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Abstract
Some of the basic concepts and most important results of perturbative QCD are
presented, together with some illustrative comparisons with experiment.

1. INTRODUCTION

Quantum Chromodynamics (QCD), the gauge field theory that describes the interactions of coloured
guarks and gluons, is one of the components of the SU(3) xSU(2) xU(1) Standard Model. At short dis-
tances, equivalently high energies, the effective coupling is small and the theory can be studied using per-
turbative techniques. Nowadays detailed tests of perturbative QCD are performed at al the high-energy
colliders, and in the production and decay of heavy quark systems. Some of the most direct information
comes from high-energy processes involving leptons and photons. The colour neutrality of these par-
ticles, together with the relative ease with which they can be accelerated and detected in experiments,
allows for particularly precise theoretical calculations and experimental measurements. The paradigm
processistheinvestigation of the short-distance structure of hadrons using virtual electroweak gauge bo-
son probes (v, W+, Z°) emitted from high-energy beams of charged leptons or neutrinos— deep inelastic
scattering. Here we see the asymptotic property directly, as the gauge bosons scatter incoherently off the
weakly interacting quarks and gluons, for example v*¢ — ¢ and v*g — ¢g. From such experiments
we learn how the partons (i.e. the quarks and gluons) share the momentum and quantum numbers of the
hadron. By studying how the ‘ structure functions’ vary with the momentum transferred by the probe, pre-
cision measurements of the short-distance coupling can be made. The information obtained in this way
isavital input to signal and background cross—section calculations at the LHC.

Another fundamental QCD processis the production of hadrons in electron—positron annihilation,
ete™ — qq a lowest order. The importance of this process is that it allows a detailed study of how
guarks ‘shower’ into multiparton states, and how these materialize into jets of hadrons. The quark and
gluon spins, the non—-Abelian vertices of the theory and the short-distance coupling can be measured from
these final states.

In these lectures we will discuss these and other high-energy processes, with the common theme of
providing detailed phenomenol ogical tests of perturbative QCD. Much of the basic theoretical framework
is covered in the lectures by Bardin, but to make the discussion relatively self—contained, we first of all
(Section 2) review some of the fundamental properties of the theory that are particularly relevant for the
processes under consideration. Of particular importance in this context is the definition of the ‘running’
coupling ag, the fundamental parameter of the theory, and the colour algebraidentities that are necessary
for performing calculations. In Section 3 we review the application of perturbative QCD to high-energy
electron-positron annihilation, focusing in particular on the total cross section and multijet final states.
In Section 4 we introduce the parton model of short—distance hadron structure and discuss how the basic
‘scaling’ property is modified by perturbative QCD corrections, and how parton distributions can be de-
termined from experiment. Some applications to high—energy hadron collider processes are discussed in
Section 5.

Lack of space precludes an in—depth treatment of most of these issues, but further information can
of course befound in the literature. In particular, Ref. [1] coversall the topics discussed in these lectures
in significantly greater detail.
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2. BASICSOF PERTURBATIVE QCD
2.1 TheQCD Lagrangian
The QCD Lagrangian is, up to gauge-fixing terms,

1 a a)pv 194 (s
Locp = —ZF;SV)F @ 158 (i9"(Dy)ij — mais) b
q
F,Eg) = 8;1143 - 8I/AZ + gsfabcAzAi
(Du)ij = 040, — igs T Ay, 1)

where g, isthe QCD coupling constant, 73 and f. are the SU(3) colour matrices and structure constants
respectively, the ¢} (z) are the 4—component Dirac spinors associated with each quark field of colour i
and flavour ¢, and the A7 (z) are the eight Yang-Mills gluon fields. From this Lagrangian, the Feynman
rules can be derived in the usual way, see the Table on the next page, which isreproduced from Ref. [1].

Explicit formsfor the SU(3) colour matrices and structure constants can be found, for example, in
Ref. [1]. The following are some useful identities:

[Ta’ Tb] — ’ifabcTC
1
Ta Tb dabcTc _5ab
{1, 17°} +3
facdfbcd — C’A(Sab
(T°T*)ij = T Ty = Croi
Te(TT") = TATY, = Tpé®™
Cy = N.=3
N2—-1 4
C - ¢ - _ =
E 2N, 3
1
TF — 5
) 1
T TaTch — 2 abc | — dabc
r( ) = 7
fabCfabc - 2
40
dabcdabc — ? (2)

where summation over repeated indices is understood.

2.2 The QCD coupling constant

Quantum Chromodynamicsisan asymptotically free gaugefield theory, that is, the strength of theinterac-
tion between the quarks and gluons becomesweaker in the short—distance limit. In QCD the renormalized
coupling can be defined in avariety of ways, for example from the *dressed’ gqg or ggg vertices. Renor-
malization of the coupling necessitates the introduction of a scale ;. — effectively the scale at which the
ultra—violet loop divergences are subtracted off. A dimensionless physical quantity R that depends on
some energy scale @ will depend also on y both explicitly and implicitly through the renormalized cou-
pling,i.e. R = R(1?/Q?, as(11?)). Thefact that such aquantity should not depend on the arbitrary scale
1 (when calculated to all ordersin perturbation theory) leads to an equation for the p dependence of the
renormalized coupling:

p? das(y?)
as(p?)  op?

2 3
—LSZESQ)% - (ai(:Q)) B — <OCS4(7/:2)> B+ ...
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Table 1: Feynman rules for QCD in a covariant gauge.
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for ny massless quark flavours. Note that the coefficients in the above perturbative expansion depend, in
general, on the renormalization scheme (RS), although for massless quarks the first two coefficients, 3
and 3, are RSindependent. In essentially all phenomenological applications the MS RSis used.

At leading order, i.e. retaining only the coefficient 5y, Eq. (3) can be solved for ag to give

_ as ()
) = T as(u) bInG2/d) @
or ; .
as(p”) = Wa 5)

whereb = fy/4m = (33 — 2ny)/(127).

These two expressions are entirely equivalent — they differ only in the choice of boundary con-
dition for the differential equation, as(p:3) in thefirst case and the dimensionful parameter A in the sec-
ond. In fact nowadays A is disfavoured as the fundamental parameter of QCD, since its definition is not
unique beyond leading order (see below), and its value depends on the number of ‘ active’ quark flavours.
Instead, it has become conventional to use the value of ag in the MS scheme at 42 = M2 as the fun-
damental parameter. The advantage of using M, as the reference scale is that it is (a) very precisely
measured [2], (b) safely in the perturbative regime, i.e. as(M2) < 1, and (c) far from quark thresholds,
ie.mp < My < my.

The parameter A is, however, sometimes still used as a book—keeping device. At next—to—-eading
order there are two definitions of A that are widely used in the literature:

o Q* 1 ) bags(u?)

definition 1 : bIn 35 = o0 ) +'In T bas(d) ) (6)
N _ 2 1 B b_’lnln(,uz/Az)

definition 2 : as(p?) = PG ) 1= (/A7) | ()

where b’ = (1 /4nfy = (153 — 19ny)/(27(33 — 2ny)). Thefirst of these solves Eq. (3) exactly when
(B2 and higher coefficients are neglected, while the second (the ‘PDG’ definition [2]) provides an explicit
expression for a.s(1%) intermsof 12 /A? and isasolution of Eq. (3) up to termsof order 1/1n3(u?/A?).:
Note that these two A parameters are different for the same value of a.s (M%), the difference being about
one half the size of the current measurement uncertainty:?

AP AP ~ 15 Mev ~ %5epr<5>. ®)

A second difficulty with the above definitionsisthat A depends on the number of active flavours. Values
of A for different numbers of flavours can be defined by imposing the continuity of a.g at thescale u = m,
wherem isthemassof the heavy quark. For example, for theb-quark threshold: avg(m?,4) = ag(mi, 5).
Using the next-to-leading order form (6) for a.s(12?) one can show that

A(4) ~ A(5) (ﬁ) [m( A(5b)2>] . ©)

1The expressions for «s can be generalized to include also the 82 term [3].
*Thelatest PDG [2] valueis A(5) = 21272 MeV.
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Since in practice most higher order QCD corrections are carried out using the MS regularization
scheme, one uses either of the above results for as(p?) with A = Aggg. Table 2 gives the conversion

between AL’ and o (M3) using definition 1in (6).

Table 2: as(M3) for various A%.

AY (Mev) | as(M3)
50 0.0970
100 0.1060
150 0.1122
200 0.1170
250 0.1210
300 0.1245
350 0.1277
400 0.1305
450 0.1332
500 0.1356
550 0.1379
600 0.1401

In these lectures we will be mainly concerned with QCD physicsat e™ e~ collidersand in deep in-
elastic scattering (DIS). Both processes offer severa essentially independent measurements of a.g, sum-
marized in Table 3. Note that all of these use the ¢gg vertex to measure ag, with the high Q2 scale pro-
vided by an electroweak gauge boson, for example a highly virtual ~* in DIS or an on-shell Z° boson
at LEP1 and SLC. There are two main theoretical issues that affect these determinations. Thefirst isthe
effect of unknown higher-order (next-to—next—to-eading order (NNLO) in most cases) perturbative cor-
rections, which leadsto anon—negligible renormalisation scheme dependence uncertainty in the extracted
ag values. Thisis particularly true for the ‘ event shape’ measurementsat e e~ colliders (seelater). The
exceptions here arethetotal et e~ hadronic cross section (equivalently, the Z° hadronic decay width) and
the DISsum rules, which areknown to NNLO. The second issue concernstheresidual impact of O(1/Q"™)
power corrections. For some processes it can be shown that the leading correctionsare O(1/Q) (for ex-
ample O(1/M) for the corrections to event shapes at LEP1 and SLC) that can easily be comparable in
magnitude to the NLO perturbative contributions. In deep inelastic scattering, the higher—twist power
corrections to structure functions Fj(x, Q%) are O(1/Q?(1 — z)) and must be included in scaling viola
tion fits especialy at large z. Such power corrections (and their uncertainties) must be taken into account
in ag determinations, either using phenomenological parametrizations or theoretical models.

Figure 1, which updates Table 12.1 of Ref. [1], summarizesthe s (M%) measurements from some
of the most accurate recent determinations. For experiments performed at energy scales different from
Mz, the arg values measured at 11> = Q2 , are converted to «rg (M%) using the above expressions. The
consistency of the various measurements is remarkable — «.g isindeed a universal parameter. Defining
a‘world average' value presents atechnical difficulty, however. Since the errors of most of the measure-
ments are largely theoretical — often based on estimates of unknown higher—order corrections or non—
perturbative eff ects— and neither gaussian nor completely independent, the overall error on the combined
value of ag(M%) cannot be obtained from standard statistical techniques. The average value, obtained
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Table3: Summary of the most important processesfor o determinationsine™e™ collisionsand in deep inelastic lepton-hadron

scattering.
quantity perturbation series
ete” Ree, Rz, R, R:Ro[l—i-as/ﬂ'—i-...]
event shapes, fs, ... | 1/odo/dX = Aag + Ba% + ...
DM (z,Q?) OD" 0 Q* =asD"@ P +...
(N DIS | Fj(x,Q?%) OF;/0InQ*=asF,®@ P+ ...

[dzF;(z,Q*) = A+ Bag + ...

o(2+1jet) o= Aag+ Ba% +...

by x? minimisation, of the measurements presented in Fig. 1is[2]
WORLD AVERAGE: as(M%) = 0.1185 £ 0.002 . (10)

Theerror hereispartly amatter of subjective judgement, seethediscussionsin Refs. [1, 2]. Notethat (10)
is consistent with, and supercedes, the value of ag(M2) = 0.118 4 0.004 quoted in Ref. [1]. In view of
the consistency of al the measurements, and in particular of those with the smallest uncertainties, it seems
unlikely that future ‘world average’ valuesof aig will deviate significantly, if at all, from the current value
givenin (10).

3. QCDINHIGH-ENERGY ete™ COLLISIONS

Many of the basic ideas and properties of perturbative QCD can beillustrated by considering the process
eTe~ — hadrons. We begin by discussing how the order a5 correctionsto thetotal hadronic cross section
are calculated, and how renormalization scheme dependence enters at order o%. This cross section also
provides one of the most precise measurements of the strong coupling, see Fig. 1.

Perturbative QCD also predictsarich ‘jet’ structure for the final state hadrons. We show how jet
cross sections can be defined, and how some of the predictions compare with experiment.

3.1 Thetotal cross-section for ete~ — hadrons

One of the theoretically most straightforward predictions of perturbative QCD isfor R theratio of
the total e™e~ hadronic cross section to the muon pair production cross section. On the Z° pole, as for
example at LEP1 and SLC, the analogous quantity is the ratio of the partial decay widths of the Z° to
hadrons and to muon pairs.

We begin by considering the high-energy 2 — 2 processete™ — ff with f alight charged
fermion, f # e. Inlowest order, the processis mediated by either avirtual photonor aZ" inthe s—channel.
With 6 the centre—of—mass scattering angle of thefinal state fermion pair, the differential crosssectionis:

do Ta? 2 2
dcosd — 2s (14 cos” O){QF — 2Qvevyxa(s)
+(a? + v2)(a} + vi)x2(s)}
+ cos 0(—4Q racarx1(s) + 8acveagvpxa(s)) (11)
where
s(s — M2
xi(s) = ( 2

K
(s — M3)* + T3 M}
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Fig. 1. Measurements of s (M2), in the MS renormalisation scheme, taken from the QCD review in Ref. [2].

2 s°

als) = T EE T
2
i (—ﬂGFMZ> (12)
Ao

and (vy,ay) are the vector and axial couplings of the fermions to the Z°.3 The y, term comes from the
square of the Z%—exchange amplitude and the y; term from the photon-Z° interference. Now at centre—
of—mass scattering energies /s far below the Z° pole, theratio s/MZ% issmall and so 1 > x1 > xo.
This meansthat the weak effects — manifest in the termsinvolving the vector and axial couplings— are
quite small and can be neglected. Eqg. (11) then reduces to

do Ta? Q7
Toosf —  2s f(l + cos?0). (13)
Integrating over ¢ and setting @y = —1 givesthetotal crosssectionfor ete™ — ptp™:
4 2
00 =, (14)
3s

where /s isthe total centre-of-mass energy. On the Z° pole, \/s = M, the y» termin (11) dominates
and the (peak) cross section is
dra® K2

(a2 +02)?. (15)
307
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When an electron and a positron annihilate they can also produce hadrons in the final state. The
formation of the observed final state hadrons is not governed by perturbation theory. Why then would
one expect perturbation theory to give an accurate description of the hadronic production cross section?
The answer can be understood by visualizing the event in space-time. The electron and positron form a
photon of virtuaity @ = /s that fluctuates into a quark and an antiquark. By the uncertainty principle,
this fluctuation occurs in a space time volume 1/Q, and if @ is large the production rate should be pre-
dictable in perturbation theory. Subsequently the quarks and gluons form themselves into hadrons. This
happensat alater time scale characterized by thescale 1 /A, where A isthe typical mass scale of the strong
interactions. The interactions that change quarks and gluons into hadrons modify the outgoing state, but
they occur too late to modify the probability for an event to happen.

In leading—order perturbation theory, therefore, the total hadronic cross section is obtained by sim-
ply summing over all kinematically accessible flavours and colours of quarks. Ignoring the Z° exchange
contributions (i.e. assuming /s < M) we have

QPM _ =g olefe” —qq) _ 2
R = e S ) —3ijQq. (16)
With ¢ = wu,...,b we obtain RY"M = 11/3 = 3.67. At /s = 34 GeV the measured value is about
3.9 (see for example Ref. [2]). Even allowing for the Z° contribution (AR ~ 0.05), this result is some
5% higher than the lowest—order prediction. It turns out that the difference is due to higher—order QCD
corrections, and in fact the comparison between theory and experiment gives one of the most precise de-
terminations of the strong coupling constant.

The O(ag) corrections to the total hadronic cross section are cal culated from both real and virtual
one—gluon emission diagrams. For the real gluon contributions, it is convenient to write the three-body
phase space integration as

d®3 ~ da df dy dxy dxo, a7

wherea, 3, v are Euler angles, and x; = 2E,//s and x2 = 2E;/+/s arethe energy fractions of thefinal
state quark and antiquark. Integrating out the Euler angles gives a matrix element that depends only on
1 and x5 and the contribution to the total cross section is

= 2a 2+ a2
39 _ E: 2 S 1 2 1
g 003 - Qq /dxldxg 3 (1 —1‘1)(1 _x2) ( 8)

where the integration region isdefined by 0 < z1, 29 < 1, 21 + z2 > 1. Unfortunately, the integrals are
divergent at z; = 1! These singularities come from regions of phase space where the gluon is collinear
with either quark, 6,, — 0, or where the gluon is soft, £, — 0. Evidently we require some sort of
regularization procedure — to render the integrals finite — before the calculation can be completed. A
variety of methods are suitable. One can give the gluon a small mass, or take the fina state quark and
antiquark off-mass-shell by asmall amount. In each casethe singularities are then manifest aslogarithms
of the regulating mass.

A more elegant procedureis to use dimensional regularization, with the number of space-time di-
mensions > 4. With the three—body phase spaceintegrals now cast in » dimensions, the soft and collinear
singularities appear as poles at n = 4. Details of how the calculation proceeds can be found for example
in[1]. Theresult isthat the cross section of Eg. (18) becomes

5 2ag 2 3 19

099 — 003ZQQ gH(e) [6—2—24—?4—0(6)}, (19
q

wheree = (n —4)/2and H(e) = 1 + O(e).
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Thevirtual gluon contribution can be calculated in asimilar fashion, with dimensional regulariza-
tion again used to render finite the infra—red divergencesin the loops. Theresult is

o119 = 503> Q2 <= Hie) [—632 + % — 84 O(e)}. (20)
q

When the two contributions (19) and (20) are added together the poles exactly cancel and the result is
finitein thelimit e — O:

R =33 Q{1+ 22+ 0. (21)
q

Note that the next-to-leading order correction is positive, and with avaue for a,g of about 0.15, can ac-
commodate the experimental measurement at /s = 34 GeV.*

The cancellation of the soft and collinear singularities between the real and virtual gluon diagrams
isnot accidental. Indeed, there are theorems — the Bloch, Nordsieck [4] and Kinoshita, Lee, Nauenberg
[5] theorems — which state that suitably defined inclusive quantities will be free of singularities in the
masslesslimit. Thetotal hadronic cross sectionisan exampl e of such aquantity, whereasthe cross section
for the exclusive ¢q final state, i.e. o(ete™ — ¢q), isnot.

The O(a?%) and O(a?) correctionsto Re"¢” arealso known. At these higher orders we encounter
the ultra—violet divergences associated with the renormalization of the strong coupling. Writing

4o

Otot = 3s )

R = Kqcp3) Q2
q

Kocp = 1+ch(%)”, (22)

n>1
the coefficients C;, Cs and Cs are (in the MS scheme with the renormalization scale choice 1 = /s):

i =1
2 11 365
= (Z¢(3) - = °C 1
¢ = (560~ 33)m+ (S5 —1100)
~ 1.986 —0.115n;
87029 1103 275
o = (g Ty < G)

7847 262 25
—<m - 74(3) + 5C(5)>nf

~ —6.637 — 1.200n; — 0.005n% — 1.240n , (23)

wheren = (3°,Q4)%/(3 3, Q2) and the sum extends over the (ny) quarks that are effectively massless
at the energy scale \/s. Theresult for C5 isfrom Ref. [6]. Apart from the ) term, the QCD correctionsin
K are the same for the ratio of hadronic to leptonic Z° decay widths: R; = T, /T, In practice, quark
masses (particularly m;, and m,) have asmall but non—negligible effect [ 7] and must be taken into account
in precision fitsto data.

“In contrast, the corresponding correction is negative for a scalar gluon.
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Experimentsat LEP1 and SL C wereableto measure R very accurately. From such measurements,
avery precise value of ag (M%) can be obtained. In practice, as is measured simultaneously with other
parametersin aglobal electroweak fit, and the value obtained is correlated to some extent with my, My,
etc. A recent fit of thiskind [8] gives

as(M%) = 0.118 + 0.003, (24)

in excellent agreement with the world average value (10).

Through O(a?), the explicit y—dependence of the perturbation series for R is restored by the re-
placements:

as — as(p?)
Cb — Cb ——(71éblog-j%
4 %

B Bo s
— —)log —. 2
1 16 + 02 2 ) og ,LLQ ( 5)

Bo 2 9 S
Cs — C3+Ci|—| log— —-((7
4 12
where (3, and 3; have been defined in Section 2 above. Note that the ;.>—dependence of the second order
coefficient is exactly as specified by the renormalization group equation, i.e. the coefficient of log(s/u?)
is proportional to the 8 function coefficient defined in (3).

In general the coefficients of any QCD perturbative expansion depend on the choice made for the
renormalization scale 1 in such away that as . is varied, the change in the coefficients exactly compen-
sates the changein the coupling a.s (122). However this —~independence breaks down whenever the series
istruncated. One can show in fact that changing the scale in a physical quantity such as R¢"¢~ — which
has been calculated to O(a%) — induces changes of O(a’%™). Thisisillustrated in Fig. 2, taken from
Ref. [1], which shows Kgcp = 1+ 6 for Rz asafunction of y, as the higher—order terms are added in.

! \ ! \ ! \ ! \
Deviation from QPM result in QCD
for e'e total cross—section, Vs=33 GeV

A® (two loop) = 230 MeV.

L+NL
L+NL+NNL

7%
a
T T ‘ T T 1 ‘ T T 1 ‘ T T

(@]

20 40 60 80
p [GeV]

—
(@]
(@]

Fig. 2: The effect of higher order QCD correctionsto Rz, as afunction of the renormalization scale i, from Ref. [1].
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Asexpected, theinclusion of higher—order terms|eads to amore definite prediction. Inthe absence
of higher—order corrections, one can try to guessthe ‘best’ choice of scale, defined asthe scale that makes
the truncated and all—orders predictions equal. In the literature, two such choices have been advocated in
particular. In the fastest apparent convergence approach [9], one chooses the scale i1 = ppac, Where

R (upac) = R (ppac). (26)
On the other hand, the principle of minimal sensitivity [10] suggests a scale choice i = upnms, where
d
—R® =0. 27
i (1) s (27)

These two special scales can be identified in Fig. 2. Itis, however, important to remember that there are
no theorems that prove that any of these schemes are correct. All one can say isthat the theoretical error
on a quantity calculated to O(a%) is O(ag“). Varying the scale is ssimply one way of quantifying this
uncertainty.

3.2 Jet cross-sections

The expression given for the total hadronic cross section in the previous section is very concise, but it
tells us nothing about the kinematic distribution of hadronsin the final state. If the hadronic fragments of
afast moving quark have limited transverse momentum relative to the quark momentum, then the lowest
order contribution — ete~ — ¢g — can naively be interpreted as the production of two back—to—back
jets. In this section we investigate how higher—order perturbative corrections modify this picture.

Consider first the next—to-leading processe™ e~ — ¢gg. From the previous section (Eq. (18)), we

have

1 d%o _ 208 2?2 4 23 ‘ (28)

o dzidas 3r (1 —x1)(1 —z2)
Recall that the cross section becomesinfinitely large when either (a) the gluonis collinear with one of the
outgoing quarks, or (b) the gluon momentum goesto zero. This correspondsto (a) only one and (b) both
of the z; approaching 1 respectively. In other words the gluon prefers to be soft and/or collinear with the
guarks. If the gluon is required to be well—separated in phase space from the quarks — a configuration
corresponding to a‘three jet event’ — then the cross section is suppressed relative to lowest order by one
power of ag. It would appear, therefore, that the two—jet nature of the final state is maintained at next—
to-eading order, since both the preferred configurations give afinal state indistinguishable (after parton
fragmentation to hadrons) from that at lowest order. This qualitative result holds in fact to all orders of
perturbation theory. Multigluon emission leadsto afinal state that is predominantly ‘two—et-like', with
asmaller probability (determined by ag) for three or more distinguishable jets.

To quantify this statement we need to introduce the concept of a jet measure, i.e. a procedure for
classifying afinal state of hadrons (experimentally) or quarks and gluons (theoretically) according to the
number of jets. To be useful, ajet measure should be free of soft and collinear singularities when calcu-
lated in perturbative QCD, and should al so be relatively insensitive to the non—perturbative fragmentation
of quarks and gluons into hadrons.

One of themost widely used jet measuresisthe minimum invariant mass or JADE algorithm [11].

Consider a gqg final state. A three—jet event is one in which the invariant masses of the parton pairs are
al larger than some fixed fraction y of the overall centre—of—mass energy:

(pi+pj)*>ys, i,7=q,q9 (29)

It isimmediately clear that this region of phase space avoids the soft and collinear singularities of the
matrix element. In fact in terms of the energy fractions, Eq. (29) is equivalent to

0<z,29<1—y, r1+ 20 > 14 y. (30)
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If we define f, and f3 to bethe two— and three—jet fractions defined in thisway, thento O(«a.s) we obtain

205 y ) 2< Yy > ) 9 4
= 35136yl 210 (L) +2 —6y— -
f3 0 {(3 6y) 0g<1_2y + 2log - +5—6y—5y
2
. Y s . v dz
4Lig | — ) — — L = — 1
+ 12<1_y) 3]7 12(y) /01_Z0g2>
fo = 1-f3. (31

Note that the soft and collinear singularities reappear as large logarithmsin the limit y — 0. Clearly the
result only makes sense for y values large enough such that f, > f3, so that the O(a.g) correction to f,
is perturbatively small.

The generalization to multijet fractions is straightforward. Starting from an n—parton final state,
identify the pair with theminimuminvariant masssquared. If thisisgreater then ys then the number of jets
isn. If not, combine the minimum pair into asingle ‘ cluster’. Then repeat for the (n — 1)—parton/cluster
final state, and so on until all parton/clusters have arelative invariant mass squared greater than ys. The
number of clustersremaining isthen the number of jetsin thefinal state. Note that an n—parton final state
can give any number of jets between n (all partons well-separated) and 2 (for example, two hard quarks
accompanied by soft and collinear gluons).

Since a soft or collinear gluon emitted from a quark line does not change the multiplicity of jets,
the cancellation of soft and collinear singularities that was evident in the total cross section calculation
can till take place, and the jet fractions defined this way are free of such singularities to all ordersin
perturbation theory.

Now in general we have

™

far2(Vs,y) = (aS(S))n ian(y)(aS(s))j, n > 0,
j=0

Sho= 1. (32)
n=2

Since the jet—defining parameter y isdimensionless, al the energy dependence of the jet fractionsis con-
tained in the coupling as(s). One can therefore exhibit the running of the strong coupling by measur-
ing a decrease in f3 as /s increases, see Fig. 3. Note that experimentally the algorithm is applied to
final state hadrons rather than partons. However studies using parton shower/fragmentation Monte Car-
los have shown that — at least at very high energy — the fragmentation corrections are small (O(1/Q),
see Section 3.4 below) and therefore the QCD parton-evel predictions can bereliably compared with the
experimental data. A quantitative discussion can be found in Ref. [15], for example.

The next-to-eading order correctionsto f3 have been calculated [12]. Because the hadronization
correctionsto f3 arerelatively small, the threejet rate provides one of the most precise measurements of
ag at LEPand SLC. A typical fit isshownin Fig. 4.

Whilethe above definition iswell suited to experimental jet measurements, it is not quite optimum
from atheoretical point of view. The reason is that when y becomes small (as happens in practice), the
large logarithms of y explicit in (31) begin to dominate the theoretical predictions. It is straightforward
to show that higher—order correctionsto jet fractionssuch as f> and f3 will contain termslike g log?™ y.
When y issmall enough that a5 log? y ~ 1, these terms must be resummed to obtain areliable prediction.
Unfortunately, the JADE algorithm is not well-suited to this type of resummation [16], and so a variant
— the ‘Durham’ or k7 agorithm —- was proposed [17]. In this modified algorithm, the invariant mass
measure of two partons (hadrons) given in (29) is replaced by the minimum of the relative transverse
momenta:

min k:%ij = min(E?, EJZ) sin 9%- >ys, 1,j=4q,4,9, (33)
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Fig. 3: A compilation of three-jet fractions (R3) at different et e~ annihilation energies, from the OPAL collaboration [13].
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inthe eTe™ centre—of—mass frame with massless quarks and gluons. With this new definition of the jet
measure, resummation of al large logarithms can be performed [17]. Finite, next-to—leading order cor-
rections have al so been calculated [ 15] and comparisons of theory and experiment have been performed,
asfor the JADE agorithm. Itisinteresting that the (presumably) morereliable o g valuesfrom resummed
perturbative jet measures tend to be slightly larger than those obtained without resummation, see for ex-
ample Table 12.1 in Ref. [1].

3.3 Event shapevariables

The other high—precision determination of ag at LEP and SL.C comes from event shape variables, quan-
tities that characterize the ‘ shape’ of an event, for example whether the distribution of hadronsis pencil—
like, planar, spherical etc. Thisismore general than the jet cross section approach discussed above, since
ajet-finding algorithm will always find jets in a hadronic final state even when none existed in the first
place, for example in the limiting case when the hadronic energy is distributed uniformly over the 4
solid angle. The procedure is to define a quantity X that measures some particular aspect of the shape
of the hadronic final states. The distribution do/d X can be measured and compared with the theoretical
prediction. For the latter to be calculablein perturbation theory, the variable should be infra—red safe, i.e.
insensitive to the emission of soft or collinear gluons. A typical exampleisthe thrust variable:

Zi |Pi : n|
= - 34
>, b1 (39

Thus a pure two—particle fina state (e.g. ¢qq) hasT = 1, whilefor T < 1 the leading order (parton)
contribution to the thrust distribution comes from the ¢gg final state;

T = maxXy,

- ﬁ:aSAl(T)+a§A2(T)+...+O(Eim), (35)
where the coefficient functions A;(T") and A2(T") have been calculated. Thus the shape of the distri-
bution tests, via A;(T"), the basic QCD ¢qg interaction vertex (scalar gluons would, for example, give
a different shape and can be excluded by the data), while the overall normalization provides a measure
of ag. At present, quantities like the thrust distribution are known in perturbation theory to O(a?%), and
the theoretical predictionsintheT” — 1 region can be improved by resumming the leading logarithmic
A, ~In®"=Y(1 - T)/(1 = T) contributions to all orders. Thisyields a‘Sudakov’ form factor:

%j—; ~ 8% exp(—asCp/mIn*(1 = T)). (36)
Evidently the dominant effect of resummation is to suppress the event fraction at T' ~ 1, leading to a
turn-over instead of adivergencein the distribution at high thrust. It can be shown, however, that in the
vicinity of theturn-over the double leading logarithm approximation is not reliable, and sub-leading loga-
rithms at each order have to be taken into account (seethe discussionin Ref. [1], for example). When this
is done, and when the resummed predictions are matched to the exact NNLO contribution (i.e. the full
A1 (T) and A2(T')) excellent agreement with experiment isobtained, seeFig. 5. Another important recent
theoretical development, discussed in the following section, has been an improved understanding of the
leading O(1/E) power corrections, which at L EP can be as numerically important as the next-to-eading
perturbative corrections.

Event shapeshaveyielded o measurementsover awiderangeof e*e™ collision energies, the most
recent measurementsbeing at LEP2 upto /s = O(200 GeV). Although the statistical precision of these
measurements cannot match that obtained at the Z° pole, the results are consistent with the Q2 evolution
of ag predicted by Eq. (3). For example, Fig. 6 showsthe ag values determined by the L3 collaboration
[19] from event shape measurementsat L EP1 and LEP2 energies. The solid lineisthe evolution predicted
by perturbative QCD.
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Fig. 5: Resummed prediction for the thrust distribution at LEP, corrected for hadronisation and fitted to DELPHI data, from
Ref. [18].

3.4 Power corrections

Event shape variablesin e™e™, ep, . . . collisions provide powerful tests of perturbative QCD. A recent
development has been the realisation that certain nonperturbative power corrections may be universal
[20, 21, 22]. If thisisindeed true, it will sharpen the phenomenology and improve the determinations of
ag. In general, the average value of a shape variable X can be written as

(X) = agA; +a%As + ... —i—O(&) (n>1), (37)
where the perturbative A; coefficients can be computed to arbitrary order, at least in principle. The scale
for the power corrections is expected to be O(1 GeV), at least for quantities dominated by light quarks
and gluons, and son = 1 power corrections can easily contribute at the samelevel as O(a%) perturbative
corrections. Infact itiswell known that ‘ hadronisation’ correctionsto event shapesin e™ e~ annihilation,
as modelled by Monte Carlos such as HERWIG and JETSET, do indeed exhibit a1/ dependence and
need to be taken into account in «eg determinations such as those described above.

To see how universal power corrections might arise, consider the calculation of the average of an
event shape variable at leading order in perturbation theory. The average is given by a phase-space in-
tegral over the qgg matrix element squared, weighted by an appropriate quantity-dependent factor that
guarantees infra-red safety; schematically,

(X) = /d[/-c,...] Mago? Wx (k) + ...
~ /()Q d?k {aX (g)pas(k:Q) +}
R e
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Fig. 6: Measurements of a.s from event shapes at LEP1 and LEP2 from the L3 collaboration [19]. The errors correspond to
experimental uncertainties only.

where k is the energy of the emitted gluon. In the second step the behaviour at small % is exposed, and
inthe last step we have split the integral over the gluon energy into apart & > p; for which ag < 1 and
for which perturbation theory applies, and apart & < py for which the coupling is large and its precise
form unknown. The strength of the infra-red suppression p depends on the quantity X . We may define a
non-perturbative parameter to represent the contribution from the & < 7 region:

aatun) = [ (5 as (39)

Consider, for example, theaveragethrust (T') ine™ e~ annihilation. Explicitcalculationgivesp = 1, ar =
—4Cp /7. Afitto the experimental datausing NLO perturbation theory and a1/ power correction sup-
plemented by the so-called Milan factor® (= 1.8) gives a very good description, and yields a value for
the parameter @ (1) at aparticular reference scale. For example [23]

1-T):  @(2GeV) = 0.493+0.009 =+ 0.004, (40)

where the second error is from the scale variation E/2 — 2E. The formalism can aso be extended to
distributionsin the shape variables, e.g. do/dT, see for example Ref. [22].

A powerful check on the above method of quantifying theleading power correctionsisto seewhether
the parameter @, is indeed universal. Recently the formalism has also been applied to shape variables
measured in ep collisionsat HERA. Theresult of afit to avariety of variables by the H1 collaboration is
showninFig. 7. Theagreement withthee™ e~ valuesof Eq. (40) isreasonable, although not perfect. This
could be evidence for non-negligible subleading power corrections in one or other process. In any case,
theformalism described above representsamajor advancein our quantitative understanding of power cor-
rections. Asfor ag measurements, one could hope to compile a set of @, @, . . . parameters measured
in avariety processes to check for universal behaviour.

There are many other detailed tests of QCD that can be performed at high—energy e e~ colliders,
but lack of space precludes a detailed discussion here. Some of most important are: (i) using four—jet
events to test the non—Abelian strucure of QCD viatheeTe™ — ¢ggg process, (ii) studying the detailed

5The effect of soft gluons on the nonperturbative contribution at the two-loop level has been analysed by Dokshitzer et al.
[24], and shown to yield an additional enhancement ‘Milan’ factor.
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structure of (light and heavy) quark jets and gluon jets, (iii) comparing measured particle multiplicities
with leading-logarithm (MLLA’") QCD predictions. Further information can be found in Ref. [1].

4. DEEPINELASTIC SCATTERING

The original, and still one of the the most powerful, test of perturbative QCD is the breaking of Bjorken
scaling in the structure functions measured in deep inelastic lepton—hadron scattering. Nowadays, struc-
ture function analyses not only provide some of the most precise tests of the theory but also determine the
momentum distributions of partonsin hadronsfor use asinput in predicting cross sectionsin high energy
hadron-hadron collisions. In this section we first describe the basic features of the parton model in deep
inelastic scattering and then discuss how the pictureis modified by perturbative corrections. Comprehen-
sive reviews of deep inelastic scattering, the parton model and QCD can be found in Refs. [1] and [26],
for example.

4.1 Theparton model

Consider the deep inelastic | epton—proton scattering process ip — (X . Label the incoming and outgoing
lepton four—momenta by &# and k/* respectively, the incoming proton momentum by p* (p? = M?) and
the momentum transfer by ¢ = k* — k’. The standard deep inelastic variables are defined by:

Q> = —¢ P2 = M?
2 2
2p-q 2M(E - E')
q-p /
= —=1—-F/F
y ko p /
Q2
s = (k+p)?=M+*, (41)
zy



where the energies are defined in the rest frame of the target. Analogous expressions can be derived for
lepton—hadron colliders, such as HERA. The hadronic structure functions F;(x, Q?) are then defined in
terms of the inclusive lepton scattering cross sections. For example, for charged lepton (neutral current)
scattering viavirtual photon exchange, Ip — (X,

2 em 4 2(a _ 2 )2
d*o _ dma (s—=M=) | (1+(1—1y) Sz FEm
dxdy Q* 2
2
+(1 —y)(F5™ — 22F7™) —mxnym] ) (42)

and for neutrino or antineutrino (charged current) scattering viavirtual W exchange, v(v)p — 1 X,

d?o¥ () G%(s — M?) M? )
dedy 2 1_y_sfM2xy £
2 4+ (<) - y/2)e By ). (43)

In the quark—parton model, these structure functions are related to the quark ‘distribution functions’ or
‘densities’ ¢(z, %), whereq(z, 1% )dz isthe probability that aquark parton ¢ carriesamomentum fraction
x of the target nucleon’s momentum when probed (by agauge boson v*, W or Z) at momentum transfer
scale ;1. In deep inelastic scattering the relevant scaleisthe virtuality of the gauge boson probe, i.e. u? =
Q2. Thus, assuming four approximately massless quark flavours,

FY = 2a[d+s+a+e

[
zFy = 2z[d+s—u—c¢
Fy = 2zfu+c+d+3
vF} = 2zfut+c—d— 3

em __
E5 =

8

4 1 -
§(u+u+c+é)+§(d+d+s+§)
FLEFQ—Q.CUFl =

e

(44)

Thislast result, the vanishing of the structure function for longitudinal virtual photon scattering, is called
the Callan-Gross relation and follows from the spin—1/2 property of the quarks. Note that when the
nature of the target is unambiguous, the notation ¢(z, 1) and g(x, ?) for the quark and gluon densities
can be used, otherwise ageneral notationiis f, 4 (, ©?), wherea=u,d, ... gand A =p, n, Fe, Cu, etc. In
the‘naive’ parton model the structure functionsscale, i.e. F'(z, Q?) — F(x) inthe asymptotic (Bjorken)
limit: Q% — oo, z fixed. Infact, it was the observation of scaling in the original SLAC experiments that
provided thefirst evidence of pointlike parton structure in the hadron. To afirst approximation, therefore,
one can take the parton distributionsto be functions of z only: ¢(z, u?) — ¢(x). We shall see below how
perturbative QCD induces logarithmic deviations from scaling, exactly in line with more recent high—
precision experimental measurements.

Individual quark distributions can be determined from measurements of the various structure func-
tionsin (44). A picture emerges in which a proton consists of three valence quarks (vud) and a‘sea’ of
qq pairs and gluons. In the most simple version of this parton model the sea would be (three) flavour
symmetric and hence the net quark distributions would be givenby v = uwy + 5, d = dy + S and
s=5=1u=d= S, with the sum rules

1 1
/uv(x)dx:2/ dy(x)de = 2, (45)
0 0

/0 eluy (2) + dy(2) + 6S(@))dz = 1. (46)
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These represent conservation of proton quantum numbers and total momentum fraction respectively.

MRST partons =20 GeV

Fig. 8: Quark and gluon distribution functions at ;.2 = 20 GeV?, from Ref. [27].

Figure 8 showsatypical set of ‘modern’ quark and gluon distributions z f; (v, 112) [27] in the proton
extracted from fits to deep inelastic and other data, when probed at a momentum scale ;P =20 GeV?, a
typical valuefor fixed—target deep inelastic experiments. Noticethat the seaisdefinitely not SU(3) flavour
symmetric, rather the strange quark distribution is roughly afactor of 2 smaller than the light sea quarks,
and thereiseven asignificant asymmetry between thew and d quarksinthesea. Neither of thesefeaturesis
quantitatively understood at present. Qualitatively, one would expect smaller distributionsfor heavier sea
quarks, i.e. @,d > s > c¢ > b> ..., and somesort of Fermi exclusion principle (v > d = 4 < d) might
explain the asymmetry between @ and d. Notice also that at this scale a small charm quark component is
observed, consistent with the expectation that the virtual photon should be able to resolve c¢ pairsin the
quark seawhen Q2 > O(m?). The sum rule (45) is experimentally well verified, but the net momentum
fraction (46) carried by the quarks alone is found to be only about 50%, with the gluons (not directly
measured in leading—order deep inelastic scattering, see below) accounting for the other 50%.
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4.2 Scalingviolations—the DGLAP evolution equations

In QCD, Bjorken scaling is broken by logarithms of Q2. Physically, a quark in the proton can emit a
gluon, with probability determined by a5, and lose momentum as aresult. Since the higher the Q? the
more phase spaceisavailablefor gluon emission, the expectation isthat parton distributions should shrink
to small = as Q? increases, with the rate of shrinkage being controlled by as.

In describing quantitatively the way in which scaling is violated it is convenient to define singlet
and non-singlet quark distributions:

FNS(vaz) = Qi(x7Q2)_qj(x7Q2)v
F9(2,Q%) = Y [ai(@,Q*) + @, Q%) | (47)

i

where we have restored the explicit Q? dependence. The non-singlet structure functions have non—zero
values of flavour quantum numbers such as isospin or baryon number. The variation with Q? of these
functions is described by the Dokshitzer—Gribov—Lipatov—-Altarelli—Parisi (DGLAP) equations [28]:

Q2 a(;TQ]\;S _ 0432(7?2)qu « NS
Q> ggj — a52(7632) (P« FS + 20 P 1 g)
Q’ 8‘95’2 = 0‘52(7?2) (P95 F5 4 P99« g), (48)
where x denotes a convolution integral :
fra= [ Yo (%). (49)
z Y Yy

In leading order the DGLAP kernels (or ‘splitting functions’) are

qu — é 1+1J2
- 3\1-=z
+

P9 = %[ﬁ%—(l—x)ﬂ
pog _ 4 1+(1—x)2]
3 x
J 22— Gll_x—i—a;(l—w)—}—(lx )]
x -z,
_ E + %} 5(1— 1), (50)

Note the ‘plus prescription’ for those functions that are singular as xz — 1:

1 1
| def@ @), = [ dolf@) - s0lgta). Gy

The DGL AP equations can be solved analytically by defining moments (formally, Mellin transforms) of
the structure functions, MY = (FN5),, = [ dza™~'FNS etc. The convolution integral then becomes
a simple product. Introducing the leading—order expression for the QCD coupling constant derived in

Section 2.2,
4

= Bon(Q2/A2)’ (52)

as(Q?)
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one obtains, for the non—singlet solution,

NS (2 s ooy [as(@)) "
M;>(Q7) = M, (Q ; 53
where d,, = 2(P1),,/fy. Notethat d; = 0 and that d,, < 0 for n > 2, which implies that the parton
distributions decrease and increase with increasing Q? at large and small « respectively, as argued on
physical grounds above. Solutions for the singlet and gluon moments can be found in asimilar way, by
first diagonalizing the coupled equations. In practice, it is often more convenient to solve the DGLAP
equations numerically by iterating small stepsin log 2, starting from aset of ‘input’ parton distributions
fi(z, Q3). Figure 9 shows the same set of parton distribution functions asin Fig. 8, but now DGLAP-

4 T T T T T T T

MRST partons 6=104 GeV?

Ll Ll T AR - e LI N

10 107 1072 « 107 1

Fig. 9: The same parton distribution functions asin Fig. 8, but now at 2 = 10* GeV?, from Ref. [27].

evolved to the much higher scale ;2 = 10* GeV?, typical of measurements at the HERA ep collider. By
comparing the two figures one can clearly see the shrinkage to small = as Q? increases.

Theprecision of contemporary deep inelastic datademandsthat the QCD predictionsare cal culated
beyond leading order. This amounts to the replacements (shown schematically):

P(x) — P<a:,@2)—P<“>(x>+0‘52(7?2)P<1>(x>+...

325



F:g;Zegq - F:xZ(Cq*q+Cg*g)
q q
Cy=e2d(1 —x) + O(as(Q?)), Cy = O(as(Q?). (54)

The functions C, and C, are called coefficient functions. Beyond leading order, the definition of parton
distributions (like the definition of «g) becomes (factorization) scheme dependent (see Ref. [1] for amore
detailed discussion). Different schemes have different coefficient and higher—order splitting functions,
and correspondingly different parton distributionsto render the (physical) structure functions scheme in-
dependent. Inthe‘DIS scheme, for example, Cy(x) = 636(1 —x),Cy = 0. Itisconventional nowadays
to work in the MS scheme, where for example

71FMP CC Q2 262 MS l’ Q2

MS ()2 1 [
() B [ Lo (L)
+0(a3) - (55)

The scaling violations predicted by perturbative QCD are clearly visible in the data. Figure 10
shows high precision data on the structure functions F¥Y and x F¥™Y from the CCFR collaboration [29].
As expected, the Slopes 9F» 3/0 In Q* are negative at large = and positive at small « respectively. From
data such as those shown in Fig. 10, the predictions of perturbative QCD for scaling violations (48) can
be tested, and a precise measurement [29] of the strong coupling a.5(Q?) can be made:

CCFR(Fy3) : ag(M2) = 0.119 4 0.002(exp.) + 0.001(HT) =+ 0.004(scale). (56)

The second error is from an estimate of the higher—twist contribution:®

FW(z,Q%)
Q?
using the model of Ref. [30], and the third is the scale dependence uncertainty. Notice that, except at
large x, the Q2 variation of F, is sensitiveto the a priori unknown gluon distribution and there is poten-
tially a strong as—gluon correlation. Non-singlet structure functions such as F3 do not suffer from the
gluon correlation problem (see Eq. (48)), but these are only measurable experimentally by constructing
differences between cross sections, e.g. ¥V — ¢”VV. This inevitably introduces additional systematic
and statistical uncertainties. The g value (56) is one of the most precise determinations, see Fig. 1. It
agrees perfectly with the values measured in e™e~ annihilation, showing that o5 is indeed a universal

parameter, independent of whether the short distance process is spacelike (DIS) or timelike (eTe™).

Deep inelastic fixed—target experiments measure quark distributions very accurately over a broad
rangein z (~ 0.01 — 0.8) up to scales of order ;2 ~ 200 GeVZ2. The HERA high-energy e*p collider,
with /s ~ 300 GeV, isableto extend the > range down to very small val ues, and the Q? range up to very
high values, see Fig. 11 [35]. At the high Q% > O(10* GeV?) values measured at HERA, the W and
Z contributions to the ep cross sections cannot be neglected. The neutral current cross section (42) must
be modified to include Z exchange, and a corresponding charged current cross section (for ep — v X)

introduced. Ignoring the proton mass, the expressions are:
5The superscripts on the right—hand side of (57) refer to the ‘twist’ = (dimension — spin) of the contributing operators.

F(z,Q%) = F@(2,Q% + + ., (57)
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Fig. 10: Measurementsof thestructurefunction F¥'™¥ fromthe CCFR collaboration together with aNL O QCD fit, from Ref. [29].
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(62)

From these expressions we see that (i) the charged current cross section is suppressed by O(Q*) at small
Q? where the neutral current cross section is dominated by photon exchange, and (ii) at very high Q2 >
O(M2), the charged and neutral cross sections are of the same order. The HERA data confirm this be-
haviour: Fig. 12 shows the neutral and charged current cross sections for et p scattering at high Q2 mea-
sured by ZEUS [36], together with the Standard Model predictions.

Parton distributions at some starting scale i3 are a byproduct of DGLAP fits to DIS data. These
can then be evolved to higher 112 and used for hadron collider phenomenology. Instead of laboriously
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Fig. 12: Charged and neutral current DIS cross sectionsat high Q?, asmeasured by the ZEUS collaboration [36] in e p scattering
at HERA.

integrating the DGL AP eguationseach timeaparton distributionisrequired, it isuseful to havean analytic
approximation, valid to a sufficient accuracy over a prescribed (x, 2) range. Such parametrizations are
discussed in the following section.

4.3 Parton distributionsin hadrons

Aswe have seenin the previous sections, the distributions of quarks (and, indirectly viathe DGLAP equa
tions, gluons) in the proton are determined by values of the structure functions F; (z, Q?) measured in the
various deep inelastic scattering experiments. It isrelevant to ask why we should devote so much effort to
the study of the distributions of partonsin the proton. There are two main reasons, one experimental and
one theoretical. First, a detailed knowledge of parton distribution functions (pdfs) is an essential ingre-
dientinall *hard’ interactionsinvolving protons, and so they are needed to estimate the production rates
of the various hard processes that may occur at present and future colliders. Second, the parton structure,
as encoded in the f;, isinteresting in its own right. In particular, novel perturbative QCD effects are ex-
pected to become apparent at small z. The reason isthat at small = the sum over soft gluons emitted off
the incoming parton leads to a power seriesin ag In(1/z), which on resummation, via the Lipatov (or
BFKL) equation [31], suggests that the gluon and quark singlet distributions behave as

xg, rqs ~ (63)

asx — 0, with A = 121n 2a,s /7 predicted to be about 0.5. Such anincreasein zg(x, u?) and zqg(x, pu?)
as x decreases cannot go on indefinitely. If the density of gluons becomes too large they can no longer
be treated as free partons, and the effects of recombination or shadowing must be included. The ‘naive
BFKL predictions(63) for thesmall x behaviour of the parton distributionsisvalid only for asymptotically
small x values. Itisfar from clear whether the values attainable at HERA (see Fig. 11) arein fact small
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Table 4: Processes studied in the global MRST analysis[27] (* indicates data fitted).

Procesy Leading order | Parton behaviour probed
Experiment subprocess
DIS(uN — pX) Y'q —q
I3 S Dl 3 Four structure functions —
(SLAC, BCDMS, u—+u
NMC, E665)* d+d

u+d
DIS(vN — uX) W*q — ¢ s (assumed = 3),
FYN o FyN but only [ zg(x, Q%)dr ~ 0.35
(CCFR)* and [(d — @)dx ~ 0.1
DIS (small ) YN(Z*)g — q A
FsP (H1, ZEUS)* (2q ~ 27, 2g ~ 27 29)
DIS (FL) Y9 —qq g
NMC, HERA
LN — ccX Y*c — ¢ c
F5 (EMC; H1, ZEUS)* x 2 0.01; 2 $0.01)
vN — ptpu—X W+*s — ¢ s~ H(u+d)
(CCFR)* <yt
pN — vX q9 — vq gatax~2pr/\/s —
(WAT0*, UA6, ET06, ...) z~02-0.6
pN — ptp~X q7 — " q=..(1—x)
(E605, E772)*
pp,pn — ptpu—X uii, dd — ~v* a—d (0.04 <2 50.3)
(E866, NA51)* ud, di — +*
ep,en — e X ~v*q — q with i—d (0.04<250.2)
(HERMES) g=u,d,a,d
pp — WX(ZX) ud — W u,dat x ~ My /v/s —
(UA1, UA2; CDF, DO) z ~ 0.13; 0.05

— ¢% asym (CDF)* slopeof u/d at z ~ 0.05 — 0.1

pp — ttX qq,99 — tt g, gatx 2 2my/\/s ~0.2
(CDF, DO)
pp —jet + X 99.49,99 — 2j | ;g x ~2Er/\/s —
(CDF, D0) 22 0.05— 0.5
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enough for the leading behaviour to be observable. Indeed, standard NLO DGLAP evolution provides
a satisfactory explanation of the observed small—z behaviour, with approximately flat (i.e. zf; ~ z°)
distributions at a starting scale 3 ~ 1 GeV?, see the discussion in Ref. [27] for example.

In fact, approximately flat starting distributions are in line with longstanding non—perturbative
Regge arguments for structure functionsin the x — 0 limit. According to Regge theory, the high—energy
behaviour of an elastic hadron scattering amplitude is controlled by a sequence of Regge trajectories cor-
responding to the exchange of families of particles with different spin, see for example Ref. [37]. In
the small— limit, the quark—proton amplitude A, in deep inelastic scattering is probed at high energy,
s ~ Q?/x, for which we would expect

Agp ~ Bps®P 4 Brs® R ..., (64)
where the leading trgjectories are
pomeron P

p,w,CLQ,fQ,... (65)

Inserting this behaviour into the parton—model calculation of the F5 structure function gives the leading
small—z behaviour

ap ~ 1

1
aR ~ =
R 2

Fy(z) ~ Bpa' =P + Bra’ TR . (66)

We may interpret the two terms in (66) as the contributions to the structure function from the flavour—
singlet quark sea, with behaviour determined by theleading ‘ pomeron’ trajectory ap, and from theflavour—
non-singlet valence quarks, with behaviour controlled by the ‘Reggeon’ tragjectory ar. We would like-
wise expect that the behaviour of the gluon distribution at small x is aso determined by the pomeron
trgjectory, yielding the predictions

_ _1
gs, g~z qu e~ (67)
inthe z — 0 limit, or equivalently
FP g0 FP—FP gt (68)

A detailed analysis of small z, modest Q2 structure function measurements at HERA collider and fixed—
target energies shows that they are indeed approximately consistent with the predictions of Regge theory,
see for example the recent ZEUS measurements [35] of F, at small z in Fig. 13. However the data also
show an apparent steepening of the behaviour at small z as Q? increases, exactly as expected from per-
turbative QCD DGLAP evolution as described above. Therefore, although much has been written about
the theoretical ‘BFKL’ behaviour of the small—z parton distributions,” there is as yet no compelling ex-
perimental evidence and so we shall not discuss this further here.

There are currently three collaborations producing sets of parton distributions that are widely used
in high-energy collider phenomenology: MRST (Martin—Roberts-Stirling-Thorne), CTEQ (Collabora-
tion for Theoretical and Experimental Studies in Quantum Chromadynamics) and GRV (Glick—Reya—
Vogt) (see, respectively, [27, 32, 33] and references therein). The first two of these use the concept of
‘global fits' to determine each parton distribution as accurately as possible from high-precision data on
deep inelastic structure functions and other hard scattering processes. The GRV anaysisisin the context
of the‘ dynamical parton model’ [34] in which the partons evolve from valence-like distributions at alow
Q? scale. These starting distributions are tuned to fit the data at higher Q2.

Thelast few years have seen a spectacular improvement in the precision and in the kinematic range
of the experimental measurements of deep inelastic and related hard scattering processes. As a conse-
quence the pdfs are much better known, with tight constraints on the gluon and the quark seafor Bjorken

"For areview of small— physics, and alist of references, see for example Ref. [1].
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Fig. 13: Low—Q? F, datafor different Q2 bins together with a Regge fit (dashed curves) to the ZEUS BPC95 data [35]. Also
shown at larger values of Q2 isthe ZEUS NLO DGLAPfit (full curves).

x aslow as 107°. In what follows we will summarize the recent MRST pdf analysis of Ref. [27]. Thisis
the most recent of the global analyses, and takes into account all the new information as well asincorpo-
rating new theoretical developments in the heavy quark sector.

Table 4 illustrates the variety of data used in the recent MRST analysis[27]. The basic procedure
is to parametrize the f; at a sufficiently large ‘starting scale’ (Q3 = 1 GeV? for MRST) so that the
fi(x, Q?) can be calculated reliably at higher Q2 from perturbative QCD viathe NLO DGLAP equations.
Interestingly, the data are well described by remarkably simple parametrizations of parton distributions
at the starting scale; in total only about 20 parameters are required. The generic form for each individual
starting distribution can be taken to be

zfi(z, Q%) = Aiz (1 + ev/x + 3iw) (1 — 2)™, (69)

with some of the A; constrained by the sum rulesin Eq. (45) and the remainder constrained by the fitting
procedure.

The deep-inelastic structure functions directly pin down the valence and sea quark distributions,
but information on the gluon distribution is more elusive. The momentum sum rule indicates that the
gluon carriesjust less than 50% of the proton’s momentum at Q2. In addition, at small z the Q2 evolution
of the structure function is completely dominated by the gluon term:

aFQ(x7Q2) ~ aS(QQ) ) 1 dy x x 9
olmQ?  or 2%:%/1" m <§> Pyg (5) yg(y, Q7). (70)
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Therefore, while F, measures the quarks, its Q? derivative measures the gluon.

To obtain information on the gluon distribution at large z, input from other processes is needed.
For example, in prompt photon production in hadron-hadron (pN) collisions the gluon enters at leading
order viathe QCD subprocess gqg — ¢, in contrast to pp — X wherethe annihilation processqg — ~g
is much more important. The relevant data are from the WA 70 and E706 collaborations [38, 39], which
determine the gluon in the region x ~ 0.2 — 0.5. Combined with the momentum sum rule constraint,
this gives a reasonable measurement of the gluon at large x, see Fig. 14, although additional assumptions
are needed concerning the ‘intrinsic transverse momentum’ distribution of the partons in the proton, see
for example the discussion in [27]. Data on the Drell-Yan pN — p™p~ X process, which is mediated
at LO by gyai@sea — ", cOnstrain the large—z (1 — z)"s behaviour of the sea quark distributions, see
Section 5. Finally dataon the rapidity distribution of charged leptonsfrom W production and decay at the
Tevatron pp collider impose tight constraints on the » and d distributions, particularly when the accurate
measurements of 4" / F}* have to be fitted simultaneously [27].

10" e R A RamaRES

t E706 (p Be— yX)
Piap = 800 GeV

N
S
&
T

ECng/dpS (nb/nucleon)
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scalep=p;/2
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oMl b e e e

Fig. 14: Comparison of the E706 prompt photon data[39] dataat 800 GeV with the MRST parton set [27]. Thescaleischosento
be pr /2 and the effect of including parton transverse momentum is shown. These data are used to constrain the large— gluon.

As mentioned already, a feature of recent parton determinations is the marked difference between
the @ and d pdfs, see Fig. 8, motivated by new precise experimental measurements. The DIS structure
function measurements (of F4%, Fi" FYN and 2 F¥™V) determine (@ + d), but not (@ — d). Historically
the first indication of the @ # d flavour asymmetry of the sea came from the evaluation of the Gottfried

sum Ly
Ics = / L ) (71)
0o

by NMC [40]. This givesinformation on theintegral of # — d and indicates that, on average, d is greater
than 4.
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For adirect determination of % — d consider, for example, the asymmetry of Drell-Yan production
in pp and pn collisions [41]
Opp — Opn 1—r

Apy = = , 72
bY Opp + Opn 147 (72)

where r = 0, /0, and where ¢ = d?0/dMdzr with M and z being the invariant mass and the
Feynman « of the produced lepton pair. At leading order we have

.= T _ (4urdsy + dytig + 4tyds + diug + 25152 + 8cica) (73)
o Opp (durte + dida + 4ujug + dids + 25152 + 8cic2)

wherethe pdfsareevaluated at z1, 2 = (+ap + /2% + 47) /2, with 7 = M?/s. We may rearrange the
expression for 1 — r, and hence that for Apy, to show that it is dependent on the combinations (i; — d1)
and (ﬂg — dg).

The first experiment of this type was performed by the NA51 collaboration [42] who measured

Opd 1
R = 22 - _( 74
dp QUpp 9 ( + T) ( )

atxy = xo = 0.18 andfound Apy = —0.094-0.02+0.025, which correspondsto d /@ ~ 2. Subsequently
the E866 collaboration [43] measured R4, over amuch wider range of M and =z, which enables a study
of the = dependence of (z — d) over therange 0.04 < z < 0.3. The continuous curve in Fig. 15 shows
the MRST fit to these data. The dotted curve shows the values that would be obtained for the ratio if we
were to set @ equal to d. The implications for d and @ from the MRST fit to the E866 data are shown in

Fig. 8.

o™¥20"° E866 data

12 -

0s L MRST B

—————————— MRS(R2)
d=u

cev b b e b e e b by
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Xy

Fig. 15: The continuous curve is the MRST description of the E866 [43] data for the ratio of the cross sections for hadropro-
duction of dileptons for proton and deuterium targets versus x2, the fractional momentum of the parton in the target. The other
curves are for comparison only.
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5. HARD PROCESSESIN HADRONIC COLLISIONS
5.1 Introduction

It was first pointed out by Drell and Yan [44] that parton model ideas developed for deep inelastic scat-
tering could be extended to certain processes in hadron-hadron collisions. The paradigm process wasthe
production of amassive lepton pair by quark-antiquark annihilation — the Drell-Yan process — and the
hadronic cross section o was to be obtained by weighting the subprocess cross section 6 for qg — ™
with the parton distribution functions f, /4 () extracted from deep inelastic scattering:

OAB = /dmad% faya(@a) foB(p) Gab—x (75)

where for the Drell-Yan process, X = [T~ and ab = qg, gq. The domain of validity is the asymptotic
‘scaling’ limit (the analogue of the Bjorken scaling limit in deep inelastic scattering) Mx = M2, , s —
00, T = Ml% ,—/s fixed. The good agreement between theoretical predictions and the measured cross
sections provided confirmation of the parton model formalism, and allowed for the first time arigorous,
guantitative treatment of hadronic cross sections. Studies were extended to other ‘hard scattering’ pro-
cesses, for exampl e the production of hadrons and photons with large transverse momentum, with equally
successful results. Problems, however, appeared to arise when perturbative correctionsfrom real and vir-
tual gluon emission were calculated. Large logarithms from gluons emitted collinear with the incoming
guarks appeared to spoil the convergence of the perturbative expansion. It was subsequently realised that
these logarithms were the same as those that arise in deep inelastic scattering structure function calcu-
lations (see Section 4.), and could therefore be absorbed, viathe DGLAP equations, in the definition of
the parton distributions, giving rise to logarithmic violations of scaling. The key point was that all log-
arithms appearing in the Drell-Yan corrections could be factored into renormalized parton distributions
in this way, and factorization theorems which showed that this was a general feature of hard scattering
processes were derived [45]. Taking into account the leading logarithm corrections, Eg. (75) simply be-
comes:

OAB = /dwadﬂcb Faja(@a, Q%) foy(xp, Q%) Gab—x - (76)

The Q? that appears in the pdfs is a large momentum scale that characterizes the hard scattering, e.g.
MY, , p%, ... . Changesto the Q* scale of O(1) are equivalent in this leading logarithm approximation.
Thefina step in the story was the recognition that the finite corrections left behind after the loga-

rithms had been factored were not universal and had to be calculated separately for each process, giving
riseto O(«g) corrections to the leading logarithm cross section of (76). Schematically

oAB = /d-%’adivb faja(@a, M?) forp(ze, M?) x [60 + as(p®) 61 + - Japox - (77)

Here M ? isthefactorization scaleand 12 isthe renormalization scale for the QCD running coupling. For-
mally, the perturbation seriesisinvariant under changesin these parameters, the M and 1. dependence of
the coefficients, e.q. 61, exactly compensating the explicit dependence of the parton distributions and the
coupling constant. This compensation becomes more exact as moretermsareincluded in the perturbation
series. Toavoid unnaturally large logarithms reappearing in the perturbation seriesit is sensible to choose
M and 1 values of the order of the typical momentum scales of the hard scattering process, and M = p
is also often assumed.

In general, all theimportant hadronic processes have now been cal culated to next—to— eading order
(NLO), i.e. upto andincluding the 5, terms. One process— the Drell-Yan process— is even cal culated
to oneorder higher (seebelow). Thisalowsavery high degree of precisionin awide variety of processes.
In many cases, theresidual renormalization and factorization scal e dependence isweak, and the precision
of the theoretical predictionislimited only by uncertaintiesin the knowledge of the parton distributions.
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What, then, are the most important applications of this formalism? One can, for example, attempt
to measure «vg, particularly from those processesinvolving ag at leading order, i.e. in 6, and also study
final—state QCD jets in parton scattering processes. One can aso obtain information on parton distri-
butions, particularly the gluon and sea quark distributions, complementary to that from deep inelastic
scattering, as described in the previous section. However, perhaps the most important application is the
prediction of various Standard Model and New Physics cross sections at high energy colliders such asthe
Tevatron (pp) and LHC (pp). There are many examples of situationswherethe ability to detect asignal for
new particle production depends crucially on the accuracy of the Standard Model background estimate.
For reference, we show in Fig. 16 the predictions for someimportant Standard Model cross sectionsat pp
and pp colliders, calculated at next—to-eading order in QCD perturbation theory using the latest MRST
pdfs[27].8

We have aready mentioned that the Drell-Yan processis the paradigm hadron—collider hard scat-
tering process, and so we will discussthisin some detail in what follows. Many of the remarks apply also
to other processes, in particular those shown in Fig. 16, although of course the higher—order corrections
and the initial—state parton combinations are process dependent.

5.2 TheDrél-Yan process

The Drell-Yan process is the production of alepton pair (eT e~ or ™~ in practice) of large invariant
mass M in hadron-hadron collisions by the mechanism of quark—antiquark annihilation [44]. Inthebasic
Drell-Yan mechanism, aquark and antiquark annihilateto produceavirtual photon, g7 — ~* — [71~. At
high energy colliders, such asthe Tevatron and LHC, thereis of course sufficient centre-of—mass energy
for the production of on—shell W and Z bosons aswell, see below. The cross section for quark-antiquark
annihilation to alepton pair via an intermediate massive photon is easily obtained from the fundamental
QED eTe™ — putpu~ cross section, with the addition of the appropriate colour and charge factors.
_ by dra? 1 9

O'(qq—>€ e )_ 33 N qQ’ (78)
where @), isthe quark charge: @, = +2/3, Q4 = —1/3 etc. The overall colour factor of 1/N = 1/3
is due to the fact that only when the colour of the quark matches with the colour of the antiquark can
annihilation into a colour—singlet final state take place.

In general, the incoming quark and antiquark will have a spectrum of centre—of—mass energies v/,
and so it is more appropriate to consider the differential mass distribution:

d6 60,0:. a2 . Ama?
dMQ_FQq5<S_M)7 oo = 3M2°

where M isthe mass of the lepton pair. In the centre—of—mass frame of the two hadrons, the components
of momenta of the incoming partons may be written as

(79)

S
pllt - §($17070ax1)
S
pg = g(l’%O?Oa_-rQ)' (80)

The square of the parton centre—of—mass energy s isrelated to the corresponding hadronic quantity
by § = z1x9s. Folding in the momentum distribution functionsfor theinitial state quarks and antiquarks
in the beam and target gives the hadronic cross section:

do
dM?

00 ! 2
= —/ dxidzad(z1295 — M*)
N Jo

x [ Qhlanler, MA)gi(wa, M?) + [1 = 2))] . (82)
k

8Als0 shown, for comparison, is the total cross section calculated using a (non—perturbative) Regge-based model [2].
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Fig. 16: Standard Model cross sections at the Tevatron and LHC colliders, calculated using MRST partons.
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Note that the virtual photon is atimelike (Q? > 0) probe of the hadronic structure.

Apart from the mild logarithmic /2 dependencein the distribution functions, the lepton—pair cross
section exhibits scaling in the variable 7 = M?/s:

2 do 8ralr [1
M3— = /d:(: drod(x120 — T
dM 3N Jo 1dx26(x122 )

x [Z Qi (ar(z1, M?) (2, M?) + [1 QM
B

= F(r,M?). (82)

From (80), the rapidity of the produced lepton pair isfoundto be y = 1/21n(x;/22), and hence

=T, amy=yTe V. (83)
The double—differential cross section istherefore
do 0 9 o ,
Ay m[; Qr(ar (w1, M*)qg (22, M?) + [1 2])] (84)

with 1 and z2 given by (83). By measuring the distribution in the rapidity and mass of the lepton pair one
canin principledirectly measurethe quark distribution functions of the colliding hadrons, seebelow. This
is particularly important for pion distributions, which are not accessible from deep inelastic scattering.

Another variable that is sometimes used is the longitudinal momentum fraction of the lepton pair
x = 2pr,/+/s. Inthe parton model, it follows from (80) that

r =Ty —I2, (85)
which leads to (cf. (83))
1 ) 1 2
xlzg(x—i— x—47'), a:2:§(x— x—47'). (86)

Both the cross sections do /dM?dy and do /dM?dx can therefore be used to probe the parton distribu-
tions. Note also that the ranges of the variables y and x are obtained by requiring z1, zo < 1:

1 1 1 1
—=log—<y<=-log—, —1l4+7<z<l—1. (87)
2 T 2 T

As mentioned in the introduction to this section, in QCD there exists a systematic procedure for
calculating the perturbative correctionsto al orders. The next—to—eading order corrections are obtained
from one—gluon real and virtual emission diagrams:

do

1
oE = %/0 dzr1dxodzo(x1292 — T)

{ > Qg 1) ulw2, 1) + 1 2))]
k

- a 2
x[6(1—2) + 52(7’: )fq(z)]

+ Z Qi (g(w1, 1?) (g (w2, u?) + G (22, 1?))
k

1o 7)) [Mfm]} , )

2T
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where 1, is the (arbitrary) factorization/renormalization scale. Explicit expressionsfor the f, and f, cor-
rection terms [46] can be found, for example, in Ref. [1]. The O(a?%) corrections to do /dM? have also
been calculated [47], but the expressions are again too cumbersome to be presented here.

The size of the perturbative corrections depends on the lepton—pair mass and on the overall centre—
of—mass energy. At fixed—target energies and masses the correction is generally large and positive, of
order 50% or more. Inthisregime of relatively large T, the (negative) contribution from the quark-gluon
scattering termsin (88) is quite small. However at pp and pp collider energies, where 7 is much smaller,
the f, term is more important and the overall correction is smaller.

Several important pieces of information can be obtained from Drell-Yan data. Low—mass lepton—
pair production in high energy hadron collisionsis, at least in principle, sensitive to the small = behaviour
of the parton distributions. In pp or pN collisions the cross section is proportional to the sea—quark dis-
tribution, g(x, Q?). This provides complementary information to deep inelastic scattering, and in fact
Drell-Yan data can be used to constrain the sea-quark distributionsin global parton distribution fits.

E605 (p Cu—p'W X) p g =800 GeV

E x= —.125
E x= —.075
of
107, - — 025
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07 = 025

ot
0 = o075

E x= .125

M3d20/ddeM (nb/Ge\f/nucIeon)
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Fig. 17: Hadroproduction of dileptons computed from the MRST parton set compared with the E605 data [48]. The theory
curvesinclude an additional K’ factor of 0.9. No correction for the heavy target has been made. The scale on the left—hand axis
is appropriate for the theory and dataat = = —0.125. For display purposes the normalization is then decreased by afactor of
ten for each step upwardsin zr.

Asan example, Fig. 17, from Ref. [27], shows a comparison of data from the E605 collaboration
[48] on the cross section M3d%c /dMdxy for pCu — pt ™ at pra, = 800 GeV/c (/s = 38.8 GeV)
with theoretical (NLO QCD) predictions calculated at next—to-eading order. The data are used in the
global MRST fit to constrain the sea quarksin theinterva 0.15 < = < 0.4. The factorization and renor-
malization scales are here set equal to theinvariant mass M of thelepton pair, and an overall phenomeno-
logical normalization parameter, which alows for possible higher—order effects, is included.

Other important information can be obtained from Drell-Yan cross section measurements. Thedis-
tributions of quarks in pions can be extracted from datain 7p and 7wV collisions. The ‘EMC effect (see
Ref. [26]) — the apparent difference between quark distributions in light and heavy nuclel — can aso
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be studied in Drell-Yan processes. The transverse momentum of the lepton pair also gives direct infor-
mation on the transverse momentum distribution of quarks with respect to the parent hadron direction.
A comprehensive review of Drell-Yan phenomenology that describes these issues in more detail can be
found in Ref. [49], for example.

If the hadron collider energy is large enough, the annihilation of the quarks and antiquarks can
producereal W and Z bosons. Indeed the discovery in 1983 of the W and Z gauge bosonsin thisway at
the CERN pp collider [50] provided dramatic confirmation of the Glashow—Salam—\Weinberg el ectroweak
model. Thedecay widthsof the W and Z are only afew per cent of the boson masses, and so instead of the
differential distribution in the resulting lepton pair (I or []™) invariant mass, it is more appropriate to
consider the production cross section for the production of approximately stable on—shell particles with
masses My, and Mz. These can then be multiplied by branching ratios for the various hadronic and
leptonic final states. In analogy with the Drell-Yan cross section derived above, the subprocess cross
sectionsfor W and Z production are readily calculated to be

61— TVIGEM Vi P3( - M)
§1=7 = TAGRMYE + a2)o(s — M), (89)

where V, is the appropriate Cabibbo—K obayashi—-Maskawa matrix element, and v, (a,) is the vector
(axial vector) coupling of the Z to the quarks. The O(as) perturbative QCD correction to the W and Z
cross sections is the same as the Drell-Yan correction (for a photon of the same mass) discussed in the
previous section — the gluon is ‘flavour blind’ and couplesin the same way to the annihilating quark and
antiquark.

W,Z production cross sections
100 g —————

[ MRST98 partons
[ NNLO QCD

10 -

CDF,DO

.B, (nb)
T

0.1} e

Vs (TeV)

Fig. 18: Theoretical (NNLO QCD) predictions for the W+ and Z° total production cross sectionsin pp and pp collisions, asa
function of /s, with datafrom UA1 [51], UA2[52], CDF [53] and DO [54].

As aready noted, these cross sections have now been calculated to next—-to—next—to-eading order
(i.e. O(a?)) [47]. Figure 18 shows the cross sections for W+ and Z° production as a function of the
collider energy /s. The curves are calculated using the results of Ref. [47] (in the MS scheme) with
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Fig. 19: The dependence of the NLO and NNLO corrections to the total & production cross section on the collider energy /s,
in pp and pp collisions..

MRST parton distributions [27] and the renormalization and factorization scales M = u = My, M 5.
The data points are from UA1 [51], UA2 [52], CDF [53] and DO [54] at /s = 630 GeV and 1.8 TeV.
The net effect of the NLO and NNL O corrections is to increase the lowest order cross section by about
30%. TheNLLO correctionissignificantly smaller than the NLO correction, dueto apartial cancellation
between the positive second order corrections involving the ¢q initial state and the negative corrections
from the ¢g initial state, see Fig. 19. Perhaps the most important point to note from Fig. 18 isthat, aside
from unknown (and presumably small) O(a?) corrections, there is virtually no theoretical uncertainty
associated with the predictions — the parton distributions are being probed in arange of x ~ My /\/s
where they are constrained from deep inelastic scattering, see Fig. 11, and the scale dependence is weak
[27]. Thisoverall agreement with experiment, therefore, provides apowerful test of the whole theoretical
edifice that goes into the calculation.

Lack of space prevents a discussion of many other aspects of W and Z phenomenology at hadron
colliders. The measurement of the W mass and width, the angular distributions of the lepton decay prod-
ucts etc. test the electroweak sector of the Standard Model and are complementary to the precision Z
measurements made at LEP and SL C. The production of Drell-Yan (v*, W, Z) lepton pairs at large trans-
verse momentum — mediated by the next—to- eading—order subprocesses ¢qg — Vg and qg — Vg —
also provides an important test of perturbative QCD. A detailed discussion can be found in Ref. [1].
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