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Abstract

Activating mutations in RAS oncogenes commonly arise in human cancers. However, in
experimental settings, oncogenic RAS has most often been studied at supraphysiological levels of
expression. Importantly, work by others showed that the response of murine cells to expression
of oncogenic ras from the endogenous promoter is strikingly different from the response of both
human and murine cells to high levels of ectopically expressed oncogenic RAS. Thus, to study
the outcome of oncogenic Ras signaling in human cells at a more physiological level, I
developed a system in which I could activate oncogenic Ras signaling to either low or high
extents in normal human fibroblasts. A low level of oncogenic Ras signaling induced cellular
hyperproliferation, whereas a high level of signaling induced cellular senescence. A growing
body of literature links loss of p38 mitogen-activated protein kinase (MAPK) activity with the
promotion of Ras-induced transformation in murine cells. Accordingly, I examined the effect of
inhibiting p38 in normal human cells in which I also activated a low level of oncogenic Ras
signaling. Interestingly, the inhibition of p38 cooperated with low activation of oncogenic Ras to
alter the morphology and adhesive properties of cells. My results suggest that the inhibition of
p38 could predispose human cells to partial transformation by oncogenic Ras through alterations
in cellular adhesion.
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Title: Professor of Biology; Virginia and Daniel K. Ludwig Professor for Cancer Research;
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Chapter 1:

Introduction



I. Cancer as a multistep process

Cell autonomous changes in the genome

The development of cancer is a complex process that consists of genetic alterations

within incipient cancer cells as well as the interaction of these cells with their extracellular

environment. Regardless of the tissue of origin, developing cancer cells must undergo multiple,

cooperating mutational events that together deregulate normal cell proliferation and tissue

homeostasis in order to proceed to full-blown malignancy. The genes whose mutation promotes

neoplastic development fall within two broad categories: oncogenes and tumor suppressor genes

(1).

Oncogenes are genes whose wild-type counterparts, called proto-oncogenes, normally

promote pro-growth responses of cells such as cellular proliferation and survival. Normal cells

obey signals from their surrounding environment that restrict cell proliferation to those times

when it is appropriate and necessary for the well-being of the tissue as a whole. The mutations

that convert proto-oncogenes to oncogenes are dominant, gain-of-function mutations, which

typically render the resulting oncogenes constitutively active irrespective of a cell's surroundings

(1,2).

In contrast, tumor suppressor genes are genes whose wild-type counterparts normally

impede cell growth and proliferation. For example, tumor suppressor genes can induce cells to

undergo apoptosis following DNA damage in an effort to eliminate cells that could potentially

initiate tumor formation if permitted to survive, since these cells may have incurred pro-cancer

lesions in their genes. During cancer development, tumor suppressor genes commonly undergo

loss of function through mutations, deletions, or epigenetic changes. This loss of tumor



suppressor activity causes cells to become vulnerable to factors that foster uncontrolled

proliferation and cancer development (1, 2).

Multistep tumorigenesis

Tumorigenesis is a multistep process that requires both the activation of proto-oncogenes

and the inactivation of tumor suppressor genes. Indeed, analyses of human tumor samples,

protocols used to transform normal mammalian cells, experiments using genetically engineered

mouse models, and large-scale sequencing of cancer cell genomes have all indicated that tumor

cells harbor multiple genetic changes in both proto-oncogenes and tumor suppressor genes, with

these genetic changes synergizing to create tumors and drive their progression (3-9). These

genetic changes can be as subtle as point mutations or as extensive as chromosomal

rearrangements. Importantly, the multiple and distinct genetic changes that are required to

convert a normal cell into a cancer cell make mammals resistant to neoplastic development, thus

explaining the delayed onset of non-hereditary cancers in the human population (1).

Incipient cancer cells are widely believed to undergo selection as they acquire sequential

genetic changes, a process that promotes the expansion of daughter cells having the greatest

proliferative advantage. It is this evolution of cells that underpins the metamorphosis of normal

cells to cancer cells (1, 10). More specifically, the genetic alterations present within developing

cancer cells must work together to confer six crucial abilities upon their host cells if the host

cells are to become malignant. These abilities include: self-sufficiency in growth signals,

insensitivity to growth-inhibitory signals, evasion of apoptosis, limitless replicative potential,

sustained angiogenesis, and tissue invasion and metastasis (1). Regardless of which proto-

oncogenes and tumor suppressor genes become compromised in cells during neoplastic



progression, once cells have gained these six abilities they are thought to be fully malignant and

capable of metastasizing to secondary sites, a process resulting in 90% of cancer-related deaths

(1, 11).

Transformation and tumorigenicity

The genetic alterations incurred by normal mammalian cells, which enable them to

become cancerous, cause these cells to acquire a new set of properties that positively correlate

with tumorigenicity. More specifically, in comparison to normal cells, transformed cells

generally exhibit differences in their in vitro morphology, adhesion, cytoskeletal arrangement,

and proliferation as well as their in vivo tumorigenicity. The acquisition of these new properties

by cells is referred to as transformation (Fig. 1; 12, 13).

When propagated under subconfluent culture conditions in vitro, transformed cells

commonly exhibit a rounded morphology and refractile appearance, distinguishing them from

their flatter, less-refractile normal counterparts (Fig. 1A; 12, 14, 15). Related to these changes in

cellular morphology, transformed cells also exhibit reduced adhesion to their substratum and

reorganization of their actin cytoskeletons (12, 13, 15). Moreover, when allowed to proliferate in

culture to high cell densities, transformed cells usually display an irregular, crisscrossed

orientation, which contrasts with the ordered, parallel alignment displayed by normal cells (12,

14-17).

In addition, normal cells undergo density-dependent growth arrest, also known as contact

inhibition, when grown to a high density. Normal cells form an ordered monolayer upon

reaching confluence, with the possibility of forming an ordered bilayer if maintained at

confluence for an extended period of time. Most importantly, normal cells stop proliferating



upon forming a monolayer or bilayer despite the fact that they remain metabolically active. The

behavior of transformed cells is strikingly different. Transformed cells fail to undergo contact

inhibition and instead pile atop one another, forming multilayered clusters of cells (Fig. IB; 12,

14, 16-19).

Another important difference between normal and transformed cells is that transformed,

but not normal, cells are capable of anchorage-independent growth in either soft agar or

suspension cultures (Fig. IC; 12, 16, 20, 21). Whereas, normal cells rely on proper cell-matrix

adhesions to survive and proliferate, transformed cells are able to circumvent the apoptotic and

growth arrest programs, which prevent normal cells from surviving and proliferating in the

absence of proper anchorage to a solid substrate. This ability permits transformed cells to form

viable colonies in soft agar and aggregates in suspension (22, 23).

Although all of the aforementioned transformation-related properties are valuable for

predicting whether a population of cells is tumorigenic or not, the tumorigenicity of the cells in

question must nonetheless be tested in vivo in order to determine whether they are indeed

malignantly transformed. For example, a cell population may be able to form colonies in soft

agar but not be able to form tumors in an animal host. Cells exhibiting some, but not all of the in

vitro and in vivo properties of transformation are considered to be partially transformed (12, 16,

18).

Importantly, despite that examination of in vitro transformation-associated properties is a

useful predictor of the in vivo tumorigenicity of a population of cells, exceptions exist. For

example, a cell line may undergo contact inhibition when grown in culture but prove to be

tumorigenic in an animal host. Of note, these exceptions are more frequent in non-fibroblastic

cell lines, such as those derived from epithelial tissues (12, 17, 18). However, the vast majority



of tumorigenic cell populations will display some in vitro transformation-related properties,

causing examination of these properties to remain as a valuable method for scientists to assess

the tumorigenic potential of a new cell line.

11. RAS oncogenes

Discovery of RAS oncogenes

In a 1964 report, Jennifer Harvey described collecting plasma from a leukemic rat that

had been infected with the Moloney leukemia virus (MLV). Injecting the plasma harvested from

this rat into animals of different rodent species caused these animals to develop sarcomas prior to

their expected development of leukemia (24). The transforming retrovirus responsible for

sarcoma formation was later named the Harvey murine sarcoma virus (Ha-MuSV) after the

discovering scientist (25).

A similar discovery of another transforming retrovirus was reported in 1967. Serial

passage of murine erythroblastosis virus (MEV) led to the identification of a virus capable of

inducing the formation of sarcomas in mice. This virus was appropriately named the Kirsten

murine sarcoma virus (Ki-MuSV) after its discoverer Werner Kirsten (25-27).

An understanding of the basis for the oncogenic properties inherent in Ha-MuSV and Ki-

MuSV emerged in 1973 when Ki-MuSV was shown to contain nucleic acid sequences present in

rat cells in addition to sequences derived from MEV (28). Furthermore, a protein product

produced from the nucleic acid sequences that are homologous to those found in rat cells was

shown to be responsible for the oncogenic properties displayed by Ha-MuSV and Ki-MuSV (29,

30).



By the beginning of 1980s, the genomes of Ha-MuSV and Ki-MuSV had been cloned

(31, 32), and it was confirmed that Ha-MuSV and Ki-MuSV were in fact the product of

recombination events between the original murine leukemogenic retroviruses and sequences

from rat cells, which contain ancestral retroviral sequences called 30S RNA and rat cellular

genes (30, 33). The rat cellular genes present in Ha-MuSV and Ki-MuSV were soon discovered

to be two distinct but related vertebrate genes (34). These rodent genes were subsequently

named with the acronyms Hras and Kras, respectively, standing for Harvey and Kirsten rat

sarcoma (25). The human genes homologous to these rodent genes were identified in 1982 (35)

and named HRAS and KRAS (25). It was later discovered that the KRAS gene gives rise to two

different protein products, K-Ras4A and K-Ras4B, which result from alternative splicing of the

KRAS pre-mRNA (36).

While the nature of viral oncogenes was being elucidated, other work was being done to

search for mammalian genes capable of inducing transformation and tumorigenesis. In 1979, the

genomic DNA from chemically transformed mouse cells was shown to transform NIH-3T3

murine fibroblasts upon transfection, as measured by changes in the morphology of NIH-3T3

cells as well as in their abilities to form foci in monolayer culture, grow in soft agar, and induce

tumors in mice (37). Soon after, it was discovered that the genomic DNA from tumorigenic cell

lines, which had been derived from different species, could transform NIH-3T3 cells upon

transfection (38-40).

In addition, it was shown that Alu sequences, which are found in human but not murine

genomes, were present in the murine NIH-3T3 cells that had been transfected with DNA from

human tumor cell lines. This experiment, which had not been possible in the initial intraspecies

transfection studies, demonstrated that the NIH-3T3 cells had integrated the transfected human



DNA into their genomes (40). Furthermore, in an independent set of experiments, NIH-3T3

cells, which had been transformed with DNA derived from three different human tumor cell

lines, were found to harbor the same pattern of Alu-containing sequences, indicating that a

singular gene was responsible for the transformation of NIH-3T3 cells (39).

In 1982, the presence of oncogenic genes in human tumor cells was confirmed by the

cloning of a transforming gene from the T24 and EJ human bladder carcinoma cell lines (41-43).

Furthermore, it was discovered that these human oncogenes were homologous to the Hras and

Kras oncogenes that had been hijacked by the murine leukemia viruses (44-46). Indeed,

oncogenic Kras was quickly identified as the oncogene present in those chemically transformed

mouse cells that had been found to be responsible for transforming NIH-3T3 cells in the initial

transfection experiments reported in 1979 (47).

In 1983, the third and final member of the RAS family was identified in neuroblastoma

and sarcoma human cell lines, being found to share similarity with the HRAS and KRAS genes

(48-50). This gene was named NRAS (Nras in mice) since it had been identified in

neuroblastoma cells (25).

Both prior and subsequent to the discovery of NRAS, much additional work was done to

understand the oncogenic and normal properties of RAS genes and their protein products. Many

reports have shed light upon the molecular nature of oncogenic RAS and its functions in human

tumors. In addition, there is now a wealth of knowledge concerning the molecular players that

signal to the Ras protein and receive signals from Ras in both normal and tumor cells (25, 51,

52). The next several sections provide an overview of our current understanding of Ras and its

role in tumorigenesis.

mlr



Ras proteins as GTPases

It became clear in the early 1980s that oncogenic RAS induces transformation as a result

of single point mutations in its coding sequence. The first point mutation found to confer

oncogenic properties upon Ras was the guanine-to-thymine mutation in codon12, which results

in the amino acid valine being substituted for glycine at that position (G12V substitution) (53-

56). Subsequently, point mutations at codons 13, 59, 61, 63, 116, and 119 were also found to

promote the Ras-induced transformation of cells (57-61).

The functional ramifications of the activating point mutations began to be uncovered as

more information was gathered concerning the protein products of RAS genes. In the late 1970s,

the oncogenic Ras genes present in Ha-MSV and Ki-MSV were shown to encode 21,000-Dalton

proteins ((29, 30, 62). Soon after their identification, Ras proteins were suspected to be GTPases

since they were found to bind guanine nucleotides (63) and to associate with the cellular

membranes (64, 65), behaviors which resemble that of GTPases called heterotrimeric G proteins,

which had previously been identified in cells (66).

G proteins are intermediaries in transmembrane signaling pathways that consist of three

components: upstream receptors, G proteins, and downstream effectors. Extracellular ligands

bind to and activate membrane-bound receptors, leading to activation of G proteins. Activated G

proteins then activate downstream effector proteins, thus triggering a cellular response to

extracellular signals (66).

The activation state of a G protein is contingent upon whether it is bound to GTP or GDP.

A G protein's binding of GTP typically activates the protein and enables it to signal to its

downstream targets. However, G proteins possess an intrinsic GTPase activity that hydrolyzes

OW



bound GTP to GDP and inorganic phosphate. When bound to GDP, a G protein is usually

inactivated and unable to interact with its effectors (66).

Suspicions that Ras is a GTPase were confirmed in 1984 when several reports showed

that oncogenic H-Ras proteins harboring point mutations at codon 12 exhibit decreased GTP

hydrolyzing activity in comparison to wild-type H-Ras. This observation indicated that GTP

hydrolysis is an important regulator of Ras activity, just as it is for the activity of heterotrimeric

G proteins (67-69). Likewise, transformation-inducing mutations at codon 61 were also shown

to reduce the GTPase activity of Ras (70). This and other research done in the early to mid

1980s indicated that the point mutations able to confer oncogenic activity upon RAS do so by

compromising the ability of the Ras protein to hydrolyze GTP, thus keeping Ras in the active,

GTP-bound state (52).

Post-translational modifications of Ras

Both wild-type and oncogenic Ras proteins must associate with cellular membranes to

become biologically active (36, 71, 72). RAS gene products are synthesized as cytosolic proteins

but undergo two important types of post-translational modifications in order to be targeted to

membranes. These modifications are the farnesylation and palmitoylation of amino acid residues

at the carboxyl terminus of Ras (36, 52).

H-Ras, K-Ras and N-Ras each have a CAAX amino acid motif at their carboxyl termini,

where "C" stands for cysteine, "A" stands for an aliphatic amino acid and "X" stands for any

amino acid (36). The enzyme farnesyltransferase covalently modifies the cysteine of the CAAX

motif by attaching a farnesyl isoprenoid lipid to this amino acid (73-75). This farnesylation step



is followed by the proteolytic cleavage of the AAX sequence and the carboxymethylation of the

now-carboxyl terminal cysteine residue (36, 52).

Interestingly, K-Ras4B, unlike the rest of the Ras family proteins, requires no

modification beyond farnesylation to anchor itself to the plasma membrane, due to its series of

positively charged lysine residues located within its carboxyl terminus. These lysine residues act

as a second signal directing K-Ras4B's localization to the negatively charged membrane (36,

76). The exact mechanism of K-Ras4B's transport to the plasma membrane, however, is

unknown (76).

In contrast, H-Ras, K-Ras4A, and N-Ras require the enzyme palmitoyltransferase to

attach palmitoyl moieties to one or two cysteines upstream of the farnesylated cysteine in order

to localize themselves to cellular membranes (77). These fully modified H-Ras, K-Ras4A, and

N-Ras proteins are then shuttled to the plasma membrane through traditional vesicular transport

(36). More recently, work has shown that a small amount of H- and N-Ras is ubiquitinated,

promoting the redistribution of these proteins from the plasma membrane to endosomes (78, 79).

Activation and regulation of Ras

Ras was first implicated in transmitting extracellular signals in 1984 when epidermal

growth factor (EGF) was found to stimulate the binding of Ras to GTP (80). Since then, much

has been learned about the proteins that regulate the activation and inactivation of Ras proteins.

For example, we now know that the level of GTPase activity exhibited by Ras proteins in a test

tube is very low in comparison to that observed in living cells. Similarly, the rate of GDP to

GTP exchange that is intrinsic to Ras proteins is too low to account for the rapid nucleotide

cycling that occurs upon the stimulation of living cells with extracellular ligands (25, 51). These

MW



observations led to the discovery of two families of proteins that are central regulators of Ras

activity: GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs)

(36, 51).

Ras-GAPs negatively regulate Ras signaling by increasing the rate at which Ras

hydrolyzes its bound GTP to GDP (81). In contrast, Ras-GEFs positively regulate Ras signaling

by promoting the displacement of GDP, thus enabling Ras proteins to bind GTP, which is more

abundant than GDP in the cytosol of cells; such GTP-bound Ras molecules are then placed in an

actively signaling state (82). As a result, an ongoing tug-of-war between the members of these

two large protein families determines whether or not signaling pathways downstream of Ras are

activated (36, 51).

Ras-GAPs

Humans and other mammals express several different Ras-GAPs. The first Ras-GAP to

be discovered was the ubiquitously expressed p120GAP (83-85). Following p120GAP's

discovery, a second Ras-GAP called neurofibromin-1 (NFl) was identified. NF1 displays a

more limited expression pattern in the body than p120GAP, with its mutation causing the

familial cancer syndrome neurofibromatosis type 1 (82, 86-89).

Subsequent to NF1, a third class of Ras-GAPs was identified, the GAPi family. The

GAPI family consists of four members: GAP1m, GAP1IP 4BP, Ca'-promoted Ras inactivator

(CAPRI) and RAS-GTPase-activating protein-like (RASAL). However, these Ras-GAPs exhibit

a much more restricted pattern of expression than either p120GAP or NF1 (90). Interestingly,

the RAS-GAP activity of CAPRI and RASAL, but not that of GAP1m and GAP1IP4BP, is



stimulated by an increase in the intracellular concentration of free Ca2', which causes both

proteins to translocate to the plasma membrane (82).

The final Ras-GAP family to be identified is the synaptic GAP (SynGAP) family, of

which SynGAP, DAB2-interacting protein (DAB2IP) and nGAP are members. The "n" of

nGAP stands for nematode due to its homology to the GAP-2 protein of C. elegans (91).

SynGAP itself is a Ras-GAP located at the excitatory synapses of neurons and shown to be an

important regulator of signaling downstream of Ras in these cells (92, 93). The second SynGAP

member, DAB2IP, has been found to act as a tumor suppressor gene and to be inactivated in

prostate and breast cancers (94, 95). Little is known about the role of the last SynGAP member,

nGAP; however, nGAP was able to rescue loss of Ras-GAP activity in yeast, indicating that it

likely functions as a Ras-GAP in human cells (91).

Ras-GEFs

Similar to the Ras-GAPs, the Ras-GEF family of proteins includes many members that

fall within different subfamilies. The search for Ras-GEFs originated in efforts that were

directed toward understanding how extracellular mitogenic signals promote the binding of Ras to

GTP. Because Ras proteins were known to share homology with heterotrimeric G proteins, it

was reasoned that Ras family members, like G proteins, would bind GEFs to become activated

(25). This thinking led to identification of the first Ras-GEF, a yeast protein called cell-division-

cycle-25 (Cdc25), which is not to be confused with the cyclin-dependent kinase phosphatase

bearing the same name (96, 97).

The identification of Cdc25 in yeast paved the way for the cloning of the first

mammalian Ras-GEF, a protein named son of sevenless (SOS) for its role in eye development in



fruit flies (98). To date, four subfamilies of Ras-GEFs have been identified: SOS, Ras guanine

nucleotide-releasing factor (RasGRF), Ras guanine nucleotide-releasing protein (RasGRP) and

cyclic nucleotide-dependent Ras GEF (CNrasGEF). In addition, phospholipase C-E (PLCE) also

includes domains that share homology with those of known Ras-GEFs, indicating that it could

function as a Ras-GEF. However, whether PLCe performs this function in living cells remains

unclear (36).

The ubiquitously expressed SOS family of Ras-GEFs, composed of members SOSI and

SOS2, couples the activation of receptor tyrosine kinases to Ras activation (36, 99). In contrast,

RasGRF proteins are principally expressed in the central nervous system (36, 99, 100) and are

activated downstream of multiple neuronal receptors in a calcium-dependent manner (101-107).

Like RasGRFs, CNrasGEF is expressed predominantly in the brain (108), but appears to operate

downstream of G-protein-coupled receptors (109). RasGRPs also display a limited expression

profile, but appear to be important in immune cell activation, functioning downstream of non-

receptor tyrosine kinases (36, 110-113).

The connection between cell-surface receptors that receive extracellular signals and the

activity of Ras-GEFs was elucidated with the identification of the adaptor protein growth factor

receptor-bound protein-2 (GRB2) (25). GRB2 is composed of a single SH2 domain flanked by

SH3 domains, which participate in protein-protein interactions through amino acid regions rich

in proline. GRB2 was found to bind the activated EGF receptor via its single SH2 domain and

SOS via its two SH3 domains. Through these interactions, GRB2 forms a bridge that links

signals originating from outside of the cell with the intracellular activation of Ras signaling (114-

118).



Following the identification of Ras-GEFs and GRB2, much has been learned about the

mechanism by which Ras becomes activated in response to extracellular signals. SOS is the Ras-

GEF that has been most extensively studied (36), and as such, a rather complete portrait of Ras

activation through SOS has been developed:

First, growth factors, like EGF, induce the rapid dimerization and autophosphorylation of

their respective tyrosine kinase receptors. Then, GRB2, though its SH2 domain, binds to

phosphorylated tyrosine residues in the non-catalytic region of an activated receptor. SOS

translocates to the plasma membrane through both its carboxyl-terminal GRB2-binding site and

its amino-terminal lipid-binding pleckstrin homology (PH) domain (119-121). In addition to

helping SOS anchor itself to the membrane, the binding of SOS to GRB2 causes a

conformational change in SOS that frees SOS from self-imposed negative regulation (122).

Furthermore, association of the SOS PH domain with membrane phospholipids also

induces the binding of SOS to GDP-bound Ras, permitting a low level of SOS activity. Low-

level SOS activity allows Ras to exchange GDP for GTP (122). Once bound to GTP, Ras elicits

maximal SOS activity, triggering a positive feedback loop that increases the amplitude and

duration of Ras signaling (123).

Ras activation at the structural level

The tertiary structures of H-, K-, and N-Ras proteins are nearly identical, given that they

share a very high degree of similarity over the first 87% of their amino acid sequences (124,

125). Each Ras protein is composed of six n-sheets that are surrounded by five a- helices; ten

loops link these secondary structures together (52). Magnesium ions present in cells enable Ras



to associate tightly with guanine nucleotides, causing Ras to be continuously bound to either

GTP or GDP.

Two regions within Ras proteins, called Switch I (amino acids 30 to 38) and Switch II

(amino acids 59 to 67), undergo dramatic structural changes upon the swapping of bound GDP

for GTP or vice versa (126). The conformation of Switch I depends heavily upon threonine 35.

The exchange of GTP for GDP causes the side chain of threonine 35 to be rotated inward so that

it can interact with GTP's y-phosphate and the bound magnesium ion (52). The y-phosphate of

GTP also causes glycine 60 to reorient itself, inducing changes in the conformational of Switch

11(52).

As mentioned previously, oncogenic RAS mutations are predominately found at codons

12, 13, and 61. Analysis of crystal structures of mutant Ras proteins has shown that the GTPase

activity of Ras is crippled by amino acid substitutions resulting from these oncogenic mutations.

More specifically, codons 12 and 13 encode glycine residues in wild-type Ras. Replacing

glycine with any other amino acid introduces a side chain at glycine's former position. Codons

12 and 13 are sensitive to mutation, since introducing an amino acid bearing a side chain at either

of these positions appears to interfere sterically with the ability of Ras-GAPs to properly stabilize

the transition state of the GTP hydrolysis reaction (127-129).

Mutation of codon 61, which normally encodes glutamine, also hinders GTPase activity.

Through its interaction with Ras-GAPs, glutamine activates the water molecule of the hydrolysis

reaction for attack of GTP's y-phosphate and contributes to the stabilization of the transition state

(127, 129). As a result, oncogenic mutations in Ras stabilize the Ras-GTP complex, leading to

constitutive activation of Ras signaling (52, 82).



Ras effector pathways

Active Ras proteins have been shown to communicate with numerous downstream

effectors that drive diverse biological outcomes, such as the cancer-relevant processes of cellular

proliferation, resistance to apoptosis, invasiveness, and angiogenesis (130). Ras effectors have a

high affinity for Ras when it is bound to GTP but not GDP. Although amino acids in both the

Switch I and Switch II regions have been implicated in the association of upstream and

downstream binding partners with Ras, the Ras effector-binding domain, which is composed of

amino acids 32 through 40, is the region that is critical for the binding of Ras to its downstream

targets (36, 52, 125).

The three most well-studied families of Ras effectors are Raf serine/threonine kinases,

phosphoinositide 3-kinases (PI3Ks), and exchange factors for Ral proteins, known as Ral

guanine nucleotide dissociation stimulator (RalGDS) and RalGDS-like (RGL) proteins (130,

131). Although less well-characterized, additional Ras effectors have also been identified,

including the following proteins: phospholipase C-e (PLCs), T-cell lymphoma invasion and

metastasis-i (Tiam1), Ras interaction/interference protein-i (Rin1), acute lymphoblastic

leukemia-I fused gene on chromosome 6 (AF-6), and Ras association domain-containing family

(RASSF) proteins (126).

Raf

The first Ras effector to be discovered was the serine/threonine kinase Raf-1 (132-136), a

protein found to be necessary for the Ras-induced transformation of NIH-3T3 cells (137). The

related genes A-RAF and B-RAF were identified subsequently to the discovery of RAF-1. The



protein products of this gene family are activated upon binding to GTP-bound Ras, with their

activation promoting cell-cycle progression (51, 126).

The association of GTP-bound Ras with Raf localizes Raf to the plasma membrane, a

process known to be crucial for its activation (138, 139). Although further details concerning the

mechanism of Raf's activation by Ras are not well understood, the binding of active Ras to Raf

also stimulates Raf to undergo conformational changes, multiple phosphorylation events, and

hetero-oligomerization with other Raf family members, with each of these events contributing to

the full activation of Raf (126, 140, 141). Hetero-oligomerization of Raf proteins is believed to

occur through the binding of dimers of 14-3-3 adaptor proteins (140). In addition, the assembly

of Raf into an active signaling complex appears to require the chaperonin proteins Hsp90 and

p50/Cdc37 (142).

Once activated by Ras, and through the assistance of scaffold proteins, Raf

phosphorylates and activates MEKI and MEK2, the mitogen-activated protein kinase

(MAPK)/extracellular signal-regulated kinase (ERK) kinases. MEK in turn phosphorylates and

activates the MAPKs, ERKI and ERK2. Activated ERKs then phosphorylate and activate

various cytosolic and nuclear proteins (126, 141).

While an exhaustive list of ERK targets has yet to be defined, the best-characterized

targets of ERK are transcription factors. Activated ERK translocates into the nucleus to

phosphorylate and activate E26-transcription factor proteins (ETS), like Elk, which interact with

serum response factor (SRF) to regulate the expression of many immediate early response genes,

such as c-FOS. ERK also phosphorylates the c-JUN protein, which binds c-FOS protein to form

the activator protein-1 (AP-1) transcription factor (51, 52, 130, 141, 143). The activation of



these transcription factors drives the expression of critical cell-cycle regulators, such as D-type

cyclins, thus promoting progression of cells through the Gi phase of the cell cycle (144).

PI3K

After the Raf family of protein kinases, the PI3Ks are the next best characterized Ras

effectors (130). Similar to Raf, active P13K is required for the Ras-induced transformation of

NIH-3T3 cells (145). The association of GTP-bound Ras with the catalytic subunit of type I

PI3Ks promotes their translocation to the membrane and causes them to undergo conformational

changes (145, 146). Once activated, these lipid kinases phosphorylate phosphatidylinositol-4,5-

bisphosphate (Ptdlns(4,5)P 2), thereby converting it to phosphatidylinositol-3,4,5-trisphosphate

(Ptdlns(3,4,5)P 3).

Ptdlns(3,4,5)P 3 is a second messenger that binds to a variety of proteins, including 3-

phosphoinositide-dependent protein kinase-1 (PDK1) and Akt/protein kinase B (PKB). The

binding of Ptdlns(3,4,5)P 3 to PDK1 and Akt localizes these proteins to the plasma membrane,

where PDK1 phosphorylates and activates Akt (147, 148). Active Akt then performs an

important function downstream of Ras by promoting cell survival through its phosphorylation of

multiple proteins that trigger anti-apoptotic signaling pathways (130, 149).

In addition to the production of Ptdlns(3,4,5)P 3 leading to activation of Akt,

Ptdlns(3,4,5)P 3 causes activation of the small GTPase Rac by binding Rac-GEFs; Rac is similar

to Ras in that Rac is activated when GTP-bound (130). Rac both regulates the actin cytoskeleton

and activates transcription factor pathways, such as the anti-apoptotic protein nuclear factor KB

(NF-KB). Importantly, the activity of Rac has been shown to be important for Ras-induced

tumorigenesis (150).



RalGDS and RalGDS-like genes

The third most studied class of Ras effectors are the RalGDS and RalGDS-like proteins,

which are GEFs for the RalA and RalB small GTPases (130). Initial studies of RalGDS function

indicated that activation of this pathway could not itself induce the transformation of NIH-3T3

cells. However, activating the Ral pathway in combination with activation of the Raf pathway

was found to enhance the transformation of NIH-3T3 cells beyond that observed for cells in

which Raf was activated alone (151, 152).

Experiments performed in human cells also suggest that activation of RalGDS is

important in the Ras-induced transformation and tumorigenesis of human cells (153, 154).

Furthermore, RalA appears to be necessary for the anchorage-independent proliferation of

tumorigenic human cells, and RalB appears to be necessary for their survival (155). In spite of

these intriguing data, however, the signaling pathways lying downstream of activated Ral that

are critical for promoting Ras-induced transformation remain ambiguous (52).

Additional Ras effectors

Beyond the Raf, P13K, and RalGDS proteins, various other proteins have been reported

to function as Ras effectors. For the most part, the roles of these diverse proteins in Ras

signaling and transformation continue to be obscure. However, ongoing work has begun to shed

light upon the biology of the following Ras effectors: PLCE, Tiam1, Rin1, AF-6, and RASSF

(52, 126).

PLCs catalyzes the hydrolysis of Ptdlns(4,5)P 2 to diacylglycerol and inositol-1,4,5-

trisphosphate (Ins(1,4,5)P3) (51). As mentioned previously, PLCE may be a Ras-GEF given that

it shares homology with known Ras-GEFs (36, 156). In addition, PLCE could also regulate Ras-



GAPs and Ras-GEFs whose activity appears to be dependent upon the binding of calcium and/or

diacylglycerol. Through its actions on Ras-GEFs and Ras-GAPs, PLCE potentially provides

mechanisms of both feed-forward and feedback control of Ras (156).

The identification of Tiami as an effector downstream of Ras has provided a second

connection between the activation of Ras and the activation of the Rac; the first connection being

the activation of Rac through the P13K pathway as described earlier (157, 158). However,

somewhat unexpectedly, Tiam1 appears to play an important role downstream of Ras in its own

right. Experiments employing a carcinogen-induced tumor model in which Ras invariably

undergoes oncogenic activation showed that knockout of Tiami delayed tumor formation. Also,

fibroblasts harvested from Tiaml-null mice were resistant to Ras-induced transformation. It is

important to note, however, that whereas few tumors formed in the Tiami-null background, a

greater percentage of those that did form became invasive and malignant. These intriguing data

suggest that TiamI may play different roles at different stages of tumor development (159).

The protein AF-6 was found to bind H-Ras in vitro (160) and may link Ras signaling

with regulation of the actin cytoskeletal and cell-cell junctions. AF-6 was found to bind F-actin

(161) and to associate with adherens and tight junctions (161, 162). AF-6 has also been shown

to play an active role in regulating cell-cell junctions as it is necessary for the proper formation

of epithelial cell-cell junctions and cell polarity during embryogenesis (162, 163). Moreover,

Ras competes with the tight junction protein zona occludens 1 (ZO-1) for binding to AF-6,

suggesting that Ras may disrupt cell-cell contacts by disrupting the binding of ZO- 1 to AF-6

(162).

Unlike the previously described Ras effectors, Ras interaction/interference (Rin) is an

example of a Ras effector that impedes Ras-induced transformation and tumorigenesis (164).



There are two potential mechanisms through which Rin could exert its effect as a tumor

suppressor. First, Rin has been shown to compete directly with Raf for binding to Ras (165).

Alternatively, Rin was found to trigger the endocytosis of growth factor receptors that activate

Ras signaling (166).

Another class of Ras effectors is the RASSF family of proteins. Currently, three RASSF

proteins, RASSF1, RASSF2, and RASSF5, have been characterized and, like Rin, were found to

exhibit tumor suppressive functions. More specifically, RASSF1, 2, and 5 exhibit anti-

proliferative and pro-apoptotic functions (167-170). Indeed, multiple human tumor types exhibit

loss of RASSF gene expression (171-173), and RASSF1 knockout mice are more susceptible to

spontaneous or chemically induced tumorigenesis (174).

Downstream signaling by GDP-bound Ras

Despite the overwhelming attention that has been given to signaling downstream of

"active", GTP-bound Ras, there is evidence that GDP-bound Ras can also bind effector proteins

and modulate signaling pathways (175). For example, GDP-bound, but not GTP-bound, Ras

binds to the transcription factor Aiolos, sequestering Aiolos in the cytoplasm. This sequestration

prevents Aiolos from translocating to the nucleus where it promotes expression of the anti-

apoptotic protein B-cell chronic lymphocytic leukemia/lymphoma 2 (Bcl-2) (176).

Oncogenic RAS and multistep tumorigenesis

Studies of transformation by oncogenic Ras provided crucial experimental evidence of

multistep transformation. As mentioned previously, early work illustrated that DNA sequences,

later shown to encode RAS oncogenes, could transform NIH-3T3 cells (37-40). Around the same



time, the normal Hras gene of rats was also found to be able to transform NIH-3T3 cells when

overexpressed to high levels by a retrovirus (177). However, oncogenic ras could not transform

freshly isolated, normal rat cells, indicating that some property of NIH-3T3 cells made them

amenable to transformation (3, 4).

The difference in transformation potential between NIH-3T3 cells and normal rat cells

turned out to be attributable to differences in the in vitro culture histories of these cell

populations. NIH-3T3 cells had been established in culture and, as such, possessed an unlimited

replicative potential; in other words, they were immortal. In contrast, the normal rat cells had

not undergone extensive passage in culture and were not immortalized like the NIH-3T3 cells. It

was this unlimited replicative potential of NIH-3T3 cells that rendered them amenable to

transformation by ras (25, 52).

The property of spontaneous immortalization could be functionally replaced in

transformation assays by exposing cells to carcinogens prior to transfecting them with ras (178)

or by expressing a second oncogene, such myc, SV40 large T antigen, or E1A, along with the ras

oncogene (3, 4). These studies helped lay the foundation for our current understanding of tumor

evolution by providing evidence for the concept of multistep tumorigenesis (25). Indeed,

subsequent to these pioneering experiments, additional work has shown that normal human cells

behave similarly to normal rat cells in that they also require multiple genetic alterations to

become fully transformed (6, 21, 154, 179).

RAS mutations in human tumors

The first evidence that point mutations occurred in actual human tumors, and not only in

human tumor cell lines that had been extensively propagated in culture, emerged in 1984. Point



mutations were identified in codon 12 of KRAS in tumor biopsies from a patient bearing a

squamous cell lung carcinoma but not in normal tissue sample from that same patient (180).

Following this discovery, a massive effort was undertaken to identify RAS mutations in other

human cancers (181).

To date, oncogenic RAS mutations have been found in many human cancers, with cancers

of the pancreas, intestine, biliary tract, and skin displaying the greatest prevalence of RAS

mutations (Table 1). Furthermore, mutations in different RAS genes are found in different types

of cancers. For example, mutations in KRAS are commonly found in pancreatic, lung, and colon

carcinomas (51, 181). Oncogenic HRAS mutations are prevalent in bladder carcinomas (51,

182), whereas oncogenic NRAS mutations are predominant in leukemias and melanomas (59,

183-186).

In addition, although mutation of codon 12 of RAS occurs most frequently, human tumors

may also exhibit oncogenic mutations in RAS genes at codons 13 and 61. These three mutations

together account for nearly all RAS mutations found in human neoplasias (51).

ras activation in experimental animal models

Evidence that oncogenic Ras actively contributes to cancer development in vivo has been

provided though extensive work done using experimental animal models. As a first step,

oncogenic ras mutations were discovered in rodent models in which tumor formation was

induced by carcinogens or y-irradiation (187-190). The first evidence for the involvement of

oncogenic ras in the initiation of tumor development was obtained when, in one carcinogen-

based tumor model, the second nucleotide in codon 12 of Hras was mutated by a guanine-to-



adenine transition, the exact base substitution known to be induced by the carcinogen that had

been used (191).

Subsequently, various genetically engineered mouse models of cancer have strongly tied

oncogenic ras mutations to tumor initiation, development, and maintenance. Oncogenic ras

induces tumor formation in different organs when aberrantly expressed using tissue-specific

promoters (192-194). In addition, experiments performed using genetically engineered mouse

models that involve inducible ras transgenes indicate that sustained ras expression is necessary

for continued tumor progression (195, 196).

More recently, mouse models of cancer have become even more adept at recapitulating

the events that occur during the development of human cancers by employing the conditional

expression of the Kras oncogene from the endogenous Kras locus. Importantly, experiments

utilizing a transgenic mouse model in which oncogenic Hras is expressed in mammary tissue in

an inducible manner showed that different levels of oncogenic Hras dictate different biological

outcomes in vivo (197). These results argue that expressing oncogenic ras genes at physiological

levels is necessary to create mouse models of human cancers in the most accurate manner

possible.

An increasing number of RAS-related studies are incorporating mouse models that

express oncogenic Kras from the endogenous locus. Importantly, each of these models

specifically targets oncogenic Kras to a particular organ (198-211). In addition, a subset of these

models employs techniques that actively induce the expression of oncogenic Kras in mature

mice but not younger animals (198, 201, 202, 206, 207, 209, 211). Thus, by using endogenous

oncogenic Kras mouse models, researchers can mimic the spaciotemporal activation of Ras



signaling in human cancers by expressing oncogenic Kras in specific mouse organs and in a

delayed manner.

Indeed, the pathologies of several human neoplasias, which frequently harbor RAS

oncogenes, have been closely imitated in mice by expressing oncogenic Kras at physiological

levels, either alone or in the presence of another genetic alteration germane to the cancer of

interest (198-210). Although there are caveats associated with the use of these endogenous

models of oncogenic Kras expression, such as concerted activation of oncogenic Kras signaling

in a large number of cells and the expression of only one copy of wild-type Kras in cells, these

models are providing invaluable information concerning the role of K-Ras in the initiation and

progression of human neoplasias.

In contrast to the oncogenic Kras mouse models described above, there is a lack of

studies describing mouse models in which either oncogenic Hras or Nras is expressed from its

corresponding endogenous locus (212). In one colon cancer mouse model, oncogenic Nras was

expressed from the endogenous Nras locus to determine whether oncogenic Nras could

substitute for oncogenic Kras to induce hyperplasia of the colonic epithelium and to and promote

high-grade dysplasia in tumors (213). The failure of oncogenic Nras to reproduce the tumor-

promoting functions of oncogenic Kras in this mouse model may shed light upon why human

colon cancers are commonly found to harbor oncogenic mutations in KRAS but not NRAS. As a

result, further work is necessary to examine the functions oncogenic Nras in mouse models of

human cancers that exhibit a high frequency NRAS mutation, such as melanoma (51). Similarly,

the use of mouse models in which oncogenic Hras is expressed at physiological levels in tissue

types that give rise to neoplasias known to harbor HRAS mutations is likely to provide valuable

insight into the role of this oncogene in human cancers.



III. p38 MAPK

Background

Mitogen-activated protein kinases (MAPKs) are members of signaling pathways crucial

for the ability of cells to respond to extracellular signals (214, 215). The most well known of the

MAPKs are the ERKs (216), which were introduced earlier due to their function downstream of

the Ras effector Raf. As expected, given their connection to Ras, ERKI and 2 are involved in

transmitting mitogenic signals within cells and promote cellular proliferation. However,

mammalian cells also contain additional MAPK families that respond to disparate extracellular

stimuli and regulate cell behavior in response to these stimuli (215). Relevant to the work

presented in Chapter 2 is the p38 family of MAPKs.

Unlike ERK, p38 MAPK is a stress-activated protein kinase that becomes highly

activated in response to inflammatory cytokines and environmental stresses, such as heat or

osmotic shock (214-216). Four different p38 family members (a, P, y, and 5) have been

identified in mammals and are approximately 60% identical at the amino acid level. p38a is

highly expressed throughout the body, whereas p383 is ubiquitously expressed but at lower

levels, and its contribution to p38 signaling remains ambiguous. In contrast, p38y and 6 exhibit

a more restricted expression pattern and may perform more specialized functions (217, 218).

As with other MAPK kinases, p38 is the final tier in a three-tier kinase cascade (Fig. 2).

MAPKs are phosphorylated and activated by MAPK kinases (MAP2Ks), and MAP2Ks are

phosphorylated and activated by MAPK kinase kinases (MAP3Ks). Indeed, Raf and MEK,

which were introduced earlier as being activated downstream of Ras, are the MAP3K and

MAP2K, respectively, that are upstream of ERK (216).



p38 MAP2Ks activate each p38 family member by dual phosphorylation of the Thr-Gly-

Tyr motif located in the p38 activation loop. Activated p38 proteins then phosphorylate Ser-Pro

or Thr-Pro MAPK consensus motifs contained within downstream targets (214, 219). The

MAP2Ks and MAP3Ks that are capable of activating p38, in addition to the various substrates

activated by p38, will be elaborated upon in the following sections.

Activation of p38

Signaling through the canonical p38 MAPK cascade

p38 proteins are activated by MAP2Ks called MAP kinase kinase 3 (MKK3) and MKK6

(Fig. 2). MKK3 and 6 specifically activate p38, failing to activate proteins of other MAPK

families (220-224). p3 8 can also be activated by MKK4, which was originally discovered as a

MAP2K for the JUN N-terminal kinases (JNKs), another family of stress-activated MAPKs.

Activation of p38 by MKK4 especially appears to occur in situations where MKK3 and 6 are

unavailable (220, 225).

As mentioned above, MKKs that activate p38 are themselves activated through

phosphorylation by a MAP3K (Fig. 2). A number of MAP3Ks have been found to activate the

p38 pathway, with particular MAP3Ks activating p38 in a manner that is dependent upon both

the stimulus and cell type. MAP3Ks found to activate p38 signaling include apoptosis signal-

regulating kinase-1 (ASK1), transforming growth factor p-activated kinase-1 (TAK1), thousand

and one kinases (TAOs), mixed-lineage kinases (MLKs), and MEK kinases (MEKKs) (226-234).

Importantly, the activated forms of many of these MAP3Ks induce the activation of both

p38 and the second stress-activated MAPK, JNK. For example, ASKI, TAKI, MLKs, and

MEKKs are all capable of activating both p38 and JNK signaling, indicating that these pathways



often undergo co-regulation in cells in response to stress signals (214, 235). A different dynamic

exists with respect to activation of p38 and JNK by TAOs. TAO1 and TAO2 appear to activate

p38 specifically, failing to activate JNK in situations of endogenous TAO activation (233).

However, the TA02 gene also produces a splice variant called prostate derived STE20-like

kinase (PSK) that specifically activates JNK signaling (236). Thus, TA02 gene products also

appear to co-regulate the p38 and JNK pathways.

Activation of p38 signaling by GTPases

Although less is known about the upstream molecules that initially trigger activation of

the p38 MAPK cascade than is known about those molecules upstream of the better-studied ERK

MAPK, a general picture of p38 pathway activation has begun to emerge. Indeed, similar to the

activation of ERK signaling by the small GTPase Ras, small GTPases of the Rho family can

activate p38. Members of the Rho family capable of activating p38 include Rac, cell division

cycle 42 (Cdc42), Rho, and Rit (237-241). In addition, evidence exists that p38 can be activated

by heterotrimeric G proteins. However, stimulation of p38 signaling by heterotrimeric G

proteins is much less understood than is p38's stimulation by Rho family GTPases (242, 243).

Rho family GTPases are best known for their regulation of the actin cytoskeleton and its

related functions, such as cell migration and adhesion, but have also been found to play roles in

cell proliferation, transcription, vesicle transport, microtubule dynamics, and neuronal

development (244). Despite that further work is also necessary to understand the precise roles

that p38 plays in the signaling downstream of Rho family GTPases, some clues have begun to

emerge as to which functions downstream of Rho family proteins are mediated by p38. For

example, evidence suggests that, in certain cell systems, p38 plays a role downstream of Rac and



Cdc42 in the regulation of the cytoskeleton (245-248). Also, p38 has been found to play a role

downstream of Rac in the promotion of bacteria phagocytosis by macrophages (249).

Furthermore, p38 has been shown to be necessary for mediating the transcriptional upregulation

of several genes downstream of activated Rac or Cdc42 (250-253).

Contributing to the activation of p38 by Rac and Cdc42, the p21-activated kinases

(PAKs) are a group of proteins also capable of activating p38 signaling (237, 239). PAKs, which

are themselves activated by GTP-bound Rac and Cdc42, are effectors of these GTPases (254-

258). Indeed, signaling cascades involving Rac or Cdc42, PAK, MKK3/6 and p38 have been

reported to respond to certain stimuli, with each of the proteins in this pathway being necessary

for the cytoskeletal remodeling that is induced by Rac or Cdc42 in response to the upstream

stimuli (239, 245, 259).

Although the mechanism by which PAKs induce activation of MKKs 3 and 6 is not clear,

PAKs may function as MAP3K kinases (MAP4Ks), phosphorylating and activating MAP3Ks

upstream of p38. Supporting this idea, the yeast homologue of mammalian PAKs, sterile 20

protein (Ste20p), functions as a MAP4K by phosphorylating and activating the yeast MAP3K

Ste 11p, thereby activating the yeast alpha-mating factor signaling pathway (260, 261). Further

study should provide insight into whether mammalian PAKs behave similarly to their yeast

counterparts.

Scaffolding proteins

As alluded to earlier, the p38 and other MAPK pathways regulate numerous cellular

responses from a diverse array of extracellular stimuli. In order to manage such complex

pathways, cells employ temporal and spatial control of MAPK signaling. One method in which



cells control MAPK signaling is by the use scaffolding proteins. Scaffolding proteins interact

with multiple components of a MAPK cascade, thus assembling complexes of MAPK signaling

proteins. Scaffolding proteins promote the coordinated, serial phosphorylation of select MAPK

cascade constituents, enabling the efficient activation of particular MAPK signaling pathways

and the appropriate responses of cells to distinct stimuli (215, 219).

Fewer scaffolding proteins have been identified in mammalian cells to regulate p38 than

to regulate either the ERK or JNK MAPK pathways (217). However, one p38-specific

scaffolding protein has been identified, which coordinates cellular responses to hyperosmolarity.

Osmosensing scaffold for MEKK3 (OSM) binds to actin, the GTPase Rac, the MAP3K MEKK3,

and the MAP2K MKK3. Upon osmotic stress, OSM is recruited to membrane ruffles where it

binds to Rac and assembles the MEKK3/MKK3/p38 signaling pathway (262).

Other scaffolding proteins found to regulate p38 signaling include JNK-interacting

proteins (JIPs). Although, as implied by their name, the JIP family of proteins was originally

identified as being scaffolds for JNK MAPKs (263), JIP2 and JIP4 provide scaffolding functions

for p38 proteins. In addition to binding proteins of the JNK cascade, JIP2 can bind to MKK3,

p38a, and p388 in addition to upstream signaling molecules, thereby stimulating p38 activity

(264-266).

Unlike JIP2, JIP4 appears be a scaffolding protein specific for p38. JIP4 was found to

interact with p38a and P, but not with p38y or p388. Moreover, JIP4 enhances p38 signaling

through a mechanism that requires either MKK3 or MKK6 (263, 267). In contrast, JIP4 can bind

to JNK but does not enhance JNK activation, indicating that JIP4 functions as a scaffolding

protein for the p38, but not JNK, pathway (267).



Non-canonical activation of p38

Importantly, p38 can also be activated by non-canonical mechanisms that are independent

of its phosphorylation by MKKs 3, 6 and 4. The first mechanism of non-canonical activation

involves the autophosphorylation of p38 following its binding to TAKI-binding protein (TAB 1)

(268). Although there is some debate concerning the physiological relevance of this alternative

method of p38 activation (225), accumulating evidence suggests that cells activate p38 through

TAB 1 binding in certain situations (269-271).

A second MKK-independent mechanism of p38 activation was found to occur

downstream of the T-cell receptor (TCR) in antigen-stimulated T cells. This mechanism

involves the atypical phosphorylation of a tyrosine residue outside of p38's activation loop by

zeta-chain TCR-associated protein kinase 70kDa (ZAP70). ZAP70's atypical phosphorylation

of p38 triggers p38 to autophosphorylate the threonine and tyrosine residues present within its

activation loop, thereby activating itself (272).

Extracellular signals that activate p38

As already indicated, a multitude of extracellular stimuli lead to the activation of p38

signaling. Environmental stresses that activate p38 signaling include osmotic stress and heat

shock (273, 274). In addition, p38 is activated by DNA-damaging agents, such as ultraviolet

(UV) radiation, ionizing radiation, and hydroxyurea (275, 276). p3 8 is also activated by toxic

chemicals, such as sodium arsenite and rotenone (274, 277) as well as the biological toxin

lipopolysaccharide (273, 275).

As an important mediator of inflammatory responses, p38 activates signaling pathways

induced by a variety of cytokines, including tumor necrosis factor a (TNFa), interleukins, and



thrombin (275, 278-283). For example, p38 activity was found to be necessary for TNFa-

induced upregulation of vascular cell adhesion molecule-I (VCAM-1) at the surface of human

endothelial cells (280).

The activation of p38 by growth factors is more unpredictable than is its activation by

stress stimuli or cytokines. More specifically, growth factors such as fibroblast growth factor

(FGF), nerve growth factor (NGF), insulin, insulin-like growth factor (IGF), vascular endothelial

growth factor (VEGF), platelet-derived growth factor (PDGF), and granulocyte macrophage

colony-stimulating factor (GM-CSF) have all been found to activate p38 signaling, but only in

specific cell types (284-291). Other cell types either do not respond to these growth factors by

activating the p38 pathway or can even downregulate p38 signaling in response to these growth

factors. For example, insulin activates p38 signaling in 3T3-L1 adipocytes (291) but inhibits p38

activity in chick forebrain neuron cells (292). Clearly, the activation of p38 by growth factors is

highly contextual, whereas the activation of p38 by cellular stressors and cytokines is more

universal.

Inactivation of p38

The phosphorylation and activation of p38 occurs quickly in response to most stimuli and

is transient (235). The ability of cells to downregulate p38 signaling following stimulation

allows them to adapt continuously to changing signals from their surroundings. Just as

phosphorylation of p38 plays a crucial role in activating this protein, dephosphorylation plays a

crucial role in its inactivation (235, 293).

Mammalian cells contain several types of protein phosphatases capable of inactivating

p38 signaling by dephosphorylating one or both of its key activating phosphorylation sites - the



conserved threonine and tyrosine residues present within its activation loop. These

phosphatases include serine/threonine phosphatases, tyrosine phosphatases, and dual-specificity

phosphatases (DUSPs). Unlike the serine/threonine and tyrosine phosphatases that promote the

dephosphorylation of either the threonine or tyrosine residue, respectively, DUSPs

dephosphorylate both the threonine and tyrosine residues contained within p38's activation loop

(235, 293).

Serine/threonine phosphatases

The phosphatase type 2C (PP2C) family of serine/threonine phosphatases includes three

members known to directly inactivate p38, namely PP2Ca splicing variant 2 (PP2Ca-2), PP2Cs,

and PP2C8, which is more commonly called p53-induced protein phosphatase ID (PPMlD) or

wild-type p53-induced phosphatase 1 (Wip1) (294). PP2Ca-2 binds to p38 and downregulates

its signaling when it is triggered by various stimuli, such as UV radiation and TNFa (295).

PPMID/Wip1, on the other hand, was found to dephosphorylate p38 upon following its

induction by UV light. Dephosphorylation of p38 by Wip1 attenuated the p38-induced

phosphorylation and stabilization of p53, thereby reducing p53 signaling while cells recovered

from UV-induced DNA damage and suppressing UV-induced apoptosis (296).

In addition, PP2C family members can suppress p38 signaling by dephosphorylating and

inactivating MAP2Ks and MAP3Ks upstream of p38. For example, PP2Ca-2 was found to

inactivate the MAP2Ks MKK6 and MKK4 (295). Furthermore, PP2Cp and PP2CE were found

to inactive p38 signaling by associating with TAKI and dephosphorylating this MAP3K (297,

298). PP2Cs was also found to bind and dephosphorylate the MAP3K ASKI (299).



Tyrosine phosphatases

Some protein tyrosine phosphatases (PTPs) have been shown to dephosphorylate and

inactivate p38. More specifically, hematopoietic PTP (HePTP) was found to bind p38 and

reduce its activation in T-cells (300). In addition, striatal-enriched protein tyrosine phosphatase

(STEP), and STEP-like PTP (PTP-SL) have also been found to bind to p38 and inactivate it

through dephosphorylation (301, 302). Further work is necessary to understand the role of PTPs

in the regulation of p38 in physiological settings.

DUSPs

Several DUSPs of the MAP kinase phosphatase (MKP) family have been found to

dephosphorylate concurrently the threonine and tyrosine residues present in p38's activation loop

(293). Importantly, these MKPs can efficiently dephosphorylate p38a and p38@, but not p38y

and p388, which are resistant to MKP activity. MKPs identified to target p38 are

MKP1/DUSP1, DUSP2, MKP5/DUSP10, DUSP8, MKP7/DUSP16, and MKP8/DUSP26 (219,

293).

The selectivity of these MKPs for their MAPK substrates differs. For example, MKPs

like MKP5, MKP7, and DUSP8 selectively inactivate p38 and JNK, whereas MKP1 can also

inactivate ERK (303-305). Supporting a role for MKPs in regulating MAPK activity in vivo,

MKP1-null mice were found to exhibit sustained levels of p38 and JNK activity in response to

endotoxic shock and to display increased levels of p38, JNK, and ERK activation in insulin-

responsive tissues (306-308).

Based on experiments involving the ERK-specific MKP3, a general model of MKP

activation has been suggested: A MAPK specifically and stably binds to the non-catalytic



amino-terminus of a MKP, with this binding stimulating the MKPs' catalytic activity. Indeed,

the amino terminus of MKP3 was found to bind tightly with both ERKI and ERK2, but not to

JNK or p38 proteins. Moreover, the binding of purified ERK to MKP3 induced a large increase

in the catalytic activity of MKP3 as measured by the dephosphorylation of an artificial substrate.

Indeed, when expressed alone, the carboxyl-terminal catalytic domain of MKP3 lacks specificity

for dephosphorylation of ERK and instead similarly dephosphorylates ERK, JNK, and p38 with

low efficiency (309, 310).

Extending these observations to other MKPs, the catalytic activities of other MKPs such

as MKP1, MKP2, MKP4, and DUSP7, were increased upon the binding of these MKPs to their

particular substrates (293). MKP4 and MKP1 also bind and undergo catalytic activation by

purified MAP kinases to which they exhibit selective binding (311). Interestingly, DUSP2,

which can dephosphorylate both ERK and p38, appears only to be catalytically activated by

purified ERK, suggesting that regulation of MKPs involves additional complexities (312, 313).

Pathways downstream of p38

p38 has been found to phosphorylate and activate numerous proteins involved in a variety

of biological processes, including cell cycle regulation, differentiation, apoptosis, and

inflammatory responses. The multitude of substrates downstream of p38 indicates that not only

does p38 respond to a plethora of upstream signals, but it also induces a wide array of

downstream signaling pathways. In spite of the diversity of signaling pathways activated by p38,

however, the vast majority of known p38 substrates fall within one of two broad categories,

namely protein kinases and transcription factors (216, 283).



Protein kinases

The first p38 substrate to be identified was MAP kinase-activated protein kinase 2

(MAPKAPK2 or MK2), although it was originally characterized in vitro as being phosphorylated

and activated by ERK (314). Finding that MK2 phosphorylated the small heat shock proteins 25

and 27 (Hsp25 and 27) in response to stress stimuli led to the discovery that MK2 was not a

target of ERK in intact cells, but rather a target for p3 8 (274, 278, 315, 316). In addition, the

closely related kinase MK3 was also found to be phosphorylated and activated by p38 in

response to stress stimuli (317).

MK2 and MK3 have been found to phosphorylate and activate different substrates that

regulate various biological processes, such as cytoskeletal remodeling, cell migration, cell-cycle

regulation, chromatin remodeling, gene transcription and mRNA stabilization. For example,

phosphorylated Hsp27 was found to inhibit stress fiber formation induced by the GTPase Rho by

competing with phosphorylated cofilin for binding to 14-3-3 proteins. This displacement of

cofilin leads to its dephosphorylation and allows its binding to the barbed ends of actin, which

blocks actin polymerization (318). Other MK2 and MK3 substrates that are involved in actin

remodeling include Hsp25, lymphocyte-specific protein-1 (LSP1), and F-actin-capping protein

Z-interacting protein (Cap-ZIP) (319-321).

In addition, MK2 and MK3 phosphorylate and activate various transcription factors, such

as serum response factor (SRF), cyclic AMP-dependent transcription factor 1 (ATFI), and

cAMP response element-binding protein (CREB) (284, 322). MK2 has also been found to

regulate mRNA stability by phosphorylating proteins like tristetraprolin (TTP). The

phosphorylation of TTP by MK2 prevents TTP from destabilizing mRNA encoding the cytokine

TNFa (323-325). Furthermore, MK2 was found to regulate the cell cycle by inducing the G2/M



checkpoint in UV-irradiated cells by phosphorylating the cell division cycle 25 (Cdc25)

phosphatases Cdc25B and Cdc25C, leading to their sequestration by 14-3-3 proteins and

inhibiting them from promoting mitotic entry (326).

Another substrate phosphorylated and activated by p38 is the protein MK5, which is also

called p38-regulated/activated kinase (PRAK). Like MK2 and MK3, PRAK has been found to

phosphorylate and regulate Hsp27 (327). Much remains to be learned about the functions of

PRAK downstream of p38. However, PRAK was found to act as a tumor suppressor in an

experimental animal model and to activate the p53 tumor suppressor protein by direct

phosphorylation, indicating that this kinase may play an important in human cancers (328).

MAPK-interacting protein kinase 1 (MNK1) is also a substrate of p38. MNK1 can

phosphorylate eukaryotic initiation factor-4E (eIF-4E), increasing eIL-4E's affinity for capped

mRNAs. However, the regulation of eIF-4E is complex as, depending upon the circumstances,

phosphorylation of eILF-4E can lead to either a stimulation of translation or a decrease in cap-

dependent translation (329-33 1). Further work must be done to clarify MNK1's role in

regulating eIL-4E.

Additionally, p38 was found to phosphorylate and activate p38Mitogen- and stress-

activated protein kinases-1 and -2 (MSK1 and MSK2). The activation of MSK1 by p38 may

mediate the stress-induced activation of the transcription factor CREB (332-334). MSK1 is also

capable of phosphorylating the chromatin proteins histone 2B, histone H3, and high mobility

group-14 (HMG-14), indicating that p38 may regulate gene expression through its activation of

MSK1 (334-336). Furthermore, both p38 itself and MSK were found to phosphorylate eIF-4E-

binding protein 1 (4E-BP1), a negative regulator of eIF-4E activity, in response to UV radiation

(337).



Transcription factors

The second major category of p38 substrates is comprised of transcription factors. In

addition to regulating gene expression by activating the above-mentioned protein kinases, p38

directly phosphorylates and regulates many transcription factors that modulate the expression of

a wide range of genes. The phosphorylation of transcription factors by p38 usually increases

their activity; however, p38 has also been found to suppress the activity of select transcription

factors through phosphorylation (235, 318, 338). A detailed list of transcription factors directly

phosphorylated by p38 is included in Table 2. Importantly, a transcription factor may exhibit

varied responses to activated p38 in different cell types, adding further complexity to signaling

downstream of p3 8 (339).

Other substrates

p38 also phosphorylates and regulates a variety of proteins that are neither kinases nor

transcription factors. These other substrate proteins include cytosolic phospholipase A2

(cPLA2), peroxisome proliferator-activated receptor (PPARa), Na+/H+ exchanger isoform-1

(NHE-1), stathmin, and keratin 8 (235, 338). Interestingly, p38 family members have been

found to exhibit selective binding to select alternative substrates. For example, p38s c, y, and 6

were found to phosphorylate the microtubule-associated protein Tau, whereas p38P was found to

phosphorylate glycogen synthase (338). Additional work is needed to elucidate the roles of these

alternative substrates in pathways downstream of p38.



p38 MAPKs and cancer

Given that p38 has been found to regulate cellular processes like cell-cycle progression,

differentiation, and apoptosis (214, 218), the activities of this kinase were suspected to influence

cancer development. Indeed, much evidence has been accumulated that points to p38 playing a

substantial role in neoplastic development and progression. This section summarizes our current

understanding of p38's role in cancer.

Functions of p38 relevant to cancer

As mentioned at the beginning of this introduction, incipient cancer cells must

manipulate or circumvent controls governing normal tissue homeostasis in order to promote

neoplastic development. p38 plays important roles in regulating several of the abilities that cells

acquire in order to progress toward malignancy. Acquired traits influenced by p38 include self-

sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of apoptosis,

limitless replicative potential, and tissue invasion and metastasis (1).

Indeed, depending upon the cell type and context, p38 MAPKs have been found to

function in several cellular processes that are intimately related to the above-mentioned acquired

traits; these processes include proliferation, differentiation, apoptosis, angiogenesis, migration,

invasion, and metastasis. Importantly, p38 has been found to act as a tumor suppressor that

counteracts neoplastic development much more frequently than to act as an oncogene that

promotes neoplastic development. The tumor type, stage, and accompanying genetic alterations

most likely determine how p38 activity affects tumorigenesis and tumor progression (214, 216,

218, 340).



Proliferation

In general, p38 activity appears to be anti-proliferative. For example, embryonic

fibroblasts, fetal hematopoietic cells, and embryonic stem cells derived from p38-null mice all

exhibited hyperproliferation in comparison to their wild-type counterparts (341, 342). In

addition, the proliferation of neonatal rat cardiomyocytes was enhanced upon culturing these

cells in the presence of a p38 drug inhibitor, and a p38-null background promoted the

proliferation of murine cardiomyocytes both in vitro and in vivo (343). Similarly, p38 was found

to inhibit the proliferation of lung progenitor cells in a conditional p38 knockout mouse model

(344).

The anti-proliferative effects of p38 activity on cells most likely reflects the regulation of

both the G1/S and G2/M cell cycle transitions by p38. For example, p38a can inhibit Gl/S

progression by downregulating transcription of cyclin D1 (345) as well as by upregulating

transcription of the cyclin-dependent kinase (CDK) inhibitor p16INKa (346). p38a can also

regulate G1/S progression through the phosphorylation of D-type cyclins and the CDK inhibitor

p2lcipi, thereby tagging D-type cyclins for proteasomal degradation and stabilizing p21ciPl (347-

349).

In addition, p38c and y have been found to arrest or delay cell cycle progression at the

G2/M checkpoint in response to cellular stressors (350-352). p38-dependent phosphorylation

and resulting activation of MK2 appears to be crucial in regulating G2/M arrest (326, 353). As

mentioned earlier, MK2 prevents mitotic entry by phosphorylating Cdc25B and Cdc25C, thereby

sequestering these proteins and preventing them from activating the Cdc2/Cyclin B complex

(326). Furthermore, downregulation of transcription of cyclins A and B may also contribute to

p38a's induction of the G2/M checkpoint (343, 354).



Interestingly, p38's activation of the tumor suppressor p53 appears to contribute to p38's

ability to halt the cell cycle in both the G1 and G2 phases. p38 can activate p53 through direct

phosphorylation as well as by transcriptional upregulation, thereby promoting p2lcipi

accumulation and G1 arrest (340). p3 8 has also been shown to induce the G2/M arrest of

thymocytes in vivo in response to DNA damage in a p53-dependent manner (355).

Despite the fact that p38 is most often found to inhibit cell cycle progression, there are

indications that p38 may positively regulate cell proliferation in certain contexts. For example,

one report suggested that p38a positively regulates mitotic progression in HeLa cells

independently of its kinase activity (356). Moreover, p38a has been shown to promote the

proliferation of particular cancer cell lines as well as cytokine-stimulated hematopoietic cells

(340).

Apoptosis

p38 is also a well-established mediator of apoptosis. Many pro-apoptotic stimuli,

including chemotherapeutic agents, death receptor signals, and cellular stresses, require p38

activity for the induction of apoptosis (357-362). Some of these pro-apoptotic stimuli may

trigger p38-dependent apoptosis by inducing the production of reactive oxygen species (ROS) or

DNA damage. Importantly, the ability of p38a to induce apoptosis in response to the production

of ROS by select oncogenes, such as Ras, may play a significant role in suppressing tumor

initiation (363).

p38 has been found to promote apoptosis through multiple mechanisms. For example,

p38 activity has been found to induce the phosphorylation and inactivation of the pro-survival

proteins Bcl-2 and basal cell lymphoma-extra large (Bcl-xL). Likewise, p38 can stimulate the



phosphorylation and activation of the pro-apoptotic proteins Bcl-2-antagonist of cell death (Bad),

Bcl-2 interacting mediator of cell death (Bim), BCL2-associated X protein (Bax), and Bcl-2

homologous antagonist/killer (Bak) (340). Furthermore, several transcription factors that are

activated by p38, such as p53, can upregulate the expression of pro-apoptotic genes like Bax and

apoptotic peptidase-activating factor 1 (Apaf-1) (357-359).

Although p38 clearly plays a pro-apoptotic role in many circumstances, several studies

have reported pro-survival roles for p38. Depending upon the situation, p38 MAPKs may

protect cells from apoptosis by driving the production of anti-apoptotic, inflammation-related

proteins like IL-6 or NF-xB or by inducing a cell to undergo cell-cycle arrest rather than

apoptosis (340). In addition, p38P has been found to have anti-apoptotic effects in certain cell

lines and may buffer against pro-apoptotic effects of p38a (364, 365).

Differentiation

Differentiation blocks the proliferation of cells by entering them into a post-mitotic state.

Thus, incipient cancer cells must avoid differentiation in order for a tumor to progress (1).

Accumulating in vitro and in vivo evidence indicates that p38 is an important regulator of

differentiation programs responsible for producing cells like adipocytes, neurons, hepatocytes,

lung epithelial cells, myocytes, and cardiomyocytes (343, 344, 366-372).

p38's promotion of differentiation contributes to its tumor-suppressive properties. More

specifically, activation of p38a in certain cancer cell lines was found to trigger a more

differentiated and less transformed phenotype (373-375). In addition, conditional deletion of

p38a in mice enhances their development of lung adenocarcinomas due to the failure of lung

progenitor cells to undergo differentiation when lacking p38a (344).



p38 can induce cell differentiation in different ways, such as by activating transcription

factors that promote tissue-specific differentiation (Table 2) or by targeting chromatin-

remodeling enzymes to loci of differentiation-related genes in order to induce their expression

(338, 376). p38a has also been found to regulate the proliferative arrest of progenitor cells at the

onset of differentiation, an event that is crucial for differentiation to proceed properly (343, 344,

369, 372).

Functions in later stage tumors

In contrast to the tumor-suppressive functions of p38 that are related to its roles in

proliferation, apoptosis, and differentiation, p38 may fulfill oncogenic roles in advanced tumors

by promoting the processes of cell migration, invasion, angiogenesis, and metastasis. For

example, p38 has been found to positively regulate the migration of various normal and

tumorigenic cell populations that had been exposed to chemotactic stimuli (259, 377-380).

Furthermore, multiple human cancer cell lines exhibit dependence upon p38 activity in order to

invade during in vitro assays (381-384).

Supporting a role for p38 in invasion, p38a has been found to induce the expression of

metalloproteinases (MMPs), including MMP-1, MMP-3, MMP-9, and MMP-13 (283, 384, 385).

MMPs facilitate the local invasion of neoplastic cells as well as the extravasation of metastatic

cells at distance sites via their ability to degrade proteins of the extracellular matrix (386).

Indeed, the inhibition of p38ca and p388 in human squamous cell carcinoma cells was found to

reduce their expression of MMP- 1 and MMP-13 and to decrease their invasive abilities in vitro

(382).



Angiogenesis is another process that appears to be affected by p38 activity and is critical

for neoplastic progression. In order to progress to a macroscopic size, developing neoplasias

must become angiogenic, acquiring the ability to stimulate the growth of new blood vessels (1).

In addition to being activated by the potent, pro-angiogenic factor VEGF in certain contexts, p38

has been found to induce expression of VEGF in cells responding to stimulation with particular

cytokines (387-389). Moreover, p38a has been shown to activate the transcription factor

hypoxia-inducible factor 1 (HIF-1), at least in part through stabilization of its a-subunit (HIF-la

) (390, 391). Through the promotion of pro-angiogenic pathways, HIF-l 's regulation of gene

expression is central to the adaptive response of cells experiencing a lack of oxygen.

In addition, there exists evidence suggesting that p38 signaling occurring within stromal

cells is important for the metastasis of tumor cells to secondary sites. For example, the number

of lung metastases formed from intravenously injected B16 or LLC cells was decreased in mice

harboring deletion of one copy of p38a in comparison to wild-type mice, with this effect

attributed to weaker tumor-platelet aggregates and poorer tumor cell extravasation (392).

Furthermore, activation of p38 in myeloid cells by signals originating from tumor cells was

implicated in the creation of a premetastatic niche in the lungs of mice injected with B16 or LLC

cells (380).

p38 in human cancers

Corresponding with the predominantly tumor-suppressive functions of p38 identified

during in vitro and in vivo experiments, the majority of studies examining p38 activity in human

tumor samples point toward the loss of p38 function in cancer cells. For example, p38 activity

was lower in hepatocellular carcinomas samples in comparison to nearby normal tissue.
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Importantly, among the tumor samples examined, larger tumors exhibited greater reductions in

p38 activity (393). Moreover, the sequencing of protein kinase genes in human cancers

identified somatic mutations in p38a that are likely to be driver mutations, which positively

affect tumor growth and development. However, the effects of these mutations on the

biochemical functions of p38a remain to be elucidated (394).

Furthermore, in comparison to their corresponding normal tissues, human cancers exhibit

differences in molecules that regulate p38 activity. More specifically, levels of Wip1/PPM1D

and DUSP2, phosphatases, which inhibit p38 signaling, were found to be increased in various

human cell lines and tumor samples (395-399). Similarly, Gstml and 2, which negatively

regulate p38 activity by inhibiting the p38 MAP3K ASKI, exhibit elevated levels in several

human cancer cell lines (363).

In addition, the p38 MAP2K MKK4 was found to be mutated and inactivated at a

frequency of approximately 5% in numerous human cancers, including those of the pancreas,

bile duct, breast, colon, lung and testis (400-402). Strikingly, MKK4 was shown to be

downregulated in 75% of ovarian serous carcinomas samples relative to samples of benign

ovarian tissues (403). As expected, evidence gathered from model systems also indicates that

MKK4 functions as a product of a tumor suppressor gene (401, 402).

In contrast to the evidence presented above, some studies report increased p38 activity in

various tumors. Indeed, increased levels of phosphorylated p38a have been correlated with

malignancy in various cancers, including glioma, follicular lymphoma, as well as lung, thyroid,

breast, and head and neck squamous cell carcinomas (382, 404-408). The functional

ramifications of elevated phosphorylated p38 levels remain to be determined, but appear to

include increased invasiveness in gliomas and head and neck carcinomas (382, 408).



When taken together, the experimental evidence and data gathered from human tumor

samples suggest that p38 usually inhibits tumor development and progression. However, p38

activity may confer a selective advantage upon tumor cells in certain contexts, depending on

coexisting mutations, cancer type, and tumor stage (218, 340). Further study must be conducted

in order to understand more precisely when and why p38 displays oncogenic and not tumor

suppressive behaviors.

IV. Cell-matrix adhesion

Basics of cell-matrix adhesion

The adhesion of cells to their extracellular environment governs many biological

processes that are essential to multicellular organisms, such as cell migration, cell survival, tissue

organization, and embryonic development (409). Critical to the formation of cell-matrix

adhesions are transmembrane proteins called integrins, which link proteins found in the

extracellular matrix (ECM) with a cell's actin cytoskeleton. Integrins create receptors for ECM

proteins through the specific heterodimerization of 18 a and 8 @ subunits. ECM proteins that

bind the large extracellular domains of integrin receptors include molecules like fibronectin,

vitronectin, and collagens. The smaller, cytoplasmic domains of integrins interact with proteins

that connect them with the actin cytoskeleton (409, 410).

In addition to integrins, many other factors localize to sites of cell-matrix adhesion,

causing these structures to be tremendously complex (Fig. 3). Indeed, 90 factors have been

found to predominantly reside at cell-matrix adhesions, and another 66 regulatory factors were

found to interact with adhesions in a transient manner. Proteins make up 151 of these 156



adhesion-related factors, with the remaining 5 components being 4 lipids and the calcium ion

(411). This enormous list of proteins can be broken down into 6 categories based upon the role

played by each protein in cell-matrix adhesion; these categories are: integrins, other membrane-

bound proteins, integrin-actin linkers, integrin-associated proteins, actin-binding proteins, and

adaptor proteins (410).

Although integrins are critical for cell-matrix adhesion, cells also express other

membrane-bound proteins that assist in cell-matrix adhesion (red in Fig. 3); these molecules

include protein molecules like syndecans (412) and the hyaluronan-binding protein layilin (413).

Integrin-actin linkers bind concomitantly to actin filaments and the cytoplasmic domains of

integrins, forming critical bridges between integrins and the actin cytoskeleton. Examples of

integrin-actin linkers are the proteins talin, a-actinin, and tensin (gold in Fig. 3). In contrast,

integrin-associated proteins bind the cytoplasmic tails of integrins, but do not interact directly

with actin, interacting with the cytoskeleton indirectly through other adhesion components. A

subset of integrin-associated proteins are involved in signaling, such as focal adhesion kinase

(FAK) and integrin-linked kinase (ILK) (410).

Actin-binding proteins do not directly bind integrins, but interact instead with other

proteins located at cell-matrix adhesions and play important roles in regulating adhesion

dynamics (green in Fig. 3). Actin-binding proteins include vinculin and members of the enabled

homolog/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins (410, 414, 415).

The last group of cell-matrix adhesion proteins consists of a large number of adaptors that

interact with actin- and integrin-bound proteins (purple in Fig. 3). Many of these adaptor

proteins are enzymes (light purple in Fig. 3), such as Src tyrosine kinases, GEFs and GAPs of



Rho family GTPases, and serine/threonine kinases, notably PAKs, which were introduced earlier

as being upstream of p3 8 (410).

Types of cell-matrix adhesions

Cells can interact with ECM proteins of their substratum to form four types of adhesions:

focal complexes, focal adhesions, fibrillar adhesions, and podosomes (Fig. 4). Each of these

cell-matrix adhesions is mediated by integrins and consists of similar sets of non-integrin

proteins. However, important structural differences exist between these classes of adhesions,

with particular proteins preferentially localizing to each kind of adhesion. For example, focal

complexes and focal adhesions formed by fibroblasts contain high amounts of the vitronectin

receptor avP3 integrin, whereas fibrillar adhesions preferentially contain the fibronectin receptor

as5s integrin (409, 410, 416).

Focal adhesions bind cells to their substratum through strong plaques that are roughly

elliptical in shape, have a length of 3 to 10 lim, and are typically found near the edges of cells

(Fig. 4A; 416, 417). Focal adhesions contain many different proteins, including vinculin and

talin as well as tyrosine-phosphorylated proteins, such as focal adhesion kinase (FAK) and

paxillin (409, 410). Importantly, cell-matrix contacts displaying similar characteristics to focal

adhesions have been found in vivo despite that focal adhesions were originally identified as

structures created by cells growing on two-dimensional surfaces in vitro (418-420).

Fibrillar adhesions tend to assume an elongated shape but can also acquire more rounded

forms, exhibiting variable lengths of 1 to 10 tm (Fig. 4B). Unlike focal adhesions, fibrillar

adhesions form across the interior of cells, where they direct the formation of extracellular

fibronectin fibrils and orient themselves along these fibrils. In addition to containing the



fibronectin receptor a5PI integrin, fibrillar adhesions also contain high levels the integrin-binding

protein tensin and low levels of tyrosine-phosphorylated protein in comparison to focal

adhesions (409,410,421).

At lengths of only 0.5 to 1 [tm, focal complexes are transient, dot-like structures found

predominately at the periphery of lamellipodia, the sheet-like extensions at cell edges that

contain a branched network of actin filaments (Fig. 4C; 416, 422). Notably, stabilized focal

complexes are thought to be the precursors for focal adhesions, which in turn are thought to

mature into fibrillar adhesions (409, 423).

The final type of cell-matrix adhesion is the podosome, which is a small ring-shaped

structure having a diameter of around 0.5 xm (Fig. 4D). The formation of podosomes by cells is

more restricted than is the formation of other cell-matrix adhesions, with podosomes being found

in endothelial cells, and smooth muscle cells, and cells of the monocyte lineage as well as in

some cancer cells (424, 425). Podosomes contain various proteins that associate with focal

adhesions, such as paxillin and vinculin, in addition to the podosome-specific proteins gelsolin

and dynamin (410). Unlike the previously described cell-matrix contacts, podosomes actively

degrade ECM components, making their activity central to processes like the remodeling of bone

by osteoclasts (425).

Steps of cell-matrix adhesion

The adhesion of a cell to its substratum can be broken down into two processes,

attachment and spreading. Cells in suspension first attach to their substratum through weak

bonds, causing them to retain their spherical shape and display a refractile appearance. Shortly

after their initial attachment, however, cells begin extending cytoplasmic protrusions and



forming focal adhesions with their substratum, enabling them to spread outward and assume a

flattened shape (426, 427).

Cell attachment

The mechanisms used by cells during their initial attachment to their substratum are not

well understood. It is appreciated, however, that the method in which cells first associate with

their substratum depends upon both the nature of the substratum as well as other factors present

in their environment. For example, human fibroblasts grown in serum-free media were found to

attach to their substratum through secreting the ECM protein fibronectin, which adsorbs onto the

surface and provides these cells with sites of attachment (426, 428). In contrast, cells grown in

serum-containing media attach to their substratum by exploiting soluble ECM components that

are present in serum, such as vitronectin and fibronectin. Similar to ECM proteins secreted by

cells, these serum ECM components adsorb onto the substratum, providing cells with a matrix

upon which to attach. Indeed, polystyrene surfaces specially manufactured to promote cell

attachment - a process often performed through oxygenation of the surface - most likely

enhances cell attachment by increasing adsorption of serum ECM components onto the

substratum (429-431).

The binding of integrins to ECM proteins adsorbed onto a substratum plays a central role

in mediating cell attachment. Importantly, though, non-integrin molecules have also been

implicated in cell attachment. For example, glycosaminoglycans like hyaluronan appear to play

key roles in the initial fastening of cells to their substratum (432). In addition, small peptides

found in serum, such as hormones or cytokines, may also adsorb onto the substratum and aid in

cell attachment (433). Taken together, the initial attachment of cells to their substratum is an ill-



defined process, depending upon both the chemistry of the substratum and factors present in cell

culture media.

Cell spreading and formation of cell-matrix adhesions

As indicated above, cells begin forming integrin-mediated bonds with ECM molecules

immediately upon encountering the substratum. The precise composition of the earliest integrin-

ECM adhesion complexes is not clear. However, these first adhesion complexes are thought to

involve the binding of two dimers of the protein talin to the cytoplasmic domains of two P

integrin subunits that are themselves each dimerized with an a integrin subunit. At the same

time, talin binds to filamentous actin, bridging the integrins and the actin cytoskeleton (434-437).

Integrins first bind to ECM proteins with low affinity. Binding of integrins to ECM

proteins induces the autophosphorylation of focal adhesion kinase (FAK), which enables FAK to

bind the non-receptor tyrosine kinase Src. Src then phosphorylates additional residues in FAK,

maximizing its activity (438).

The activated FAK-Src complex stimulates the activity of Rac and Cdc42 by recruiting

GEFs capable of activating these GTPases. The activation of Rac and Cdc42 at sites of integrin

binding enables these GTPases to remodel the actin cytoskeleton and promote the formation of

membrane protrusions like lamellipodia and filopodia (439, 440). Not only does the FAK-Src

complex facilitate cell spreading by activating Rac and Cdc42, this complex also promotes cell

spreading by repressing the activity of the related GTPase RhoA, thus relieving cytoskeletal

tension by suppressing actomyosin contractility (441, 442).

Cells spreading along their substratum begin forming focal complexes in response to Rac

and Cdc42 activity (443, 444). These complexes are labile structures that, once formed, either



disappear or develop into mature focal adhesions (423). Although the process by which focal

complexes mature into focal adhesions remains ambiguous, differences in the types of proteins

and their phosphorylation states have been reported to exist between focal complexes and focal

adhesions. For example, the protein zyxin was found to reside at focal adhesions but not at focal

complexes (445).

In addition, RhoA activity is known to drive maturation of focal complexes into focal

adhesions, at least in part through stimulating actomyosin contractility (446, 447). This

maturation process tends to occur at the border between lamellipodia and lamellae (448, 449).

Lamellae are sheet-like cytoplasmic protrusions that are thicker and more interior to cells than

lamellipodia. At later stages of cell spreading, lamellipodia continue to reach forward, whereas

mature focal adhesions remain rooted underneath the lamella where they increase in size by

recruiting new integrins and other adhesion proteins (423).

The continued application of force to focal adhesions through actomyosin contractility

results in the formation of fibrillar adhesions and concomitant remodeling of the ECM (450).

Rho activity was found to promote the formation of fibronectin fibrils by cells, indicating that

this GTPase may be involved in the formation of fibrillar adhesions (451). The formation of

fibrillar adhesions was also found to require Src activity (452). However, additional details of

the process by which fibrillar adhesions are formed from focal adhesions remain unclear (450).

Cell-matrix adhesion and cancer

As introduced earlier, uncontrolled cell proliferation, inappropriate cell survival,

increased motility, and increased invasiveness are important traits acquired by incipient cancer

cells during neoplastic development. These traits are acquired, at least in part, through changes
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in how cells communicate with the extracellular matrix (1, 13, 453). Indeed, alterations in the

adhesive behavior of cells promote both the transformation of cells in culture as well as

tumorigenesis in mice. Likewise, human tumors are regularly found to exhibit differences in the

levels and activity of adhesion-related proteins in comparison to corresponding normal tissues

(13,23).

Oncogenes capable of transformation commonly reduce the number of focal adhesions

made by cells and reorganize their actin cytoskeletons. For example, oncogenic Src (whose

proto-oncogene was introduced above as being activated by FAK at sites of integrin-ECM

binding) disassembles actin-microfilament bundles, known as stress fibers, by promoting

inactivation of Rho GTPases as well as activation of the actin-destabilizing protein cofilin (454,

455). In addition, the transformation of cells by oncogenic Src induces an increase in the ratio of

focal adhesion turnover to focal adhesion assembly, thereby reducing the number of focal

adhesions present per cell (456).

Together, many studies have established a causative role for changes in cell-matrix

adhesion in the acquisition of additional transformation-related properties, such as anchorage-

independent growth and tumorigenicity in mice. Indeed, altering the expression of adhesion

proteins in transformed cells has been found to repress their transformation-related properties.

For example, ectopic expression of the fibronectin receptor, assi integrin, in transformed

hamster cells reduced their density at confluence, inhibited their growth in soft agar, and

rendered them non-tumorigenic (457). Similarly, expressing the a2 integrin subunit in mouse

mammary carcinoma cells prevented them from growing in an anchorage-independent manner

and reduced their tumorigenicity (458).



In addition to certain integrins, other proteins involved in cell-matrix adhesion, such as a-

actinin, gelsolin, and vinculin, have been found to inhibit transformation (459-462). These

adhesion proteins were linked with the transformed state when they were found to be

downregulated in tumorigenic cell lines in comparison to controls. Importantly, the ectopic

expression of these proteins in tumorigenic cells that lacked their expression inhibited the

anchorage-independent growth and tumorigenicity of these cells.

The mechanisms by which the ectopic expression of certain adhesion proteins negatively

impacts the transformation of mammalian cells are incompletely understood. However, the

abovementioned experiments clearly demonstrate the intimate relationship between cell-matrix

adhesion and transformation. The sensitivity of anchorage-independence and tumorigenicity to

changes in adhesion proteins has stimulated further work aimed toward understanding the

mechanisms linking adhesion and transformation.

Examination of anchorage-independence has begun to shed light upon how transformed

cells evade the apoptotic and growth arrest programs that normally prevent cell survival and

proliferation in the absence of proper cell-matrix adhesions. In order to understand the lack of

dependence of transformed cells on cell-matrix adhesions for their proliferation and survival, it is

crucial to understand why normal cells stop proliferating or die if not anchored to a substratum.

Indeed, integrin-dependent signaling pathways carefully regulate the proliferation and survival of

normal cells.

In order to proliferate, normal cells require the collaboration between pro-proliferative

signals originating from both growth factors and cell-matrix adhesions. For example, the

binding of integrins to ECM proteins synergizes with signaling originating from growth factor

receptors to elicit strong or sustained activity of the MAPK ERK (463-467). Importantly, growth
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factor-induced activation of ERK can only induce expression of proteins crucial to cell cycle

progression, like cyclin D1, when cells are adherent (465, 467, 468). Moreover, these studies

suggest that transformed cells are anchorage-independent, at least in part, through the ability of

their transforming oncogenes to produce sustained ERK activation in the absence of cell-matrix

adhesion.

Additionally, in non-adherent cells, both expression of the CDK inhibitor p2lcipi is

increased and degradation of a second CDK inhibitor p27KP' is decreased. The resulting high

levels of these CDK inhibitors prevent the entry of non-adherent cells into S phase by blocking

activation of cyclin-CDK complexes (469-471). Cooperation between signaling events

downstream of integrins and growth factor receptors is necessary for downregulation of these

CDK inhibitors and the resulting transition of cells from the G1 to S phase of the cell cycle

(472). Indeed, the activation of RhoA in response to cell spreading was found to induce the

degradation of p27IP1 during G1 and to be essential for S phase entry (473). Likewise, active

RhoA has also been found to repress the expression of p2lcipi (474, 475).

In addition to cell-matrix adhesion promoting the Gl/S transition, the lack of proper

adhesion to ECM components can induce apoptosis in normal cells. When bound to ECM

proteins, integrins relay cell survival signals; however, when not bound, integrins induce cell

death by promoting pro-apoptotic signaling pathways. Thus, integrins preserve tissue

homeostasis by preventing the survival of cells not properly adherent to their surroundings (23).

Ligated integrins enhance cell survival by inducing the expression of anti-apoptotic

proteins like Bcl-2 (476, 477), by activating pro-survival signaling pathways like the PI3K-Akt

pathway (478), or by inactivating pro-apoptotic proteins like p53 (479). In contrast, unligated

integrins can induce apoptosis through two different processes, namely anoikis and integrin-



mediated death. Anoikis is triggered by the complete loss of cell adhesion, whereas integrin-

mediated death occurs in attached cells that also harbor many unbound integrins (23).

Anoikis may occur through either the intrinsic or extrinsic pathways of apoptosis (480).

The extrinsic pathway of apoptosis involves the activation of caspases downstream of death

receptors, whereas the intrinsic pathway involves activation of caspases through the release of

cytochrome c from the mitochondria. The binding of death ligands, such as Fas ligand (FasL), to

death receptors, like Fas, induces death receptor oligomerization. Oligomerized death receptors

recruit the adaptor protein Fas-associated death domain (FADD) to the cell membrane.

Recruitment of FADD to death receptors induces activation of caspases, which degrade cellular

proteins, causing cell death (481).

Upon their detachment from their substratum, normal cells may undergo anoikis by

upregulating FasL and the Fas receptor or by activating the death receptor pathway downstream

of Fas (482, 483). In contrast to normal cells, unattached cancer cells fail to activate the extrinsic

pathway apoptosis even though they upregulate FasL and Fas. The resistance of many cancer

cells to anoikis lies, at least partly, in their chronic upregulation of FADD-like interleukin-1-

converting enzyme-like inhibitory protein (FLIP) (484). FLIP inhibits signaling downstream of

death receptors by binding FADD, preventing FADD from triggering caspase activation (485).

Loss of cell-matrix adhesion activates the intrinsic pathway of apoptosis by stimulating

the release of factors like cytochrome c from the mitochondria into the cytosol. These factors

then induce the activation of caspases, ultimately causing apoptosis. The release of the death-

promoting proteins from the mitochondria is promoted by pro-apoptotic proteins, such as Bax,

Bak, and Bim, and is inhibited by anti-apoptotic proteins, such as Bcl-2 and Bcl-xL (480).

In addition, the heterodimerization of pro- and anti-apoptotic proteins negates the activity
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of the dimerized proteins, indicating that the ratio between pro- and anti-apoptotic proteins

dictates the vulnerability of a cell to apoptosis (486). Indeed, the downregulation of Bcl-xL was

observed upon the detachment of non-transformed intestinal cells that were sensitive to anoikis

(487, 488). In contrast, cells transformed with oncogenic Ras and rendered resistant to anoikis

exhibited decreased levels of Bak and failed to downregulate Bcl-xL after losing cell-matrix

adhesions (487-489).

In contrast to anoikis, the process of integrin-mediated death involves the triggering of

apoptosis through the recruitment of caspase 8 to the cell membrane by unligated integrins

present on adherent cells, a process that occurs independently of death receptors (490).

Overcoming integrin-mediated death may be key for the survival of transformed cells growing in

three-dimensional matrices, which are less permissive for formation of cell-matrix adhesions

than are two-dimensional substrates commonly used in cell culture. A subset of the integrins on

a cell may bind proteins within the surrounding matrix; however, the remaining unligated

integrins may promote cell death, resulting in cells proliferating successfully under two-

dimensional, but not three-dimensional, conditions.

In an in vivo setting, the ability of cancer cells to overcome integrin-mediated death may

drive their local invasion and metastasis (491). The primary site of a cancer likely provides cells

with an environment rife with opportunities to form adhesions with ECM proteins. Indeed, the

primary site hosts a high density of tumor cells that have extensively remodeled of their

extracellular matrix. However, if cells invading the surrounding tissue are to avoid integrin-

mediated death, they must make many contacts with the unfamiliar matrix that surrounds them.

This challenge faced by cells may explain why the cells of aggressively invasive and metastatic

tumors commonly express matched integrins and ECM ligands, enabling them to deposit their



own ligands for their own integrins (492).

The strict regulation of cellular proliferation and survival by integrin-mediated adhesion

provides mammals with a potent tumor suppressive mechanism counteracting neoplastic

development. Only by reducing their reliance on cell-matrix adhesion for pro-growth and pro-

survival signals can incipient cancer cells succeed in becoming malignant. Indeed, cancer cells

develop ways of manipulating cell-matrix adhesion for their own benefit, co-opting adhesion

pathways that promote their invasion into the surrounding tissue or their metastasis to a distant

organ.

V. Perspectives

The RAS oncogene undeniably plays a role in the development and progression of human

cancers, and much has been learned about how the protein product of this oncogene promotes

neoplastic development. However, the majority of studies aimed toward understanding the

functions of the Ras oncoprotein have involved expressing the RAS oncogene in cells to

supraphysiological levels. This is particularly true of studies examining the role of oncogenic

Ras in human cell lines and cell strains, since the most efficient method of ectopically expressing

a gene in human cell populations is through retroviral infection.

Importantly, studies of genetically engineered mouse models in which oncogenic Ras was

expressed from the endogenous promoter found that the level of Ras signaling experienced by a

mammalian cell determines its response to this signaling (197, 201, 493). More specifically, the

supraphysiological expression of oncogenic RAS in normal mammalian cells induces them to

undergo senescence, a state in which cells are metabolically active but cannot proliferate. In

contrast, the endogenous expression of oncogenic ras in mouse cells induced their



hyperproliferation and partial transformation, an outcome strikingly different than the terminal

growth arrest characteristic of the senescent state.

I hypothesized that, like murine cells, human cells would react differently to high and low

levels of oncogenic Ras signaling. To test my hypothesis, I developed a system in which I could

activate oncogenic Ras signaling to either a low or high extent. Furthermore, based upon

published transformation protocols, I reasoned that inhibition of a tumor suppressor protein

would cooperate with low oncogenic Ras signaling in promoting the transformation of normal

human cells. Due to increasing evidence that loss of p38 cooperates with oncogenic Ras to

transform cells, I examined the effects of inhibiting p38 on the transformation-related

phenotypes of cells subjected to a low level of oncogenic Ras signaling.

The results described in the following chapter indicate that, like murine cells, normal

human cells respond differently to low and high levels of oncogenic Ras signaling. In addition,

evidence is presented arguing that inhibition of p38 cooperates with low activation of oncogenic

Ras signaling to reduce the adhesion of normal human cells to their substratum. Taken together,

these results suggest that, by promoting proper cell-matrix adhesion, p38 may provide tumor-

suppressive functions in early human neoplasias in which oncogenic RAS is expressed at a

physiological level.



VI. Figures and tables

Control Transformed Control Transformed

Control Transformed

Figure 1. Characteristics of transformed cells. A. Morphology of normal NIH-3T3 cells and
NIH-3T3 cells transformed with H-RasQ". Photographs reproduced from (Khosravi-Far R, et
al. Mol Cell Biol 1995; 15:6443-453). B. Culture dishes of mouse embryonic fibroblasts
(MEFs) that were grown to confluence and then fixed and stained to visualize cells. Control
MEFs form monolayers of cells; however, MEFs transformed with endogenous levels of K-
RasG12 D pile atop one another, forming clusters of cells visible to the naked eye. Photographs
reproduced from (Tuveson DA, et al. Cancer Cell 2004; 5:375-387). C. Soft agar colony
formation by immortalized human embryonic kidney cells (HEKs). Control immortalized HEK
cells form few small colonies when seeded in soft agar; however, immortalized HEK cells
transformed with H-RasGo2vform many large colonies. Photographs reproduced from
(Rangarajan A, et al. Cancer Cell 2004; 6:171-183).
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Figure 2. Tiers of the canonical p38 MAPK signaling cascade. p38 family members are
MAPKs that are phosphorylated and activated by MAP2Ks. MAP2Ks are phosphorylated and
activated by MAP3Ks. MAP3Ks and MAP2Ks known to activate p38 are shown. The
MAP3Ks, MAP2Ks, and particular p38 family members activated by a cell in response to an
extracellular stimulus depends upon both the nature of the stimulus and the cell type involved.
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Figure 3. Schematic illustration of proteins associated with cell-matrix adhesions. The actual
complexity of cell-matrix adhesions is higher because of the lack of space for including all
adhesion-associated proteins and because many of the depicted proteins belong to families
having multiple members. Integrins are depicted in orange, other membrane-bound proteins in
red, integrin-actin linkers in gold, integrin-associated proteins in blue, actin-binding proteins in
green, and adaptor proteins in purple. Adaptor proteins that are enzymes are colored light
purple. Abbreviations are as follows: integrin a subunit (a), integrin P subunit (P), syndecan-4
(Syn4), layilin (Lay), phosphatase leukocyte common antigen-related receptor (LAR), SHP-2
substrate-I (SHPS-1), urokinase plasminogen activator receptor (uPAR), a-actinin (a-Act), talin
(Tal), tensin (Ten), filamin (Fil), focal adhesion kinase (FAK), paxillin (Pax), integrin-linked
kinase (ILK), down-regulated in rhabdomyosarcoma LIM-protein (DRAL), 14-3-3 and caveolin
(Cav), vasodilator-stimulated phosphoprotein (VASP), fimbrin (Fim), ezrin-radixin-moesin
proteins (ERM), Abl kinase (Abl), nexillin (Nex), parvin/actopaxin (Parv), vinculin (Vin), zyxin
(Zyx), cysteine-rich protein (CRP), palladin (Pall), particularly interesting new Cys-His protein
(PINCH), paxillin kinase linker (PKL), p21-activated kinase (PAK), PAK-interacting exchange
factor (PIX), vinexin (Vnx), ponsin (Pon), growth factor receptor-bound protein-7 (Grb-7), Arf-
GAP protein with SH3 domains ankyrin repeats and pleckstrin homology domains-I (ASAPi),
syntenin (Synt), and syndesmos (Synd), SH2-containing phosphatase-2 (SHP-2), SH2-containing
inositol 5-phosphotase-2 (SHIP-2), phosphatidyl inositol 3-kinase (P13K), Src-family kinases
(Src FK), carboxy-terminal src kinase (Csk), calpain II (Calp II), and protein kinase C (PKC).
Image reproduced from (Geiger B, et al. Nat Rev Mol Cell Biol 2001; 2:793-805).



Figure 4. Types of cell-matrix adhesions. A. A human fibroblast stained for phosphotyrosine to
visualize focal adhesions, structures that are found near the edges of cells. B. A human
fibroblast stained for tensin to visualize fibrillar adhesions. These adhesions are found more
interior to the cell and associate with fibronectin fibrils. C. Human fibroblasts treated with a
Rho-kinase inhibitor and stained for phosphotyrosine to visualize focal complexes, the dot-like
structures at the edges of the lamellipodia. D. Rat osteoclasts labeled with paxillin to visualize
podosomes. Each podosome consists of a ring of adhesion proteins and an actin-rich center. See
insert for higher magnification. Images reproduced from (Geiger B, et al. Nat Rev Mol Cell Biol
2001; 2:793-805).



Table 1. RAS mutations in human cancers.

Tissue HRAS KRAS NRAS
Adrenal gland 1% 0% 5%

Biliary tract 0% 32% 1%
Bone 2% 1% 0%
Breast 1% 5% 1%
Central nervous system 0% 1% 2%

Cervix 9% 8% 1%
Endometrium 1% 14% 0%
Esophagus 1% 4% 0%
Eye 0% 4% 1%
Gastrointestinal tract (site indeterminate) 0% 19% 0%
Hematopoietic and lymphoid tissue 0% 5% 12%

Kidney 0% 1% 0%
Large intestine 0% 32% 3%
Liver 0% 7% 4%

Lung 1% 17% 1%

Meninges 0% 0% 0%

Ovary 0% 15% 4%

Pancreas 0% 60% 2%

Parathyroid 0% 0% 0%
Peritoneum 0% 6% Not determined

Pituitary 2% 0% 0%
Placenta 0% 0% 0%

Pleura 0% 0% 0%

Prostate 6% 8% 1%

Salivary gland 16% 4% 0%
Skin 5% 2% 19%

Small intestine 0% 20% 25%

Stomach 4% 6% 2%

Testis 0% 5% 4%

Thymus 0% 15% 0%
Thyroid 4% 3% 7%

Upper aerodigestive tract 9% 4% 3%
Urinary tract 12% 4% 3%

Data derived from the Catalogue of Somatic Mutations in Cancer (COSMIC) of the Wellcome

Trust Sanger Institute, Cambridge, UK. Table reproduced from (Karnoub A, Weinberg R. Nat

Rev Mol Cell Biol 2008; 9:517-3 1).



Table 2. Transcription factors directly regulated by p38 MAPKs. (Continued on next page.)

Transcription Complete name Manner of p38's Biological References
factor regulation process(es)

I _promoted by p38

MEF2A, Myocyte enhancer Activation Skeletal and cardiac (494-498)
MEF2C, and factors 2A, 2C, and muscle differentiation
MEF2D 2D and cardiac

hypertrophy

E47 Activation and Skeletal muscle (499)
heterodimerization differentiation

MRF4 Muscle-specific Repression Skeletal muscle (500)
regulatory factor 4 differentiation

BAF60 BRG1-associated Activation Skeletal muscle (501)
factor 60 differentiation

C/EBPP CCAAT/enhancer- Activation Response to cellular (502)
binding protein P stress

GADD153/ Growth arrest and Activation Apoptosis (503, 504)
CHOP DNA damage

inducible gene 153;
C/EBP homologous
protein

NFATcl Nuclear factor of Activation RANKLb signaling in (505)
activated T-cells, osteoclast
cytoplasmic 1; differentiation

NFATc4 Nuclear factor of Inactivation, nuclear Downregulation of (506)
activated T-cells, export adipocyte
cytoplasmic 4 differentiationa

MITF Microphthalmia- Activation RANKLb signaling in (507)
associated osteoclast
transcription factor differentiation

MafA Named after v-maf Activation Lens differentiation (508)
oncogene and response to

oxidative stress

GATA1 GATA binding Activation Interleukin 9 (IL-9) (509)
protein 1 expression in mast

cells

C/EBPE CCAAT/enhancer Activation Neutrophil (510)
binding protein E differentiation

PGC- 1 a Peroxisome Activation Metabolism, (511-513)
proliferator-activated adaptive
receptor (PPAR) thermogenesis in
gamma, coactivator muscle cells, and
la muscle cell

adaptation to exercise

Smad3 SMA- and MAD- Activation Signaling (514, 515)
related protein 3 downstream of TGF-



p53 Activation UV-induced G2/M (355, 516)
arrest

HBP1 HMG box-containing Protein stabilization G1 arrest (517)
protein 1

STAT1 Signal transducer and Activation Signaling (518, 519)
activator of downstream of
transcription 1 interferons a and y

(IFN-a and IFN-y),
IFN-dependent viral
killing,
response to stress
signaling

c-FOS Named after v-fos Activation Response to UV (520)
oncogene radiation

NFATp Nuclear factor of Inhibition via Opposes calcium- (521)
activated T-cells, nuclear export promoted activation
preexisting of NFATp
component transcription

ATF2 Activating Activation Activation of ATF2 (522, 523)
transcription factor 2 in response to

mitogens via
cooperation with
ERK, insulin
resistance in
endothelial cells

ATF6 Activating Activation Response to cellular (524)
transcription factor 6 stress

Members of Ternary complex Activation Response to (339, 525,
TCF subfamily factor subfamily of interleukin 1 (IL-1) 526)
of Ets E26 transcription and cellular stress
transcription factors
factors
(Including Elk1,
Sap1, SRF, and
CREB)

Usf- 1 Upstream stimulatory Activation Tanning response to (527, 528)
1 factor 1 I UV radiation

a The adipocyte differentiation process is more complicated than simply being downregulated by
p38 since pharmacological inhibition of p38 in this system blocked differentiation; other
pathways activated by p38 must concurrently promote differentiation.
b Receptor activator of NF-KB ligand
Table adapted from (Perdiguero E, Munoz-Canoves P. Top Curr Genet 2008; 20:51-79).
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I. Abstract

Activating mutations in RAS oncogenes occur frequently in human cancers. However, in

experimental settings, oncogenic RAS has most often been studied at supraphysiological levels of

expression. To study the outcome of oncogenic Ras signaling in human cells at a more

physiological level, we developed a system in which we could activate oncogenic Ras signaling

to either low or high extents in normal human fibroblasts. A low level of oncogenic Ras

signaling induced cellular hyperproliferation, whereas a high level of signaling induced cellular

senescence. A growing body of literature links loss of p38 mitogen-activated protein kinase

(MAPK) activity with the promotion of Ras-induced transformation in murine cells.

Accordingly, we examined the effect of inhibiting p38 in normal human cells in which we also

activated a low level of oncogenic Ras signaling. Interestingly, the inhibition of p38 cooperated

with low activation of oncogenic Ras to alter the morphology and adhesive properties of cells.

Our results suggest that the inhibition of p38 could predispose human cells to partial

transformation by oncogenic Ras through alterations in cellular adhesion.

II. Introduction

Extensive research over the past three decades has yielded numerous insights into the role

of oncogenic Ras in tumorigenesis (1-4). However, many of these studies have utilized

experimental models in which oncogenic Ras was expressed to supraphysiological levels.

Importantly, recent reports have shown that the level of oncogenic Ras signaling experienced by

mammalian cells is crucial in determining their response to Ras signaling (5-7). These data
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argue that expressing oncogenic Ras to high, supraphysiological extents fails to recapitulate the

actions of endogenous oncogenic Ras in the development of human malignancies. Indeed, early

in the course of multistep tumorigenesis, when cells contain relatively few genetic abnormalities,

this oncoprotein is expressed at levels comparable to those of the normal Ras protein (1, 8, 9).

More specifically, overexpressing oncogenic Ras at a high level in normal mammalian

cells induces a state of growth arrest termed senescence, in which cells remain metabolically

active but cease to divide (10-14). In contrast, expressing oncogenic Ras in human and murine

cells at lower, more physiological levels fails to induce senescence and instead stimulates the

proliferation of these cells. Moreover, cells subjected to high and low dosages of oncogenic Ras

signaling respond by differentially activating downstream signaling pathways according to their

level of exposure to oncogenic Ras (5-7, 15).

The first direct Ras effector to be identified was the Raf serine/threonine kinase.

Following its activation by Ras, Raf activates MEK, the mitogen-activated protein kinase

(MAPK)/extracellular signal-regulated kinase (ERK) kinase. MEK then in turn activates ERKI

and ERK2 (3). The Raf/MEK/ERK signaling cascade has been intensively studied in the context

of neoplastic development and is now known to be a crucial player in the development of tumors

initiated by oncogenic Ras (3, 16).

Currently, increasing attention is being focused on the p38 pathway, a second MAPK

signaling pathway that appears to be involved in Ras-induced tumorigenesis. Four different

isoforms of p38 (a, P, y, and b) have been identified in mammals (17). Although the p38 MAPK

was first identified through its strong activation in response to cellular stresses (17), the loss of

p38a protein has recently been found to induce the hyperproliferation of several murine cell

types (18, 19) and to collaborate with oncogenic Ras in the transformation of mouse embryonic
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fibroblasts (MEFs) (20). Likewise, genetic ablation of PRAK, a kinase directly phosphorylated

by p38, was found to cooperate with oncogenic Ras in the transformation of murine cells, and

knockdown of PRAK could substitute for MDM2 in the transformation of human cells when

using an E1A/MDM2/Ras transformation protocol (21).

In further support of the idea that p38 negatively regulates transformation-associated

phenotypes driven by oncogenic Ras signaling, a p38a null background increased the number

and size of tumors induced by oncogenic Ras in a mouse model of lung cancer (22). Similarly,

knockout of the Wipl/PPM1D phosphatase and the resulting increased basal level of activated

p38 reduced the tumorigenicity of MEFs transformed with H-RasG12V and E1A (23). In addition,

activation of the p38 pathway was found to inhibit the Ras-induced increase in DNA synthesis

within NIH3T3 cells and to inhibit DNA synthesis in Ras-dependent, but not Ras-independent,

human bladder carcinoma cells (24).

Previous work had shown that human cells respond differently than murine cells to the

actions of introduced oncogenes (11). Because very little work has been done to examine the

outcomes of low oncogenic Ras signaling with respect to the transformation of normal human

cells, we chose to investigate this matter. Furthermore, due to the accumulating evidence that

p38 acts as a tumor suppressor by counteracting Ras-induced transformation, we hypothesized

that the inhibition of p38 might cooperate with low oncogenic Ras signaling to partially

transform cells. Here, we provide evidence that the inhibition of p38 cooperates with the low

activation of oncogenic Ras signaling to reduce the adhesion of normal human cells to their

substratum. Our results suggest that p38 may provide tumor-suppressive functions in early

human neoplasias that express physiological levels of oncogenic RAS.
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III. Materials and methods

Plasmids and cell strains

A DNA fragment containing ER:H-RasG2 V was subcloned from pBabe-Puro ER:H-RasGl 2V (25)

into the pBabe-Hygro retroviral vector. Amphotropic retroviruses were generated by using

Fugene 6 (Roche Applied Science) to transfect 293T cells with a viral vector and the packaging

vectors pUMVC3, and pCMV-VSV. The viral vectors and constructs used are as follows:

pBABE-Puro ER:H-RasG12V, pBabe-Hygro ER:H-RasG 2 V, and pBabe-Hygro empty vector. BJ

fibroblasts were obtained from the American Type Culture Collection and described previously

(26). BJ fibroblasts were infected for 6 hours with viral supernatants that were harvested at 48

and 72 hours post-transfection and that contained 6 [tg/ml protamine sulfate. Cells were

continuously selected with 100 jg/ml hygromycin (hygro) or 2 [Lg/ml puromycin (puro) as

appropriate.

Cell culture and drug treatment

BJ fibroblasts were cultured in Dulbecco's modified Eagle's medium (DME) containing 10%

inactivated fetal bovine serum (IFS), 100 units/ml penicillin, and 100 g/ml streptomycin. SB

203580 (Calbiochem) and BIRB 796 (Axon Medchem) were dissolved in dimethyl sulfoxide

(DMSO) at a concentration of 50 mM. Cells were treated with 1 [M 4-hydroxytamoxifen (4-

OHT; Sigma-Aldrich) to activate ER:H-RasG 2V or EtOH for the vehicle control. SB 203580 was

added directly to culture media at final concentrations of 10 or 20 [M. Since BIRB 796 is

largely insoluble when directly diluted into culture media at a final concentration of 10 tM, in

order to treat cells with 10 [tM BIRB 796, we used a previously reported transfection-based
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method for delivering an insoluble drug into cells (27). DMSO was transfected as a control. 4-

OHT, SB 203580, BIRB 796, and the appropriate vehicle controls were each refreshed every 3

days during experiments. Unless specified, experiments were performed using plastic TC-

treated culture dishes or multiple well plates (Coming). Untreated culture dishes (Corning) were

used for experiments done under reduced adhesion conditions.

Western blot analysis

Protein expression was measured using standard Western blot techniques and with antibodies

specific to H-Ras (sc-520; Santa Cruz Biotechnology), p-actin (sc-47778; Santa Cruz

Biotechnology), phosphorylated ERK (#4396; Cell Signaling), ERK (#9102; Cell Signaling),

phosphorylated Akt (#4051; Cell Signaling), Akt (#4691; Cell Signaling), phosphorylated p38

(#9211; Cell Signaling), p3 8 (#9212; Cell Signaling), phosphorylated MK2 (#3007; Cell

Signaling), and MK2 (#3042; Cell Signaling). ImageJ software was used to quantify protein

levels from Western blots (28).

Senescence-associated /-galactosidase (SA f-gal) assay

SA p-gal activity was detected as previously described (29).

UV treatment

Cells were treated with 200 J/m 2 UV light using a Stratalinker UV crosslinker (Stratagene). The

culture media was removed from cells immediately prior to UV treatment and the same media

was replaced immediately after UV treatment. Cells were incubated for 1 hr at 37 *C and then

harvested for Western blotting.
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Immunofluorescence

Cells were cultured in 12-well TC-treated culture plates (Corning) as described above. Cells

were fixed for 10 minutes using 3.7% paraformaldehyde in phosphate-buffered saline (PBS).

Cells were stained for F-actin using fluorescently labeled Phalloidin (A12381; Cell Signaling)

according to the manufacturer's instructions. When staining cells for both F-actin and paxillin,

phalloidin staining was completed first. Following phalloidin staining, cells were re-

permeabilized for 10 minutes using 0.5% Triton X and incubated for 1 hour with PBG, which

contains 0.2% fish gelatin (G-7765; Sigma-Aldrich) and 0.5% bovine serum albumin (BSA) in

PBS. Focal adhesions were detected by incubating cells for 2 hours with a 1:100 dilution of anti-

paxillin antibody (5H11; Millipore) followed by a 1 hour incubation in a 1:500 dilution of Alexa

Fluor 488 goat anti-mouse IgG (Invitrogen); both antibodies were diluted in PBG. Cells were

incubated for 30 minutes in 1% BSA in PBS containing 1 pg/ml 4'6-diamidino-2-phenylindole

(DAPI; Invitrogen) to visualize cell nuclei and a 1:40 dilution of the phalloidin stock to

strengthen actin signal. The number of focal adhesions per cell were quantified by eye.

Cell morphology analysis using CellProfiler

Open-source CellProfiler software (www.cellprofiler.org) was used to identify the nuclei and

edges of cells present in microscopy images; cells had been fluorescently labeled using DAPI to

visualize nuclei and phalloidin to visualize actin cytoskeletons. Automated algorithms identified

each cell's nucleus and edge. For each outlined cell, we then obtained quantitative

measurements of cell size and shape. More detailed information is available in the

supplementary information.
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Statistical analysis

Data are presented as mean ± standard error of the mean (SEM) unless otherwise indicated.

Student's t test was used for comparisons.

IV. Results

Dose-dependent effects of oncogenic Ras signaling on cellular proliferation

We first developed a system in which we could make normal human cells

hyperproliferate when exposed to oncogenic Ras signaling. To this end, we developed a means

of activating oncogenic Ras signaling to either a low or high extent in BJ cells, a strain of normal

human dermal fibroblasts. Moreover, in order to investigate the initial responses of BJ

fibroblasts to the activation of either low or high levels of oncogenic Ras signaling, we exploited

the 4-hydroxytamoxifen (4-OHT)-inducible ER:H-RasG12V construct, in which a modified form

of the estrogen receptor ligand-binding domain is fused to the N-terminus of oncogenic H-Ras

(25, 30). As previously shown, oncogenic Ras signaling is activated within 10 minutes of the

addition of 4-OHT to culture media, and this activation reaches a maximum 24 to 48 hours after

addition of 4-OHT (25, 31).

We generated stable populations of BJ fibroblasts in which oncogenic Ras signaling

could be activated at a high level by infecting BJ fibroblasts with the pBabe-Puro ER:H-RasG 2 V

retroviral expression construct. At the same time, we generated stable populations of BJ

fibroblasts in which oncogenic Ras signaling could be activated at a low level by infecting BJ

fibroblasts with the pBabe-Hygro ER:H-RasG2V retroviral expression construct. Previous work

had shown that the pBabe-Puro and pBabe-Hygro retroviral expression constructs produce
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higher and lower amounts of the desired gene product, respectively, making their use ideal for

the purposes of this study (32).

In the absence of 4-OHT, minimal amounts of the ER:RasGi 2V fusion protein were

detected in BJ fibroblasts expressing either pBabe-Hygro ER:RasG12V (Low ER:Ras) or pBabe-

Puro ER:RasGo2V (High ER:Ras) fusion proteins (Fig. 1A), echoing previous results that

described the use of the pBabe-Puro ER:RasG12V construct (25). However, addition of 4-OHT to

both Low ER:Ras and High ER:Ras BJ fibroblasts induced the accumulation of the ER:Ras

fusion protein to low and high levels, respectively. Once accumulation of ER:Ras protein

reached a maximum at 24 hours, the High ER:Ras cells contained 4.5-fold more ER:Ras protein

than did the Low ER:Ras cells (Fig. 1A and data not shown).

These levels of activated oncogenic Ras signaling caused, in turn, differential activation

of signaling pathways downstream of Ras. For example, as gauged by the phosphorylation status

of ERK, both low and high oncogenic Ras signaling activated this kinase following addition of

4-OHT. Importantly, the level of ER:Ras dictated the extent of ERK activation (Fig. 1A).

Interestingly, Akt, which is activated by Ras through the P13K pathway (1), was induced in a

non-linear manner as determined by comparing the levels of phosphorylated Akt to the levels of

ER:Ras and phosphorylated ERK. Akt was robustly activated by a high level of oncogenic Ras

signaling, whereas it was barely activated by low oncogenic Ras signaling (Fig. 1A). These

results demonstrate that high and low levels of oncogenic Ras signaling result in the differential

activation of signaling pathways downstream of Ras, an observation that is consistent with

previous reports (6, 7, 15).

When propagated through repeated serial passages in subconfluent, monolayer cultures

and in the presence of 10% serum, Low ER:Ras cells treated with 4-OHT hyperproliferated in
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comparison to vehicle control-treated Low ER:Ras cells, generating 13 times more cells over the

course of 15 days (Fig. 1B and C). Furthermore, we found that the level of ER:RasG 2V expressed

in 4-OHT-treated Low ER:Ras cells was maintained over the prolonged period of culturing these

cells (Fig. ID). This indicated that cells expressing a low level of oncogenic Ras signaling were

not counterselected and was consistent with our observation that low oncogenic Ras signaling

promoted cell proliferation.

In stark contrast, High ER:Ras cells underwent growth arrest beginning at 8 days of 4-

OHT treatment (Fig. 1B and C), with the great majority of cells staining positively for

senescence-associated p-galactosidase (SA p-gal) activity (Fig. lE and F). These data indicated

that the cells had entered into a state of senescence in response to a high level of oncogenic Ras

signaling. Taken together, the preceding series of experiments demonstrated that by

overexpressing ER:Ras to a low extent in BJ fibroblasts we were able to develop a human cell

system in which oncogenic Ras induced hyperproliferation rather than senescence, a result that

functionally mimics the outcome of expressing oncogenic Ras from the endogenous locus in

murine fibroblasts (5, 6).

Unexpectedly, like 4-OHT-treated Low ER:Ras cells, control High ER:Ras cells, which

were not exposed to 4-OHT, exhibited hyperproliferation in comparison to control Low ER:Ras

cells, which were also not exposed to 4-OHT. This suggested that the ER:Ras system manifests

some leakiness, in that there appeared to be a basal level of oncogenic Ras signaling even in the

absence of 4-OHT-mediated activation. Indeed, untreated High ER:Ras cells exhibited a higher

level of ER:Ras protein and an elevated level of ERK activation in comparison to untreated Low

ER:Ras cells (Fig. 1A). More importantly, Low ER:Ras cells that were not treated with 4-OHT

proliferated at a rate similar to cells infected with empty vector (Fig. IG). This latter result
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indicated that Low ER:Ras cells not treated with 4-OHT behave like cells that lack the

ectopically expressed ER:Ras protein.

p38 inhibition cooperates with oncogenic Ras signaling to affect cellular morphology

Having developed an inducible system in which we could stimulate human cells to

undergo Ras-induced hyperproliferation, we next asked whether loss of p38 signaling could

cooperate with low oncogenic Ras signaling to promote transformation-related phenotypes. We

pursued this line of work, since loss of p38 function in murine cells had been found to promote

Ras-induced transformation and tumorigenesis (20-24).

In order to inhibit p38, we used the chemical inhibitors BIRB 796 and SB 203580 to

continuously inhibit p38 activity in the 4-OHT-treated Low ER:Ras cells. Importantly, BIRB

796 and SB 203580 are both potent inhibitors of p38a and P, but have different chemical

structures, bind to the p38 protein at different sites, and exhibit distinct off-target effects (33).

By allowing us to exclude many confounding off-target effects, the use of these two drug

inhibitors was ideal for delineating effects specific to the inhibition of p38.

We assessed p38a and P function by monitoring the phosphorylation state of one of their

direct substrates, MK2. MK2 is directly phosphorylated in response to UV light exposure in a

p38-dependent manner (34). We observed that MK2 was robustly phosphorylated when BJ

fibroblasts were exposed to UV light, but that no phosphorylated MK2 was detectable when

these cells were first pretreated with either BIRB 796 or SB 203580, indicating that these drugs

efficiently inhibit p38 signaling (Fig. 2A).

In addition, we found that BIRB 796, but not SB 203580, inhibited the phosphorylation

of p38 itself (Fig. 2A). This result most likely stems from the different mechanisms of p38
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inhibition exhibited by these two drugs. The binding of BIRB 796 causes p38 to undergo a large

conformational change, preventing p38 from interacting with its upstream kinases (35). In

contrast, SB 203580 is a competitive inhibitor of p38 that impedes p38's phosphorylation of

downstream targets without perturbing its interaction with upstream kinases (36).

We next asked whether suppressing p38 activity would enhance the proliferation of Low

ER:Ras human BJ fibroblasts treated with 4-OHT because of observations recently reported by

others who had used murine cell systems (18-20). More specifically, others have shown that

p38a-null MEFs infected with a vector specifying oncogenic Ras proliferate faster than

corresponding wild-type cells infected with oncogenic Ras (20). Also, multiple p38a-null

murine cell types have been shown to proliferate faster than their wild-type counterparts (18, 19).

Unexpectedly, subconfluent Low ER:Ras BJ fibroblasts treated with 4-OHT failed to

proliferate more rapidly when exposed to either BIRB 796 or SB 203580 (Fig. 2B and C). Given

that BIRB 796 and SB 203580 are both effective inhibitors of p38a, the failure of these

inhibitors to enhance the proliferation of Low ER:Ras cells treated with 4-OHT most likely

reflects differences in the experimental cell systems used. Whereas we used normal human

fibroblasts that possess a limited lifespan in culture, immortalized MEFs were used in the

experiments showing that a p38-null background enhances the proliferation of cells containing

oncogenic Ras (20).

We did, however, note a distinctive effect of inhibiting p38 signaling in 4-OHT-treated

Low ER:Ras cells: cells in which both oncogenic Ras signaling was activated and p38 was

inhibited were far more refractile and appeared to be less spread out on their substratum than

Low ER:Ras cells treated with 4-OHT alone (Fig. 2D and E). Taken together, these observations

indicated that while p38 function had no observable effect on Ras-induced cell proliferation,
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inhibition of p38 cooperated with low activation of oncogenic Ras signaling to alter the way in

which cells adhere to their substratum.

p38 inhibition and oncogenic Ras signaling affect cell spreading and cell shape

When cells in suspension first attach to a substratum, they retain their spherical shape,

display a refractile appearance, and are weakly bound to the substratum. Soon after their initial

attachment, however, cells begin extending cytoplasmic protrusions and form strong associations

with their substratum known as focal adhesions, enabling them to spread outward and become

flattened in shape (37, 38). Importantly, the inhibition of molecules that are crucial to the

process of cell spreading, such as Rac and Cdc42, does not prevent the attachment of cells to

their substratum but instead causes these attached cells to remain spherical and refractile (39).

Accordingly, we hypothesized that the inhibition of p38 signaling in combination with low

activation of oncogenic Ras signaling specifically affects cell adhesion by impeding the process

of cell spreading.

To assess whether the inhibition of p38 cooperates with the activation of oncogenic Ras

signaling to hinder cell spreading, we used image analysis software (40) to quantify the observed

changes in cell size and shape (Fig. 3). We found that the activation of low oncogenic Ras

signaling significantly decreased the two-dimensional area covered by cells (Fig. 3B and C).

Moreover, inhibition of p38 cooperated with Ras signaling to further decrease the area covered

by cells, in spite of the fact that inhibiting p38 alone failed to affect cell area or perimeter length.

In addition, low activation of oncogenic Ras signaling and inhibition of p38 had opposite

effects on the convexity or roundness of cells (Fig. 3D). Inhibition of p38 alone caused cells to

develop more concave areas at their edges. However, low activation of oncogenic Ras signaling
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slightly increased the convexity of cells and prevented cells treated with SB 203580 from

exhibiting an increase in concavity (Fig 3D).

Similarly, low activation of oncogenic Ras signaling and inhibition of p38 had opposite

effects on cell length. The inhibition of p38 caused the elongation of cells in both the presence

and absence of oncogenic Ras signaling. In contrast, the activation of Ras signaling slightly

decreased the length-to-width ratio of cells relative to that of control cells (Fig. 3E).

These measurements of cell morphology collectively indicated that low activation of

oncogenic Ras signaling causes changes in cell shape that are distinct from the changes caused

by inhibiting p38. However, the present results also demonstrated that, when acting together, the

inhibition of p38 complements the activation of oncogenic Ras signaling to alter the two-

dimensional shape of cells, indicating that the perturbations of these signaling pathways

cooperate to impede the normal spreading of cells.

The distinct effects on cell shape caused by inhibiting p38 and activating Ras signaling

were most likely due to p38 and Ras impinging upon signaling events that modulate cell-matrix

adhesion. Nonetheless, we did not observe an increase in the level of phosphorylated p38a - the

activated form of this kinase - when we activated oncogenic Ras signaling in our Low ER:Ras

cells (Supplementary Fig. S1), agreeing with a previous report published by others that focused

upon the dose-dependent activation of p38 by Ras (15). Because low oncogenic Ras signaling

was not found to activate p38, we concluded that Ras and p38 both operate in pathways that

regulate cell-matrix adhesion but that p38 is not downstream of Ras.
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The inhibition of p38 and the activation of Ras work in concert to reduce cell adhesion

Because the inhibition of p38 cooperates with the low activation of oncogenic Ras

signaling to alter the spreading of cells, we further investigated changes in cell adhesion,

including the first step of cell adhesion, cell attachment. Activation of low oncogenic Ras

signaling slightly hampered the attachment of suspended cells to tissue culture-treated plastic at

two, but not 12, hours post-plating. In contrast, chemically inhibiting p38 did not affect the

attachment of cells at either two hours or 12 hours post-plating and did not cooperate with Ras

signaling to affect cell attachment. By 12 hours post-plating, we observed that the cells of all

populations were attached to the plastic substratum to similar extents (Fig. 4A and B). These

results indicate that although low activation of oncogenic Ras has a modest affect on the kinetics

of cell attachment to a substratum, the inactivation of p38 fails to affect the initial attachment of

cells to their substratum.

We then examined the second step of cell adhesion, post-attachment cell spreading, at 12

hours post-plating. We found that inhibiting p38 cooperated with activating oncogenic Ras

signaling to hinder the spreading of cells on their substratum (Fig. 4C and D). At 12 hours post-

plating, cells treated dually with 4-OHT and either BIRB 796 or SB 203580 remained more

spherical and refractile than cells in which only one signaling pathway was perturbed or neither

signaling pathway was perturbed. Hence, inhibition of p38 appears to cooperate with low

activation of oncogenic Ras signaling in constraining the ability of a cell to extend cytoplasmic

processes and/or to make focal adhesions with the substratum, both processes being crucial in the

spreading of cells.

Given our observation that the p38 and Ras pathways both affect cell spreading, but not

the initial cell attachment step of cell adhesion, we wondered whether providing our cell
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populations with an alternative substratum would reveal differences in their ability to attach. In

fact, the previously described assays were performed using tissue culture-treated dishes whose

polystyrene surfaces had been modified using a manufacturing process that caused them to

become hydrophilic. Because this hydrophilic treatment promotes cell attachment, we examined

the ability of Ras and p38 to affect cell attachment by performing an assay using untreated

polystyrene culture dishes.

We found that, as before, cells could attach to untreated plastic if oncogenic Ras were

activated alone or if p38 were inhibited alone. However, the attachment of cells to untreated

plastic was greatly impaired if both oncogenic Ras signaling were activated and p38 were

inhibited. Such cells preferentially formed suspended cellular aggregates rather than contacts

with the untreated substratum (Fig. 4E and F). Consequently, when taken together, our

measurements of cell adhesion indicate that there exist substratum conditions in which the

inhibition of p38 cooperates with the low activation of oncogenic Ras signaling to hinder both

the initial cell attachment and subsequent cell spreading processes of cell adhesion.

Because reduced cell adhesion has long been associated with cells that are tumorigenic

(41, 42), we next asked whether the inhibition of p38 in combination with the low activation of

oncogenic Ras could transform cells. One standard characteristic of transformed cells is their

inability to undergo contact inhibition upon reaching high densities (43). Accordingly, we tested

whether inhibiting p38 and activating Ras signaling in our Low ER:Ras cells would prevent cells

from undergoing contact inhibition upon continuous culture.

While the inhibition of p38 and the low activation of oncogenic Ras signaling each

served to increase the density of cells at confluence, as expected from previously reported

murine studies (6, 44), perturbing neither signaling pathway on its own enabled cells to
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overcome contact inhibition (Supplementary Fig. S2 and data not shown). Furthermore, the

inhibition of p38 in combination with low activation of Ras signaling was not sufficient to

overcome contact inhibition even after three weeks of continuous culture (Supplementary Fig.

S2). These results indicate that although the inhibition of p38 cooperates with the low activation

of oncogenic Ras signaling to change the adhesive nature of cells, these perturbations alone are

not sufficient to fully transform cells as gauged by their ability to become contact inhibited in

monolayer culture.

Inhibition of p38 and activation of oncogenic Ras reduce focal adhesion formation

An intimate and dynamic interplay between the binding of transmembrane integrins to

the extracellular matrix and the organization of a cell's actin cytoskeleton is fundamental to the

formation of focal adhesions (45). Although cells can begin to extend lamellipodia along a

substratum when they are deficient in the ability to form focal adhesions, the formation of focal

adhesions is crucial for the continued advancement of lamellipodia and sustained cell spreading.

Consequently, focal adhesion formation is crucial for cells to exhibit their normal, spread

morphology after attaching to their substratum (46, 47).

Because we had found that the inhibition of p38 cooperates with low activation of

oncogenic Ras signaling to alter cell morphology and impede cell spreading, we hypothesized

that the Ras and p38 pathways affect the formation of focal adhesions. For this reason, we

determined whether the inhibition of p38 acts in concert with the low activation of Ras signaling

to reduce the number of focal adhesions formed by a cell with the underlying substrate.

We found that low activation of oncogenic Ras signaling and inhibition of p38 each

reduced the number of focal adhesions per cell (Fig 5A and B). The activation of low Ras
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signaling resulted in a 63% decrease in the number of detectable focal adhesions. Similarly,

inhibiting p38 using 10 and 20 [tM concentrations of SB 203580 caused 78% and 86%

decreases, respectively, in the number of focal adhesions detected per cell.

Interestingly, when both Ras signaling was activated and p38 was inhibited, we observed

a further decrease in the number of focal adhesions per cell (Fig. 5A and 5B). Treatment of cells

with both 4-OHT and 10 [tM SB 203580 resulted in a 91% decrease in the number of focal

adhesions visible per cell. Displaying a dose-dependent response to SB 203580, cells treated

with both 4-OHT and 20 [M SB 203580 exhibited a 94% decrease in the number of focal

adhesions per cell (Fig. 5B). These results indicate that low activation of oncogenic Ras

signaling and inhibition of p38 signaling work together to impede the formation of strong

cellular bonds to the substratum by having additive effects on reducing the number of focal

adhesions present per cell.

V. Discussion

An interesting hypothesis emerges upon placing our findings in the context of the current

understanding of Ras, p38, and cell adhesion: inhibition of the p38 pathway may create an

intracellular state in human cells that predisposes them to partial transformation by oncogenic

Ras. In contrast to previous studies in which oncogenic Ras was overexpressed to very high

extents, we have more closely approximated the physiological levels of oncogenic Ras signaling

that are present in human neoplasias by activating this signaling pathway to a low extent. As a

result, our experimental system enabled us to study how oncogenic Ras might cooperate with

additional genetic alterations in precancerous lesions.
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In fact, the aberrant activation of Ras signaling via point mutation often occurs during the

early stages of many human cancers at a time when these precancerous lesions are thought to

lack many additional genetic alterations. For example, NRAS mutations are already present in

the early radial growth phase of many melanomas and persist throughout disease progression to

the metastatic stage (48). Likewise, the occurrence of oncogenic mutations in KRAS is

considered to be an important early event in the development of pancreatic cancer. Mutations in

KRAS are found in approximately 45 percent of papillary pancreatic duct lesions without atypia

and undergo positive selection during disease development (49). In addition, the oncogenic

mutation of KRAS is an important early event that drives the development of colorectal cancer.

KRAS mutations occur in benign adenomatous polyps that already harbor mutations in the APC

tumor suppressor gene and precipitate the development of malignant colon carcinomas from

these precursor polyps (50-52). Similar patterns of early oncogenic mutation in KRAS have also

been reported to occur during the development of ovarian (53), ampullary (54), and lung

neoplasms (55).

These and other data strongly support the idea that Ras plays a crucial role early in the

development of human cancers. However, much research has also demonstrated that in order for

benign lesions to progress toward full-blown malignancy, they must harbor mutations in multiple

oncogenes and tumor suppressor genes (56). Thus, oncogenic mutation of Ras alone is not

sufficient for tumorigenesis. We suspect that the loss of p38 activity may be one of these

additional genetic events that promote the transformation and neoplastic development of cells by

Ras.

Indeed, evidence exists for the loss of p38 function in human cancers. The negative

regulators of p38 signaling, Wipl/PPM1D and DUSP26/MKP8, have been found to be elevated
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in various human tumor samples and cancer cell lines (57-61). Although the possibility of

additional targets cannot be excluded, both Wip1 and DUSP26 specifically dephosphorylate and

inactivate the p38 MAPK and not the ERK or JNK MAPKs, indicating that p38 is the target of

their phosphatase activity (61-63). In addition, levels of Gstml and 2, which negatively regulate

p38 activity by inhibiting ASKI, a kinase upstream of p38 activation, are increased in several

human cancer cell lines (20).

Similarly, MKK4, a kinase capable of directly activating p38 (64), is frequently deleted

or mutated in a wide variety of human cancers and evidence gathered from model systems

indicates that MKK4 is a tumor suppressor gene (65, 66). Furthermore, the sequencing of

protein kinase genes in over 200 human cancers identified somatic mutations in p38a within

several tumors. While the effects of these mutations on the biochemical functions of p38a

remain to be explored, statistical analysis of these mutations indicated that they are likely to be

driver mutations that positively affect tumor growth and development (67).

Observations gathered using mouse model systems also indicate that the loss of p38

activity predisposes cells to tumor development by oncogenic Ras. For example, a p38a null

background in adult mice was found to promote the development and growth of lung tumors

initiated by the expression of endogenous levels of oncogenic K-Ras (22). Likewise, Wip1 null

MEFs, which contain high basal levels of p38 activity, exhibit decreased tumorigenicity when

transformed with H-RasG 2v and E1A (23). In addition, the liver-specific deletion of p38a

increased the burden of hepatocellular carcinomas in mice treated with diethylnitrosamine

(DEN) (18). This observation is of interest to us, since oncogenic mutations in H-Ras have been

reported to occur in 41 percent of liver tumors induced by DEN (68), indicating that loss of p38a

may cooperate with aberrant Ras signaling in this liver cancer model.
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The present observations indicate that inhibition of the p38 MAPK pathway cooperates

with low activation of oncogenic Ras signaling to cause significant changes in the adhesive

behavior of cells, an alteration germane to the process of cell transformation. Altered cell-matrix

interactions have long been known to be capable of promoting transformation and tumorigenesis.

Although the mechanisms by which cancer cells usurp control of cell adhesion processes and

manipulate these programs for their own benefit is undoubtedly complex and incompletely

understood, it is clear that modification of cell-matrix adhesions plays a central role in cancer

progression (69-75).

In the situation of a developing neoplasia, uncontrolled cell proliferation, inappropriate

cell survival, increased motility, and increased invasiveness are important properties of tumor

cells. These properties are acquired, at least in part, by changing the way in which cells interact

with the extracellular matrix (56, 76, 77). Through various mechanisms, transformed cells

commonly circumvent the apoptotic and growth arrest programs that normally prevent the

survival and proliferation of cells when lacking proper cell-matrix adhesions. In other words,

these transformed cells become anchorage-independent. (78, 79). Importantly, not only are these

anchorage-independent cells liberated from their dependence upon cell-matrix proliferation and

survival signals, they experience greater autonomy when migrating, which promotes their

invasion into the surrounding normal tissue (79). As a result, acquisition of the anchorage-

independent phenotype creates a solid foundation for tumor development.

Given the increasing support for p38 as a tumor suppressor gene, we propose that

inhibition of the p38 pathway can predispose cells to Ras-dependent neoplastic development, in

part though effects on cell adhesion. Further work in human cell systems investigating the
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cooperation between low activation of oncogenic Ras and the inhibition of p38 should provide

insights into the details of how suppressing p38 complements low levels of oncogenic Ras.
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VII. Figures
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Figure 1. Low activation of oncogenic Ras signaling enhances cellular proliferation and fails to
induce senescence. A. BJ fibroblasts were infected with pBabe-Hygro ER:RasG12V (Low
ER:Ras) and pBabe-Puro ER:RasG12V (High ER:Ras) constructs which express inducible
oncogenic Ras to low or high extents, respectively. Cells were serum starved for 16 hr and then
incubated for the indicated times with the vehicle control (EtOH) or 4-OHT to activate ER:H-
RasG12 V. ER:H-RasG12V, endogenous H-Ras, phosphorylated ERK (p-ERK), total ERK,
phosphorylated Akt (p-Akt), and total Akt were detected by Western blotting. B. Proliferation of
Low ER:Ras and High ER:Ras cells in the presence and absence of 4-OHT. Cells were seeded at
a density of 5200 cells/cm 2 and passaged every three days, preventing them from reaching
confluence. Treatment with 4-OHT or EtOH began on day 1. Each data point depicts the mean
fold increase in the number of cells ± the SEM. The mean and SEM were determined from
counting the cells of triplicate culture dishes. C. Fold increase in the total number of cells
accumulated at day 15 versus the number of cells plated at day 0. Fold increase for each cell
population was normalized to the fold increase in cell number experienced by High ER:Ras cells
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treated with 4-OHT. D. Western blot analysis for ER:H-RasGi 2V, endogenous H-Ras, and actin in
Low ER:Ras cells at day 2 and day 17. Treatment with EtOH and 4-OHT began on day 1. E.
Cells were stained for SA p-gal activity at day 15 and visualized at 20X magnification. F. The
percentage of cells staining positively for SA s-gal activity were quantified. At least 120 cells
from each of 3 culture dishes were scored for each cell population. Error bars represent the SEM
for each data set. G. Proliferation of vector control-infected cells in the presence and absence of
4-OHT in comparison to EtOH and 4-OHT-treated Low ER:Ras cells and EtOH-treated High
ER:Ras cells. Growth curve analysis was performed as above.
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Figure 2. The continuous inhibition of p38 cooperates with low activation of oncogenic Ras
signaling to increase the refractiveness of cells. A. Low ER:Ras cells were pre-treated for 2
hours with BIRB 796, SB 203580, or the vehicle control (DM50) as indicated. Cells were then
exposed to UV light to activate p38 signaling. Phosphorylated MK2 (p-MK2), total MK2,
phosphorylated p38 (p-p38), total p38, and actin were detected by Western blotting. B.
Proliferation of EtOH and 4-OHT-treated Low ER:Ras cells in the presence or absence of BIRB
796. C. Proliferation of EtOH and 4-OHT-treated Low ER:Ras cells in the presence or absence
of SB 203580. Growth curve analysis was performed as described in Figure lB. D. Morphology
of Low ER:Ras cells after 3 days of treatment with 4-OHT or EtOH (vehicle control) and BIRB
796 or DMSO (vehicle control). E. Morphology of Low ER:Ras cells after 3 days of treatment
with 4-OHT or EtOH and SB 203580 or DMSO.
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Figure 3. Morphological changes induced by inhibition of p38 and low activation of oncogenic
Ras signaling. Low ER:Ras cells were plated at a density of 5200 cells/cm 2 and treated with 4-
OHT or EtOH and SB 203580 or DMSO 1 day after plating. After an additional 2 days, cells
from each population were trypsinized and replated. Cells of each population were also treated
with the appropriate drugs. Cells were fixed and stained for actin (red) and nuclei (blue) at 24
hrs post-plating. A. Photographs of cells (lOX magnification) and outlines of cell peripheries
and nuclei delineated by the image analysis program CellProfiler. B. Histogram showing the
two-dimensional areas of cells in each population as measured by CellProfiler. C. Histogram
showing the perimeters of cells in each population as measured by CellProfiler. D. Histogram
showing the percentages of solidity measured by CellProfiler for cells in each population. A
higher percent solidity indicates a more convex cell. E. Bar graph showing the fraction of long
cells (length is >4X width) in each cell population. Measurements of cell length and width were
determined using CellProfiler. 265 cells were analyzed per population to generate graphs in this
figure.
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Figure 4. The inhibition of p38 cooperates with low activation of oncogenic Ras signaling to
reduce cell adhesion. A. Quantification of cell adhesion for Low ER:Ras cells treated with 4-
OHT or EtOH and 10 [tM BIRB 796 or DMSO. Cells were plated on tissue culture-treated
plastic at a density of 5200 cells/cm 2 and treated with 4-OHT or EtOH and BIRB 796 or DMSO
1 day after plating. After 2 additional days, cells of each population were trypsinized and
replated in triplicate. Each cell population was also treated with the appropriate drugs. The
number of adherent cells was then determined at 2 and 12 hrs post plating for each cell
population. Error bars represent the SEM for each data set. B. Quantification of cell adhesion
for Low ER:Ras cells treated with 4-OHT or EtOH and 10 ptM SB 203580 or DMSO. The
experiment was performed as described for part A. C and D. Photographs of cells described in
parts A and B, respectively, at 12 hrs post-plating (10X magnification). Arrows indicate
examples of cells that had not begun to spread upon the substratum. E. Adhesion of cells treated
with 4-OHT or EtOH and 10 [M BIRB 796 or DMSO to cell culture plates not treated for cell
attachment. Cells were plated on treated cell culture dishes at a density of 5200 cells/cm 2 and
treated with 4-OHT or EtOH and BIRB 796 or DMSO 1 day after plating. After an additional 2
days, cells of each population were trypsinized and replated in triplicate on untreated cell culture
dishes. Each cell population was also treated with the appropriate drugs. Photographs of cells
were taken after 3 days of growth on untreated culture plates (10X magnification). F. Adhesion
of cells treated with 4-OHT or EtOH and 10 [tM SB 203580 or DMSO to cell culture plates not
treated for cell attachment. The experiment was performed as described in part E.
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Figure 5. Inhibition of p38 acts in concert with low activation of Ras signaling to reduce the
number of focal adhesions. Low ER:Ras cells were plated on tissue culture-treated plastic at a
density of 5200 cells/cm 2 and treated with 4-OHT or EtOH and SB 203580 or DMSO 1 day after
plating. After an additional 2 days, cells of each population were trypsinized and replated. Each
cell population was also treated with the appropriate drugs. Cells were fixed and stained for the
focal adhesion-associated protein paxillin (80), (green), actin (red), and nuclei (blue) at 24 hrs
post-plating. A. Photographs of cells (20X magnification). B. The average number of focal
adhesions per cell. n = 20 cells per population.
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VIII. Supplementary information

Cell morphology analysis using CellProfiler

The image analysis pipeline used to measure cell morphology was created with

CellProfiler version 1.0.5811, which can be downloaded under the "Download CellProfiler" tab

at www.cellprofiler.org along with the software's instruction manual.

Briefly, the image analysis pipeline operated as follows: Module 1 loaded the images.

Modules 2 to 4 performed pre-processing and the identification of nuclei and cell edges.

Modules 5 to 12 identified and removed cells (plus their associated nuclei) that touched the

image edge to insure accurate measurements of morphology. Modules 13 and 14 performed

quantitative measurements. Modules 15 to 19 produced output images and spreadsheets of data.

Each module is detailed below:

1. LoadImages: On the basis of filename, loaded both the microscopy image that displayed

cell nuclei and the corresponding image that displayed actin cytoskeletons.

2. SmoothOrEnhance: Top-hat filtered the image of nuclei to reduce background staining.

3. IdentifyPrimAutomatic: Identified all nuclei from the filtered image of nuclei.

4. IdentifySecondary: Identified cell edges by using both the image of actin cytoskeletons

and the nuclei identified by the previous module.

5. ConvertToImage: Converted the identified nuclei and cell edges to an image of the cells.

6. Crop: Created a new image, identical to that in module 5, but with image border pixels

set to 0.
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7. ImageMath: Subtracted the image created by module 6 from the image created by

module 5 in order to obtain an image in which only pixels from cells that touch the image

border appear.

8. MeasureObjectIntensity: Measured the intensity of each cell found in the image that was

produced by module 7.

9. FilterByObjectMeasurement: Removed cells in which the measured intensity is non-

zero, i.e., the cells that touch the image border.

10. ConvertToImage: Converted the remaining cells, which are those cells entirely contained

within the borders of the image, to an image of the cells.

11. MeasureObjectIntensity: Measured the intensity of each nucleus within the image

produced by module 10.

12. FilterByObjectMeasurement: Removed nuclei in which the measured intensity is zero,

i.e., those nuclei belonging to a cell that was removed since it touched the image border.

13. MeasureObjectAreaShape: Measured the morphological parameters of each remaining

cell and nucleus.

14. CalculateRatios: Obtained the cellular aspect ratio by dividing the major axis length of

the cell by the minor axis length.

15. GrayToColor: Converted the grayscale image of the actin cytoskeleton to a color image.

16. OverlayOutlines: Overlayed the image produced by module 15 with blue oulines of cell

nuclei.

17. OverlayOutlines: Overlayed the image produced by module 16 with green outlines of

cell edges.

18. SaveImages: Saved the images produced by module 17.

134



19. ExportToExcel: Exported the morphological measurements from modules 13 and 14 as

an Excel spreadsheet.

135



IX. Supplementary figures
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Supplementary Figure 1. Low activation of oncogenic Ras signaling does not activate p38. A.
Low ER:Ras cells were serum starved for 16 hr and then incubated for the indicated times with
EtOH or 4-OHT. Untreated cells were harvested at time 0. B. Low ER:Ras cells were treated
with 4-OHT or EtOH for the indicated times. ER:H-RasG 2 V, phosphorylated p38 (p-p38), total
p38, and actin were detected by Western blotting. Lysates from Low ER:Ras cells exposed to

UV light were used as a positive control for the detection of phosphorylated p38.
Phosphorylated p38 levels were measured at later time points to exclude the possibility that p38
becomes activated by low levels of oncogenic Ras signaling in a delayed manner. Others had
shown p38 activation at 8 and 10 days following the infection of BJ fibroblasts with a retroviral
construct that overexpressed oncogenic Ras to a high level (15).
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Supplementary Figure 2. The inhibition of p38 and low activation of oncogenic Ras signaling
are not sufficient to induce cellular transformation. Low ER:Ras cells were plated at a density of
5200 cells/cm 2 and treated with 4-OHT or EtOH and SB 203580 or DMSO 1 day after plating.
After an additional 2 days, cells of each population were trypsinized, replated, and treated with
the appropriate drugs. Cells were continuously cultured in the same dish with the appropriate
drugs for 3 weeks and photographed (10X magnification) at the end of the experiment.
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Chapter 3:

Overview and future directions
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The results presented in chapter 2 indicate that inhibition of p38 and low activation of

oncogenic Ras cooperate to reduce the adhesion of normal human fibroblasts. Moreover, the

decreased cell adhesion observed upon perturbing these two signaling pathways suggests that

inhibition of the p38 pathway predisposes human cells to partial transformation by oncogenic

Ras. However, the presented results raise two main questions. First, how does the inhibition of

p38 cooperate with low oncogenic Ras signaling to reduce cell adhesion? In other words, what

pathways downstream of p38 and Ras regulate the cell-matrix adhesion of human fibroblasts?

Second, which other oncogenic or tumor-suppressive pathways must be perturbed in order to

transform cells that express near physiological levels of oncogenic Ras? Furthermore, does the

inhibition of p38 facilitate the full transformation of cells containing low levels of oncogenic

Ras? Potential answers to these questions and their implications will be discussed in this

chapter.

I. Regulation of adhesion and cytoskeletal rearrangement by Ras and p38

As shown in chapter 2, inhibition of p38 and low activation of oncogenic Ras both reduce

the number of focal adhesions formed by a fibroblast. However, inhibiting p38 and activating

Ras caused dissimilar effects on cell shape. More specifically, low activation of oncogenic Ras

signaling increased the roundness of cells and decreased their two-dimensional area, whereas

inhibition of p38 elongated cells and failed to reduce cell area. These observations suggest that,

although inhibition of p38 and activation of Ras cooperate to reduce the adhesion of cells,

manipulation of these two pathways affects the actin cytoskeleton and cell-matrix adhesion in

distinct ways. Thus, p38 inhibition and Ras activation most likely induce reorganization of the

cytoskeleton and reduced cell-matrix adhesion by modulating different downstream signaling
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events that cause independent changes in cell morphology in addition to concomitantly

decreasing cell adhesion.

Possible regulation downstream of p38

p38 has been found to phosphorylate several proteins involved in cytoskeletal

reorganization and cell-matrix adhesion, for example, Hsp27, paxillin, and ezrin (1-6). Thus, the

elongated morphology and reduced number of focal adhesions that I observed in human

fibroblasts treated with p38 drug inhibitors are likely to be caused by perturbation of more than

one p38 target (Fig. 1A). However, decreased activity of the p38/MK2/Hsp27 pathway, which

was introduced in Chapter 1 as being involved in actin remodeling, appears to be the best

candidate for the elongated shape and reduced adhesion observed in the presence of p38

inhibitors.

Indeed, the activity of both p38 and Hsp27 was shown to be essential for the formation of

lamellipodia in smooth muscle cells (3). These results suggest that p38's activation of Hsp27

may also be necessary for lamellipodia formation in other cell types, such as fibroblasts.

Because cell spreading and formation of focal adhesions both require the extension of

lamellipodia, reduced signaling through the p38/MK2/Hsp27 pathway could explain the

elongated morphology and reduced number of focal adhesions exhibited by fibroblasts treated

with p38 drug inhibitors.

Possible regulation downstream of oncogenic Ras

Like p38, Ras has been linked to regulation of the cytoskeleton and cell-matrix adhesion

through multiple mechanisms (Fig. IB). The increased cell roundness, decreased two-
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dimensional cell area, and reduced cell adhesion caused by low levels of oncogenic Ras

signaling is probably the result of the simultaneous modulation of Ras effectors involved in

regulating cytoskeletal reorganization and cell adhesion. Further work is necessary to determine

which effectors downstream of Ras are responsible for the alterations in cell morphology and

adhesion described in chapter 2; however, several compelling candidates exist, including

signaling through the Raf kinase and Rho family GTPases.

For example, oncogenic Ras has been shown to suppress integrin activation in some cell

types, such as fibroblasts, in a Raf-dependent manner (7, 8). Integrin activation is central to the

continued advancement of lamellipodia, continued cell spreading, and the formation of focal

adhesions. Thus, suppression of integrin activation could explain the reduced number of focal

adhesions observed in cells in which oncogenic Ras signaling was activated to a low extent.

Moreover, the increased roundness of cells induced by low oncogenic Ras signaling may also be

due to the suppression of integrin activation, since sustained cell spreading requires the integrin

activation and the resulting formation of cell-matrix adhesions (9).

In addition to the possible suppression of integrin activation, low oncogenic Ras

signaling may affect cytoskeletal reorganization and cell adhesion through the modulation of the

Rho family GTPases RhoA, Cdc42, and Rac. RhoA, RhoB, Cdc42, and Rac are each required

for Ras-induced transformation of murine cells, indicating that the activities of these GTPases

are crucial mediators of Ras-induced cytoskeletal rearrangements, loss of contact inhibition, and

anchorage-independence (10-14).

Indeed, dominant negative RhoA, dominant negative Rac, and dominant negative Cdc42

were each reported to suppress the acquisition of morphological changes typical of cells

transformed with Ras, such as increased refractivity and the loss of stress fibers (10, 13, 14).
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Furthermore, constitutively active forms of Rac and RhoA enhanced the transformation of cells

by oncogenic Ras. Co-expression of active Rac or RhoA with oncogenic Ras made cells more

refractile, less adherent, and better at growing in anchorage-independent conditions than when

transformed with Ras alone (10).

Proteins downstream of Rho GTPase family members found to be regulated in response

to oncogenic Ras include Rho-associated, coiled-coil containing protein kinase (ROCK) and

FAK. The activation of ROCK by Rho and activated ROCK's subsequent phosphorylation of

the actin-binding protein ezrin were shown to be necessary for transformation of murine cells by

oncogenic Ras (15, 16). Thus, the Rho/ROCK/ezrin pathway may contribute to the morphology

changes reduction in cell adhesion observed upon the low activation of oncogenic Ras signaling.

In addition, oncogenic Ras was found to inhibit FAK by inducing its dephosphorylation

(17). Ras was found to inhibit FAK through a signaling cascade involving activation of

faciogenital dysplasia protein 1 (Fgdl), a GEF that specifically activates Cdc42, Cdc42, and

ERK. ERK was found to phosphorylate FAK directly, thereby recruiting additional proteins that

induce the dephosphorylation of FAK at a separate residue that is critical for its activity.

Because FAK activation plays a key role in the early spreading of cells having just attached to

their substratum (18), the repression of FAK activation by oncogenic Ras may be responsible for

the reduced number of focal adhesions and rounded cell shape observed upon activation of low

Ras signaling.

Further work is necessary to determine those pathways downstream of low oncogenic

Ras signaling that alter fibroblast morphology and reduce cell-matrix adhesion. Importantly, in

the work described above, oncogenic Ras was expressed to supraphysiological levels. Because I

observed high and low levels of oncogenic Ras signaling to induce the differential activation of
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Ras effector pathways in human fibroblasts, low oncogenic Ras signaling may not activate the

same pathways as were activated in the reported experiments.

For example, I failed to see activation of Akt upon low activation of oncogenic Ras

signaling but saw robust activation of Akt upon high activation of oncogenic Ras signaling,

suggesting that activation of the P13K pathway is triggered only by high levels of oncogenic Ras

signaling. One of the ways in which Ras activates Rac is through the P13K pathway. Thus, low

activation of Ras signaling may not to be sufficient to activate Rac through the P13K. Due to the

differences in signaling stimulated by low and high levels of oncogenic Ras, additional studies

using the low ER:Ras fibroblasts must be done to determine which signaling pathways

downstream of Ras are activated by low oncogenic Ras signaling.

II. The role of low oncogenic Ras signaling in the transformation of human cells

The results presented in chapter 2 clearly indicate that simultaneous inhibition of p38 and

low activation of oncogenic Ras are not sufficient for the full transformation of human

fibroblasts. The failure of these two manipulations to transform fibroblasts is expected given

what is currently known about the transformation of human cells. Indeed, as discussed in

chapter 1, multiple cooperating genetic mutations are required for the complete transformation of

normal human cells. Therefore, the question arises as to which other oncogenic or tumor-

suppressive pathways must be perturbed in order to transform human cells containing a low level

of oncogenic Ras signaling. The answer to this question has important ramifications on how we

view the transformation of human cells from normal to malignant.

147



Impact on current models of transformation and tumorigenesis

Normal human cells have been successfully transformed into cancer cells using several

different cocktails of introduced genetic modifications (19). Although the use of these

transforming cocktails has provided valuable information in identifying pathways that are

important in generating cancer cells from normal human cells, these transformation protocols

introduce requirements that may not accurately reflect the acquisition of genetic modifications by

incipient cancer cells in actual human tumors. More specifically, two features common among

protocols for the transformation of human cells are the need for a strong oncogenic signal,

usually provided by highly overexpressing oncogenic Ras, and the disruption of two potent

tumor suppressors, namely, p53 and the retinoblastoma protein (Rb).

The high levels of oncogenic Ras required for the experimental transformation of human

cells may not accurately model the oncogenic Ras signaling occurring in actual human cancers,

where tumor cells most likely never experience such high levels of oncogenic Ras expression.

Indeed, studies focused upon one of these frequently used transformation models showed that,

unlike high overexpression of oncogenic Ras, moderate overexpression failed to transform

human cells robustly, as indicated by decreased anchorage-independent growth and lack of

tumor formation in mice (20). Thus, current models of transformation do not account for the

promotion of tumorigenesis by near physiological levels of oncogenic Ras.

In addition, the overexpression of oncogenic RAS at a high level requires that the genetic

modifications disabling p53 and Rb are introduced prior to, or at least at the same time as,

introducing oncogenic RAS into cells (20-23). Introducing genetic modifications in this order is

necessary for the successful transformation of human cells due to the fact that high levels of

oncogenic Ras signaling induce the senescence of normal human cells containing intact p53 and
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Rb signaling pathways (24). Crippling p53 and Rb functions enables cells expressing high levels

of oncogenic Ras to avoid entering into senescence, thus promoting their transformation (21, 25).

Importantly, inhibiting p53 and Rb prior to acquiring oncogenic Ras may not be

necessary during the development of actual human tumors. Evidence from human tumor

samples and genetically engineered mouse models of cancer indicate that the aberrant activation

of Ras signaling is an initiating event in a number of human cancers. For example, oncogenic

RAS alleles are often detectable in preneoplastic lesions that are believed to lack many additional

genetic alterations (26-33). Moreover, expression of oncogenic Kras from the endogenous Kras

promoter in various organs of adult mice, such as the lung, pancreas, ovary, and colon, was

found to induce preneoplastic lesions in these targeted organs (34-37).

The relevance of senescence to tumorigenesis

The identification of oncogenic RAS mutations in preneoplastic lesions of human cancers

and the ability of endogenous oncogenic Kras to induce hyperplasias in mouse models, raises the

question as to whether models of transforming human cells accurately reflect events occurring in

the development of human cancers, due to these transformation models requiring the loss of p53

and Rb functions followed by high overexpression of oncogenic RAS. This issue directly relates

to whether or not Ras-induced senescence is an important tumor-suppressive mechanism in

human cells. Studies focused upon the in vitro transformation of human cells indicate that the

p53 and Rb pathways must be compromised in order for oncogenic Ras to drive tumorigenesis.

In contrast, evidence indicating that oncogenic mutation of Ras is an initiating event in tumor

development suggests that disengaging the p53 and Rb pathways prior to the acquisition of

oncogenic Ras is not necessary.
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Much work has been done to determine whether Ras-induced senescence a biologically

relevant tumor-suppressive mechanism. This work has yielded contradictory results. Results

obtained from one mouse model of endogenous oncogenic Kras activation demonstrate a lack of

senescence markers in hyperplasias initiated by oncogenic Kras (35). However, results from a

second model of endogenous oncogenic Kras activation indicate that preneoplastic lesions

induced by oncogenic Kras do exhibit signs of senescence (38).

Reasons for these conflicting results are not clear, but in combination with other

evidence, suggest the possibility that senescence may be a bonafide tumor suppressor in some

contexts, but not others. For example, markers of senescence have been observed in human

melanocytic nevi harboring oncogenic Raf. These nevi are thought to be precursor lesions of

melanoma, indicating that some cell types may limit neoplastic development by inducing

senescence in the presence of oncogenes (39). On the other hand, multiple studies have shown

that cells of some cancers retain the ability to senesce in response to chemotherapeutic agents

(40), indicating that transforming a normal cell into a cancer cell does not necessarily involve the

ablation of tumor suppressor pathways mediating senescence.

Linking senescence in vivo to the upregulation of Ras

Because high levels of oncogenic Ras are necessary in order to induce the senescence of

mammalian cells, it is initially confusing as to why preneoplastic lesions driven by the

endogenous expression of oncogenic Kras in one mouse model would exhibit senescence,

whereas embryonic fibroblasts expressing endogenous oncogenic Kras and derived from the

same mouse model fail to senesce and instead are immortal (38, 41). A possible explanation for

this apparent discrepancy lies in the spontaneous upregulation of oncogenic Ras during tumor
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development, for example, through increased copy number of the RAS oncogene, increased

transcription of the RAS oncogene, or loss of negative regulators that inhibit aberrant Ras

signaling (42).

Indeed, some mouse models of Ras-induced tumorigenesis have provided evidence for

the spontaneous upregulation of Ras during tumor development. Of particular interest, two such

studies correlated the upregulation of endogenous Ras with tumor development. The first study

described the amplification of wild-type Kras (43), whereas the second study reported the

spontaneous upregulation of oncogenic Hras expressed from the endogenous locus (44).

Similarly, a subset of human tumor samples have shown upregulation of oncogenic Ras, with

higher Ras levels correlating with later stage tumors (45-50). Thus, there appears to exist a

selective pressure for the upregulation of Ras signaling during tumor development.

This upregulation of Ras signaling during tumor development is thought to drive the

senescence of cells expressing oncogenic Kras from the endogenous promoter. As a proof of

principle, the inducible expression of oncogenic Hras in mammary epithelia of transgenic mice

stimulated the hyperproliferation of mammary cells when oncogenic Hras was expressed at a

low level. However, increasing the expression level of oncogenic Hras in mammary cells

triggered their senescence (51). Importantly, the loss of p53 activity prevented the accumulation

of senescence cells.

Taken together, these lines of evidence suggest the following model of tumorigenesis:

Tumorigenesis is driven by a high, but not low, level of oncogenic Ras signaling. Incipient

cancer cells acquire this high level of Ras signaling through the spontaneous upregulation of

endogenous Ras oncogenes. Moreover, in order for upregulated levels of oncogenic Ras
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signaling to promote tumorigenesis, cells must already have lost the ability to senesce through

disruption of the p53 and Rb tumor suppressor pathways.

Implicit in this model of tumorigenesis is the idea that the in vitro transformation of

normal human cells into cancer cells recapitulates events that occur during tumor development in

vivo. Indeed, both the model described above and protocols for the transformation of human

cells involve the loss of senescence-inducing tumor suppressor pathways and subsequent

acquisition of high levels of oncogenic Ras. However, this model is not applicable to genetically

engineered mouse models of cancer lacking markers of senescence nor is it applicable to

malignant cells capable of senescing in response to chemotherapeutic agents. Therefore,

although the model presented above appears to be relevant to certain situations of cancer

development, it fails to provide a satisfying explanation for other cases of tumorigenesis.

Tumor-suppressive mechanisms in the absence of senescence

The lack of senescence markers in pre-neoplastic lesions formed in one mouse model of

endogenous oncogenic Kras activation (35) raises the question as to what other tumor-

suppressive mechanisms counteract neoplastic development in these Kras-expressing cells.

Indeed, the number of functional viral particles administered to the lungs of mice when

activating the expression of oncogenic Kras in lung cells is many times greater than the number

of lesions formed following viral infection (34). Assuming that most infected cells activate their

oncogenic Kras allele, and assuming each isolated lesion originated from a single infected cell,

there is a very high inefficiency of generating lesions upon the endogenous expression of

oncogenic Kras.
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Therefore, the majority of cells exposed to oncogenic Ras signaling fail to form

hyperplasias, but why? One possible explanation is that, even though cells expressing

endogenous levels of oncogenic Kras in this mouse model fail to undergo senescence, aberrant

signaling through the Ras pathway triggers the activation of negative regulators of Ras signaling,

thus suppressing the ability of oncogenic Ras to promote hyperplastic outgrowths. Supporting

this possibility, the in vivo activation of oncogenic Kras from the endogenous promoter was

found to upregulate Sprouty-2, a negative regulator of Ras signaling (52). Moreover, loss of

Sprouty-2 promoted the ability of Kras to induce the development of lesions in the lungs of

mice. These results indicate that cells respond to low levels of oncogenic Ras signaling by

engaging negative feedback pathways and that disruption of these pathways promotes Kras-

induced tumorigenesis.

A second potential tumor-suppressive mechanism operating in the presence of low

oncogenic Ras signaling lies in the possibility that most cells in adult tissues fail to be permissive

hosts for the initiation of tumor development by oncogenic Ras. In support of this possibility,

particular cell types were found to be responsible for initiating tumor development in mouse

organs in response to endogenous oncogenic Kras expression. More specifically, the expansion

of bronchioalveolar stem cells (BASCs) upon oncogenic Kras expression was found to initiate

the formation of hyperplastic lesions in mouse lungs, lesions which eventually evolved into

adenocarcinomas (53).

In addition, the targeted expression of endogenous oncogenic Kras to distinct

subpopulations of pancreatic cells in mice showed that oncogenic Kras was able to induce the

hyperplastic growth of a subpopulation of pancreatic and duodenal homeobox 1 (Pdx1)-positive

cells, thus initiating the development of Pancreatic ductal adenocarcinoma (PDAC). In contrast,
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oncogenic Kras was not able to induce the hyperplastic growth of insulin-expressing cells unless

the pancreatic tissue was first subjected to chronic injury (37). Taken together, these results

indicate that different subtypes of cells in a tissue have innate differences in their susceptibility

to forming hyperplastic lesions in response to oncogenic Ras signaling. If true, the number of

cells in the mouse or human body that is capable of initiating cancer development is much lower

than the overall number of cells in the body.

Take-home messages

Regardless of which tumor-suppressive mechanisms operate to counteract their

neoplastic development, cells expressing a single copy of an oncogenic Ras allele appear to

undergo an initial period of positive selection, resulting in the formation of hyperplastic lesions.

Furthermore, the loss of tumor suppressor functions appears to facilitate Ras-initiated tumor

development. Indeed, the loss of tumor suppressor function has consistently been found to

expedite tumorigenesis in mouse models employing the expression of oncogenic Kras from the

endogenous promoter (36, 54-56). Thus, although additional work must be done to understand

the role of Ras signaling in the initiation of human cancers, the concept of transforming human

cells through multiple genetic alterations certainly relates to human tumor development.

Creating better models of human transformation

There exists a clear need for the development of better models involving the

transformation of normal human cells into cancer cells. Much evidence, gathered from human

tumor samples and genetically engineered mouse models, indicates that low activation of

oncogenic Ras signaling is an initiating event of tumorigenesis. However, current protocols used
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to transform human cells fail to recapitulate both the early activation of aberrant Ras signaling

and the endogenous levels of this signaling.

Furthermore, differences in the susceptibility of human and murine cells to the process of

transformation necessitate the creation of better protocols for transforming human cells. Human

cells are more refractory to transformation than mouse cells, indicating that the tumor-

suppressive mechanisms operating in human and mouse cells exhibit critical species-specific

differences (57, 58). Thus, despite the valuable information gathered using mouse model

systems, tumorigenesis in mice cannot fully mimic tumorigenesis in humans. Therefore,

improved human transformation models are essential to understand the impact of genetic

modifications occurring in the development of human cancers.

A first step in improving current protocols for the transformation of human cells would

be to introduce near physiological levels of Ras signaling into cells prior to any other genetic

manipulations. Indeed, activating a low, pro-proliferative level of oncogenic Ras signaling in

normal human cells is possible as shown in Chapter 2. The Low ER:Ras system could be

introduced into a variety of normal human cell types in order to study the transformation of cells

originating from different tissues. Furthermore, the Low ER:Ras system would provide a means

to identify genetic alterations able to cooperate with low oncogenic Ras signaling in the

transformation of human cells.

Importantly, as mentioned earlier, mouse models involving the expression of oncogenic

Kras from the endogenous locus have shown that successful tumor development relies heavily

upon the targeting of a permissive cell type (37, 53). Human tissues are also likely to contain

cells that have differential responses to low oncogenic Ras signaling and different susceptibilities

155



to being transformed. Thus, better models of human cell transformation must begin with the

careful selection of parental cell types that innately are more receptive to transformation.

In addition, better models of human cell transformation are likely to rest in experiments

involving the transformation of human cells in vivo. The robustness with which a potentially

tumorigenic cell forms a tumor depends heavily upon the environment in which the cell finds

itself (59). For example, human breast carcinoma cell lines were found to form tumors with

100% efficiency when injected in the mammary fad pads of mice, but the efficiency of tumor

formation dropped to 40% when these cell populations were injected into the subcutaneous tissue

of mice (60).

Despite that in vitro transformation assays, such as growth in soft agar, are informative

in predicting the in vivo tumorigenesis of mammalian cell lines, cells residing in an actual human

tumor experience a very different and interactive environment, which is replete with cells,

signaling molecules, and extracellular matrix components. Consequently, more accurate

methods of studying the transformation of human cells would involve the engineering of human

cells with inducible methods of activating oncogenic pathways and repressing tumor suppressor

pathways.

Moreover, these engineered cells could be introduced into humanized mouse tissues. For

example, the mouse mammary gland could be reconstituted using stromal and epithelial

components of human origin (61). Low activation of oncogenic Ras signaling in cells residing in

humanized mouse tissues, followed by the inducible manipulation of other oncogenic and tumor

suppressor pathways, would advance models of human cell transformation to a position where

they closely approximate events occurring during human tumor development.
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III. Final Perspective

This study provides evidence that a low level of oncogenic Ras signaling induces the

hyperproliferation of human cells, which undergo senescence in response to a high level of

oncogenic Ras signaling. This result is directly relevant to data gathered from human tumors and

genetically engineered mouse models, which indicate that Ras is an initiating event during tumor

development. Thus, studying low oncogenic Ras signaling in human cells is relevant to gaining

a better understanding of signaling events occurring in many human cancers.

In addition, I have found that the inhibition of p38 cooperates with low oncogenic Ras

signaling to reduce cell-matrix adhesions. By altering cellular adhesion, the inhibition of p38

could predispose human cells to partial transformation by oncogenic Ras. Thus, this finding

warrants further study aimed toward elucidating the role of p38 in Ras-induced tumorigenesis.
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IV. Figure

A

MK2

BIRB 796 or
p38 ~SB 203580

Paxi

Hsp27 Regul

adhei/ \ off
Lamellipodia Cofilin j

formation

Cytoskeletal
reorganization

Ilin

ation
Cal
ions

in
ac

Lamellipodi
formation

\

Ras

Raf Fgdl Rho

Cdc42
tegrin ROCK
tivation 4

MEK

Ezrin
ERK

I
a FAK

Focal
'U adhesion . Cytoskeletal

formation reorganization

Figure 1. Pathways downstream of p38 and Ras that impact cell-matrix adhesion and/or
cytoskeletal reorganization. A. Pathways downstream of p38 that have been implicated in
controlling lamellipodia formation, cytoskeletal reorganization, and modulation of focal
adhesion formation and stability. B. Pathways downstream of Ras that have been implicated in
these same processes. See the text for details concerning pathways diagramed in this figure. The
dotted, double-headed arrows in this figure are present to indicate that lamellipodia formation,
cytoskeletal reorganization, and regulation of focal adhesions are intimately related processes,
with perturbation of one of these processes often affecting the other two.
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