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(Received 7 August 2009; published 7 October 2009)

In this paper the collision of two cosmic string loops is studied. After collision junctions are formed and

the loops are entangled. We show that after their formation the junctions start to unzip and the loops

disentangle. This analysis provides a theoretical understanding of the unzipping effect observed in

numerical simulations of a network of cosmic strings with more than one type of cosmic strings. The

unzipping phenomena have important effects in the evolution of cosmic string networks when junctions

are formed upon collision, such as in a network of cosmic superstrings.
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I. INTRODUCTION

Cosmic strings are copiously produced at the end of
brane inflation [1,2] (for reviews see e.g. [3–6]). These
strings are in the form of fundamental strings (F strings),
D1-branes (D strings) or their bound states. F and D strings
can combine to form bound states—ðp; qÞ strings—which
are constructed from p F strings and q D strings on top of
each other. Because of charge conservation, when two
ðp; qÞ cosmic strings intersect generally a junction is
formed. This is in contrast to what happens in the case of
U(1) gauge cosmic strings: When two U(1) gauge cosmic
strings intersect, they usually exchange partners and inter-
commute with probability close to unity. In this view, the
formation of junctions may be considered as a novel fea-
ture of the network of cosmic superstrings. Networks of
strings with junctions have interesting physical properties,
such as the formation of multiple images [7,8] and non-
trivial gravity wave emission [9,10]. Different theoretical
aspects of ðp; qÞ string construction were studied in [11–
16] while the cosmological evolution of a string network
with junctions has been investigated in [17].

The evolution of a network containing two types of
cosmic strings was studied by Urrestilla and Vilenkin
[18]. In their model, the cosmic strings are two types of
U(1) gauge strings with interactions between them. Let us
label these strings as A and B strings. Because of the

interaction, the strings cannot exchange partners and a
bound state, string AB, will form if the strings are not
moving too fast. It was shown that the length and the
distribution of the string network are dominated by the
original A and B strings and there is a negligible contribu-
tion to the string network length and population from the
bound states strings AB. This can be understood based on
the following two reasons. First, the junctions may not
form if the colliding strings are moving very fast so they
can simply pass through each other [19–24]. Second and
more curiously, if the junctions are formed, they start to
unzip during the evolution. The process of zipping and
unzipping of cosmic strings in collision is a nontrivial
dynamical property. Our aim here is to provide some
theoretical understanding of how this process happens in
the collision of cosmic strings loops.

II. THE SETUP

Here we provide our setup. We consider two cosmic
string loops moving in opposite directions. At the time of
the collision, junctions are formed. This can be viewed as a
generalization of straight strings collision [20–22].
However, due to topological constraints, there are new
nontrivial effects which can lead to the unzipping of junc-
tions. This is unlike what happens in the case of straight
strings, where for two colliding straight strings, once the
junctions are formed, they will always grow with time and
do not unzip [20–22].
In order to simplify the analysis, we assume the collid-

ing loops have equal tensions and radii and that the planes
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they span are parallel. Choosing the center of mass frame,
we take the loops to be in the x� y plane and assume they
are moving along the z axis with speed �v. A schematic
view of the collision is shown in Fig. 1. The collision
happens at t ¼ 0, z ¼ 0. There are two collision points.
The angle of collision 2� is defined as the angle between
the tangential lines to the loops at the points of collision.

We choose the incoming strings to be of the form of
simple loops in their rest frames:

RðtÞ ¼ R0 cos

�
t� t0
R0

�
: (1)

This may not be a realistic configuration, but due to the
complexity of the collision analysis, this ansatz is illustra-
tive enough to capture the unzipping effect. Here t0 is the
phase at the time of collision and the radius at collision
time is R0 cosðt0=R0Þ.

After the collision, four junctions are formed (in Fig. 1
they are denoted by A, B, C and D). Because of symmetry,
one expects that junctions A and B and junctions C and D
evolve similarly but in opposite directions. On each junc-
tion, there are three string legs; two of them are the
incoming strings and the third is the newly formed string
with tension �3. As explained above, we assume that the
incoming loops have equal tensions: �1 ¼ �2. Later we
will see that for a junction to form one requires that 2�1 >
��3.

Because of the symmetry, the third string is stationary
and is oriented either along the y axis (y link) or the x axis
(x link). The orientation of the third string is controlled by
the angle�. For small� (roughly 0<�<�=4) we expect
a y-link junction and for a larger value of � an x-link
junction. For the discussion below and in Fig. 1 we con-
sider a y-link junction.

Guided by the causality and the symmetry of the prob-
lem, one expects that, after collision, the entangled loops
are divided into two secondary loops, the external loop and
the internal loop. The external and the internal loops are
connected by the newly formed strings with tension �3.
Given the symmetry of the setup, a nice feature of the
internal and external loops is that half of each is from the
first string and the other half is from the second string.
There are four kinks on each secondary loop separating the
newly formed arcs from the parts of the old loops which do
not yet feel the presence of the junctions (by causality). As
we shall see, these nontrivial topological constraints be-
tween the internal and external loops play an essential role
in the unzipping process.
At the time of collision the system has a nonzero angular

momentum around the axis of collision. However, we do
not expect the angular momentum to play an important role
in the unzipping process. As we shall see below, the
unzipping process is determined by forces in the place of
the strings, whereas angular momentum induces forces in
the orthogonal direction. In addition, these forces will
vanish at the local of the junctions.
The world sheet of each string is described by a temporal

coordinate � and a string length parameter �i. We take
each string to have its own �i parameter. Our convention
for the orientation of �i is that on a given loop, whether an
original colliding loop or a secondary loop, the �i coor-
dinate increases counterclockwise from 0 to 2�. For ex-
ample, at the time of collision, the point M in Fig. 1 has
�1 ¼ �R0� on string 1 and �2 ¼ �R0ð�� �Þ on string 2.
Similarly, the point N has �1 ¼ �R0ð2�� �Þ on string 1
and �2 ¼ �R0ð�þ �Þ on string 2. Here � is the Lorentz
factor, ��2 ¼ 1� v2, which shows up due to the boost
from the string rest frame to the center of mass frame.

FIG. 1 (color online). A schematic view of the loops at the time of collision (left) and after collision (right). The arrows in the right
figure indicate the directions in which the �i coordinate increases. We use the convention that on a loop �i runs counterclockwise.
There are four junctions and eight kinks in total.
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Finally on the third string, �3 increases from south to
north.

One complexity of dealing with loops in collision is the
orientation of the �i coordinate at junctions. We follow the
prescription of [25] and use the sign parametrization for �i

according towhich �i can take values�1. If the value of�i

of a particular string increases (decreases) towards the
junction, we assign �i ¼ þ1 (�i ¼ �1). With this pre-
scription, the two ends of a piece of string ending in two
neighboring junctions have opposite � parameters. The
arrows in Fig. 1 indicate this prescription. Since it is
important for the later analysis, we now give the values
of �i at each junction:

A:

������������
�1 ¼ þ1
�2 ¼ �1
�3 ¼ �1

; B:

������������
�1 ¼ �1
�2 ¼ þ1
�3 ¼ þ1

;

C:

������������
�1 ¼ �1
�2 ¼ þ1
�3 ¼ þ1

; D:

������������
�1 ¼ þ1
�2 ¼ �1
�3 ¼ �1

:

(2)

We consider a flat space-time background. The induced
metric �iab on each string is given by

�iab ¼ ��	@ax
�
i @bx

	
i : (3)

Here and in the following, we reserve fa; bg ¼ f�; �ig for
the string world-sheet indices while Greek indices repre-
sent the four-dimensional space-time coordinates.
Furthermore, x

�
i stands for the position of the ith string

in the target space-time.
After collision, the junction points correspond to the

intersection of three segments of strings: two from the
colliding loops and one from the bound state string that
appears after collision. Including the � parametrization on
each segment of strings, the Nambo-Goto action describing
the dynamics of the strings positions x

�
i and the evolution

of junction points is [25]

S ¼ �X
i

�i�i

Z
d�

Z
d�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x02i _x2i

q

ðsBi

i ð�Þ � �iÞ

� 
ð�sAi

i ð�Þ þ �iÞ þ
X
i

X
J

Z
d�fJi�:

� ½x�i ð�; sJi ð�ÞÞ � X
�
J ð�Þ�: (4)

Here an overdot and a prime denote derivatives with re-
spect to � and �, respectively. The function sJi ð�Þ indicates
the value of the �i coordinate for the ith string at the
junction J. The theta functions indicate the fact that each
piece of string exists only between junctions Bi and Ai. In
this notation, the �i coordinate for the piece of the string
which stretches from junctions Bi to Ai is increasing from
Bi to Ai and

sBi
i ð�Þ � �i � sAi

i ð�Þ: (5)

It should be noted that in our case fAi; Big collectively

stand for the junction points J with

J 2 fA; B; C;Dg (6)

in Fig. 1. Finally, the functions fJi� are the Lagrange multi-

pliers which enforce the constraints that at the junction J,
the three strings meet and

xiðsJi ð�Þ; �Þ ¼ XJð�Þ; (7)

where XJð�Þ is the junction position in the target space-
time.
As explained above, the value of the �i coordinate for

the ith string at junction J is given by the function sJi ð�Þ. It
is a dynamical variable which controls the evolution of the
junction. For example, at junction B in Fig. 1 the process of
zipping for the string �3 happens when _sB3 ð�Þ> 0 whereas
its unzipping happens when _sB3 ð�Þ vanishes at some time

during evolution and _sB3 ð�Þ< 0 afterwards. Our goal in the
next section is to find the dynamical equations for _si

J to
understand the process of zipping and unzipping of strings
in junctions.
The derivation of the equations of motion coming from

action (4) is given in [25]. Here we summarize the equa-
tions which are necessary for our colliding loop analysis.
We impose the conformal temporal gauge on the string

world sheet, namely, X0
i ¼ t ¼ � and �i0� ¼ 0. This is

equivalent to

_x i:x
0
i ¼ 0; _x2

i þ x02
i ¼ 1; (8)

where the xi represent the spatial components of the ith
string. The solution of string equation of motion €xi � x00

i ¼
0, as usual, is given in terms of left- and right-mover
waves:

x iðt; �Þ ¼ 1

2
ai

�
�þ t

2

�
þ 1

2
bi

�
�� t

2

�
(9)

with a02i ¼ b02
i ¼ 1. Imposing the junction conditions ob-

tained from varying the action (4), one can find expressions
for a0i and b0

i at the position of the junction J. Imposing the
conditions a02i ¼ b02

i ¼ 1 one finds the following equations
for sJi :

_s i
J ¼ �i

�
1� �Mið1� cJi Þ

�i

P
k

Mkð1� ckÞ
�
; (10)

where � � P
i�i , and

Mi ¼ �2
1 � ð�j ��kÞ2; cJi ðtÞ ¼ Yi:Yk (11)

with i � j � k and

Yj ¼
�
b0
j if �i ¼ þ1;

�a0j if �i ¼ �1:
(12)

It should be noted that the Yi are constructed at the point of
each junction J where �i ¼ sJi ð�Þ.
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Finally, energy conservation at each junction J ¼
fA; B; C; :Dg requires that

�J
1�1 _s1

J þ �J
2�2 _s2

J þ �J
3�3 _s3

J ¼ 0: (13)

One can check that this also follows from Eq. (10).

III. ZIPPING AND UNZIPPING

Here we study in detail the equations of motion for siðtÞ.
Let us start with junction B. At the time of collision
sB3 ð0Þ ¼ 0. For the junction to form, sB3 ðtÞ should be in-

creasing initially. For unzipping to happen, sB3 ðtÞ should
come to a stop (i.e. _sB3 ¼ 0) at some time t ¼ tBu corre-

sponding to the time of unzipping at junction B. Then sB3 ðtÞ
decreases. Similarly, sD3 ð0Þ ¼ 0 initially and after collision
sD3 ðtÞ decreases, reaching a minimum negative value before

turning back. The unzipping at junction D happens at t ¼
tDu (when _sD3 ¼ 0). Interestingly, we find that tDu � tBu . The
loops disentangle and separate from each other at the time
t ¼ tf when the junctions B and D meet, corresponding to

sD3 ðtfÞ ¼ sB3 ðtfÞ. As we shall see, the loop disentanglement

does not happen when sD3 ðtÞ ¼ sB3 ðtÞ ¼ 0. It turns out that
sD3 ðtfÞ ¼ sB3 ðtfÞ< 0. Because of our symmetric construc-

tion, the same arguments go through for junctions A and C
and we can restrict the analysis to the pair of junctions B
and D.

Going to the center of mass frame, it follows from
Eq. (1) that

x 1;2 ¼
�bþ R0 cosðt�t0

�R0
Þ cosð�1;2

�R0
Þ

R0 cosðt�t0
�R0

Þ sinð�1;2

�R0
Þ

�vt

0
B@

1
CA; (14)

where the impact parameter 2b is the separation between
the centers of the loops (see Fig. 1). Decomposing xi into
left movers as in Eq. (9) yields

a 0
1;2 ¼

���1 sinð�1;2þt�t0
�R0

Þ
��1 cosð�1;2þt�t0

�R0
Þ

�v

0
B@

1
CA;

b0
1;2 ¼

���1 sinð�1;2�tþt0
�R0

Þ
��1 cosð�1;2�tþt0

�R0
Þ

�v

0
B@

1
CA:

(15)

For the third string which stretches between the D and B
junctions one has (following the arrows in Fig. 1 where �3

increases from south to north)

x 3 ¼ ð0; �3; 0Þ; a03 ¼ b0
3 ¼ ð0; 1; 0Þ: (16)

Let us start again with the junction B. Based on sym-
metry considerations (both loops have equal tensions and
radii) one expects that _sB1 ðtÞ ¼ � _sB2 ðtÞ. From Eq. (10) one
can check that _sB1 ðtÞ ¼ � _sB2 ðtÞ is a consistent solution. This
in turn leads to sB1 ðtÞ þ sB2 ðtÞ ¼ sB1 ð0Þ þ sB2 ð0Þ. However, at
the time of collision, sB1 ð0Þ ¼ �R0� and sB2 ð0Þ ¼ �R0ð��

�Þ so
sB1 ðtÞ ¼ �sB2 ðtÞ þ �R0�: (17)

Using the energy conservation equation (13) one obtains

sB3 ðtÞ ¼ � 2�1

�3

½sB2 ðtÞ � �R0ð�� �Þ�: (18)

The dynamical process of zipping, unzipping and loop
disentanglement is controlled by the functions sB3 ðtÞ and
sD3 ðtÞ. To obtain the differential equation for _sB3 , we first

need to calculate the quantities ciðtÞ at junction B. One has

c1 ¼ b0
2:b

0
3 ¼ ��1 cos

�
sB2 ðtÞ � tþ t0

�R0

�
(19)

and

c2 ¼ �a01:b
0
3 ¼ ��1 cos

�
sB1 ðtÞ þ t� t0

�R0

�
¼ c1; (20)

where to obtain the final relation, use was made of Eq. (17).
Similarly, one obtains

cB3 ¼ �a01:b
0
2 ¼ �1þ 2��2cos2

�
sB2 ðtÞ � tþ t0

�R0

�
: (21)

With these values of ciðtÞ and using Eq. (10), one obtains

_s B
3 ¼ 2�1�

�1 cosð�3s
B
3
ðtÞ

2�1�R0
þ �þ t�t0

�R0
Þ ��3

2�1 ��3�
�1 cosð�3s

B
3
ðtÞ

2�1�R0
þ �þ t�t0

�R0
Þ
; (22)

where to get the final answer, the relation (18) has been
used to eliminate sB2 ðtÞ in favor of sB3 ðtÞ.
To check the validity of the above expression, one can

show that in the limit where R0 ! 1, it reduces to the
result of [20] for collision of two infinite straight strings.
Following the same steps, for the junction D one finds

_s D
3 ¼ � 2�1�

�1 cosð�3s
D
3
ðtÞ

2�1�R0
þ �� t�t0

�R0
Þ ��3

2�1 ��3�
�1 cosð�3s

D
3
ðtÞ

2�1�R0
þ �� t�t0

�R0
Þ
: (23)

Comparing the equations for _sB3 and _sD3 , we observe that

sB3 ! �sD3 under time reversal t� t0 ! �ðt� t0Þ.
One can check that for the junctions A and B the

evolution of _sA3 and _sC3 is identical to that of _sB3 and _sD3 ,
with a sign difference as expected due to our symmetric
construction.
With some effort, one can solve Eqs. (22) and (23) with

the answer

sB3
R0

� sin

�
�3s

B
3

2�1�R0

þ �þ t� t0
�R0

�

¼ � sin

�
�� t0

�R0

�
� �3

2�1R0

t; (24)

which expresses sB3 ðtÞ implicitly as a function of t. A

similar equation holds for sD3 with ðt; t0Þ ! �ðt; t0Þ.
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The above implicit equations for sB3 and sD3 cannot be

solved explicitly to obtain the variables as functions of t.
However, some insight can be obtained by looking at the
form of Eq. (22). For the junction B to materialize at t ¼ 0,
we need that _sB3 ð0Þ> 0. This requires that ��3 < 2�1 and�

�� t0
�R0

�
<�c � cos�1

�
�3�

2�1

�
: (25)

Interestingly, this is the same junction formation condition
as for the collision of straight strings [20] where R0 ! 1.
This is understandable, since the collision and junction
formation is a local effect and at the points of collision
large loops may be approximated as straight strings. On the
other hand, for the junction D to materialize after collision,
one expects that _sD3 ð0Þ< 0 which yields�

�þ t0
�R0

�
<�c: (26)

Interestingly, when t0 � 0, Eq. (26) is stronger a condition
than Eq. (25).

Once the junction B is formed, it grows until the time tBu
of unzipping, when the argument inside the cos function in
Eq. (22) becomes equal to �c and _sB3 ¼ 0. As time goes by,

the argument inside the cos function increases, _sB3 becomes

negative and the junction B turns back. A similar argument
applies to junction D except that the unzipping happens at
the time t ¼ tDu , and due to the time asymmetry in Eqs. (22)
and (23), tDu � tBu . Below we will demonstrate that tDu > tBu .
After t > tDu , the junctions B and D move towards each
other. The loops disentangle at the time t ¼ tf when the

junctions meet, corresponding to sB3 ðtfÞ ¼ sD3 ðtfÞ. In Fig. 2
we have plotted the shapes of sB3 and sD3 for some given

parameter values of �, �, �1, �2 and R0. The left figure
indicates that sB3 ðsD3 Þ increases (decreases) initially and

then come to a halt, indicating the time of unzipping.
Here we would like to find the time of unzipping and

loop disentanglement. Consider junction B. At the time

t ¼ tBu of unzipping one obtains from _sB3 ¼ 0 that

sB3 ðtBu Þ
R0

¼ 2�1�

�3

�
�c � �� tBu � t0

�R0

�
: (27)

Plugging this into Eq. (24) gives the unzipping time

tBu
R0

¼
�
1� �2

3

4�2
1

��1
�
�ð�c � �Þ þ t0

R0

þ �3

2�1

�
sin

�
�� t0

�R0

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2

3

4�2
1

s ��
: (28)

To find the unzipping time for junction D, we note that
after junction formation the argument inside the cos func-
tion in Eq. (23) decreases with time. It becomes negative
and the unzipping for junction D happens when the ex-
pression inside the cos function becomes equal to ��c.
With this consideration and following the steps as above
yields

tDu
R0

¼
�
1� �2

3

4�2
1

��1
�
�ð�c þ �Þ þ t0

R0

� �3

2�1

�
sin

�
�þ t0

�R0

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2

3

4�2
1

s ��
: (29)

Equations (28) and (29) are implicit equations which
relate tBu and tDu to the tensions �i, the incoming angle of
collision �, the velocity � and the initial loop phase t0. It is
not easy to see how tBu and tDu vary as one varies these
parameters simultaneously. As a simple treatment, let us
take �i and � as fixed properties of a network of cosmic
strings and consider the unzipping times as functions of �
and t0 (which may be considered as random parameters for
the network evolution). If one increases t0 > 0 while keep-
ing� fixed, then both tBu and t

D
u increase. There is a limit on

how large t0 can be. This is determined by Eq. (26). The
dependence of the unzipping on � is more nontrivial. From
Eqs. (28) and (29) we note that the dependence of these

FIG. 2. Here the numerical solutions for sB3 ðtÞ (left) and sD3 (right) are plotted for � ¼ 1:1, �1=�3 ¼ 0:7, � ¼ �=8 and t0 ¼ 0:1 in
units where R0 ¼ 1. The unzipping for junction B (D) happens when sB3 (sD3 ) reaches a maximum (minimum) value. In this example,

the loop disentanglement happens at tf ’ 1:4 before the loops shrink at tshrink ’ 1:7.

ZIPPING AND UNZIPPING OF COSMIC STRING LOOPS . . . PHYSICAL REVIEW D 80, 083508 (2009)

083508-5



times on � is not symmetric. For a fixed value of t0, then as
� increases, tDu increases while tBu decreases almost linearly
with �. Again, there is a limit on how big � can be, which
is determined by Eq. (26).

It is instructive to see which of the junctions B or D starts
to unzip sooner. From the above two equations, the differ-
ence in the unzipping times is calculated to be

tDu � tBu
R0

¼ 2��

�
1� �2

3

4�2
1

��1

�
�
1� �3

2�1�
cos

�
t0
�R0

�
sin�

�

�
: (30)

Since sin�=� is always less than unity we see that tDu > tBu .
This means that the junction B which holds the external
large arcs unzips sooner than the junction D which holds
the internal small arcs. Keeping all other parameters fixed,
by increasing the angle of collision �, the difference in
unzipping times increases almost linearly with �.

The time tf of loop disentanglement is given by sB3 ðtfÞ ¼
sD3 ðtfÞ. Using Eq. (24) and the similar equation for sD3 gives

2��1

�3

cos�1�� cos

�
t� t0
�R0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
� 2��1�

�3

þ sin� cos

�
t0
�R0

�
¼ 0; (31)

where

� �
��3t=ð2�1R0Þ � cos� sinð t0

�R0
Þ

sinðt�t0
�R0

Þ
�
: (32)

This is an implicit equation for tf which should be solved

in terms of �i, �, �, t0 and R0. For this to make sense, we
demand that tf � t0 <�R0=2 before the loops shrink to

zero.

IV. DISCUSSION

In this paper we have provided a theoretical understand-
ing of the zipping-unzipping phenomena in cosmic string
loop collisions. The process of unzipping and string disen-
tanglement has important effects on the evolution of net-
works containing different types of strings. Initially, one

may fear that the overabundance of junctions and the string
bound states may lead to a frustrated network of cosmic
strings, preventing the network to reach a scaling regime.
In an interesting simulation run by Urrestilla and Vilenkin
[18] it was shown that the presence of junctions and bound
states is not catastrophic. Indeed, it was shown that for a
network containing two different types of strings, the con-
tribution of the bound states to the population and length is
negligible compared to that of the original strings. There
may be two reasons for why the contribution of the junc-
tions and bound states to the network’s string length and
number density is subdominant. First, cosmic strings move
with very high velocities and can simply pass through each
other, and no junctions form in the first place [20–22,26].
Second, and more curiously, junctions may materialize
occasionally but they soon become unstable to unzipping.
This was the subject of our current study.
To simplify the analysis, here we considered the simple

case when the colliding loops have equal tensions and
radii. In principle one can consider more general cases
when loops have different tensions and configurations.
In examples of straight strings in collision [20–22], the

junctions do not stop growing in time once they are
formed. In contrast, we have demonstrated that for collid-
ing loops unzipping phenomena take place. It is energeti-
cally costly for junctions to grow indefinitely. The
junctions holding the external loops and those holding
the internal loops behave differently. The junctions holding
the external large loops start to unzip sooner than the
junctions holding the internal small ones. The onset of
unzipping and eventual loops disentanglement is deter-
mined by the parameters of the colliding loops such as
their tensions, the angle of collision and their velocity.
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