations across each array we will make

use of the spectral ratio, and this is discussed in the next section. Before we can

do this with confidence, we first need to examine the spectral content of the data

to determine the signal amplitude levels relative to the background noise level over

the frequency band of interest. We have already seen one example of low frequency

noise contamination in Figure 2.5, and we showed that by removing this noise the

amplitude spectrum was affected significantly only below 0.2 Hz. This means that

we can safely consider signals only for 0.2 Hz and above. We now need to justify

the use of frequencies from this lower limit up to about 1.0 Hz in the presence of

noise. The best way to do this is to compare the seismogram spectrum with the

spectrum of a noise window taken just before the first arrival. However, to obtain

reliable noise information down to 0.2 Hz we would need a noise window at least

15 secs wide and none of the recorded seismograms contained more than about 6

secs of noise at the beginning of the record. This window width is sufficient only

for frequencies down to about 0.5 or 0.4 Hz. So first we examined the available

noise signals down to the lowest reliable frequency for every seismogram to be used.

Having established that in all cases the signal levels were considerably higher than

the noise at about 0.4 Hz, we extrapolated the measured curves down to 0.2 Hz and
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found that the resulting estimate was still much lower than the signal. We justified

this extrapolation by comparison with the power spectra for ambient noise given

in Aki & Richards [1980], which show that the noise power spectrum should vary

logarithmically with frequency down to about 0.2 Hz, below which the large peaks

for oceanic tremor begin to dominate. In all cases the noise spectra that we were

able to obtain displayed a clear logarithmic dependence on frequency.

Figures 2.12 and 2.13 show two examples of the direct measurement of noise

for a window preceding the first arrival. Figure 2.12 shows the displacement spectra

for one of the larger events, m, = 6.0, from Jujuy, Argentina. The seismograms for

this event were shown in Figure 2.7. Figure 2.13 is for one of the smaller events,

mb = 5.2, from the Fox Islands. For the Jujuy event we were able to obtain a

noise window approximately 7 secs wide, whereas for the Fox Islands events we

only had about 5 secs of noise before the first arrival. We have plotted the noise

spectra down to 0.3 Hz in both cases. Notice that the noise is significantly larger

relative to the signal for the Fox Islands event than for the Jujuy event. However,

the noise level below 1.0 Hz is about one order of magnitude or more lower than

the signal, even for the Fox Islands event. The corners at about 0.5 Hz in most

of the noise spectra in Figure 2.13 are due to the smaller window width used and

indicate that the measured noise amplitude should not be trusted below about 0.5

Hz for the Fox Islands event. The larger 7 sec window used for the Jujuy event

allows us to estimate the noise reliably down to at least 0.4 Hz. The measured

signal and noise amplitudes for all other recorded events listed in Table 2.2 fell

within the range of these two examples, which represent the best and worst cases

for our data. Examination of the equivalent power spectra for the noise signals
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DISPLACEMENT SPECTRA FOR EVENT FROM: JUJUY, ARGENTINA Mb = 6.0
ORIGIN TIME: 1987/09/01 04:26:07.400 A=70*

FFT START TIME: 1987/09/01 04:36:56.448 LENGTH= 34.133 secs
UPPER CURVES: SEISMIC DATA LOWER CURVES: PRE-EVENT NOISE
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Figure 2.12 Displacement spectra for 3-component seismograms for the magnitude 6.0 Jujuy,

Argentina event (see Figure 2.7 for seismograms) compared with the spectra for a 7 sec noise

window taken prior to the first arrival. In each sub-plot the signal spectra are the upper three

curves and the noise spectra are the lower curves. Solid lines are for the vertical component,

dashed for the radial and dotted for the transverse.
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DISPLACEMENT SPECTRA FOR EVENT FROM: FOX ISLANDS Mb= 5.2
ORIGIN TIME: 1987/08/29 22:12:11.200 A=46"

FFT START TIME: 1987/08/29 22:20:33.088 LENGTH= 34.133 secs

UPPER CURVES: SEISMIC DATA LOWER CURVES: PRE-EVENT NOISE
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Figure 2.13 Same as Figure 2.12 except spectra are for a magnitude 5.2 event from the Fox

Islands and the available noise window used was only 5 secs wide.
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demonstrated that the behavior given in Aki & Richards [1980] was approximated

well for frequencies of 0.5 Hz and higher. So the logarithmic dependence of the

noise displacement spectra in Figures 2.12 and 2.13 should allow us to extrapolate

their curves down to 0.2 Hz, where clearly the level will still be lower than for the

signals. We will also see in the next section that the most significant variations in

amplitude across the two instrument arrays ocurr at frequencies higher than about

0.3 Hz, where the noise level has been directly confirmed to be very low through

the direct measurements discussed above.

2.4 Spectral Ratios

The spectral ratio is a very useful quantity for separating the various effects

which compose recorded seismograms. In general the spectral ratio will remove any

effects which are common to both the numerator and denominator spectra. For

the present study we wish to isolate the receiver functions, Rk(w), from spectral

data represented by equation (2.1) and ideally this requires the complete removal of

the source effect, instrument response and background noise from each spectrum.

The instrument response has already been effectively removed from all data to yield

the corrected observed spectra, D',k(w), given by equation (2.3). If the background

noise, Nyk(W), is small enough to be neglected then the receiver response at one

site, say k = 1, relative to that at another site, say k = 2, may be obtained simply

by forming the ratio between the corrected spectra recorded at both sites for any

common event, j:

D'(w) R1(w) (2.4)

D' 2(w) R2( )



This is the approach taken by Bard & Tucker [1985], who successfully modeled local

crustal structure using spectral ratios all computed relative to a common reference

site.

This approach causes any information about spectral variations versus fre-

quency at the reference site to be mixed in with that of the remaining sites. Also,

if the data at the reference site contain varying amounts of noise from event to

event, which is usually the case, this effect will also be mixed in with the actual

site effects at all other locations. Thus it is safer to compute the spectral ratio at

each site relative to the average over all sites for each event so that a particularly

noisy record from a reference site will not contaminate all of the ratios. We will

see soon that this approach is also beneficial for reducing the noise contribution in

the denominator. For now though, let us continue to assume that the noise is much

smaller than the signal. We will also show, later in this section, that we cannot

hope to model the observed spectral phase variations for our data because the phase

spectra are extremely unstable for similar events recorded at the same site. Our

entire analysis will be based solely on spectral amplitude ratios. So in all following

equations we will drop the convention that spectral quantities are complex, and all

variables are assumed to represent amplitude spectral density. Then the spectral

amplitude ratio for event j at site k relative to the average over all sites may be

written for one component as:

Dk(w) _ Rk(w)

(D~k(Wv))k -(Rk(w))k'

(2.5)
K

where:

k=1



and for the present study the total number of sites averaged will be K < 6. The

quantity on the left-hand side, DkA/(D4k)k, is what we will calculate for single

events at each site. The assumption that Njk(w) < Sj(w) - Rk(w) is crucial for

equation (2.5) to hold. This is why we were so concerned about quantifying the

signal-to-noise ratio in the previous section.

When the noise is not negligible it may be reduced if numerous events from the

same source region have been recorded at each site. If we collect enough signals for

similar events at a particular site, the noise contribution to the average of all of these

signals should decrease as the number of sample events increases, assuming that the

same signal is repeated in each event. In this sense the process of averaging has the

opposite effect of taking spectral ratios, since now the differences are reduced and

the similarities are enhanced. This should hold then for any suite of events recorded

at one site. The requirement that all of these events be from the same source region

must be observed in our case because the 2-dimensional receiver functions that we

will be modeling are dependent on the source incidence angle and azimuth. The

spectral ratio in equation (2.5) can then be re-written as:

(D {(w)). (S(w)), - Rk(w) + (Njk(w)); Rk(w)

(D~k(W))k = (S,(w)), - (R;(w)k + (Nk(w)),k (Rk(w))k'

(2.6)

where:
k=1 j=1

and now the event index j must be restricted to events from similar source regions.

We have assumed throughout this discussion that we are dealing only with one

component of motion in the data and that the receiver functions are valid only for

70



one particular source direction. We will see in Chapter 5 that this is in keeping with

the way in which the modeling results will be presented since the synthetic spectral

ratios will be obtained for a specific incidence angle and for separate components

of motion. We have mentioned also that our modeling efforts must be restricted

to two dimensions, given the presumed complexity of the caldera's sub-structure

and the limited number of instruments used. The 2-D models to be considered

will be defined relative to the horizontal x-coordinate along the array azimuth line

and the z-coordinate vertically downward. The problems will be solved for in-

plane P-wave sources, allowing only for P-SV wave conversions due to scattering at

irregular interfaces in the models. In Chapter 3 we show that these simplifications

necessarily preclude the existence of a transverse component of motion. Thus we

can only attempt to model the variations in the vertical and radial components in

this thesis. However, for completeness we will show the spectral ratio results for all

three components in the following figures.

The spectra used to calculate the amplitude ratios were obtained by Fast

Fourier Transforming (FFT) the exact data windows shown for the seismograms

plotted. These windows represent 34.133 secs of data and all windows for each

event begin at the same absolute time. The DC offset was removed from each seis-

mogram and the ends were tapered smoothly to zero before transforming. The raw

amplitude spectra were then smoothed using a 3-point triangular window which

was passed through the spectra five times. This method of smoothing was preferred

over the frequency-bandwidth averaging method because the triangular window will

always be strongly peaked at its center regardless of how many times it is passed

71



through the spectra. Thus, for a desired degree of smoothness, the triangular win-

dow method produces less contamination from higher and lower frequencies than

the bandwidth averaging method does. It is ideally suited for removing large peaks

or troughs from the spectra without significantly degrading the remaining samples.

We mention this here because large local troughs in the spectra used for the denom-

inators will cause erroneously large values for the amplitude ratio at that frequency.

This is a very common problem to users of spectral ratios and has prompted au-

thors such as Owens, Zandt & Taylor [1984] to employ the "water level" technique

of Clayton & Wiggins [1976] for removing large holes in the denominator spectra.

We have tested the water level method against the simpler triangular smoothing

method and discovered that both are equally effective for removing localized spec-

tral troughs. The water level method has an advantage in that it only removes

troughs that fall below some preset threshold value and leaves the remainder of the

spectrum unaffected. However, when it is acceptable to smooth the entire spectrum,

as in our case, it is not necessary to also employ the water level method.

After all of the amplitude spectra were smoothed as above, the relative instru-

ment amplitude corrections were applied next, as described in Section 2.2. The

corrected amplitude spectra were then averaged over the six sites and used as the

denominator in equation (2.5). Figures 2.14 through 2.19 show the resultant single-

event spectral amplitude ratios over the frequency band 0.1 to 1.0 Hz for the six

teleseisms plotted before in Figures 2.6 through 2.11. Originally we had hoped to

use both the amplitude ratio and phase delay spectra in the modeling analysis.

If successful, this would have represented true full-waveform modeling and would
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OBSERVED SPECTRAL RATIOS FOR
DATA FROM ANDREANOF ISLANDS EVENT REGION RECORDED ON JEMEZ ARRAY 2

NUMERATORS: single event DENOMINATOR: average over 6 sites
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Figure 2.14 Spectral amplitude ratios for the Andreanof Islands event shown in Figure 2.6

for the frequency band 0.1 to 1.0 Hz. The ratios for each component were computed at each site

relative to the average over all six sites. Residual variance for ratios predicted by a homogeneous

halfspace model (HHS) are listed for each site and component as well as for the entire data set.
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OBSERVED SPECTRAL RATIOS FOR
DATA FROM JUJUY, ARGENTINA EVENT REGION RECORDED ON JEMEZ ARRAY 2
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Figure 2.15 Spectral amplitude ratios for the Jujuy, Argentina event shown in Figure 2.7.
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OBSERVED SPECTRAL RATIOS FOR
DATA FROM HONSHU, JAPAN EVENT REGION RECORDED ON JEMEZ ARRAY 2
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Figure 2.16 Spectral amplitude ratios for the Honshu, Japan event shown in Figure 2.8.
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OBSERVED SPECTRAL RATIOS FOR
DATA FROM ECUADOR EVENT REGION RECORDED ON JEMEZ ARRAY 2
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Figure 2.17 Spectral amplitude ratios for the Ecuador event shown in Figure 2.9.
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OBSERVED SPECTRAL RATIOS FOR
DATA FROM KOMMANDORSKY ISLANDS EVENT REGION RECORDED ON JEMEZ ARRAY 1
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Figure 2.18 Spectral amplitude ratios for the Kommandorsky Islands event shown in Figure

2.10.
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OBSERVED SPECTRAL RATIOS FOR
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Figure 2.19 Spectral amplitude ratios for the Chile event shown in Figure 2.11. The data at

site RDT were not included due to log-truck noise.
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have allowed comparisons of observed and synthetic seismograms in the time do-

main. Unfortunately, as mentioned above, the phase spectra obtained for almost

all of the recorded seismograms were far too erratic to be used confidently in this

study. We believe this to be due to the complexity of the scattered waves which we

have chosen to examine. We will show an example of this after first discussing the

amplitude variations. We will, however, use the observed travel-time variations of

the first motions to study the P-wave velocity structure beneath the caldera. This

amounts to using only phase information that is uncontaminated by scattered waves

and we will discuss this in more detail in the next section of this chapter.

In the previous section we showed qualitatively that the amplitudes are signifi-

cantly lower for seismograms recorded inside the caldera than for those recorded on

the ring fracture and that this observation is reasonably independent of incidence

angle and source direction. These observations are born out quantitatively in the

amplitude ratios for the four events shown for array 2, Figures 2.14 through 2.17.

Although there are clearly some secondary effects which do apparently vary with

incidence angle, such as relative shifts in the positions and amplitudes of certain

peaks and troughs, the primary pattern is quite clear. The amplitudes for all three

components are much lower at the 4 inner sites, SOS, ALM, REB and RDT, relative

to the same components at SAM and CLJ. Also, the relative variations in the radial

components are significantly larger than for the vertical components. In Chapter 5

we will discuss these observations in much more detail as we attempt to model and

explain them.

To characterize how good any particular model is at fitting the data we will

calculate the "residual variance reduction" for the synthetic and observed ampli-

tude ratios relative to what we would expect for a homogeneous halfspace (HHS)
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model. Clearly such a model will have the same response at any position along its

free surface and the synthetic spectral amplitude ratios for all components and fre-

quencies will be unity at all surface locations. Since we will require any acceptable

model to be an improvement over the HHS case, we will in turn require the resid-

ual variance to be smaller. This will allow the identification of the best acceptable

models as well as of the unacceptable models which produce larger variances than

the HHS case. So, for reference, we have listed the HHS residual variances on all

plots of observed spectral amplitude ratios. The HHS variances for each component

at each site are listed separately inside the box for each site containing the ratio

curves. The total variances for each component over all sites and the total over all

components and sites are listed in the plot headings. The residuals were computed

as the difference between ln(amplitude ratio) for the observed and synthetic results

at each frequency. The residual variance was then obtained by the general formula:

N

2 _ [1n(R*,b") - In (Ryn)] 2  (2.7)
n=1

where N is the total number of ratio data points considered.

For single components at each site, N = N1 , where N1 is the total number of

frequencies considered in the amplitude ratios. For single com.ponents over all sites,

N = K -Nf, where, as before, the total number of sites used is given by K < 6.

For the total variance, N = K - Ne - N, where Nc is the number of components

considered. Robs is the observed amplitude ratio for the nth point and Run is the

corresponding synthetic value. Clearly for the HHS model, ln (R'Y") = 0, and the

residual variance relative to this model, o Hs, represents simply the mean square
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of the natural log of the observed amplitude ratios. So aHHS may be viewed as a

measure of "how badly" an irregular model is needed in order to best explain the

amplitude data. The variance reduction for a particular irregular model can be

defined simply as the percentage:

2 2

VMOD = 0HHS 2 aMO D ,100 (2.8)
aHHS

and if this number is positive then the model gives a better fit to the data than the

HHS case does. Obviously, if the variance reduction is +100%, then CT2OD = 0 and

the model yields a perfect fit to the data. On the other hand, a negative value for the

variance reduction indicates that the model produces results which, on the average,

display no consistency with the data. In these cases the HHS case is preferable

and the model is worse than having no model at all. We give these formulas here,

although we will not use them systematically until Chapter 5, because they set the

framework for relating the model results directly to the data.

To summarize the amplitude ratio results for all data recorded on array 2 for

distinctly different source locations, we have plotted the single-event ratios versus 8

incidence angles for each component and for 5 separate frequencies in Figures 2.20

through 2.22. The different symbol shapes mark the different frequencies listed in

the legend. Figure 2.20 shows the vertical component, Figure 2.21 shows the radial

and Figure 2.22 the transverse. Recall that positive incidence angles correspond to

northwestern events and negative angles to southeastern events. These figures con-

firm, for a wider range of incidence angles, the observations we discussed previously

for only four individual events. The similarity of all relative amplitudes at each site
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VERTICAL COMPONENT SPECTRAL RATIOS VS. 8 INCIDENCE ANGLES
DATA RECORDED IN JEMEZ MOUNTAINS ON ARRAY 2

NUMERATORS: single events DENOMINATORS: average over 6 sites
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Figure 2.20 Spectral amplitude ratios for the vertical component of motion plotted versus 8

incidence angles at each site for 5 separate frequencies. Represented are all single-event ratios for

distinct incidence angles for the data recorded on array 2.
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RADIAL COMPONENT SPECTRAL RATIOS VS. 8 INCIDENCE ANGLES
DATA RECORDED IN JEMEZ MOUNTAINS ON ARRAY 2

NUMERATORS: single events DENOMINATORS: average over 6 sites
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Figure 2.21 Same as Figure 2.20 but for the radial component of motion.
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TRANSVERSE COMPONENT SPECTRAL RATIOS VS. 8 INCIDENCE ANGLES
DATA RECORDED IN JEMEZ MOUNTAINS ON ARRAY 2

NUMERATORS: single events DENOMINATORS: average over 6 sites
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Figure 2.22 Same as Figure 2.20 but for the transverse component of motion.
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is clearly the dominant behavior which we wish to reproduce. The similarities are

particularly strong for the vertical component and for positive incidence angles. In

Chapter 5 these dominant effects will be shown to be best explained by a shallow

attenuating body beneath the caldera. We will find also that the complexity of

the problem will not allow the secondary effects of relative peak movements to be

readily explained through forward modeling efforts.

The next two figures show examples of the observed instability for phase spectra

of the scattered waves, which we mentioned earlier. Figure 2.23 shows a radial

component seismogram (top) and its velocity amplitude and phase spectra (bottom)

for a magnitude mb = 5.7 event from the Kuril Islands recorded at SAM. Figure

2.24 shows the radial seismogram, recorded at the same site, for another Kuril

event with an almost identical location and magnitude, (mb = 5.6), as the previous

one. Note the obvious differences between the seismograms. One has very large

amplitude near the first arrival and the other has larger amplitude later on in

the scattered waves. Although the amplitude spectra are very similar, the phase

spectra are quite different. These phase spectra were obtained by unwrapping the

principal value of the phase using a simple discontinuity-detection scheme. When

the difference between two successive phase values, i.e., [4(w2 ) - 0(wi)], is less

than -ir, an appropriate multiple of 27r is added to the latter value, 4(w2 ). If the

phase is well-behaved, this method should produce phase curves that are reasonably

continuous and which increase linearly with frequency. On the contrary, the phase

curves in Figures 2.23 and 2.24 contain several large discontinuities. Furthermore,

although the phase curve for Figure 2.23 is approximately linear, the curve for

Figure 2.24 is not.



EVENT REGION: KURIL ISLANDS Mb=5.7

ORIGIN TIME: 1987/09/06 15:27:22.400 A=68*
RADIAL COMPONENT DATA RECORDED AT SITE: SAM

START TIME: 1987/09/06 15:38:18.203 V, I= 3.5000 microns/sec
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Figure 2.23 Radial component seismogram (top) and amplitude and phase spectra (bottom)

for a magnitude 5.7 event from the Kuril Islands recorded at site SAM. These plots should be

compared with Figure 2.24.
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EVENT REGION: KURIL ISLANDS M b=5.6

ORIGIN TIME: 1987/09/08 13:35:16.100 A=68*
RADIAL COMPONENT DATA RECORDED AT SITE: SAM

START TIME: 1987/09/08 13:46:04.489 Vm..= 3.5000 microns/sec
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Figure 2.24 Radial seismogram and spectra for a magnitude 5.6 Kuril Islands event recorded at

site SAM. Comparison with the Figure 2.23 shows that, although the events had nearly identical

magnitudes, locations and amplitude spectra, the phase spectra are quite different.
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Since the amplitude ratios remained quite stable despite the difference in phase,

we were forced to consider the phase variations in the scattered waves as secondary

effects which are extremely unstable and therefore impossible to model in 2-D. This

instability is probably due to the complexity of the scattered waves and therefore

to the details of the crustal structure which generate them. The elimination of

spectral phase data from our modeling efforts is further justified by our innumerable

attempts at obtaining continuous phase curves for even one seismogram, all of which

failed. These attempts involved the use of every known technique for unwrapping

phase that we could find, including the complex cepstrum method of Tribolet [1977].

Since we cannot use the phase of the scattered waves in the waveform modeling, we

will do the next best thing and model travel time delays across the caldera for the

first-arriving P wave.

We now conclude this section with the spectral amplitude ratio results ob-

tained for spectra averaged over multiple events, using equation 2.6. We will note

two desirable effects that this approach yields in our observations. First is the

noise reduction that we mentioned before. Secondly, the averaging will enhance

the primary behavior that is common to all events considered and will reduce the

secondary effects that differ with incidence angle and source direction. We consider

here only the data recorded on array 2.

To demonstrate the noise reduction we chose the four events recorded from

the Kuril Islands source region listed at the bottom of Table 2.2. The single-event

spectral amplitude ratios for each of these are shown in Figures 2.25 through 2.28.

Notice that the ratios are much more stable from event to event for frequencies above

0.3 Hz than for the lowest frequencies. Furthermore, we would expect the variations
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OBSERVED SPECTRAL RATIOS FOR
DATA FROM KURIL ISLANDS (A) EVENT REGION RECORDED ON JEMEZ ARRAY 2

NUMERATORS: single event DENOMINATOR: average over 6 sites
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Figure 2.25 Single-event spectral amplitude ratios for the first Kuril Islands event to be used

in the 4-event averaged results.
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OBSERVED SPECTRAL RATIOS FOR
DATA FROM KURIL ISLANDS (B) EVENT REGION RECORDED ON JEMEZ ARRAY 2

NUMERATORS: single event DENOMINATOR: average over 6 sites
o2 (log): V=0.158E+00 R=0.457E+00 T=0.256E+00 Total=0.290E+00
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Figure 2.26 Single-event spectral amplitude ratios for the second Kuril Islands event to be

used in the 4-event averaged results.
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OBSERVED SPECTRAL RATIOS FOR
DATA FROM KURIL ISLANDS (C) EVENT REGION RECORDED ON JEMEZ ARRAY 2

NUMERATORS: single event DENOMINATOR: average over 6 sites
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Figure 2.27 Single-event spectral amplitude ratios for the third Kuril Islands event to be used

in the 4-event averaged results.
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OBSERVED SPECTRAL RATIOS FOR
DATA FROM KURIL ISLANDS (D) EVENT REGION RECORDED ON JEMEZ ARRAY 2

NUMERATORS: single event DENOMINATOR: average over 6 sites
2,,, (log): V=0.272E+00 R=0.395E-00 T=0.278E+00 Total=0.315E+00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

VERTICAL

SITE: REB x=127.0
a2Rn,(V)=0.508E+00

a fl,(R)=0.218E+00

o ,,(T)=0.636E-01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frequency (Hz)

SITE: SOS x=123.0
aeNH(V)=0.891E-01

aH,(R)=0.30 8 E+00

a8,,(T)=0.181E+00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RADIAL

SITE: RDT x=128.0

a
3
,,(V)=0.228E+00

a
3
s,(R)=0.138E+00

a28Ng(T)=0.397E+00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.9

Frequency (Hz)

SITE: ALM x=125.0
a MN(V)=0.311E-00

aH,,(R)=0.103E+01
a ,,(T)=0.599E+00

1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TRANSVERSE

SITE: CLJ x=135.0
a2H(V)=0. 3 0 6 E+00
oHE(R)=0.197E+00

,,,(T)=0.958E-01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.S 0.9

Frequency (Hz)

Figure 2.28 Single-event spectral amplitude ratios for the fourth Kuril Islands event to be used

in the 4-event averaged results.
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from site to site to decrease for lower frequencies as the wavelength becomes much

larger than the presumed maximum size of structural anomalies beneath the caldera.

This will be confirmed by the modeling results in Chapter 5. We assume then that

the variability observed for the lowest frequencies is due to background noise, as

discussed in section 2.3. Figure 2.29 shows the results after averaging the spectra at

each site over all four events. We now see that the ratios above 0.3 Hz are virtually

unchanged and that the lower frequencies have stabilized near unity for most of the

sites. This in turn allows us to assume that most of the useful information in the data

occurs for frequencies above 0.2 Hz and that this is where we should concentrate our

modeling efforts. We will be using almost exclusively the averaged Kuril Islands

data shown here for comparisons with synthetic data in Chapter 5 to determine

the best models, since we believe it to be the most noise-free representation of the

primary observations that we wish to explain. The models that produce the best

fits with the Kuril data will then be tested against the remaining data to see just

how much can be explained by any single model.

Next, we averaged all available data for the northwestern and southeastern

events separately to see if there are any major direction-dependent effects that

should be considered. Figure 2.30 shows the ratio results for the seven northwestern

events recorded on array 2 and Figure 2.31 shows the results for three southeastern

events. We have used only events that were recorded at all six sites. The only sig-

nificant differences between these two plots occur at the four inner sites, SOS, ALM,

REB and RDT, where the amplitude ratios are slightly higher for the northwestern

events than for the southeastern events, although they are still considerably lower

in both cases than for the ring fracture sites.
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OBSERVED SPECTRAL RATIOS FOR
DATA FROM KURIL ISLANDS (A,B,C,D) EVENT REGION RECORDED ON JEMEZ ARRAY 2

NUMERATORS: average over 4 events DENOMINATOR: average over 6 sites
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Figure 2.29 Spectral amplitude ratios obtained from the averaged amplitude spectra for the 4

Kuril Islands events.
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OBSERVED SPECTRAL RATIOS FOR
DATA FROM NORTHWESTERN EVENT REGION RECORDED ON JEMEZ ARRAY 2
NUMERATORS: average over 7 events DENOMINATOR: average over 6 sites
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Figure 2.30 Spectral amplitude ratios for data

of 7 events were used in the average.

averaged over all northwestern events. A total
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OBSERVED SPECTRAL RATIOS FOR
DATA FROM SOUTHEASTERN EVENT REGION RECORDED ON JEMEZ ARRAY 2
NUMERATORS: average over 3 events DENOMINATOR: average over 6 sites
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Figure 2.31 Spectral amplitude ratios for data averaged over all southeastern events. A total

of 3 events were used in the average.
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Figure 2.32 Spectral amplitude ratios average over both the 7 northwestern and 3 southeastern

events shown in Figures 2.30 and 2.31.
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Finally, Figure 2.32 shows the amplitude ratios obtained by averaging all events

from all incidence angles and both directions, ten events in all. This figure is very

similar to Figure 2.29 for the four Kuril events and suggests that the primary

effects which are independent of incidence angle and directions may be adequately

represented by the Kuril data. We make this statement with some caution, though,

since the total average here is probably dominated by the fact that we have used

more northwestern events in the average than southeastern events.

2.5 Measured P-Wave Arrival Time Delays

The direct P waves recorded for almost all of the 24 events listed in Table 2.2

showed very clear first motions at all nine sites used for both arrays. The vertical

component seismograms shown previously in Figures 2.6 through 2.11 are typical

of the quality obtained for the first arrivals. Although not all of the 24 events were

recorded at all sites in operation, we managed to select a total of 116 high quality

first arrivals from this data set. Since three sites were shared by both instrument

arrays, it was easy to combine the arrival time observations from both deployments

by measuring time delays for the first motion at each site relative to one reference

site common to all recorded events and both arrays. This allowed the time delay

due to upper-crustal P-wave velocity structure to be characterized as a function of

site location and incidence angle. Data reduced in this way allow the application of

standard travel time inversion and ray tracing methods for determining the P-wave

structure which best explains the observed travel time anomalies. In the present

section we will present the time delay results and discuss the data reduction steps
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used to obtain them. We will comment on possible interpretations only qualitatively

here. The quantitative modeling will be discussed in detail in Chapter 4.

The only site at which every event in Table 2.2 was recorded was SAM. There-

fore we chose it as the reference site mentioned above. This was somewhat fortuitous

because this site always had the largest amplitudes, as we showed in the previous

section, and therefore usually had the sharpest first motion, making it an ideal

choice above its necessity as the only common site. To measure the delays relative

to this site as accurately as possible we used a cross-correlation technique in which

the first half-cycle of the first motion in the vertical component was isolated from the

rest of the signal at each non-reference site and then correlated with that at SAM

for each event. The resulting time lag was then measured at the peak value of the

cross-correlation series obtained for each signal pair. We used the spectral technique

for computing cross-correlation rather then the time domain overlap-shift method.

After manually windowing and isolating the first half-cycle from each seismogram,

the beginnings were padded with zeros so that the FFT windows for the signals

at all sites for each event started at the same absolute time. The ends were also

zero-padded to obtain a wide enough window, relative to the length of actual sig-

nal used, to avoid undesirable endpoint overlap effects [e.g., Brigham, 1974]. After

computing the FFT's of the windowed signals for each event, the cross-correlations

were obtained by multiplying the complex spectrum at each site by the conjugate

of the reference spectrum and then computing the inverse FFT of the result:

dk (t) = IFFT {Df (wj) re (w)}, (2.9)
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where j = event index, k = site index, D k is the complex spectrum of the first

half-cycle of the P wave at site k for event j, D2 is the spectrum at the reference

site for event j, and dc(or is the correlation time series for site k and event j relative

to the reference site.

Since we have selectively windowed only the first half-cycle of the first arrival,

the desired time delay will correspond to the location of the maximum positive

value of dr 9 which will have a smooth bell shape. We chose to use only the first

half-cycle to decrease the width of the correlation peak and thus to increase the

precision with which the peak may be located. In all cases we found that the peak

could be selected to within one sampling interval, which in our case represents a

precision of ±4 msecs. However, we also discovered that by adjusting the width

of actual data in the FFT window by as little as ±10 samples the location of the

peak could shift by as much as ±10 msecs and we consider this to be a conservative

estimate of the accuracy obtainable with this method. Also, we mentioned earlier

that the accuracy to which we trust the clock times recorded by the instruments

is typically ±10 msecs, except for cases where absolute drift measurements could

not be obtained. The worst cases of clock measurement error were assigned an

accuracy of ±100 msecs. Thus the typical accuracy with which the relative arrival

time delays can be measured is ±20 msecs, which is quite good. The worst case

yields errors of ±110 msecs, which is still acceptable for our purposes.

There are two forms in which the measured time delays may be presented.

The first form has the normal moveout due to non-vertical incidence built into

the delays so that naturally the delay will always increase with distance along the
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earth's surface. These delays are obtained from the unaltered results of the cross-

correlation above and we will see in Chapter 4 that this is the most useful form to

have the data in when comparing with the results of ray-tracing. For the second

form, several additional processing steps are taken with the aim of displaying the

features in the delay observations which may be attributable to inhomogeneous

velocity structure. This involves subtracting an estimate of the normal moveout,

described below, correcting for differences between the array azimuth and source

direction and subtracting the average delay over all sites from these results for each

event. This would be the best form to use for travel time inversion since any delays

left over after making these corrections can then be modeled in terms of slowness

perturbations distributed along the associated ray paths relative to some simple

initial model.

Since the moveout-corrected delays contain mainly information about irregular

structure, it is more informative to examine these first to get some idea of what the

major structural features are. Once these are known, the details can be determined

by fitting ray-tracing results to the uncorrected delays. Figure 2.33 shows examples

of the moveout-corrected delays for two events recorded at all six sites on array

2. The first, marked by open squares, is for one of the Kuril Islands events to the

northwest and the second is for the Jujuy, Argentina event to the southeast. The

epicentral distances, A, to the central site RDT and incidence angles, 0, are listed

at the bottom of the figure. Recall that positive 0 coresponds to northwestern

events and negative 00 to southeastern events. Each marked point corresponds to

the moveout-and-azimuth-corrected delay at one site relative to the average over

all six sites. The site names are marked along the top of the figure at their correct
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OBSERVED ARRIVAL TIME DELAYS RELATIVE TO AVERAGE
AFTER CORRECTING FOR NORMAL MOVEOUT

SAM SOS ALM REB RDT CLJ

o = EVENT CODE: KUR6D A= 67.70 00= 21.50

o = EVENT CODE: JUJ5 A= 69.8* 6=-21.0*

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

HORIZONTAL POSITION (Km)

Figure 2.33 Observed arrival time delays relative to the average after correction for normal

moveout and azimuth for two events recorded on array 2. Open squares are for a northwestern event

and open circles for a southeastern event. Vertical bars on each point represent the estimated error

in the observed delay times. 0 is the estimated Richter incidence angle, positive for northwestern

events and negative for southeastern events. A is the epicentral distance in degrees to the central

site RDT.
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horizontal location. The vertical bars show the estimated errors discussed previously

which for the most part are ±20 msecs. The larger errors at REB and CLJ for the

Kuril event are due to clock drift measurement problems.

The moveout correction was calculated using the estimated incidence angles

listed and a moveout velocity of 6.34 km/sec. This is simply the surface velocity

which applies for the incidence angle tables in Richter [1958] used here to estimate

0 from A. The following simple formula was used to estimate the normal moveout

delay time between any two given sites:

X sin 0
Tmov = - (2.10)

amo,

where X is the horizontal distance between the two sites, 0 is the incidence angle

and amo, is the moveout velocity. Since we have subtracted the normal moveout

for each event, a homogeneous flat-layered structure for the caldera would yield a

zero relative delay at all sites. If we had not subtracted the average delay from all

sites for each event, then both plots would have zero delay at the reference site,

SAM.

The most obvious feature of the plots in Figure 2.33 is that the largest time

delays are observed on the side of the caldera furthest from the source, i.e., at REB,

RDT and CLJ for the Kuril event and at SAM, SOS and ALM for the Jujuy event.

The largest delay, relative the average, is observed at SAM for the southeastern

event. Furthermore, the difference between the maximum and minimum delays is

nearly twice as large for the southeastern event, -- 700 msecs, than for the north-

western event, -~ 400 msecs. This pattern is very typical of all events recorded

on array 2 and strongly suggests the existence of a low velocity zone (LVZ) at a
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significant depth beneath the caldera. We will see in Chapter 4 that the width and

horizontal location of the zone of largest delays along the surface, as well as the

strength of the delays, will allow us to constrain the width and average depth of

this LVZ, as well as its minimum height and velocity.

Figure 2.34 shows similar plots for two events recorded on array 1. Here the

northwestern event was from the Kommandorsky Islands and the southeastern event

was from Chile. Although the record of the Chile event at RDT, shown in Figure

2.11, was unusable for amplitudes, the cross-correlation method did yield a distinct

peak which we used to obtain the delay point plotted here. However, we have

assigned a large error to this point because the correlation peak was wider than

for other data. Figure 2.34 shows that the delay zone is largely localized to the

caldera sites, SAM, ALM and RDT and again the largest delay relative the average

is observed at SAM for the southeastern event. However, we must also note that the

delays at CAP for the northwestern event and at PNY for the southeastern event are

considerably larger than we would expect from normal moveout alone. Otherwise

these points would fall very close to the minimum delay in each case. This suggests

that the structure is probably much more complex than the simple localized LVZ

we have proposed. We will show that some of this complexity may be accounted

for by an irregular low velocity surface layer and some by allowing the deep LVZ to

take on very bizarre shapes or by adding separate smaller inclusions. At any rate

these added complexities do not contradict the basic properties of the deep LVZ

and may be considered as secondary details of our desired structural model.

Finally, in Figure 2.35 we have plotted all of the 116 time delay observations

in a manner which is partially qualitative yet extremely illustrative and convincing.
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OBSERVED ARRIVAL TIME DELAYS RELATIVE TO AVERAGE
AFTER CORRECTING FOR NORMAL MOVEOUT

CAC PNY SAM ALM RDT

5! -7 - 1

o = EVENT CODE: KOM2 A= 60.30 60= 23.5*

o = EVENT CODE: CHL3 A= 82.0* 00=-18.00

114 116 118 120 122 124 126 128 130 132 134 136 138 140

HORIZONTAL POSITION (Km)
142 144

Figure 2.34 Same as Figure 2.33 except that the data plotted are for two events recorded on

array 1.
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OBSERVED RAY PATHS

MOVEOUT CORRECTED DELAYS CATEGORIZED RELATIVE TO AVERAGE

VELOCITIES USED: Reference= 6.340 Surface= 5.800

T < -0.306 sees T < -0.113 secs T < 0.079 sees T < 0.272 sees T.> 0.272 secs

120 125 130
HORIZONTAL POSITION (Kn)

Figure 2.35 Observed ray paths for all events recorded on both arrays 1 and 2. Incidence angles

were estimated from Richter [1958] and corrected for the lower near-surface P-wave velocity for

the Valles Caldera region. Rays are categorized according to the strength of the arrival time delay

for each one and plotted in different line styles indicated in the legend. Site codes are listed near

their locations along the free surface topography profile where the rays end at the top of the figure.
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The approach is very similar to that used by Steeples & Iyer [1976] for delineating

a low velocity zone beneath the Long Valley Caldera in California. The data are

plotted as straight ray paths with incidence angles derived from the Richter angles

estimated previously. The surface velocity of 6.34 km/sec used in Richter's tables

is higher than what other investigators have found for the basement granite in

the Jemez Mts. region [e.g., Olsen et al., 1986; Ankeny et al., 1986], so we have

corrected the Richter angles to account for the more reasonable basement velocity

of 5.8 km/sec, thereby steepening the estimated incidence angle for each event. The

ray endpoints at the top correspond to the 9 site locations labeled by name along the

surface topography profile for the Jemez Mountains. Next, each ray was categorized

according to the value of the time delay observed at the site where the ray ends. In

this way all of the observed ray paths were broken down into 5 separate categories

represented by different line styles. The legend indicates the lower bound of each

delay category. The upper bound of each category is simply the lower bound of the

next highest category. The smallest delays are represented by solid lines and the

largest by dotted lines. In general, the more broken the line, the stronger the delay.

Ray paths are plotted to a depth sufficient to show where the major structural

anomalies must be located to produce the observed delay pattern at the surface.

Clearly regions where strongly delayed rays intersect less delayed rays must be

excluded as possible locations for a low velocity inclusion. This means the LVZ

must be at least 5 km deep since this is approximately the minimum depth where

the strongest delayed rays, beneath ALM, REB and RDT, intersect each other

without interfering with any of the more weakly delayed rays. We can also begin

to constrain the horizontal location and maximum width of the LVZ in a similar
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manner. We might even go so far as to suggest that the inclusion could be lens-

shaped, with its left and right edges tapering out gradually, since their is a very clear

horizontal gradation pattern beginning with the strongest delays at approximately

(x = 128 km, z = 18 km) and decreasing steadily to either side. Of course the

major assumption here is that the inclusion is homogeneous with a uniform P-wave

velocity. Since this entire discussion is largely qualitative we will end any further

intuitive modeling here and defer the remaining analysis of the delay data to the

ray-tracing and formal inversion methods. The fact that we can actually draw so

many intuitive yet convincing conclusions based on a simple plot like Figure 2.35,

however, gives us confidence that the quality and coverage of the arrival time data

should allow us to obtain reliable detailed models from the ray-tracing results in

Chapter 4.
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CHAPTER 3

The Aki-Larner Discrete Wavenumber Method

3.1 Introduction and History

The discrete wavenumber method for computing synthetic waveform spectra

has been in existence in a practical form since Keiiti Aki first developed the al-

gorithm for solving the plane SH-wave scattering problem for layered models with

irregular interfaces. Kenneth Larner, at the time a student under Aki, revised the

method and contributed to the first publication, [Aki & Larner, 1970], which gave a

concise exposition of the algorithm for SH waves in a single layered model with flat

free surface and irregular layer-halfspace interface. In his doctoral thesis, Larner

[1970] extended the algorithm to P-SV scattering problems and presented the ex-

plicit formulation needed to set up problems for multiple irregular interfaces. The

basics of the formulation were published in Aki 8 Richards [1980], where it was

referred to as the "Rayleigh-Ansatz Method" for reasons which will become clear

in the next section. It has also been commonly identified generically by the name

"Discrete Wavenumber Method." The next person to use the method extensively

was another of Aki's students, Michel Bouchon. Subsequently Bouchon and his

students began to refer to the technique as the "Aki-Larner Method" in almost

all of their publications. This name is now in wide use since it gives credit to the

original developers of the method, and we also will use it throughout this thesis.

This chapter is devoted to reviewing the history and details of the method from its

initial form to its present state of extended capability. Attention here is focused on

109



in-plane P-SV scattering problems, as this is the main subject of the present thesis.

The historical review is followed by an in-depth presentation of the general P-SV

formulation and method of solution for the problem of multiple irregular layers over

a half-space. It should be pointed out first that the Aki-Larner Method has stood

the test of time well, suffering few revisions, and nearly all subsequent advances

have involved changing the source or increasing the complexity of the model in

response to a steady increase in computer storage and speed over the last 18 years.

The original method as presented in Aki & Lamer [1970] and Lamer [1970] uses

steady state plane waves as the source. This limitation restricts the applicability

of the method to studies of ground motion due to incident teleseismic waveforms.

This is not a serious restriction at all since teleseismic data can be obtained at al-

most any region on the earth. The most complex problems solved in Larner [1970]

included an irregular free surface, at most one irregular buried interface and allowed

topographic variations only in two dimensions, the x-z model plane. The resulting

models were thus "washboard" features and solutions were obtained for the scat-

tered wavefield generated for three distinct cases of incident plane wavefields: 1.)

in-plane SH waves, 2.) in-plane P or SV waves and 3.) arbitrary azimuth P, SV or

SH waves. The first two cases are completely uncoupled from each other because

there can be no conversions between P-SV and SH motions for in-plane waves when

the topography is two-dimensional. The third case involves coupling between all

three waves types because the wavefield is no longer restricted to being normal to

the y-axis. By combining the Aki-Larner and Thomson-Haskell methods [ Thomson,

1950; Haskell, 1953, 1960, 1962], Larner was able to include additional flat layers in
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his models without significantly increasing the size of the problem. Additional irreg-

ular interfaces expand the problem considerably, however, and computers available

in the late 1960's were not large enough or fast enough to handle problems with

more than one or two irregular interfaces.

Following on the work presented in Aki 8 Larner [1970] the method was com-

pared with the finite difference technique by Boore et al. [19711. Surface motion

was calculated for a crust-mantle model and a soft basin model and excellent agree-

ment was obtained between the results of the two methods. This was the first

time that the validity of the Aki-Larner method had been checked against another

independent solution for identical problems.

The Aki-Larner method was used next by Bouchon [1973] to study the ef-

fects of topographic irregularities on ground motion. The results were successfully

applied to the Pacoima Dam accelerograph record of the 1971 San Fernando earth-

quake. An improvement to the Aki-Larner method was also presented in which

the residual stress at the free surface is used to make corrections to the computed

surface displacement. However, this correction is usually not necessary since the

residual stress, as will be demonstrated later in this thesis, is normally very small.

Bouchon [1973] also succeeded in synthesizing time domain seismograms from the

single-frequency solutions.

The next improvements to the Aki-Larner method involved the introduction

of non-plane wave sources as inputs to the models. This allowed the placement

of point or line sources within the model which in turn allowed comparisons with

local and regional data. The works of Bouchon [1976], Bouchon & Aki [1977] and

Bouchon [1979] were devoted to the development and application of the source
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representation. The work in this thesis utilizes teleseismic data, allowing the use of

plane waves as sources in the Aki-Larner method. No further mention will be made

concerning the discrete wavenumber representation of sources.

Bard 8 Bouchon [1980a,b] next performed exhaustive studies on sedimentary

basin and alluvial valley problems for the SH and P-SV plane wave scattering cases

and found that surface waves generated at the valley edges were a major component

of the resulting ground motion. They also described a practical approach for syn-

thesizing realistic seismograms from multiple single-frequency steady-state solutions

through convolution with a Ricker source wavelet. Next, Bard & Bouchon [1985]

used the same method again to study specific 2-dimensional resonance patterns

for sediment-filled valleys. Some of their results were compared with the integral

equation method of Sanchez-Sesma & Esquivel [1979], and excellent agreement was

observed even for fairly steep interface slopes. They demonstrated that 2-D reso-

nance behavior differs significantly from that predicted by traditional 1-dimensional

theory.

The most recent improvements to the Aki-Larner method were performed by

Bard & Gariel [1986] and Kohketsu [1987]. In the former paper the method was

extended to allow the study of 2-dimensional sediment-filled valleys containing verti-

cally stratified structures. They also were the first investigators to include anelastic

attenuation as a model parameter. Although their work is very thorough and con-

vincing, they gave very few details on how they introduced these changes to the

Aki-Larner method. Kohketsu [1987] presents the ground work for a very tanta-

lizing new algorithm which allows the Aki-Larner method to be extended to deal

with an arbitrarily large number of irregular interfaces with only minor increases
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in computation time. Currently this method has been formulated only for the SH

scattering problem and also was presented in a form which is not very accessible or

reproducible.

Kohketsu makes a claim that one of the major sources of error in the Aki-

Larner method can be eliminated simply by adding a transparent dummy layer to

the models in the medium containing the incident wave. The source of error in

question is the Rayleigh ansatz representation of scattered waves in a halfspace,

which we will discuss in detail in the next section of this chapter. Let it suffice here

to point out that the ansatz error is inherent to the method and cannot be removed

by so simple a trick. Just to be sure, though, we have tried Kohketsu's suggestion

with the P-SV algorithm used in this thesis and it has absolutely no effect on the

solutions for a wide range of problems tested.

Since Kohketsu's work has not been extended to the P-SV case yet, the fol-

lowing presentation of the traditional Aki-Larner P-SV formulation should still be

useful. We will use a very generalized notation which can be extended to any

number of irregular interfaces. But, since the size of the problem grows rapidly in

computation and storage requirements as more interfaces are added, we have been

able to solve problems only for a maximum of four irregular interfaces. This is

limited purely by the size, speed and precision of available computers and is the

largest problem that could be run reliably on a VAX 8650. Appendix 1 contains

the detailed formulas required to program the 4-interface P-SV problem.
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3.2 Formulation

The formulation of the Aki-Larner method presented here adheres closely to

the notation used in Aki & Lamer [1970] and in Larner [1970] and is largely a

detailed review of those works. The aim of the following presentation is to provide

the specific formulation used to extend the method for multiple irregular interface

problems. Lamer [1970] provided a detailed formulation for P-SV-SH scattering

problems in which the models were strictly 3-dimensional layered structures with

only one irregular interface. He reduced the problem to be pseudo 2-dimensional by

assuming the irregularity to be dependent only on the x and z model coordinates.

The irregularity will resemble a washboard in 3 dimensions and its strike will be

parallel to the y axis. Thus the model can be described completely by defining a 2-D

vertical plane perpendicular to the y-axis. This means that all partial derivatives

with respect to the y coordinate encountered in the 3-D formulation will vanish

and the in-plane P-SV motions will be completely decoupled from the transverse

SH motion. This allows the scattering problems for P-SV and SH motions to be

solved separately. By employing a clever coordinate rotation tensor Larner [1970]

combined the P-SV and SH solutions to obtain the total 3-D wavefield for arbitrary

azimuth problems with the washboard structures. For the present study, however, a

washboard structure would be a very poor model for the Valles Caldera. We would

not expect to gain much additional information over a 2-D model by synthesizing

the scattered SH component under such restrictive structural conditions. So for

the purposes of this thesis we will reduce the formulation, at the appropriate stage,

to that for the strictly 2-dimensional P-SV problem alone and will allow waves

to propagate only in the (x,z) model plane. We begin, as in Larner [1970], by
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assuming the structures have no y-dependence. In general, the Fourier Transform

of the wavefield must satisfy the vector wave equation:

-pw 2 U(x, y, z, w) = (A + 2p) V (V -$ - V x (V x $ ), (3.1)

where , = ( W,', is) is the total integrated displacement vector. The basis of the

method is to first represent the total displacement field in each layer as a super-

position of individual fields characterized by their x-component of wavenumber, k

[Larner, 1970]:

+00

The k-decomposed wavefields, LL, are themselves made up of a mixture of P, SV

and SH waves, and in order to apply boundary conditions we must first separate

these wave types so that individual expressions for each component of motion, u, v

and w may be obtained. To do this we make use of the familiar Helmholtz theorem

which expresses LL as a combination of scalar and vector wave potentials:

U = V$ - V x (B + V x Q), (3.3)

where the vector potentials may be represented by:

B (0= )T

I= (0,0, .

The three scalar potentials 4, T and T correspond respectively to the P, SH and SV

wave contributions to U. Using equation (3.3) we may now expand U = (u, v, w)
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to obtain:

81 05 82;
19z-y zxi~k)

oI 82* gT
v (x, y, z,w, k) = 9- - + - (3.4)By yaz (IX

oI 82;I g2;
w(x,y,z,w,k) =a + + +

These expressions represent the general solution to equation (3.1) for a homo-

geneous body. For the specific problem at hand, this body is bounded by irregular

interfaces. Since the irregularities have no y-dependence, all partial derivatives with

respect to y will vanish in equations (3.4). Furthermore, we will now impose the

2-D restriction on the wavefield, mentioned above, and allow only for P-SV motion

propagating in the (x, z) plane of model symmetry. Thus we will require only the 4

and %P wave potentials above and will obtain solutions only for L = (u, 0, w). Then

by first making the substitution T = 0'P/Ox, we can rewrite equations (3.4) as:

o1 o9
u (x,z,,k) =

v (X, z, w, k) = 0, (3.5)

oI o9
w (x, z, w, k) = +

b and %P must satisfy the scalar wave equations:

2

V2+ -2 4= 0,

(3.6)

12
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where a = acoustic velocity and # = shear velocity of the elastic solid. The solutions

to equations (3.6) for the k-decomposed plane wave potentials, P and 4', are given

in terms of spatially independent up-going and down-going potentials by:

4 (x, z, w, k) = 4Pd (w, k) ei(kz+z) + ,V (w, k) ei(kz~z)

(3.7)
T (x, z, , k) = Td (w, k) ei(kz+P'z) + V" (w, k) e(k-v'z),

where k = x-component of wavenumber and v and v' are the z-components (pos-

itive downward in this case) of the P and S wavenumbers respectively. Defining

the characteristic P and S wavenumbers (which are simply the magnitudes of the

wavenumber vectors), K , and K#, the vertical components can be obtained by:

v= (K2 - k2)1/ 2

(3.7a)
K, = -,

K# a

The first major source of error in the Aki-Larner method arises from the use

of the Rayleigh ansatz representation of the scattered wavefield in the halfspace

[Rayleigh, 1907]. The ansatz is a particular form of equations (3.7) which only allows

scattered waves in a halfspace to propagate away from its bounding interface. The

ansatz cannot completely represent the total scattered wavefield if the interface is

significantly irregular because it cannot account for waves which may be scattered

inward toward the interface. In particular, for an up-going incident P wave in a
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halfspace bounded above by an irregular interface, the ansatz representations of the

wave potentials in the halfspace are:

(I (x, z, w, k) = $d(w, k) e(k+-x) + eI(k**~"*),

(3.8)
AP (x, z, w, k) = Td (w, k) ei(kz+Y'z).

where ko and vo are the horizontal and vertical wavenumbers of the incident P wave

for an incidence angle 6o (defined clock-wise from vertically upward) and are given

by:

ko K, sin 0,
(3.8a)

Vo = K. cos Oo.

Clearly, this representation cannot account for any waves which may be scattered

upward by the interface irregularity because only down-going potentials are allowed.

Thus the Rayleigh ansatz will give reliable results only if the irregularity is smooth

relative to the wavelengths being considered. The ansatz error has been discussed

thoroughly by Aki & Larner [1970], Larner [1970], Aki & Richards [1980] and by

nearly all other authors who have used the method. Rather than dwell on this

and other sources of errors separately we will instead check the overall reliability of

our solutions by examining the boundary condition residuals and the wavenumber

spectra of the various wave potentials obtained.

The expressions in equations (3.7) and (3.8) may be used to formulate the total

wavefields for any model composed of multiple isotropic layers with the top-most

layer bounded above by a free surface and the bottom-most layer bounded below

by a halfspace. Figure 3.1 shows a typical 2-D model geometry for this type of
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PROBLEM CONFIGURATION FOR MULTIPLE
IRREGULAR INTERFACE MODELS

256

free surface

-U

d

~1

layer 2

\d \d
4)2 %P2

halfspace

incident
plane

P-wave

Figure 3.1 Example of 2-D model geometry and problem setup for the P-SV scattering case.
Arrows in each medium represent up-going and down-going unknown wave potentials to be solved

for. Problem is shown for a plane P-wave source with incidence angle 0 arriving from below.
Irregular interfaces are functions only of the X-coordinate. The z-coordinate is defined to be
positive downward.
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problem with the various up-going and down-going wave potentials labeled in each

medium. The interface shapes are functions only of x and can be written in the

general form z = ( (x), where ( (x) may be either an analytic functional form (such

as a simple cosine shape) or could represent a digitized series of topography samples

for some arbitrary shape. The source wave in this case, and throughout this thesis,

is a steady-state plane P wave with unity potential amplitude.

We need to find solutions for all of the up-going and down-going wave poten-

tials in each medium as functions of k for each frequency w so that equation (3.5)

and a discrete-summation version of equation (3.2) may be used to construct the

displacements at arbitrary locations in the model. This is done by satisfying exactly

in the wavenumber domain the boundary conditions of vanishing stress at the free

surface and continuity of stress and displacement across each buried interface. If

the model contains P layers above the halfspace, then there will always be 4P + 2

unknown potential functions to solve for (4 in each layer and 2 in the halfspace). In

the following presentation the model layers are indexed from the free surface down

as [p = 1, 2,... , P + 1], where p = P + 1 corresponds to the halfspace. Similarly,

the interfaces are indexed as [p = 0,1,... , P] so that interface p defines the bot-

tom of layer p ,and p = 0 corresponds to the free surface. Using this notation, the

boundary conditions may be summarized as follows:

(1) Vanishing horizontal traction along the free surface (p = 0):

T,,1 (x, z = (o (x), w) = 0,

(2) Vanishing vertical traction along the free surface (p = 0):

T,,1 (x, z = (o (x), w) = 0,
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(4P - 1) Continuity of horizontal displacement along interface p = P:

Up(x,z = Cp (x),w) = P+1 (x, z = (P (x) w)

(4P) Continuity of vertical displacement along interface p = P:

Gp (x, z = (p (x) ,w) = P+I (x, z = ( (x) , w)

(4P + 1) Continuity of horizontal traction along interface p = P:

Tf,p (x, z = (p (x), w) = Tz,P+1 (x,z = (p (x), w)

(4P + 2) Continuity of vertical traction along interface p = P:

TZ,p (x, z = (p (x), w) = T,P+i (x, z = (p (x), w).

Equations (3.5) are used to obtain expressions for the k-decomposed displace-

ments, u (x, z, w, k) and w (x, z, w, k), which are used to evaluate the boundary con-

ditions for the total displacements, ii and W', above. The tractions are obtained

from the same expressions for u and w by way of the stress tensor and Hooke's law

as follows. The traction vector for layer p evaluated at a point on interface p is

related to the stress tensor through the unit normal to the interface:

(3.9)

where S is the integrated stress tensor and T is the integrated traction vector:

+oo

i(x~z))= 10

T(x, z, w) = 1-00
+00
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(x,z,w, k) dk,

T (x, z, w, k) dk.
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The unit normal n is defined to point away from the bottom of the interface toward

the positive z direction. Its components may be written either in terms of the

interface slope, a (x) = d( (x) /dx, or in terms of the angle -y between the interface

tangent and the x-axis:

ne -S (x) (1+ 2 (X))1/2 = ( in
n(0 0 . (3.11)

n.) (1+ T2()) 1/2 Cos

The required traction components may then be written as:

T.= STn, + S,,nz

(3.12)
TZ= S.n, + Szznz.

So the tractions may be obtained using only three components of the stress

tensor and these are derived from U' and WO using Hooke's law:

S&&Sz =Ae+2O-,

Oz'
$2, = AO+ 2P--,

(3.13)

Szz= -+- ),Oz Oxz

where: e= +-
T z &z

The boundary conditions at each buried interface may be written in a general

form as the vector integral equations:

x (X7 C (x) , w7 k)dk = Q+1 (x,, C(x), w, k) dk,

(3.14)

/ + OO 
h+ 0

,00 (x, (, (x), w, k) dk = f,+1 (x, C, (x), , k) d ,
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and at the free surface:

+00 j 1 (x, Co (z), w, k) dk = 0. (3.15)
-oo

The full expressions for T, and -C, are needed to expand equations (3.14) and

(3.15) into a form which may be solved directly for 1 , $, V and %;. These

expressions are very long and messy and are presented in Appendix 1 rather than

here. They will take on two basic forms, the first requiring four unknown potentials

when the medium is a layer, and the second requiring only two unknown potentials

when the medium is a halfspace. Evaluation of the appropriate forms on either

side of a buried interface or at the free surface will in turn lead to three particular

forms for the boundary integral equations (3.14) and (3.15), depending on whether

the interface is the free surface, separates two layers or separates a layer from the

halfspace. All three particular forms may be generalized and combined, by first

moving all functions of k to the left-hand sides of equations (3.14), to yield one

compact expression representing all 4P + 2 boundary conditions:

+oo 
P+2

E Ai (w, k) gij (x, w, k) en" dk = hi (x, w) ekoz [i = 1,... 4P + 2},

(3.16)

where i is the index over all 4P + 2 boundary conditions, j is the index over all

unknown wave potential functions, Aj are the 4P + 2 unknown wave potential

functions, gig are the known motion-stress components for scattered waves evaluated

on either side of an interface, and hi are the known motion-stress components for

the source wave in the halfspace evaluated at the bottom-most interface. Appendix
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1 gives the full detailed formulas for all gij and hi for the case of a three-layered

model with irregular free surface, which is the most complex that we will deal with

in this thesis. Equation (3.16) represents a square linear system of integral equations

which may be written equivalently for a single value of x and w as:

(k) -A(k)] eik dk = eiko. (3.16a)

As we will show below, the solution of this system to obtain the unknown potentials

vector A requires discretizing all expressions for the left-hand and right-hand sides

of this equation over both the x and k variables.

In equation (3.16) there will be only four non-zero components for hi, corre-

sponding to the horizontal and vertical displacements and tractions at the bottom-

most interface due to the impinging source wave in the halfspace below. Also at

the bottom interface only six Ai will contribute to the traction and displacement

because the Rayleigh ansatz does not allow for up-going scattered waves, I+

and 'k+1, in the halfspace. So the first of the three particular forms mentioned

above for equation (3.16) will involve only six non-zero gij and one non-zero hi

for each of the four boundary conditions [i = 4P - 1,... ,4P +2] at the bottom

interface. Moving up to a boundary condition for a layer-layer interface, for which

[2 < i < 4P - 1], eight of the unknown Aj will contribute to each of the four bound-

ary conditions in this case, requiring eight non-zero gij. Also all four hi will vanish

since there is no source wave contribution above the halfspace. The third and final

particular form is for the free surface. In this case there are only two boundary

conditions, [i = 1, 2], for vanishing traction and only the four A, for the top-most
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layer are involved, requiring four non-zero gii, and two hi which are zero. There are

also two degenerate forms which occur only when the model contains no layers. The

first is for an interface separating two halfspaces and requires four boundary condi-

tions, four unknown A;, and four non-zero h;. The second is for a single halfspace

bounded by a free surface and requires only two Ai, and two non-zero hi.

The general form of equation (3.16) is deceptively simple. Some care must

be taken with the ordering of the elements involved in setting up the complicated

non-symmetric linear system. As more layers are added to the models the sparsity

of the matrix g increases rapidly and it becomes harder to keep track of where in

this matrix all of the zero and non-zero elements should be placed. An intimate

knowledge of the particular forms that all possible boundary condition equations

may assume is important for assuring the proper placement of these components

within the matrix and within the source and unknown potential vectors. This also

allows one to extend the formulation for simpler models to more complex models

by simply augmenting the linear system with boundary conditions for additional

layers.

3.3 Solution of the Integral Equations

The integral equations (3.16) clearly cannot be solved analytically. The origi-

nality of the Aki-Larner method lies in the technique used to solve them numerically.

The notation used by Aki & Larner [1970], which has already been introduced in

equation (3.16), will be adhered to in the following. If we were to simply discretize

equation (3.16) over both x and k then the accuracy of the approximation will de-

pend strongly on the step intervals chosen for Ax and Ak. Aki and Larner forced
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the integral equations to reduce exactly to infinite-sum equations by assuming the

model structure to be periodic in the x-component with period length L. This

means that now all (,(x) and s,(x) are periodic and thus all h; and gi in equation

(3.16) must also be periodic since they depend on x only through the topography

and slope functions. The first step in reducing equation (3.16) to an infinite sum is

to multiply both sides by e-iko" and then substitute k = k - ko, which yields:

4P+2

Aj(w, k) g;i(x,w, k) ei" dk = h 3 (x,w)
j=1

[i = 1,...,4P+2].

(3.17)

Due to the imposed periodicity, all functions of x must repeat for x, = x + nL.

In order for the exponential term, e i, to obey this restriction k can only assume

discrete values which are integer multiples of 27r/L. This restriction in turn reduces

equation (3.17) to the desired infinite-sum equation:

+oo 4P+2

n=-oo j=1

A2) (w) g(53) (x, w) ei(2rnz)/L = h, (x,w) [i = 1,..., 4P + 2],

(3.18)

where: A2')(w)=Aj(w,kn)Akn

gn) (x, W) = g;, (x, w, kn)

kn = ko + nAkn,

Akn = 2ir/L.

[j = 1,...,4P + 2],

[ij = 1, ... , 4P + 2],
(3.18a)

Equation (3.18) is an exact representation of the boundary conditions in the

wavenumber domain because Akn is fixed by the choice of the periodicity length
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L. However, the use of periodic models can introduce errors into the displacement

solutions caused by contamination from scattered energy arriving from adjacent

model periods. This is the second major source of possible errors in the method.

This effect can be minimized very easily by choosing L to be much larger than the

maximum length of the interface irregularities and by including either attenuation or

damping in the ansatz through the use of complex wavenumbers. This is discussed

in detail in the next section. In order to evaluate equation (3.18) numerically it is

first necessary to truncate the infinite sum to yield the following approximation:

N2 [4P+2

Aki) (w) g () (x, w) ei( 2 rnz)/L = hi (x, w) [i = 1,...,4P + 2].
n=-N1 j=1

(3.19)

We now have a finite number of unknown wave potentials to solve for over a

finite set of discrete horizontal wavenumbers. In theory equation (3.19) could be

solved by discretizing it over the x variable and applying generalized inverse theory

to the resulting set of linear equations in x and k. This would mean, however, that

the inverse problem could be either under-determined, exact or over-determined

depending on the total number of discrete x values used in digitizing the model. It

is preferable to use an exact method of solution which is independent of the par-

ticular choices for L and Ax used for defining the model. Also, as we will discuss

further below, the dependence of the solutions on k should be directly related to

the degree of flatness in the model interfaces [Aki & Larner, 1970], and this implies

that there should be a correspondence between the elements of gn), as functions of

k, and their variations as functions of x. As we have seen, the discrete wavenumber
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spacing, Ak, is determined solely by L. Also, since L is the model period, the

Fourier Transform of any function of x in equation (3.19) will share the same Ak,

as defined in equations (3.18) regardless of the choice for Ax. Thus if we compute

values of each g(j) (x., w) for all discrete values of xm, where [m = 0,..., M - 1]

and M is the total number of samples in one model period, and then compute

the Fast Fourier Transform (FFT) of the resulting series we obtain wavenumber

spectra which characterize the variations in the motion-stress terms as functions

of km along each interface involved. Similarly, the FFT of hi(xm) will describe

the spectral content of variations in the source terms along the bottom-most inter-

face. Also, since nAkn = 2rn/L = k, - ko, then by substitution we can write

mAk. = 2rm/L = km - ko. Then, since Ak = Ak,, ,it follows that the

FFT's of g(I) and hi will be centered around km=o = ko and their complete

spectra will be defined for both positive and negative wavenumbers relative to ko

for [m = -(M/2),.. ., 0,. .. , +(M/2) - 1]. As long as we have chosen M/2 (the

number of points in half the model period) to be greater than the largest of the

wavenumber truncation limits in equation (3.19), N1 or N2, then the Fourier spec-

tra of gn3 and hi may truncated exactly as before. Specifically, we first write the

Fourier Transforms of gnI and hi as:

G'j) (w) = j gi) (x,w) ei[2'(n-m)]/L dx,

(3.20)

Him (w)= I hi (x,w) e-i(2rm)/L dX.

Finally, if we now truncate the Fourier index m from -N1 to +N2 as be-

fore we can write the Discrete Fourier Transform (i.e. FFT) of equation (3.19)

128



approximately as:

+N2 r4P+2

Z Z A2)n) (Hw) Hi, (w) [i =1,...,4P +2],
n=-N1 j=1

[m =-N1,... ,0,... , +N2](3.21)

or: Q-A=L

This equation represents a square linear system of (4P + 2) - (Ni + N2 +

1) equations in the same number of imknowns. By solving this system for all

potential coefficients A2j) we will be matching the boundary conditions exactly in

the wavenumber domain for one input source frequency, w, at a time. Since the

system is square it can be solved directly using LU decomposition and Gaussian

elimination. Once we have obtained the solutions for the potential coefficients

above, they may be used in the appropriate formulas, derived using equations (3.8),

(3.7), (3.5) and (3.2), for calculating the displacements at any (x, z) location in the

model. These formulas, as well as those used to calculate tractions, are given in

detail in Appendix 1.

The explicit structure of the matrix G in equation (3.21) is rather confusing

at first glance. In fact this matrix can have two different forms depending on the

order in which the two summations are taken. The order preferred in this thesis

is achieved by interchanging these summations so that the inner sum is over the

discrete wavenumber index and the outer sum is over the wave potential index. It is

useful to define here the two wavenumber domains contained in the matrix. The first

corresponds to the rows of G and is the discrete wavenumber domain (over n) defined

129



by equations (3.18). The second we will call the Fourier wavenumber domain (over

m), defined by equations (3.20), and corresponds to the columns of !. Each row

represents one Fourier component of one boundary condition over all contributing

wave potentials and discrete wavenumbers. Each column represents one discrete

wavenumber component of one wave potential over all Fourier components of all

boundary conditions. Thus the entire matrix is made up of (4P + 2)2 square

sub-matrices, each with dimensions (N1 + N2 + 1) x (N1 + N2 + 1). Obviously

the vector A must be ordered according to the matrix row pattern and H must be

ordered according to the column pattern. More details on setting up the matrix are

given in Appendix 1.

As mentioned above, the dependence of the displacement solutions on k is

directly related to the flatness of the model interfaces. In particular, if all interfaces

are flat then only the incident wavenumber, ko, will contribute to the solution. In

this case, all sub-matrices, G ,n, in equation (3.21) will have non-zero entries only

when n = m, that is, they will be diagonal. So the use of the FFT to transform on

the x-dependence of the motion-stress terms in equation (3.19) allows one to control

the stability of the solutions directly through the degree of flatness of the interfaces.

This was the main reason that Aki decided to use the Fourier Transform to construct

the linear system of equations (K. Aki, personal communication, 1989). If any

problems are encountered in solving the linear system, i.e., because of singularities

in the matrix, then flattening the model interfaces should help.

The truncation of the infinite sum equation (3.18) introduces the third and final

major source of error in the method. If N1 and N2 are not chosen large enough to

adequately account for all possible scattered waves it will be impossible to match all
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of the boundary conditions when the interfaces are significantly irregular. Ideally

the wavenumber magnitude spectra for the potential coefficients Af'j should all

converge towards zero as n approaches -N1 and +N2. Strictly speaking, this

criterion is the main justification for the wavenumber truncation. If they do not

converge then it may be necessary to include higher scattering orders by increasing

N1 and N2. As we will see, however, this condition is often overly conservative and

difficult to satisfy for complicated models. Frequently we will find that the boundary

conditions are being satisfied reasonably well even though some of the coefficient

wavenumber spectra do not converge to zero. Further, even Lamer [1970] points out

that increasing the wavenumber index will not always ensure convergence and may

even be undesirable. Much of this problem is due to the inadequacy of the Rayleigh

ansatz in the halfspace and, in fact, the spectra for the down-going potentials leaving

the bottom interface almost never converge even though the boundary conditions

are being satisfied. We will demonstrate later, in Chapter 5, that the reliability

of the displacement solutions at the free surface of the model may be assured by

the requirements that the boundary condition residuals are small and that the

coefficient spectra should converge at least for the wave potentials used to calculate

the displacement solutions. We will not present a detailed discussion of the three

sources of error in this thesis. This subject has already been addressed sufficiently

by Larner [1970]. However, in the course of modeling the observed amplitude data

for the Valles Caldera, these errors were dealt with as they occurred, and it is

necessary to know how to recognize them. The effects of either the Rayleigh ansatz

or wavenumber truncation errors will be clearly manifested as misfits or oscillations

in the boundary conditions. The effects of the periodic interfaces will not show
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up in the boundary conditions but may be controlled by adjusting the amount of

attenuation in the model or damping in the wavefield. This is discussed in detail in

the next section.

Concerning the choices for the wavenumber truncation limits, N1 and N2, in

general N1 # N2 for the following reasons. The scattered discrete wavenumbers,

given by kn = ko + nAkn, represent waves which are scattered either forward or

backward in the x direction relative to the incident wavenumber, ko, depending on

whether n is positive or negative, respectively. Since ko = K, sin 6o, we can write

the expression for the sine of the propagation angle of the nth scattered P wave as

[Lamer, 1970]:

nAk~
sin O = sin Oo + K , (3.22)

and for the corresponding scattered S wave:

sines - sin 0 o + ". (3.23)a Kp

Ideally we would wish to include in our displacement solutions at least all possi-

ble homogeneous scattered wave angles over the range: [sin . = -1,...,0,... , +1]

for both P and S waves. Larner [1970] showed that in order to satisfy the boundary

conditions in most cases it is necessary to include inhomogeneous waves as well, for

which I sin OSl > 1 and/or I sin OP| > 1. For the present discussion we merely wish

to point out that in general 60 # 0 and for sufficiently shallow incidence angles it

is usually necessary to choose N1 # N2 so that the range of wavenumbers used

is approximately symmetric and centered around kn, = 0. As mentioned earlier,

examination of the boundary condition residuals is an adequate test of the choices
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for N1 and N2. Larner concludes that as long as the total number of wavenum-

bers, N1 + N2 + 1, is chosen large enough, then for moderately shallow incidence

angles, say |6ol < 45*, the boundary conditions will be met adequately by letting

N1 = N2 = N and performing the wavenumber discretization over the symmetric

range: [n = -N,..., 0, ... , +N]. We will use this convention throughout this the-

sis since, for teleseismic P waves, we will never have to consider incidence angles

greater than |0|o -:: 30*.

Finally, one should notice that in order to cover the entire range of homogeneous

scattered angles for the S waves it is always necessary to choose N large enough to

extend the P-wavenumbers into the inhomogeneous region. This is because for a

given wavenumber index ny, for which sin OP = 1, the corresponding S-wave angle

is given by sin O = #/a < 1. Thus to include all possible homogeneous S waves in

the solution, N must be chosen sufficiently larger than np so that |9aNl ! 1. This

means that, in general, all P-SV scattering problems must necessarily include inho-

mogeneous P waves in order to adequately represent the scattered S-wavefield. This

requirement of course is dependent on the severity (steepness and amplitude) of the

interface irregularities and may be relaxed for sufficiently gentle model geometries.

As discussed above, in the extreme limiting case where all interfaces are flat, no

scattered waves are generated and ko is the only wavenumber which contributes

to the solutions. In this case we can simply choose N = 0, which is equivalent to

solving the 1-dimensional problem using the Thomson-Haskell method [Thomson,

1950; Haskell, 1953, 1960, 1962].
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3.4 Wavefield Damping and Complex Wavenumbers

It is well known to users of the Aki-Larner method that complex wavenumbers

must be employed to make it work. The primary reason for this is the need to

damp out the energy arriving from adjacent model periods, which would produce

erroneously large amplitudes for the displacement solutions. By introducing an

imaginary part to Ka and Kp, the plane wave representations given by equations

(3.7) and (3.8) will now contain real-valued exponential decay factors which attenu-

ate the steady-state waves with increasing travel distance and time. The imaginary

part traditionally has been introduced by making the frequency, W, complex [e.g.

Aki & Larner, 1970; Larner, 1970; Bouchon, 1973; Bard & Bouchon, 1980a,b]. This

approach is the simplest in terms of formulation and does succeed in eliminating

the unwanted arrivals as long as the imaginary part of frequency is chosen large

enough. This approach will be termed the "wavefield damping method" here since

it is completely artificial in nature and any displacement solution obtained must

ultimately be corrected by appropriately removing this damping from it. An al-

ternative approach, which provides the benefit of being physically meaningful, is

to make the wavenumbers complex by including attenuation as a realistic physical

parameter in the models. We will show below that this approach may be imple-

mented in the Aki-Larner method-by using familiar formulas relating the seismic

quality factor, Q, to material dispersion characteristics in the form of complex,

frequency-dependent phase velocity. We will call this the "Q method" here and it

has a two-fold advantage over the damping method in that it allows one to model

the effects of attenuation on seismic waves, and since these effects are realistic there

is no need to correct for them in the displacement solutions. Bard & Gariel [1986]
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were the first ones to employ the Q method in the Aki-Larner technique, but they

gave no details in that work on how to successfully implement it. Since this is

a relatively new and fairly tricky improvement to the method, we will discuss its

implementation in some detail below.

A secondary reason for the use of complex wavenumbers arises for models

involving layers bounded by parallel plane interfaces. In these cases, when K,, and

K# are real, the existence of poles in the horizontal wavenumber summation path

at kn = Ka and at kn = K, will introduce singularities in the matrix Z of equation

(3.21) corresponding to trapped modes in the plane layers. Larner [1970] discussed

this point in some detail, pointing out that these poles can be completely avoided by

allowing kn and vn to be complex. He also pointed out that the matrix singularities

will not exist if all of the model interfaces contain irregularities. Since this will be

the case for all models presented in this thesis we will not dwell on this point except

to aid in the discussion below of the wavenumber summation paths which result

when Kc and Kp are complex.

The following discussion applies for both P and S waves using the generalized

expression for the complex characteristic wavenumber:

K=KR+ iK = , (3.24)

where c(w) is the phase velocity for either P or S waves. In general, equation (3.24)

implies that either w or c(w) or both may be complex and that c(w) may also be

frequency-dependent. The incident horizontal and vertical wavenumber components

may still be written as before, but with the addition of the imaginary part:

ko = K sinOo = KR sin o + iK1 sino,
(3.25)

vO = K cos 00 = KR cos 0o + iK1 cos 00.
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The discrete horizontal scattered wavenumbers, kn, will all share the same imagi-

nary part as ko because the wavenumber increment, Akn is real:

kn = ko + Akn = Re{ko} + Akn + i Im{ko}, (3.26)

and the corresponding vertical wavenumbers are written as before, remembering

that now all quantities are complex:

Vn = (K 2 - k2) 1 / 2 . (3.27)

So the previous formulation for real wavenumbers generalizes perfectly to the com-

plex case. The only difficulty arises in resolving the ambiguity inherent to evaluating

the complex square root of equation (3.27). To fully understand the behavior of kn

and vn summation paths needed to solve equation (3.21), it is helpful to study these

quantities in terms of their positions on the top sheet of the complex wavenumber

plane. We will elaborate here on the discussions of Aki & Lamer [1970] and Larner

[1970] by describing the paths taken by vn as well as kn and by providing more

details concerning the way in which the ambiguities in the complex square root are

resolved.

It is well known [Lapwood, 1949] that the top and bottom sheets of the complex

k-plane correspond to values of k for which Im{v} > 0 and Im{v} < 0 ,

respectively. These two Riemann sheets are connected by a branch line along which

Im{v} = 0 and which includes the branch point at k = K where v = 0. Larner

[1970] explained that for halfspaces and non-plane layers, branch points are located

only at the characteristic P and S wavenumbers, +K, and +K3, and we need not

concern ourselves with the possible branch points at -K, and -K6. For the case
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when K is real, the branch line follows the real k-axis from the branch point to

the origin and then follows the imaginary k-axis from the origin to k = + ioo

[Lapwood, 1949]. The top sheet thus is defined by this branch line and by choosing

Im{v} > 0. When K is complex the branch point at K is displaced away from the

real axis into the first quadrant along a line with slope e = KI/KR and the branch

line becomes a hyperbola with the real and imaginary axes as asymptotes. The

summation path for ka, according to equations (3.25) and (3.26), will now follow a

straight line parallel to the real axis with a constant imaginary part: K 1 sin 0o. If

we now write:

2 .2 2v

= K 2 
- k2  (3.28)

- (K2 - KI - k2 + k 2) + 2i (KRKI - kRki),

then clearly the branch line defined by Im{v} = vi = 0 is also equivalently defined

by:

1
Im{v 2} = KRKI - kRkI = 0. (3.29)

So the branch line can be calculated easily by either of the equivalent formulas:

k = KRKI
kR

(3.29)

or: kR = KRKI
k1

which, as mentioned, represent a hyperbola passing through the point k = K and

asymptotic to the real and imaginary axes. For values of k falling below this hyper-

bola, that is when kRkI < KRKI , we see that Im{v} > 0 and the two choices
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for v are given by:

v = ±(IVRI +i1vI\).

Similarly, when k falls above the hyperbola, Im{v2} < 0 and:

V = k (|v g| - i1|).

So the complex square root will be single-valued if we use only the top Riemann

sheet, which fixes Im{v} > 0. Then we can define v unambiguously by using the

following rule:

V = +|vnR + ilv1| for kRkI .; KRKI,
(3.30)

v = -|VR + ilv1| for kRkI > KRKI.

This simple rule is important to observe when it comes time to implement the Aki-

Larner method on a computer because most programming languages will return a

value for the complex square root which defaults to always having a non-negative

real part. Physically this rule implies that up-going waves will always attenuate

in the upward direction and down-going waves will attenuate downward. However,

Larner [1970] discusses the fact that this simple interpretation breaks down when

the branch line is crossed; 1hat is when kRkI > KRKi. In this case the real part of v

is negative, so that now "up-going" waves will appear to be propagating downward

but will still attenuate upward. So no physically realistic meaning can be attached

to these waves. Their existence must be accepted as an artificial aspect of the

method which is required in some general cases to satisfy the boundary conditions.

In particular cases, though, such as problems involving near vertical incidence,

these non-physical waves will not be involved because the kn summation path will
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lie entirely on or close to the real axis and thus will never cross the branch line. It

is only for fairly shallow incidence angles that these waves will begin to contribute

significantly. The following figures illustrate this more clearly.

Figure 3.2 shows portions of typical summation paths for k. and v,, on the

top sheet of the complex wavenumber plane for four different angles of incidence.

Figure 3.2a is for 60 = 0* (vertical incidence), Figure 3.2b is for 60 = 20*, Figure

3.2c is for 60 = 45* and Figure 3.2d is for 60 = 90* (grazing incidence). In each

plot the solid curve represents the branch line, given by equation (3.29), and the

dashed curve is a plot of the so-called epsilon line: KI = eKR, for any arbitrary

choice for the damping factor e = KI/KR. The characteristic wavenumber K is

the branch point and will always lie exactly at the intersection point of the branch

line and epsilon line. The (+) symbols mark the discrete values for k. and the (v)

symbols mark the corresponding values for v,,. The large open circles mark the

locations of ko and vo for the incident wave. The two dotted lines mark the origins

of the real and imaginary axes and are plotted in order to show the asymptotic

behavior of the branch line and to demonstrate the change in sign for Re{v}

when k, crosses the branch line. The horizontal wavenumber spacing chosen for

these plots is Ak, = 0.1KR and the maximum scatter order index used is N = 40.

The negative scatter orders for the horizontal wavenumbers, k_ 40 through k 1 , lie

to the left of ko and the positive orders are to the right. For non-vertical incidence

v_ 40 is the uppermost point to the right of the branch line and v+4 o is the last

point to the left. For vertical incidence the positive and negative scatter orders for

v are identical and lie exactly on the branch line because in this case Im{k,} = 0.

139



NORMALIZED COMPLEX WAVENUMBER SUMMATION PATHS
Ak = 0.10 Kit N = 40

E.
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Figure 3.2 Summation paths, epsilon and branch lines on the top sheet of the complex wavenum-

ber plane. The real axis is normalized by Re{K} - KR and the imaginary axis by Im{K} so

that all plots are generalized for arbitrary choices of KR and E. The various plots are marked as

shown in the legend.
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All plots have the real axis normalized by KR and the imaginary axis by K1 so that

the figures are independent of any particular choices for K and e.

It may appear that Figure 3.2 shows only the paths for non-negative incidence

angles and for down-going scattered waves since all imaginary parts are positive.

Equivalent inverted paths in the lower two quadrants must exist also. Strictly

speaking this is true since for negative 60 the k, summation line will lie in the third

and fourth quadrants. However, the conventions and branch test rules for deter-

mining the correct sign of v,, are unaffected by the sign of Im{k,}. Furthermore,

the Rayleigh ansatz contains separate terms for up-going and down-going waves

and thus only the positive roots of equation (3.27) are required for v, and these are

independent of the sign of 60.

There are four major features in these plots which are common to all inci-

dence angles. First, the incident wavenumber components, ko and vo, always lie

somewhere along the epsilon line, in accordance with equation (3.25). Second, as

already mentioned, the k, summation paths always follow straight lines parallel to

the real axis, due to the discretization scheme given by equation (3.26). Third, the

v, summation paths, obtained by evaluation of equation (3.27) for each k, and

following the rules in equations (3.30), always make a loop around the branch point

and branch line due to the fact that k, has a constant imaginary part. Finally, in

all cases the k, and v, paths are roughly orthogonal to each other, especially for

large positive or negative n. The implications of this last point are discussed below

in terms of the propagation and attenuation direction angles.

The major differences in the summation paths with increasing incidence angle

may be summarized as follows. First, the k, summation line shifts upward and
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to the right as 0 increases. This is due to the fact that Re{ko} and Im{ko} are

proportional to sinGo and Im{k.} = Im{ko} = constant. This also causes k, to

cross the branch line for smaller positive values of n as 60 increases. Secondly, the

ranges of values covered by Re{vn} and Im{v.} increase in width as 60 increases.

Examination of Figure 3.2 reveals that |Im{V-N}t OC Re{k-N}| and |Imfv+N} OC

|Re{k+N}| so that as 60 increases ImlV-N} decreases and ImIv+N} increases.

Also, the width of the range of values for Re{v,} is proportional to Im{k.}.

The complicated relations described above can best be understood in terms of

the propagation vector, P, and the attenuation vector, A, associated with general

plane waves when the wavenumber vector, I is complex. The following discussion

will apply for both the damping and Q methods mentioned earlier and we use the

term "attenuation" in both cases. We will see in the next section, though, that true

anelastic attenuation requires the elastic parameters, A and p, to be complex, and

this is not the case for the simple damping method.

Borcherdt [1973, 1977] has shown that the propagation factor for general plane

waves in anelastic materials should be written for the 2-D case as:

ei = -r Jfe-r

where: r'= (x, z),

K = (k, v), (3.31)

P= (Re{k}, Re{v}),

A= (Im{k}, Im{v}).

142



Recalling that K = w/c(w) = ||Kij, the following relations will hold for K, p,

and A:

P .P - A. A= Re{K 2 },

1 (3.32)
P-A=-Im{K2} =PA cos(y,2

where y is the angle between 1 and A, P = |ip| and A = ||X||. Buchen [1971]

and Borcherdt [1973] used these relations to show that inhomogeneous waves exist

when -y 0, that is when the direction of maximum attenuation differs from the

direction of propagation. Also, the medium may be considered to be elastic when

either A = 0 or - = 7r/2. The class of inhomogeneous plane waves in anelastic

media is then clearly defined by A 0 0 and 0 < - < ir/2 [Aki & Richards, 1980].

Figure 3.3 shows plots of the direction angles (clockwise from vertical) for P

and A and the differences, -, for the wavenumber summation paths of Figure 3.2.

Using the same values calculated for kn and vn before, the three angles, On for n,

On for An and 7N for the difference may be calculated very easily with formulas

derived from equations (3.31) and (3.32):

n= arctan(Re{kn}/Re{,V}),

On =arctan(Im{kn}/Im{vn}), (3.33)

N= arccos ( -XIP A) .

In Figure 3.3 these angles are plotted versus Re{kn}/Re{K}, which is equivalent

to using the scattering index, n, as the ordinate with n = -N at the far left

as in Figure 3.2. In these plots the (+) symbols mark the discrete propagation

directions, O6, for the scattered waves. The (x) symbols mark the directions of
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PROPAGATION, ATTENUATION AND DIFFERENCE ANGLES FOR COMPLEX WAVENUMBERS
Ak= 0.10 K3 N=40
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Figure 3.3 Propagation, attenuation and difference angles plotted for the discrete wavenumber

summation paths of Figure 3.2. Angles are plotted as multiples of 7r versus Re{kn}/Re{K}.
Plots are labeled as shown in the legend.
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maximum attenuation, On, and the open squares mark the angles, -y, between Pn

and A.

There are four basic wave types represented in these plots. First, for large

positive and negative scatter orders,i.e. |Re{kn}| ;> 2KR, we see that 7n

r/2 for all incidence angles. This case corresponds to inhomogeneous interface

waves which attenuate vertically away from a boundary and these waves may exist

regardless of whether the medium is anelastic or elastic. Second, the point where the

On curve intersects the On curve corresponds to the incident wave. For any incidence

angle then, we can obviously write: 60 = 0, and -o = 0. Since A $ 0 the incident

wave in all cases is a homogeneous attenuating plane wave. The third wave type is

the general inhomogeneous plane wave, characterized by A 5 0 and 0 < y. < x/2

[Aki & Richards, 1980 ]. These waves lie in the region IRe{kn}| < 2KR, and

as we will see later, contribute strongly to the scattered wavefield. Finally the

fourth wave type is the aforementioned non-physical wave for which Re{ v} < 0

and 6 > r/2. As 60 increases, these waves become more prevalent and overlap the

range of general inhomogeneous plane waves just mentioned. These waves will not

contribute significantly to solutions for 0o < 300.

The incident wave is always homogeneous simply because ko and vo both lie

on the epsilon line due to their definitions in equations (3.25). Actually both of

Figures 3.2 and 3.3 are simplified because strictly they apply only for the medium

containing the incident wave (i.e., the halfspace). In a medium with a different

velocity than in the halfspace the point vn=0 will no longer lie on the epsilon line

because, although ko and all kn are identical in all media, now K will be different.

Thus there will be no homogeneous waves on the opposite side of the bottom-most
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interface, even if this interface is fiat. Borcherdt [19771 gives a detailed discussion

of the interaction of plane waves with interfaces in anelastic media. Even for plane

interfaces the anelasticity causes very complex behavior in all aspects of the wave

motion. Fortunately, an in-depth knowledge of this complex behavior is not required

for successfully implementing anelastic attenuation in the Aki-Larner method. The

previous discussion and figures generalize perfectly for both approaches to making

wavenumbers complex. With this background on complex k and v in mind, we will

now discuss how to implement Q in the Aki-Larner method.

3.5 Anelastic Attenuation and Parameterization of Q

We begin this section with a brief discussion of the wavefield damping method

since this is the easiest to implement and has been used in all previous publications

concerning the Aki-Larner method except one. Simply, a small imaginary part is

added to the frequency:

W =WR(1+ ie),

(3.34)
where normally: e= - < 1.

WR

In practice, e is chosen large enough to damp out unwanted arrivals from scatterers

at some prescribed distance from the desired observation points in the model. The

minimum value for e required to significantly damp out arrivals from adjacent model

periods would be:

Wj = 1/i-,

where: r a L/2cmax, (3.35)

and: Cmaz = highest model velocity.
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This will damp out waves by a factor of e 2 at a time t = L/cm.,. The damping may

also be increased to remove resonance and scattering effects near the observation

point if one wishes only to study the earlier parts of seismograms. As mentioned in

the previous section, this type of damping is basically artificial since it will cause

first arrivals to attenuate with travel distance at a rate which is arbitrary and

physically meaningless since wj is not a model parameter. Therefore it is necessary

in the end to remove the damping from the solutions either in the wavenumber

domain or in the time domain. The time domain correction can be used only when

synthetic seismograms have been calculated by obtaining individual Aki-Larner

solutions for many equally spaced frequencies. In this case wj must be frequency

independent so that the time series can be corrected simply by multiplying it by

e''t. To correct in the wavenumber domain, the displacement solution at (x, z)

for each single frequency is multiplied by em {ko.z-Im{LO}". Complex frequency

actually can be used to obtain one of the definitions for Q, namely the "temporal

Q" described in Aki & Richards [1980]. We will show below, though, that the

Aki-Larner solutions obtained using this temporal Q differ significantly from the

solutions obtained using the same value for Q but parameterized in terms of complex

velocity instead of frequency.

The most common definition for Q used in seismology relates 1/Q to the frac-

tional loss of energy per wave cycle due to heat generated by internal friction

[Knopoff, 1964; Aki & Richards, 1980]:

1 =. 
(3.36)Q 21rE
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This relation can be easily converted to express 1/Q in terms of the time derivative

of the log of wave amplitude:

d(InA) W 
(

dt 2Q'

or in terms of the spatial derivative in 1-D:

d(lnA) -

.w8d = .Q (3.38)dx 2Qc

Integration of these two equation yields the familiar relations expressing amplitude

attenuation in terms of temporal or spatial Q [Aki 8 Richards, 1980]:

A(t) Wt

Ao 12Q]'
(3.39)

A(x) [ox1-x= exp -- .
Ao  I 2Qc

From the discussion in the previous section it would seem natural to introduce

attenuation in the plane wave representations simply by letting w = WR(1 + i/2Q)

for temporal Q, or K = KR(1 + i/2Q) for spatial Q. But, as demonstrated in

Aki & Richards [1980] this simple approach violates causality requirements. Also,

tests of the shapes of attenuated impulses do not agree with the shapes of observed

pulses that have traveled through an attenuating material. The attenuated impulse,

p(x, t), for the above definition of Q may be calculated very easily using the Inverse

Fourier Transform formula given in Aki & Richards [1980]:

p( x,t)= 1 eikz e- wt
P(X t =21r -00

(3.40)

where now: k = - + i--
c 2Qc
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The attenuated pulse obtained when the phase velocity is non-dispersive has

a non-zero amplitude before t = 0, is symmetric in shape and has too large a rise

time as compared with measurements of observed attenuated pulses [Stacey et al.,

1975]. These problems were alleviated by Azimi et al. [1968] who used the Hilbert

Transform to introduce dispersion in the phase velocity in such a way that the

lower frequency components of the pulse are delayed in time relative to the higher

frequencies. Their approach yielded the familiar logarithmic dispersion law which

may be written in its most useful form as [Aki & Richards, 1980]:

c(W)=c(WO) 1+-- ln (- )]. (3.41)
1 7rQ WO

In this relation the phase velocity increases logarithmically with increasing fre-

quency at a rate inversely proportioned to Q. In practice the only trick involved in

using it lies in the choice of the reference frequency, wo. Also, several assumptions

were made in the derivation of this law and the one which will concern us the most

in this thesis is the assumption that Q > 1. We will discuss these two issues in

some detail below. The final step in constructing the attenuation law is to introduce

the imaginary part to K in a way that is physically meaningful. Anelasticity has a

profound effect on the interaction of waves with an interface [Lockett, 1962; Cooper

& Reiss, 1966; Shaw & Bugl, 1969; Borcherdt, 1977]. In order for the effects of

anelasticity to manifest themselves in the traction boundary conditions, it is nec-

essary for the elastic parameters of the various media, A, and p,, to be complex.

Clearly then we must make the phase velocities, a, and p,, complex instead of

the frequency. We have already seen that the characteristic wavenumber may be
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written as K = KR(1 + i/2Q). This is equivalent to writing the phase velocity as

c = CR/(1 + i/2Q). After rationalizing this expression and dropping a 1/4Q 2 term

from the denominator, the full complex dispersive phase velocity formula may be

obtained by substituting equation (3.41) for cR:

(w) = C(w) 1 + In (-)] - (1 - i/2Q). (3.42)
1 7rQ WO

To implement this in the Aki-Larner method, we simply replace a and P

throughout the model with equation (3.42), using the original non-dispersive model

velocities for c(wo) in each case. It can be easily verified that the resulting plane

wave expressions will still satisfy the wave equation and that the general discus-

sion of the propagation and attenuation vectors presented in the last section will

still hold. We will now turn to a discussion of the reference frequency and high-Q

assumption and then conclude this chapter with an example comparing displace-

ment solutions obtained using the damping method with those obtained for the Q

method.

Figure 3.4 shows the behavior of the logarithmic dispersion law, equation (3.41)

for Q = 20, 10, 5, 2 and 1, plotted as c(w)/c(wo) versus w/wo. Note the rapid

increase in the strength of the dispersion as Q decreases. Note also that the function

has a zero at a value of w/wo which increases as Q decreases, and that below this

value c(w) is actually negative. These zero-crossings occur specifically at w/wo =

e-'Q and clearly the portion of the curves for which w/wo < e-Q cannot be used.

So if one is considering using low values for Q, it is wisest to chose wO to be

smaller than the lowest frequency that will be used in the modeling. It is also
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VELOCITY DISPERSION CURVES FOR AZIMI ATTENUATION LAW
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Figure 3.4 Plots of the Azimi et al. dispersion law, equation (3.41), for five different values of

Q as indicated in the legend.
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desirable to avoid the early portion of the curves where the slope changes rapidly

since this can lead to erratic behavior in the comparisons of displacement solutions

for multiple frequencies. Thus we have chosen w/wo = 5 as a reasonable minimum

value used to determine wo. Since our minimum frequency to be modeled in this

thesis is f = 0.05 Hz, we will use a reference frequency of fo = 0.01 Hz throughout.

This is not a very critical issue when Q is fairly large, and most other users of

equation (3.41) have simply chosen fo = 1.0 Hz for this reason [Aki & Richards,

1980; Lokshtanov, 1987]. However, in this thesis we wish to push the dispersion

law as far as possible to try modeling very strongly anelastic material. Since this

will encroach on violating the high Q assumption used to derive the law we need to

determine how low Q can be allowed to go before we need to question the validity

of our solutions. So it becomes very important in this case to choose the reference

frequency as carefully as possible.

As a means of determining how big is big in the assumption Q > 1, we used

equation (3.40) with the dispersion law added to examine the attenuated pulse

shapes obtained for the same Q values used in Figure 3.4. The results of this

are shown in Figure 3.5. Here we have calculated the various pulse spectra for a

frequency spacing of Af ; 0.05 Hz, which is the same spacing we will use in the

modeling calculations. Using fo = 0.01 Hz, the spectra were calculated for 512

points up to a Nyquist frequency of 25.0 Hz. This was done simply to increase the

smoothness of the resulting time series and to eliminate aliasing effects. The pulses

were allowed to propagate a distance x such that x/c ; 10 s to produce the amount

of attenuation, A/Ao, indicated by the amplitude axis. The time axis is normalized

by the minimum travel time, tman, corresponding to the arrival of the frequency
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ATTENUATED IMPULSES FOR COMPLEX DISPERSIVE PHASE VELOCITY

frof = 0.010000; Af = 0.048828; fyq = 25.000

TM = 20.480 secs.; Delay time = 10.240 secs.
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Figure 3.5 Attenuated pulse shapes obtained using the logarithmic dispersion law for the five

values of Q used in Figure 3.4. Pulses are plotted versus t/itmin, where tmin is earliest arrival

time expected for the frequency component with the highest phase velocity in each case.
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component with the highest phase velocity. If the dispersion law holds, tmwn should

correspond to the travel time of the first motion.

In all cases the pulse shape appears to be correct. The decay time is longer than

the rise time, and the rise time increases as Q decreases. However, the causality

requirement is satisfied well only down to Q = 5. For Q = 2 there is a significant

but very small non-zero amplitude before t = 0, but the main part of the pulse does

not begin until after t/tmln = 1, as required. For Q = 1 the non-zero amplitude

is even larger, and now the main pulse arrives earlier than t/tmin = 1. So it is

reasonable to expect the Aki-Larner method to give reliable results at least for Q

as low as 5 and possibly as low as 2. This is rather surprising, since apparently the

dispersion law holds even for very strongly attenuating materials. Further, since

causality is determined only by the phase spectrum and since the pulse shapes are

correct in all cases, it is possible that even results for Q = 1 may be meaningful

as long as we are looking only at amplitudes and not phase. This is a very critical

consideration in this thesis because we will see later on that the model which best

explains the observed amplitude data for the Valles Caldera requires the use of Q

; 1. Further justification for this will be presented with those results.

Finally we end this chapter by demonstrating the difference in results obtained

using complex frequency versus complex dispersive phase velocity. For this test we

used a specific single-layered model taken from Lamer [1970] which was used to

study a dented MOHO problem. The model geometry, velocities and densities are

shown in the top of Figure 3.6. The source is a steady-state plane P wave with ver-

tical incidence. The model period used was L = 256 km and the maximum scatter
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Figure 3.6 Comparison of results for the wave damping method and Q method for the dented

MOHO problem shown at the top of the figure for a vertically incident P wave [after Larner, 1970].

The displacement amplitude solutions for vertical and horizontal motion are shown at the bottom

for a single frequency versus horizontal position along the model surface. The amplitudes for both

components are normalized by the vertical solution away from the irregularity in each case. The

damping method results are shown as solid lines and the Q method results as dashed lines.
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order index was N = 39. The bottom of Figure 3.6 shows the vertical and horizon-

tal (radial) displacement amplitude solutions for a single frequency plotted versus

horizontal positions along the surface of the model. The amplitudes are normalized

by the flat-layered solution for the vertical component away from the interface ir-

regularity. The solid lines are for Larner's solution using complex frequency with

fr = 0.015 and constant, real phase velocities. The dashed lines are the solutions

obtained for real frequency and complex dispersive velocities using Q = 10 in both

the layer and the halfspace. In both cases K1 = 0.05KR for the halfspace due to

the choices for wr and Q. Also, because the dispersion causes a reduction in KR,

we have used fR = 0.4 Hz for the low-Q case and fR = 0.3 Hz for the complex

frequency case so that both results share the same value of KR in the halfspace.

So the only difference between these two problems is that A and p are complex

for the low-Q case and real for the complex frequency case. The difference in the

solutions is quite striking, especially for the vertical component. With Q correctly

parameterized in the model there is a zone of attenuation associated with the re-

gion above the interface irregularity, whereas the complex frequency case predicts

amplification here. This shows that although KR and K1 are identical in both cases

it is not correct to attempt parameterization of Q in terms of complex frequency

since this will link the attenuation to the wavefield itself rather than to the elastic

parameters of the model.
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CHAPTER 4

Modeling of Arrival Time Delays

4.1 Introduction

In Chapter 2 we demonstrated that the pattern of observed teleseismic P-wave

arrival time delays strongly suggests the presence of a large, deep low velocity zone

(LVZ) beneath the Valles Caldera. We used a simple plot of straight raypaths in

Figure 2.35, categorized according to the strength of delay, to estimate qualitatively

the maximum dimensions and minimum depth of this LVZ. In the present chapter

we will present the best results for the P-wave velocity structure obtained from ray

tracing analysis of the delay data. Our approach was to obtain a first order estimate

of the deep structure primarily from Figure 2.35, and then to use this information to

guide the ray tracing efforts which we performed completely as a forward modeling

study.

We first attempted to run a formal travel time inversion of the delay data,

using the method of Aki, Christoffersson & Husebye [1976] (ACH). However, these

results were inconclusive for two main reasons. First, the ACH inversion requires

the use of block-grid model geometries, and unless the ray coverage is extremely

dense this gives rise to under-sampling problems which depend on the size of the

grid spacing. Although our ray coverage was good, it was not dense enough to

adequately sample every block of the initial models that we used. Increasing the

block size, to compensate for the under-sampling, yielded models which were too

coarse to provide any useful information about the velocity structure. The main
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deficiencies in the data were that we had no stations in between sites RDT and CLJ

and we had too few southeastern events. The most obvious holes in the coverage

are clearly displayed in Figure 2.35 directly below the caldera, between SAM and

RDT at depths of about 10 km and larger. Secondly, we could only use flat-layered

structures for our initial models and this severely restricted the amount of a priori

information we could use. In particular, the near-surface structure is highly irregular

in shape and, if not corrected for adequately, will directly affect the solution for the

shape and location of the LVZ, which is our primary concern here. Despite these

problems, the ACH inversion did yield a velocity image which favored a vertical

band of low velocity blocks centered beneath the caldera, but it did not provide

any additional information, particularly concerning depth, beyond what we have

already qualitatively discussed for Figure 2.35. Therefore we will not discuss these

results in this thesis.

Our specific approach to modeling the delay data, then, was to combine an

initial estimate of the size, depth and velocity of the LVZ with an a priori esti-

mate of the near-surface structure, and then to use this as an initial model to test

with ray-tracing. By carefully adjusting the initial model, we were able to obtain

a reasonable fit between the majority of the observed and calculated delays. The

minimum structural requirements of the best-fitting model are that it have an ir-

regular low velocity surface layer and a large, deep, low-velocity inclusion, as we

expected from our intuitive examination of the delay data. Although more complex

models would be required to completely explain all of the observations, our data

coverage was insufficient to constrain adequately any additional features beyond the

two mentioned above. Thus, we will maintain the simplicity of the two-component
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structure throughout this chapter. We will discuss how this in itself is a very com-

plex problem because of the extreme sensitivity that ray tracing exhibits for small

variations in interface slopes and velocity contrasts.

4.2 Description of Ray Tracing Method

To perform the ray tracing we used a FORTRAN program written by W.H.K.

Lee, R.P. Comer, Franklin Luk and J.P. Yang which was supplied to us by Scott

Phillips of Los Alamos National Laboratory. The basic method is described in Lee

& Stewart [1981] and we will discuss only the practical aspects of its application

to our problem here. The models are defined over a two-dimensional rectangular

grid with velocities assigned at the grid points. The grid spacing in both the x and

z coordinates can be chosen arbitrarily and may vary within the model since the

grid point locations are stored explicitly in arrays in memory. This was particularly

convenient for our purposes because it allowed us to use the same types of layered

models as in the Aki-Larner method by simply digitizing the P-velocity structures

over a sufficiently dense grid. The ray-tracing itself is a shooting method and

requires the specification of a starting point within the model boundaries and a

take-off angle for each desired ray. Partial derivatives with respect to x and z of

the velocity at each grid point are used to obtain the velocity gradients within the

model. These in turn determine the ray-bending angles which obey Snell's law.

The rays are terminated when they hit any of the four edges of the model box and

the total path length from the starting point to the ending point, the travel time

for this path and the apparent velocity are calculated for each ray. The program

calculates only the shortest paths between the starting and ending points and thus
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only refraction and total reflection are considered. This is appropriate for studying

the earliest arrival at any given site.

The locations of the ending points for rays which reach the top edge of the model

were used in our study to obtain travel time curves versus horizontal position, since

the top of the model represents the free surface where our sites were located. Since

our teleseismic data represent plane-wave arrivals with a specific angle of incidence,

00, we traced suites of parallel rays, with takeoff angle Oo, which all began at points

along a horizontal line near the bottom of the models. We chose 0 0 for each event

by correcting the estimated Richter incidence angle for the P-wave velocity at the

bottom of the model, as discussed in Chapter 2. The resulting travel times to the

surface, then, do not contain the additional delays due to normal moveout and

this must be added in before we can compare with the observed delays. This is a

very important point which we will discuss in more detail below. We made several

modifications to Lee's program. The most important one was the addition of free

surface topography since this can cause significant differences in travel time from

site to site. We simply changed the program code so that rays will terminate along

a pre-defined profile of x and z values rather than being allowed to continue to the

top of the model box.

The accuracy of the travel time calculations obtainable from the program for

a given ray is a function of the total path length, model grid spacing and machine

precision. The grid spacing, if too coarse, can severely influence the details of the

shortest path taken, particularly for fairly complex velocity structures, and this will

alter the location of the ending point and the travel time. We will show examples of

this in the next section. Regardless of the grid spacing, the absolute accuracy of the
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travel time calculation decreases as the ray path length increases. This is because

the desired accuracy is defined internally by the program in terms of significant

digits rather than in absolute seconds. So if we started the parallel rays along an

inclined line rather than a horizontal line, the accuracy of the travel times will vary

from ray to ray as the path length increases even if the model is a homogeneous

halfspace. The use of inclined starting points would be a natural way to represent

a plane wave front, since then the normal moveout is automatically included in

the results. But to maintain consistent accuracy it was necessary instead to use a

horizontal starting line and add the normal moveout to the results afterwards. This

also allows the model box to be smaller since we don't need to increase the depth or

width of the boundaries to accommodate shallower incidence angles. By following

these procedures, then, we were able to calculate travel times with an accuracy of

about 10 msec.

To compare the calculated travel times with the observed delay times, two

things must be done to the ray results. First, as we have already mentioned, the

normal moveout must be added in. This is necessary in order to correctly delay

each ray so that the true first arrival at each site can be detected. We will see that

the model structures are capable of bending rays very sharply forward or backward,

and there are many cases in which two or more rays arriving at the same surface

location will arrive in the wrong order unless the moveout is included. The moveout

correction is simply the opposite of what we did to the observed delays in Chapter

2 to display only the effects of irregular structure. We use equation (2.10) as before,

but now we choose an arbitrary reference location along the ray starting line and

calculate moveout delays for all other rays, based on their starting points, relative
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to the reference point. These delays are then added to the ray travel times. Next

we must convert the calculated absolute travel times to relative delay times, as

with the observed data. This is simply a matter of finding the smallest ray travel

time to a reference site and subtracting this from the travel time for each ray. The

reference site must be the same one used for the observed data. Recall that we used

one common site, SAM, as the reference for all recorded data in order to obtain

Figure 2.35. This choice was helpful for reducing the data in a way which allows

simultaneous comparison of all recorded events. However, we will see that SAM

is a poor choice for the reference site for southeastern events in the ray-tracing

results. This is because the best models produce numerous multiple arrivals near

this location for negative 90, and it is usually difficult to choose the best value

to normalize by. It is better to use a site with the fewest multiple arrivals, and

this is usually the site closest to the event. For array-1 data we will use CAC as

the reference site for northwestern events (positive 9o) and CAP for southeastern

events. For array 2 we will use SAM and CLJ, respectively.

Due to the complexity of the structures that we have modeled and the extreme

sensitivity of ray-tracing to velocity contrast and interface shape, it is almost impos-

sible to predict where any given ray should start so that it terminates exactly at a

particular site location. Possible multiple arrivals further complicate this problem.

Thus, in order to get adequate coverage so that at least one ray will always emerge

near each site, we had to trace approximately 4000 rays for each incidence angle

tested. Even then, there were cases where observed delay points happened to fall

within small gaps in the calculated delay points. These gaps produce large residuals

which may be erroneous if the trend in the calculated delays on either side of a gap
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would normally pass through the observed delay point. In other cases there were

so many ray arrivals near a site that it was very difficult to choose a reasonable

value for the delay to be used to obtain the residual. We dealt with these cases by

averaging the calculated delays over a 1.0-km width of horizontal coordinates cen-

tered around the observed delay point. For the average we used only the calculated

delays which fell below the upper error bar for the observed delay at the site. If

there were no ray delays earlier than this, we simply used the earliest ray delay at

the site location to obtain the residual. We then obtained the residual variance of

the calculated delays for each observed event separately and for all events combined,

using a formula similar to equation (2.7) for comparing amplitude ratios:

2 = 1 [T*-Tay]2  (4.1)
n=1

For a single event, N is the total number of sites (other than the reference site)

at which the event was recorded. For multiple events, N is the total number of

observed time delays in the combined data set. As with the amplitude ratios we

will quantify how good a model is by calculating the variance reduction relative to

the homogeneous halfspace (HHS) case. The HHS time delay curve is a straight line

which passes through the reference site delay point, and has slope equal to sin Oo IaH

for incidence angle 0 and halfspace P velocity aH. Any acceptable model should

yield a residual variance smaller than for the HHS case. So we will use the variance

reduction formula exactly as given in equation (2.8) to characterize how well a

particular model fits the observed delay data.
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4.3 Delay Time Modeling Results

In this section we will present the best ray model and discuss its validity in

terms of which features are or are not well constrained by the data. Since the

ray coverage was not sufficient to provide reliable results from a formal travel time

inversion, we should not expect to be able to determine all features of the structure

uniquely. However, for models with a simple two-component structure, namely

caldera fill and low velocity inclusion, we found that the observed pattern of time

delays at the surface does place reasonable constraints on the width, average depth

and approximate shape of the LVZ. We can also determine the minimum height and

velocity. But the depths to the top and bottom of the LVZ are less well constrained

because of the limited ray coverage.

We began the modeling by first trying to fit as much of the observed data as

possible with only the free surface topography and irregular caldera fill layer. Our

aim here was to isolate the minimum effects which must be attributed to deeper

structure. We used a priori estimates of the dimensions and shape of the caldera

fill from Self et al. [1986] (see Figure 1.4) and a range of P velocities of 3.0 to 4.5

km/sec [Ankeny et al., 1986] to set limits on the variability of the initial caldera fill

model. By carefully adjusting the shape, thickness and velocity of the caldera fill

we were able to fit quite well all observed delays at sites CAC through RDT for the

northwestern events only. The best fits were obtained for velocities between 3.0 and

3.5 km/sec. However, the observed delays at CLJ for northwestern events and at

all non-reference sites for southeastern events were significantly stronger than the

delays predicted by the caldera fill layer alone.
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This is demonstrated quite clearly in the following figures. Figure 4.la shows

the caldera fill correction model used, including the surface topography and nine

site locations shown previously in Figures 2.1a,b. We used a velocity of 3.2 km/sec

in the caldera fill and 5.8 km/sec in the granite basement. Figure 4.lb shows the

comparison of the calculated ray delays for this model with the raw observed delays,

relative to the referenc site SAM, for the Kuril Islands event shown previously in

Figure 2.33. The estimated incidence angle used was 6 = +21.5*. The straight

solid line represents the HHS solution, which is simply the normal moveout relative

to the reference site. The residual variance for the HHS case, AUHS, and for the

caldera fill model, a2MD, are listed at the top of each figure along with the variance

reduction for the model. Figure 4.1c shows the delays relative to CLJ for the Jujuy

event, also shown before in Figure 2.33, with 0 = -21.0*. The calculated and

observed delays in both figures have been normalized to zero at the reference site

location.

For the Kuril event, all observed delays are fit well except CLJ. On the contrary,

the Jujuy delays are all significantly larger than what the caldera fill model predicts.

This difference between northwestern and southeastern events is reflected clearly

by comparison of the variance reduction, which is positive and large for the Kuril

event but negative for Jujuy. In fact, for the Jujuy data, the model predicts delays

smaller than for the HHS case at all but one site. This is because the caldera fill

is thickest beneath the reference site, CLJ. Thus, we next require the addition of

the low velocity zone. We will also require that the LVZ must significantly improve

the variance reduction for all southeastern events and increase the relative delay at

CLJ for northwestern events without affecting the remaining four sites.
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CALDERA FILL MODEL
LAYER 1: a= 3.200

HALFSPACE: a= 5.800

I I I I I I I I I I 1 1

112 114 114 111 120 122 124 126 128 130 132 134
HORIZONTAL POSION (Km)

136 138 140 142 144 146

Figure 4.1a Caldera fill correction model used to fit the observed delays for northwestern

events.
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CALCULATED RAY DELAYS FOR CALDERA FILL MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = 21.50

OBSERVED P-WAVE DELAYS FOR EVENT FROM: KURIL ISLANDS
REFERENCE SITE: SAM LOCATION: X = 121

a = 0.385E-01 aM = 0.466E-02 Variance Reduction 87.9%
HHS MOD

HORIZONTAL POSITION (Kn)

Figure 4.1b Comparison of ray tracing results (x's) for the caldera fill model in Figure 4.1a

with observed delays (solid dots with error bars) for an event from the Kuril islands. The large

open circle marks the reference site location. Incidence angle used was 9o = +21.50*. The solid

line shows the predicted solution for the homogeneous halfspace (HHS) model. Open triangles

mark the average ray delay near each site used to calculate the residual variance for the model.

The variances for the model and for the HHS are listed at the top of the figure, along with the

variance reduction.
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CALCULATED RAY DELAYS FOR CALDERA FILL MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = -21.0*

OBSERVED P-WAVE DELAYS FOR EVENT FROM: JUJUY, ARGENTINA
REFERENCE SITE: CU LOCATION: X = 135

r = 0.207E+00 a 2 = 0.368E+00 Variance Reduction = -77.8%HHS MOD

118 120 122 124 126 128 130 132 134 136 138 140 142

HORIZONTAL POSITION (Kn)

Figure 4.lc Same as Figure 4.1b except ray tracing results are compared with observed delays

for an event from Jujuy, Argentina. Incidence angle used was 00 = -21.0*.
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Figures 4.1b,c show that the width of the observed zone of delays at the surface,

beyond the caldera fill affect, is on the order of 7 to 10 km. The southeastern data

show this zone beginning approximately at RDT and extending at least to SAM. For

northwestern data the zone begins beyond RDT and is significantly reduced at CLJ,

where the additional non-caldera delay is much smaller than for the southeastern

data at SAM. The thickened caldera fill beneath CLJ accounts for a large portion

of the observed delay at that site. We found that a circular low velocity inclusion,

8 km in diameter, placed beneath the caldera fill succeeds in delaying a region of

sufficient width at the surface and that the location of this delayed region as a

function of incidence angle puts reasonable constraints on the depth and horizontal

position of the inclusion. However, the delays produced for southeastern incidence

angles were much too strong at RDT, REB and ALM. The circular shape of the

inclusion caused very severe refraction near its left and right edges so that all rays

which came in contact with it were either delayed by almost the same large amount

or scattered away from the caldera completely.

The trend in the observed delays for the Jujuy event in Figure 4.1c is ap-

proximately linear between RDT and SAM, with a slope significantly steeper than

either the HHS or the caldera fill models can predict. This implies that between

RDT and SAM the portions of the ray paths which lie inside the inclusion must

increase gradually in length from ray to ray away from the source or that the effects

of refraction must cause an increase in the total path length from the bottom of

the model to successively further sites. We were able to reproduce this effect and

minimize the strong edge refractions by tapering the left and right edges of the

inclusion to produce a lens-shaped structure. This eliminates the steepest slopes
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of the circular shape and allows rays to pass through the inclusion with minimal

refraction. It also allows the path length inside the inclusion to increase gradually

for successively later rays.

Figure 4.2 shows the model we eventually obtained by carefully adjusting the

shape, size, velocity and location of the LVZ. This is the simplest model we obtained

which best fits all of the data. The P-wave velocity used for the LVZ was 3.7 km/sec.

The total width of the LVZ, between the ends of the tapered regions, is 17 km and

its overall height is 8 km. The average width is approximately 8 km. In Figure 4.3

we show examples of typical raypaths through this model for a positive incidence

angle of 9o = +15* at the top and for a negative angle of 00 = -15* at the bottom.

Although the travel time calculations were performed for 4000 rays, we have only

shown about 50 raypaths here to avoid cluttering the figures. First, notice that

in both cases there is a very distinct region at the surface within which the only

arrivals arise from rays which have passed through the LVZ. These arrivals clearly

will be delayed relative to the rest. The width of the surface delay zone is directly

determined by the width of the LVZ. Furthermore, the position of this zone will

shift horizontally if the location of the LVZ is shifted in any direction. A shift in the

LVZ location to the right will cause the surface delay zone to shift the right also.

For positive incidence angles, a downward shift of the LVZ will move the delay zone

to the right, and for negative incidence it will shift to the left. So we can use the

observed width and locations of the delay zone versus incidence angle to constrain

the width and location of the LVZ. Given adequate ray coverage for a wide range

of incidence angles, we would also be able to constrain the height. But we will see

that this is not the case with our teleseismic data.
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MODEL NAME: w17h80d100zec.rmod1275
LAYER 1: a= 3.200
LAYER 2: a= 5.800
LAYER 3: a= 3.700

HALFSPACE: a= 5.800

0-

C4-

0

Q -

V- I I I I I I I I I I I I I I I I I I I I
108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 186 140 142 144 146 148

HORIZONTAL POSTON (Km)

Figure 4.2 LVZ model geometry and velocities which gives the best fit to all observed delay

data recorded on both instrument arrays. Caldera fill layer is the same as shown previously in

Figure 4.1
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SAMPLE RAYPATHS FOR BEST MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = 15.00

120 124 128 132 136 140 144 148
HORIZONTAL POSITION (Km)

PLANE WAVEFRONT: INCIDENCE ANGLE = -15.0*

120 124 128 132 138

HORIZONTAL POSITION (Km)

Figure 4.3 Typical raypaths for the best model shown in Figure 4.1 for positive incidence angle

00 = +15* (top) and negative incidence, 0o = -15* (bottom).
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The rays in Figure 4.3 which pass through the LVZ can take a variety of

complicated paths. Some rays experience total reflection at the top of the LVZ and

never make it to the surface. Most rays which pass through the tapered zones of the

LVZ follow predictable paths to the surface discussed previously. The remaining

rays are refracted through the largest portions of the LVZ and either emerge at the

surface on opposite sides of the caldera from where they first entered the LVZ, or

are focused near the center. Careful inspection of these plots reveals that a few rays

appear to bend at angles inconsistent with the local interface slope. This is caused

by the finite grid spacing mentioned in the previous section, which creates localized

step-like shapes at grid points which lie on or very close to an interface. This effect

is due to the way in which the program calculates velocity gradients and cannot

be completely eliminated. This is one of the reasons why we have averaged the ray

delays near each site to obtain the residuals.

Figures 4.4a,b shows the comparison of the ray time delay results for the model

with the same array 2 data shown previously in Figures 4.1b,c. Notice the immense

improvement over the caldera fill model in the variance reduction for the Jujuy

event in Figure 4.4b. Also note that the Kuril data in Figure 4.4a are fit much

better at CLJ than before. The pattern of delays created by the LVZ reveals three

main features related to the ray paths discussed above for Figure 4.3. First, in both

cases there is a region corresponding to the weakest of the anomalous delays, which

exhibit roughly linear dependence on x. For positive incidence angles this region

of delays nearly intersects the observed delay at CLJ and has virtually zero slope.

For negative angles the slope is strongly negative and passes through the observed

delays at ALM, REB and RDT. This feature is due to the tapered zone at the right
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CALCULATED RAY DELAYS FOR BEST MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = 21.50

OBSERVED P-WAVE DELAYS FOR EVENT FROM: KURIL ISLANDS
REFERENCE SITE: SAM LOCATiON: X = 121

aHHS = 0.385E-01 a2 = 0.130E-02 Variance Reduction = 96.6%HHS MOD

118 120 122 124 126 128 130 132 134 136 138 140 142

HORIZONTAL POSITION (Km)

Figure 4.4a Comparison of ray tracing results for the best model, Figure 4.2, with observed

delays for the Kuril Islands event shown previously in Figure 4.1b.
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CALCULATED RAY DELAYS FOR BEST MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = -21.0*

OBSERVED P-WAVE DELAYS FOR EVENT FROM: JUJUY, ARGENTINA
REFERENCE SITE: CLJ LOCATION: X = 135

a = 0.207E+00 a = 0.472E-02 Variance Reduction 97.7%HHS MOD

118 120 122 124 126 128 130 132 134

HORIZONTAL POSITION (Km)
136 138 140 142

Figure 4.4b Comparison of ray tracing results for the best model with observed delays for the

Jujuy event shown previously in Figure 4.1c.
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edge of the LVZ. For positive incidence the taper causes the LVZ delays to decrease

with increasing x in proportion to the increasing normal moveout delay, and this

cancellation of effects yields the flat behavior shown. For negative angles these two

effects add rather than cancel, to yield the steep slope necessary to fit the Jujuy data.

The second major feature is the upward-curving pattern representing the strongest

delays. These delays are due to the rays refracted across the largest portions of

the LVZ and shown previously in Figure 4.3. The strongest observed delays, at

SAM and SOS for negative incidence, thus represent the primary constraints on the

minimum height or maximum velocity of the LVZ. The final important feature is

the concentration of arrivals with similar delays near ALM for negative incidence.

Although there is a spread of approximately 250 msec between the smallest and

largest delays here, this is small enough that for teleseismic data these arrivals would

appear to be nearly coincident. This focusing should produce large amplitudes near

the first arrivals at certain sites inside the caldera, depending on the location of

the LVZ. This is contrary to the observations we presented in Chapter 2, where

the entire seismogram for each event, including the first arrival, was consistently

smaller inside the caldera. In Chapter 5 we will show that the low amplitudes in

the caldera are produced by a shallow attenuating body in the caldera fill and thus

the focusing predicted by the ray-tracing is not in contradiction with the amplitude

data. But it does allow us to exclude defocusing as a possible cause for the low

amplitudes.

The width of the delay zone at the surface in Figures 4.4a,b produced by the

LVZ is approximately 10 km for both positive and negative incidence angles. In-

creasing the width of the LVZ would create delays for negative incidence angles
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which are too strong at RDT, REB and ALM. For positive angles the delay zone

would extend too far to the left and this would cause a sudden, large increase in

the delay at RDT. A wider LVZ could be moved to the right to avoid the problem

at RDT for positive angles, but this would only aggravate the problem for negative

angles. If the LVZ was significantly narrower, the range of approximately linear de-

lays produced between RDT and SAM for negative incidence would be progressively

pinched-out, leaving only the weaker caldera fill delays and the very large delays

due to strong refraction through the largest portions of the LVZ. Thus, we will keep

the tapered width and horizontal position fixed as in Figure 4.2 for the remainder

of this chapter and discuss how well the data can constrain the height, depth and

velocity of the LVZ. These are perhaps the most important parameters for defining

the characteristics of an inclusion which might be interpreted as a remnant magma

chamber.

In Figures 4.5a,b modeling results are compared with observed delays for two

events recorded on array 1. Figure 4.5a is for an event from the Kommandorsky

Islands to the northwest, shown previously in Figure 2.34, with incidence angle

60 = +23.5*. Figure 4.5b is for an event from Central Chile to the southeast, with

60 = -18.0*, also shown before in Figure 2.34. The reference sites used were CAC

and CAP. These data show a very similar pattern as for array 2 but on a larger

scale. The largest delays relative to the HHS case are observed at the inner three

sites, SAM, ALM and RDT, for both northwestern and southeastern events. The

Kommandorsky data, except for CAP, are fit well entirely by the effects of the

caldera fill alone. For the Chile data, the delays inside the caldera, relative to CAC,

are reproduced at least as well by the model as the Jujuy data were, relative to CLJ.
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CALCULATED RAY DELAYS FOR BEST MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = 23.5*

OBSERVED P-WAVE DELAYS FOR EVENT FROM: KOMMANDORSKY ISLANDS
REFERENCE SITE: CAC LOCATION: X = 113

a2  = 0.699E-01 a2 = 0.289E-02 Variance Reduction = 95.9%
HHS MOD

116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150

HORIZONTAL POSITION (Km)

Figure 4.5a Same as Figures 4.4a,b except ray tracing results for best model are compared

with observed delays for an event from the Kommandorsky Islands recorded on array 1. Incidence

angle used was 00 = +23.50.
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CALCULATED RAY DELAYS FOR BEST MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = -18.0*

OBSERVED P-WAVE DELAYS FOR EVENT FROM: CENTRAL CHILE
REFERENCE SITE: CAP LOCATION: X = 145

as = 0.523E+00 a2 0.230E-02 Variance Reduction= 99.6%
SO HHS MOD

4. 3P

124 126 128 130 132 134 136 138 140 142 144 146 148 160
HORIZONTAL POSTON (Kn)

Figure 4.5b Same as Figure 4.5a except ray tracing results are compared with obsrved delays

for an event from Central Chile. Incidence angle used was 00 = -18.0*.
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But the delays at CAP for the Kommandorsky event and at CAC and PNY for the

Chile event are larger than predicted by the caldera fill and smaller than predicted

by the LVZ. These delays cannot be explained by a local thickening of the surface

layer beneath these sites because this would reduce the relative ray delays in the

caldera for opposite-azimuth incidence, which already fit the data well. Therefore,

these outlying delays must be due to deeper structure. However, the Chile data

at CAC and PNY cannot be explained by extending the LVZ to the left because

this would in turn interfere with positive incidence rays arriving at the caldera sites

and the ray delays at these sites would be much too large as a result. The same

arguments apply to the Kommandorsky delay at CAP, although the model comes

much closer in this case than for the Chile data at CAC and PNY. The Chile data

can only be reproduced by placing some additional low velocity structure to the left

of the LVZ and beneath the caldera fill. We made numerous attempts at determining

this secondary structure but since we only had two southeastern events recorded at

CAC and PNY we could not constrain this feature adequately. Since these outlying

delays do not contradict the effects of the localized LVZ but do contribute very large

residuals, we removed these points from the variance calculations and concentrated

entirely on the local caldera structure. So the variance and variance reductions

listed at the top of the Chile plot represent only the three caldera sites. Likewise,

we eliminated the residual at CAP for the Kommandorsky event.

The true test of the present model is to compare ray results with data for a

wide range of positive and negative incidence angles. The northwestern data covered

a range of 00 from about +15* to +40* and the southeastern data covered from

-18* to -32*. Table 4.1 lists the residual variance for the HHS and model and
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TABLE 4.1
Residual Variance and Variance Reduction for

Best Ray Model Compared with 21 Events

Event # of Variance

Region 00 Points HHS MOD Reduction

Guatemala -32.0 5 0.0776 0.0065 +91.7%
Ecuador -26.5 5 0.2010 0.0571 +71.6%
Southern Peru -23.0 2 0.2090 0.0649 +68.9%
Northern Chile -21.0 4 0.2180 0.0046 +97.9%
Jujuy, Argentina -21.0 5 0.2070 0.0047 +97.7%
Chile-Argentina -19.0 3 0.1820 0.0049 +97.3%
Central Chile -18.0 3 0.5230 0.0023 +99.6%
South of Honshu +15.0 3 0.1160 0.0360 +68.9%
Coast of Honshu +17.0 3 0.2050 0.0218 +89.4%
Coast of Honshu +18.0 5 0.0449 0.0044 +90.2%
Kuril Islands +20.0 4 0.1450 0.0145 +90.0%
Sea of Okhotsk +20.0 3 0.0762 0.0149 +80.4%
Kuril Islands +20.0 5 0.0282 0.0049 +82.5%
Kuril Islands +21.5 4 0.1070 0.0077 +92.8%
Kuril Islands +21.5 5 0.0385 0.0013 +96.6%
Kommandorsky I. +23.5 4 0.0833 0.0027 +96.6%
Kommandorsky I. +23.5 4 0.0894 0.0053 +94.1%
Andreanof Islands +24.5 5 0.0586 0.0002 +99.7%
Fox Islands +26.0 5 0.0466 0.0012 +97.4%
Kodiak Island +28.5 4 0.0595 0.0021 +96.4%
Coast of Oregon +40.0 4 0.0631 0.0011 +98.2%
TOTAL - 95 0.1080 0.0097 +91.0%
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the variance reduction for each of the usuable events, 21 in all. The uncorrected

Richter incidence angles used and the number of data points considered are also

listed for each event. At the bottom of the table are listed the results for all data

points combined, 95 in all. Although the model fits some events better than others,

the total variance reduction of 91% is extremely good.

The next set of figures demonstrates the effects of varying the depth of the

LVZ. In each figure we show the ray tracing results compared with the Kuril and

Jujuy data, as in Figures 4.4a,b. In the following discussion we will define the

"average depth" of the LVZ to be the depth from the zero datum to its center,

that is, to the widest portion where the tapered edges pinch-out completely. The

"lower" and "upper" depths are defined at the bottom and top, respectively, of the

LVZ. The average depth of the model in Figure 4.2, then, is 10 km, and with the

topography included, this corresponds to a "true average depth" of approximately

11 km from the peak of the resurgent dome. For the results in Figures 4.6a,b the

LVZ was shifted upward by 1 km to an average depth below datum of 9 km. The

remaining figures are for deeper LVZ's. Figures 4.7a,b are for 11 km average depth

and Figures 4.8a,b are for 12 km.

Examination of these figures and Figures 4.4a,b reveals a clear pattern in the

calculated delays which allows us to constrain the average depth of the LVZ. Figure

4.6a, for the 9-km-depth LVZ compared with the Kuril data, shows that the weaker

ray delays for the caldera fill effect have been cut off just before RDT. The last of

these rays arrives within 500 meters of the site, however, and since we average the

arrivals over ±500 meters around each observed point, the residual at RDT is still

very small and the total variance reduction for the 9-km-depth LVZ model, over
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CALCULATED RAY DELAYS FOR 9 Km AVERAGE DEPTH LVZ MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = 21.50

OBSERVED P-WAVE DELAYS FOR EVENT FROM: KURIL ISLANDS
REFERENCE SITE: SAM LOCATION: X = 121

aHHS = 0.385E-01 a = 0.180E-02 Variance Reduction = 95.3%HHS sMOD

HOIZNALPSII NKm)

% N
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118 120 122 124 126 128 130 132 134 136 138 140 142

HORIZONTAL POSITON (Kmn)

Figure 4.6a Ray tracing results for the best model with the LVZ shifted vertically upward by

1 km to an average depth of 9 km. Results are compared, as before in Figure 4.4a, with observed

delays for the Kuril Islands event.
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CALCULATED RAY DELAYS FOR 9 Km AVERAGE DEPTH LVZ MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = -21.0*

OBSERVED P-WAVE DELAYS FOR EVENT FROM: JUJUY, ARGENTINA
REFERENCE SITE: CLJ LOCATION: X = 135

aHHS = 0.207E+00 a = 0.918E-02 Variance Reduction = 95.6%
HHS moo

118 120 122 124 126 128 130 132 134

HORIZONTAL POSITION (Kn)
136 138 140 142

Figure 4.6b Same as Figure 4.6a except that the 9 km deep LVZ model is tested against delays

for the Jujuy event.
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CALCULATED RAY DELAYS FOR 11 Km AVERAGE DEPTH LVZ MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = 21.50

OBSERVED P-WAVE DELAYS FOR EVENT FROM: KURIL ISLANDS
REFERENCE SITE: SAM LOCATiON: X = 121

a2  = 0.385E-01 a2  = 0.149E-02 Variance Reduction = 96.1%
HHS MOD

X X XXX W&K
Xm

HORIZONTAL POSITION (Km)

Figure 4.7a Same as Figure 4.6a except that the ray tracing results, compared with the Kuril

data, are for the best model with the LVZ shifted downward by 1 km to an average depth of 11

km.
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CALCULATED RAY DELAYS FOR 11 Km AVERAGE DEPTH LVZ MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = -21.0*

OBSERVED P-WAVE DELAYS FOR EVENT FROM: JUJUY, ARGENTINA
REFERENCE SITE: CLJ LOCATION: X = 135

asHs = 0.207E+00 a2u = 0.799E-02 Variance Reduction = 96.1%Hms MOD

126 128 130 132 134

HORIZONTAL POSITION (Km)

Figure 4.7b Same as Figure 4.7a except that the 11 km deep LVZ model is tested against

delays for the Jujuy event.
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CALCULATED RAY DELAYS FOR 12 Kmn AVERAGE DEPTH LVZ MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = 2 1.50

OBSERVED P-WAVE DELAYS FOR EVENT FROM: KURIL ISLANDS
REFERENCE SITE: SAM LOCATION: X =121

a HH 0 .385E-01 a 2 0.176E-02 Variance Reduction = 95.4%
HHS MOD

KM K

K K

KX X K'

reference siteKK

126 128 130 132 134

HORIZONTAL POSITION (Km)

Figure 4.8a Same as Figure 4.6a except that the ray tracing results, compared with the Kuril

data, are for the best model with the LVZ shifted downward by 2 km to an average depth of 12

km.
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CALCULATED RAY DELAYS FOR 12 Km AVERAGE DEPTH LVZ MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = -21.0*

OBSERVED P-WAVE DELAYS FOR EVENT FROM: JUJUY, ARGENTINA
REFERENCE SITE: CLJ LOCATION: X = 135

a = 0.207E+00 a 2 = 0.110E-01 Variance Reduction 94.7%HHS MOD

118 120 122 124 126 128 130 132 134

HORIZONTAL POSITION (Km)
136 138 140 142

Figure 4.8b Same as Figure 4.8a except that the 12 km deep LVZ model is tested against

delays for the Jujuy event.
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all 21 events used, was approximately 89%, which is virtually the same as for the

10-km-depth LVZ in the best model. If the average depth is decreased any further,

though, the average ray delay at RDT jumps suddenly into the upper LVZ delay

curve and the residual at this site becomes very large. This is due to the effect

discussed previously, where the horizontal position of the LVZ delay zone at the

surface, for positive incidence angles, shifts to the left as the LVZ depth decreases.

So we will consider 9 km to be the lower bound on the average depth of the LVZ.

The Jujuy data in Figure 4.6b also support this lower limit because now, as the

LVZ depth decreases, the entire pattern of ray delays shifts to the right, causing

predicted delays which are, on the average, growing too large at ALM, REB and

RDT.

The calculated delays compared with the Kuril data at CLJ demonstrate that

as the LVZ depth increases, the ray delays at this site also increase. Compare

Figures 4.6a, 4.4a, 4.7a and 4.8a, in that order, to observe this behavior. This trend

is caused by successively later rays hitting the tapered zone at the right edge of the

LVZ as its depth increases, and thus is due to normal moveout. Notice that the

variance reduction for just the Kuril data is peaked at about 97% for 10 km average

LVZ depth (Figure 4.4a) and decreases slightly to about 96% and 95% for 11 and

12 km depths in Figures 4.7a and 4.8a, respectively. This is due primarily to the

increased residual at CLJ. For average depths greater than 12 km, the ray delays

at CLJ fall significantly above the upper error bar for the observed delay. So 12 km

can be taken as an upper bound for the average depth of the LVZ.

A similar comparison as above for the Jujuy data reveals that one rather subtle

effect of increasing the average depth for negative incidence angles is a decrease in
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the delays, due to the leftward shift of the surface delay zone. This effect is most

pronounced at SAM, SOS and ALM by comparison of Figure 4.4b with Figure 4.8b.

The decrease in variance reduction from about 98% for 10 km depth (Figure 4.4b)

to about 95% for 12 km (Figure 4.8b) is due primarily to the decrease in the ray

delays at these three sites. The most obvious effect of this leftward shift is shown

clearly in Figure 4.8b, where there are very few early enough arrivals near REB and

RDT. Although there were (barely) enough to obtain a small residual at these sites,

this model is clearly a limiting case and, as we concluded from the Kuril data, the

average depth of the LVZ can be no larger than 12 km.

Extending the above comparisons to multiple incidence angles yielded the same

conclusions. The 21-event variance reduction showed a small decrease from 91% for

the best model (10 km LVZ depth) to 88.9% for 9 km, 89.5% for 11 km and 86.9%

for 12 km. Average depths larger than 12 km and shallower than 9 km produced

sharp decreases in the total variance reduction, so, as before, these values represent

reasonable upper and lower bounds on the depth of the widest part of the LVZ. So

for a lens-shaped LVZ, 8 km high and 17 km in tapered width we can constrain its

average depth to within i1.5 km.

The top and bottom of the LVZ cannot be constrained with the present data set

because we do not have enough shallow incidence observations from both directions,

and we had no recording stations between RDT and CLJ or between CLJ and CAP.

With more stations and shallower incidence it should be possible to observe effects

due to rays which first come into contact with the LVZ near its upper and lower

edges rather than at its left and right edges. Furthermore, the only constraints that

our data can place on the height and velocity of the LVZ arise from the strength of
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the observed delays for southeastern events. The velocity must be low enough and

the height large enough to reproduce the large caldera delays for negative incidence,

particularly at SAM. Thus, we should be able to increase the height and velocity

proportionally and still produce similar delays as for the 8 km height LVZ in Figure

4.2. For instance, we could increase the height to 12 km and the velocity from 3.7 to

approximately 5.5 km/sec and still obtain a similar delay pattern. The only problem

with this is that we must maintain the same 17 km tapered width discussed above.

This means that to increase the height would also require increasing the interface

slopes and this can significantly change the ray refraction pattern. On the other

hand, decreasing the height and velocity will decrease the critical reflection angle at

the top of the LVZ, making it more difficult for rays in the LVZ to reach the surface.

Our best model already exhibits a significant degree of critical reflection, and tests

with smaller LVZ's created severe shadow zones at the surface. So it is reasonable

to say that the LVZ in Figure 4.2 has approximately the minimum dimensions and

velocity permissible.

We also performed many tests with larger LVZ's. These tests included in-

creasing the amplitude of the upper and lower interfaces defining the inclusion, and

increasing the velocity as described above. We found that in general the largest

delays at SAM and SOS for negative incidence angles could still be reproduced in

most cases, but, for an increase in height larger than about 1 km, the gradual in-

crease in delays between RDT and ALM could not. This was due to the fact that

we had to alter the slope of the tapered section at the right edge, and we could find

no particular shape which did not refract rays into the largest portions of the LVZ.

This is basically the same behavior we observed for the circular inclusion discussed
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previously. Thus, we can make no precise statements about the maximum height of

the LVZ because this necessarily would require a characterization of how the details

of its shape must change with increasing size. Clearly our data cannot provide this

much information. This means that our assumption of a homogeneous lens-shaped

inclusion breaks down when the height is increased beyond about 9 km. In turn,

this is why our simplified model can only yield a lower bound on the height of the

LVZ. Considering the actual structural complexity which must exist beneath the

caldera, which we will discuss further in Chapter 6, it is most encouraging that the

observed delay pattern is simple enough that our minimal model can reproduce it

so well.

Our final test of the LVZ model in Figure 4.2 was a simple P-velocity pertur-

bation study. Since there were many cases where the calculated delays around a

given site location showed a significant degree of scatter, there should be a range of

LVZ velocities over which we expect the variance reduction to remain fairly stable.

We found that for velocities lower than about 3.5 km/sec, the critical reflection

problem mentioned above began to eliminate most of the arrivals at RDT, REB

and ALM for negative incidence angles. This caused a very sharp decrease in the

variance reduction from about 89% for 3.5 km/sec to about 76% for 3.4 km/sec.

Increasing the velocity not only decreases the maximum delay near each site, but

also reduces the scatter in the delays because the refraction is less severe. This

second effect actually increases the minimum delay at the caldera sites for negative

incidence angles because earlier rays are no longer refracted forward at the right

edge of the LVZ as sharply as before. These two effects combine so that the average

delay remains nearly stationary until the velocity is large enough that the first effect
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dominates. As the velocity increases above this maximum value, the delays become

smaller and the residual variance begins to increase steadily. This maximum veloc-

ity was determined to be about 4.2 km/sec for the 10-km-average-depth LVZ. For

this value, the variance reduction was reduced to about 88% from 91% previously.

For 4.4 km/sec the variance had decreased to about 83% and at 4.8 to about 66%.

So for the particular size and shape of the LVZ in Figure 4.2, the P-wave velocity

can be constrained to lie between about 3.5 and 4.2 km/sec.

Since our approach here has been to model only relative time delays, there is an

inherent non-uniqueness or ambiguity in the structure for the caldera fill correction

layer. As long as a similar interface shape is maintained, the overall thickness of the

layer can vary considerably without significantly degrading the synthetic results. In

Figure 4.9 the best ray model is plotted again, but with the depth of the caldera fill

interface increased by 3 km overall. The ray tracing results for this model are shown

in Figure 4.10a for the Kuril Islands array-2 data, and in Figure 4.10b for the Jujuy,

Argentina data. Although some of the details have changed in the calculated delays,

the pattern for the first arrivals is virtually unaltered, and the variance reduction

remains very large for both events. This demonstrates that many alternative models

exist which simply change the delays at all sites by the same amount. This point will

be an important consideration in Chapter 6, where we will discuss the consistency

between the best ray model here, and the best amplitude model from Chapter 5.

The results of this chapter show very strong evidence for a large low velocity

inclusion at significant depth beneath the approximate center of the Valles Caldera.

Although we cannot constrain the maximum height of this inclusion, we can con-

strain the maximum width to about 17 km and the average depth to the widest
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MODEL NAME: w17h80d100zec3.rmod1275
LAYER 1: a= 3.200
LAYER 2: a= 5.800
LAYER 3: a= 3.700

HALFSPACE: a= 5.800

HORIZONTAL POSITION (Km)

Figure 4.9 Same as best ray model plotted in Figure 4.2, except that the caldera fill layer has

been increased in thickness by 3 km overall.

194



CALCULATED RAY DELAYS FOR THICK CALDERA FILL LVZ MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = 21.5*

OBSERVED P-WAVE DELAYS FOR EVENT FROM: KURIL ISLANDS
REFERENCE SITE: SAM LOCATION: X = 121

a2 = 0.385E-01 a = 0.214E-02 Variance Reduction= 94.4%HHS MOD

126 128 130 132 134
HORIZONTAL POSITION (Kn)

Figure 4.10a Ray tracing results for the thickened caldera fill model in Figure 4.9 compared

with the Kuril Islands data used previously.
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CALCULATED RAY DELAYS FOR THICK CALDERA FILL LVZ MODEL
PLANE WAVEFRONT: INCIDENCE ANGLE = -21.0*

OBSERVED P-WAVE DELAYS FOR EVENT FROM: JUJUY, ARGENTINA
REFERENCE SITE: CLJ LOCATION: X = 135

aS = 0.207E+00 a 2 = 0.564E-02 Variance Reduction = 97.3%HNS moo

HORIZONTAL POSITION (Kn)

Figure 4.10b Same as Figure 4.10a, except that the ray tracing results are compared with the

Jujuy, Argentina data used previously.
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section can limited to a range of 9 to 12 km. We also demonstrated a clear need for

the inclusion to be lens-shaped. Given these constarints on the width and shape,

we found that the minimum height and velocity permissible were approximately 8

km and 3.5 km/sec, respectively. With this particular geometry, the upper bound

on the velocity was found to be about 4.2 km/sec, based on the stability of the

variance reduction. Since the two-component structural model used is certainly an

over-simplification of the true structure, we must realize that alternative combi-

nations of different caldera fill and LVZ shapes might also be able to explain the

observed delay data. This is particularly true in light of the varying degrees of

structural ambiguity discussed above. However the fit of the present model to all

available data is almost 91% better than for a homogeneous halfspace, and this

very strongly supports the validity of at least the general features of the best model

shown in Figure 4.2. We will discuss the validity of the LVZ further in Chapter 6,

in terms of possible interpretations as a cooling magma chamber.
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CHAPTER 5

Modeling of Spectral Amplitude Ratios

5.1 Introduction

In Chapter 4 we showed that the relative arrival time delays at each site varied

strongly with incidence angle and that these variations could best be explained by

the existence of a large, deep low velocity zone beneath the center of the caldera.

In the present chapter we will demonstrate that this deep LVZ is not required to

explain the spectral amplitude observations. We have already mentioned in Chapter

2 that the primary observation of low amplitude inside the caldera must be due to

a shallow structural anomaly. This will be shown here to be the best way to fit the

majority of the amplitude data. The major features of this anomaly include very

low Q and low P and S velocities relative to its surroundings. The attenuating effect

is so strongly dominant that, to first order, the amplitudes are insensitive to the

deeper structure obtained in Chapter 4. In addition to this low Q zone (LQZ), the

best fitting model requires an irregularly shaped caldera fill as a surface layer located

directly above the anomaly. This surface layer, which we will refer to as the "upper

caldera fill," is bounded above by the free-surface topography shown previously in

Figures 2.1a,b and below by the LQZ and a granitic basement halfspace. The surface

layer geometry used is considerably different from the caldera fill used in Chapter 4

to isolate the effects of the deeper LVZ. These differences will be discussed in detail

in Chapter 6. Although strictly we should refer to Q separately for P and S waves,

we will use the same value for both wave types throughout. We tested different

198



models in which we allowed Q, and Q# to have different values, but discovered

that both needed to be very low in the LQZ, relative to the surrounding material,

in order to fit the data. Having fixed a single low value for Q in the LQZ, we found

that it made no difference if Q. or Q# were allowed to vary independently in either

the granite basement or in the upper caldera fill, as long as both were significantly

higher than the value in the LQZ. We will demonstrate in the present chapter

that the elimination of either the LQZ or the upper caldera fill from the model

increases the residual variance and thus, these components represent the minimum

structural requirements. We will also demonstrate by counterexample that the

observed amplitude pattern on the whole cannot be explained by 2-dimensional

resonance or directional scattering, since these effects produce surface motion which

depends strongly on incidence angle and source direction.

We have used the forward modeling approach throughout this chapter to obtain

the best model. In order for this approach to represent anything more than pure

trial-and-error, one needs to combine as much a priori knowledge, common sense

and intuition as possible to construct some reasonable initial models to be tested.

This is particularly important here because now each medium in the model has four

material parameters, a, fi, p and Q, whereas for the ray-tracing we had only one, a.

If any given initial model produces promising results, it may then be worthwhile to

perturb its parameters in hopes of improving the fit to the data. This is the stage of

the modeling which takes on a rather brute-force nature. Several hundred individual

models were tested before obtaining the results in this chapter. Most of these models

did not include attenuation and represent attempts at explaining the data through

resonance and scattering effects alone. We will summarize some of our experiences
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with these attempts since they may be useful for cases where attenuation is not as

important as it is for the Valles Caldera. We will also demonstrate the sensitivity

of the solutions to moderate perturbations in individual model parameters. By

observing the changes in variance reduction, we will approximately define the upper

and lower bounds on the most important parameters.

In Chapter 3 we discussed the limitations of the Aki-Larner method in terms of

the various inherent sources of error and the range of frequencies that may be used

for a given maximum amplitude of interface irregularity. When these limitations

are violated, the boundary condition residuals become unacceptably large. We will

rely almost entirely on this criterion as a means of assessing the reliability of our

solutions. We will not go into great detail concerning the possible causes for any

large boundary condition residuals we may encounter. Rather, we will accept only

those solutions for which the residuals are small. We will see, however, that the

Aki-Larner method will work only when the wavelength is comparable to or larger

than the structural anomaly and this limits the range of possible models that we

can obtain reliable solutions for at the highest frequencies considered. Specifically,

we cannot test the deep LVZ model we obtained in Chapter 4 using the travel times

because the inclusion is too large and its P velocity too low to allow us to use a

reasonable choice for P without having S wavelengths smaller than half the height

of the LVZ.

We will also discuss some of the possible implications of 3-dimensional struc-

ture. This cannot be addressed completely here because we only have the capa-

bility of modeling amplitudes in 2-D. In Chapter 2 we saw that the data contain

strong transverse components which clearly indicate 3-D effects in the vicinity of
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the caldera. On the other hand, all 3 components of motion displayed a similar

pattern of amplitude variations across the two arrays regardless of incidence angle,

and this suggests that the dominant effects on amplitude are localized beneath the

array line. This is especially true because we are not trying to model the relative

amplitudes between different components, but only the variations across the array

for one component at a time. The observed pattern of low amplitude in the caldera

is extremely fortuitous in this sense, because it means that we do not have to ad-

dress directly the question of how the scattered waves are generated or how the

three components of motion interact with each other. We will also show that the

LQZ model produces a very good fit to the spectral amplitude variations of the first

P-wave arrival pulse for the vertical component of motion, which should be nearly

devoid of 3-D effects.

We will first present in detail the final results of the Aki-Larner amplitude

modeling. Afterwards, the remainder of this chapter will be devoted to a discussion

of the estimation of model parameter limits, implications of 3-D structure and

counterexamples using models with no attenuation.

5.2 The Best Model

Figure 5.1 shows the model which produced the best fit to the 4-event averaged

Kuril Islands data shown previously in Figure 2.29. The four irregular interfaces

plotted are 1.) free surface topography showing array 2 site locations as in Figure

2.1b; 2.) bottom of surface layer representing primarily volcanic caldera fill mate-

rial; 3.) top of low Q zone; and 4.) bottom of low Q zone. Note that the vertical
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MODEL NAME: w161624h40d00Ih.3lqgsm3
LAYER 1: a = 4.500; 8 = 2.500; p = 1.700; 0 =

LAYER 2: a = 6.000; P = 3.500; p = 2.650; 0 =
LAYER 3: a = 3.000; # = 1.290; p = 2.000; =

HALFSPACE: a = 6.000; # = 3.500; p = 2.650; 0 =

100.
1000.

1.
1000.

HORIZONTAL POSITION (Km)

Figure 5.1 Model structure which yielded the best fit to the 4-event averaged Kuril Islands

data shown in Chapter 2. All depths are relative to the arbitrary zero datum shown. Material

parameters for each layer are listed at the top. Layer 1 is the upper caldera fill. Layers 2 and the

halfspace are basement granite. Layer 3 is the low Q zone. The name of the model is also listed

at top for reference.
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exaggeration is approximately 4:1. As mentioned in Chapter 2, the caldera is cen-

tered at z = 128 km, corresponding to the site RDT. The total model periodicity

length, as defined in Chapter 3, is x = 256 km and we have only plotted the central

40 km here to show the irregular portion. Layer 2 and the halfspace are both granite

basement rock and the flat portions of the two LQZ interfaces are thus transparent.

This is required by the strictly layered nature of the Aki-Larner formulation. At

the top of the figure are listed the model name (for reference only) and a, 8, p and

Q for each layer, numbered sequentially from the uppermost layer down.

To avoid additional complexity, we have made all interface shapes symmetric,

except for the known surface topography. Although this presents secondary prob-

lems in fitting the finer details of the data, we are only interested in determining the

major larger-scale features of the caldera structure, and the additional complexity

of asymmetric shapes is unwarranted in this case. The LQZ may be viewed as a

sub-zone of the bowl-shaped caldera fill layer which has significantly lower a and 8

than the upper portion, as well as extremely low Q. The P-wave velocities for both

the upper caldera fill and the granite basement, as well as the shape and depth of

the entire caldera fill (including the LQZ), represent variations of the same compo-

nents used in Chapter 4 for ray-tracing. The S-wave velocities and densities were

estimated from published laboratory measurements made on numerous samples of

granite, volcanic tuff and rhyolite listed in various handbooks of physical properties

of rocks. This a priori information reduces the number of variable model param-

eters considerably. Most of the model adjustments can then be concentrated on

the velocities, density, size and depth of the LQZ and on the Q values in all three

media. This is discussed in more detail in Section 5.3.
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The Aki-Larner displacement solutions for the model in Figure 5.1 were com-

puted for 13 frequencies from 0.20 to 0.80 Hz using an incidence angle of 0o = +200

as estimated for the Kuril Islands data. Vertical and radial synthetic spectra were

obtained at each of the six z-locations corresponding to the array 2 sites. The spec-

tra were then averaged over all six locations, and amplitude ratios were calculated

relative to this average in exactly the same way as we described in Chapter 2 for

the observed data. The results for the vertical component are plotted along with

the Kuril data in Figure 5.2a and for the radial component in Figure 5.2b. We will

refer to the radial component simply as "horizontal" in all of the modeling results

since we will not be using the transverse component.

These figures show the amplitude ratios plotted for each site and for the fre-

quency band 0.2 to 0.8 Hz with solid lines representing the observed data and dashed

lines representing the synthetics. The lower limit of 0.2 Hz was dictated by the data,

as discussed in Chapter 2. The upper limit of 0.8 Hz was the point above which

the surface traction boundary condition errors for the synthetics became too large,

as described below. The synthetic frequencies were spaced evenly every 0.05 Hz

and the data were interpolated to match them. The residual variance, calculated

using equation (2.7), and variance reduction, equation (2.8), are listed for each sin-

gle component and site inside the corresponding plot box for each ratio pair. The

variance and reduction for each component over all sites and for all data combined

are listed at the top of each figure. Recalling that a variance reduction of +100%

corresponds to a perfect fit to the data, the total reduction of 84.0% for this model

should be considered excellent. The reduction for the vertical component, 80.7%, is

slightly worse than for the horizontal, 85.4%. This is due primarily to the inability
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VERTICAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded in VALLES CALDERA (ARRAY 2)

SYNTHETIC: model= w161824h40d001h.3Iqgsm3 8,= 20.0 f,,= 0.0000
a 2 (log): Vertical= 0.344E-01 Total= 0.486E-01

Variance Reduction (HHS): Vertical= 80.7% Total= 84.0%

0 SITE: SAM X=121.0

0*

wU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 C

SITE: REB X=127.0

a2 (log)=0.279E-01
Reduction= 91.1%

0.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 C

Frequency (Hz)

SITE: SOS X=123.0

a2 00 (log)=0.125E-01Reduction= 83.8%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OBSERVED SYNTHETIC

SITE: RDT X=128.0

aMOD(log)=0.261E-01
Reduction= 79.8%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Frequency (Hz)

SITE: ALM X=125.0

a MOD(log)=0.
2 19E-01

Reduction= 81.5%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0

SITE: CLJ X=135.0

aMOD(log)=0.631E-01
Reduction= 75.8%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Frequency (Hz)

Figure 5.2a Vertical component spectral ratios for the synthetic Aki-Larner displacement solu-

tions for the model in Figure 5.1 (dashed lines) compared with the observed ratios for the 4-event

averaged Kuril Islands data (solid lines) shown previously in Chapter 2. Incidence angle used was

60 = +200. Residual variance and variance reduction are shown in each sub-plot for each site.

The total over all sites and over all results for both components are listed at the top of the figure.
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HORIZONTAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded in VALLES CALDERA (ARRAY 2)

SYNTHETIC: model= w161624h40d001h.3lqgsm3 6= 20.0 fM= 0.0000
a ,(log): Horizontal= 0.627E-01 Total= 0.486E-01

Variance Reduction (HHS): Horizontal= 85.4% Total= 84.0%

SITE: SAM X=121.0

2du(log)=0.651E-01
Reduction= 87.9%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SITE: REB X=127.0

ao2 ODOog)=0.405E-01
Reduction= 77.7%

0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.9
Frequency (Hz)

SITE: SOS X=123.0
a2MO 0 (Iog)=0.973E-01
Reduction= 72.4%

0.1 0.2

OBSERV

0.3 0.4 0.5 0.6 0.7 0.8 0.9

ED SYNTHETIC

SITE: RDT X=128.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1

Frequency (Hz)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 C

SITE: CLJ X=135.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Frequency (Hz)

Figure 5.2b Same as Figure 5.2a except the results for the horizontal components are shown.
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of the model to reproduce the peak in the vertical data near 0.6 Hz at SAM. This

is the only case, among all sites and components, where the individual variance

reduction is less than about 72%, and the peak in the observed ratios is probably

due to secondary effects of resonance which are extraneous to the primary effect of

relative attenuation.

For both components the general trends in the data versus frequency are re-

produced quite well, although the secondary variations of peaks and troughs for the

most part are not. Of particular interest is the horizontal component at ALM. The

observed data here have the lowest relative amplitudes over the broadest range of

frequencies and it is very encouraging that the model matches these data so well

above 0.3 Hz. Examination of Figure 5.1 again shows that these results can be

interpreted largely in terms of the local thickness of the low Q zone beneath each

site. Thus, the lowest amplitudes for the vertical component are observed near the

center of the caldera, and the expected Q effect of amplitude decreasing with in-

creasing frequency is observed very clearly at REB and RDT. The horizontal data

show a maximum attenuation at ALM relative to the amplitude at SAM by a factor

of ~ 0.15. This is considerably stronger than the maximum attenuation for the ver-

tical, which at ~ 0.7 Hz is - 0.4 at REB relative to SAM. This makes sense because

the wavelengths for S waves are shorter than for P waves and thus attenuate more

rapidly. We will show next that the horizontal component is dominated by S waves

and the vertical by P waves.

The Aki-Larner method allows one to calculate separately the P and S wave

contributions to the total solution synthesized for each component of motion. In

Figures 5.3a and 5.3b we show the synthetic spectral ratios for the total motion,
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VERTICAL COMPONENT SYNTHETIC SPECTRAL RATIOS
Model= w161624h40dOOIh.3lqgsm3 60= 20.0* fu= 0.0000

Wa SITE: SAM X=121.0

" I
or 7-

.1 .2 . ---. 7
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Figure 5.3a Vertical component synthetic spectral ratios from Figure 5.2a, showing the P-wave

(dashed) and S-wave (dotted) contributions to the total solution (solid).
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HORIZONTAL COMPONENT SYNTHETIC SPECTRAL RATIOS
Model= w161624h40d00h.3lqgsm3 60= 20.0* fm= 0.0000
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Figure5.3b Same as Figure 5.3a except the horizontal components are shown.
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shown already in Figures 5.2a and 5.2b, and the separate P and S contributions

plotted together for each site. Figure 5.3a is for the vertical component and 5.3b

for horizontal. Dashed lines show the P-wave contribution, dotted lines show the S-

wave contribution and solid lines show the total. These plots demonstrate the effect

mentioned above that the vertical component is clearly dominated by P waves and

the horizontal by S waves. This is true primarily because of the relatively steep

incidence angle for the source P wave. It is important to keep this in mind because

it means that the horizontal component is more sensitive to the S-wave structure

of the model and the vertical component is more sensitive to the P-wave structure.

To test the reliability of the synthetic solutions shown in Figures 5.2a,b, we cal-

culated the boundary condition residuals along each interface in the model and for

each frequency used. In Chapter 3 we discussed how this test will reveal problems

arising from either the wavenumber truncation error or from the Rayleigh ansatz

error. The combination of these two error sources will in general limit the applica-

bility of the method to models in which the interface irregularities are comparable

to or smaller than the smallest wavelength. For the model in Figure 5.1 the smallest

wavelengths occur for S waves inside the low Q zone and range from 1.6 km at 0.8

Hz to 6.5 km at 0.2 Hz. The largest interface irregularity is for the bottom of the

LQZ and has an amplitude of 2.5 km. So we would expect to have more problems

matching boundary conditions at 0.8 Hz than for lower frequencies. The boundary

conditions for any particular buried interface can be tested by calculating the two

components of traction, T, and T, and displacement, u and w, along the interface,

using the appropriate potential coefficients and wavefield expressions for the media

above and below. The formulas needed to do this are given in Appendix 1. We can
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then calculate the root-mean-square-errors (RMSE) for each component of traction

and displacement amplitude along the interface using the following formula given

in Larner [1970]:

2 1/2

E Iu'.i|| - ||UMijg||
(RMSE)mi = { [ ,-(5.1)

j=1 I jI

where m is the interface index, i is the index over the 4 different types of boundary

conditions and j is the horizontal x-position index. IluAll and IuBIj represent the

amplitudes of one of the components of either traction or displacement evaluated

for the medium above and below the interface respectively. The tractions can be

converted to equivalent units of displacement so that all four boundary conditions

at each interface may be directly compared. We can then combine all four boundary

conditions into one formula which gives the total RMSE for interface m [Larner,

1970]:

4 (J [IUil 2 1/2

(RMSE)m = . (5.2)

To convert the tractions to displacement units we will divide them by the same

conversion factor used by Lamer [1970], using the elastic constants in the halfspace:

wp4 (a 4 #34)1/2 . The index j above will be restricted to represent only the central 64

km of the models, from x = 96 km to x = 160 km, so that our error estimates will

apply only for the irregular portions of the periodic structure. The errors for the
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entire model period would be much smaller because the majority of each interface

profile is flat.

The formulas above cannot be used for the vanishing stress condition at the

free surface. Instead we will normalize all of the calculations by the amplitude of

the incident source wave so that in cases where the free surface stress is not zero,

we can set some threshold on it. If the stress exceeds this threshold significantly

we must consider the corresponding displacement solutions to be unreliable, even if

the remaining boundary conditions have been met adequately. We will use a value

of 0.05 times the incident wave amplitude for this threshold and will require that

no portion of the free surface stress components shall ever exceed this value. In the

following we will see that this restriction limits the maximum frequency that we

can model to 0.8 Hz.

Figures 5.4a and 5.4b show plots of the boundary conditions for the lowest

and highest frequencies, 0.2 and 0.8 Hz respectively, for the solutions of the model

in Figure 5.1. On the left are the vertical and horizontal components of traction

converted to normalized displacement units so that 1.0 corresponds to the equivalent

amplitude of the incidence wave. The true displacement components are plotted

on the right of each figure. The free surface traction conditions are at the top of

the figures and the deepest interface is at the bottom. The total RMS errors, using

equation (5.2), are listed to left for each buried interface. Each sub-plot shows

the corresponding solutions evaluated both above and below the interface with the

individual RMSE, from equation (5.1), listed at the top of each box.

These plots represent the best and worst cases of internal error encountered

for the current model. We will consider the largest error to be representative of the
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RMSE= 0.50%
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Figure 5.4a Boundary conditions and RMS errors for the 0.2 Hz Aki-larner solutions of the

model in Figure 5.1. Traction conditions are on the left and displacement on the right. Interfaces

are shown from the surface down starting at the top of the figure.
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Figure 5.4b Same as Figure 5.4a except boundary conditions are shown for 0.8 Hz.
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overall accuracy of our surface displacement solutions. Larner [1970] pointed out

that this is probably a conservative estimate of the solution errors since the surface

displacements are not very sensitive to larger errors in the boundary conditions

on the buried interfaces. The largest total errors here are less than 7% and we

consider this to be quite good. The maximum residuals in the free surface traction

are also below the threshold of 0.05 that we set previously. However, for 0.8 Hz

the maximum surface traction is approaching this value. Higher frequencies were

eliminated from the modeling because this threshold was exceeded above 0.8 Hz.

Table 5.1 lists the various RMS errors and maximum free surface tractions for the

remaining frequencies. In some cases the errors are larger for individual traction or

displacement components at certain interfaces, but the amplitudes in these cases

are so small that they do not contribute significantly to the total RMS error for the

interface.

TABLE 5.1
Boundary Condition % RMS Errors and

Maximum Surface Tractions for Best LQZ Model
Interface 3 RMSE (%) Interface 2 RMSE (%) Interface 1 RMSE (%) Surf Tract

Freq U W Tx Tz TOT U W Tx Tz TOT U W Tx Tz TOT Tx Tz

.20 0.70 0.06 1.63 0.78 0.50 0.31 0.04 2.29 0.41 0.35 0.37 0.16 26.28 2.76 1.28 .007 .006

.25 0.94 0.08 1.83 0.84 0.62 0.33 0.05 1.77 0.29 0.32 0.50 0.27 20.58 2.29 1.24 .008 .008

.30 1.12 0.18 2.12 0.56 0.66 0.43 0.08 1.63 0.24 0.35 0.75 0.41 17.65 2.04 1.39 .011 .010

.35 1.63 0.27 2.80 0.25 0.75 0.78 0.11 1.44 0.19 0.39 1.10 0.60 13.79 1.84 1.52 .014 .014

.40 2.23 0.44 3.37 0.62 1.11 0.97 0.08 0.95 0.23 0.35 1.51 0.89 9.26 1.71 1.63 .017 .019

.45 2.46 0.91 3.84 1.03 1.54 1.50 0.20 0.98 0.21 0.45 2.38 1.27 7.82 1.64 1.99 .017 .019

.50 4.62 1.43 7.68 1.33 2.63 2.41 0.41 0.81 0.21 0.56 3.33 1.72 6.18 1.57 2.34 .015 .021

.55 7.14 1.83 10.66 1.38 3.49 3.56 0.64 0.88 0.15 0.69 5.73 2.17 5.50 1.54 3.04 .013 .020

.60 14.13 2.68 17.31 1.55 5.58 4.17 0.83 1.38 0.07 0.81 7.80 2.48 5.46 1.61 3.62 .018 .021

.65 11.62 2.90 12.00 1.40 4.50 7.28 1.31 2.18 0.15 1.38 9.77 3.96 5.78 1.69 4.81 .023 .025

.70 11.59 3.28 12.90 1.55 4.88 7.84 2.09 2.85 0.25 1.85 9.59 4.92 5.57 1.91 5.27 .031 .032

.75 11.69 3.33 12.75 1.52 4.96 6.64 2.87 3.21 0.37 2.08 9.41 5.83 6.44 2.32 5.84 .036 .039

.80 10.77 2.68 12.53 1.37 4.69 5.89 3.42 3.63 0.50 2.27 10.70 5.96 7.31 2.93 6.43 .043 .046

215



Next we examined the wavenumber spectra for the magnitudes of the wave

potential coefficients obtained by solving the linear system of boundary equations

discussed in Chapter 3. As we mentioned then, a justification for truncating the

infinite sum is that the coefficients should converge toward zero so that scatter orders

higher than the truncation limits will not be needed. If this is not the case, then

it may be impossible to satisfy the boundary conditions without including higher

scatter orders. We have just shown above that this is not the case for our best

model solution, and even if we find that some of the coefficient wavenumber spectra

do not converge, this obviously does not matter since the boundary conditions are

being satisfied quite well.

Figures 5.5a and 5.5b show the wavenumber magnitude spectra for all of the po-

tential coefficients in each layer of the model for 0.2 Hz and 0.8 Hz respectively. The

down-going and up-going P-wave potential are plotted on the left in decibels versus

Re{k,}/(w/a 4 ) and the S-wave potentials are on the right versus Re{k,}/(w/# 4).

The potentials for the surface layer are at the top of the figure and the halfspace

is at the bottom. On the horizontal axis we have also marked the locations of the

characteristic wavenumbers, Re{Ka,} for P waves and Re{Kp,} for S waves, for

each layer and the halfspace as indicated in the legend. These points correspond

to values of Re{k} at and above which inhomogeneous interface waves will exist

in the appropriate media, regardless of whether the wavenumbers are complex or

not. For both 0.2 and 0.8 Hz all potential spectra except for the up-going S waves

in layer 2 have a strong isolated peak at the incident wavenumber, ko. This is nat-

ural since the incident wave propagation direction should contribute the strongest

component to the solutions in most cases. Above and below ko we can see that
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Figure 5.5a Potential wavenumber spectra for the 0.2 Hz solution of the best model. The

vertical scale is in decibels.
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Figure 5.5b Same as Figure 5.5a except spectra are shown for 0.8 Hz.
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there are several cases where the spectra do not converge uniformly towards zero.

The S-wave potentials for 0.8 Hz in layer 1 (Figure 5.5b) are good examples of this.

Apparently the convergence requirement may be relaxed in the present case since

the boundary conditions are being fulfilled quite well. Actually, in almost every

case for both 0.2 and 0.8 Hz, the potentials for the largest positive and negative

wavenumbers are down by at least 40 db relative to the incident P-wave potential

(0 db) and this should be sufficient justification for the truncation limits we have

used here.

Note in Figure 5.5a, for 0.2 Hz, that there is an additional isolated peak in most

of the spectra in the region of inhomogeneous interface waves mentioned above.

This indicates a strong contribution of these wave types to the solution at 0.2 Hz,

whereas apparently these wave types are not as important at 0.8 Hz since these

peaks are much smaller in Figure 5.5b. In fact, at 0.8 Hz the P-wave potentials

do not even extend up to K0 ,, the characteristic wavenumber in the low Q zone,

and the S waves are completely within the homogeneous region of wavenumbers.

(Note that the characteristic wavenumbers for the highest velocity media appear

near the right-most limit for the S-wave plots.) This is because the wavenumber

spacing, Ak, is independent of frequency, and we have used the same maximum

scatter order index of N = i39 for all frequencies. We tried increasing N for

higher frequencies to include more inhomogeneous waves and discovered that the

displacement solutions at the surface and the boundary conditions changed very

little. Apparently interface waves are not very important for higher frequencies

in the current model. This may be due to the strong attenuation present in this

model, which causes higher frequency waves to attenuate more rapidly than for
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lower frequencies. Interface waves which decay naturally away from the interface,

even in high Q media, will now be attenuated even more strongly and thus should

contribute very little to the solutions at higher frequencies. If this were not the case,

then the boundary condition RMS errors would be much larger due to inadequate

wavenumber coverage.

Now that the reliability of our solutions for the best model has been established,

we wish to test the same model for different incidence angles to see if the stable

pattern observed for all of the teleseismic data is adequately reproduced. In Chapter

2 we showed in Figures 2.30 through 2.32 that the spectral data averaged over the

7 northwestern events, the 3 southeastern events and all 10 events together yielded

very similar amplitude ratio results. If the model in Figure 5.1 is reasonable, then

it should be capable of producing a similarly stable pattern. The next set of figures

shows these results. First for the northwestern events we simply compared the

same synthetic spectral ratios shown in Figures 5.2a and 5.2b with the averaged

ratios shown previously in Figure 2.30. The 7-event averaged data yielded ratio

results almost identical to that for just the 4 Kuril Islands events, but the subtle

differences did cause a very slight increase in the total variance reduction. The

comparisons of the 7-event ratios with the synthetics is shown in Figure 5.6a and

5.6b. To test the model for negative incidence angles we calculated solutions for

60 = -20* and compared them with the data for the 3 averaged southeastern

events. These results are shown in Figures 5.7a and 5.7b plotted in the same way

as before. Although the variance reduction is significantly smaller than for the

northwestern data, the major features are still reasonably well represented by the

model solutions. The fact that the total variance reduction of 63.7% is smaller
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VERTICAL COMPONENT SPECTRAL RATIOS
OBSERVED: 7 NORTHWESTERN EVENTS recorded in VALLES CALDERA (ARRAY 2)

SYNTHETIC: model= w161624h40d00lh.3lqgsm3 6= 20.0 fm= 0.0000
an02 (log): Vertical= 0.305E-01 Total= 0.471E-01

Variance Reduction (HHS): Vertical= 83.2% Total= 84.3%
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Figure 5.6a Comparison of the vertical component synthetic spectral ratios shown previously

in Figure 5.2a with observed ratios for the 7-event averaged northwestern data. Incidence angle

used was 00 = +20*.
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HORIZONTAL COMPONENT SPECTRAL RATIOS

OBSERVED: 7 NORTHWESTERN EVENTS recorded in VALLES CALDERA (ARRAY 2)

SYNTHETIC: model= w161624h40d001h.3lqgsm3 00= 20.0 f,= 0.0000
a 2 (log): Horizontal= 0.637E-01 Total= 0.471E-01

Variance Reduction (HHS): Horizontal= 84.8% Total= 84.3%

SITE: SAM X=121.0
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0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SITE: REB X=127.0

a2OD (log)=0.399E-01
Reduction= 80.0%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Frequency (Hz)

SITE: SOS X=123.0

a2 0 (log)=0.142E+00
Reduction= 64.9%

0.1 0.2 0.3

OBSERVED

0.4 0.5 0.6 0.7 0.8 0.9

SYNTHETIC

0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.8 I
Frequency (Hz)

SITE: ALM X=125.0
a2 (log)=0.775E-01
Reduction= 92.7%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0

SITE: CLJ X=135.0i d(log)=0.24%E-01
Reduction= 88.4%

0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.8 0.9

Frequency (Hz)

Figure 5.6b Same as Figure 5.6a except the horizontal components are shown.
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VERTICAL COMPONENT SPECTRAL RATIOS
OBSERVED: 3 SOUTHEASTERN EVENTS recorded in VALLES CALDERA (ARRAY 2)

SYNTHETIC: model= w161624h40d00lh.3lqgam3 80=-20.0 f,= 0.0000
a2 llog): Vertical= 0.116E+00 Total= 0.132E+00

Variance Reduction (HHS): Vertical= 61.6% Total= 63.7%
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Figure 5.7a Vertical synthetic spectral ratios for best model with incidence angle Oo = -20*

compared with observed ratios for the 3-event averaged southeastern data.
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HORIZONTAL COMPONENT SPECTRAL RATIOS
OBSERVED: 3 SOUTHEASTERN EVENTS recorded in VALLES CALDERA (ARRAY 2)

SYNTHETIC: model= w161624h40d00h.3lqgsm3 6=-20.0 fI= 0.0000
a 2 (log): Horizontal= 0.148E+00 Total= 0.132E+00

Variance Reduction (HHS): Horizontal= 65.2% Total= 63.7%
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Figure 5.7b Same as Figure 5.7a except the horizontal components are shown.
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than for the northwestern data indicates that the imposed symmetry of the model

structure in Figure 5.1 is probably incorrect. This is certainly no surprise since

there is no reason to expect the caldera's sub-structure to be symmetric beyond a

simple first-order approximation, given the obvious complexity of the region [Self

et al., 1986]. However, we stated at the outset that we would only be attempting

to determine large-scale first-order features of the structure in order to deal with

the limited data set and to reduce the modeling procedure to a manageable form.

With this simplification in mind, we consider the fit to the southeastern data to be

acceptable. The fine tuning of the caldera sub-structure to improve this fit would

require better data coverage and a more sophisticated modeling technique which

would allow the study of more complex structures than the Aki-Larner method is

capable of dealing with.

Finally, the results of the data averaged over all 10 events were compared with

the model calculations for vertical incidence, in the belief that the average should

minimize the effects due to positive or negative incidence angles. The comparisons

between data and synthetics for this test are shown in Figures 5.8a and 5.8b. Here

the total variance reduction of 76.0% is almost as high as for the northwestern data.

Since now we can say that the model produces a very stable pattern which fits the

data well for non-negative incidence angles, the partial breakdown of this pattern

for negative incidence is clearly due to secondary structural features in the model

which probably should be located in the southeastern half of the caldera. We feel,

though, that Figure 5.1 is a good representation of the average dimensions and

material properties for the large-scale shallow sub-structure of the caldera.
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VERTICAL COMPONENT SPECTRAL RATIOS
OBSERVED: ALL 10 NW & SE EVENTS recorded in VALLES CALDERA (ARRAY 2)

SYNTHETIC: model= w161624h40d00lh.3lqgsm3 60= 0.0 fM= 0.0000
a 2I(log): Vertical= 0.666E-01 Total= 0.780E-01

Variance Reduction (HHS): Vertical= 73.4% Total= 76.0%
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Figure 5.8a Vertical synthetic spectral ratios for best model with vertical incidence compared

with observed ratios for the average of all 10 northwestern and southeastern events.
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HORIZONTAL COMPONENT SPECTRAL RATIOS
OBSERVED: ALL 10 NW & SE EVENTS recorded in VALLES CALDERA (ARRAY 2)

SYNTHETIC: model= w161624h40d001h.31qgsm3 60= 0.0 fM= 0.0000

aMOD(log): Horizontal= 0.894E-01 Total= 0.780E-01
Variance Reduction (HHS): Horizontal= 77.6% Total= 76.0%
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Figure 5.8b Same as Figure 5.8a except the horizontal components are shown.
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In Figures 5.9a and 5.9b we compare the best model results with one of the

Kommandorsky Islands events recorded on the wide aperture array 1. Although

the relative differences between the ratios at SAM, ALM and RDT are similar as

before, the model clearly fails to explain the overall variations for all six sites. In

particular, the horizontal synthetic ratios at CAC and CAP do not predict low

enough amplitude relative to the average over all sites. We mentioned in Chapter 2

that the low scattered wave amplitudes outside of the caldera could be explained by

a decrease in the strength of scattering or resonance due to less complex structural

irregularities relative to the caldera. We also discussed evidence in the data which

indicates that the amplitudes at ALM and RDT are in fact anomalously low, rather

than "normal". So our assumption that the scattering is stronger near the caldera

should be valid. The model structure shown in Figure 5.1 is clearly less complex

at locations corresponding to CAC (x = 113 km) and CAP (x = 145 km) than for

locations nearer the caldera. Apparently, then, our model does not produce strong

enough scattering or resonance effects near the caldera to create the large scattered-

wave amplitudes at SAM relative to CAC. Some additional features must be needed

beneath the shallow caldera structure shown in Figure 5.1. Most likely the deep

low velocity zone discovered in Chapter 4 is the major feature that is missing from

the model.

Unfortunately our modeling capabilities with the Aki-Larner method are too

limited to allow the inclusion of this feature in our calculations and thus we can

only speculate as above about the discrepancies for the array-1 scattered-wave data.

However, the array 2 data are much more localized and should be less subject to

large differences in the strength of scattering effects from site to site. Therefore
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VERTICAL COMPONENT SPECTRAL RATIOS
OBSERVED: KOMMANDORSKY ISLANDS recorded in VALLES CALDERA (ARRAY 1)

SYNTHETIC: model= w161624h40d00lh.3lqgsm3 90= 20.0 fM= 0.0000
a 2 (log): Vertical= 0.120E+00 Total= 0.305E+00

Variance Reduction (HHS): Vertical= -6.0% Total= -19.8%
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Figure 5.9a Vertical synthetic spectral ratios for the best model compared with observed ratios

for a northwestern event from the Kommandorsky Islands recorded on array 1. Incidence angle

used was Oo = +200.

229

SITE: CAC X=113.0

MOD (log)=0.573E-01
Reduction= -205.5%

* 0'SITE: PNY X=116.0

aO,,(og)=0.18
7E+00

Reduction= -1205.6%

SITE: SAM X=121.0

at ,(log)=0.220E+00
Reduction= -31.4%



HORIZONTAL COMPONENT SPECTRAL RATIOS
OBSERVED: KOMMANDORSKY ISLANDS recorded in VALLES CALDERA (ARRAY 1)

SYNTHETIC: model= w161624h40d00h.3Iqgsm3 90= 20.0 fM= 0.0000

a 2 (log): Horizontal= 0.489E+00 Total= 0.305E+00
Variance Reduction (HHS): Horizontal= -23.7% Total= -19.8%
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Figure 5.9b Same as Figure 5.9a except the horizontal components are shown.
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we do not believe the array-1 data pose a contradiction to the shallow, localized Q

structure of the best model. The Q effect simply dominates over relative scattering

strength on the smaller scale represented by the array-2 data. In Section 5.4 we will

present further evidence, using array-1 data, that on the larger scale the model in

Figure 5.1 still holds for the Q structure, even though the scattering and resonance

structure, as shown here, is not well represented.

The one feature of the best fitting model presented here which is most apt to be

questioned is the extremely low value of Q = 1 used in the low Q zone. Although

it may be physically possible for a material to have such a low Q [O'Connell &

Budiansky, 1977], the major question here is how accurately can the Aki-Larner

method predict the corresponding effects on seismic waves. In Chapter 3 we showed

that the dispersion law of Azimi et al. [19681, used to incorporate Q in the wavefield

expressions, holds well only down to about Q = 5. The major defect in attenuated

pulses for lower values than 5 is the violation of causality. However, we mentioned

in that discussion that perhaps the observance of causality is a strict requirement

only when the phase spectrum is of importance. This is not the case here because,

first, we are only modeling amplitudes and, secondly, each component of motion is

largely dominated by a single wave type. Some of the observed ratio data exhibit

features which are typical of Q effects, namely, a decrease in relative amplitude

with increasing frequency for the vertical component at certain sites (i.e., REB

and RDT) and a stronger relative decrease in amplitude from site to site for the

horizontal component than for the vertical. We showed above that the second effect

is due to S waves dominating the horizontal component. Since these effects were

observed at fairly low frequencies we should expect that Q must be very low because
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of its definition in terms of energy loss per wave cycle. In section 5.3 we will see

that by increasing Q in the LQZ, the attenuating effects on the amplitude decrease

in a predictable manner. The results for Q;>2 still display similar patterns as for Q

= 1, but the relative amplitude variations are smaller and thus the higher Q models

do not fit the data as well. This is a strong indication that indeed Q needs to be

very low. We can also first do a simple calculation here using the basic definition

for amplitude attenuation in terms of spatial Q given by equation (3.39, bottom).

Since this formula is free from any assumptions about Q it can be used to see if

the synthetic solutions in Figures 5.2a and 5.2b are reasonable. In Figure 5.2a for

the vertical component, we estimate for the synthetics a decrease in amplitude at

0.4 Hz by a factor of approximately 0.5 between the two sites SAM and RDT. For

the horizontal, Figure 5.2b, the decrease between SAM and ALM at 0.4 Hz is by

a factor of approximately 0.15. Using a = 3.0 in the low Q zone for the vertical

component, P = 1.29 for the horizontal and a travel distance of z = 4 km for the

maximum height of the LQZ, we can solve equation (3.39) directly to yield QZ 2.1

for the horizontal and Qz 2.4 for the vertical solutions. This is certainly within

a reasonable range of Q = 1 used for the model, and these rough estimates may

be high because the estimated travel distance of 4 km through the LQZ used at

RDT and ALM is probably too large. But this simple calculation shows that the

synthetic solutions are consistent with what we should expect from the model. The

perturbation study in the next section will help to corroborate this further. So it

appears that the Azimi dispersion law is good enough for our case. Since the Azimi

law is primarily a phase correction, its success here for low Q may be due to the
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fact that each component of motion is dominated by one wave type and the phase

interactions between scattered P and S waves are minimal in most cases.

5.3 Parameter Perturbation Study and Uniqueness

The forward modeling approach used here inherently cannot provide a quanti-

tative measure of a model's uniqueness the way that a formal inversion can. Strictly

speaking, an infinite number of counterexamples would be required to prove unique-

ness. In many cases, though, the data display a pattern that is systematic enough to

rule out large classes of possible phenomena. This is the case with the present data

set. There are very few ways in which the stable pattern of low amplitudes in the

caldera can be explained. One possibility would be defocusing due to ray bending

effects. This can be ruled out for two reasons. First, the amplitudes we are mod-

eling are low frequency observations relative to the size of the structural anomaly,

and ray theory will not hold in this case. Secondly, in Chapter 4 we demonstrated

that lens-shaped low velocity inclusions tend to focus rather than defocus rays. An-

other mechanism which could produce low amplitudes is 2-dimensional resonance or

anti-resonance similar to that discussed in detail by Bard & Bouchon [1985]. A low

velocity inclusion can trap energy through resonance if the dominant mode is one

in which the walls of the inclusion do not move. This would cause low amplitude

on the opposite side of the inclusion, but this effect will be strongly frequency de-

pendent, and the locations of low amplitudes on the surface will vary considerably

with incidence angle. Anti-resonance in the surface layer could also produce low

amplitude but again the pattern will not be as stable as what we observed in the

Valles Caldera. Finally, the various mechanisms of scattering can produce distinct

233



amplitude patterns at the surface, depending on the type of scattering anomaly and

its size relative to the wavelength. For a velocity anomaly, such as the low Q zone of

our best model, that is smaller than the wavelength being considered we can expect

a significant degree of Rayleigh scattering to occur, which will have an isotropic

radiation pattern. But for higher frequencies, where the wavelength is comparable

to the size of the anomaly, the scattering pattern becomes directionally dependent

[Aki & Richards, 1980]. Both of these scattering regimes should be expected to exist

in our caldera model for the frequency range we are using. Thus, in the absence of

anelastic attenuation, we should expect to observe scattered wave amplitudes at the

surface which depend on frequency and incidence angle. The Aki-Larner method

can reproduce the effects of model resonance and scattering quite well and we will

show in section 5.4 that these effects alone are too strongly dependent on frequency

and incidence angle to explain the amplitude observations as well as we can with a

low Q zone.

Having ruled out ray focusing, resonance and scattering patterns as possible

explanations for the low caldera amplitudes, it now remains to determine the sensi-

tivity of the synthetic solutions to variations in model parameters. This largely will

involve perturbing one feature of the model at time, since there are simply too may

parameters to consider all possible combinations of multiple perturbations. We will

see, though, that the most important parameters are those governing the LQZ and

that reasonable limits may be defined for these beyond which the fit to the data

begins to deteriorate significantly. Similar limits can be defined for the remaining

parameters, but many of these can vary by larger amounts than those of the LQZ

before the solutions deteriorate. We will begin by showing the effects of allowing
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Q to vary in the LQZ and in the upper caldera fill since these are clearly the most

physically important aspects of the model.

In the previous section we discussed the reliability of our solution in light of

the extremely low value of Q = 1 used. Here we will show that increasing the

value of Q in the LQZ decreases the variance reduction, but that the basic pattern

remains reasonably stable until Q becomes large enough that attenuation is no

longer significant. Figures 5.10, 5.11 and 5.12 show the results for Q = 2, 5 and

10, respectively, in the LQZ, holding all other model parameters fixed. For Q =

2 the major features of the amplitude pattern are preserved but the total variance

reduction has decreased from 84% to about 66%. For Q = 5, Figures 5.11a,b, the

fit is much worse. Although there is still a trend of low amplitudes in the horizontal

component at ALM, REB and RDT, this trend has all but disappeared in the

vertical components. Also, we now begin to see some strong relative peaks and

troughs at certain frequencies, particularly in the horizontal components. These

features presumably are due to the effects of resonance and scattering mentioned

above, and now these are becoming dominant because the attenuation is no longer

strong enough to damp them out. In Figures 5.12a,b the results for Q = 10 are

so bad that the homogeneous halfspace model (HHS) is preferable, as evidenced

by the large negative variance reduction for the vertical component. Although the

horizontal components at REB and RDT still show relative lows, those at SOS and

ALM do not. Further the resonance and scattering effects are now so strong that the

synthetic spectral ratios show strong relative peaks and troughs even in the vertical

components. The clear trend of decreasing variance reduction with increasing Q

lends strong support to the validity of using Q = 1. We discussed in Chapter 3
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VERTICAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded in VALLES CALDERA

SYNTHETIC: model= pertq302.mod 60,= 20.0 f1 = 0.0000
as 2(log): Vertical= 0.625E-01 Total= 0.104E+00

Variance Reduction (HHS): Vertical= 64.9% Total= 65.8%
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Figure 5.10a Vertical synthetic spectral ratios for best model with Q increased to 2 in the low

Q zone, compared with the Kuril Islands data as shown before in Figure 5.2a.
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HORIZONTAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded in VALLES CALDERA

SYNTHETIC: model= pertq302.mod 60,= 20.0 fM= 0.0000
at 0 (log): Horizontal= 0.146E+00 Total= 0.104E+00

Variance Reduction (HHS): Horizontal= 66.2% Total= 65.8%
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Figure 5.10b Same as Figure 5.10a except the horizontal components are shown.
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VERTICAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded in VALLES CALDERA

SYNTHETIC: model= pertq305.mod 9,= 20.0 fm= 0.0000

aO (log): Vertical= 0.154E+00 Total= 0.239E+00
Variance Reduction (HHS): Vertical= 13.8% Total= 21.3%
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Figure 5.11a Vertical synthetic spectral ratios for best model with Q increased to 5 in the low

Q zone, compared with the Kuril Islands data.
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HORIZONTAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded in VALLES CALDERA

SYNTHETIC: model= pertq305.mod 8,= 20.0 fm= 0.0000
ac 2(log): Horizontal= 0.325E+00 Total= 0.239E+00

Variance Reduction (HHS): Horizontal= 24.3% Total= 21.3%
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Figure 5.11b Same as Figure 5.11a except the horizontal components are shown.
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VERTICAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded In VALLES CALDERA

SYNTHETIC: model= pertq310.mod G.= 20.0 f,,= 0.0000
o 2(log): Vertical= 0.265E+00 Total= 0.308E+00

Variance Reduction (HHS): Vertical= -48.8% Total=
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Figure 5.12a Vertical synthetic spectral ratios for best model with Q increased to 10 in the

low Q zone, compared with the Kuril Islands data.

240

SITE: SAM X=121.0

aMOD (log)=0.330E+00
Reduction= -93.9%

2 SITE: SOS X=123.0

aOD(log)=0.660E-01
Reduction= 14.8%

% -1-



HORIZONTAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded in VALLES CALDERA

SYNTHETIC: model= pertq310.mod 0,= 20.0 f1 = 0.0000

a 2 (log): Horizontal= 0.351E+00 Total- 0.308E+00
Variance Reduction (HHS): Horizontal= 18.2% Total= -1.4%
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Figure 5.12b Same as Figure 5.12a except the horizontal components are shown.
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that the Azimi dispersion law should hold well at least down to Q = 5. Since at

this value of Q the attenuation is not strong enough to produce the necessary low

amplitude or to damp out the resonant peaks sufficiently, it is clear that Q needs

to be less than 5. We believe now that enough evidence has been given to justify

the validity of our solution for Q = 1, and we will question it no further.

Next, we wish to examine the range of possible values for Q used in the upper

caldera fill. Figures 5.13 and 5.14 show the effects of reducing the value from Q =

100 for the best model, to Q = 5 and Q = 1 respectively. For Q = 5 the variance

reduction of 74.5% is significantly lower than the best model but the major features

are still retained. However, for Q = 1 the results in Figures 5.14a,b show very serious

deterioration in the fits for the horizontal components at SOS, ALM and CLJ and

the total variance reduction has decreased to about 32%. This demonstrates a clear

need to have a localized zone of very low Q relative to the surrounding media.

Allowing the entire caldera fill (including the LQZ) to have the same low Q value

does not produce strong enough attenuation for the horizontals at SOS and ALM

relative to SAM. This is because now the material beneath SAM is also low Q,

whereas for the best model it was not. In effect then we have also demonstrated

that the LQZ can not be significantly wider than shown in Figure 5.1 without

producing a pattern similar to that in Figure 5.14. Also, if the LQZ were narrower

the attenuation at SOS would be too weak for the horizontal component. We also

ran tests for Q = 10, 20, 50 and 1000 in the upper caldera fill. We found that

the results for the best model are virtually unaffected by these changes. The total

variance reduction remains stable between about 81% and 83%. Thus we can place

no upper bound on Q in the upper caldera fill since the observed attenuation effect
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VERTICAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded in VALLES CALDERA

SYNTHETIC: model= pertq105.mod 80= 20.0 f,,= 0.0000
o 2(log): Vertical= 0.385E-01 Total= 0.776E-01

Variance Reduction (HHS): Vertical= 78.4% Total= 74.5%
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Figure 5.13a Vertical synthetic spectral ratios for best model with Q = 5 in the upper caldera

fill, compared with the Kuril Islands data.
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HORIZONTAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded in VALLES CALDERA

SYNTHETIC: model= pertq105.mod 60= 20.0 fm= 0.0000

020(log): Horizontal= 0.117E+00 Total= 0.776E-01
Variance Reduction (HHS): Horizontal= 72.9% Total= 74.5%
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Figure 5.13b Same as Figure 5.13a except the horizontal components are shown.
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VERTICAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded in VALLES CALDERA

SYNTHETIC: model= pertq101.mod 9,= 20.0 f,,= 0.0000

a 2 (log): Vertical= 0.584E-01 Total= 0.208E+00
Variance Reduction (HHS): Vertical= 67.2% Total= 31.6%
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Figure 5.14a Vertical synthetic spectral ratios for best model with Q = 1 in the upper caldera

fill, compared with the Kuril Islands data.
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HORIZONTAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded in VALLES CALDERA

SYNTHETIC: model= pertq101.mod 00= 20.0 f1,= 0.0000

at (log): Horizontal- 0.367E+00 Total- 0.208E+00
Variance Reduction (HHS): Horizontal= 16.9% Total= 31.6%

SITE: SAM X=121.0
c2a OD(log)=0.214E+00
Reduction= 60.1%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.9

SITE: REB X=127.0

at 
0

(log)=0.527E-01

] Reduction= 71.0%

0.1 0.2 0.3 0.4 0.6 0.0 0.7 0.5 1

Frequency (Hz)

0.1 0.2 0.3

OBSERVED

0.4 0.5 0.6 0.7 0.8 0.9

SYNTHETIC-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.5

Frequency (Hz)

SITE: ALM X=125.0
at ),(og)=0.996E+00

1 Reduction= 15.0%

0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.8 C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.5

Frequency (Hz)

Figure 5.14b Same as Figure 5.14a except the horizontal components are shown.
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is completely controlled by the LQZ. As a lower bound we can say that Q in the

upper caldera fill cannot be significantly lower than 10, as evidenced by Figures

5.13 and 5.14.

One final test will help emphasize the importance of the localized low Q zone

as well as the need to include the upper caldera fill as well. In Figures 5.15a,b we

show the results for a model containing only the LQZ and free surface topography of

Figure 5.1, with the upper caldera fill layer removed. Here we can see that the major

attenuating effect of the LQZ is still dominant, with the low caldera amplitudes

reasonably well represented. However, the variance reduction is considerably lower

than for the best model, due to the absence of the upper surface layer. This is a very

simple demonstration that the structural components shown in Figure 5.1 represent

the minimum requirements for reproducing the major features of the amplitude

data.

The remaining model parameters are numerous and, in general, less critical

than those comprising the basic Q structure discussed above. However, the attenu-

ation effects are dependent on wavelength, and the wavelength for a given frequency

is determined by the velocity structure. The various dimensions of the structural

components, particularly of the LQZ, will also influence the degree of attenuation

observed. For instance, one might expect to obtain similar results with higher Q

by either decreasing the velocities or increasing the size of the LQZ. An exhaustive

study of all possible alternative models is clearly impossible with a forward mod-

eling approach. Instead it should suffice for our purposes to examine the effects of

perturbing model parameters one at a time. Rather than show spectral ratio plots
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VERTiCAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded in VALLES CALDERA

SYNTHETIC: model= Iqzq001.mod 8,= 20.0 f,,= 0.0000
Ca 2(log): Vertical= 0.472E-01 Total= 0.100E+00

Variance Reduction (HHS): Vertical= 73.5% Total= 67.0%
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Figure 5.15a Vertical synthetic spectral ratios for the best model with the upper caldera fill

removed, compared with the Kuril Islands data.
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HORIZONTAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (4 EVENTS) recorded in VALLES CALDERA

SYNTHETIC: model= Iqzq001.mod 6,= 20.0 f1 = 0.0000
a 2 (log): Horizontal= 0.154E+00 Total= 0.100E+00

Variance Reduction (HHS): Horizontal= 84.2% Total= 67.0%
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Figure 5.15b Same as Figure 5.15a except the horizontal components are shown.
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for all of these tests, we have instead simply listed the variance reduction for the

vertical, horizontal and combined data for each perturbed model.

The perturbations for a, fl, p and Q are listed in Table 5.2 for a number

of test models, including the Q tests presented above. The table lists identifying

model name codes along with the appropriate parameters for the LQZ and the

upper caldera fill perturbed in each case. We have held the elastic parameters for

the granite basement (layers 2 and 4) constant in all cases because these are well

determined by previous studies in the area. The best model is listed at the top of

the table, and dashes shown for the test models indicate parameters which were

not perturbed. The last 8 test models listed represent various perturbations to

the height and depth of the LQZ and maximum depth of the upper caldera fill

relative to the zero datum. These structural changes are shown in Figures 5.16a,b

and the model name shown above each plot coincides with that listed in Table

5.2. In most cases the velocities and density in each medium have been perturbed

by ±10%. The changes to the structural dimensions were ± 0.5 km. We show

10% here as the minimum velocity and density perturbation in most cases because

this was roughly the value at which we first started to see significant increase in

the variance, based on numerous similar tests using perturbations as low as ±1%.

Similarly, the dimensional changes of ± 0.5 km correspond to perturbations below

which no significant changes in the results occurred.

The vertical, horizontal and total variance reduction obtained for each of the

models are listed in the three right-hand columns of Table 5.2. Notice first that all

perturbed models give smaller variance reduction than the best model. For nearly

all of the elastic parameter perturbations listed, the decrease in variance reduction is
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TABLE 5.2
Best LQZ Model Parameter Perturbations and Resulting Variance Reduction

Upper Caldera Fill Low Q Zone Variance Reduction(%)

Model a # p Q Depth a p Q Depth Height Vert Horis Total

BEST 4.50 2.50 1.70 100 1.5 3.00 1.29 2.00 1 0.0 4.0 +80.7 +85.4 +84.0

Q302 - - - - - - - - 2 - - +64.9 +66.2 +65.8

Q305 - - - - - - - - 5 - - +13.8 +24.3 +21.3

Q310 - - - - - - - - 10 - - -48.8 +18.2 -1.4

Q3100 - - - - - - - - 100 - - -80.6 +12.9 -14.5

Q101 - - - 1 - - - - - - - +67.2 +16.9 +31.6

Q106 - - - 5 - - - - - - - +78.4 +72.9 +74.5

Q110 - - - 10 - - - - - - - +79.0 +81.6 +80.8

Q120 - - - 20 - - - - - - - +78.4 +82.0 +81.0

Q150 - - - 50 - - - - - - - +77.0 +82.1 +80.6

Q11000 - - - 1000 - - - - - - - +76.8 +85.3 +82.8

RO1M10 - - 1.53 - - - - - - - - +79.0 +80.3 +79.9

RO1P1O - - 1.87 - - - - - - - - +78.7 +79.9 +79.6

RO3M10 - - - - - - - 1.80 - - - +78.0 +79.8 +79.3

RO3P10 - - - - - - - 2.20 - - - +79.5 +80.3 +80.1

VP1M1O 4.05 - - - - - - - - - - +77.9 +75.4 +76.1

VP1M20 3.60 - - - - - - - - - - +73.0 +43.3 +52.0

VP1P1O 4.95 - - - - - - - - - - +78.6 +77.8 +78.1

VP3M1O - - - - - 2.70 - - - - - +78.5 +76.8 +77.3

VP3P1O - - - 3.30 - - - - - +79.3 +78.7 +78.9

VS1M1O - 2.25 - - - - - - - - - +77.7 +78.8 +78.5

VS1P1O - 2.75 - - - - - - - - - +78.0 +72.7 +74.3

VS3M1O - - 1.16 - - - - +78.5 +79.1 +78.9

VS3P1O - - 1.42 - - - - +79.5 +75.5 +76.7

NOCONTI - - - - - 4.50 2.50 1.70 - - - +79.1 +64.5 68.8

NOCONT3 3.00 1.29 2.00 - - - - - - - - +49.2 +27.2 +33.6

LOCONT3 - - - - - 3.50 2.00 - - - - +79.7 +68.2 +71.8

LOQHIV3 3.50 2.00 - - - 4.00 2.25 - - - - +58.6 +56.5 +57.1

SWAPALL13 3.00 1.29 2.00 - - 4.50 2.50 1.70 - - - +31.9 +15.6 +20.4

SWAPRO13 - - 2.00 - - - - 1.70 - - - +76.0 +76.3 +76.2

MHMOS - - - - 3.5 +77.4 +80.1 +79.3

MHP05 - - - - - - - - - - 4.5 +73.7 +81.2 +79.0

MD05 - - - - - - - - - 0.5 - +81.0 +73.9 +75.9

MCDO5 - - - - 2.0 - - - - 0.5 - +77.1 +63.2 +67.3

MD05HP05 - - - - - - - - - 0.5 4.5 +78.8 +78.1 +78.3

MD05HMO5 - - - - - - - - - 0.5 3.5 +80.8 +79.3 +79.7

MCD05HPOS - - - - 2.0 - - - - 0.5 4.5 +73.3 +74.7 +74.3

MCDOSHM05 - - - - 2.0 - - - - 0.5 3.5 +75.0 +72.9 +73.5
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MODEL NAME: MHMO5.MOD

I I I

108 112 116 120 124 128 132 136
HORIZONTAL POSMON (Km)
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140 144 1,
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MODEL NAME: MHPO5.MOD

I I I I I

108 112 116 120 124 128 132 136 140 144 14

HORIZONTAL POSmON (Km)

MODEL NAME: MDO5.MOD

I I I I I I
108 112 116 120 124 128 132 136

HORIZONTAL POSmON (Km)
140 144

120 124 128 132 136

HORIZONTAL POSmON (Km)

Figure 5.16a Four of the eight structural perturbations to the best model listed at the bottom

of Table 5.2. The model names at the top of each plot are cross-referenced to the listings in the

table.
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120 124 128 132 138 140

HORIZONTAL POSmON (Km)

MODEL NAME: MDO5HMO5.MOD

--- ~I

108 112 118 120 124 128 132 138

HORIZONTAL POSmON (Km)
140 144

MODEL NAME: MCDO5HPO5.MOD

120 124 128 132 136
HORIZONTAL POSION (Km)

MODEL NAME: MCDO5HMO5.MOD

108 112 116 120 124 128 132 138

HORIZONTAL POSmON (Km)
140 144

Figure 5.16b Remaining four stuctural perturbations tested and listed in Table 5.2.
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about 5% or less. The reduction becomes worse when the parameters are perturbed

by more than i 10%. The listing for the test model "VP1M20" is a typical example

of this. In this case the P-wave velocity in the upper caldera fill was decreased by

20%, and this resulted in a total variance reduction of 52%, which is much worse

than for the best model or for the same parameter decreased by only 10%. This

same behavior was found to hold for all a, # and p in both the LQZ and the upper

caldera fill. Similarly for the dimensional perturbations, the depth and height of the

LQZ can vary by as much as 500 meters before the total variance reduction drops

below about 80%. Thus in terms of individual parameter perturbations we can only

determine a, # and p to within about ± 10% and structural dimensions and depth

of the LQZ within ± 500 meters. The previous discussion on Q perturbations

indicates that in the LQZ Q must be less than 5 and probably less than 2. We

can set no upper bound on Q in the upper caldera fill but it cannot be much

smaller than 10. We cannot justify quantifying the parameter limits with greater

precision than discussed above, even though some parameters appear to be more

stable than others. Our main purpose here is to demonstrate that the largest

variance reduction is produced for models which fall within a roughly defined range

of single perturbations to the model in Figure 5.1. Perturbations in all a, # and

p by as much as 20%, or in geometry by as much as 1 km, produce significantly

worse results than perturbations of 10% or 500 meters do. But within this range,

only rarely does the variance reduction drop below about 75%. This stability is due

mainly to the dominant attenuating effect of the LQZ. To greatly alter this effect

requires a fairly large change to any particular parameter individually.
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On the other hand, we can make some general statements regarding the ef-

fects of some simple multiple-parameter changes. We have listed in Table 5.2 six

test models in which major changes were made to more than one elastic param-

eter. These include reducing the velocity and density contrast between the LQZ

and upper caldera fill ("LOCONT3"), having no contrast ("NOCONT1" and "NO-

CONT3"), interchanging their densities ("SWAPRO13") and allowing the LQZ to

assume higher velocities than in the upper caldera fill ("LOQH1V3" and "SWA-

PALL13"). For all of the velocity changes the variance reduction is significantly

smaller than for any of the single perturbations, and we conclude again that the

LQZ must have much lower a and # relative to its surroundings. Although the

interchanging of densities does not produce as drastic an effect, the decrease is sig-

nificant enough that higher density appears to be favored in the LQZ than in the

upper caldera fill. So, although we cannot completely quantify the uniqueness of

the best model, its general characteristics are reasonably well constrained by the

amplitude data.

5.4 Implications of 3-dimensional Structure

We have been concerned throughout this thesis with the validity of the 2-

dimensional representation of the caldera sub-structure. In Chapter 2 we discussed

how the existence at the caldera sites of large-amplitude transverse components,

relative to the P wave, is a clear indication that the data contain significant effects

of 3-dimensional structure. Apparently, the complexity of this structure decreases

away from the caldera, as evidenced by the near absence of transverse motion at

CAC. In this section we will summarize the major points of our study which lend
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support to the 2-dimensional results and we will provide some additional evidence

by testing the model's capability to fit the earliest portion of the vertical component

seismograms for the direct P wave.

In summary then, we list the following major points in support of the validity of

the 2-D modeling. 1.) The data were recorded on linear arrays, and the events used

lay nearly on-azimuth to the array line and arrived with fairly steep incidence angles.

2.) The major pattern of amplitude variations across the line to first order does not

depend on incidence angle or source direction and is very similar for all 3 components

of motion. 3.) We are modeling only the relative variations in amplitude for one

component at a time and we are not attempting to explain the differences between

the vertical and horizontal component, which should be due largely to resonance

and scattering, and could contain strong 3-D effects. 4.) The observed effect of low

amplitudes inside the caldera can be explained by strong attenuating properties

which need vary only with horizontal position along the array and can roughly be

explained also by the simple 1-D calculation presented in section 5.1. 5.) We have

restricted the modeling to amplitude data since the observed phase spectra were

extremely complex and may be more sensitive than amplitude to 3-D irregularities.

The portion of the observed teleseismic data which should be most free of

3-D effects is the vertical component of the direct P wave. This is because, for on-

azimuth events, scattered energy generated at points away from the 2-D model plane

will arrive at the sites later than the strictly in-plane contributions. The first pulse

of a seismogram should be nearly devoid of 3-D effects since it arrives the earliest.

So to further test the validity of our best model for purely 2-dimensional data, we

first chose one of the 4 Kuril Islands events from array 2 which showed the clearest
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and least complicated first arrivals and the Kommandorsky Islands event from array

1. We then computed the spectral ratios as before, but for just the first full-cycle

of the direct P wave for the vertical component at each site. We then computed

synthetic results for the best model as before, but using a very large value for the

damping factor, WI, so that no scattered waves would contribute to the solution. We

found that using w, = 7r (i.e., f, = 0.5) gave the best results. This large damping

factor also allowed us to calculate solutions up to 1.0 Hz since the previous problems

mentioned for satisfying the vanishing surface traction boundary conditions at high

frequencies were significantly alleviated when higher order scattered waves were

damped out. This is fortunate because the P-wave spectra used were strongly

peaked between 0.8 and 1.0 Hz. Synthetic vertical spectral ratios were calculated

for 5 frequencies equally spaced from 0.8 to 1.0 Hz and compared with the observed

P-wave ratios.

Figures 5.17a,b show the results of this test, which are quite encouraging. Fig-

ure 5.17a is for the array 2 Kuril event. The variance reduction of 88.7% is better

than the 81% that we obtained previously for the complete vertical component seis-

mograms. This is perhaps the strongest evidence presented so far in support of

the 2-D model since we have effectively removed all 3-D effects from the data in

this case. However, this example should not be substituted for the results obtained

with the scattered waves. The frequency band used for the P wave is too narrow

to have allowed us to determine the best model with these data alone. It was only

through the examination of a wide range of relatively low frequencies that we were

able eventually to zero in on the best model. The present example serves primarily

as a convincing test of the 2-D assumption regarding the data.
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VERTICAL COMPONENT SPECTRAL RATIOS
OBSERVED: KURIL ISLANDS (EVENT C) recorded in VALLES CALDERA )ARRAY 2)

SYNTHETIC: model= w161624h40d001h.3lqgsm3 80= 20.0 f,,= 0.5000

a2 0(log): Vertical= 0.243E-01
Variance Reduction (HHS): Vertical= 88.7%

SAM X=121.0 SITE: SOS X=123.0 SITE: ALM X=

aL, (og)=0.418E-01
Reduction= 78.4%

- - - - -

0.7 0.8 0.0 1.0

SITE: REB X=127.0

a2, (log)=0.154E-01
Reduction= 93.2%

0.7 0.3 0.3 1.0

Frequency (Hz)

aMOD(log)=0.306E-01
Reduction= 26.2%

0.7 0.8 0.0 1.0 1

OBSERVED

SITE:

.1

.1

SYNTHETIC

RDT X=128.0

C71 (Iog)=0.205E-01
Reduction= 92.7%

0.7 0.3 0.3 1.0

Frequency (Hz)
.1

a MOD (log)=0.151E-01
Reduction= 93.5%

0.7 0.8 0.0 1.0

SITE: CLJ X=135.0

aO,0 (log)=0.225E-01
Reduction= 93.0%

0.7 0.8 0.0 1.0

Frequency (Hz)

125.0

Figure 5.17a Vertical synthetic spectral ratios for the best model compared with observed

ratios for the first cycle of the direct P-wave arrival from one of the Kuril Islands events recorded

on array 2. The Aki-Larner results were obtained using a very large damping factor (complex

frequency) in order to eliminate scattered waves from the solutions.
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VERTICAL COMPONENT SPECTRAL RATIOS
OBSERVED: KOMMANDORSKY ISLANDS recorded in VALLES CALDERA (ARRAY 1)

SYNTHETIC: model= w161624h40d00lh.3lqgsm3 80= 20.0 fIM= 0.5000

a 2 (log): Vertical= 0.680E-01
Variance Reduction (HHS): Vertical= 63.0%

SITE: CAC X=113.0

a 2 (log)=0.228E-01
Reduction= 52.0%

0.7 0.3 0.3 1.0

SITE: ALM X=125.0

aoo (log)=0.334E-01
Reduction= 92.8%

0.7 0.3 0.3 1.0

Frequency (Hz)

m. SITE: PNY X=116.0

a',2(log)=0.154E+00
Reduction= -9160.9%

0.7 0.3 0.s 1 .0

OBSERVED

.1 0.7 0.3 0.6

SYNTHETIC

,. SITE: RDT X=128.0
MO0,(Iog)=0.682E-01

Reduction= 81.9%

0.7 0.3 0.3 1.0

Frequency (Hz)

SITE: CAP X=145.0
aMOD(log)=0.102E-01
Reduction= 94.6%

0.7 0.6 0.9 1.0

Frequency (Hz)

Figure 5.17b Same as Figure 5.17a, except that the synthetic solutions are compared with a

Kommandorsky Islands event recorded on array 1.
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Figure 5.17b shows the results for the array 1 Kommandorsky event. On this

larger scale we can see that the low amplitudes of the first arrivals at ALM and

RDT, relative to the those at CAC and CAP, are reproduced reasonably well by the

LQZ model, with a variance reduction of 63%. The data at SAM and PNY are not

reproduced well on the large scale, but the localized Q effect within the ring fracture

still produces approximately the correct attenuation relative to the sites furthest

from the caldera. So, although there are significant 3-D effects in our scattered-wave

data, these are subsidiary to the dominant 2-D attenuation effect on the smaller

scale of array 2. This also supports our assumption that the strength of scattering

and resonance is similar at all array 2 sites. If this were not the case, the direct P-

wave and scattered-wave amplitudes would not share the same amplitude behavior

across the array. As we have seen, the array-1 data exhibit strong differences in the

patterns of amplitude variation between the scattered waves and the direct P wave

alone. As discussed previously, this is probably due to large-scale variations in 3-D

stuctural complexity.

5.5 Resonance and Scattering Effects

The best fitting model presented in Figure 5.1 is the end result of almost two

years of forward modeling efforts and literally thousands of CPU hours on a VAX

8650 computer. A rough estimate of the total number of individual models tested is

in excess of 400. The vast majority of these initial tests were aimed at attempting

to fit the Kuril Islands data by considering only resonance and scattering effects.

This was a rather frustrating, albeit instructive, experience since it soon became

apparent that these effects in 2-D are extremely sensitive to minor changes in model
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parameters. The simplified 3-layered representation of the caldera structure requires

9 separate elastic parameters and virtually endless possibilities for the different

components of the irregular structural geometry. Despite this complexity, one of

our chief concerns was that the models would be too simplified to give a realistic or

believable representation of the true structure, even if we did manage to fit the data

eventually. We felt fortunate to have been able to find a relatively simple model

which explains the data so well and which makes sense intuitively. It was not until

we decided to try putting Q into our models that this became possible. The use of

Q allowed us to reproduce observed amplitude patterns which exhibited a degree of

stability, over a large range of frequencies and incidence angles, that could not be

explained by resonance or scattering effects alone.

The reason we pursued the resonance study for so long is that this mechanism

is capable of producing rather strong variations in amplitude for waves interact-

ing with irregular structures. Resonance patterns in 2-D are significantly more

complicated than for the 1-D case, and can produce very large amplification or

de-amplification under certain conditions. These effects were studied in detail for a

simple alluvial valley by Bard & Bouchon [1985]. The directionality of wavelength-

dependent scattering effects is also capable of producing amplitude variations. Since

the Aki-Larner method accounts for both of these effects and is particularly useful

for studying sub-wavelength size structure, we felt it was an ideal choice for appli-

cation to the Valles Caldera. The specific geometry and elastic parameters of the

models should combine to produce resonance patterns which we had hoped could

be modified to fit the observed data by adjusting the models. Guided by previous

work in the caldera we began by constructing models which included free surface
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topography, a low velocity inclusion and a simple bowl-shaped caldera fill layer. We

wished to determine primarily whether or not the data could support the existence

of a remnant magma chamber beneath the caldera.

Although we eventually did manage to obtain a model which fit the Kuril Is-

lands data for a few frequencies, the results quickly fell apart when we attempted

to use a broader frequency band and different incidence angles. In Figures 5.18a,b,c

and 5.19a,b,c we have shown two very simple examples of how resonance and scat-

tering effects can depend on frequency and incidence angle. Here we have computed

synthetic spectral ratios for two models composed of free surface topography and

a buried low velocity zone in a granite halfspace. The models used are plotted in

Figures 5.18a and 5.19a. The only difference between these models is in the depth

of the LVZ. Spectral ratios for 5 incidence angles were computed as before at six

site locations relative to the average and these are shown plotted as different line

styles in Figures 5.18b and 5.19b for the vertical components, and 5.18c and 5.19c

for the horizontal. Incidence angles used were 60 = 00 (vertical), ±200 and ±30* as

indicated in the legend on the ratio plots.

Note the strongly peaked behavior versus frequency, particularly in the hori-

zontal components for the shallow LVZ model, Figure 5.18c. Also note the strong

dependence on incidence angle. For the vertical components there is a very clear

reversal in the relative peaks and troughs at each site as the incidence angle changes

from positive to negative values. For the horizontal components the primary effect

of incidence angle is a change in relative amplitude of the various spectral peaks.

This dominant behavior is clearly not supported by the observed data. Further-

more, none of the spectral peaks or troughs are large enough or small enough to
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MODEL NAME: magmanoq1.mod
LAYER 1: a = 6.000; # = 3.500; p = 2.650

LAYER 2: a = 3.000; # = 1.290; p = 2.000

HALFSPACE: a = 6.000; # = 3.500; p = 2.650

HORIZONTAL POSmON (Km)

Figure 5.18a Test model for a non-attenuating low velocity inclusion used to demonstrate

un-damped resonance and scattering effects.

263



VERTICAL COMPONENT SYNTHETIC SPECTRAL RATIOS
Model= magmanoql.mod f1m= 0.0250

SITE: SAM X=121.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

00= 30.0* 0= 20.0*

SITE: REB X=127.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5

Frequency (Hz)

SITE: SOS X=123.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0= 0.0

SITE: RDT X=128.0

0.1 0.2 0.3 0.4 0.5 0.0 0.7 0.6

Frequency (Hz)

0% SITE: ALM X=125.0

-1 - 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 C

80= -20.0* 00= -30.0"

SITE: CLJ X=135.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5

Frequency (Hz)

Figure 5.18b Vertical component synthetic spectral ratios for the model in Figure 5.18a.

Solutions were calulated for 5 separate incidence angles and plotted in diifferent line styles, as

indicated in the legend.
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HORIZONTAL COMPONENT SYNTHETIC SPECTRAL RATIOS
Model= magmanoq1.mod fm= 0.0250

SITE: SAM X=121.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 .9 0.1

6= 30.0* 60= 20.0*

SITE: REB X=127.0

0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.8

Frequency (Hz)

SITE: SOS X=123.0

I i * t v Tr

0.2 0.3 0.4 0.5 0.6 0.7 0.8 C

60= 0.00

SITE: RDT X=128.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3

Frequency (Hz)

0 SITE: ALM X=125.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0. c

80= -20.0*

SITE:

0.1 0.2

9,= -30.0*

CLJ X=135.0

0.3 0.4 0.5 0.6 0.7 0.8

Frequency (Hz)

Figure 5.18c Same as Figure 5.18b except the horizontal components are shown.
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MODEL NAME: magmad5Onoq1.mod
LAYER 1: a = 8.000; # = 3.500; p = 2.650
LAYER 2: a = 3.000; p = 1.290; p = 2.000

HALFSPACE: a = 6.000; # = 3.500; p = 2.650

110 112 114 116 116 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148
HORIZONTAL POSION (Km)

Figure 5.19a Another test model for a non-attenuating low velocity inclusion which is deeper

than for the model in Figure 5.18a.
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VERTICAL COMPONENT SYNTHETIC SPECTRAL RATIOS

Model= magmad50noq1.mod fm= 0.0250

0% SITE: SOS X=123.0

D.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7

60= 30.0* 6= 20.0 g= 0.0

SITE: REB X=127.0 SITE: RDT X=128.0
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v W .....
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I I i I
0.0 0.7 0.6 C

00= -30.0

=136.0

Figure 5.19b Vertical component synthetic spectral ratios for the model in Figure 5.19a.

Solutions were calulated for 5 separate incidence angles and plotted in different line styles, as

indicated in the legend.
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HORIZONTAL COMPONENT SYNTHETIC SPECTRAL RATIOS
Model= magmad50noq1.mod f1m= 0.0250

SITE: SAM X=121.0
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Figure 5.19c Same as Figure 5.19b except the horizontal components are shown.
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match the maximum relative differences observed between some sites. Increasing

the depth of the LVZ only makes matters worse because in Figures 5.19b,c we can

see that this increases the variations in the vertical components.

When the upper caldera fill layer is added to the shallow LVZ model shown in

Figure 5.18a, the resulting synthetics improve somewhat in that larger peaks and

troughs are produced at some sites. This is how we were able to fit the Kuril Islands

data for only a few frequencies. However, this addition to the models increased

the complexity of the amplitude pattern so much that it became impossible to

characterize any systematic relations between small changes in model parameters

and the resulting changes in the spectral ratios. Changing the velocities or structural

geometry by small amounts produced very unpredictable changes in the synthetics.

This non-linear behavior can very easily reduce forward modeling to being little

more than trial-and-error.

The shallow LVZ model shown here is nearly the same model we discussed pre-

viously for the LQZ alone with the upper caldera fill removed. The only difference

is that there is no attenuation in the LVZ model. Referring back to Figure 5.15a,b

for the spectral ratios of the simple LQZ model for 6o = +20*, a comparision with

the plots shown here in Figure 5.18b,c shows just how important it is for the in-

clusion to have low Q. One of the major effects of Q on the spectral ratios is to

damp out the resonant peaks, and this in turn increases the amount of control we

have on predicting stable, systematic patterns in the data, as long as these observed

patterns are indeed due to Q effects. This is somewhat ironic because at first we

resisted putting Q in the models, in the belief that adding another parameter would

only increase the complexity of the problem without providing significant benefits.
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Obviously the complete opposite was true in our case. Thus, for studies of seismic

amplitudes observed above complex volcanic structures, we advise that one should

examine their data for Q effects first and resonance and scattering later.
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CHAPTER 6

Discussion and Conclusion

6.1 Comparison of the Two Caldera Fill Models

In Chapter 4 we demonstrated that the teleseismic P-wave delays could be

explained with a model that contains two relatively simple, homogeneous compo-

nents. These axe an irregularly shaped, low velocity caldera fill surface layer and

a separate lens-shaped, low velocity inclusion at approximately 10 to 13 km true

average depth beneath the resurgent dome. Although we could not constrain the

depths to the top and bottom of the inclusion, we demonstrated that its minimum

height is approximately 8 km and its width at the tapered section is approximately

17 km. Our solution for this inclusion was obtained only after fitting as much of

the data as possible with the caldera fill layer alone. To do this we started with an

initial estimate of the near-surface structure from Self et al. [1986] and the range of

average P-wave velocities estimated by Ankeny et al. [1986]. We then adjusted the

structure and velocity in a way which simultaneously fit most of the delay data and

yielded the minimum thickness and velocity for the surface layer within the limits

established by the two studies referenced above.

Thus our aim was primarily to obtain a time correction for the estimated effects

of the complex surface layer so that any remaining delays could be attributed to

deeper structure. In this sense the caldera fill used in our ray model should not

be taken literally as an accurate representation of the true near-surface structure.

The actual caldera structure above the precambrian granite basement is in fact an
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extremely complex mixture of numerous sedimentary and volcanic rock types, as

evidenced from lithologic logs taken directly from drill hole cutting and core samples

[Nielson & Hulen, 1984; Goff et al., 1986; Self et al., 1986]. The surface layer we

used then, is in essence a compression of the average effects due to all of these near-

surface components into a single homogeneous layer. The internal inhomogeneities

of the actual structure were adequately modeled by variations along the bounding

interface above the granite basement. The low velocity of 3.2 km/sec used allowed

us to keep these interface variations to a minimum so that large changes in slope

could be avoided. This helped maintain some control over the ray-tracing. Although

the caldera fill structure is over-simplified, the general trend of deepening to the

southeast observed by Self et al. [1986] and Nielson 8 Hulen [1984] is represented

well. This trend is very well constrained by core data and gravity profiles in the

caldera which indicate a low relative Bouguer anomaly beneath the southeastern

portion of the caldera.

We also demonstrated in Chapter 4 that there is an ambiguity in the overall

modeled thickness of the caldera fill layer which is inherent to the relative-delay

method. The caldera fill interface can be shifted arbitrarily within a wide range

of deoths without significantly decreasing the variance reduction. Although the

known lithology can help constrain some of the general features of the near-surface

structure, it cannot remove the basic ambiguity in the overall depth. The data

used by Self et al. [1986] to obtain the stucture in Figure 1.4 contained very little

information about seismic velocity variations within and just below the caldera fill.

It is certainly possible that the low P-wave velocities could extend down into the

precambrian granite near the highly deformed center of the caldera. The core-hole
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stratigraphy tells us little about the state of competence of the various rock types

intersected by the drill. This is why we have emphasized here the point that the

caldera fill in the best ray model should be viewed mainly as a correction layer,

rather than as an accurate depiction of the complex near-surface velocity structure

beneath the caldera.

Our results from Chapter 5 for the amplitude data give an alternative view of

the near-surface structure. Here we showed that the one major feature required to

explain the low amplitudes inside the caldera was a large zone of very low Q at the

bottom of the caldera fill layer. This LQZ was constrained reasonably well to be

about 16 km in width, 4 km in height and approximately 1 km deep to its top. To

obtain the best fit to the data, we showed that a relatively non-attenuating upper

caldera fill layer was also required, but that the effects of this feature were secondary

to the dominant LQZ effect. It was also necessary that the LQZ have significantly

lower P and S velocities than its surroundings, in order to produce strong enough

attenuation. In this case our approach was somewhat the opposite of the ray tracing

approach. We were more concerned here with obtaining the large-scale general

features of the near-surface structure than with obtaining a detailed structural

correction to the data. The fact that we could reproduce the data reasonably well

without the upper caldera fill indicates that the details of this secondary structure

could vary considerably and still maintain consistency with the data. Also, since

the Q effect is clearly dominant, and since we restricted our models to include only

simple symmetric shapes representing separate homogeneous bodies, it is certainly

reasonable to expect the true velocity structure to be considerably more complex

than the best amplitude model indicates. We would have to conclude this even
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if we had no a priori information on the geology of the structure. Although we

demonstrated in Chapter 5 that perturbing individual model parameters by as much

as i10% decreased the variance reduction, this is by no means a justification for

claiming the modeled velocity structure to be accurate. These kinds of tests tell us

nothing about alternative models that could be obtained by allowing velocities and

Q to vary within each structural component. Furthermore, our low frequency data

would not be capable of constraining such details, even if we had the capability of

modeling them. The use of higher frequency data, as mentioned at the outset, would

be more sensitive to structural detail, but we would need much better instrument

coverage than we had in order to constrain these details.

In light of the major differences between the ray-tracing and Aki-Larner meth-

ods, and between the types of data used, it is not surprising that we obtained a

different model for the shallow caldera structure in each case. The ray-tracing is

very sensitive to the P-wave velocity structure only, and the amplitude data, mod-

eled with the Aki-Larner method, were dominated by the large-scale Q structure.

Thus the P-wave delay data could not detect the low Q zone and the amplitude data

could not detect the deeper low velocity zone. Beyond these basic differences in the

methods and the types of data, our approaches to modeling the shallow structure

were also quite different, as described above. We modeled the caldera fill for the

ray-tracing only with the intent of isolating the minimum effects of deeper struc-

ture, and therefore obtained only a single correction layer with minimum allowable

dimensions and velocity needed to represent the average effects of the true struc-

ture. In Figure 6.1 we have superimposed the two models on the same plot. The

solid lines show the best amplitude model of Figure 5.1 and the dashed lines show
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COMPARISON OF BEST AMPLITUDE AND P-DELAY MODELS
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Figure 6.1 Direct comparison of the two best models obtained from the modeling efforts in

Chapters 4 and 5. Solid lines show the best amplitude model and dashed lines show the best ray

model. The hatched area shows the range of ambiguity in the overall depth of the caldera fill

interface for the ray model.
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the range of best ray models defined by Figures 4.2 and 4.9. The acceptable range

of overall depths for the caldera fill interface in the ray model is indicated by the

hatched area. This plot demonstrates that the maximum depths of the surface lay-

ers are similar in both models beneath the caldera. Although the amplitude model

is subdivided into regions of higher and lower velocity, 4.5 km/sec at the surface

and 3.0 km/sec in the LQZ, these velocities bracket that of 3.2 km/sec used in the

ray model.

To obtain perfect consistency between the two models would require additional

structural complexity which would be impossible to define uniquely, given the lim-

itations in the data and in the modeling methods. As examples, the amplitude

model should have a deeper caldera fill beneath the southeastern ring fracture and

the ray model should have a subdivided surface layer. We should point out that the

ambiguity in the delay modeling, mentioned above, implies that a low velocity zone

could be placed within the existing caldera fill correction layer without changing

the results, as long as it produces similar amounts of additional delay at all caldera

sites. However, since we have already managed to fit both types of data well with

the simpler models, we cannot justify a need for increased complexity based on

model inconsistencies alone. On the other hand, we could justify the use of more

complex models if they were capable of improving the residual variance without

reducing the predictability of the synthetic solutions. In the present case, this con-

dition is not satisfied and is the main reason why we restricted the model structures

to relatively simple shapes. The fact that the general features of the caldera fill

layer are at least similar in the two models lends support to the approach we have

taken of determining the simplest possible structures which produce a high degree
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of consistency between the synthetic and observed data. Increased site coverage

within the caldera would be required to resolve further the secondary differences

between the two models.

6.2 Interpretation and Discussion

If we combine the major features of our best ray-tracing and amplitude models,

we obtain a general picture of the caldera sub-structure which is consistent with

the phases of its known volcanic and thermal evolutions following the last Bandelier

ash-flow eruption 1.12 Ma. The major stages in the formation of the Valles Caldera

were outlined in Smith & Bailey [1968] as follows. 1.) Doming and swelling on a

regional scale of the pre-existing Jemez volcanic field and local formation of ring-

fractures above the Valles magma chamber. 2.) Eruption of the second member

of the Bandelier Tuff through the established ring-fracture system. 3.) Caldera

formation due to collapse of the roof of the Valles magma chamber and subsidence

of the central caldera block along the ring fractures. 4.) Caldera lake formation

and eruption of the early rhyolites, during which approximately 600 m of caldera fill

accumulated on top of the subsided central block. 5.) Resurgence and doming of

the central caldera block due to renewed magma rise, during which time the middle

period rhyolites were erupted from the northwestern ring fracture zone and from

the longitudinal graben at the center of the dome. 6.) Eruption of the late period

rhyolites as isolated domes in the moat area between the resurgent dome and the

topographic caldera rim. 7.) Hot spring activity in the western part of the caldera

and erosion of the caldera fill. These seven basic stages were recognized by Smith

& Bailey [1968] as being common to the development of all Valles-like resurgent
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calderas that they examined. The Valles Caldera is currently in the final stage

above, which terminates the cycle. The most recent volcanic activity in the caldera

occurred about 100,000 years ago [Heiken & Goff, 1983].

We propose that our modeling results are consistent with the general structural

features one might expect to have been formed by the processes governing stages 3.)

through 7.) above. Specifically, our low Q zone is consistent with a highly fractured,

partially water-saturated volume of material which could have been formed by the

process of post-subsidence magma rise and caldera floor resurgence, followed by

development of a large hydrothermal system. Smith 6 Bailey [1968] favored magma

rise as a mechanism for resurgence in Valles-like calderas over laccolithic intrusion

or forcible injection of other types of bodies into the collapsed caldera floor block.

One of the reasons they gave for this preference was that they were unaware of

any mapped laccolithic domes which displayed the complex fault patterns typical of

domes in resurgent calderas. Thus they proposed that doming in this case involves

the deformation of the entire caldera floor block, which necessarily must have a

minimum diameter defined by the ring-fracture zone. In addition to this upward

deformation, both surface volcanism and injection of magma into fracture systems

within the floor block can also occur, as evidenced by the middle period rhyolites

which erupted during formation of the Redondo dome. Adding to this the pre-

resurgence alluvial and volcanic deposits of the caldera fill, the numerous post-

resurgence rhyolite eruptions, and the multi-layered volcanic tuff and sedimentary

structure of the original pre-collapse caldera floor block, it is clear that the near-

surface structure within the ring fracture must be extremely complex and highly

fractured. It would be surprising if the material directly beneath the resurgent dome
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did not possess the strongly attenuating properties that we observed for seismic

waves.

O'Connell 8 Budiansky [1977] calculated elastic moduli and seismic Q for fluid-

saturated cracked solids. They found that Q decreases with increasing crack density

and can reach values less than 10. Also, for a water-saturated rock, they found that

if the cracks had a uniform distribution of aspect ratios then Q can be relatively

frequency independent. This was attributed to a linear superposition of individual

relaxation peaks [Liu et al., 1976] which depend on crack geometry and thus on

frequency. They also discussed two possible mechanisms for attenuation, which for

a given crack geometry, produce two attenuation peaks with different characteristic

frequencies. These mechanisms are 1.) induced fluid flow between cracks; and 2.)

relaxation of shear stress in the fluid. It is very likely that water infiltration in

the rocks beneath the caldera may contribute significantly to the high attenuation

we observed at the inner four sites. As discussed in Chapter 1, the Valles Caldera

possesses a highly developed hydrothermal system, as evidenced by the numerous

active hot sulfur springs scattered around, near and inside of the ring-fracture zone.

The major features of the hydrothermal system have been mapped by Goff et al.

[1988] and indications are that significant water-saturation may exist to depths in

excess of 2 km near the resurgent dome (see Figure 1.3). In fact, the site where we

observed the strongest S-wave attenuation, ALM, was installed within 0.5 km or less

of a minor hot spring. Although local variations in near-surface water concentration

may account for some of the observed variations in attenuation, this view cannot

replace the need for a much larger zone of nearly uniform low Q, primarily because

the attenuation is so strong at such low frequencies. But it is reasonable to expect
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that some large portion of the uplifted and fractured caldera floor must contain a

significant amount of water, and in light of O'Connell & Budiansky's work, this

could lend support to the extremely low value of Q that we found.

Our results for the LQZ represent a unique observation in seismology. We are

aware of no other attenuation study which yielded such low values for Q at such low

frequencies. Furthermore, it is rarely possible to define Q-structures as distinctly

as we have because usually Q is too high to allow its effects on seismic waves to

be isolated so clearly. Previous studies of volcanoes have found that Q is typically

lower than in other tectonically active regions. Fehler, Roberts & Fairbanks [1988]

determined that Q for 6 to 32 Hz coda waves at Mount St. Helens has values in the

mid to lower 100's. Their results were restricted to higher frequencies because the

coda-wave method requires the use of local earthquakes. Chouet [1976] obtained

similar results for coda Q at Kilauea Volcano in Hawaii. The Valles Caldera differs

considerably from these volcanoes in many ways. First, the size and complexity of its

magmatic system are much greater. Secondly, the process of collapse and resurgence

has imparted a particulary complex upper-crustal structure to the caldera. Finally,

the large hydrothermal system in the caldera is a major feature that is absent in

these other volcanoes. This last feature is perhaps the most important aspect of our

interpretation of the LQZ. If in fact some major contribution to the strong observed

attenuation arises from water saturation, then the search for low Q zones in known

geothermal regions may prove to be an excellent target for defining the approximate

volumes of existing hydrothermal systems.

An interesting comparison with another geothermal system can be made from

the work of Majer & McEvilly [1979]. They studied the seismic properties of the
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vapor-dominated reservoir at The Geysers geothermal field in northern California.

Using explosions and microearthquakes as local sources, they found that the shal-

low, vapor-dominated portions of the reservoir had higher Q than its surroundings,

whereas the deeper portions had significantly lower Q. They suggested a possible

interpretation that the lower portion contains significant amounts of pore water.

The major difference in the Valles Caldera is that the hydrothermal field is an en-

tirely fluid-dominated system, and the higher Q associated with steam reservoirs

is not observed there. Although Majer & McEvilly reported Q values only as low

as about 10, their data and their Q analysis were considerably different from ours.

They studied only P-wave attenuation for the first half-cycle, their data were re-

stricted to frequencies above 1.0 Hz, and their Q analysis was based on differential

path attenuation relative to assumed Q values at a reference site. Our amplitude

modeling was for P and S scattered waves at lower frequencies and we did not have

to define Q as a relative parameter in our models. Given these differences in the

methods, the similarities between the results for the low Q zones are encouraging.

It would be most interesting to repeat our experiment in other geothermal areas.

Previous seismic studies have also indicated that an attenuating anomaly may

exist somewhere beneath the caldera. Suhr [1982] used a modified fan-shooting

method to detect a large P-wave shadowing anomaly at considerable depth. Using

recordings of mine blasts which had passed beneath the caldera and to the north

and south of it, he delineated a low Q zone approximately 16-20 km in diameter

located at approximately 20 km depth beneath the caldera. This anomaly is much

deeper than our LQZ and may be related in some way to the deep low velocity

zone of our ray model. However, Suhr's quantitative results are speculative at best,
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as he himself states, because of the poor control he had over numerous aspects of

his experiment. He clearly points out these problems in his report. In addition,

Felch [1987] gave a very good review of Suhr's work, so we will not discuss the

shortcomings in detail here. Qualitatively, though, there can be no doubt that

Suhr observed anomalously low amplitudes for waves which passed beneath the

caldera. He interpreted the attenuating zone as being due to a region of partial melt.

Felch also used mine blast data to observe S-wave shadowing at the one station he

had inside the caldera, which was near our site RDT. Although the amplitudes

he observed for S and Lg phases were extremely low in the caldera he could not

uniquely attribute this effect to either a near-surface anomaly or to deeper structure.

Felch also used a spectral ratio technique to characterize the relative difference in

P-wave attenuation between the one caldera site and a reference site well outside.

This method provided results only for relative differences in 1/Q between the two

sites. However for one of his events, the spectra at about 1.0 Hz showed a decrease

in amplitude of about 50% between the outside site and the caldera site. This

is remarkably similar to our observations for the vertical component teleseismic

data recorded at SAM compared with the inner caldera sites on array 2, shown

in Chapters 2 and 5. So there do exist a few independent observations besides

our own which also indicate that attenuation is quite high inside the caldera. The

speculative results of Suhr [1982] suggest that some part of the observed attenuation

may be due to the much deeper low velocity zone, for which we could not model

amplitudes. There are two reasons why we believe that such effects should not be

significant in our data. First, the depth of the inclusion should cause the attenuation

pattern to shift laterally along the surface as the angle of incidence changes, and we
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observed no significant dependence of the amplitudes on incidence angle. Secondly,

the pattern would probably not vary from site to site as strongly as we observed

because the low amplitudes in the caldera were related strongly to the proximity

of the recording sites to the thickest portions of the LQZ, and this effect would be

smoothed out if the attenuation zone was not shallow. So we find no contradictions

to our shallow LQZ in any previous studies of the region.

We now turn attention to the interpretation of the low velocity zone in the best

ray model. There is certainly no doubt in any of the literature on the evolution of

the Valles Caldera that a large, shallow, silicic magma chamber was responsible for

at least the two major caldera forming eruptions of 1.1 and 1.4 Ma. The range of

P-wave velocities of 3.5 to 4.2 km/sec that we determined for the LVZ is probably

too high to consider the inclusion as completely molten. For the cooling basaltic

lava lake of Kilauea Iki, Hawaii, Aki et al. [1978] used an active seismic refraction

survey to determine that the P-wave velocities varied between 2.2 and 0.8 km/sec

in the fractured upper crust and could be as low as 0.9 to 0.3 km/sec in the deeper

partially molten to molten portions of the lake. With these velocities as a lower

limit we cannot assume that the LVZ is completely molten. This is in agreement

with the interpretation of Suhr [1982] that the anomalous deep zone of attenuation

he found is probably due to partial melt.

Smith & Shaw [1975] estimated the initial volume of the Valles magma cham-

ber to be approximately 1000 to 4000 km3 . Smith & Bailey [1968] estimated the

volume of magma required to account for resurgent doming to be approximately 15

cubic miles. This is simply the amount of additional magma required, after caldera

collapse, to push the caldera floor block up to its present height, and the main
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point here is that one possible explanation for resurgence is through replenishment

of the depleted magma chamber. Based on the estimates by Smith & Shaw [1975] of

the initial volume and heat content of the magma chamber, Kolstad & McGetchin

[1978] performed numerical calculations for various heat conduction models in order

to predict the thermal evolution of a cylindrical pluton, using a variety of initial

conditions. They used a radius for the cylinder of 8 km and lengths from 15 to 25

km. For these tests the pluton was buried at a depth of 3 km. They also tested

the 8 km x 20 km pluton at a depth of 5 km. Five major assumptions were used

for their modeling. 1.) heat transfer is by conduction only; 2.) no crystal settling

or differentiation is allowed; 3.) the pluton is emplaced instantaneously; 4.) there

is no heat transfer due to mass transfer; and 5.) the magma is not replenished

after it has been emplaced. This last assumption is perhaps the most serious since

the history of continued volcanism after caldera collapse implies that the magma

chamber did not become static after resurgence was completed. By allowing the

pluton to cool over a period of 1 million years, Kolstad & McGetchin found that the

percent of melt remaining after a given elapsed time was proportional to the initial

volume of the magma chamber and to its depth of emplacement. After 1 million

years, the 8 km x 25 km pluton still had about 25% of the original melt remaining,

but the 8 x 15 pluton had less than 10% left. The 8 x 20 pluton at 5 km depth

required approximately 15% more time than the 3 km deep pluton to reach a given

percentage of remaining melt.

We can roughly estimate the volume of the LVZ in our best ray model, assuming

that it is axi-symmetric in three dimensions, using either a sphere with a radius of

4 km, or a cylinder with radius 5 km and length 8 km. These two cases should
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give reasonable lower and upper estimates for the volume, respectively. For the

lower estimate we obtain approximately 270 km3 for the volume, and for the upper

estimate we get approximately 630 km3 . The Kolstad & McGetchin models above

for the three different initial sizes of pluton yielded, after cooling for 1 million years,

a range of remnant melt volumes of approximately 150 km3 (for the 8 x 15 initial

pluton) to 1260 km3 (for the 8 x 25 initial pluton). So our results fall well within

the range of their calculations. Since their assumption of no magma replenishment

is probably not correct, we cannot say much about the probable size of the initial

magma chamber based on its present size. This is also true because we were not able

to place an upper bound on the height of our LVZ. It is encouraging, though, that

an independent calculation based on heat flow predicts generally similar results as

what we obtained using P-wave delays. So we conclude here that the minimum size

we obtained for the LVZ is consistent with what we might expect the approximate

size to be for a zone of melt within an initially much larger magma chamber which

has cooled and crystallized significantly over the last million years.

If we follow the limiting case of Kolstad & McGetchin's calculation, for which

the initial volume of the magma chamber was less than about 3000 km3 and magma

replenishment did not occur, then the original Valles magma chamber would be com-

pletely cooled and crystallized by now. However, as discussed in Chapter 1, there

is evidence from temperature logs taken in drill holes at Fenton Hill that significant

reheating has ocurred in the region as recently as 40 ka [Harrison et al., 1986].

Furthermore, the very existence of high temperatures and heat flow at Fenton Hill,

which is located outside of the caldera, may be an indication that the Valles magma
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chamber originally extended well beyond the edges of the caldera. Also, the post-

resurgence volcanic activity in the caldera has been well documented. As discussed

briefly in Chapter 1, Doell et al. [1968] reported potassium-argon ages for the series

of late rhyolite dome eruptions in the caldera which show a clear counterclockwise

progression towards younger ages. The oldest of these eruptions occurred about 1.04

Ma and formed the eastern-most dome, named Cerro Del Medio. From this dome,

the ages decrease steadily counterclockwise to the large western dome, San Antonio

Mountain, dated at 0.5 Ma, and the southern-most, South Mountain, dated at 0.49

Ma. In between San Antonio and South Mountain, the Banco Bonito Obsidian flow

represents the last volcanic episode at 0.13 Ma [Self et al., 1988]. So, regardless of

whether the original Valles magma chamber has completely crystallized or not, there

is clear evidence from the post-resurgence volcanism that significant magmatic ac-

tivity has continued up until geologically recent times. It is still not known whether

this activity resulted from reheating or replenishment of the main magma chamber

or whether subsidiary magma bodies have existed for brief periods of time. What

is clear is that there is no reason to expect that the entire upper-crustal structure

beneath the caldera is completely crystallized. So in light of this discussion, it is

not unreasonable to interpret our LVZ as a zone of partial melt.

There have been few attempts in the past to determine the local velocity struc-

ture beneath the Valles Caldera. The most notable are the CARDEX time-term

analysis of Olsen et al. [1986] and the P-wave travel-time inversions of Ankeny et

al. [1986] and Felch [1987]. The major deficiency in all of these studies was the

lack of station coverage inside the caldera, where at most only one station was op-

erating. Although Ankeny et al. [1986] discovered a very large but weak velocity
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anomaly beneath the caldera, their results are ambiguous because alternative mod-

els could also reproduce their data, due to the poor local coverage of the caldera

region. Even with the good coverage that we had for our P-delay data, we could

not constrain all parameters of the LVZ. Although we cannot completely rule out

Ankeny et al.'s view of the velocity anomaly, it is not uniquely constrained by their

data. Furthermore the size of their anomaly is much too large to be consistent

with the thermal evolution calculations of Kolstad & McGetchin discussed earlier.

Felch [1987] also concluded that the results of Ankeny et al. were ambiguous. He

performed a travel-time inversion using a slightly different parameterization scheme

for his models than that used by Ankeny et al. Felch's major conclusion was that

there is no velocity anomaly associated with the deep caldera structure. Again, this

result was due primarily to the lack of instrument coverage inside the caldera. So

although our LVZ model is quite different than what other investigators have found,

it actually represents the only conclusive evidence presented to date in support of

a large deep remnant magma chamber beneath the Valles Caldera.

There have been several non-seismological investigations which yielded esti-

mates for the depth to the top of original Valles magma chamber, prior to the erup-

tion of the Tshirege member of the Bandelier Tuff. Nielson & Hulen [1984] used a

structural model for dome resurgence to estimate the thickness of the overburden

above the causative magma chamber. They used a formula derived by Johnson

[1970] for the bending of a circular plate in response to a laccolithic intrusion. The

formula relates the diameter of the dome to the depth and pressure of the magma

chamber and the dome amplitude. To simplify his formula, Johnson had to assume

that the magma pressure was constant and that all dome structures had a similar
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amplitude-to-diameter ratio. This allowed him to obtain a very simple linear re-

lation between dome diameter and overburden thickness. To justify the extension

of Johnson's laccolith formula to resurgent domes, Nielson & Hulen showed that

many resurgent caldera domes had approximately the same amplitude-to-diameter

ratio that Johnson used. For the Redondo dome, then, they estimated the depth

to the causative magma chamber to be approximately 5 km. After cooling for a

million years the top of the molten zone should be significantly deeper than this.

So it appears now that the depth to the top our LVZ, as shown in Figure 4.2, may

be reasonable, even though we could not constrain this feature of the model with

our data. If we assume that the height we obtained is correct, then we can place

the present top of the melt between 6 to 9 km depth beneath the peak of Redondo

Dome. The estimated overburden thickness of 5 km is also nearly identical to the

maximum depth to the bottom of our low Q zone, which is very encouraging.

Evidence from two petrological studies also indicate that a depth of about 5 km

is reasonable for the pre-collapse magma chamber. Sommer [1977] used the volatile

contents in the upper Bandelier Tuff to infer a depth of burial of approximately 5

km. Warshaw & Smith [1988] examined chemical compositions of various compo-

nents in the upper Bandelier Tuff and determined that the earliest erupted material,

at the top of the magma chamber, was formed at a temperature and pressure cor-

responding to a depth of 5-7 km. So our interpretations here of the major features

in our two models are consistent with the results of numerous non-seismological

investigations in the area, as well as with the known history and evolution of the

caldera from the time of its collapse to the present. Although the details of the
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caldera's sub-structure have yet to be determined, we believe that the general fea-

tures presented here are well-supported and can serve as good starting points for

higher resolution studies.

6.3 Summary and Conclusion

We recorded a suite of high quality teleseismic events at numerous sites along

a line spanning the ring fracture of Valles Caldera and at several sites outside of the

caldera on the same line. We demonstrated that the variations in spectral amplitude

of the scattered waves, for frequencies from 0.2 to 0.8 Hz, displayed a very clear

pattern of strong relative lows at sites inside the caldera relative to sites on the

ring fracture. All three components of motion displayed the same general pattern,

and to first order this pattern did not vary with incidence angle or with direction

of approach. By modeling the relative amplitude variations across the instrument

array for the vertical and radial components, we obtained a structural model for a 2-

dimensional vertical section of the caldera beneath the array line. The major feature

of this best-fitting model was a large, shallow attenuating zone located at the bottom

of the surface caldera fill layer. In order to reproduce the very low amplitudes in

the caldera, we needed to use values of Q = 1, a = 3.0 km/sec and # = 1.29

km/sec in the attenuation zone. We demonstrated the internal reliability of the

synthetic solutions for this model, discussed numerous alternative models and gave

reasons why these alternatives cannot reproduce the data as well as a simple low Q

zone does. Although our data clearly contain effects of 3-D structure, we discussed

how these effects were minimized by the design of the experiment, method of data

analysis and restriction to considering each component of motion separately. We
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also demonstrated that our 2-D model reproduces the amplitude variations of the

first P-wave pulse extremely well, and this type of data should be nearly devoid of

3-D effects. We found that our model fit all data recorded on array 2 extremely well

for events from the northwest, but less well for southeastern events. We attributed

this to the symmetric interface shapes used in the model and concluded that the

secondary details of the southeastern portion of the caldera structure were not

well-represented in our model. We could not fit the data from array 1 because

the strength of scattering was not strong enough in the caldera relative to the

sites outside. We attributed this to deeper structure which we could not include

in the model due to limitations of the modeling method. But since the local Q

effect dominated so strongly within the caldera, the effects of deeper structure were

negligible in the array-2 data. So our amplitude model is only representative of the

shallow local structure directly beneath the caldera.

We also modeled observed P-wave delay times for events from the northwest and

southeast. We found that the delays for southeastern events were much stronger

than for northwestern events. Through ray-tracing we found that northwestern

data could be reproduced by an irregularly shaped low velocity layer at the surface,

representing the caldera fill. This layer was used mainly to correct the delay data

so that the effects due to deep structure could be isolated. To fit the southeastern

data, a deep low velocity zone was needed beneath the caldera. By adjusting its size,

shape, location and P-wave velocity, we were able to fit all of our delay observations

extremely well. The best fit was obtained for a lens-shaped inclusion approximately

17 km across at its widest section and 8 km in height with a P-wave velocity in

the range of 3.5 to 4.2 km/sec. Although we could not constrain the maximum
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height and velocity of this low velocity zone, we gave reasons why neither of these

parameters could be any smaller. The width, horizontal position and average depth

to the center of the inclusion, however, were constrained quite well by the width

and location of the observed zone of the strongest delays at the surface and by the

strength of the delays themselves.

Although the two methods yielded different views of the near-surface struc-

ture, the discrepancies were attributed mainly to the difference between the two

techniques and the structural simplifications used to maintain control over the for-

ward modeling approach in each case. The major features of each model do not

pose any contradictions. We interpreted the deep low velocity zone as the residual,

partially molten core of the original caldera forming magma chamber. We demon-

strated that the approximate size and depth is consistent with other studies in which

the properties of the original pre-collapse magma chamber were estimated by non-

seismological means. The shallow low Q zone was attributed to a highly fractured

and partially water-saturated region of the lower caldera fill layer. This interpre-

tation is consistent with the extreme deformation of the caldera floor block which

must have accompanied dome resurgence. The maximum depth of the low Q zone

is consistent with the estimate of Nielson & Hulen [1984] for the presumed thickness

of overburden which was uplifted by magma pressure to create Redondo Dome. The

value of Q = 1 used in our model is surprisingly low but is reasonably consistent

with the calculations of O'Connell & Budiansky [1971] for water-saturated cracked

rocks, where they predicted values of Q smaller than 10 for certain extreme cases.

This condition must certainly exist to some significant extent beneath the Valles

Caldera, as evidenced by its well-developed hydrothermal system.
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The combined view of a deep cooling remnant magma chamber beneath a large

zone of water-saturated fractured material near the surface represents a predictable

outcome of the seven stages of resurgent caldera formation outlined by Smith &

Bailey [1968]. Not only are our results consistent with widely held theories about

the evolution of the Valles Caldera, they also provide additional support to these

theories in the form of direct evidence from seismic data.

6.4 Suggestions for Future Work

The two largest deficiencies in the present study were the limited instrument

coverage and the limited capabilities of the Aki-Larner method. These necessitated

the restriction to two dimensions and the use of very simple models. The ray-tracing

also suffered from unfortunate holes in the site coverage, as well as from the use

of only steeply incidence P-wave data. We deployed instruments along only one

line across the caldera, and similar experiments for different azimuth lines would be

highly recommended, given that the same restrictions above were still imposed. This

would help resolve some of the unanswered questions concerning the 3-D structure

that we encountered. In hindsight, we now realize also that it is more important to

give equal coverage to the entire caldera rather than to lump most of the instruments

on one side as we did. Presumably, then, we would also observe strong P-wave delays

between our sites RDT and CLJ for northwestern events. By far the best suggestion

we can make, though, is to blanket the entire caldera with a two-dimensional array

of closely spaced instruments, all with similar response. This is a rather tall order,

but is probably the only way in which the detailed 3-dimensional structure can be

constrained adequately. This should also allow one to relax the restriction of using
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only teleseismic data, because it may then be possible to characterize systematic

variations in amplitude for higher frequencies and for shallower incidence angles.

To interpret this higher frequency information, though, a modeling method will be

required which is more versatile than the low-frequency smoothly varying layered-

structure approximation of the Aki-Larner method. The restriction to small-slope

interface irregularities will have to be eliminated completely. Waveform modeling

techniques are improving steadily with continuing advances in both theory and

computing capabilities. Due to its structural complexity on a fine scale, the Valles

Caldera will certainly remain a likely candidate to try new modeling methods on

for some time to come.

In addition to the above improvements for future studies in the Valles Caldera,

it would also be most informative to carry out experiments similar to ours at other

volcanic and geothermal areas. A comparison with geothermal areas that are not

related to resurgent calderas, as well as with volcanic structures that do not posess a

significant hydrothermal system, should help to separate the numerous component

effects that are combined in the Valles Caldera.
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APPENDIX 1

Detailed Formulas for Setting Up the Aki-Larner P-SV Problem

In Chapter 3 we showed the basic steps required to obtain the boundary con-

dition integral equations (3.16) which must be solved simultaneously to obtain the

unknown wave potential coefficients, Aj(w, k). By imposing a periodicity require-

ment on all functions of x the integral equations were transformed to the equivalent

infinite-sum equations (3.18). Finally, by truncating the wavenumber summation

index and Fourier Transforming all functions of x, the square linear system of equa-

tions (3.21) was obtained which can be solved directly for discrete values of Aan).

These coefficients may then be substituted into either of equations (3.7) or (3.8),

depending on which medium we are considering, to obtain the k-decomposed total

wave potentials, <1 and T, at an arbitrary (z, z) location in the model. The k-

decomposed displacements, u and w, are then computed using equations (3.5) and

finally the integrated displacements, U' and i', are obtained by a simple summation

over kn:

N2

(x7z7o= W E u(x,z,w,Ikn),
n= -N1

(A1.1)
N2

w^(x,z,w) = j w(x,z,o,k.).
n=-N1

To set up the linear system -A = I_ in equation (3.21) we need to evaluate ex-

plicitly the displacements, u(x, z, w, k) and w(x, z, w, k), and tractions, Tz(x, z, w, k)

and T,(x, z, w, k) at each interface. To keep the notation simple, all formulas will

be given as functions of x and k, realizing that they must eventually be discretized
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over these variables. When the medium index, p, corresponds to a layer, the dis-

placements may be written by combining equations (3.7) and (3.5):

u,(x, z,w, k) = ik it , k) es's - iv,' 9(w, k) e"'"

+ik *(w, k) e-ivpz + iv' *(w, k) e-i, z eikz

(A1.2)
W,(z, w, k) = i $ (w, k) eV''' + ik Xpd(w, k) esz

-iv, 4;(w, k) e-i",z + ik %;(w, k) e-V"z eikz

In the halfspace we have p = P and the expressions for up and wp are obtained

using equations (3.8) and (3.5):

Up(X, zw , k) = ik td (w, k) e'"PZ - iv', jp(w, k) e'"" eikz + iko ei(kovoz),

Wp(X, z, w, k) =[iv , k) e"" + ik I',(w, k) e"I] eiks - ivo ei(koz-voz).

(A1.3)

The three required k-decomposed stress components, S,, S,. and S.,, for a

layer can be obtained by putting equations (A1.2) into the k-decomposed versions

of equations (3.13). It will be convenient first to eliminate A explicitly from the

resulting expressions for S,_ and S.,. Terms involving both A and p will appear in

only two forms, and these may be replaced by terms involving only p through the

following identities:

AK2 + 2pv 2 = p (K2 - 2k 2),

(A1.4)
K. + 2pk2 =p(K - 2K + 2k2 ).
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The three stress components for a layer can then be written as:

Sx)(X, z, w, k) = Ip w k) e" + 2ky' W (w, k) e"I"

+ F(P "D(u, k) e-inpz - 2ku "%F(w, k ) e-iv P ie

Sjf(zz,w, k) = FP) (w, k) e " - 2ky'I' (w, k) e"P"

+ F "Du(w, k) e-5" + 2ky' ',"(w, k) e-i"," eik,

Sl(, z, w, k) = p, -2kv, 4(w, k) ei"V, - F I (w, k) e'";z (A1.5)

+ 2kv,, ',(w,k) e-inP - F P(w, k) e-i&'z] ikx

where: F - 2K ,-K,- 2k 2
1 ap

F( = 2k 2 - K,

y,= p, /.

Similarly, putting equations (A1.3) into equations (3.13), we can write the stress

components in the halfspace, p = P, as:

= 4tp PF $(w, k) ei'P' + 2kv' I'p (w, k) ei"z] ekz + F(* ei(ko z-vo

euPz - 2kv' 9p(w, k)

[-2kvp $4(w, k) ei"PZ - F( P(w, k) e e + 2kOvO ei( koIoz)

where: F(*) 2K, -LK j, - 2kg,

F* 2k - K.
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Using equation (3.11) for the unit normal along each interface, the tractions in

each medium, evaluated at each interface, can be obtained by substituting either

equations (A1.5) or (A1.6) into equations (3.12).

We are now in a position where the boundary conditions can be set up, using

the integral equations (3.14) and (3.15). As discussed in Chapter 3, the first step

is to move all functions of k to the left-hand sides of equations (3.14) and separate

the unknown wave potentials to yield the general expression for each boundary

condition given in equation (3.16). The simplest model in which all three basic

forms discussed for this equation will appear contains two buried irregular interfaces

in addition to the irregular free surface topography. Once we have set up the

problem for this model, additional layers may added by reproducing the expressions

for boundary conditions at the layer-layer interface. The free-surface and layer-

halfspace expressions occur at most only once in any given model. The motion-stress

terms for transmitted and scattered waves, gij(x, W, k), and for the source wave,

h;(x, w), must be evaluated explicitly along each interface for the media above and

below. Clearly hi will be non-zero only in the halfspace and gij will be non-zero only

for the wave potentials, Ai(w, k), which contribute to the solutions in each medium

(see Chapter 3 for discussion). In the following we give the explicit expressions

for gij and hi for setting up the 2-layered problem and will then describe how to

expand the problem to 3 or more layers. For the 2-layered model, the indexing

scheme presented in Chapter 3 will identify the three media by p = 1, 2, 3, with

p = 3 corresponding to the halfspace. The interfaces are identified by p = 0,1,2

with p = 0 corresponding to the free-surface.
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The index j identifies the various unknown wave potentials, and in the present

case there are 10 of these (4 in each layer and 2 in the halfspace). The index i

identifies the 10 boundary conditions required to solve for the potentials. The order

in which the potentials and boundary conditions are assigned to j and i is arbitrary,

as long as one keeps careful track of how the resulting linear system is filled with

these elements. We have chosen here to order the boundary conditions beginning

with the bottom-most interface, such that i = 1, 2, 3, 4 corresponds to the conditions

on u, w, T,, T,, respectively, at interface p = 2. The same boundary conditions at

interface p = 1 are indexed as i = 5,6,7,8 and the two traction conditions at the

free surface, p = 0, are i = 9,10. For the wave potentials we begin the index j

with the up-going potentials in the deepest layer, $i and @2, and end with the

down-going potentials in the surface layer, 4f and '. The resulting linear system

of integral equations, g A = h, will then have the following form, where we use the

subscript 0 to denote i,j = 10:

911 912 0 0 gis 916 g1T gis 0 0 \

921 922 0 0 925 926 927 928 0 0 Uh2
gai 932 0 0 g35  g36 g3 938 0 0 ha
g41 g42 0 0 945 946 g4T g48 0 0 Ph4
g5 952 g53 g54 0 0 957 g58 959 950 , 3 0

g61 962 963 g6 4  0 0 7 g68  g g96 - 0
971 972 973 gT4 0 0 g77 g78 979 g70 4 0
981 g82 983 984 0 0 98 g8 gso 0
0 0 g93 994 0 0 0 0 999 9904 0
0 0 903 904 0 0 0 0 909 goo/ \ d 0

(A1.7)

In the following formulas we assume that all expressions for gij must be multi-

plied by ei" before being discretized and FFT'd. Also, all stress terms have been

divided by (1 + s ,)1/2 in order to simplify the formulas. Keep in mind that all gij
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are functions of x and k, and all hi and interface topographies and slopes, (p and

S,, are functions of x. For the boundary conditions on u at interface 2 the following

expressions are needed:

1= ike-V22

g16 i = Iva

912 = iV2e-i"2*

917 = ike "2 4

h1 = ikoe-'A

gis = -ikesVaC

g1s = -iv e 2 2 (A1.8)

For w at interface 2:

921 = -iv 2 eV2 
4

926 = -ike" w

922= ike-i' 4

g27 = 'iv2e V 4

h2 = -iVoe-i"* -

g25 = -iv 3 e "* 4

g28= ike i' 4 2

For T, at interface 2:

g31 =(p2/P)(F - 2kv 2) e-"2 2

g35 = -(F s2+ 2kv 3) es*2

g37 = (P2/+)(F + 2kv 2 ) e"2 C2

h3 =(F(*82

g32 = -(P 2 /P3 )(2ku s 2 - F(2)) e-v2 4

g36 = -(2kv3s 2 + F a) ,',;a (A1.10)

938 = (P 2/P 3)(2kvis 2 + F e2 ),;

- 2kovo) e-o C2 .

For T. at interface 2:

g41 = ( p 2 /P 3 )(2kv 2 S2 - F 2 ) e-i"2C 942 = -(P 2 /Pa3 )(F 2 ) 2 + 2kv4) e"'i

g4 5 = (2kv 3 s 2 + F2a)) eaC 946 = - 2kv') e'"I2 (A1.11)

g4 7 = -(P 2 /P 3 )(2kv 2s 2 + F 2 )) e"24 g48 = -(s 2 /P 3 )(F 2 )s2 - 2kyL) e"2C2

h4= (2kov s2 -F(*)) e-ivoCi.
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The remaining hi are all zero. So for u at interface 1 we only need the following gij:

g51 = -ike~ "2CL

g= ike-"' 1

g57 = -ike "2C

gs9 = ike"*'14

952 = -iV 2 e i2

954 = iVI e- i", C,

gs8 = ivIe"2C1

go= -ivIe

For w at interface 1:

961 = iV2e

g63 = - iVC

g67 = -iv 2e '2

g69 = iVie "1Cl

(A1.13)

968= -ike2

For T. at interface 1:

971 = -(F (si - 2kv 2 ) e-"24

g73 = (P1/p2)(F us - 2kv1 ) e-i"

g77 = -(F + 2kv 2 ) e"< CI

979 = (p1/p2)(F s + 2kv 1 ) evI1

For T, at interface 1:

981 = -(2kv 2s 1 - F 2 ) ei">1

g83 = (p1/p 2 )(2kvis 1 - F(1)) eivi4

987 = (2kv 2si + F 2 ) e"2C

989 = -( p 1/p 2)(2kvi s1 + F(1)) ei"" C

972 = (2kv'si - F (2 ) e-"I C

974 = -(p1/p.2)(2kv'si - F l) e"44

978 = -(2kVis 1 + F( 2 ) e'4C (A1.14)

970 = (p1 /p 2 )(2kvisi + F(1)) e"' C .

982 = + 2ku ) e-'"I

984 = -(p 1 /P 2 )(F21 s + 2kvi) e' 4 C

988 = (F s1 - 2kvz) e"'C (A1.15)

980 = -(pI1/ p2 )(F us 1 - 2kvi ) e"'
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At the free surface only 4 unknown potentials are involved. For T, we need:

g93 = (F "s 0 - 2kcvi) e~"1 4  g 4 = -(2kvis 0 - F,(') e" 4 k

(A1.16)
g99 = (F ls + 2kv1 ) eI",l goo = (2kCOs0 + F 1 ) e

Finally, for T, at the free surface:

g0 = (2kvi so - F(1)) e-"14  go4 = -(EF )8 + 2kvz ) e-"I o

(A1.17)

gog = -(2kv 1 s0 + F ' ) es"10 goo = -(F )s - 2kv, ) e"", o.

The expressions in equations (A1.8) through (A1.17) must now be evaluated

for each value of the discrete wavenumber, k,, and for each point x at which the

topography profiles are defined, remembering that the e'" factor must be included

in all gii. Next, gig and h; must be FFT'd over the x variable for each separate

kn. Then after truncating the FFT index to match the discrete-wavenumber index,

the matrix, G, and the source vector, H, can be filled as described in Chapter 3.

After solution of the linear system for the wave potentials in A, the displacements

or tractions at any location in the model can be easily computed by first making

appropriate substitutions into one of equations (A1.2) or (A1.3) for displacement,

and (A1.5) or (A1.6) for the stress components. The total integrated displacements

are then obtained by the summation over the discrete wavenumber as in equations

(A1.1). The integrated tractions are obtained from the stress components and unit

normals using equations (3.9) through (3.12), where now the integrals in (3.10)

are replaced by discrete summations over k.. We should also note that equations

(A1.2), (A1.3), (A1.5) and (A1.6) allow one to calculate separately the P-wave and
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S-wave contributions to the displacement and traction fields by simply substituting

only the 4 or * potentials individually. As we demonstrated in Chapter 5, this is

often very useful for understanding the effects that dominate a particular component

of motion.

Finally, to extend the above formulation to account for models with more

irregular interfaces, all we need do is reproduce the expressions in equations (A1.12)

through (A1.15) for each additional interface and update the indices p, i and j.

Specifically, to expand the problem for the 3-layered models we used in Chapter 5,

we proceed as follows:

Free-surface expressions: no changes

Interface 1 expressions: no changes

Interface 2 expressions: change index p in (A1.12)-(A1.15)

as 2 -+ 3 and 1 -+ 2

Interface 3 expressions: change index p in (A1.8)-(A1.11)

as 3 -+ 4 and 2 -+ 3

The resulting linear system will now have 14 integral equations in 14 unknowns

and the new entries may be inserted by following the same pattern shown above in

equation (A1.7) after increasing the maximum value for the indices i and j to 14 and

noting carefully where the appropriate non-zero entries should be located. This is

the largest problem that we were able to solve confidently on a VAX 8650 computer.

Approximately 12 Mbytes of either physical or virtual memory are required to run

the program for this problem. However, if physical memory is severely limited, the

amount of page-faulting required to run in virtual memory will greatly increase the

amount of real time needed to solve the large linear system. This is also dependent
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on the efficiency of the subroutine used to perform the LU decomposition and

Gaussian elimination. The VAX 8650 that we used at Los Alamos provided almost

all of the needed memory as physical storage, and one run for a single frequency

with the 3-layered models required approximately 30 minutes of CPU time. A

significant improvement to these storage and CPU requirements could probably be

obtained by taking advantage of the sparsity of the linear system, which increases

dramatically as more interfaces are added to the problem. We attempted this for

the present 3-layered case using an iterative conjugate-gradient method for solution.

We found that this method, although requiring less storage, took almost four times

as much CPU as used by the straight Gaussian elimination method. This was due

to the large number of iterations needed before the solution would converge. There

may be better methods which reduce both storage and CPU time and we highly

recommend that these should be tried. In the mean time, copies of the program

code used in this thesis are freely available from the author upon request.
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APPENDIX 2

A Versatile Equalization Circuit for Increasing

Seismometer Velocity Response Below the Natural Frequency

by Peter M. Roberts

(in press, Bull. Seism. Soc. Am., 1989)

ABSTRACT

A versatile and easily implemented circuit is described which increases the ve-

locity amplitude response of seismometers below their natural frequency in order

to extend the useful bandwidth to lower frequencies. The circuit employs a simple

design which counteracts the w2 rolloff of the seismometer by cascading two 1-pole

active low-pass filters in series. The low-pass stages are each summed with the unfil-

tered signal to maintain a flat unity amplitude response near and above the natural

frequency. The design, testing and field implementation are described for a version

of the circuit used with Mark Products L4-C 1.0 Hz seismometers. The design

produced a nominally flat response extending down to 0.1 Hz with tolerable sta-

bility over a wide range of ambient temperatures. Design procedures are described

so that the circuit may be easily modified for any arbitrary natural frequency and

range of desired equalization. The circuit can be installed very easily in nearly any

recording equipment with minimal modification of existing circuitry. An example is

shown of the measured and theoretical amplitude and phase responses for an exist-

ing seismic event recorder with and without the equalization circuit installed. The

agreement between the measured and theoretical responses is excellent for both of

these instrument configurations.
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INTRODUCTION

The concept of boosting short-period seismometer signals below the natural

frequency to obtain better signals at longer periods is not new. This has been

accomplished before by authors such as Daniel [1979] and Prothero & Schaecher

[1984]. The obvious advantages of this approach over the use of intermediate-period

sensors include increased ease of field installation, better tolerance to temperature

and leveling effects, and the lower cost of short-period transducers. The circuit

described here provides a gain boost inversely proportional to the w 2 rolloff of

the seismometer velocity amplitude response below its natural frequency, fnat. The

boost is applied over the frequency range of 0.1 faat to faat. The circuit gain flattens

out to unity above this range and to a large constant factor below this range. This is

accomplished by cascading two identical stages in series, each composed of a 1-pole

active low-pass filter, a unity-gain amplifier and a summing amplifier.

The circuit described by Daniel [1979] is similar in that it provides the w-2

amplification below faat, but it does not include the summation section needed to

maintain a flat response above faat. Thus its resulting response is intermediate-

period rather than broadband. Prothero & Schaecher [1984] have described a suc-

cessful broadband instrument with a useful bandwidth from 0.05 Hz to 10 Hz using

1.0 Hz seismometers. Their equalization circuit is integrated into a complete seis-

mic amplifier section (W. Prothero, personal communication, 1987) and provides an

increase in gain of approximately 100 at 0.05 Hz relative to the gain at 1.0 Hz. The

alternative circuit presented here provides a gain boost of 100 at 0.1 Hz relative to

1.0 Hz, yielding the correct w- 2 behavior. Furthermore, it is designed to be more

useful for modifying existing recording equipment since there is no need to replace
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or alter the amplifier or anti-aliasing filter sections. The cost of making the design

general-purpose, however, is an increase in power consumption over the Prother &

Schaecher design. This increase is due to the use of 6 op-amps to accomplish the

equalization as opposed to only 2 for their design. The 6 op-amps totaled consume

approximately 0.03 Watts of power on both the positive and negative 5-volt power

supplies. For most existing instruments this will be a small price to pay for the

increased bandwidth.

The design, construction, testing and field implementation of the present cir-

cuit were all performed in preparation for a teleseismic experiment in the Jemez

Mountains of New Mexico during 1987 [Roberts et al., 1987]. The circuits were

installed in existing portable digital event recorders, described in Fehler & Chouet

[1982], which were originally designed for recording short-period local earthquakes.

Figure A2.1 is a block diagram of a single recording channel, showing where the two

equalization stages were inserted in the analog circuitry of the instruments. The

dashed line indicates the old connection from the preamp output for the unequal-

ized configuration. Other than some minor re-wiring, no modifications were made

to any existing instrument components. The extended bandwidth greatly increased

the ability of the instruments to detect and record small first arrivals for teleseisms

as far away as 10,000 km (A ; 90*) with magnitudes at this distance as small as

mb = 5.5. The following describes the design, testing and implementation of this

circuit in sufficient detail that it may be reproduced as is, or easily modified by

those with little working knowledge of electronic circuit theory.
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EQUALIZATION STAGES

Figure A2.1 Schematic block diagram of circuit components for a single recording channel in

the instruments used in the Jemez Mountains. The locations of the two equalization stages are

shown in the middle of the analog signal path. The dashed line indicates the old connection for

the unequalized configuration.
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CIRCUIT DESIGN

The circuit presented here was specifically designed to equalize the velocity

amplitude response down to 0.1 Hz for Mark Products L4-C seismometers with

fnat = 1.0 Hz. The theoretical seismometer velocity response function may be

written as [e.g., Aki & Richards, 1980]:

-Gw 2
V(w) = -GW

2 + (V/cm/sec), (A2.1)
(Q2 _ W2) + 2iw(Q

where G = transducer sensitivity (V/cm/sec), w = angular frequency (27rf), 1 =

27rfaat and ( = damping constant. The output voltage amplitude response for a

constant input ground velocity is flat and proportional to G for frequencies above Q

and decays as w2 below Q. In order to extend the flat portion to lower frequencies,

a boost in gain must be applied which varies as w-2 over the desired range of

equalization, defined from faat down to the chosen low frequency cutoff of the applied

gain boost, feq. For the present application a factor of 100 boost is required at feq

= 0.1 Hz and the gain must flatten out to unity near and above faat = 1.0 Hz.

The simplest way to accomplish this is to sum an active 2-pole low-pass filter

with a unity-gain amplifier, requiring only 3 op-amps. However, this design suffers

from partial amplitude cancellation for signals near 1.0 Hz. This problem occurs

over a narrow band of frequencies around f = faat where the 2-pole filter gain is near

unity and its signal polarity is inverted due to a -180* phase shift (-90* for each

filter pole). Summation of the 2-pole filter with a zero-shift unity-gain amplifier will

produce a net output gain less than unity for these frequencies, resulting in a narrow

trough around f = faat in the combined amplitude response. To avoid this problem
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and maintain simplicity of design procedures it was necessary to split the 2-pole

filter stage into two separate 1-pole filters and sum each of these independently

with its own unity-gain amplifier. Since the maximum phase shift of a 1-pole filter

is -90* (near and above f.t) its signal polarity is never inverted and the net gain

after summation will never be less than unity. More details on this are given below.

The complete 2-pole equalization is then achieved by cascading two identical 1-pole

summation stages in series, requiring 6 op-amps.

Proceeding with the design, the transfer function for a 1-pole active low-pass

filter is [e.g., Anderson & Beeman, 1973]:

A
L(w) = 1 (V/V), (A2.2)

1 + iwRC

where A = signal gain at w = 0 (DC) and RC = time constant (secs) corresponding

to the desired low-pass corner frequency. Summation of this circuit with a unity-

gain stage forces the net gain back to unity for frequencies at which the low-pass

amplitude response is much less than unity. The total response of one summation

stage is then given by:

A
T(w) = 1 + 1 (V/V), (A2.3)

1 + wRC

Finally, the response function for the 2-stage cascaded circuit is simply the square

of equation (A2.3) and its DC gain is (1 + A) 2 .

The specific design of the cascaded circuit for a particular application amounts

to simply choosing appropriate values for A and RC as follows. The corner frequency

of the low-pass filter, given by fc = 1/(27rRC), corresponds to the so-called 3db point
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on the 1-pole amplitude response curve. Since the response does not have a sharp

corner at fc it is necessary to choose the 3db point at a frequency sufficiently lower

than the desired equalization cutoff frequency, feq, to obtain the proper gain. A

practical rule-of-thumb is to choose fc < 0.5 feq, which is low enough to place feq well

within the strictly w- 2 portion of the response. Then by setting RC = 1/(2rfc) and

Weq = 2 7rfeq, we can solve for the correct 1-pole filter DC gain, A, by first equating

the two-stage cascaded circuit amplitude response with the inverse seismometer

amplitude response, both evaluated at Weq:

IT(weq)1 2 = IV(weq)1 1. (A2.4)

By putting Weq and RC, determined as above, into the squared modulus of equation

(A2.3) and putting Weq, Q = 2rfnat, ( and G = 1.0 into the inverse modulus of

equation (A2.1) and equating the two results, a quadratic equation results which

can be solved to determine A:

aA2 + bA + c = 0,

1
where: a = b = 2a,

1 + (WeqRC)2  (A2.5)

[(Q2 _ 22 2+ 4(weq(Q) 2 ]
and: c=1- + weq

eq

All that remains now is to choose the proper circuit components to approximate

the theoretical values for A and RC determined above.

Figure A2.2 shows the theoretical amplitude and phase response curves for a

1.0 Hz seismometer, the two-stage cascaded equalization circuit and the combined
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THEORETICAL RESPONSE CURVES
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Figure A2.2 Theoretical amplitude (top) and phase (bottom) response curves for a 1.0 Hz

seismometer (dash-dot), 0.1 Hz cascaded equalization circuit (dash) and the combination of these

two components (solid). Dots on the amplitude plot are laboratory measurements of gain at

selected frequencies for the prototype equalization circuit.
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results for an equalized amplitude response down to feq = 0.1 Hz. The seismometer

response curves were calculated using equation (A2.1) with the constants Q = 27r,

C = 0.7 and G = 1.0 so that the amplitude plot represents voltage output gain (in

db) for a constant input ground velocity of 1.0 cm/sec. The two-stage equalization

curves were calculated using the square of equation (A2.3) with design parameters

RC = 3.234 secs (fc = 0.0492 Hz) and A = 22.1, which were limited by available

resistor and capacitor values. The actual solution to equation (A2.5) above yields

A = 21.6. The dots on the amplitude plot are laboratory measurements of the

voltage gain at selected frequencies for a prototype 2-stage circuit. The agreement

with the theoretical curve is quite good. Unfortunately, laboratory measurements of

the circuit's phase response could not be made accurately with the test equipment

available to the author. However, the measured total phase response of an equalized

instrument, shown later in this paper, agrees well with the theoretical instrument

response. The maximum phase shift of the 2-stage cascaded circuit is approximately

-135* near f = 0.2 Hz and partially counteracts the positive phase shift of the

seismometer over the frequency range of interest. The phase characteristics of the

combined response are certainly tolerable and easily corrected for. The combined

amplitude response has a slight peak near 1.0 Hz due to the rounded corners of the

seismometer and equalization curves as their gains approach unity. This is a minor

departure from the ideal flat behavior and again is easily corrected for.

The amplitude cancellation problem mentioned previously for the 2-pole non-

cascaded circuit may be clarified at this point. The total response function of the

cascaded equalization circuit may be written simply as:

EI(w) = T(w) 2 = [1 + L(w)]2 , (A2.6)
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whereas the response of the non-cascaded circuit would be:

E2 (w) = 1 + L(w) 2 . (A2.7)

If one evaluates the modulus of each of these two functions at w , 20/RC (corre-

sponding to f - fat -, 20 fc for the present choice of fe, = 0.1 faat), and using A =

22.1 determined previously, it can be confirmed that the gain for E1 (w) is greater

than unity (- 2.3) and the gain for E2 (w) is less than unity (, 0.24). This is the

primary reason for using the cascaded circuit.

Figure A2.3 shows the schematic circuit diagram for a single 1-pole summation

stage. The complete 2-pole circuit is obtained by cascading two of these identical

1-pole stages in series. The component values listed in Table A2.1 produce the

response shown in Figure A2.2.

TABLE A2.1
Circuit Component Values for

0.1 to 1.0 Hz Equalization Range
Component Value
R1 , R3  66.5 KQ
R2 1.47 MQ

R4 (pot) 100 KSI
R5 , R6  100 KQ
R7 , R11  49.9 KQ
R8 , R9 , Rio 150 KQ
C1  2.2 pF
OP-AMP LM-312

Design parameters A and RC are controlled by the components R1 ,R2 and C1 as:

A=R 2 /R 1 , and RC=R 2 C1 . (A2.8)

For stability reasons each op-amp circuit uses the inverting configuration but the

polarity is correct at the output of each stage since there are an even number of
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1-POLE SUMMATION CIRCUIT
SCHEMATIC DIAGRAM

R2

V ouT

6+5
SUMMER

Figure A2.3 Schematic diagram for the prototype 1-pole summation circuit described in the

text. Two of these circuits in series will yield the correct equalization. Component values listed

in Table A2.1 for this circuit will produce the cascaded response shown in Figure A2.2.
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inversions in series. Modifications for different natural frequencies require changes

only in the components R1 , R2 , R3 and C1. R3 should approximately equal the

equivalent parallel resistance combination of R1 and R2 . The trimming potentiome-

ter, R4 , is required to remove DC offset at the output of each summation stage.

This adjustment can be very critical due to the high gain present for DC inputs. An

advantage of the cascaded design is that offset adjustments can be made separately

for each 1-pole filter. It is much easier to fine tune this adjustment when the DC

gain is A (as for a 1-pole filter) rather than A2 (as for a 2-pole filter). Also, ambient

temperature changes can cause changes in the op-amp input offset currents, which

in turn are greatly amplified by the low-pass filters. Therefore it is necessary to

include an additional high-pass filter in the signal path after the second summa-

tion stage to remove large variable DC offsets which could saturate the pre-existing

analog circuitry of the recording instruments being used. The high-pass can be a

simple 1-pole RC filter with corner frequency significantly lower than fc of the low-

pass equalization filters. Most existing instruments will already have an adequate

DC rejection stage incorporated into their analog circuitry, so this additional filter

might be optional and is not shown here. The DC drift can be minimized by using

op-amps with a sufficiently broad temperature stability range and low input offset

current. LM312 op-amps were found to be adequate.

IMPLEMENTATION AND TESTING

The 2-stage equalization circuit was installed in six existing portable digital

event recorders in preparation for a teleseismic earthquake field experiment in the

Jemez Mountains of New Mexico during 1987 [Roberts et aL, 1987]. The circuit
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was inserted between the seismometer preamp and the instrument anti-aliasing

filters, as shown previously in Figure A2.1. Note that the DC rejection filter was

located immediately after the anti-aliasing filters. The same instruments were used

previously for local earthquake and volcanic tremor studies at Mount St. Helens

and are described in Fehler & Chouet [1982]. They were also used by the present

author in 1986, prior to installing the equalization, to try to obtain teleseismic data

in the Jemez Mountains. During 3 months of field operation only 2 teleseisms were

recorded at all six sites and the records at several sites were missing the first arrival

because the system did not trigger soon enough. The experiment was repeated

in 1987 after installing the equalization and modifying the response of the event

detection circuitry for compatibility with the extended frequency band. This time,

during a 3 month period, approximately 30 teleseismic events were recorded at all

six sites, nearly all of which contained clear and often small first arrivals. The

furthest events recorded originated in Japan and the Tonga and Mariana Trenches,

with epicentral distances of about 10,000 km (A ; 90*). At these distances the

smallest events recorded were magnitude mb = 5.5.

Figure A2.4 shows a typical vertical component seismogram for a teleseismic

event recorded during the 1987 experiment. Superimposed on the teleseismic signal

is a large noise component with a period of about 10-20 secs. This noise component

may have been produced either by wind noise or by microseismic oceanic tremor.

This type of low-frequency signal would not be visible in a normal short-period

recording. This demonstrates that the equalization circuit succeeds in boosting

previously unseen intermediate-period signals to an observable level. Low-frequency
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Figure A2.4 Typical vertical component P-Wave seismogram for a teleseismic event recorded

in the Jemez Mountains in 1987 on an equalized instrument.
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noise contamination can be easily removed through subsequent data processing

techniques, if desired.

When using any extended-bandwidth instrument one must be aware of the

corresponding increase in dynamic range of possible signal amplitudes which could

be recorded. Ideally it is desirable to have the capability to record small micro-

earthquakes with high resolution as well as large teleseisms or surface waves without

the signals clipping. These extremes can easily cover an amplitude range at least six

orders of magnitude wide (120 db). Depending on the dynamic range of the recorder

being used, there may be a tradeoff involved in choosing the best overall system

gain. Gains typically used to record small short-period earthquakes (mb ~ 2.0

or less) may cause large recorded teleseisms (mb ~ 5.0 or greater) to be clipped.

Reducing the gain enough to eliminate clipping may result in poor resolution for

micro-earthquakes. So with limited dynamic recording range (perhaps < 60 db) it

may be necessary to sacrifice either the highest or lowest portions of the instrument

bandwidth. During the 1987 Jemez experiment, using the equalized instruments

with a dynamic recording range of 72 db, the overall system gain was reduced from

the previous (unequalized) setting by a factor of approximately 1/4 (from ~ 2000

in 1986 to ~ 500 in 1987 using the L4-C seismometers). Only two events recorded

in 1987 were clipped using the reduced gain setting. These were a magnitude 7.7

earthquake from the Gulf of Alaska (A ~ 33*) and a 6.2 from California (A ~ 8*).

To test the actual response of an entire instrument both with and without the

equalization installed, an input step in acceleration was applied to the seismome-

ter's calibration coil and the resulting velocity signals were recorded for both the

equalized and unequalized instrument configurations. The high-pass DC rejection
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filter mentioned earlier was included in both of these configurations. The resulting

time series, with peak amplitudes normalized to unity, are plotted in Figure A2.5

and their Fourier amplitude and phase spectra up to - 5.0 Hz are shown in Figures

A2.6 and A2.7 respectively. The unequalized time series was padded with zeros at

the end to obtain a 68 sec width Fourier Transform window identical to that used

for the equalized signal. The transform windows were started as close as possible to

the first motion of the pulses in order to remove the phase components associated

with a non-zero arrival time. The spectra have been converted to the equivalent

velocity impulse response by multiplying the step acceleration response by -w 2 .

The amplitude response plots (Figure A2.6) were corrected for differences in

instrument gain by normalizing them to unity gain (0 db) at 2.0 Hz for the unequal-

ized spectrum and at 0.2 Hz for the equalized spectrum. The theoretical amplitude

and phase response curves for each case are also plotted in Figures A2.6 and A2.7

for comparison. The theoretical curves were calculated using equations (A2.1) and

(A2.3) and the transfer function for the DC rejection filter. These plots confirm

that the equalization circuit succeeds in shifting the instrument's low-end cutoff

frequency from 1.0 Hz down to 0.1 Hz and that the actual measured response below

2.0 Hz approximates the theoretical curves quite well for both amplitude and phase.

Differences between these plots and the combined response curves shown in Figure

A2.2 are due to the DC rejection filter.

The background noise level above 1.0 Hz was very high when the equalized

calibration signal was recorded, and this noise dominates the amplitude and phase

spectra above ~ 2.0 Hz. This is because the actual velocity amplitude response to

an input step in acceleration decays as w- 2 (w-' for the spectral behavior of a step
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Figure A2.5 Equalized (bottom) and unequalized (top) velocity signals generated by an input

step acceleration to the seismometer calibration coil and recorded on one of the instruments used

in the Jemez Mts. Plots are normalized to unity peak amplitude.
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Figure A2.6 Measured (solid) and theoretical (dash) velocity impulse amplitude response

curves for unequalized (top) and equalized (bottom) instrument configurations. Measured curves

were obtained by multiplying the Fourier Transforms of the signals in Figure A2.5 by -w 2 and

computing the modulus. Data windowing and normalization for the measured plots are described

in the text. Theoretical curves were computed using equations (A2.1) and (A2.3) and the DC

rejection filter response function.
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Figure A2.7 Measured (solid) and theoretical (dash) phase response curves for unequalized

(top) and equalized (bottom) instruments. Phase angles were computed from the same Fourier

Transforms and response functions used in Figure A2.6.
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function and another w- 1 for the conversion of acceleration to velocity). So the

signal-to-noise ratio above a certain frequency can become very low for this type of

input in the presence of moderate noise. Unless performed in an extremely quiet

environment, the step acceleration test is rarely sufficient for measuring instrument

response much above 5-10 Hz. However, as shown in Figures A2.6 and A2.7, it is

often quite good for determining the lower frequency portion of the response. It is

certainly adequate here for demonstrating the effect of the equalization over the 0.1

to 1.0 Hz band. More rigorous methods [e.g., Sauter & Dorman, 1986] should be

employed to measure the response and system-related noise over the entire extended

bandwidth of the equipment before being used in the field. Further discussions of

total instrument response and noise tests, however, are beyond the scope of this

paper. It is advisable, though, to test at least the low-frequency system noise for

any instrument containing the equalization circuit. This can be done by recording

a test signal with either the geophone mass clamped or with a resistor replacing

the geophone input. Any slow variations from zero volts at the output will be

attributable to the electronics noise in the equalization circuit.

As mentioned previously, the extreme sensitivity of the equalization circuit to

small DC signals at the input and changes in op-amp input offset currents with

temperature create the potential of saturating subsequent analog stages in the in-

strument. This is especially true if the DC rejection filter is far-removed from the

output of the equalization circuit. For this reason it should become a matter of

routine during field servicing of the instruments to monitor and null out any DC

offset at the output of each 1-pole stage with the trimming pots. However, the
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author's experience with this circuit in the field has been that the DC stability in-

creases with time and offset adjustments become unnecessary after several weeks of

continuous operation. Typical measured offsets after this initial time period rarely

exceeded 100 mV at the second-stage output and usually were less than 50 mV.

Typical ambient temperatures encountered during the experiment reached as high

as approximately +38* C at midday in the summer and as low as -5* C at night

in mid-autumn. The DC drift under these severe conditions never became large

enough to cause saturation and data loss.

CONCLUSION

A versatile circuit has been described which can increase seismometer signal

levels for frequencies below the natural frequency of the sensors, thereby allowing

increased bandwidths for existing short-period recorder systems. The simplicity of

design procedures makes it readily understandable and easily modified and imple-

mented without extensive knowledge of electronics. The circuit has been tested in

the laboratory and in the field and has been proven to perform reliably under severe

climatic conditions. The ability to detect and record teleseismic events is greatly

increased through the use of this circuit.

ACKNOWLEDGMENTS

This work was partially funded by DOE contract number DE-FG03-87ER-

13807 to Professor Keiiti Aki of the University of Southern California. Additional

support was provided by the Earth and Space Sciences Division of the Los Alamos

National Laboratory. Walter Cook of M.I.T. suggested the basic single-stage circuit

324



used here as the building block for the eventual working design. Bill Prothero of

U.C. Santa Barbara provided valuable suggestions and precautions based on his field

experience with the Prothero & Schaecher [1984] design. He also kindly provided

the author with detailed schematic diagrams for their circuit which were very useful

for comparisons with the present design. Special thanks go to Mike Fehler and

Jim Albright of the Hot Dry Rock Geothermal Energy Group (ESS-4) at LANL for

their encouragement in undertaking this work and for providing valuable laboratory

facilities.

325



REFERENCES

Aki, K. and K. L. Laner, 1970. Surface Motion of a Layered Medium Having an
Irregular Interface Due to Incident Plane SH Waves, J. Geophys. Res.: 75,
933-954.

Aki, K. and P. G. Richards, 1980. Quantitative Seismology, vols. 1 & 2, W. H.
Freeman and Company, San Francisco, 932 pp.

Aki, K., A. Christoffersson and E. S. Husebye, 1976. Determination of the 3-
Dimensional Seismic Structures of the Lithosphere, J. Geophys. Res.: 82,
277-296.

Aki, K., B. Chouet, M. Fehler, G. Zandt, R. Koyanagi, J. Colp and R. G. Hay,
1978. Seismic Properties of a Shallow Magma Reservoir in Kilauea Iki by
Active and Passive Experiments, J. Geophys. Res.: 83, 2273-2282.

Aldrich, M. J., 1986. Tectonics of the Jemez Lineament in the Jemez Mountains
and Rio Grande Rift, J. Geophys. Res.: 91, 1753-1762.

Aldrich, M. J. and A. W. Laughlin, 1984. A model for the Tectonic Development of
the Southeastern Colorado Plateau Boundary, J. Geophys. Res.: 89, 10207-
10218.

Anderson, L. W. and W. W. Beeman, 1973. Electric Circuits and Modern Electron-
ics, Holt, Rinehart and Winston, New York, pp. 137-142.

Ankeny, L. A., L. W. Braile and K. H. Olsen, 1986. Upper Crustal Structure
Beneath the Jemez Mountains Volcanic Field, New Mexico, Determined by
Three-Dimensional Simultaneous Inversion of Seismic Refraction and Earth-
quake Data, J. Geophys. Res.: 91, 6188-6198.

Azimi, Sh. A., A. Y. Kalinin, V. B. Kalinin and B. L. Pivovarov, 1968. Impulse and
Transient Characteristics of Media with Linear and Quadratic Absorption
Laws, Izv. Earth Phys.: 2, 42-54.

Baldridge, W. S., K. H. Olsen and J. C. Callender, 1984. Rio Grande Rift: Problems
and Perspectives, in Rio Grande Rift: Northern New Mexico, New Mexico
Geological Society Guidebook, 35th Field Conference, pp. 1-11.

Bard, P.-Y. and M. Bouchon, 1980a. The Seismic Response of Sediment-Filled
Valleys. Part 1. The Case of Incident SH Waves, Bull. Seism. Soc. Am.:
70, 1263-1286.

326



Bard, P.-Y. and M. Bouchon, 1980b. The Seismic Response of Sediment-Filled
Valleys. Part 2. The Case of Incident P and SV Waves, Bull. Seism. Soc.
Am.: 70, 1921-1941.

Bard, P.-Y. and M. Bouchon, 1985. The Two-Dimensional Resonance of Sediment-
Filled Valleys, Bull. Seism. Soc. Am.: 75, 519-541.

Bard, P.-Y. and B. E. Tucker, 1985. Underground and Ridge Site Effects: A Com-
parison of Observation and Theory, Bull. Seism. Soc. Am.: 75, 905-922.

Bard, P.-Y. and J.-C. Gariel, 1986. The Seismic Response of Two-Dimensional
Sedimentary Deposits with Large Vertical Velocity Gradients, Bull. Seism.
Soc. Am.: 76, 343-346.

Boore, D. M., K. L. Larner and K. Aki, 1971. Comparison of Two Independent
Methods for the Solution of Wave-Scattering Problems: Response of a Sedi-
mentary Basin to Vertically Incident SH Waves, J. Geophys. Res.: 76, 558-
569.

Borcherdt, R. D., 1973. Energy and Plane Waves in Linear Viscoelastic Media, J.
Geophys. Res.: 78, 2442-2453.

Borcherdt, R. D., 1977. Reflection and Refraction of Type-II S Waves in Elastic
and Anelastic Media, Bull. Seism. Soc. Am.: 67, 43-67.

Bouchon, M., 1973. Effect of Topography on Surface Motion, Bull. Seism. Soc.
Am.: 63, 615-632.

Bouchon, M., 1976. Discrete Wavenumber Representation of Seismic Wave Fields
with Application to Various Scattering Problems, Ph.D. thesis, Mass. Inst.
of Technol., Cambridge.

Bouchon, M., 1979. Discrete Wavenumber Representation of Elastic Wave Fields
in Three Space Dimensions, J. Geophys. Res.: 84, 3609-3614.

Bouchon, M. and K. Aki, 1977. Discrete Wavenumber Representation of Seismic-
Source Wave Fields, Bull. Seism. Soc. Am.: 67, 259-277.

Bridwell, R. L., 1976. Lithospheric Thinning and the Late Cenozoic Thermal and
Tectonic Regime of the Northern Rio Grande Rift, in Vermezo Park, New
Mexico Geological Society Guidebook, 27th Field Conference, pp. 283-292.

Brigham, E. 0., 1974. The Fast Fourier Transform, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 252 pp.

Buchen, P. W., 1971. Plane Waves in Linear Viscoelastic Media, Geophys. J. R.
Astr. Soc.: 23, 531-542.

327



Chouet, B., 1976. Source Scattering and Attenuation Effects on High Frequency
Seismic Waves, Ph.D. thesis, Mass. Inst. of Technol., Cambridge.

Clayton, R. W. and R. A. Wiggins, 1976. Source Shape Estimation and Deconvo-
lution of Teleseismic Bodywaves, Geophys. J. R. Astr. Soc.: 47, 151-177.

Cooper, H. F. and E. L. Reiss, 1966. Reflection of Plane Viscoelastic Waves from
Plane Boundaries, J. Acoust. Soc. Am.: 39, 1133-1138.

Daniel, R. G., 1979. An Intermediate-Period Field System Using A Short-Period
Seismometer, Bull. Seism. Soc. Am.: 69, 1623-1626.

Davis, P. M., E. C. Parker, J. R. Evans, H. M. Iyer and K. H. Olsen, 1984. Teleseis-
mic Deep Sounding of the Velocity Structure Beneath the Rio Grande Rift,
in Rio Grande Rift: Northern New Mexico, New Mexico Geological Society
Guidebook, 35th Field Conference, pp. 29-38.

Doell, R. R., G. B. Dalrymple, R. L. Smith and R. A. Bailey, 1968. Paleomagnetism,
Potassium-Argon Ages, and Geolgy of Rhyolites and Associated Rocks of the
Valles Caldera, New Mexico, Mem. Geol. Soc. Am.: 116, 211-248.

Dondanville, R. F., 1971. The Hydrothermal Geology of the Valles Caldera, Jemez
Mountains, New Mexico, open file report, Union Oil Co., Santa Rosa, Calif.,
36 pp.

Dondanville, R. F., 1978. Geologic Characteristics of the Valles Caldera Geothermal
System, New Mexico, Trans. Geotherm. Resour. Counc.: 2, 157-160.

Evans, J. R., 1981. Fortran Computer Programs for Running Median Filters and a
General Despiker, U. S. Geol. Survey open file report: 81-1091, 17 pp.

Fehler, M. and B. Chouet, 1982. Operation of a Digital Seismic Network on Mt.
St. Helens Volcano and Observations of Long Period Seismic Events that
Originate under the Volcano, Geophys. Res. Lett.: 9, 1017-1020.

Fehler, M., P. Roberts and T. Fairbanks, 1988. A Temporal Change in Coda Wave
Attenuation Observed During an Eruption of Mount St. Helens, J. Geophys.
Res.: 93, 4367-4373.

Felch, R. N., 1987. A Study of the Seismic Structure in the Valles Caldera Region
of Northern New Mexico, Ph.D. thesis, Penn. State Univ., State College, 251
pp.

Gardner, J. N., F. Goff, S. Garcia and R. C. Hagan, 1986. Stratigraphic Rela-
tions and Lithologic Variations in the Jemez Volcanic Field, New Mexico, J.
Geophys. Res.: 91, 1763-1778.

328



Goff, F. and C. 0. Grigsby, 1982. Valles Caldera Geothermal Systems, New Mexico,
U.S.A., J. Hydrol.: 56, 119-136.

Goff, F. and J. N. Gardner, 1988. Valles Caldera Region, New Mexico, and the
Emerging Continental Scientific Drilling Program, J. Geophys. Res.: 93,
5997-5999.

Goff, F., J. Rowley, J. N. Gardner, W. Hawkins, S. Goff, R. Charles, L. Pisto, A.
White, J. Eichelberger and L. Younker, 1984. Valles Caldera no. 1, a 856 m.
Corehole in the Southwestern Ring-Fracture Zone of the Valles Caldera, New
Mexico, EOS, Trans. Am. Geophys. Un.: 65, 1096.

Goff, F., J. Rowley, J. N. Gardner, W. Hawkins, S. Goff, R. Charles, D. Wachs, L.
Massen and G. Heiken, 1986. Initial Results from VC-1: First Continental
Scientific Drilling Program Core Hole in the Valles Caldera, New Mexico, J.
Geophys. Res.: 91, 1742-1752.

Goff, F., J. N. Gardner, W. S. Baldridge, J. B. Hulen, D. L. Nielson, D. Vaniman,
G. Heiken, M. A. Dungan and D. Broxton, 1989. Volcanic and Hydrothermal
Evolution of the Valles Caldera and Jemez Volcanic Field: Field Excursion
17B, submitted to IAVCEI Field Trip Guides, New Mexico Bureau of Mines
and Mineral Resources, Socorro, New Mexico.

Harrison, T. M., Morgan P. and D. D. Blackwell, 1986. Constraints on the Age
of Heating at the Fenton Hill Site, Valles Caldera, New Mexico, J. Geophys.
Res.: 91, 1899-1908.

Haskell, N. A., 1953. The Dispersion of Surface Waves in Multilayered Media, Bull.
Seism. Soc. Am.: 43, 17-34.

Haskell, N. A., 1960. Crustal Reflection of Plane SH Waves, J. Geophys. Res.: 65,
4147-4150.

Haskell, N. A., 1962. Crustal Reflection of Plane P and SV Waves, J. Geophys.
Res.: 67, 4751-4767.

Heiken, G. and F. Goff, 1983. Hot Dry Rock Geothermal Energy in the Jemez
Volcanic Field, New Mexico, J. Volcanol. Geotherm. Res.: 15, 223-246.

Heiken, G., H. Murphy, G. Nunz, R. Potter and C. Grigsby, 1981. Hot Dry Rock
Geothermal Energy, Am. Sci.: 69, 400-407.

Hulen, J. B. and D. L. Nielson, 1986. Hydrothermal Alteration in the Baca Geother-
mal System, Redondo Dome, Valles Caldera, New Mexico, J. Geophys. Res.:
91,1867-1886.

329



Johnson, A. M., 1970. Physical Processes in Geology, Freeman, Cooper, San Fran-
cisco.

Knopoff, L., 1964. Q, Rev. Geophys.: 2, 625-660.

Kohketsu, K., 1987. 2-D Reflectivity Method and Synthetic Seismograms for Ir-
regularly Layered Structures-I. SH-wave Generation, Geophys. J. R. Astr.
Soc.: 89, 821-838.

Kolstad, C. D. and T. R. McGetchin, 1978. Thermal Evolution Models for the
Valles Caldera with Reference to a Hot-Dry-Rock Geothermal Experiment,
J. Volc. and Geotherm. Res.: 3, 197-218.

Lapwood, E. R., 1949. The Disturbance Due to a Line Source in a Semi-Infinite
Elastic Medium, Phil. Trans. Roy. Soc. London, A: 242, 63-100.

Larner, K. L., 1970. Near-Receiver Scattering of Teleseismic Body Waves in Layered
Crust-Mantle Models having Irregular Interfaces, Ph.D. thesis, Mass. Inst.
of Technol., Cambridge, 274 pp.

Lee, W. H. K. and S. W. Stewart, 1981. Principles and Applications of Mi-
croearthquake Networks, Academic Press, New York.

Liu, H.-P., D. L. Anderson and H. Kanamori, 1976. Velocity Dispersion due Anelas-
ticity; Implications for Seismology and Mantle Composition, Geophys. J. R.
Astr. Soc.: 47, 41-58.

Lockett, F. J., 1962. The Reflection and Refraction of Waves at an Interface Be-
tween Viscoelastic Materials, J. Mech. Phys. Solids: 10, 53-64.

Lokshtanov, D. E., 1987. Method of Taking into Consideration Absorption in Cal-
culations of Theoretical Seismograms in a Stratified Medium, Comp. Seism.:
20, 192-196.

Majer, E. L. and T. V. McEvilly, 1979. Seismological Investigations at The Geysers
geothermal field, Geophysics: 44, 246-269.

Nielson, D. N. and J. B. Hulen, 1984. Internal Geology and Evolution of the
Redondo Dome, Valles Caldera, New Mexico, J. Geophys. Res.: 89, 8695-
8711.

O'Connell, R. J., and B. Budiansky, 1977. Viscoelastic Properties of Fluid Satu-
rated Cracked Solids, J. Geophys. Res.: 82, 5719-5735.

Olsen, K. H., L. W. Braile, J. N. Stewart, C. R. Daudt, G. R. Keller, L. A. Ankeny
and J. J. Wolff, 1986. Jemez Mountains Volcanic Field, New Mexico: Time
Term Interpretation of the CARDEX Seismic Experiment and Comparison
with Bouguer Gravity, J. Geophys. Res.: 91, 6175-6187.

330



Owens, T. J, G. Zandt and S. R. Taylor, 1984. Seismic Evidence for an Ancient
Rift Beneath the Cumberland Plateau, Tennessee: A Detailed Analysis of
Broadband Teleseismic P Waveforms, J. Geophys. Res.: 89, 7783-7795.

Prothero, W. A. and Schaecher, 1984. First Noise and Teleseismic Recordings on
a New Ocean Bottom Seismometer Capsule, Bull. Seism. Soc. Am.: 74,
1043-1058.

Rayleigh, Lord (J. W. Strutt), 1907. On the Dynamical Theory of Gratings, Proc.
Roy. Soc. London, A: 79, 399-416.

Richter, C. F., 1958. Elementary Seismology, W. H. Freeman and Company, San
Francisco, 768 pp.

Roberts, P. M., 1989. A Versatile Equalization Circuit for Increasing Seismometer
Velocity Response Below the Natural Frequency, Bull. Seism. Soc. Am.: (in
press).

Roberts, P. M., K. Aki and M. Fehler, 1987. A Study of the 2-D Seismic Structure
of the Valles Caldera, New Mexico Using Discrete Wavenumber Modeling of
Teleseismic P-Waves, EOS, Trans. Am. Geophys. Un.: 68, 1347.

Ross, C. S., 1938. The Valles Volcano, New Mexico, Wash. Acad. Sci. J.: 28, 417.

Sanchez-Sesma, F. J. and J. A. Esquivel, 1979. Ground Motion on Alluvial Valleys
Under Incident Plane SH Waves, Bull. Seism. Soc. Am.: 69, 1107-1120.

Sauter, A. M. and L. M. Dorman, 1986. Instrument Calibration of Ocean Bottom
Seismographs, Marine Geophys. Researches: 8, 265-275.

Self, S., F. Goff, J. N. Gardner, J. V. Wright and W. M. Kite, 1986. Explosive
Rhyolite Volcanism in the Jemez Mountains: Vent Locations, Caldera Devel-
opment and Relation to Regional Structure, J. Geophys. Res.: 91, 1779-1798.

Self, S., D. E. Kircher and J. A. Wolff, 1988. The El Cajete Series, Valles Caldera,
New Mexico, J. Geophys. Res.: 93, 6113-6128.

Shaw, R. P. and P. Bugl, 1969. Transmission of Plane Waves through Layered
Linear Viscoelastic Media, J. Acoust. Soc. Am.: 46, 649-654.

Smith, R. L. and R. A. Bailey, 1966. The Bandelier Tuff-A Study of Ash-flow
Eruption Cycles from Zoned Magma Chambers, Bull. Volcanol.:, 29, 83-104.

Smith, R. L. and R. A. Bailey, 1968. Resurgent Cauldrons, Mem. Geol. Soc. Am.:
116, 613-662.

331



Smith, R. L. and H. R. Shaw, 1975. Igneous-Related Geothermal Systems. in
Assessment of Geothermal Resources of the United States-1975 (D. E. White
and D. L. Williams, eds.) U.S. Geol. Surv. Circ.: 726, 58-83.

Smith, R. L., R. A. Bailey and C. S. Ross, 1961. Structural Evolution of the Valles
Caldera, New Mexico and its Bearing on the Emplacement of Ring Dikes,
U.S. Geol. Surv. Prof. Pap.: 424-D, D145-D149.

Sommer, M. A., 1977. Volatiles H2 0, CO 2 , and CO in Silicate Melt Inclusions in
Quartz Phenocrysts from the Rhyolitic Bandelier Air-fall and Ash-flow tuff,
New Mexico, J. Geol.: 85, 423-432.

Stacey, F. D., M. T. Gladwin, B. McKavanagh, A. T. Lindh and L. M. Hastie,
1975. Anelastic Damping of Acoustic and Seismic Pulses, Geophys. Surveys:
2, 133-151.

Steeples, D. W. and H. M. Iyer, 1976. Low-Velocity Zone Under Long Valley as
Determined from Teleseismic Events, J. Geophys. Res.: 81, 849-860.

Suhr, G., 1982. Seismic Crust Anomaly under the Valles Caldera in New Mexico,
USA, Prakla-Seismos GMBH report: ET 4327 A, 56 pp.

Thomson, W. T., 1950. Transmission of Elastic Waves Through a Stratified Solid
Medium, J. Appl. Phys.: 21, 89-93.

Tribolet, J. M., 1977. A New Phase Unwrapping Algorithm, IEEE Trans. Acoust.,
Speech, and Signal Proc.: ASSP-25, 170-177.

Truesdell, A. H. and C. J. Janik, 1986. Reservoir Processes and Fluif Origins in the
Baca Geothermal System, Valles Caldera, New Mexico, J. Geophys. Res.:
91, 1817-1833.

Warshaw, C. M. and R. L. Smith, 1988. Pyroxenes and Fayalites in the Bandelier
Tuff, New Mexico: Temperatures and Comparison with other Rhyolites, Am.
Mineralogist: 73, 1025-1037.

332


