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Abstract. We describe the construction of an interpolating quadratic/linear ratio-
nal spline S of smoothness class C2 for a strictly convex (or strictly concave) func-
tion y on [a, b]. On uniform mesh xi = a + ih, i = 0, . . . , n, in the case of sufficiently
smooth function y the expansions of S and its derivatives are obtained. They give the
superconvergence of order h4 for the first derivative, of order h3 for the second deriva-
tive and of order h2 for the third derivative of S in certain points. Corresponding
numerical examples are given.
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1 Introduction

For a strictly convex (or strictly concave) smooth function y and interpolating
quadratic/linear rational spline S it is known that ‖S − y‖∞ = O(h4), see,
e.g., [7, 8]. A quadratic/linear rational spline interpolant of class C2 exists
and is unique and strictly convex for any strictly convex data [10]. It should
be effective to use these splines in seeking the solutions with singularities of
differential and integral equations. As for nonconvex data such a rational spline
interpolant cannot exist, an adaptive interpolation procedure is investigated
in [11] which uses cubic polynomial and quadratic/linear rational pieces to
retain strict convexity in the regions of strict convexity of data. The existence
of such a coconvex spline interpolant is proved if data have weak alternation
of second order divided differences on cubic sections. The problem of shape
preserving interpolation has been considered by several authors [1,2,3,4,9,12].

Quadratic/linear rational interpolating splines of class C2 have the same
accuracy as the classical cubic interpolating splines [8]. In some cases, the
error is less for the cubic splines and in some cases, the error is less for the
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quadratic/linear rational splines. For the cubic splines, the expansions on
subintervals via the derivatives of the smooth function to interpolate could
be found, e.g., in [13]. For the linear/linear rational splines, such expansions
could be found, e.g., in [5] and for quadratic splines, e.g., in [6]. They give
the superconvergence of the spline values and its derivatives in certain points.
We will study such a problem in the case of quadratic/linear rational spline
interpolation. This needs expansions of a quadratic/linear rational spline in-
terpolant with special boundary conditions and the establishment of them is
the main purpose of our paper.

While the interpolation problem is a linear one, the quadratic/linear ra-
tional spline interpolation as well as linear/linear rational spline interpolation
is, in nature, a nonlinear method because it leads to a nonlinear system with
respect to the spline parameters. Nevertheless, the complexity of these rational
spline interpolation methods is the same as in polynomial spline case.

2 Representation of Quadratic/Linear Rational Splines
and Interpolation Problem

Consider a uniform partition of the interval [a, b] with knots xi = a + ih,
i = 0, . . . , n, h = (b − a)/n, n ∈ N. Quadratic/linear rational spline on each
particular subinterval [xi−1, xi] is a function S of the form

S(x) = ai + bi(x− xi−1) +
ci

1 + di(x− xi−1)
, x ∈ [xi−1, xi], (2.1)

where 1 + di(x− xi−1) > 0. This gives for x ∈ [xi−1, xi]

S′(x) = bi −
cidi

(1 + di(x− xi−1))2

and

S′′(x) =
2cid

2
i

(1 + di(x− xi−1))3
,

which means that S or −S is convex.
Using the notation S(xi) = Si and S′′(xi) = Mi, i = 0, . . . , n, we get

from (2.1)

Si−1 = ai + ci, Si = ai + bih+
ci

1 + dih
,

Mi−1 = 2cid
2
i , Mi =

2cid
2
i

(1 + dih)3
. (2.2)

Consider at first the case Mi 6= 0. Then also Mi−1 6= 0 and di 6= 0.
From (2.2) it follows

ci =
Mi−1

2d2i
, ai = Si−1 −

Mi−1

2d2i
,

bi =
1

h
(Si − Si−1) +

Mi−1

2di(1 + dih)
.
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Now the representation (2.1) is following

S(x) = Si−1 −
Mi−1

2d2i
+

(
Si − Si−1

h
+

Mi−1

2di(1 + dih)

)
(x− xi−1)

+
Mi−1

2d2i (1 + di(x− xi−1))
, x ∈ [xi−1, xi]. (2.3)

This gives for x ∈ [xi−1, xi]

S′(x) =
Si − Si−1

h
+

Mi−1

2di(1 + dih)
− Mi−1

2di(1 + di(x− xi−1))2
, (2.4)

S′′(x) =
Mi−1

(1 + di(x− xi−1))3
, (2.5)

S′′′(x) = − 3diMi−1

(1 + di(x− xi−1))4
. (2.6)

While the continuity of S and S′′ is guaranteed by the representation (2.3), the
continuity of S′, i.e., S′(xi − 0) = S′(xi + 0), i = 1, . . . , n − 1, with the help
of (2.4), leads to the equations

Si − Si−1
h

+
Mi−1h

2(1 + dih)2
=
Si+1 − Si

h
− Mih

2(1 + di+1h)
.

From last two equations of (2.2) we get

1 + dih =

(
Mi−1

Mi

)1/3

and, thus, we have

M
2/3
i

(
M

1/3
i−1 +M

1/3
i+1

)
=

2

h2
(Si−1 − 2Si + Si+1), i = 1, . . . , n− 1. (2.7)

These interior equations of the quadratic/linear rational spline of class C2 hold
naturally in the case Mi = 0 (then Mi−1 = 0 and Mi+1 = 0) because then
the spline is a linear function and (2.7) expresses the fact that its second order
divided difference is equal to zero.

In interpolation problem, for given data yi, i = 0, . . . , n, we look for a
spline S such that

S(xi) = yi, i = 0, . . . , n. (2.8)

In addition, we set the boundary conditions

S′(a) = α1, S′(b) = α2 (2.9)

or

S′′(a) = α1, S′′(b) = α2 (2.10)

for given α1 and α2, which we will specify later.
Actually, interpolating quadratic/linear rational spline is completely deter-

mined via the parameters M0, . . . ,Mn. They could be found from a nonlinear
system consisting of internal equations (2.7) where the values S0, . . . , Sn are
replaced from (2.8) and two boundary conditions from (2.9), (2.10) in different
endpoints.



Quadratic/Linear Rational Spline Interpolation 253

3 Second Moments of the Interpolant

In this section we study the nonlinear system with respect to the unknowns
M0, . . . ,Mn.

Suppose that we have a sufficiently smooth function y : [a, b]→ R to inter-
polate. Denote yi = y(xi), i = 0, . . . , n, similar notation will be used in the
case of derivatives.

Let us write equations (2.7) with replaced values Si from (2.8) in the form

ϕi(Mi−1,Mi,Mi+1) = M
2/3
i

(
M

1/3
i−1 +M

1/3
i+1

)
− 2

h2
(yi−1 − 2yi + yi+1) = 0,

i = 1, . . . , n− 1, (3.1)

introducing at the same time functions ϕi. Using at (3.1) the Taylor expansion
and considering the boundary conditions (2.10) we have the system

M0 − α1 = 0,

ϕi(y
′′
i−1, y

′′
i , y
′′
i+1) +

∂ϕi
∂Mi−1

(y′′i−1, y
′′
i , y
′′
i+1)(Mi−1 − y′′i−1)

+
∂ϕi
∂Mi

(y′′i−1, y
′′
i , y
′′
i+1)(Mi − y′′i )

+
∂ϕi

∂Mi+1
(y′′i−1, y

′′
i , y
′′
i+1)(Mi+1 − y′′i+1) +

ϕ′′i
2!

(ξλ)h̄2 = 0,

i = 1, . . . , n− 1,

Mn − α2 = 0

(3.2)

with the difference vector h̄ = (Mi−1 − y′′i−1,Mi − y′′i ,Mi+1 − y′′i+1), some
number λ ∈ (0, 1) and ξλ = (y′′i−1, y

′′
i , y
′′
i+1) + λh̄. From (3.1) we calculate for

i = 1, . . . , n− 1

∂ϕi
∂Mi−1

(Mi−1,Mi,Mi+1) =
1

3

(
Mi

Mi−1

)2/3

,

∂ϕi
∂Mi

(Mi−1,Mi,Mi+1) =
2

3

((
Mi−1

Mi

)1/3

+

(
Mi+1

Mi

)1/3)
,

∂ϕi
∂Mi+1

(Mi−1,Mi,Mi+1) =
1

3

(
Mi

Mi+1

)2/3

. (3.3)

Suppose in the following that y ∈ C4[a, b]. We assume that y′′(x) > 0 for all
x ∈ [a, b] or y′′(x) < 0 for all x ∈ [a, b] which means that y or −y is strictly
convex. Let us expand yi−1, yi+1, y′′i−1 and y′′i+1 at the point xi by Taylor
formula up to the forth derivative as

yi−1 = yi − hy′i +
h2

2
y′′i −

h3

6
y′′′i +

h4

24
yIVi + o

(
h4
)
,
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yi+1 = yi + hy′i +
h2

2
y′′i +

h3

6
y′′′i +

h4

24
yIVi + o

(
h4
)
,

y′′i−1 = y′′i − hy′′′i +
h2

2
yIVi + o

(
h2
)
,

y′′i+1 = y′′i + hy′′′i +
h2

2
yIVi + o

(
h2
)
.

First two expansions give us

2

h2
(yi−1 − 2yi + yi+1) = 2y′′i +

1

6
h2yIVi + o

(
h2
)
.

Then by (3.3) direct calculations yield

∂ϕi
∂Mi−1

(y′′i−1, y
′′
i , y
′′
i+1) =

1

3
+

2

9
h
y′′′i
y′′i
− 1

9
h2
yIVi
y′′i

+
5

27
h2
(
y′′′i
y′′i

)2

+ o
(
h2
)
,

∂ϕi
∂Mi

(y′′i−1, y
′′
i , y
′′
i+1) =

4

3
+

2

9
h2
yIVi
y′′i
− 4

27
h2
(
y′′′i
y′′i

)2

+ o
(
h2
)
,

∂ϕi
∂Mi+1

(y′′i−1, y
′′
i , y
′′
i+1) =

1

3
− 2

9
h
y′′′i
y′′i
− 1

9
h2
yIVi
y′′i

+
5

27
h2
(
y′′′i
y′′i

)2

+ o
(
h2
)

and also by (3.1)

ϕi(y
′′
i−1, y

′′
i , y
′′
i+1) =

1

6
h2yIVi −

2

9
h2

(y′′′i )2

y′′i
+ o
(
h2
)

which we replace in (3.2). We look for the solution of the obtained system such
that

Mi = y′′i + h2
[
ψ(y)

]
i
+ βi, i = 0, . . . , n,

where we suppose the function ψ(y) to be continuous. Then

[ψ(y)]i−1 = [ψ(y)]i + o(1), [ψ(y)]i+1 = [ψ(y)]i + o(1).

The entries in the matrix ϕ′′i as second order partial derivatives of ϕi could be
calculated from (3.3). They contain a multiplier M−1j , j = i − 1, i, i + 1, of
the expressions in (3.3) and are of order O(1) provided we suppose, e.g., that
βi = O(h). Then, in the case βi = O(h2), due to the three-diagonality of the
matrix ϕ′′i , we have ϕ′′i (ξλ)h̄2 = O(h4) and the system (3.2) could be written
as 

y′′0 + h2
[
ψ(y)

]
0

+ β0 − α1 = 0,

1

6
h2yIVi −

2

9
h2

(y′′′i )2

y′′i

+

(
1

3
+

2

9
h
y′′′i
y′′i
− 1

9
h2
yIVi
y′′i

+
5

27
h2
(
y′′′i
y′′i

)2)(
h2
[
ψ(y)

]
i
+ βi−1

)
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+

(
4

3
+

2

9
h2
yIVi
y′′i
− 4

27
h2
(
y′′′i
y′′i

)2)(
h2
[
ψ(y)

]
i
+ βi

)
+

(
1

3
− 2

9
h
y′′′i
y′′i
− 1

9
h2
yIVi
y′′i

+
5

27
h2
(
y′′′i
y′′i

)2)(
h2
[
ψ(y)

]
i
+ βi+1

)
+ o
(
h2
)

= 0, i = 1, . . . , n− 1,

y′′n + h2
[
ψ(y)

]
n

+ βn − α2 = 0.

(3.4)

Determine the function ψ(y) so that the coefficient at h2 in interior equa-
tions is equal to 0. This gives

ψ(y) = − 1

12

(
yIV − 4

3

(y′′′)2

y′′

)
.

Let us choose α1 and α2 so that β0 = o(h2) and βn = o(h2) (e.g., it may
be β0 = βn = 0), thus, we pose the boundary conditions (2.10) in the form

S′′(a) = y′′(a)− h2

12

(
yIV (a)− 4

3

(y′′′(a))2

y′′(a)

)
+ o
(
h2
)
,

S′′(b) = y′′(b)− h2

12

(
yIV (b)− 4

3

(y′′′(b))2

y′′(b)

)
+ o
(
h2
)
. (3.5)

Finally, we get from (3.4) a system of the form Aβ = Φ(β) with respect to the
unknowns β = (β0, . . . , βn) having the matrix A with diagonal dominance in
rows and the components of Φ depending continuously on β. The equivalent
system β = A−1Φ(β) has a solution by Bohl–Brouwer fixed point principle
because A−1Φ maps a set K = [−ch2, ch2]n+1 for some c > 0 into itself due
to the fact that, for β = O(h2), we have Φ(β) = o(h2). Recall that the
solution of the interpolation problem is unique and, consequently, β is uniquely
determined. Thus, it holds βi = o(h2), i = 0, . . . , n, and we arrive at the
estimate

Mi = y′′i −
h2

12

(
yIVi −

4

3

(y′′′i )2

y′′i

)
+ o(h2), i = 0, . . . , n. (3.6)

Note that in the case yIV ∈ Lipα, 0 < α ≤ 1, we have the error terms
O(h2+α) instead of o(h2) in all earlier expansions and estimates.

4 Expansions of the Interpolant

In this section the expansions of interpolants on the whole particular interval
will be established.

We still assume that y ∈ C4[a, b]. In the interval [xi−1, xi] let x = xi−1+th,
t ∈ [0, 1]. Replacing Si−1 and Si in (2.3) and (2.4) by yi−1 and yi, respectively,
we write them in the form

S(x) = yi−1 −
t(1− t)h2Mi−1

2(1 + dih)(1 + dith)
(4.1)

Math. Model. Anal., 18(2):250–259, 2013.
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and

S′(x) =
yi − yi−1

h
+

(t− 1 + t(1 + dith))hMi−1

2(1 + dih)(1 + dith)2
. (4.2)

Using also 1 + dih = (Mi−1/Mi)
1/3 and (3.6) we establish with the help of

Taylor formula the expansion

1 + dith = 1 + t

(
−h

3

y′′′i
y′′i

+ h2
(

1

6

yIVi
y′′i
− 1

9

(
y′′′i
y′′i

)2))
+ o
(
h2
)
.

This allows to express similarly (1+dith)2, (1+dith)3, (1+dith)4 and di needed
in (4.1), (4.2), (2.5), (2.6). Finally, the Taylor expansion in x ∈ [xi−1, xi] gives

S(x) = y(x)− t2(1− t)2

24
h4
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
+ o
(
h4
)
, (4.3)

S′(x) = y′(x)− t(1− t)(1− 2t)

12
h3
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
+ o
(
h3
)
, (4.4)

S′′(x) = y′′(x)− 1− 6t(1− t)
12

h2
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
+ o
(
h2
)
, (4.5)

S′′′(x) = y′′′(x) +
1− 2t

2
h

(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
+ o(h). (4.6)

Note that (4.5) at x = xi coincides with (3.6).

We specified boundary conditions (2.10) by (3.5). Conditions (2.9) have to
be used in the form

S′(a) = y′(a) + o
(
h3
)
, S′(b) = y′(b) + o

(
h3
)
. (4.7)

Suppose that y ∈ C5[a, b]. The reasoning of Section 3 gives then (3.6) with
the rest term o(h3) instead of o(h2). Now we obtain

1 + dith = 1 + t

(
−h

3

y′′′i
y′′i

+ h2
(

1

6

yIVi
y′′i
− 1

9

(
y′′′i
y′′i

)2)
+ h3

(
− 1

36

yVi
y′′i

+
1

108

y′′′i y
IV
i

(y′′i )2
+

1

81

(
y′′′i
y′′i

)3))
+ o
(
h3
)

and then for x ∈ [xi−1, xi]

S(x) = y(x)− t2(1− t)2

24
h4
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
− t(1− t)(1− 2t)(1 + 3t(1− t))

180
h5
(
yV (x)− 10

3

y′′′(x)yIV (x)

y′′(x)
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+
20

9

(y′′′(x))3

(y′′(x))2

)
+ o
(
h5
)
, (4.8)

S′(x) = y′(x)− t(1− t)(1− 2t)

12
h3
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
− 2− 45t2(1− t)2

360
h4yV (x) +

1− 24t2(1− t)2

54
h4
y′′′(x)yIV (x)

y′′(x)

− 2− 51t2(1− t)2

162
h4

(y′′′(x))3

(y′′(x))2
+ o
(
h4
)
, (4.9)

S′′(x) = y′′(x)− 1− 6t(1− t)
12

h2
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
+
t(1− t)(1− 2t)

6
h3
(
yV (x)− 4

y′′′(x)yIV (x)

y′′(x)
+

28

9

(y′′′(x))3

(y′′(x))2

)
+ o
(
h3
)
, (4.10)

S′′′(x) = y′′′(x) +
1− 2t

2
h

(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
+

1− 6t(1− t)
12

h2
(
yV (x)− 16

3

y′′′(x)yIV (x)

y′′(x)
+

44

9

(y′′′(x))3

(y′′(x))2

)
+ o
(
h2
)
. (4.11)

The boundary conditions (2.9) have to be specified now as

S′(a) = y′(a)− h4
(

1

180
yV (a)− 1

54

y′′′(a)yIV (a)

y′′(a)
+

1

81

(y′′′(a))3

(y′′(a))2

)
+ o
(
h4
)
,

S′(b) = y′(b)− h4
(

1

180
yV (b)− 1

54

y′′′(b)yIV (b)

y′′(b)
+

1

81

(y′′′(b))3

(y′′(b))2

)
+ o
(
h4
)
.

(4.12)

We have proved the following

Theorem 1. Let y (or −y) be a strictly convex function. If y ∈ C4[a, b] then
the quadratic/linear rational spline S of smoothness class C2 satisfying inter-
polation conditions (2.8) and boundary conditions (3.5) or (4.7) expands as
shown in (4.3)–(4.6). In the case y ∈ C5[a, b] the expansions (4.8)–(4.11) hold
provided the boundary conditions (3.5) with the rest terms o(h3) instead of o(h2)
or (4.12) are used.

Remark. If yIV ∈ Lipα or yV ∈ Lipα, 0 < α ≤ 1, then in previous formulae
all the rest terms written as o(hk) for some k could be replaced by O(hk+α).

Basing on expansions (4.4)–(4.6) it is now immediate to obtain supercon-
vergence assertions. From (4.4) we get S′(x) = y′(x) +O(h4) in points x = xi
and x = (xi−1+xi)/2, (4.5) yields S′′(x) = y′′(x)+O(h3) in points x = xi+th,
corresponding to t = (3 ±

√
3 )/6 and (4.6) gives S′′′(x) = y′′′(x) + O(h2) in

points (xi−1 + xi)/2.

Math. Model. Anal., 18(2):250–259, 2013.
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Expansions for cubic spline interpolants were known earlier. They are given,
e.g., in [13] in the case y ∈ C5[a, b], for x ∈ [xi−1, xi]

S(x) = y(x)− t2(1− t)2

24
h4yIV (x)

− t(1− t)(1− 2t)(1 + 3t(1− t))
180

h5yV (x) + o
(
h5
)
,

S′(x) = y′(x)− t(1− t)(1− 2t)

12
h3yIV (x)− 2− 45t2(1− t)2

360
h4yV (x) + o

(
h4
)
,

S′′(x) = y′′(x)− 1− 6t(1− t)
12

h2yIV (x) +
t(1− t)(1− 2t)

6
h3yV (x) + o

(
h3
)
,

S′′′(x) = y′′′(x) +
1− 2t

2
hyIV (x) +

1− 6t(1− t)
12

h2yV (x) + o
(
h2
)
.

We see that the superconvergence takes place in the same points as well for
quadratic/linear rational and cubic spline interpolants.

5 Numerical Examples

We interpolated the function y(x) = x−2 on the interval [−2,−0.2] by quad-
ratic/ linear rational spline S as described in Section 2. The boundary condi-
tions (2.10) with

α1 = y0 +
2

3
h2

1

x60
, α2 = yn +

2

3
h2

1

x6n

were used. The “three-diagonal” nonlinear system (3.2) to determine the
values Mi was solved by Newton’s method and the iterations were stopped
at ‖Mk − Mk−1‖∞ ≤ 10−10, Mk being the sequence of approximations to
the vector M = (M0, . . . ,Mn). The errors ε′n = S′(zi) − y′(zi) and ε′′′n =
S′′′(zi)− y′′′(zi) were calculated in certain superconvergence points zi. Results
of numerical tests are presented in Tables 1–2.

Table 1. Numerical results for ε′n = S′(−1.1)− y′(−1.1).

n 16 32 64 128 256

ε′n 1.1788 · 10−5 7.5539 · 10−7 4.7479 · 10−8 2.9716 · 10−9 1.8580 · 10−10

ε′n
2
/ε′n 15.6055 15.9101 15.9774 15.9938

We see from Tables 1 and 2 the superconvergence results predicted by the-
oretical estimates.



Quadratic/Linear Rational Spline Interpolation 259

Table 2. Numerical results for ε′′′n = S′′′(zi)− y′′′(zi), i = 1, 2.

z1 = a+b
2

− h
2

z2 = a+b
2

+ h
2

n ε′′′n ε′′′n
2
/ε′′′n ε′′′n ε′′′n

2
/ε′′′n

16 −6.9813 · 10−3 −1.4140 · 10−2

32 −2.1037 · 10−2 3.3186 −3.0075 · 10−3 4.7017
64 −5.7679 · 10−4 3.6473 −6.8979 · 10−4 4.3600

128 −1.5091 · 10−4 3.8221 −1.6504 · 10−4 4.1796
256 −3.8583 · 10−5 3.9113 −4.0362 · 10−5 4.0889
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