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Abstract

One of the challenges of model-based engineering is traceability: the ability to relate
the set of models developed during the design stages to the implemented system.
This thesis develops a language specific method for creating bidirectional traceability,
a mapping between model and implementation, suitable for tracing requirements
from model through implementation and vice versa. The mapping is created as a by-
product of code generation and reverse engineering, and can be used to subsequently
synchronize changes between the model and implementation.

The creation of the mapping is specifically demonstrated through generating Java
code from an abstract state machine (ASM) based modeling language, called the
Timed Abstract State Machine (TASM) language. This code generation process in-
volves a series of three transformations. The first transformation creates a specialised
System Dependency Graph (SDG) called a TASM SDG from a TASM specification.
The second uses Triple Graph Grammars to transform the TASM SDG to a Java SDG
(JSDG). The applied grammars are saved as the mapping information. The third
transformation procedurally generates Java code. In order to make this methodology
possible, this thesis introduces the TASM SDG, as well as a novel algorithm, generally
applicable to ASM languages, that explicates state transitions.

The approach presented extends the bidirectional traceability capabilities inherent
in the TASM language to Java. The code generation technique is demonstrated
using an industrial case study from the automotive domain, an Electronic Throttle
Controller (ETC).
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Chapter 1

Introduction

In this chapter we present an overview of the thesis. Section 1 states the objec-

tive. Section 2 presents the context in which that objective was achieved. Section 3

presents some background for the context. Section 4 uses that background to frame

the motivations for this research. Sections 5 and 6, summarize the important points

of the research and its innovations. Finally Section 7 lays out the remainder of the

thesis.

1.1 Objective

The objective of this thesis is to describe a methodology for creating bidirectional

traceability information between an Abstract State Machine (ASM) model of a sys-

tem and its implementation. By implementation, we refer to a program written in a

procedural manner (no classes/objects). The language in which the implementation

is written, is referred to as the implementation language, which is required to exe-

cute sequentially and use variables. Such languages usually target a von Neumann

architecture.

The framework used by the methodology should be generally applicable such that

it can be used for the model-based software engineering processes of code generation,

reverse engineering, and synchronization. Where: Code generation is, as its name

implies, the automated creation of implementation code from a model[s]. Reverse



engineering is the dual of code generation, and involves the extraction of a model[s]

from code. Synchronization is the process of merging changes from either the model[s],

implementation code, or both, to produce up-to-date model[s] and implementation.

1.2 Context

The work is achieved in the context of the Hi-Five Framework, an integrated frame-

work for the validation and verification of embedded real-time systems. The frame-

work uses a model-based approach to software engineering, with a custom modeling

language based on Abstract State Machine theory, called the Timed Abstract State

Machine (TASM) language.

As a result of the context, the work was impacted in two important ways. First,

our approach to achieving bidirectional traceability is restricted to two languages: the

TASM modeling language and the Java implementation language. Second, one of the

benefits of the Hi-Five Framework and, in general, model-based software engineering,

is the ability to prove various correctness properties of a model prior to its imple-

mentation. In order to preserve that correctness from model to implementation, our

approach will focus on using functional correctness preserving traceability relations.

1.2.1 Modeling Language - TASM

For a modeling language, the Timed Abstract State Machine (TASM) language was

used. The TASM language allows for a text-based, instead of graphical, expression

of ASM theory [23, 27] which explicitly captures timing and resource consumption.

TASM is also capable of representing multiple concurrently operating hierarchial

ASMs with synchronization primitives. This language forms the basis of a larger

body of work called the Hi-Five framework, which leverages state-of-the-art model

checkers for the validation and verification of embedded real-time systems represented

with the TASM language [33]. This research extends the traceability already avail-

able in this framework between equivalent TASM models of different levels of detail

to implementation code.



In order to support TASM, a GUI based IDE was developed called the TASM

Tool. The TASM Tool serves as the implementation of the Hi-Five framework and

provides a convenient interface to the associated analysis engines.

1.2.2 Implementation Language - Java

Java was chosen as the implementation language due to its increasing popularity and

the increasing popularity of object oriented development. While this thesis only uses

the functional aspect of Java (i.e. static methods and fields), the use of Java should

make it easier to extend this research to incorporate objects in the future.

From hereafter, examples and statements dependent on the language choice will

explicitly state TASM or Java. The terms "model" and "specification" will be used

interchangeably to refer to a document written in an ASM language. The terms

"code" or "implementation" will be used to refer to the document written in an

implementation language. Chapter 2 will elaborate on ASMs, as well as what subsets

of the TASM and Java language are supported.

1.3 Background

In this section, we provide a background on a variety topics important towards under-

standing the context. We specifically present: correctness, software and model-based

software engineering, and traceability. We spend a large portion of the background

presenting traceability, and its use in verification and validation activities to stress

its importance in the field of software engineering.

1.3.1 Correctness

When we create a computer system, we want it to function 'correctly.' But, there are

many ways to classify the correctness of a computer system. We most commonly wish

a computer to exhibit functional correctness: given a certain input (stimulus), the

computer should produce a certain output (response). But, there are also many forms



of non-functional correctness, including timing, power consumption, heat dissipation,

and resource consumption, that we may want a system to satisfy.

To help understand the difference between the two, we present a system that

requires both. A real-time system is a computer system that must exhibit both

functional and timing or temporal correctness. A computer system is said to be

temporally correct when it accomplishes a task within certain time bounds. This

bound is often expressed as an upper limit, or deadline. A functionally correct system

which produces an output after the deadline is said to have "missed the deadline."

How a missed deadline impacts the correctness of the system depends on whether

the system is a soft or hard real-time system. In a soft real-time system, a miss may

be acceptable under certain circumstances. In a hard real-time system, they are not.

For example, it may be acceptable for a DVD player to miss rendering frames when

switching between menus (soft real-time), but unacceptable for a missile navigation

system to miss updating its position (hard real-time). Since specifying an appropriate

deadline for a task is highly dependent on the hardware on which the task is running,

one way to help bound the worse case execution time is to design the software and

hardware of a computer system together. Real-time systems designed in this manner

are referred to as real-time embedded systems.

In this thesis, we will focus on using and preserving functional correctness only.

However, this research was completed in the context of extending an existing body

of research benefiting real-time systems development so an understanding of non-

functional correctness is important to appreciate what aspects of the TASM language

we will not support.

1.3.2 Software Engineering

Software engineering is the set of techniques, processes, and tools used to develop

computer systems [43]. Traditionally, a software engineering project is divided into

life cycle phases starting with requirements engineering, design, implementation, test-

ing, and ending with maintenance [46]. While these phases are generally completed in

order, the sequence may change depending on the process model employed. Projects



which employ this exact sequence are said to use the waterfall-model. Projects with

many intermediate demonstrations may favor a spiral-model, which repeats the 4

steps of requirements engineering, design, implementation and testing for each in-

crease in functionality. There are many such process models and the choice of which

model to use is often driven by budgetary constraints, deadlines, software size, tra-

dition, as well as the degree of correctness required. The techniques and tools used

during the various phases can be equally varied, but is traditionally paper-oriented:

and involve preparing a requirements document, architecture diagrams, and interface

specifications prior to implementation [3, 1].

Model-based software engineering (MBSE), also known as model-driven software

engineering (MDSE) and model-driven architecture (MDA), is an approach towards

software engineering in which the techniques and tools used revolve around developing

models. Not to be confused with process models, the word 'model' in MBSE refers

to the different types or levels of abstraction of a system's desired behavior (like

an input-output or timing model). Used primarily during the design phase, the

gradations of detail possible with models make them ideal for bridging the discrete

phases of requirements engineering and implementation. But, models can also be used

to facilitate the other phases through generating code and identifying test cases. A

key benefit of this approach is the ability to uncover defects early in the development

process. A draw back is that the models can easily become outdated or disconnected,

requiring an additional effort to propagate design choices between them.

How a model is specified depends on the modeling language used. Modeling lan-

guages can be graphical or text-based, formal (with precise syntax) or informal.

Formal languages have the benefit of expressing behaviors verifiable by automated

model-checkers and theorem provers, but can be difficult to understand and may

be restrictive in what they can express. In general, certain languages can be better

suited for representing certain behaviors, and each language comes with varying levels

of tool support for automating engineering activities. The benefits of a model-based

approach occur when a literate notation with formal semantics is used, so the models

can serve the dual purpose of being documentation and an analysis mechanism [33].



Two popular examples of modeling languages come from MBSE standards pro-

posed by two professional groups. The Object Management Group (OMG) founded

the Unified Modeling Language (UML), a graphical language with subsets allowing

the creation of a wide variety of diagrams capable of expressing structure, flow, use-

case, and timing. As of the writing of this thesis, the most current version of UML

is 2.0, which adds diagrams for expressing functional behavior. But, a lack of formal

semantics limits the amount of automated analysis possible. The Architecture and

Analysis Language (AADL) is a modeling language endorsed by the Society of Auto-

motive Engineers (SAE). In contrast to UML, AADL has both textual and graphical

formal semantics, allowing AADL models to be analyzed for reliability, data quality,

timing, security, and resource consumption. However, AADL models are only suited

to express high level component interaction, and lacks semantics for expressing com-

ponent level behavior.

The modeling language used in this thesis is the Timed Abstract State Machine

(TASM) language [33]. In comparison to UML and AADL, TASM's basis in ASM

theory allows the language to overcome several of the afore mentioned shortcom-

ings. Namely, it provides a single set of formal semantics capable of unifying several

behaviors in the same model. And, it allows hierarchical composition, suitable for

representing component behaviors. However, it was not intended to supplant either

language: as it lacks a graphical representation and cannot explicitly represent data

structures and time lines.

1.3.3 Traceability

Traceability, in the most general sense, is the ability to study out in detail or step

by step. In software engineering, 'traceability' is a property of the software develop-

ment process, it is the presence of information that relates one step of development

to another. Note that this information relates to how software is made, and not how

it functions (i.e. monitoring execution traces). For example, we can add traceability

to a system by recording that a fragment of code was written to fulfill a requirement.

However, this overarching notion of traceability can be decomposed: The develop-



ment process may involve creating architecture diagrams from the requirements, then

inheritance models, and state-charts, prior to writing any code. Even within the

code, abstractions are made to make the interface distinct from the underlying code

or drivers. Software traceability can therefore consist of mapping requirements to

a model, from a model to a refined model, model to code, one version of code to

another, or between any abstraction level there-in.

Forward traceability refers to the addition of information to a higher level of ab-

straction that state how it relates to a lower, more detailed level of abstraction.

Whereas backward traceability adds information to lower abstractions that state how

it relates to a higher level. For a simple software development cycle where code is

directly created from a set of requirements, forward traceability may take the form of

adding lines beneath each requirement in a requirements document stating which sec-

tion of code satisfies it, and backward traceability could be supplied in code comments

stating which requirement a method satisfies.

But, maintaining forward and backward traceability information does not need to

be so disparate. The term bidirectional traceability unifies these two notions to encom-

pass the idea that traceability is more naturally described as a bidirectional mapping

between a higher and lower level of abstraction. Instead of maintaining code com-

ments, one popular way of achieving bidirectional traceability is through a traceability

matrix which serves as the bidirectional map. In a requirements traceability matrix,

the rows correspond to different requirements, the columns to different features, and

the body of the matrix correlates features to requirements. For simplicity, the term

traceability will be used hereafter to refer to bidirectional traceability.

1.3.4 Verification and Validation

Maintaining traceability information helps software engineers understand code through

its relation to other models and artifacts. The importance of these traceability rela-

tions and the understanding they entail is formalized in a process called Verification

and Validation.

A major challenge of software engineering is producing software with high-reliability:



high-confidence in its correctness, despite a trend in increasing software size and com-

plexity. In mission critical software, where high-reliability is required, one way to

establish confidence in the correctness of a system is by undertaking Verification

and Validation (V & V) activities in parallel with the software development life cy-

cle. Verification provides quality assurance through documentation of the development

process. Validation provides quality control through testing of the end-product. Both

activities are necessary. Since even small projects cannot be feasibly, exhaustively

tested, verification helps assure correctness for those execution traces that were not

validated. Verification is premised on the notion that software can be "correct by

construction": that thoughtful adherence to a coding and documenting procedure

can help assure reliability.

1.3.5 Traceability in Avionics

Traceability is especially important in large or complex software systems that have

long life-spans requiring upgrade and maintenance. A particularly prevalent example

of such a software system occurs in avionics. Avionics, a contraction of "aviation

electronics", is an example of a real-time embedded system: the term collectively

describes all the electronic and software components involved in a plane's control,

communication, and navigation systems.

Traceability is a key aspect in compliance with DO-178B, "Software Considera-

tions in Airborne Systems and Equipment Certification" [39). Originally created by

the Radio Technical Commission for Aeronautics (RTCA) and the European Organi-

zation for Civil Aviation Equipment (EUROCAE) in 1992, DO-178B is the accepted

guideline for safety-critical software production required for certification of an avion-

ics system by the Federal Aviation Administration (FAA), European Aviation Safety

Agency (EASA), and Transport Canada.

DO-178B specifically calls for a large body of requirements and traceability docu-

mentation to be maintained in parallel with software development to prove that [28]:

(1) The software completely satisfies all the specified system requirements; (2) Every

single code instruction of the software is necessary and serves its intended purpose;



and (3) No unintended code exists in the software, and whatever non-essential code

that may exist for portability, robustness or similar reasons will not detrimentally

impact the software's reliability from a safety perspective.

1.4 Motivation

Traceability is important in the development process, V&V, and maintenance. Main-

taining traceability is important not only during development to ensure the code

satisfies the requirements, but also during debugging and maintenance to understand

why certain code exists and ensure any changes still reflect the requirements.

1.4.1 Decay of Traceability Information

Unfortunately, the natural language documents which are traditionally used to cap-

ture requirements and design decisions, can be ambiguous, miss details, and be ex-

pensive in cost and time to maintain. Maintaining such traceability information is

challenging, even in organizations with established software development processes.

The difficulty arises from many factors, including: the development of software in

different languages, the use of models at different levels of abstraction or expressing

different concepts (i.e. behavioral vs. inheritance structure), processes that do not

enforce the maintenance or creation of traceability links, and a lack of tool support

[34]. Consequently, verifying software or comprehending existing software can require

a lot of time and expense to recreate the connections between seemingly disparate

documents, models, and code.

1.4.2 Related Work - Automating Traceability

In the 80's, computer-aided software engineering (CASE) tools were developed that

could maintain traceability information through the use of a traceability matrix. How-

ever, such tools still relied on the manual entry of traceability relationships. If au-

tomated, the tool would create and store traceability information as a byproduct of



using the tool for an engineering activity, but this usually required a strict adherence

to a particular modeling language or development process [41].

Since the 80's, the software development process has changed greatly. Spiral and

other iterative development models are preferred over document dependent waterfall

models. Procedural programming has been replaced with Object Oriented program-

ming. And, personal computers can now display rich graphics in addition to textual

summaries. These changes sparked development in the area of model-based CASE

tools. Languages such as the Universal Modeling Language (UML) and its many sup-

porting tools, such as UModel, Agile Platform, IBM's Rational XDE, etc... , allow

the graphical modeling of behaviorial and structural aspects of software.

Today, tools such as UModel can not only maintain bidirectional traceability in-

formation between models, but during an expanded set of capabilities including code

generation, reverse engineering, and synchronization. Traceability information relat-

ing to changes to or relationships between models usually take the form of saving

the sequence of user interactions with the tool. However, code generation, reverse

engineering, and synchronization produces code that is usually not modified through

the tool, but an external IDE.

Without the ability to save user interactions as traceability information, and re-

stricted by UML's lack of formal semantics, the resulting traceability information is

primitive, relying on function signatures, class structures, and file names to relate

model to code. Without careful forethought, a major reorganization of names can

obviate the use of the tool and require manual reconciliation.

1.4.3 Related Work - Traceability Recovery

A lot of work has been done to recover traceability information from between model

and code [2, 12, 1, 3]. These approaches to building traceability information require

the analysis of the documentation and code to search for matching 'artifacts,' usually

in the form of similar names. Unfortunately, since these techniques rely on recovery,

the dictionary of traceability information they create is incomplete. Unlike a natural

language document, a TASM language (and all ASM languages) have the formal



semantics required to make them more amenable to such strategies of traceability

recovery. Nevertheless, the traceability information is still imprecise. To this author's

knowledge, there have been no attempts at creating traceability information between

an ASM language and its implementation.

1.5 Approach

In order to achieve bidirectional traceability between TASM and Java, we developed

a mapping between the two languages that consists of a sequence of transformations.

A transformation between languages is a set of rules that describe the conversion of

one syntactic structure into another related syntactic structure. A transformation

from one document to another, such as between an ASM specification and code, is

the application of those rules. By storing the manner in which those rules are applied,

we maintain traceability information.

Our specific approach uses a sequence of transformations that leads through 2

intermediate representations based on the System Dependency Graph (SDG) [26].

One of the representations is a specialized SDG for the TASM language introduced

in this thesis, called the TASM SDG. The other is an existing SDG for the Java

language called the Java SDG (JSDG). The original SDG was an extension of the

Program Dependency Graph (PDG), a concise merging of a control-flow and data

dependency graph that completely describes a program's functional behavior. An

SDG adds to the PDG the ability to model multiple procedures and scope. These

intermediate forms help distill language specific syntax to a set of semantics universal

to both languages. SDGs will be discussed in more detail in chapter 3.

In general, two transformations can be defined between any two structures: a

transformation and its inverse. But, the pairs we are concerned with include the

transformations between a TASM specification and a TASM SDG, between a TASM

SDG and a JSDG, and between a JSDG and Java code [Figure 1-1]. Instead of

storing traceability information for all of those transformations, this thesis defines a

procedural transformation between TASM and TASM SDG, and leverages existing
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Figure 1-1: Proposed Traceability Framework

procedural transformations between Java and the JSDG. For the remaining pair of

transformations between the SDG intermediaries, we use Triple Graph Grammars.

One of the problems when using a typical transformation is that the set of rules

is unidirectional. As a result, the transformation from one document to another only

uses one set of rules and thus only creates traceability in one direction. To overcome

this problem, we use Triple Graph Grammars (TGG), a graph-based language to

describe the transformations between the two SDGs. Each TGG grammar can express

a rule and its inverse. Therefore, recording the transformation from one document

to another using TGG grammars automatically stores both the forward and reverse

traceability information. TGGs will be discussed in more detail in chapter 4.

The approach results in a robust mapping. By composing different TGG gram-

mars, the transformations between the SDGs need not be rigid. SDGs have been

shown to be an efficient graph structure for the code transformations used in com-

piler optimizations, and a large body of work exists describing such transformations.

Instead of just applying a standard set of TGGs to create a JSDG from a TASM SDG

or vice versa, other code transformations can be used to reorganize an SDG. Section

3.1 gives an example to illustrate the importance of robust mapping.



1.5.1 Functional Equivalence

One of the reasons the framework requires so many transformation sequences is a

desire to robustly preserve functional equivalence. That is, to be able to describe

transformations between two programs for all of the different ways each language

can describe the same functional behavior. Unlike the UML tools which must crudely

rely on superficial name and syntax based transformations because the UML language

lacks formal semantics, the TASM modeling language has a well defined set of formal

semantics for which functional behavior can be precisely described.

Functional equivalence is the notion of equivalence used in compiler optimizations

and program slicing, and is the form of equivalence established by the Church-Turing

thesis between recursion, a turing machine, and lambda-calculus. To be more specific,

we will say that two programs are equivalent if for every input they produce the same

output. Figure 1-2 illustrates two functionally equivalent programs that sequentially

call methods, which themselves may not be functionally equivalent. This distinction

between saying two programs are functionally equivalent at the top-level versus say-

ing two programs are functionally equivalent because their underlying structures are

functionally equivalent is important. If traceability information only maps structures

with identical functionality, moving a single line of code from one method to another

would break the mapping, resulting in the false conclusion that the programs are not

equivalent.

1.5.2 Application

The transformation framework can be implemented in a tool and be used for code

generation, reverse engineering, and synchronization [Figure 1-3]. Due to the design

of the framework, any process that uses the framework automatically generates trace-

ability information through the TGGs. The traceability information created aids in

synchronization, but can also have many of its own applications.

At the simplest level, a tool could be built on top of this mapping that adds

comments to TASM indicating which class, method or statement implements that
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Figure 1-3: Code Generation, Reverse Engineering, and Synchronization via a tool

section of the model, and similar comments could be added to the code to indicate

how it was generated. A more sophisticated tool might use the mapping explicitly to

allow clicking on a section of Java to jump to the section of TASM it implements and

vice versa. The traceability information could even be printed as a form of traceability

documentation.

Instead of implementing all of these possibilities, we ground the approach by

using the transformation framework in code generation. Generating Java code from a

TASM specification, involves the sequence of transformations from TASM to TASM

SDG to JSDG to Java. Chapter 4 describes this process as well as reverse engineering

and synchronization.

- Java Code

-Java Code



1.6 Contributions

The approach described is innovative in two ways:

1. A new SDG structure is defined that describes the semantics of the TASM

language.

2. In order to build the dependency subgraph of the TASM SDG, a novel algo-

rithm based on geometry calculations in variable space is used. The algorithm

is generally applicable to ASMs, and finds all the abstract state transitions of

an ASM with bounded variables. This in contrast to many simulation based

approaches which monitor traces of execution and can only provide probabilis-

tic coverage of the transitions [20]. The algorithm is also shown to provably

terminate.

1.7 Thesis Layout

The remainder of this thesis is organized as follows:

Chapter 2 discusses the languages used in this thesis. First, basic ASM theory

is discussed. Then TASM and Java are presented with a summary on the subset of

each language used.

Chapter 3 presents the two innovations: The syntax of the TASM SDG and the

method for extracting the full set of transitions from an ASM. The algorithm is

extended to help build the TASM SDG.

Chapter 4 presents Triple Graph Grammars (TGG) and what subset of the trans-

formation information must be saved to preserve traceability information. The trans-

formation framework is described in terms of its application in code generation, re-

verse engineering, and synchronization.

Chapter 5 presents a case study involving code generation from an electronic

throttle controller. It starts by presenting the state of the current implementation.

Then follows with a summary of the case study and its results.



Chapter 6 finishes the thesis with a summary of the work and possible future

work.
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Chapter 2

Languages

In order to appreciate the difficulty of mapping between two languages, it is impor-

tant to understand that languages can express different notions of computing. This

chapter presents the syntax and semantics of the Abstract State Machine (ASM),

Timed Abstract State Machine (TASM), and Java language. Since TASM is based

on Abstract State Machines (ASMs) and the research is more generally applicable to

ASMs, the chapter starts with a description of the ASM language. Section 2.2 de-

scribes TASM and the subset that can be used for traceability information. Section

2.3 describes Java and its supported subset.

Sections 2.1 and 2.2 paraphrase Chapter 4 of [33], which presents the TASM

language in detail.

2.1 ASM

2.1.1 Origins

Abstract State Machines (ASMs) were originally posited by Yuri Gurevich in the

1980's as a computing machine more generally applicable than a Turing Machine.

He specifically wanted to create a machine capable of simulating "any algorithm,

never mind how abstract"at the level of abstraction of the algorithm [23]. This goal

differentiated his computing machine from Turing's in two important ways: First, his



machine would be able to represent any algorithm. And, second it would be able to

represent the algorithm naturally.

Turing's original thesis can be paraphrased as "every effectively calculable function

is computable by a Turing machine." Where:

" machine - is used here to describe a conceptualized mechanical or electrical

device. For example, Turing envisioned a machine with a head that could

read from and write to cells along an infinite length of tape. The machine is

conceptual in that it is infeasible to actually produce an infinite length of tape.

" effectively calculable - is an intuitive idea that neither Church nor Turning

formally defined. Something is 'effectively calculable' if it is capable of being

calculated by anything or anyone.

" computable - capable of being produced by a machine.

But, an even stronger thesis proved to be true: every algorithm can be simulated

by a Turing machine [35]. The distinction between these theses lies in the difference

between a function and an algorithm. As used in Turing's thesis, a function refers to

the mathematical notion of a function with input and output. Whereas an algorithm is

a method for solving a problem using a finite sequence of instructions. For example,

the greatest common divisor (GCD) of two numbers is a function, but there are

many ways to find the GCD, including a Matrix method and several variations of the

Euclidean algorithm. Savage showed that a Turing machine can not only compute

any function, it can compute the function via any algorithm. Gurevich wanted his

machine to have the same expressive power.

However, expressing any arbitrary algorithm as a Turing machine would require

the translation of that algorithm to a table of operations involving the manipulation

of l's and O's on a tape. The purpose of the resulting Turing Machine would be

difficult to decipher. In contrast, Gurevich wanted a machine that could naturally

simulate any algorithm.

The solution devised was the Abstract State Machine (ASM).



2.1.2 Application

The ability of an Abstract State Machine (ASM) to model any abstraction of an

algorithm naturally and its basis in the formalisms of computing machinery make it

an ideal candidate for system design. Practically, ASMs have been used successfully

on a wide range of applications, ranging from hardware-software systems to high

level system design [9, 10]. It has been used to specify APIs [7] and provide formal

semantics for validating UML models [37]. It has even been used to generate C++

code for train scheduling [8].

Part of the success of ASMs can be attributed to the simplicity of the language

used to specify its behavior. The original language and most variants have semantics

that closely reflect the functional behavior of the machine. Coupled with a small gram-

mar that reflects many existing implementation languages, there is enough evidence

to believe that ASMs provide a literate specification language, this is, a language that

is understandable and usable without extensive mathematical training [14]. The close

relation between the semantics and functional behavior, mean properties of ASMs also

carry over to the language: including the ability to specify an algorithm at any level

of abstraction.

The well-defined formal semantics of the ASM language also make it suitable

for formal verification. ASM specifications are independent of a specific verification

method and can be verified either through manual proofs or through automated

tools [45]. Furthermore, an integral part of ASM theory, is refinement, or the process

of gradually adding details to a system design, which makes ASMs applicable at

various levels of abstraction and allows for incremental design improvements.

2.1.3 Syntax & Semantics

2.1.3.1 Abstract State

An Abstract State Machine, like all state machines, operates by transitioning between

states, where a state is a "full and instantaneous description of an algorithm" [23].

What makes an ASM unique is its use of structures as state.



In mathematics, a structure is a set, along with relations and functions over that

set' For example, a graph can be considered a structure consisting of a set of vertices,

with binary function edge that takes two vertices and returns true or false if an edge

connects them. But, a mathematical structure need not correspond to a physical

realization. The set of all reals and the binary function '+' can also be considered a

structure. The expressiveness of a structure stems from the versatility of functions.

A function can be static or dynamic. A function whose value depends on the state, or

can be assigned, is called dynamic (i.e. a variable or array). A function whose value

depends only on its arguments is static, (i.e. sine, cosine, abs). A function that has

0-arity, takes no arguments, is called a nullary-function. A static nullary function is

a constant (i.e. 7r, e, true, false). A function that returns true, false, or undef is

called relational (i.e. &, =).

This structure based state is a generalization of the state, as used in a Finite

State Machine (FSM). In order to distinguish the two, the generalized state is called

an abstract state. To understand the difference, take for example the game of tic-

tac-toe. Assume whatever algorithm we wish to describe is completely dependent

on the state of the board, that is the location of the X's and O's on a 3x3 grid.

In a FSM, we might identify each state with a label such as: "one X, upper left,

no O's". Even though one might understand the configuration described, for the

purposes of specifying an FSM, a systematic numbering scheme for all 39 states would

have worked just as well. In contrast, an ASM might represent the same state as

"cell(0,0) = X & cell(1,0) = empty & ... & cell(2,2) = empty," where cell is a

binary function that takes grid coordinates and returns the contents of the cell, X,

0, or empty2.

The use of functions (note that equality and boolean operators are also functions)

in specifying state allow an ASM to operate on states in unique ways. For example,

'Formally, a structure consists of a triple: A base set or domain, which is an arbitrary non-empty
set containing, for example, all the numbers, function names, and symbols to be used in representing
the structure; Signatures, which associate a function name with an arity (the number of arguments
the function takes); And an interpretation, which associates with each j-ary function signature, a
mapping "f: (base set)i -- base set.

2The vocabulary (the superset of the base sets of all the states) of this ASM, would be a union
of the relational boolean operators, equality, and {0, 1, 2, grid, X, 0, empty}.



we can change the abstraction level of the algorithm by: changing the vocabulary

used to describe states (use functions row and column instead of grid), or by using

the functions in alternate expressions (instead of states corresponding to board con-

figurations, the states could correspond to 'X winning', '0 winning', 'no winners', and

'undecided'). Additionally, state transitions no longer need to be explicitly named as

moving from state to another. Instead, they can be specified implicitly by changing

the value of a function used in identifying a state. In the above example, setting

cell(1, 0) to 0 would result in a state transition. Incidently, ASMs were originally

called evolving algebras because of this ability to transition between states through

affecting a function.

In the original thesis, abstract states were specifically first order structures, but

higher-order structures could have also been used. Implementations have also diver-

sified the possible state representations to use typed variables.

2.1.3.2 Behavior

The behavior of an ASM can be subdivided into a sequence of computing steps which

modify the global state. The global state refers to the abstract state of the ASM at

any time. It is called 'global' to emphasize the notion that this state must encompass

all the information (not withstanding non-deterministic constructs such as 'choose')

needed to decide the next state transition. Namely, the global state can include the

abstract state of the algorithm, its environment, and the states of other agents/ASMs.

In each step of the ASM, the current global state is checked and accordingly, a

group of atomic updates is applied to yield the next global state. An update set is

the term used to describe the set of atomic updates that are associated with a single

step. A run of an ASM is a sequence of global states, starting with the initial state,

visited by an ASM as a result of executing a sequence of steps. Specifically, a run

can be calculated by sequentially applying the update sets to the global state. In

general, there is no formal requirement concerning what triggers the execution of a

step or the rate at which the steps or executed. Depending on the level of abstraction

being modeled, a step could correspond to a clock cycle, a machine operation, or a



statement execution in a high level programming language.

Concerning interactions with the environment or other agents, an ASM interacts

with the world around it through either directly updating the global state, or indi-

rectly through executing an external function [27, 23].

For the remainder of this thesis, we will call a 'global state' and 'abstract state' a

'state' when the intended meaning is clear.

2.1.3.3 Specification

The program an Abstract State Machine executes is commonly referred to as a spec-

ification. The use of the term specification stems from the foundations of ASMs as

computing machinery, where it specifies how such a computing machine would need

to be configured in order to simulate a particular algorithm. When applied, i.e. used

in model-based software engineering, an ASM specification is also referred to as a

model. We will use the terms interchangeably.

In general, a specification is a document that results from the process of writing

down a system design. It may have its own structure (chapters and sections) and be

composed of several languages, where a language is defined by syntax and semantics.

In relation to ASMs, a specification is usually written in one language, where the

syntax and semantics of the language have been designed to reflect the behavior of

the ASM. As a result, the terminology loses some distinction: The structure of the

specification is incorporated in the syntax of the language.

An ASM specification fundamentally consists of an initial state and a finite set

of rules. Since the initial state is just an ASM's first abstract state, its specification

depends on the type of structure and syntax used by the implementation language;

We defer those details until we discuss a specific language, the TASM language, in

the next section. The rules, however, are usually written in canonical form or block

form. For an ASM that contains n rules, a machine in block form has the following

structure:



R1 mif G1 then E1

R2 if G2 then E2  (4.1)

R, 2 if G, then En

A rule, Ri, consists of a single guard-effect pair 3 , which are usually written as an

if-statement. The guard, Gi, is a boolean expression. The effect, Ej, can be zero or

more assignment or update statements. When a guard evaluates to true, we say the

containing rule is enabled, and apply the effect of the rule to the global state. For

brevity, we also use the word enabled to lazily describe a guard or effect of an enabled

rule.

Relative to the specification, a single step of the ASM has three parts: First, all the

guards are evaluated simultaneously in the current state. Second, all enabled effects

are evaluated in the current state to yield one update set. If there are conflicting

updates, that is, differing assignments to the same term, the update set is empty.

Finally, the update set is applied atomically to the current state to yield the next

state. This process repeats until the step where no rules are enabled, or the update

set is empty (all enabled rules have no effect statements). The consequence of using

atomic actions is that guards cannot have side-effects that modify the state.

2.2 TASM

The TASM language is a modeling language based on ASM specifications, and one of

the two languages between which we seek to provide a bidirectional mapping. This

section starts by introducing the behavior of a Timed Abstract State Machine, then

3 1n [Sequential ASM Thesis], an 'update rule' or 'rule' is a statement, that when executed, alters
the state. The parallel composition of rules (effect), or the presence of a precondition (guard-effect
pair) are also rules. To help distinguish between rules, we adopt the naming convention used in [33]
and refer only to a single guard-effect pair as a rule.



summarizes the syntax and semantics of the TASM language used to specify that

behavior.

2.2.1 Behavior

The Timed Abstract State Machine (TASM) is an extension of the ASM, with the

ability to simulate time and resource consumption.

2.2.1.1 Time

Time is introduced in TASM using the durative action paradigm. In the original

ASM each step is instantaneous. In contrast, each step of a TASM can have an

associated duration. The evaluation of the guards to determine which rule is enabled

is instantaneous, and so it the creation of the update set, but the update set won't be

applied until the duration has elapsed. During which time, the TASM is considered

busy and can do no other work. This delay simulates an implementation where the

actual effects take time to create and apply. The duration of one run of a TASM is

therefore the sum of the duration of all of its steps.

2.2.1.2 Resource

Resources are primary used as a simulation and verification device to ensure a machine

can execute with a fixed quantity of real-world resources. As a result, a resource does

not interact with the rules of the ASM: A resource cannot be used to identify or

compute a state. Additionally, resources cannot be destroyed or created, so the total

amount of any resource is fixed.

A resource is a global quantity of finite size. The quantity is considered 'global'

because it can be used by all TASMs operating in the same environment, and 'finite'

because there is a limited amount available. A resource must also be reusable. If a

quantity of resource is considered used when it is deducted from the global quantity,

a reusable resource is one where any used quantity can also be added back to the

global quantity. Memory and communication bandwidth are examples of a resource.



But, fuel, for example, which can be consumed, is not (fuel can be modeled in TASM

by using a global variable as a decrement counter).

Each step of a TASM can use a fixed quantity of each resource for the duration of

its execution. The quantity used is deducted from the global quantity for the duration

of the step, and returned to the global quantity upon completion of the step. The

evaluation of guards is assumed use no resources. If the global quantity of a resource

ever falls below zero, the behavior is undefined.

2.2.1.3 Environment

Beyond the additions of time and resource, the behavior of a TASM also varies in

the manner in which it interacts with the environment and other agents. There is no

notion of an external function (a function that is defined outside of the ASM). Instead,

a TASM interacts externally by monitoring (reading) and controlling (writing) values

defined in a global scope, called the environment. Additional TASMs defined in the

same environment can also monitor and control those values, thus taking the place

of external functions. The advantage of this approach is that the behavior of all the

agents and environment can be captured in the same formalism for simulation and

verification. The disadvantage is that it can blur abstraction boundaries between

agents. For example, when modeling a 2 agent system, consisting of a thermostat

and air conditioning (AC) unit, instead of calling an external function turnOnACO,

the TASM modeling the thermostat might need to explicitly set the values for the

AC's power and fan speed.

The TASM language mitigates this by introducing auxiliary machines and hierar-

chical composition, as used in XASM, which compartmentalizes code for reuse.

2.2.2 Language Introduction

The language used to specify the behavior of a TASM is called the TASM language.

The TASM language was designed as the textual input language of the TASM toolset,

an IDE with bundled simulation and state-of-the-art verification tools important for



model-based software engineering. The language itself was designed to be a formal

and literate modeling language, making it suitable for simulation and to serve as a

human-readable design specification. A document written in the TASM language is

called a TASM specification, or specification, for short.

2.2.2.1 Features

At its heart, the TASM language is an extension of the Abstract State Machine (ASM)

specification, with facilities to specify time and resource consumption. The subset of

the ASM specification included in the TASM language is the same as explained in

[45], which includes conditional statements and assignments, but excludes the forall,

choose, and import construct.

The language also allows the expression of a TASM in component machines called

main machines, sub machines, and function machines. Through the parallel compo-

sition of main machines, the language allows for more than one TASM to interact in

the same environment. And through the hierarchial composition of machines, it facil-

itates readability and code reuse. To emphasize this terminology, the term machine

will be used to refer to the syntactic components that compose a TASM.

To further facilitate readability, the language also allows a plain-language name

and description to be paired with many language constructs.

2.2.2.2 Implementation and Limitations

In its current revision (1.0.0.74a), the TASM toolset is implemented in Java and

provides a graphical form-interface to create the constructs of the language. The

close tie the language has with its implementation is reflected in the syntax of the

language, and makes manual editing difficult. Most evidently, a specification written

in the language is stored in one . tasm file. Additionally, specific whitespace characters

are used to delimit some constructs.

The language has also inherited traits from its implementation. Since it is inter-

preted during simulation, the data types in TASM reflect those primitive data types

available in the Java language.



LightSwitchExample.tasm
ENVIRONMENT:

k4-TYPES: C
switchstatus := (UP, DOWN}; 6

VARIABLES:

Float[0.0,100.0] intensity := 0.0;

switch status switch : DOWN;

Figure 2-1: title-body nesting structure

2.2.2.3 Structure and Whitespace

The syntax of the TASM language creates a structure similar to that of an outline.

The structure is composed of a recursive nesting of title-body pairs [Figure 2-1]. This

format facilitates its use as a human-readable specification.

The title denotes the contents of the body that follows it. Syntactically, titles are

a language defined sequence of characters that act as delimiters. A title can consist

of capital letters, space, dash, and underscore, ends with a semicolon, and resides on

its own line. When a title is nested in a body, it is indented by one tab character for

each nesting.

The body can consist of nothing, a nested set of title-body pairs, or non-structural

expressions. Syntactically, a body can contain any whitespace character and does not

need to be indented to correspond to its title.

As mentioned before, the toolset uses a form-interface for creating a TASM specifi-

cation, so almost all of the structural syntax used in the TASM language is generated

automatically.

2.2.3 Overview

The remainder of this section presents a summary of the syntax and semantics of

the TASM language. The next section (2.2.4), on syntax, presents the basic build-

ing blocks of the language: data types, variables, operators, the environment, rules,



machines, and specification. The subsequent section (2.2.5) presents the semantics of

parallel and hierarchial composition. Those already familiar with the syntax of the

language will find that it is sufficient to skim section 2.2.4 and just read the semantics.

A description of the resource modeling and channel language features is omitted,

because they will not be preserved in the bi-directional mapping we seek to create.

Other details of the language including whitespace usage, whether a named construct

requires a functional name or plain-language name, and whether certain titles are

required are also omitted for clarity. For a complete set of concrete syntax and

semantics, please refer to Appendix A for the language reference.

2.2.3.1 Syntax Conventions

The syntax will be presented in two ways. It will be formally described using discrete

mathematics (i.e. set theory) in an abstract syntax, and examples will be given in

the concrete syntax implemented by the language's compiler. The abstract syntax

presented will be equivalent to that presented in [33], but will vary slightly in vocab-

ulary and organization. Namely, a set containing only elements, S, will be written in

script, S.

2.2.3.2 Light Switch Example

We will use a simple example to illustrate the syntax and semantics of the TASM

language. The basic example will involve a light switch that controls a light bulb.

When the switch is turned on, or is in the "UP" state, the bulb will increase in

brightness from 0 to a maximum intensity of 100, at a rate of +1 intensity per second.

At any time the switch can be turned off, or put in its "DOWN" state, which forces

the light bulb to immediately go dark. Figure 2-2 illustrates this example as a finite

state machine (FSM). Figure 2-3 formalizes the FSM as a Moore machine, where the

arcs represent state transitions and are labeled with the triggering events and the

states have associated entry actions.

The Moore machine formulation provides some insight into how TASMs interact

with the environment. A Moore machine uses entry actions, which are executed upon
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Figure 2-2: Light Switch Example

entering a state, to influence the environment and uses events to react to the environ-

ment. However, a TASM can only interact with the environment by monitoring and

controlling variables. As a result, entry actions and events must be represented by

variables. In this case, the intensityo entry action can be replaced by a variable,

intensity, which models the intensity of the light. The UP and DOWN events can be

replaced by a variable status, that models the status of the light switch.

To formulate this example, at its current level of abstraction in a TASM specifica-

tion, two variables and two main machines (a main machine is a syntactic construct

that specifies the behavior of one TASM) are needed. One TASM simulates control of

the light's intensity by monitoring status and controlling intensity. The other sim-

ulates the environment by controlling status. The complete TASM specification that

simulates this example are split across listings 2.5 and 2.6. The same specification

will be presented in sections as language features are presented.

These examples extend upon those originally presented in [33] by replacing the

binary on-off states with varying degrees of intensity. This modification was made to

emphasize certain language features important to this thesis. The original examples

and paper should be referred to for a more exhaustive presentation of the TASM

language.

...... .. ....... .........



intensity0 intensity0 intensityl intensity2 intensity100
entry action: entry action: try action entry action: entry action:

intensity(0) intensity(0) intensity(1) intensity(2) * intensity(00)
startTimer( startTimer() startTimer()

DOWN DOWN DOWN DOWN

Figure 2-3: Moore FSM of Light Switch Example

2.2.4 Syntax

2.2.4.1 Data Types

The TASM language uses a simple type system: There are no data structures or

arrays, and all variables are strongly typed. The language provides 3 primitive types

and also allows the user to define their own type. Formally, the Type Universe, TU,

in TASM is:

TU = {Boolean, Integer, Real} U UDA

Where:

" Boolean names the value universe, BVU - {True, False}

" Integer names the value universe, NVU {..., -1, 0, 1, ..

" Real names the value universe, RVU = R

" UD is the set of user-defined types names, UDN, each of which uniquely

names a value universe of user-defined values.

The user-defined type is a set, where the user defines the name of the set and the

elements of the set. It is similar to an enumeration, but the elements of the set are

not assigned numbers and are not comparable.



Concrete Syntax In concrete syntax:

abstract syntax concrete syntax concrete syntax

type name type name example values (literals)

Boolean Boolean True, False

Integer Integer -1, 0, 1, 100

Real Float -1.0, 0.0, 1e2

UDN <TASMName> <TASMName>, UP, DOWN

Numerical Accuracy If used as a descriptive modeling language, the precision,

minimum, and maximum values of the numerical types (Integer & Real) can be

written arbitrary. However, when used in simulation or for verification, the types

are given concrete interpretations:

concrete syntax ,,.
mm. max. precision

name

Integer -2,147,483,648 +2,147,483,647 1

64 bit, IEEE 754
Float -1.8 e 308 +1.8 e 308

Floating-Point

During simulation, the parsing or computation of Integer literals that are non-

representable numbers cause the simulation to halt and report and error. Float

literals are rounded to their closest representable form, with warnings if rounding to

±inf and halt with errors if resulting in NaN.

Type Conversion In its current revision the TASM language does not support

widening (promotion) or narrowing (casting) conversions.

2.2.4.2 Variables

Formally, a variable, V, is the tuple:

V = (type, vn, val)

Where:



o type is an element of the Type Universe, TU

* vn is the variable name

" val is the value of the variable, an element of the named set, type.

Variables do not have a default initial value, so they must be initialized before use.

The language syntax enforces this by requiring all variables to be defined (initialized

upon declaration). The only time a variable can be declared is in the signature of a

function machine [section 2.2.4.8), where its initial value will be provided when the

function machine is called.

Concrete Syntax Besides declaration and initialization, variables are used solely

in rules. The expressions in which variables are used:

name concrete syntax examples

declaration <TypeName> <VarName>; Integer[0,100] i;

definition <TypeName> <VarName> := Integer[0,100] i := 0;

(decl. & init.) <Constant>;

arithmetic exp. TURNON(switch)
See Appendix A

logical exp. i <= 100 and switch = UP

initialization <VarName> := <Constant>; i := 1;

<VarName> := 1
effect exp.
effect __exp . _< (ArithjLogic)Expr> ;

When declaring a variable, the type name can be written in two ways. If written

alone, a variable has the same range as its type. If written using the bracket notation,

as shown in the above table, the variable range is restricted to the inclusive interval.

Variables of the same type, but restricted to different ranges, are still considered to

be of the same type, and can be used in the same expressions.

Scope In general, the scope of variables is constrained by the construct in which

they are declared. When declared in the environment construct, the variable is said



to have global scope, and is visible to all main and sub machines. However, individual

ASMs must identify variables by name that they with to read from or write to, prior

to use. When declared internal to a main machine [section 2.2.4.7], it is only useable

by rules declared within that machine. Similarly, when declared as an input or output

variable of a function machine, it can only be used by rules declared in that function

machine. Subsequent abstract syntax will formalize variable use.

2.2.4.3 Operators

The TASM language supports a limited set of operators. Since there is no type

conversion, expressions using these operators must use a uniform type.

" Integer and Float

- the assignment operator (:=)

- 4 binary arithmetic operators: addition (+), subtraction (-), multiplica-

tion (*), division (/)

- 6 binary comparison operators: equal (=), not-equal (!=), greater-than

(>), greater-than-or-equal (>=), less-than (<), less-than-or-equal (>=)

" Boolean

- the assignment operator (:=)

- 1 unary comparison operator: logical-not (not)

- 4 binary comparison operators: equal (=), not-equal (!=), logical-and

(and), logical-or (and)

The operators can be used in compound expressions, where the order of operations

is defined in Appendix A, but parenthesis should be used for clarity. Expressions that

evaluate to an Integer or Float are referred to as arithmetic expressions. Expressions

that evaluate to a Boolean are referred to as logical expressions.



2.2.4.4 Time

In the TASM language, the passage of time is only associated with the execution

of a rule. Syntactically, that duration is specified by annotating each rule with a

duration interval, within which the machine must complete the execution of that

rule. Formally, the time annotation takes the following interval form:

TI = (tmirin, tmax)

Where:

* tmin is the inclusive minimum duration, tmi'n E {0, 1, 2, ..., oo}

* tmax is the inclusive maximum duration, tmin E {0, 1, 2, ..., oo}

" tmin < tmax

During rule execution, the exact duration of the rule, t, is sampled from the interval

each time the rule is enabled, such that tmin < t tmax. All time in the TASM

language is represented by unit-less, non-negative integer values.

Concrete Syntax In concrete syntax the annotations can take several forms:



concrete syntax abstract syntax interpretation

t = [<tmin>,<tmax>]; TI = (tmin, tmax) execution duration

sampled from interval

t = <t>; TI = (t, t) execution duration of

exactly time t

t = 0; TI = (0, 0) instantaneous execution

In the absence of a time annotation: the interpretation varies based on

whether the rule is used in a hierarchial composition (if it uses or is used

by another rule). If used in a hierarchical composition, see section 2.2.5.2.

If not, TI = (0, 0).

<no time annotation> TI =_L see above

When multiple machines are executing in parallel, the following annota-

tion indicates the update set of this rule will be applied the next time an

update set is applied by anther machine. If no other machines exist, the

rule is executed instantaneously (see section 2.2.4.6).

t := next; TI = (r, r) see above

In the original ASM formulation, multiple rules could be enabled and their results

merged to form a single step. To prevent any confusion over the merging of time

annotations, the TASM language requires that only one rule be enabled per step per

machine.

The initial state of the environment is assumed to occur at global time, gt = 0.

While not explicitly declared as a variable, the global progression of time can be

retrieved by using the reserved word now as a variable. When used in the guard or

effect expressions of a rule, it returns the value of gt at the outset of a rule.

2.2.4.5 Environment

Each TASM specification is required to have exactly one environment. The environ-

ment is a language construct that acts as a global scope for the TASM specification:

Any language element that can be used by all machines must be declared in the

environment. Formally, the environment is a tuple:



E (TU, EV, RS, CH)

Where:

" TU is the Type Universe

" EV are the Environment Variables, a non-empty set of typed variables

* 7S is a possibly empty set of Resources, RS = (rn, ramin, ramax). (rn is a

resource name, ramin and ramax are fixed, inclusive bounds representing the

total amount of resource rn available at any given time.)

" CH is a possibly empty set of Channels, CH

Concrete Syntax In concrete syntax, the environment construct is where the user

can add to the type universe by defining user-defined types, define variables, declare

resources, and declare channels that will be used by the machines operating within

its scope.

Listing 2.1 Light switch example, environment
ENVIRONMENT:

2 TYPES:

3 switchstatus := {UP, DOWN};
4 RESOURCES:
5 CHANNELS:

6 VARIABLES:

7 Integer[0,100 intensity := 0; // O=OFF, 100=FULL ON

8 switch_status switch := DOWN;

Light Switch Example Listing 2.1 shows the environment for the light switch

example. Line 1 contains the environment title and lines 2, 4, 5, and 6 contain the

titles of the environment's components. Line 3 declares the only user-defined type,

switch-status. Line 8 uses that type to define a variable named switch. Line 7

defines a variable named intensity that has a bounded integer range from 0-100.

There are no resources or channels.



2.2.4.6 Rule

A rule, as described in Section 2.1.3.3, is the basic building block of an ASM. A

rule, R, in the TASM language is extended to have a name, a time annotation, and

resource annotations:

R = (n, TI, RI, G, E)

Where:

" n is the plain-language name of the rule

" G is the guard, a logical expression

" E is the effect, a set of effect statements.

* TI is the time annotation.

" RI is a set of resource usage annotations, RI = (rn, raumin, raumax). (rn is

a resource name, raumin and raumax are inclusive bounds of the amount of

resource rn this rule will use during its duration.)

Concrete Syntax In concrete syntax a rule takes the form:

<rule name>:

{
<time annotation>;

<resource annotation(s)>;

if <logical expression> then

<effect expression(s)>;

}

Else & Skip The keyword else is syntactic sugar and can take the place of an

if statement. It creates a rule that is executed when no other guards in the same

machine are enabled. That is, given a set of rules with guards: G1 , G 2 , ... , Gn, it

creates a rule with the guard not (G 1 or G1 or ... or Gn).



When a rule has no effect statement, the keyword skip must be used in its place.

The keywords else and skip are commonly used together when there are machines

executing in parallel. Since a machine that has no enabled rules or no effect statements

(a.k.a. no update set) is said to have terminated, the else-skip pairing creates a

rule to keep the enclosing machine 'alive' while waiting for another parallel machine

to affect the environment. Furthermore, to keep the enclosing machine reactive, the

t: =next time annotation is usually paired with skip to ensure the machine checks

the environment as soon as another machine modifies it. Any other time annotation,

other than t: =0 or t: = [0,0] is also acceptable.

<rule name>:

{
t next;

<resource annotation(s)>;

else then

skip;

}

One Rule Per Step Unlike an ASM, where any number of rules can be enabled

and executed simultaneously, each TASM has the restriction that only one rule can be

executed per step. This limitation arises from the presence of the time annotation,

for which there is no straightforward composition when two rules of differing time

annotations are enabled at the same time. When main machines are composed using

parallel composition, each main machine can execute one rule per step.

Listing 2.2 Light switch example, rule
R1: Turn On

{
t :=

if intensity < 100 and switch = UP then
intensity := intensity + 1;

}

Light Switch Example Listing 2.2 shows one of the rules from the light switch

example. Line 1 contains the name of the rule. Line 3 contains the time annotation,



indicating each execution of this rule should take exactly one unit of time. Line 4

contains the rule's guard or logical expression. Semantically, when line 4 evaluates

to True (is enabled), the single effect expression on line 5 will be executed yielding a

new value for the variable intensity. One second after the rule is enabled, the value

of intensity will be changed.

2.2.4.7 Main Machine

To enable specification of multiple parallel activities in a system, the TASM language

allows parallel composition of multiple abstract state machines. Parallel composition

is enabled through the definition of multiple top-level machines, called main machines,

analogous to multiple agents in [9]. A main machine fundamentally consists of a set

of variables and rules. The variables are differentiated based on scope and read-write

permissions. Formally:

MASM = (n, d, MV, CV, IV, R)

Where:

e n is the machine name

" d is a plain-language description

" MV is the set of Monitored Variables

in R}

* CV is the set of Controlled Variables

R}

" IV is the set of Internal Variables {iv

and iv is read-write in R}.

{mo I mv E EV and mv is read-only

{cv | cv E EV and cv is read-write in

iv is a typed variable and iv ( EV

9 1Z is the set of Rules, R.



Concrete Semantics In concrete semantics a main machine takes the form:

Listing 2.3 Light switch example, machine
i MAIN MACHINE:

2 NAME:

3 LIGHTCONTROL

4 DESCRIPTION:

5 MONITORED VARIABLES:

6 switch;

7 CONTROLLED VARIABLES:

8 intensity;

9 INTERNAL VARIABLES:

10 RULES:

11 RI: Turn On

12 {
13 t := 1;

14 if intensity < 100 and switch = UP then

15 intensity := intensity + 1;

16 }
17 R2: Turn Off

18 {
19 if switch = DOWN then

20 intensity := 0;

21 }
22 R3: Wait

23 {
24 t:=next;

25 if intensity >= 100 and switch = UP then

26 skip;

27 }

MAIN MACHINE:

NAME:

<machine name>

DESCRIPTION:

<plain-language description>

MONITORED VARIABLES:

<names of monitored variables>;

CONTROLLED VARIABLES:

<names of controlled variables>;

INTERNAL VARIABLES:

<define internal variables>;

RULES:

<rules>



Light Switch Example Listing 2.3 shows one of the main machines from the

light switch example, which runs in the environment found in listing 2.1. The main

machine models the lightbulb's physical controller by controlling the integer variable

intensity. Lines 10-16 define rule 1: When the switch is up, the intensity will

increase at a rate of 1 every 1 second. Lines 16-21 define rule 2, which sets the

intensity of the light to 0, when the switch is down. Lines 22-27 define rule 3, which

makes the light switch wait when the light bulb is at full intensity. Rule 3 could be

replaced equivalently with an else rule, but the guard here is explicitly written out

for clarity.

Even though the variable intensity has been declared to have an integer range

from 0-100, inclusive, the guards on line 14 and 25 still check the full range of integer

values. This is because the type declaration assists in verification and error checking,

but does not enforce those bounds.

2.2.4.8 Auxiliary Machines

Auxiliary machines are a purely syntactic construct used to ease reuse and structuring

of specifications. An auxiliary machine encapsulates rules so they can be easily nested

in the definition of other rules. This manner of reuse is called hierarchical composition.

When an auxiliary machine is used in a rule, it is referred to as a call. The calling

rule is referred to as the parent, and the rules defined in the auxiliary machine are

considered children.

Unlike main machines, auxiliary machines are not stand-alone, and must be used

in the rule of a main machine to be executed. Like a main machine, auxiliary machines

fundamentally consist of a set of variables and rules. There are two types of auxiliary

machines: a sub machine, SASM, and a function machine, FASM.

Sub Machine

SASM (n,d, MV,CV, R)

Where:



* n, d, MV, and CV are as defined before.

e R is a set of rules, R, that only operate on variables in MV or CV.

Sub machines can be used as a type of effect expression. The syntax for calling a

sub machine is to use the machine's name followed by an empty pair of parenthesis.

For example:

definition use

SUB MACHINE: <rule name>: //parent rule

NAME: {

<machine name> <time annotation>

DESCRIPTION: <resource annotation(s)>

<plain-language description> if <logical expression> then

MONITORED VARIABLES: <effect expression(s)>;

<names of monitored variables>; <machine name>O;

CONTROLLED VARIABLES: <effect expression(s)>;

<names of controlled variables>; }

RULES:

<rules> // children rules

The semantics of hierarchial composition with a sub machine can be found in

section 2.2.5.2.

Function Machine

FASM = (n, d, IV, OV, MV, R)

Where:

" n, d, and MV, are as defined before.

" IV is a set of named inputs (ivn, it) where ivn is the input name, unique in

IV and it E TU is its type.

" OV is a single pair (ovn, ot) specifying the output where ovn is the name of

the output and ot E TU is its type.



e R is the set of rules with the same definition as previously stated, but with the

restriction that it is read-write in IV and each rule must write to OV.

Usually a function only consists of inputs and outputs. The addition of the moni-

tored variables, allows the function machine to monitor environment variables , with-

out forcing the calling machine to also declare that it is monitoring the variable.

Function machines can be used as a type of value expression. Therefore, they can

be called in the guard or effect of a rule. The syntax for calling a function machine is

to use the machine's name followed by a pair of parenthesis. Within the parenthesis is

a comma separated list of value expressions, whose evaluated values will be assigned

to the input variables. The first value expression will be stored in the first declared

input variable, the second value in the second declared input variable, and so on.

When the function machine has finished execution, it will return the value of its

output variable. The semantics of hierarchial composition with a function machine

can be found in section 2.2.5.2.

definition I use

FUNCTION MACHINE:

NAME:

<machine name>

DESCRIPTION:

<plain-language description>

INPUT VARIABLES:

<names of input variables>;

OUTPUT VARIABLES:

<names of output variables>;

MONITORED VARIABLES:

<names of monitored variables>;

RULES:

<rules> // children rules

<rule name>:

{
// parent rule

<time annotation>

<resource annotation(s)>

if <machine name>(<args>) then

<effect expression(s)>;

var:=<machine name>(<args>);

<effect expression(s)>;

Light Switch Example Listing 2.4 shows a trivial example of hierarchial compo-

sition, which is behaviorally equivalent to the main machine from listing 2.3. The

main machine is composed of one sub and one function machine. The sub machine

is responsible for turning on the light; and the function machine for turning it off.



The canonical else-skip pairing is used in both auxiliary machines to ensure

their rules completely cover each machine's state space. This is not required, and is

only done to make the set of rules in each machine complete. Namely, the else rule

in the function machine could only be enabled if the function machine had an input

"switch=DOWN". This is obviously impossible given that the parent rule, from which

it is called, will only call this function if the switch is up.

2.2.4.9 Specification

A basic instance of a TASM specification only requires an environment and one main

machine. However, a TASM specification, in general, consists of constructs described

in previous sections: an environment, a set of main machines, a set of sub machines,

and a set of function machines. Plus, two additional constructs that we will introduce

in this section: a project, and a configuration.

Formally, the TASM language defines a TASM specification as a tuple:

TASMSPEC = (P, CF, E, MASM, SASM, FASM)

Where:

* P is the Project Header.

" CF is a set of Configurations, CF.

" E is the Environment.

* M ASM is the a set of Main Machines, MASM

" SASM is the a set of Sub Machines, SASM

e TASM is the a set of Function Machines, FASM

Project A project is a header identifying the contents of the specification. It con-

sists of a unique ID, a plain-language name, and a plain-language description of the

contents of the specification.



Listing 2.4 Light switch example 2 - hierarchial composition
1 MAIN MACHINE:
2 NAME:

3 LIGHTCONTROL

4 DESCRIPTION:

5 MONITORED VARIABLES:

6 switch;

7 CONTROLLED VARIABLES:

8 intensity;

9 INTERNAL VARIABLES:

10 RULES:

11 Ri: Turn On

12 {
13 if intensity < 100 and switch = UP then

14 intensity := TURNON(switch,intensity); uses function machine

15 }
16 R2: Turn Off

17 {
18 if switch = DOWN then

19 TURNOFF(; uses sub machine

20 }
21 R3: Wait

22 {
23 t:=next;

24 if intensity >= 100 and switch = UP then

25 skip;

26 }
27 ----

28 FUNCTION MACHINE: I SUB MACHINE:

29 NAME: NAME:

30 TURNON TURN-OFF

31 DESCRIPTION: DESCRIPTION:

32 INPUT VARIABLES: MONITORED VARIABLES:

33 switchstatus switch; switch;

34 Integer[0,100] intensityIn;

35 OUTPUT VARIABLES: CONTROLLED VARIABLES:

36 Integer[0,100 intensityOut; intensity;

37 MONITORED VARIABLES:

38 RULES: RULES:

39 Ri: Turn On Ri: Turn Off

40 {
41 if switch = UP then if switch = DOWN then

42 intensityOut := intensity := 0;

43 intensityIn + 1;

44 }
45 R2: Else R2: Else

46 {
47 t := next; t := next;

48 else then else then

49 skip; skip;

50 } I



Configuration A configuration is a language construct that facilitates easy recon-

figuration of the specification to 1. model different initial conditions and 2. instan-

tiate different sets of main machines to run in parallel. The execution of a TASM

specification requires the selection of a specific configuration.

In order to accommodate this new construct, the definition of a main machine is

expanded to include a constructor to initialize its internal variables. In the absence of

a constructor, a default constructor is provided which provides no special initialization

for the internal variables. Since the main machine definition must be initialized prior

to use, it is also referred to as a template main machine.

A configuration is a tuple consisting of a plain-language name, plain-language

description, a set of environment variable initializations, and main machine initial-

izations. Formally:

CF = (n, d, VIT, M41)

Where:

" n is a plain-language name

e d is a plain-language description.

* VI is a set of variable initializations, VI = (vn, val), such that vn names a

variable in EV, and val is an element of its type.

" MI is a set of main machine initializations, which involve calling the constructor

of a main machine with appropriate arguments.

Variables that occur in the Environment, but are not initialized by the config-

uration use the values they are defined with in the Environment. For more details

concerning the concrete syntax of the main machine's constructor and how to call it,

please refer to Appendix A.



2.2.4.10 Light Switch Example

Listings 2.5 and 2.6 shows the complete TASM specification for the light switch

example, which requires the parallel composition of two main machines. One of the

main machines (lines 31-60), which was presented in listing 2.3, models the controller

for the light's intensity. The other main machine (lines 61-84), is new, and models

one possible interaction with the light switch. After being switched up, it switches

down after a random delay of 0-200 units. Both main machines now have an added

constructor title, after which constructors can be defined. Even though a default

constructor is sufficient for both main machines and is automatically provided, they

are explicitly written in lines 41-42 and lines 70-71.

Lines 1-7 show the Project construct. Lines 10-19 show the single Conf iguration

construct. Note the use of the constructor calls in line 18 and 19, which create an

instance of each main machine.



Listing 2.5 Light switch example - complete TASM Specification, part 1
1 PROJECT:

2 ID:

3 7190e928-9081-4f9a-9241-1c8aaebc5aO4

4 NAME:

5 Light Switch Example

6 DESCRIPTION:

7 This is the complete TASM specification for the light switch example.

8

9 CONFIGURATIONS:

10 CONFIGURATION:

11 NAME:

12 Parallel Composition

13 DESCRIPTION:

14 One main machine models the light intensity controller.

15 Another main machine models interactions with the light switch.

16 VARIABLE INITIALIZATIONS:

17 MACHINE INITIALIZATIONS:

18 light-control := new LIGHTCONTROLO;
19 lightswitch-control = new LIGHTSWITCHCONTROLO;
20

21 ENVIRONMENT:

22 TYPES:

23 switch-status := {UP, DOWN};

24 RESOURCES:
25 CHANNELS:

26 VARIABLES:

27 Integer[O,100 intensity := 0; // O=OFF, 100=FULL ON

28 switchstatus switch := DOWN;

29



Listing 2.6 Light switch example - complete TASM Specification, part 2
30 MAIN MACHINES:
31 MAIN MACHINE:
32 NAME:
33 LIGHTCONTROL
34 DESCRIPTION:
35 MONITORED VARIABLES:
36 switch;
37 CONTROLLED VARIABLES:
38 intensity;
39 INTERNAL VARIABLES:
40 CONSTRUCTOR:
41 LIGHTCONTROL(){
42 }
43 RULES:
44 Ri: Turn On
45 {
46 t :=

47 if intensity < 100 and switch = UP then

48 intensity := intensity + 1;
49 }
50 R2: Turn Off
51 {
52 if switch = DOWN then
53 intensity := 0;
54 }
55 R3: Else
56 {
57 t:=next;
58 else then
59 skip;
60 }
61 MAIN MACHINE:
62 NAME:
63 LIGHTSWITCHCONTROL
64 DESCRIPTION:
65 MONITORED VARIABLES:
66 CONTROLLED VARIABLES:
67 switch;
68 INTERNAL VARIABLES:
69 CONSTRUCTOR:
70 LIGHTSWITCHCONTROLo{
71 }
72 RULES:
73 Ri: Turn On
74

75 t := 0;

76 if switch = DOWN then
77 switch := UP;
78 }
79 R2: Turn Off
80 {
81 t := [0,200];
82 if switch = UP then
83 switch := DOWN;
84 }
85 FUNCTION MACHINES:
86 SUB MACHINES:



2.2.5 Semantics

A run of a multi-agent system described by the TASM language consists of a sequence

of global states. Where a global state is an instantaneous description of the state of

the environment and all agents operating within that environment. In the case of a

TASM, the global state must also incorporate time and resource usage. For brevity,

we will refer to a global state as a state.

The state evolves by applying a sequence of update sets. Where each update set

is created by one step of a TASM. For a TASM composed of a single main machine

and no auxiliary machines, one step corresponds to the evaluation of a single rule,

and therefore one update set.

This section explains the semantics of the TASM language starting by formalizing

the definition of a state, update set, and run; then using those to describe hierarchial

and parallel composition.

2.2.5.1 States & Update Sets

In this section we formalize the notion of a state, an update set, and a run.

State Formally, a state, S, is a set of variable-value pairs, (vn, val):

S {(vno, valo), ... , (vn, val,)}

Where:

* vn is a variable name

" val is an element from the type of on.

" A state must be consistent. For any pair (vni, vali) E S and (vnj, valj) E S,

vni $ vnj.

4We use a strong notion of consistency, which only allows each variable name to be used once in a



* Any variable name, vni, that occurs in a pair, must name a variable that is an

element of the environment variables, EV, or an element of a [initialized] main

machine's internal variables, IV.

To incorporate time into the state, a timed state, TS, is a pair consisting of a

global-time value, gt, indicating the time at which the state occurred:

TS = (gt, S)

The initial timed state, TSo, is the pair (0, So). The initial global time is 0. And,

the initial state, So, is the set of variable-value pairs created the definition of variables

in the Environment (overwritten by any initializations in the chosen Configuration),

and the definition of internal variables in initialized main machines.

Update Set In relation to the execution of a machine, the evaluation of the guards

and effect expressions are instantaneous, so the update set is also generated instan-

taneously. The time of generation, tg, is the global time at which the update set is

generated and corresponds to the start of a step. The time of application, ta, of an

update set, is the global time when the update set is instantaneously applied to the

global state and corresponds to the end of the step. The relation between tg and ta

is: ta = tg + t, where t is the duration of the update set. Consequently, the ta of one

step is equal to the tg of the following step. Between the global times, tg and ta, the

machine is busy.

An update set, like a state, is also a set of variable-value pairs, (vn, val). For

an update set generated from the evaluation of a single rule, the pairs represent the

evaluation of the rule's effect statements, <vn>: =<val>. Formally, an update set, U,

is:

pair. Another 'weaker' consistency is: if vni = vn3 then vali = val3 . However, this latter definition
allows duplicate variable-value pairs. Accounting for these in later definitions is a distraction.



U = {(vno, valo), ... , (vn, val,)}

To incorporate time into an update set, a timed update set, TU is a triple consisting

of the time of generation, tg, the duration, t, and the update set, U. For a single

machine, t is a value in the interval, TI, of the same rule that yielded the update set.

TU = (tg, t, U)

Run In general, a run is a sequence of timed states, starting with the initial state,

TSo = (0, SO). Formally:

TSo, TS 1 , TS2 , ... , TSn

The timed states must be sorted in ascending order of the global time that occurs

in each step and each global time must be unique (Formally, for any TSj = (gti, S)

and TSj = (gtj, Sj), if gtj < gtj then TS must precede TSj in the run, and gt / gtj).

Given the initial state, TSo, and a sequence of update sets, sorted in order of

ascending tg (Formally, for any TUj = (tgi, ti, Sj) and TUj = (tgj, tj, Sj), if tgi < tgj

then TU must precede TUj. To allow for parallel composition, there is no requirement

that elements of the sequence must be unique).:

TU1 , TU2, ... , TUn

The remaining run, or state sequence, can be determined by applying the o operator.

TS, = TS_1 o TU =(gti_1, S_ 1) o (tgi, tj, Uz) = (tgi + ti, S_ 1 o U,)



Si = Si-1 o Ui

= (Si - {(vn, val) | (vn, val) e Si and (vni, vali) E Uj and vn = vni}) U Uj

The run of a single main machine, tain-un, defined as the duration when the

machine first generates an update set to when the last update set is applied, is the

sum of the durations of all of its update sets. For a single main machine (which may

or may not be hierarchically composed), that executes n steps, and therefore applies

n update sets:

n

tmain-run = ( t
i= 1

Note that when there are multiple main machines running in parallel, this equa-

tion is still true. However the duration of the run of the entire system, trun, may

vary from this value if there are multiple main machines running in parallel (parallel

composition). In that case, trun, is equal to the global time, gt, of the last global

state.

Example, one main machine For a single TASM (a single main machine, that

may or may not be hierarchically composed), the chronological actions (for lack of a

better word) that generate a run can be described as:

0. Start in the initial state.

1. All guards are instantaneously evaluated in the current state.

2. The effect expressions in the enabled rule are evaluated instantaneously to yield

an update set.

3. The machine is 'busy' during the duration, t, of the update set. (How the

duration is simulated can vary greatly. The machine could use a wall clock as

global time and wait for duration, t, or it could increment global time by t and

proceed immediately).
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Figure 2-4: Example time line for a run of a single TASM

4. Use the o operator to apply the update set to the current global state to create

the new global state. Repeat from action 1.

Figure 2-4 depicts the relation of a states and update sets relative to the progres-

sion of time. Global time starts at 0, and progresses to the right. The solid color

blocks correspond to the duration used by each update set. Spaces are included in

the time and space intervals for clarity.

2.2.5.2 Hierarchial Composition

A hierarchial composition is when one or more rules are nested in another rule. Syn-

tactically, this occurs when a sub or function machine call appears in a rule. There

are two ways hierarchial composition can be explained. One way is to show how the

update sets resulting from nested rules can be merged. The other is to show that a

machine that is hierarchically composed is equivalent to a machine that is not.

Before continuing, we clarify the cases of hierarchial composition. Hierarchial

composition can occur when there is: 1. a function machine in rule guard. 2. a

function machine in effect expression. 3. a sub machine in effect expression. Or any

combination of these cases (i.e. two function calls in the guard, one sub and one

function machine call in the effect expressions).



Merging Update Sets The goal of merging update sets, is to produce one update

set at the main machine level that merges the update sets produced by nested rules.

The resulting update set can then use the o operator as described in section 2.2.5.1.

When a function call appears in a guard (case 1), no composition of update sets

is needed because the evaluation of a guard should take no time and resources. So

any time or resource annotations appearing in the rules of the function machine are

ignored.

When more than one function or sub machine call occurs in the effect expressions

of a single rule (multiple cases 2 & 3), the 0 operator can be used to compose the

update sets. The 0 operator is overloaded, commutative and associative. Given two

update sets, TU1 and TU2 , produced by evaluating a pair of sub or function machine

calls from within the effect expressions of the same rule:

TU1 0 TU2 = (tg1, t1, U1 ) 0 (tg 2, t2, U2 )

- (tgi, ti 0 t2 , U1 U U2 )

= (tg2, ti 0 t2 , U1 U U2 )

Where: tgi is always equal to tg2 , in a hierarchial composition.

t1 if t2 =

t2 if 1 =
t1 et 2 =

0 if ti = 1  and t2 =I

max(ti, t 2) otherwise

When a function or sub machine appears in the effect expression of a rule (cases

2 & 3), the e operator can be used to compose the update sets. The e operator is

overloaded, and is not commutative, but it is associative. Given two update sets, the



update set of the parent rule, TUp, and the update set of the child rule (auxiliary

machine that is called), TUc:

TUp a TUc = (tgp, t , Up) e (tgcttUc)

= (tgp, tp eD tc, up U Uc)

Where: tge is always equal to tgp, in a hierarchial composition.

te

tp tc = 0

t,

The distribution of the e operator

as for the 0 operator.

if tp, =I

if t,= l and te =I

otherwise

over the set of consumed resources is the same

Equivalent Machines An equivalent machine can be formed by 'flattening' the

hierarchy. The examples of this are not reproduced here. Please refer to Theorem 4.1

and Theorem 4.2, as found in section 4.3.7 of [33].

2.2.5.3 Parallel Composition

A parallel composition occurs when more than one main machine operates in the

same environment. Syntactically, we say a parallel composition occurs in a particular

Configuration, when more than one main machine is initialized in that Configuration.

The use of time annotations in TASM allows machines operating in parallel to run

synchronously or asynchronously. When running in parallel, update sets generated

by different main machines are applied to the global state (o operator) in the order

of their time of application, ta (For a timed update set, TU = (tg, t, U), ta = tg + t).

When two update sets have the same time of application, the update sets can be
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Figure 2-5: Example time line for a run of two TASMs

composed using the El operator. The resulting update set can then be applied to the

global state using the o operator. For any two update sets TU1 = (tg1, ti, U1) and

TU2 = (t92 , t2 , U2 ) generated by two different main machines, where tg1 +ti = tg2+t 2 :

TU1 El TU2 = (t91, ti, U1) El (t92, t2, U2) = (t91, t1, U1 U U2)

= (t92 , t2 7 U1 U U2)

The choice of which resulting update set to use is not important.

Example Figure 2-5 depicts the relation of states and update sets relative to the

progression of time for a parallel composition of two main machines. Global time

starts at 0, and progresses to the right. The solid color blocks correspond to the

duration of each update set. Spaces are included in the time and space intervals for

clarity. Timed update set, TU, is the ith step of the jth machine. Timed update sets

TU21 and TU22 both have the same time of application. The resulting timed update

set is calculated with the El operator,



2.2.6 Supported TASM

The primary goal of this thesis is to preserve functional behavior through transforma-

tions, so the time and resource annotations of the TASM language are largely ignored.

In general, these annotations would be hard to preserve in an implementation lan-

guage since they describe non-functional behaviors.

However, the time annotations also play a critical role in the TASM language

of specifying the behavior of parallel machines. For example, the time annotations

could be such that one machine's rule would always execute before another machine's

rule. Unfortunately, this thesis does not specifically address the functional behavior

resulting from the interleaving of main machines, so multiple main machines are also

not supported.

In terms of what can and cannot be included in a TASM specification. All aspects

of the TASM language, including time and resource annotations, channels, as well as

multiple main machines can be used, and are syntactically represented in the trans-

formation framework's intermediate TASM SDG. However, the semantics of those

language features are not represented in a TASM SDG, and as a result will not be

preserved in the transformations.

2.3 Java

The Java programming language is an object oriented language developed and main-

tained by Sun Microsystems. The first publicly released version, Java 1.0 was released

in 1995. As of the writing of this thesis, the most current version is Java 1.6.14. Due

to naming convention changes, this version is also called "Java 6 update 14".

The Java language uses a unique two-phase compilation process that gives the

langauge its advertised flexibility of "Write Once, Run Anywhere" (WORA). The

first compilation phase translates java code to java bytecode, a platform independent

representation of the code that is quick to parse. The bytecode or ".class" files,

serve as the compiled equivalent of ".o" files from the C language family. The second

compilation process, referred to as just-in-time (JIT) compilation, occurs in the Java



Virtual Machine, a runtime environment tailored to each system, which handles the

final translation to machine specific code. In recent years, the JIT compiler has

been augmented with compiler optimizations. The culmination of the two-phase

compilation process and optimizations makes Java code difficult to time statically.

2.3.1 Supported Java

The subset of the Java language supported by the transformation framework cannot

be as clearly stated as the supported subset for TASM. In general, there are two lim-

itations on what subsets are supported: the language features that are representable

by the JSDG, one of the intermediate graph forms in the transformation framework,

and the type of transformations available between the TASM SDG and the JSDG.

In general, a JSDG can represent Java methods, variables, arrays, objects, classes,

and class inheritance [44]. The major restriction to the supported subset of the Java

language is that multi-threading is not representable by the JSDG. Other SDG vari-

ants, such as the multi-threaded dependence graph [47] is capable of representing

threading, but because that research is relatively new, there has not been exten-

sive use of that structure in the behavior preserving transformations required by the

framework. In addition, there was no reason to select a multi-threading language be-

cause the semantics of parallel machines is not fully describable in the TASM SDG.

Since transformations between Java and a JSDG are procedural, it is not flexible to

language features not supported by the JSDG. A Java program that uses features not

represented in a JSDG breaks the transformation framework.

The second restriction on the useable subset of Java stems from what transforma-

tions are defined between a JSDG and TASM SDG. These transformations make it

difficult to describe what features of Java of supported. For example, a loop in Java

which uses an array may be transformed to a sequence of statements using primitive

variables by applying a loop unrolling transformation. Therefore, in certain circum-

stances, an array in Java can be expressed in a TASM SDG (despite the lack of an

explicit array type in either TASM or its SDG), and is therefore supported by the

transformation framework. The use of TGGs for specifying the transformations be-



tween a JSDG and TASM SDG also allow the set of transformations to be expanded

and combined in different ways. Thus, the framework contains the ability to add

future support for Java features.

In general, we will say that a Java feature not expressible in a JSDG is strictly

not supported.

2.4 Segue into Chapter 3

In this chapter we presented three languages: the basic ASM language, the modeling

language, TASM, and the implementation language, Java. We presented the ASM

theory to provide a background for the TASM language, and then presented, in

detail, the TASM language. The thoroughness of that presentation will be useful

in understanding the following chapters. Since TASM and Java constitute the ends

of our transformation framework, we also discussed the supported subsets of either

language and the reason for those restrictions to scope the framework's applicability.

The following chapter, Chapter 3, introduces the TASM System Dependency

Graph (TASM SDG) that can be built from a specification written in the TASM

language. It presents the structure of the TASM SDG, as well as the algorithms

required to construct it.



Chapter 3

TASM System Dependency Graph

In this chapter we present the TASM System Dependency Graph (TASM SDG) and

associated algorithms required to create it. Section 1 discusses the motivations for this

approach. Section 2 presents the TASM SDG structure. And section 3 discusses in

detail, the key algorithm required to generate the TASM SDG, which makes explicit

the TASM state transitions.

3.1 Technical Motivation

In the light of the syntax and semantics of the TASM language, we return to quali-

tatively explain what it means for a transformation to be robust.

One way to judge the quality of a mapping is by whether or not it preserves the

functional behavior of a program. Provided an ASM formulation is written in guard-

effect form [Eq. 4.1] and the rules are consistent (that is only one rule can be enabled

at a time), the transformation from ASM to implementation requires only 3 major

steps: 1. For each rule, introduce new variables so the effect expressions can execute

sequentially as assignment statements. 2. rewrite each rule as an if-else statement 3.

Place all the if-else statements in one infinite loop. There are details concerning how

nested rules should be flattened and how using an implementation language's syntax

affects the scoping of variables and use of reserved words, but the general concept is

simple. For the TASM language, all the provisions are true, and this transformation



does preserve functional behavior. Unfortunately, the resulting program would consist

of many sequential if statements nested in a loop for each TASM. If the same set of

rules are 'applied in reverse' to constitute the reverse transformation, it would only

be applicable if the implementation program used the same structure. The mapping

this pair of transformations describes is restricted to a subset of the implementation

language with a prescribed structure.

Another way to judge the quality of a mapping is on how complete the transfor-

mation rules are, such that they can start from and end at any combination of syntax

structures. In the previously described transformation, a fourth step could be added

that would make the transformation more flexible by having complete knowledge of

all the partial orders of all the expressions. Such knowledge would allow data depen-

dency based transformations as implemented in most modern compilers [5, 24, 6, 42].

The resulting mapping could allow a more natural structuring of the implementation.

The proposed transformation framework requires that a transformation preserve

behavior, and leverages compiler based code transformations in an attempt to be com-

plete. In order to facilitate compiler based transformations, the intermediate graph

structures used in the transformation framework are System Dependence Graphs, a

graph structure commonly used in many restructuring/optimizing compilers.

3.1.1 Related Work

An ancestor to the System Dependence Graph, the Program Dependence Graph

(PDG) was first introduced by Ottenstein & Ottenstein in 1984 [32]. Unlike an

abstract syntax tree, which accurately describes a program's syntax, the PDG was a

succinct way of representing a program's semantics. Only applicable to a monolithic

program, with no procedures and no objects, the PDG merged the control-flow graph

and the data dependency graph. The resulting structure was a functionally equiv-

alent representation of a program [251. Although originally proposed for compiler

optimizations, it has subsequently been used for various software engineering activi-

ties including program slicing, debugging, testing, and complexity measurements [47].

The System Dependence Graph (SDG) was first described by Horwitz et. al. as



an extension of PDG to model a multi-procedure program [Interprocedural Slicing

Using Dependence Graphs]. A large body of subsequent work has expanded SDGs to

model classes, inheritance, polymorphism, and dynamic binding [13, 30, 26, 44, 38].

Other work has tailored SDGs to model specific features including threads [47].

3.2 TASM System Dependence Graph

The TASM SDG proposed uses a subset of the multi-threaded dependence graph

presented in [47], but decomposes the statements that would usually form the nodes

into expression trees, similar to those found in a PDG. Formally, a TASM SDG is

an attributed directed graph with labeled edges. This means that while the vertices

of the SDG can be grouped into classes, they also have have attributes in the form

of name, value pairs that can distinguish two nodes of the same class. In addition,

certain types of edges, which are defined to exist between a pair of vertices can have

a set of labels. Where a label is just a name, with no value pairing. The purpose of

the attributes and edge labels will be presented in the following sections.

In total, a TASM SDG consists of 13 classes of nodes and 5 types of directed

edges.

3.2.1 Edge Types

The edges of a TASM SDG connect only two vertices and represent an ordering

between the vertices they connect. The ordering is called a dependency. The head of

each edge connects a vertex that is somehow dependent on the vertex at the tail.

Three of the edge types are used to model the dependencies between a method

call and a method body. They are referred to as call, linkage-entry, and linkage-exit

edges. Their use will be elucidated in the following section on vertex classes [Section

3.2.2].

The remaining two edges represent control dependencies and data dependencies.

These edges were the original and only two edges used to define a PDG. A con-

trol dependency represents a semantic construct of the language where one execution



depends on another. For example, if we block a language into statements and expres-

sions, a control dependency exists from the expression that guards a control structure

to each of the statements nested directly inside that structure.

In contrast, a data dependency refers to how operators need to be ordered due to

their use of variables. Specifically, that a rearranging of the order of the operations

would violate functional equivalence. From a program slicing perspective, a data de-

pendency is normally defined at a higher level, where one statement is dependent on

another due to their use of variables. We specifically use a finer grained definition

suitable for compiler optimizations, as originally described in [18]. A data depen-

dency edge can be further classified as a flow dependency, anti dependency, or output

dependency edge. A flow dependency, sometimes called a true dependency, exists be-

tween an assignment to a variable and its subsequent use. An anti dependency exists

between a variable use and its subsequent assignment. An output dependency exists

between two assignments to the same variable. All three types of data dependency

edges can appear in a TASM SDG. Figure 3-1 illustrates these dependencies in both

the normal block-statement form in which they are usually presented, and graphically

as they would be in the TASM SDG. In the TASM SDG, variables always appear in

assignment vertices: The shaded vertices therefore do not actually correspond to a

class of vertices, and are only used in this figure for brevity.

Depending on their use, control edges can be labeled with 'T' or 'F' to indicate

the that the subsequent vertex depends on the preceding operation yielding a True

or False value, respectively. Data dependency edges can also be labeled with a set

of numbers. The specialized labeling cases will be discussed in the section on TASM

SDG construction.

3.2.2 Vertex Classes

A TASM SDG consists of 13 classes of vertices. They are: Entry, Specification,

Environment, Configuration, Call, Formal In, Formal Out, Actual In, Actual Out,

Operation, Constant, Assignment, and Region. The Entry vertex defines a starting

point of execution on which subsequent operations can have a control dependency on.



In the TASM SDG form, the bolded arrows correspond to the arrows in the
corresponding block statement form. The shaded vertices do not actually exist in
the TASM SDG form: variables only appear in assignment vertices.

Figure 3-1: An example of the three types of data dependencies.
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It is used to organize operations. The Specification, Environment, and Configuration

classes are special classes of the Entry node that function identically but have dif-

ferent sets of attributes and correspond to their same-name structures in the TASM

language. The Call, Formal In, Formal Out, Actual In, and Actual Out vertices have

many uses. They are usually used to define a new scope, such as one that would

exist when calling a function machine. But, they are also used as 'pass-through'

vertices, that act as place holders in the TASM SDG representation of machines and

constructors, so that data dependency edges can be compartmentalized. The remain-

ing vertices roughly correspond to those found in an expression tree and are used to

represent functional behavior.

The following section formally defines each of the vertex classes and their attribute

set. To simplify description, the vertex at the tail of an edge will be referred to as

the parent and the vertex at the head will be called a child.

3.2.2.1 Entry

An Entry vertex acts as the single starting vertex for a set of operations. It can

have multiple Formal In, Formal Out, and Operation vertices as children, and is

connected to all of its children via a control dependency. It can have more than one

parent, which could be a Specification, Call or Operator vertex. Its attributes are

"type" and "name". A "type" attribute can have as its paired value: "constructor",

"main machine", "function machine", or "sub machine". A "name" attribute has

as its paired value the name of the main, function, or sub machine for which the

Entry vertex starts. The name attribute of a "constructor" type Entry vertex has no

name

3.2.2.2 Specification

There is only one Specification vertex per instance of TASM SDG. It is a special

class of an Entry vertex that corresponds to the specification construct of the TASM

language. It must have as its children one Environment vertex, and may have zero or

more Configuration and Entry vertices, all of which are connected to it via a control



dependency. It has no parents, and is considered the top-most Entry vertex to the

entire TASM SDG representation of a specification. Its attributes correspond to those

elements of the project construct of the TASM language. Specifically, it can have as

attributes a "project-id", "project-name", and "project-description".

3.2.2.3 Environment

There is only one Environment vertex per instance of TASM SDG. It is a special

class of an Entry vertex that corresponds to the environment construct of the TASM

language. Its only children are of class Assignment, all of which are connected to it

via a control dependency. The children correspond to the environment variable ini-

tializations. Its only parent is the Specification vertex. Its attributes are "resources"

and "channels", each of which has for values a list of resources and channels. If the

TASM SDG is ever extended to support either, the corresponding attribute can be

removed.

3.2.2.4 Configuration

A Configuration vertex is also a special class of Entry vertex. There can be more than

one Configuration vertex, which correspond to the named configuration constructs in

the TASM language. It can have zero or more Assignment or Call verticies as children.

The Assignment verticies correspond to the 'overriding' variable initializations that

can occur in the configuration construct of the TASM language. The Call verticies

correspond to the main machine instantiations. Like all special classes of the Entry

vertex, a Configuration vertex is connected to its children via a control dependency.

Each Configuration vertex has one parent, the Specification vertex. The attributes are

"name" and "description", whose value pairs correspond to the name and description

of the configuration construct.

3.2.2.5 Operation

The operation vertex is the primary vertex for composing functional behavior. It

always has one parent that is either a Region vertex or an Entry vertex, to which it



is connected via a control dependency. And it can have any number of other parent

nodes, including Constant, Assignment, or Formal In, on which it depends for input.

Operators that are not commutative, must have distinguished parent connections,

such that the inputs it depends on can have a clearly defined order.

It can have as a child zero or more Operation, Formal Out, or Formal In verticies.

Operators that produce a logical output, are required to have only one child, a Region

vertex, by which it is connected via a control edge. That control edge must also be

labeled with a T or F to indicate whether that dependency is active when it matches

the output of the Operation.

An operation vertex is attributed with "operator", the specific TASM operator

represented by that vertex, and "type", the output data type of that operation.

3.2.2.6 Constant

A Constant vertex represents a value in the domain of one of the types in the TASM

Type Universe. A constant vertex has no parent, but can have one or more children,

which must be an Operator, Actual In, or Formal Out vertex, by which it is connected

via a data dependency edge. A constant vertex is attributed with "value", whose pair

is the actual value of the vertex, an element of a data type. And, "type", the data

type from which the value was drawn.

3.2.2.7 Assignment

An Assignment vertex represents a variable assignment. It is attributed with the

"name" of the variable, and it's "type". It can have as its parent a Formal In, Actual

Out, or Operator vertex, by which it is connected via a data dependency. It can have

as a child a Formal Out, Actual In, or Operator vertex. The meaning of which is that

the variable assigned to is being used in the operation of a subsequent vertex.

3.2.2.8 Region

A Region vertex is a very special vertex that, like the Entry vertex, is used to group

operations. Specifically, a region vertex can only have one parent, an Operator vertex,



to which it is connected via a control edge labeled T. Each Region vertex can have

zero or more child vertices of class Call, Operator, or Assignment, by which it is

connected with a data dependency edge. The children verticies of a Region can only

be evaluated if its parent vertex evaluates to True.

3.2.2.9 Call

A Call vertex corresponds to a constructor, function, or sub machine call in the

TASM language. As its children, a Call vertex can have zero or more Actual In

and Actual Out verticies, which correspond to the arguments passed to the called

construct. These children are connected to the Call vertex via a control dependency.

Each Call vertex must also have one child Entry vertex, to which it is connected via

a call edge. A Call vertex is a special class of Operator vertex, and when calling a

function machine, can be used as an Operator vertex. The parent of a Call vertex is

almost always a Region vertex. The only time a Call operator has a different parent

is when it is used to call a main machine's constructor in the Configuration vertex.

The attributes of a Call vertex are "name", which has as its value pair the name of

the called construct. The value of this "name" attribute matches the value of the

"name" attribute of the child Entry vertex.

3.2.2.10 Formal In, Formal Out, Actual In, Actual Out

The Formal In, Formal Out, Actual In, and Actual Out verticies are attributed like an

Assignment vertex, and can be thought to perform a similar activity. These verticies

mark boundaries between reusable language constructs, such as constructors, main

machines, function machines, and sub machines. When using one of these constructs,

the Formal In and Formal Out vertices represent all the possible inputs and outputs.

For a function, the inputs and outputs correspond to an input variable and an out-

put variable. But, for a main and sub machine they correspond to monitored and

controlled variables. Similarly, the Actual In and Actual Out vertices represent the

boundaries of a Call vertex, such that the Actual In vertices correspond to arguments

and Actual Out correspond to returned values.



Formal In and Formal Out verticies each have oniy one Entry vertex as a parent.

Actual In and Actual Out vertices each have only one Call vertex as a parent. When

calling a function for example, the Call vertex is parent on a call edge to the Entry

vertex. Then, each Actual In of the Call vertex is parent on a linkage-entry edge to

its corresponding Formal In of the Entry vertex. And each Formal Out of the Entry

vertex is parent on a linkage-exit edge to its corresponding Actual Out on the Call

vertex.

3.2.3 Construction

The control subgraph of a TASM SDG, which includes all control edges and the ver-

tices they connect, along with a few data dependencies can be built using a one-pass,

recursive algorithm over an Abstract Syntax Tree (AST) of a TASM specification,

with three tables for memoization. We outline the construction process here.

There are three tables required for memoization. One records the set of variable

name-type pairs. As variable declarations are encountered, they should be memoized

into this table. Another records a quadruple entry consisting of a Call vertex, all

corresponding Actual In and Actual Out vertices, and a unique call number for each

entry of the table. As calls are encountered, they should be memoized into this

table. And the third records a triple entry consisting of an Entry vertex and all

corresponding Formal In and Formal Out vertices. As constructors, or main, function,

or sub machines are encountered, their entry sites should be memoized into this table.

When traversing the AST in a top-down manner the Specification, Environment,

Configuration and a subgraph rooted at an Entry vertex for each constructor and

machine can be created. Upon completion, each entry in the call site table can be

matched to a corresponding entry site in the entry table, to create the call, linkage-

entry, and linkage-exit edges. Assuming the number of tokens that constitute a

method call are small in comparison to the number of tokens in the entire AST,

the procedural generation of the TASM SDG is linear in the number of tokens in the

AST.

The one caveat to this generation procedure is that unlike a normal SDG which



represents sequentially executing programs, the TASM language uses rules with sets

of effects that execute in parallel. When generating a vertex structure corresponding

to two effect statements in the same rule, one which uses and the other assigns to the

same variable, there is no dependency relation. Semantically, this is exactly what the

SDG should show, however when a TASM SDG is transformed to a JSDG, this lack

of dependency information suggests that these statements can be executed in an ar-

bitrary order. Since this is not the case, we must make some dependency information

explicit. The additional processing that must be done is whenever statements in the

same rule both use and assign to the same variable, we introduce a new statement,

upon which both original statements are data dependent. The new statement will

assign the variable to a new a variable that will be subsequently used in the original

effect statements.

Of course, a control subgraph does not constitute an entire TASM SDG. This

construction process is still missing the data dependency information. To add these

dependencies, we need to know a reaching set of runs.

3.2.4 Example

Figure 3-2 illustrates the control subgraph TASM SDG that results from transforma-

tion from the TASM specification given in Listings 3.1 and 3.2. The Listings specify

the behavior of the hierarchically composed LIGHTCONTROL main machine that was

described in chapter 2. It also includes modifications to provide a richer example of a

what a TASM SDG would look like. The modifications include a main machine with

a dummy internal variable and constructor (lines 35-40), and a configuration that

overwrites the initial value of the environment variable intensity with 0 (line 15).

3.3 Extracting Transitions

In this section we describe the second half of the construction algorithm for a TASM

SDG, the one that adds the remaining data dependencies. The general algorithm

that will be described computes the set of all reachable states of an ASM.



Listing 3.1 Light switch example - partial, hierarchial TASM Specification, part 1
1PROJECT:

2 ID:
3 7190e928-9081-4f9a-9241-1c8aaebc5aO9
4 NAME:
5 Light Switch Example
6 DESCRIPTION:
7 This is a partial TASM specification for the light switch example.
8CONFIGURATIONS:
9 CONFIGURATION:

10 NAME:

11 Hierarchial Composition
12 DESCRIPTION:
13 One main machine models the light intensity controller.
14 VARIABLE INITIALIZATIONS:
15 intensity := 0;
16 MACHINE INITIALIZATIONS:
17 light-control := new LIGHTCONTROL(0);
18ENVIRONMENT:

19 TYPES:
20 switchstatus := {UP, DOWN};
21 RESOURCES:
22 CHANNELS:
23 VARIABLES:
24 Integer[0,100] intensity
25 switchstatus switch
26MAIN MACHINES:
27 MAIN MACHINE:
28 NAME:
29 LIGHTCONTROL
30 DESCRIPTION:
31 MONITORED VARIABLES:
32 switch;
33 CONTROLLED VARIABLES:
34 intensity;
35 INTERNAL VARIABLES:
36 Float dummy := 0.0;

: 0;
: DOWN;

// O=OFF, 100=FULL ON

CONSTRUCTOR:
LIGHT_CONTROL(Float dummyIn){

dummy := dummyIn;

RULES:
R1: Turn On

if intensity < 100 and switch = UP then
intensity := TURNON(switch,intensity);

}
R2: Turn Off

if switch = DOWN then
TURNOFFO;

}
R3: Wait

// function machine call

// uses sub machine

t: =next;
if intensity >= 100 and switch = UP then

skip;



Listing 3.2 Light switch example 2 - partial, hierarchial composition
52FUNCTION MACHINES:

53 FUNCTION MACHINE:

54 NAME:

ss TURNON

56 DESCRIPTION:

57 INPUTVARIABLES:

58 switchstatus switch;

59 Integer[0,100] intensityln;

60 OUTPUT VARIABLES:

61 Integer[0,100] intensityOut;

62 MONITORED VARIABLES:

63 RULES:

64 Ri: Turn On

65

66 if switch = UP then

67 intensityOut := intensityIn + 1;
68 }
69 R2: Else

70 {
71 t := next;

72 else then

73 skip;

74

75SUB MACHINES:

76 SUB MACHINE:

77 NAME:

78 TURNOFF

79 DESCRIPTION:

80 MONITORED VARIABLES:

81 switch;

82 CONTROLLED VARIABLES:

83 intensity;

84 RULES:

85 Ri: Turn Off

86

87 if switch = DOWN then
88 intensity := 0;
89 }
90 R2: Else

91

92 t := next;

93 else then

94 skip;

95
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Figure 3-2: Light Switch Example Partial, Hierarchial TASM SDG



Figure 3-3: The global states of the light switch example.

3.4 Implicit Transitions

Computing the set of all reachable states for an ASM is difficult because an ASM

makes its abstract state transitions implicit. In a Finite State Machine, each state has

a set of outgoing arcs, whose heads explicitly identify the subsequent state. However,

an ASM uses guard-effect rules to represent behavior. Given a certain state, it is

impossible to know the next state without executing the rules.

We return to the Light Switch Example of chapter 2 to provide a motivating ex-

ample. Figure 3-3 shows a basic FSM specification (with no entry actions) including

all the reachable global states, and all the transitions possible by the main machines.

The switch variable is abbreviated s, and the intensity variable is abbreviated i.

It should be obvious from this diagram, which is a common graphical representation

of an FSM specification what the state transitions are. In contrast, Figure 3-4 graph-

ically depicts the equivalent ASM specification. The guards used in an ASM group

the global [abstract] states in sets known as hyperstates. For each hyperstate there

may be an associated effect that causes a transition, but the effect is in the form of

an expression (or sets of expressions) that must be evaluated.

Our goal is to therefore make the transitions between hyperstates explicit. Such

that we can say given a certain hyperstate what the following hyperstates will be,

without evaluating any expressions.
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Figure 3-4: The global states of the light switch example.
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3.5 Variable Space Introduction

The algorithm we formulate learns transitions by traversing variable space. Intu-

itively, variable space is simply the set of all possible global states. For a problem with

n variables, the Variable Space is formalized as the set VS ={VUo x VU1 x ... x VU,

where VU is the value universe or domain of the type of variable i. Graphically, vari-

able space can be thought of as a geometrical space, where each axis corresponds to

a variable and spans the values of that variable's domain. A 'point' in the variable

space is a sequence of values, where one value is drawn from the domain of each axis.

In order to identify a region of the variable space, we can specify all value sequences

that constitute the region. But, a more succinct way is to use set builder notation.

For example, for a variable space consisting of 3 integer variables bounded to a value

universe ranging from 0-2, inclusive, one way to identify a region is to write:

{(0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0),

(0, 2, 1), (0, 2, 2),..., (1, 0, 2),..., (2, 2, 2)}

But the equivalent set can also be expressed as:

{sis = (v1, v2, v3) and vi < v2 + v3}

In terms of an ASM language, a hyperstate is a region of variable space, identified

by the guards. The guards in an ASM specification divide the variable space into

regions in the same manner as the set builder notation. The guard of a rule, which

uses n variables, xi , with values v, drawn from the variable's type, identifies a

region of variable space that in set builder notation can be expressed as: {sls =

(vo, ... , vn) and guard(vo, ... , vn)}. Where we use the notation guard (vo, ... , vn) to

indicate the evaluation of the guard at those values.

A rule, in the form if <guard> then <effect>, identifies a region of variable



space and transforms it to another region of a variable space of the form:

{sIs = ef f ect(vo, ... , v) and guard(vo, ..., v)}

Where, we use the expression effect(vo, ... , v) to indicate the application of the effect

on those values. effect is taken to be a function of the form f : VS -+ VS.

3.6 Extracting Transitions

The goal in extracting transitions is to create a complete set of reachable states. For a

bounded ASM, where all the types have a finite value universe (a.k.a all the variables

are bounded), this corresponds to a finite state space, and thus can be perfectly

described as a finite state machine. But, what states should constitute this FSM?

Instead of uniquely identifying each abstract state in the ASM as a state in the

FSM, we will use regions of variable space, identified by guards. But, in general, an

ASM, can have more than one rule enabled at the same time. The region identified by

those rules is a combination of the boolean indecomposable parts of the guard. Where

a boolean indecomposable part is an expression that produces a boolean value, but

for which all subsets do not produce a boolean value. We now redefine a hyperstate

to be the set of all such combinations. For a machine with n boolean indecomposable

parts, this constitutes 2" possible hyperstates. The FSM we wish to produce from

our ASM will therefore consists of states that are hyperstates of the ASM.

What are the transitions? The guard of a rule identifies a region in variable space,

which is then transformed to another region in variable space by the rule's effect. By

finding out which regions defined by other guards intersects the transformed region, we

can identify the sequence of rule executions, and hence the transitions between states.

Unlike a typical FSM, where transitions are guarded by events, these transitions will

be unguarded. A state transition corresponds to a step of the ASM.



3.6.1 Algorithm

The basic algorithm for extracting transitions is fairly straightforward, and is defined

here as operating in variable space. The recursive algorithm takes 5 arguments:

s, a, T, C, B. s is the current state, represented by a boolean expression. a is the

active region, a subset of variable space, VS. r is a set of transitions, where a

transition is a pair of states (si,sy). C is a subset of variable space, and keeps track

of the portions of variable space already visited by the algorithm. B is the complete,

bounded, variable space of the problem, i.e. B = VS.

The algorithm also makes use of the function regiono, which takes in a guard,

which is a boolean expression and return the corresponding region in variable space

in which that guard is true.

For the algorithm to work properly, the set of rules of the ASM must be consistent,

that is to say no two rules can be enabled at the same time. If the ASM is not

consistent, then the rules should be combined to form a single set of rules that is

consistent. The set G, used in the algorithm is the complete set of consistent guards

from the ASM.

The algorithm should be called with the arguments: so, the initial state, which

can be the set of the guards that define the initial active region. ao, the initial active

region represents the region of variable space from which the user believes the ASM

will start executing. T is initially the empty set. C is initially the empty set. And B

is the variable space of the ASM. When the algorithm completes, -r will hold the set

of transitions that the ASM will execute.

3.6.2 Example

Given: 1.) the variables defined in global bounded data types, i.e. [IntegerMinValue,

IntegerMaxValue]. 2.) each variable set to the domain of initial values they could

be. (or a function of other variable's domains), and 3.) a program in guarded-action

form. Symbolic Interval Analysis follows the evolution of the domain of initial values

as each guard is triggered.



Algorithm 1: TransitionExtraction(s,a,T,C,B)

begin
if B - C =0 then
L return;

for g E G do
a' <- region(g) n a
if a'$ 0 then

a' <- effect(a')
- r U {(s, region(g))}

C- C U a

TransitionExtraction(ga',r, C, B)

end

B

Cr

ounded Data Type

Figure 3-5: Simplified TASM Specification with 3 rules.

Domain of
Initial Values

Float[0,7] x:= [1,3];
Float[O,9] y := [4,8];

RI: if x*x s y and y>4 then
y:=y-x;

R2: if xS4 then
x:=2*x;
y:=y+l;

R3: if x*x>y and y>4 then
// terminal state
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Figure 3-6: The charts represent the variable space, divided into regions in which each
rule is true. A. The region defined by the initial values are outlined in black, and are
shown to trigger (intersect the regions defined by) rules 1 & 3. B. The evaluation of
rule Is effect (y:=y-x) via the properties of interval arithmetic alters the shape of the
region and triggers rules 1 & 2. Evaluation proceeds in a branching manner, with
each intersection identifying an abstract state transition.
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In the Figure 3-5, there are 2 variables, x and y, defined in terms of an explicitly

bounded data type, initialized with not a single value, but a domain of values. To

the immediate right is a colored graph 3-6. The three colored regions, green, blue,

red, correspond to the values of variables x and y that make rule 1, rule 2, and rule

3 true, respectively. The black box indicates the triggering region, or the domain of

initial values. Since the black box intersects with the green and red regions, it triggers

the corresponding rules. In the graph to the immediate top-right, we see that rule

1 has been triggered, and by applying the rules of interval arithmetic to the effect

expression, the shape of the triggering region (the black outlined box) has changed

and is now triggering a new rule. The algorithm proceeds in this fashion exploring a

tree of possible transitions, each arrow in this tree corresponds to an abstract state

transition in the program.

The example uses continuous, floating point data types, but the algorithm is

extendable to integers and user defined types.

3.6.3 Implementation

The algorithm uses variables that represent regions of variable space. These in turn

are just large sets of values. Instead of storing these values, a more efficient approach

is to store them as intervals or boolean expressions, the intersections of which define

the boundaries of the variable space, as done in set builder notation. The catch with

using such representations is not everything can be efficiently represented as regions.

For example, if an effect expression does the operation i := i + 2, and a subsequent

guard checks for i > -10 and i < 10. The region cannot be stored as an interval

from -10 to 10, because depending on the initial value of i, the region may actually

be every odd value of i in that interval.

3.6.4 Soundness

The algorithm may not be sound. The algorithm may also include transitions that do

not actually occur. For the specific application of the algorithm, in creating a flow-



dependency graph for mappings, this is not terrible. The extra dependency arrows

simply restricts the possible transformations that can be applied to the graph (i.e. a

dependency might say rule 1 must execute before rule 2, when their execution order

doesn't actually matter).

The problem lies in tolerance. The geometry based representation of real data

types assumes the interior space of each region is continuous. But, even continuous

data types in programming languages take on discrete values. Let's say we have the

following program:

Listing 3.3 Light switch example 2 - partial, hierarchial composition
Float x:= [100e200,100e201];

// Assume the domain is large, where the precisely

// representable numbers are very sparse.

Rule 1:
{

if <some boolean statement> then

x:= x/100e200;

// the new x should have interval [1,10],
// but do we know if 100e201 is representable?

// if it's not representable, the interval may be [1,1].

}
Rule 2:

{
if x>5 then

some effect ...

}

Assume we are executing the effect in rule 1, in the method of detecting intersec-

tions we can accurate calculate the interval after rule l's effect is applied is [1,10].

But, in Java, the calculation may be [1,1]. In the continuous interpretation, Rule 1

transitions to Rule 2. In the discretized interpretation, it doesn't.

Of course, this problem with discretization is evident even in some accepted trans-

formation algorithms (i.e. loop skewing), so it is important to be aware of this limi-

tation.



3.6.5 Termination

The algorithm terminates. There are only two leaves possible in the search tree: the

algorithm either evaluates a terminal rule (which has no effects), or the algorithm

does not need to evaluate a region because it is enclosed by a previously evaluated

region.

3.6.6 Adding Dependencies

We now return to adding dependencies to the TASM SDG. With the transition extrac-

tion algorithm, the process is also fairly simple. First, construct a connected graph

from the list of transitions created by the transition extraction algorithm, the FSM.

Starting at a terminal node in the FSM, follow the transitions backwards. For each

hyperstate encountered until the initial hyperstate, identify the hierarchy of rules in

the TASM SDG that are enabled when in that state. Create data dependency links

between the rules and effects that are enabled in the current hyperstate to the next.

Mark the current hyperstate in the FSM. Repeat this process starting at an unmarked

terminal node, and continue until all nodes in the tree are marked.

100



Chapter 4

Mapping from ASM to Java

4.1 Triple Graph Grammars

Triple Graph Grammars (TGGs) are a technique for defining the correspondence be-

tween two different types of models in a declarative way [36]. The power of TGGs

comes from the fact that the relation between the two models cannot only be defined,

but the definition can be made operational so that one model can be transformed

into the other in either direction; even more, TGGs can be used to synchronize and

to maintain the correspondence of the two models, even if both of them are changed

independently of each other; i.e., TGGs work incrementally [16]. TGGs were intro-

duced more than 10 years ago by Andy Schurr. Since that time, there have been

many different applications of TGGs for transforming models and for maintaining

the correspondence between these models. To date, there have been several modifi-

cations, generalizations, extensions, and variations [29]. Moreover, there are differ-

ent approaches for implementing the actual transformations and synchronizations of

models. In this section, we present the essential concepts of TGGs, their spirit, their

purpose, and their fields of application.
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4.1.1 Syntax

A Triple Graph Grammar is fundamentally a set of disconnected graphs, called gram-

mars, which can be used to relate two graphs, often called the source and the target.

Each grammar is a graph that consists of triple of subgraphs. One of the subgraphs

corresponds to a structure that can be found in the source. Another of the subgraphs

corresponds to a structure that can be found in the target. And the third subgraph

connects these two halves with relational information. In its most basic application,

a Triple Graph Grammar consists of a set of grammars, a grammar can be applied to

one graph if its corresponding subgraph matches a structure in the source or target

graph. In more advanced applications, the grammars are generated by graph match-

ing searches. Therefore, there does not need to be a complete set of grammars that

correspond to all permutations of structures in the source and target.

Triple Graph Grammars have several important features that apply to our trans-

formation framework. First, the use of a grammar does not modify an existing graph.

To generate a new graph from an existing one, match one end of each grammar to

the source graph, and duplicate the target end of each grammar to generate a target

graph. Second, grammars do not define an order of application, thus the application

of different grammars can yield diverse results. Third, each grammar stores relational

information that is bidirectional traceability information.

4.2 Code Generation

Code generation is the simplest of the processes that the transformation framework

can be used for. It fundamentally consists of 3 steps. First, generate a TASM SDG

as described in chapter 3. Second, apply a set of TGGs to transform the TASM SDG

into a JSDG. And third, transform the JSDG into a Java program [Figure 4-1].

The Traceability Information that needs to be stored is the TASM SDG, applied

TGGs, and JSDG.
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Traceability Information
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PROJECT:
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Figure 4-1: Code Generation

4.3 Reverse Engineering

Reverse engineering is the extraction of a model from code, and follows a similar

procedure as code generation, but in reverse. First, a JSDG must be generated from

the Java program. Second, a set of TGGs and a user defined set of TGGs is used

to transform the JSDG to a TASM SDG. Finally, the inverse transform is used to

generate a TASM specification from the TASM SDG [Figure 4-2].

The set of user specified transformations allows the user to identify states in the

Java program by collapsing multiple variables into the domain of a smaller subset of

variables. For example, a user may wish to specify that multiple variables related

to thrust vector, force, and fuel mixture be simplified into a single variable that

represents whether the rocket is performing nominally.

4.4 Synchronization

By definition, a model is at a higher level of abstraction than implementation code,

and therefore should contains less information. However, models can also repre-

sent information implicit in the implementation. For example, timing and resource

consumption models cannot be translated directly into code, but instead express

system-level behavior.

As a result the generated code is just a template. As programmers modify the
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Figure 4-2: Reverse Engineering
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generated code (by introducing new variables, or speed/memory enhancing transfor-

mations, etc... ) traceability connections stored in a tool or via code annotations can

become outdated. The annotations can be deleted, or worse, preserved even though

the surrounding code has had a fundamental functional change.

The transformation framework does not require the use of annotations, and in-

stead relies on the presence of previous traceability information to operate. Figure

4-3 illustrates how the transformation framework can be used for synchronization.

For simplicity, the process has been distilled into three steps. In the first step, a

TASM SDG and a JSDG are generated from their corresponding documents. In the

second step, each newly generated SDG is compared with their corresponding original

SDG from the input traceability information. Changes between each pair of SDGs is

reconciled by using rephrasing transformations/grammars (transformations in which

the source and target language are the same). The rephrasing transformations can

then be matched and merged with the original set of transformations. Rephrasing

transformations can also add to or remove verticies from the original set of trans-

formations. verticies added to the graph are tagged 'added' and vertices removed

are tagged 'to be removed'. A graph matching algorithm must then complete the

set of grammars [19]. Added verticies must have a new grammar added to associate

that new vertex with one in the other SDG. Likewise, removed verticies belong to

grammars in the original set of traceability information. Those grammars must be

replaced by new grammars that account for the missing vertex.
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Chapter 5

Case Study: Electronic Throttle

Controller

5.1 Electronic Throttle Controller1

The Electronic Throttle Controller (ETC) is a "drive-by-wire" system that is cur-

rently in use at a major automotive company. The ETC was initially modeled by

Griffiths [21] as a hybrid system using Mathworks' Simulink and Stateflow [31]. The

ETC is used to optimize fuel consumption based on a set of criteria, including envi-

ronmental conditions such as temperature and altitude, the state of the vehicle such

as engine RPM and speed, and driver inputs such as cruise control and gas pedal

angle [11]. The throttle controller is a piece of software which sits between the oper-

ator and the engine and replaces the mechanical linkage between the gas pedal and

the engine throttle. The software interprets driver input and operating conditions,

through sensors, to decide on the desired angle of the engine throttle for optimal fuel

efficiency.

The throttle angle governs how much air can enter the engine and, consequently,

how much power is produced by the engine. The relationship between throttle angle

and fuel consumption is intuitive. The angle of the engine throttle determines how

much air can go in the cylinder, and hence controls the volume of the charge. Con-

'This description of the ETC was originally written by Martin Ouimet. [33]
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sequently, the throttle position governs the amount of torque produced. The fueling

system is responsible for injecting an amount of fuel so that, immediately before com-

bustion takes place, the Air-to-Fuel Ratio (AFR) is optimized. More specifically, the

AFR should be stoichiometric (i.e., as close to 14.7:1 as possible for regular fuel) in

order to allow for complete combustion, resulting in optimal efficiency. In order to

optimize fuel efficiency, there are two main parameters to control: the angle of the

throttle and the AFR as commanded by the fuel injectors. The ETC uses these two

outputs to control the behavior of the engine.

Figure 5-1 shows the top level of the ETC model in Simulink, with the two key

outputs - desired current (desired-current) and desired rate of fuel mass (dMfc).

The angle of the throttle is controlled by the amount of current fed to the throttle

servo. The desired current affects the position of the throttle and is determined based

on the position of the gas pedal (as activated by the operator) and other external

parameters (e.g., vehicle speed, 02 concentration in the exhaust, engine speed, and

temperature). The other controller output is the rate of fuel mass (dMfc). The dMfc

value controls how much gas is sprayed in the combustion chamber. That value needs

to be dynamically adjusted to maintain a stoichiometric combustion. The transfer

function that characterizes the relationship between these two quantities (desired

current and dMfe) is non-linear, and the model considered in this case study controls

both factors independently.

The throttle controller uses modes to decide the control laws that govern the

throttle actuation. For example, the throttle controller operates under different modes

that have a priority ordering, depending on environmental conditions such as engine

revolution, traction, cruise control settings, and driver input. The modes define

the desired throttle angle, commanded through a current output from the throttle

controller.

During nominal operation, the major modes of the controller are grouped into

"driving modes" and "limiting modes". The limiting modes, defined as undesir-

able environment conditions, take precedence over driving modes. Limiting modes

include "traction control", where the wheels rotate with too little friction, and "rev-

108



I mfs-cbck

-WcontdconirdW

scheduler

An~ e2qiit schddur is used Ic
detnvrim task sdmmkie.

AFC± 
44r~

IA

U"

- 4

controler-softwe

Figure 5-1: High level Simulink model of the ETC

desired ar

-w- -.c
dnfc

109

Iiigetcf nw-.fat

tigakrjas

tpe2_t degrd -ne

acb~ei cunu

cuuse-on

rumse set

cruimeacc

o2s

ignonoff

wef

V

dhitc

PRNDL

MAF

IMAT



olution control", where the engine operates over a predefined threshold of rotations

per minute. The driving modes include "human control", where the throttle is com-

manded via the gas pedal, and "cruise control", where the throttle is commanded

based on the desired vehicle speed. The different modes are shown in Figure 5-2,

adapted from [21], represented visually as a Statechart variant. The "XOR" label

indicates mutual exclusion between modes and the "AND" label indicates parallel

composition of modes. The transitions to the "failure detected" mode are not shown

in Figure 5-2 to keep the figure simple. In each mode, a transition to the "failure

detected" is possible. The detection of failure takes precedence over all other modes

and the behavior of the ETC is to gradually decrease the vehicle speed until shutdown

is possible.

Driving Modes

Start-up AND XOR Inactive Shut-

(E ED ~ Cruise dw

Limiting Modes

AND

Inactive Inactive

XOR XOR

Revolution Traction
Control Control

Figure 5-2: ETC modes

The modes of the throttle controller determine the desired throttle angle and,

consequently, the amount of current output from the controller. The mode switching

logic, as well as the calculation of the desired current represent the functional behavior

of the ETC, dictating what the output should be based on various inputs. Because

the calculation of the dMfc is completely isolated from the rest of the system, it is

omitted from the case study.

The ETC represents an interesting case study for the proposed framework because

the functional behavior is implemented using a set of tasks and a scheduler. The ETC
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implementation is achieved using 3 tasks - a manager task, which sets the major and

minor modes of the ETC, a monitor task, which periodically appraises the health of

the system, and a servo task, which calculates and outputs the desired current based

on the controller mode and the health of the system. The tasks have different periods

and are driven by a scheduler with a 1 ms clock, as shown in Figure 5-3.

Cok--* Scheduler

tTask: Task: Task:
M anager Monitor Servo-control
10 mns 30 ms 3 mns

Figure 5-3: ETC tasks and scheduler

The scheduler does not support preemption and the tasks have fixed priority. The

monitor task has the highest priority, followed by the monitor task, followed by the

servo task.

5.2 Implementation

The ETC was originally implemented using three separate TASM models to exercise

traceability within the modeling framework: One to model the scheduler and tasks

without the functional aspects. Another to model the functional aspects alone. And

a third, to integrate all the features together in what is referred to as a "low level"

model. It is this "low level" model that we used to test code-generation [Appendix

B].

The ETC case study is a useful demonstration of our ability to map model to

code. It uses multiple main machines in parallel, with hierarchial composition of sub

and function machines. It also utilizes floating point types, boolean types, and several

user defined types, which test our ability to correctly map between the type system of

TASM and Java. Boolean and user defined types were modeled as finite domain sets.

This is reasonable because both Java and TASM do not allow the use of variables of

these types as numbers. However, the use of floating point types in the ETC does
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not fully test out the TASM SDG graph. Namely, floating point variables are only

compared against constant values in inequalities, and their values are only updated

through incrementing. The ETC also didn't use the TASM feature of communication

channels. Even though the ETC lacks these features, it still fully tests the base

algorithms used for mapping.

The TASM low-level model for the ETC was produced and tested for completeness

and consistency through the TASM tool. The algorithms described in this thesis

were implemented as a separate executable, via the Java 1.6 programming language.

Parsing of both TASM and Java were implemented through ANTLR, an LL lexer-

parser generator. Three methods were implemented for the calculation of the variable

bounds as a result of effect expressions: interval analysis, min-max, and a combination

of the two (for speed and robustness).

5.3 Results

All the tests were run under Windows, via the Java 1.6 update 16 runtime, using a

single core of a 2.39Ghz quad core Intel Core 2 processor. The running times given

for each of the tests were averaged over 3 runs.

5.3.1 Code Generation

The code generation tests were straightforward, and involved running a single ex-

ecutable with two parameters: the path to the TASM file modeling the low level

controller and another option to select which bound calculation method was to be

used.

Using interval analysis, it took 4.573 seconds to generate Java from TASM. Using

pure min-max calculations, it took 6.737 seconds. And, using a combination of the

two, which defaults to interval analysis whenever possible, it took 4.800 seconds. The

resulting Java code in each case was identical, as expected [Appendix C].
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Chapter 6

Conclusion

This research established a mapping from the TASM language to the Java language

based on a transformation framework. The transformation framework made use of

two intermediate forms: The TASM SDG, which is a graph-based semantic represen-

tation of a TASM specification, and a JSDG, the equivalent representation for a Java

program. Bidirectional traceability was achieved by leveraging Triple Graph Gram-

mars to describe the intermediate transformations between the two SDGs. By saving

the applied grammars and the associated SDGs to which the grammar was matched,

the traceability information could be preserved. It was shown how such information

collected from the processes of code generation and reverse engineering could them

be subsequently applied to synchronize or reconcile the difference between model and

implementation.

The primary contributions of the thesis lie in the algorithms for creating the

TASM SDG. One of which is generally applicable to bounded ASMs, and is useful for

extracting a complete FSM from an ASM. In this thesis, that algorithm was applied

to add the remaining, and complete set of, data dependency edges to the TASM SDG

that could not be added by construction.

While the transformation framework does allow for a lot of flexibility, the use

of TGG grammars make the graph matching process required for synchronization,

in the worse case, to be NP complete. In theory, if the changes made to the code

and/or implementation are incrementally synchronized, less graph matching to choose
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the appropriate grammar to apply would be required, and synchronization could be

significantly faster.

6.1 Future Work

Since this thesis primarily establishes a base of algorithms for extracting the infor-

mation suitable for traceability, there is still a large body of work that can be done

to add functionality.

6.1.1 Object Oriented Languages

The TGG profile presented can only generate procedural Java code. Furthermore,

synchronization will only work if the modifications made to the code remain proce-

dural. These limitations on code generation and synchronization exist so a single,

connected, flow-dependency graph can be created for each program. The benefit of

this approach is that code generation and synchronization become elegant operations

involving graph transformations between two graphs. However, this limitation greatly

strips the expressiveness of Java to something more akin to C. Namely, it removes

the benefits of object oriented design.

The ability to map between ASMs and a fully supported object oriented language

would increase the practicality of this research.

The first hurdle in adding this extension would be to address the lack of objects

in ASM theory. There are many ways this can be solved. The simple solution would

be to add the concept of compound data structures to TASM. Another solution could

be to create a machine to model each class.

The second hurdle is representing non-static, or object-scoped methods. Because

a potentially boundless number of objects can be created, a boundless number of

environments could be created for the object-scoped methods to operate on. One

way to solve this problem is to have an upper bound on the number of unique objects

that can be created from a given class. This approach is popular in creating real-time

subsets of languages to limit memory usage. In TASM, a main machine would then
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Appendix A

TASM Language Reference

Authored By: Martin Ouimet, Edited By: David Wang

This document was originally prepared by Martin Ouimet. The Bakus-Naur form of

the grammar has been corrected to more closely reflect the implemented interpreter.

Additional non-terminals were also introduced to complete the abstract syntax tree

required for the construction of the TASM SDG.

This appendix explains the concrete constructs of the TASM language as imple-

mented in the TASM toolset. This appendix can be consulted as a supplement to

Chapter 2. More specifically, this appendix describes the logical objects that make

up the TASM language in the toolset, the rules for constructing names, the list of re-

served keywords, the list of operators, and the general typing rules. Furthermore, the

context-free grammar of the TASM language, presented in Section A.2, has been used

to implement the compiler for the TASM toolset. Semantic implementation topics,

such as operator precedence and calling convention, are explained in Section A.3.

A.1 TASM Objects

The concepts described in Chapter 2 are implemented in a suite of logical objects in

the TASM language. This section gives the list of logical objects and their properties,

as implemented in the TASM toolset. The concrete syntax of how these objects are
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expressed is described in Section A.2.

A.1.1 Specification

In the logical objects, a specification is the overarching concept or object that includes

all other logical objects. A specification is the complete document that results from

capturing a system design in a model expressed in the TASM language.

A.1.2 Project

The project is the top level object that contains the high level metadata of the system

specification. The project has three attributes, the project name, the project descrip-

tion, and the version of the syntax. The name and description are self-explanatory.

The version of the syntax is used to identify older versions of the syntax to preserve

backwards compatibility. Other attributes of the project that might be added in

the future might include modification times, authors, etc. There is only one project

object per specification.

A.1.3 Environment

The environment is the object that is used to represent the "outside world". The

environment object contains the list of user-defined types, which are finite enumera-

tions, the list of resources, which are finite quantities, and the list of variables, which

are the values that affect and are affected by the execution of the various machines in

the specification. The environment is a global object that is accessible by all machine

instances.

A.1.4 Main Machine Template

In the TASM language, a main machine definition is a template. A machine template

is a parameterized version of a machine that needs to be instantiated through a

constructor given as part of the template definition. The use of templates enables
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reuse of specifications and the ability to have multiple versions of a machine definition

for a given system design. The concept of a machine template is analogous to the

concept of a class in object-oriented programming languages [40]. Main machine

templates are instantiated in a Configuration object.

A main machine template contains three attributes - a set of internal variables,

a constructor, and a set of rules. The internal variables are typed variables that are

visible only inside the machine. The constructor is used to initialize the machine

through instantiation and to assign default values to internal variables. The set of

rules is a set of guarded commands that govern the machine execution and its effects

on the environment. Each rule also specifies the duration of the rule application

and the resources consumed during execution of the rule, according to the principles

explained in Chapter 2. Additional attributes of a main machine template include

a set of monitored variables and a set of controlled variables. The set of monitored

variables is the list of environment variables that are used in the guarding conditions

of the rules. The set of controlled variables is the list of environment variables that

are used in the effect conditions of the rules.

The main machines are the top-level abstract machines that represent a thread

of execution. If more than one main machine is present in a system configuration,

the resultant specification contains parallelism, also called a multi-agent ASM in the

Abstract State Machine community [10]. Instantiating multiple main machines is the

way to obtain parallel composition of specifications with interleaving semantics.

A.1.5 Function Machine

The idea behind a function machine is a machine with no side-effects that can be

used to define abstractions and macros. A function machine is a machine that takes

a set of typed inputs and returns a single typed output. A function machine contains

a set of input variables and a single output variable. The set of input variables are

typed variables that are used to invoke the machine. The output variable is a typed

variable that is used to return a value from the machine when it is invoked. A function

machine is not allowed to modify the environment and must compute its output solely
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based on the input values and the values of its monitored variables.

A.1.6 Sub Machine

A sub machine is similar to a main machine except that the sub machine does not

execute in its own thread of execution. Instead, a sub machine executes inside of a

main machine and shares the thread of execution of the main machine. Sub machines

are used to achieve hierarchical composition. A main machine can use more than one

sub machine as part of its definition. A sub machine definition contains the same

attributes as a main machine except that it does not contain internal variables nor

does it contain a constructor.

A.1.7 Configuration

A configuration corresponds to a simulation scenario. A configuration contains a name

and a description so that it can be referenced during simulation. A configuration also

contains a list of main machine instantiations, defined by invoking the constructors of

the main machine templates. Furthermore, the configuration can contain initial values

for the environment variables. The initial values specified in a configuration override

the initial values of environment variables specified in the environment. Multiple

configurations can exist for a given project and a configuration must be selected to

perform simulation.

A.2 Syntax

This section describes the concrete syntax of the TASM language, expressed in plain-

text format. The plain-text syntax is the format used to read and write specifications

using the TASM toolset and it is the input format for the parser and compiler. In

the TASM toolset, a system design can be shown across different windows and other

user interface components and does not need to be gathered into a single location.
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A.2.1 Notational Conventions

The following notational conventions are used in this section and subsequent sections.

" Each abstract type uses the prefix TASM

" Constants are enclosed in single quotes (e.g. 'a', '1', etc.), except where set-

theoric notation is used

" The formal grammar uses the basic symbols of Backus-Naur Form (BNF) [4]

(e.g., {}, [], <>, etc.)

A.2.2 Names

The use of names is crucial in the TASM language; every type of object (variable,

type, resource, machine, etc.) is uniquely identified by its name. We define the

generic abstract type TASMName to express the restrictions on individual names.

The type TASMName is used in the rest of this document when a name has the listed

restrictions. The TASM language has a set of reserved keywords that cannot be used

as names. The complete list of reserved keywords is shown in table A.1.

" TASMName is a string of characters

" Each character of TASMName can be either 'a'-'z' or 'A'-'Z' or '-' or '1'-'9' or

" TASMName must start with 'a'-'z' or 'A'-'Z'

" TASMName has a length: 1-64

" TASMName is not a reserved keyword

" TASMName is case-sensitive

" Each TASMName is unique in a given TASM specification

The restrictions on the uniqueness of TASMName's might seem restrictive, espe-

cially in the absence of namespaces, but imposing this restriction removes potential

ambiguities.
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Table A.1: Reserved keywords

Keyword 1 Meaning
t Used for time annotations
next Used in time annotations to denote a special value of time
now Used to obtain the value of the global clock
new Used to instantiate a machine template
Integer Denotes the integer datatype
Float Denotes the float datatype
Boolean Denotes the Boolean datatype
False Denotes a constant in the Boolean datatype
True Denotes a constant in the Boolean datatype
and Denotes a logical connective
or Denotes a logical connective
not Denotes a unary operator
skip Denotes the production of an empty update set
else Denotes the special "else rule"
// Used to comment out a given line

122



A.2.3 Types

The TASM language contains only simple types. There are no data structures, sub-

types, or polymorphic types. The TASM language is also strongly typed; there are

no dynamic types or type inference. All typing rules are enforced at compilation time

and type safety is assured if a TASM specification compiles correctly. The TASM

language supplies three default types:

" Integers = {... -1,0,1 ... }

" Floats = Rational Numbers (e.g., -1.11, -0.5, 0.0, 10.45, etc.)

" Booleans = {True, False}

TASM also allows the definition of user-defined types, which are analogous to

enumerations in most programming languages. However, user-defined types are not

assigned integer values and are unordered. A user-defined type is a named type that

can be used to provide readable options and type safety. More specifically, a user-

defined type is a named type that contains one ore more named values. For example,

user-defined types can be defined to denote the status of a light status or the mode

of an airplane:

" light-status = {ON, OFF}

" airplane-mode = {Idle, Taxi, Takeoff, Cruise, Landing}

User-defined types are unordered sets of one or more elements where elements

must be unique. Each member element is a TASMName. Furthermore, the name of

the type is a TASMName.

The TASM language is a strongly typed language, meaning that all variables are

typed and that type-safety is enforced at compilation time. No type casting is allowed,

even from Float to Integer. Future versions of the language might allow type casting

through functions supplied by the TASM language.
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A.2.4 Arithmetic Operators

For Integer and Float types, the TASM language provides the four basic arithmetic

operators, applicable only to operands of the same type:

" addition: +

* subtraction: -

* multiplication: *

" division: /

Operations between operands of disparate types is undefined and results in a

compilation error. For example, addition between an operand of type Float or an

operand of type Integer results in a compilation error. The arithmetic operators are

undefined for Boolean types and for user-defined types.

The assignment operator is the only operator which is defined for all types. Like for

the other arithmetic operators, the assignment operator is defined only for operands

of the same type:

e assignment:

The assignment operator does not return a value (denoted by the special character

'I').

A.2.5 Logical Operators

The following two logical operators are defined for all types. The signature of the

operators is Type1 x Type2 -+ Boolean where Type1 = Type2. Operators applied

to operands of different types are undefined and result in a compilation error.

" equal: =

" not equal: !
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For Integer and Float types, the TASM language supplies an additional four

logical operators:

" greater than: >

" greater than or equal to: >=

" less than: <

" less than or equal to: <=

The signature of these operators is also Type1 x Type2 -+ Boolean where Typel

= Type2. The logical operators are undefined when the operators are of different

types or for Boolean and user-defined types. For Boolean types, the TASM language

provides two logical connectives:

" conjunction: and

* disjunction: or

The signature of these operators is Boolean x Boolean -> Boolean and is unde-

fined for non Boolean types. For Boolean types, the TASM language supplies one

unary operator:

e negation: not

The signature of this operator is Boolean -+ Boolean and is undefined for non

Boolean types.

All operators are summarized in Table A.2.

A.2.6 Context-Free Grammar

The following section explains the formal grammar that is used to express the basic

concepts from the previous section, such as types, constants, variables, expressions,

etc. The formal grammar is given in Backus-Naur Form (BNF) [4] where the syntactic

symbol '1' means "or", '[]' means "optional", and '{}' means 0 or more instances
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Table A.2: Operators

Operator 1 Signature 11 Types
+ Type1 x Type2 -> Type3, Typel = Type2 = Type3 Integer, Float
- Typel x Type2 -+ Type3, Type1 = Type2 = Type3 Integer, Float
* Typel x Type2 -> Type3, Typel = Type2 - Type3 Integer, Float
/ Typel x Type2 -+ Type3, Typel = Type2 Type3 Integer, Float
: Typel x Type2 -> L, Typel = Type2 All
= Typel x Type2 -+ Boolean, Typel = Type2 All
!= Typel x Type2 -+ Boolean, Typel = Type2 All
> Type1 x Type2 -+ Boolean, Type1 = Type2 Integer, Float
>= Type1 x Type2 -> Boolean, Typel = Type2 Integer, Float
< Typel x Type2 -+ Boolean, Type1 = Type2 Integer, Float
<= Type1 x Type2 - Boolean, Type1 = Type2 Integer, Float
and Boolean x Boolean -> Boolean Boolean
or Boolean x Boolean -+ Boolean Boolean
not Boolean -+ Boolean Boolean
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(Kleene closure). The special form of the closure operator, denoted '{}+' means

1 or more instances. Any constant is given inside of single quotation marks. For

example, the keyword denoting the type integer is given as 'Integer'. It is important

to distinguish between the syntactical "optional symbol" ']' and the constant denoting

the right bracket "]".

The BNF grammars describing the concepts of the TASM language is given below.

The first part of the grammar supplies the rules for constructing names, constants,

and types. The second part of the grammar supplies the rules for constructing ex-

pressions, variables, and formulas. The TASM language ignores whitespace unless

whitespace is required. When whitespace is required, it is denoted by the token

< TASMWhitespace >, which represents a single whitespace character. Tab char-

acters, space characters, new line characters, carriage return characters, and form

feed characters all represent a single whitespace character.
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A.2.6.1 Basic Concepts

< TASMUCaseLetter >

< TASMLCaseLetter >

< TASMLetter >

< TASMDigit >

< TASMCharacter >

< TASMASCIIChar >

< TASMWhiteSpaceChar >

< TASMWhiteSpace >

< TASMIntLit >

< TASMFloatLit >

< TASMBooleanLit >

< TASMStringLit >

< TASMName >

< TASMDescription >

< TASMVariable >

'a' | 'b' I . z'

S< TASMUCaseLetter > I < TASMLCaseLetter >

'0' |'1' |'2' '3' '4' '5' '6' '7' '8' '9'

< TASMLetter > I < TASMDigit> |

: All standard ASCII characters

:: ' ' I\t' | '\n' | '\r' | '\f'I

{< TASMWhiteSpaceChar >}+

['-'] < TASMDigit > {< TASMDigit >}

['-'] < TASMDigit > {< TASMDigit >}

'.' < TASMDigit > {< TASMDigit >}

: 'True' I 'False'

{< TASMASCIIChar >}

< TASMLetter > {< TASMCharacter >}

< TASMStringLit >

< TASMName >
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< TASMUDTypeName >

< TASMTypeName >

TASMUDTypeMember >

< TASMUDTypeDef >

< TASMConstant >

< TASMValue >

< TASMMachineName >

< TASMFMachineCall >

< TASMValueExpr >

< TASMArithOp >

< TASMArithExpr >

< TASMBinLogicOp >

< TASMLogicExpr >

< TASMLogicBinConn >

< TASMLogicUnConn >

S< TASMName >

: 'Integer' I 'Float' I 'Boolean' I < TASMUDTypeName >

< TASMName >

< TASMUDTypeName>

'{'< TASMUDTypeMember > {',' < TASMUDTypeMember >}'}";'

< TASMIntLit > I < TASMFloatLit > I

< TASMBooleanLit > I < TASMUDTypeMember >

< TASMVariable > I < TASMConstant >

< TASMName >

< TASMMachineName >' ('[< TASMArithExpr > {',' < TASMArithExpr >}]')'

S< TASMValue > < TASMFMachineCall > 'now'

:: f +' | ' I-' | ' *' I /

< TASMValueExpr> |

< TASMArithExpr >< TASMArithOp >< TASMArithExpr >

'('< TASMArithExpr >< TASMArithOp >< TASMArithExpr >')'

:: I >=' |I'>' | ' <=' | ' <'/ ' !=

S< TASMBooleanLit > I

< TASMArithExpr >< TASMBinLogicOp >< TASMArithExpr >

'('< TASMArithExpr >< TASMBinLogicOp >< TASMArithExpr >')'

'and' I 'or'

: not'
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< TASMLogicFormula > < TASMLogicExpr > I

< TASMLogicFormula >< TASMLogicBinConn >< TASMLogicFormula >

< TASMLogicUnConn >< TASMLogicFormula> |

'('< TASMLogicExpr >')' I

'('< TASMLogicFormula >< TASMLogicBinConn >< TASMLogicFormula >

'('< TASMLogicUnConn >< TASMLogicFormula >')'

< TASMExpr > < TASMArithExpr > I < TASMLogicExpr > I < TASMLogicFormula >

< TASMVarDecl > < TASMTypeName >< TASMWhitespace >< TASMVariable >';'

< TASMVarDeclInit > < TASMTypeName >< TASAWhitespace >< TASMVariable >

' :='< TASMConstant >';'

< TASMNameDescPair > 'NAME :'< TASMName >< TASMWhitespace >

'DESC :'< TASMDescription >

< TASMVarInit > < TASMVariable >':='< TASMConstant >';'

A.2.6.2 Environment

< TASMResourceName > < TASMName >

< TASMResourceDef > < TASMResourceName >':=" ['< TASMIntLit >',' < TASMIntLit >']"

< TASMChannelName > < TASMName >

< TASMChannelDef > 'Channel' < TASMWhiteSpace >< TASMChannelName >';'

< TASMEnvironDef > 'ENVIRONMENT :'< TASMEnvTypeDef >

< TASMEnvVarDef >< TASMEnvChannelDef >

< TASMEnvResourceDef >
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< TASMEnvTypeDef >

< TASMEnvVarDef >

< TASMEnvChannelDef >

< TASMEnvResourceDef >

'TYPES:' {< TASMUDTypeDef >}

'VARIABLES:' {< TASMVarDeclInit >}

'CHANNELS:' {< TASMChannelDef >1

'RESOURCES:' {< TASMResourceDef >1

A.2.6.3 Project

< TASMProjectDef > ::= 'PROJECT :'< TASMNameDescPair >

A.2.6.4 Machine Templates

< TASMTemplateDef > ::= 'TEMPLATES :'< TASMMTemplatesDef >

< TASMSTemplatesDef >

< TASMFTemplatesDef >

< TASMMTemplatesDef > ::= 'MAIN MACHINES:' {< TASMMTemplateDef >}

< TASMSTemplatesDef > ::= 'SUB MACHINES:' {< TASMSTemplateDef >}

< TASMFTemplatesDef > ::= 'FUNCTION MACHINES:' {< TASMFTemplateDef >}
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A.2.6.5 Syntax Common to all Machines

< TASMVariableList >

< TASMRuleName >

< TASMRule >

< TASMTimeSpec >

< TASMResourceSpec >

< TASMRuleDef >

< TASMRuleGuard >

< TASMRuleEffect >

< TASMEffect Expression >

< TASMAssignment >

< TASMSubMachineCall >

< TASMChannelExpr >

< TASMChannelOpChar >

{< TASMVariable >';'}

< TASMName >

< TASMRuleName>' {'

[< TASMTimeSpec >]{< TASMResourceSpec >} < TASMRuleDef >'}'

't" :=" ['< TASMIntLit >','< TASMIntLit >']";' |

't" :='< TASMIntLit >';' |

't" :=" next";' |

't" :="1 dt";'

< TASMResourceName >':=" ['< TASMIntLit >',' < TASMIntLit >

< TASMResourceName >':='< TASMIntLit >';'

< TASM RuleGuard >< TASMWhiteSpace >< TASM RuleEf fect >

'if' < TASMLogicFormula >' then'

I 'else' < TASMWhiteSpace >' then'

{< TASMEffectExpression >}+

S < TASM Assignment > I < TASMSubMachineCall >

< TASMChannelExpr > I 'skip;'

< TASMVariable >':='< TASMArithExpr >';'

< TASMMachineName>' (")";'

< TASMChannelName >< TASMChannelOpChar >','
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A.2.6.6 Main Machine

< TASMMTemplatesDef >

< TASMMVars >

< TASMContVars >

< TASMMonVars >

< TASMIntVars >

< TASMConstr >

< TASMParamList >

< TASMParam >

< TASMRules >

'MAIN MACHINE :'< TASMNameDescPair >

< TASMMVars >< TASMConstr >< TASMRules >

< TASMContVars >< TASMMonVars >< TASMIntVars >

'CONTROLLED VARIABLES :'< TASMVariableList >

'MONITORED VARIABLES :'< TASMVariableList >

'INTERNAL VARIABLES:' {< TASMVarDeclInit >}

'CONSTRUCTOR :'< TASMMachineName >' ('[< TASMParamList >)"{

{< TASMVarInit >}'}'

< TASMParam > {','< TASMParamList >}

< TASMTypeName >< TASMWhiteSpace >< TASMVariable >

'RULES :'< TASMRule > {< TASMWhiteSpace >< TASMRule >}

A.2.6.7 Sub Machine

< TASMSTemplateDef >

< TASMSVars >

'SUB MACHINE :'< TASMNameDescPair >

< TASMSVars >< TASMRules >

< TASMMonVars >< TASMContVars >
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A.2.6.8 Function Machine

< TASMFTemplateDef >

< TASMFVars >

< TASMInVars >

< TASMOutVars >

'FUNCTION MACHINE :'< TASMNameDescPair >

< TASMFVars >< TASMRules >

< TASMInVars >< TASMOutVars >< TASMIntVars >

'INPUT VARIABLES:' {< TASMVarDec >}

'OUTPUT VARIABLE :'< TASMVarDecI >

A.2.6.9 Configurations

< TASMConfilgurations >

< TASMConfiguration >

< TASMConfMInit >

< TASMMachinelnstance >

< TASMConfVarInit >

'CONFIGURATIONS:' {< TASMConfiguration >}

'CONFIGURATION :'< TASMNameDescPair >

< TASMConf MInit >< TASMConfVarInit >

'MACHINE INITIALIZATIONS :' {< TASMMachineInstance >}

< TASMName >':=" new' < TASMMachineName >

'('[< TASMConstant > {',' < TASMConstant >}]')";'

'VARIABLE INITIALIZATIONS:'

{< TASMVarInit >}

A.3 Semantics

Three dominant approaches stand out when expressing programming language se-

mantics - operational semantics, denotational semantics, and axiomatic semantics.

Denotational semantics has been used successfully for sequential programs, but the
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paradigm becomes difficult to work with when concurrency is introduced. Axiomatic

semantics has been used on smaller programs, but it is not clear that it works well

for larger programs or for languages with numerous concepts. Operational seman-

tics could be used to express the TASM semantics because it has concepts analogous

to the TASM language, namely, that of an abstract machine progressing through

configurations. Operational semantics has been used extensively to specify language

semantics, for both sequential and concurrent programs. However, because the ASM

paradigm is close to the operational semantics paradigm, an attempt is made to ex-

press the semantics of the TASM language using Abstract State Machines (ASM).

The motivation is twofold. First, ASMs have been used to specify the semantics of

executable languages, including VHDL, Prolog, and SDL. Second, because the TASM

language is built on top of the ASM language, it makes sense to use ASM to express

the semantics. In a sense, if the semantics are expressed properly, the TASM language

could be viewed as "syntactic sugar" on top of the ASM language.

A.3.1 Operator Precedence

The use of parentheses is strongly encouraged to disambiguate operator precedence for

language users. However, the TASM language defines rules for operator precedence

when parentheses are not used. The precedence rules are listed in Table A.3.

A.3.2 Calling Convention

In the TASM language, all function ASM calls machine instantiations, and variable

references use "call-by-value" semantics. There are no pointers or no references in the

TASM language, only distinct variables. Machine instances are all different from one

another. When variables are assigned to each other, the value gets copied over to the

assigned variable. No variable can be "linked" to the same value, using "pointer-like"

semantics.
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Table A.3: Operator precedence

Operator IIMeaning
* Multiplication
/ Division
+ Addition
- Subtraction
>= Greater than or equal to
> Greater than
<= Less than or equal to
< Less than
= Equal to

Not equal to
and Logical connective 'AND'
or Logical connective 'OR'
not Logical negation 'NOT'
:=__Assignment
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A.3.3 Types

All variables are strongly typed in the TASM language. There is no type-casting and

operators are defined only for operators of the same type. The type checking ensures

that all operations are type safe at compile-time. Syntactically, decimal values are

interpreted with a required "decimal part", which is a period (".") followed by a digit.

This is required even from decimal numbers without a decimal part (e.g., 9.0). "9.0"

and "9" are constants of different types, namely the first one is of type "Integer"

while the second one is of type "Float". There is no type inference or dynamic typing

of any sort as all variables are statically typed and cannot be type casted.

A.3.4 Relation to Abstract State Machines

In this section, the execution semantics of the TASM language are formally expressed

using ASM. This is accomplished by using Abstract State Machines (ASM), using the

syntax from the Lipari guide [22]. The aim of this section is to express the semantics

of the extended language using a "desugaring" into the syntax of the Lipari guide.

For the syntax, we follow the notational conventions used in both the Lipari guide

and the definition of the formal semantics of SDL [17]. For a detailed list of the ASM

syntax used to express formal semantics, the reader is referred to the SDL guide [17],

pages 25-27. The translation given in this section is similar except that the ASM

version used in this section uses the Lipari guide syntax, which is closer to the classical

definition of ASM.

The key extensions to the TASM language have to do with the addition of time

passage and resource consumption. To illustrate time passage, the same conventions

as in [15, 17] are adopted and a global dynamic and monotonic increasing function is

introduced, called currentTime:

e external current Time: -+ REAL

This function is used inside of machines to query the value of the current time. The

function is modified by the environment only and returns a monotonically increasing

value greater than 0.0.
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A.3.5 Sugaring/Desugaring

The extensions to the TASM language have been introduced as "syntactic sugar" on

top of the syntax and semantics of the ASM language as expressed in the Lipari guide

[22]. In order to map a TASM specification into an ASM specification, two domains

are introduced, namely DTASM and DASM to denote the domains of specifications

expressed in the TASM language and the ASM language respectively. A function

called Desug is also introduced. This function maps a TASM specification into an

ASM specification. The "desugaring" function is defined for all individual elements of

the TASM language (specifications, variables, types, rules, etc.) and maps the TASM

elements into elements of the ASM language.

* Desug: DTASM -+ DASM

A.3.6 Resource definitions

A resource definition, Rdef, in the environment is desugared into a global shared

dynamic function:

* Desug[[Rdef]] = shared Rdef

The desugaring of the resource definition is a bit more complex with respect to

usage, but the execution semantics of resource usage are detailed in sectionA.3.10.

A.3.7 Type definitions

Type definitions, Tdef get desugared into static finite domains:

* Desug[[Tdef]] = static domain Tdef

A.3.8 Variables

Controlled and monitored variables inside of machines get desugared into nullary

controlled and dynamic functions, respectively.
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A.3.9 Rules

The desugaring of the rules is the most complex desugaring in the TASM language,

because this is where time and resource utilization play a role. To illustrate the

desugaring of rules, an abstract syntax for a rule definition is defined:

e Rules = (R')

" Ri = (ti r* if condi then ef fecti)

In the TASM, the set of rules for a given machine is implicitly mutually exclusive.

In the ASM language, the mutual exclusion is explicit. The first desugaring of as set

of rules is to generate the explicit mutual exclusion:

* Desug[[Rules]] = Desug[[((to ro if condo then ef fecto) ... (ti, r* if cond" then

ef fectn))j =

if condo then effecto

else if condi then effect1

else if condn then cond,

The else rule guard from the TASM language would get desugared into a simple

else rule guard of the ASM language. The time annotations get desugared into

an environment variable that affects each machine's execution to simulate "durative"

actions. Conceptually, once a rule is triggered, a machine sets a specific variable to the

duration of the rule application and will not do anything until the rule duration has

elapsed. Once the rule duration has elapsed, the machine will generate the appropriate

update set atomically and will be free to execute another rule. Desugaring a time

annotation for a rule introduces a new branch if the "if' conditions to denote the time.

The concept of a "fresh" variable is introduced to denote a newly generated variable

whose name is not previously used. The desugaring introduces two variables, one to

keep the time when the rule application will finish executing and one to denote that
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the machine is "busy" doing work. These two variables are denoted by tcompletefresh

and mbusyfesh. The fresh underscore is used to indicate that the variable name is

introduced by the desugaring and enforces that it does not clash with existing names.

Both of these variables also desugar into controlled dynamic functions:

" Desug//tcompletefresh]] = controlled tcomplete initially -1

* Desug[[mbusyfresh]] controlled mbusy initially False

e Desug[[Rule]] = Desug[[((tj r* if condi then ef f ecti)]]

if/else if condi A mbusyf.esh = False then

mbusyfresh := True, tcompletefesh := currentTime + getDuration(ti)

else if currentTime = tcompletefresh A mbusyfresh = True then

effecti, mbusyfesh := False, timcompletefresh := -1

The function getDuration is a macro that is created using the condition and the

time annotation of the rule. It returns the duration of the rule. If the time annotation

is a single value, it returns that value. Otherwise, if the rule annotation is an interval,

it returns a value non-deterministically selected from the interval. Using a macro will

enable the desugaring to take into account possible concurrency semantics like WCET

and BCET as defined in section ??. The introduction of the two auxiliary variables

and the time conditions will guarantee that the machine will not produce any update

sets and that no other rules will be enabled while the machine is executing a rule.

This behavior is exactly the desired behavior to simulate "durative" actions.

Resource annotations get desugared as well, but their usage is a bit different than

for the time annotations. Resources are modeled as shared dynamic functions. Their

values are set during at the beginning of a rule execution and at the end of a rule

execution. Fresh variables are also introduced, for each machine, to denote resource

usage:
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* Desug/[Rule]] = Desug[[((ti r* if condi then ef f ecti)]] =

if/else if condi A mbusyf.e.h = False then

mbusyfresh := True,

tcompletefresh := currentTime + getDuration(ti),

rifrsh := getfResourceConsumption(ri)

else if currentTime = tcompletefresh A mbusyfresh = True then

ef fecti,

mbusyfresh := False,

tcompletefresh -1,

rifresh := 0

Function machines are desugared as macros and sub machines are desugared just

like main machines and they are "inlined" inside the rule where they are invoked.

A.3.10 Execution Semantics

The desugaring of the TASM language into the ASM language is an easy way to

express the formal semantics of the TASM language. In the ASM world, every main

machine represents an "Agent", member of the shared domain A GENT. The TASM

language also introduces concurrency semantics that are slightly different than for

the ASM language. In the TASM language, time is used to synchronize the order

of execution between different agents. It is the currentTime dynamic function that

keeps all of the agents executing in a synchronized order. The time annotations create

a partial order between the moves of agents. The currentTime function increases

monotonically, at a rate that is congruent with the smallest step of a given main

machine. For example, if the shortest duration of a rule is 3 time units, for all agents

in AGENT, then the currentTime function will increment each time by 3 time units;

this is denoted by this smallest value dt, which corresponds to a static function.

The one area that remains to be formally specified is the execution semantics of
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resources. For each resource that is defined in the environment, an agent is created

that is used to sum up all of the resources used by existing agents. These new agents

are used to ensure that resource usage falls within the specified bounds.

Agent RESOURCEi
controlled last fresh initially 0
controlled totalresourceif,,,h initially 0

if currentTime = last fresh + dt then
totalresourceif,sh := SUm(ri)

else
if totalresourceif,,sh > resourceima, then
RESOURCEEXHAUSTED

The role of the sum macro is to sum up all of the resource annotations from

executing agents. The RESOURCE-EXHAUSTED macro simply halts execution

to note that a given resource has been exhausted.
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need to be created for each unique object.

6.1.2 Advanced Language Features

Beyond object orientation, other advanced language features such as variable-length

arrays and exceptions could also be mapped to ASM. The more implementation

language features supported, the more MBSE can exploit those features without fear

of loosing automated tool support.

6.1.3 Reverse Engineering

As briefly discussed in chapter 5, reverse engineering an implementation to an ASM

is difficult because there are many possible abstractions for an implementation. The

simplest model to reverse engineer is one that describes an implementation's func-

tional behavior. However, producing an ASM model that captures every control

statement as a guard condition may be too low-level. An extension here could ad-

dress how a user could efficiently and logically specify a level of abstraction to extract

from implementation.

Timing and resource models could also be reverse engineered from implementation.

This could be done through leveraging existing dynamic or static analysis engines on

the implementation.

6.1.4 Test Case Generation for Timing and Resources

Since implementation code usually does not explicitly express the consumption of

resources, this thesis only addresses the translation of functional aspects of the ASM

to code. However, it would be meaningful to add the ability to generate code-wrappers

for the generated code that would record running time and resource consumption

whenever the code is executed. The resulting data recorded by those wrappers could

then be imported either manually or automatically back into the TASM tool to verify

whether the code executed within the prescribed time bounds.
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An example development process that uses this procedure might work as follows:

A TASM specification exists with timing annotations on its rules. Prior to using the

code generation feature, the test-case generation for timing and resources is enabled.

The resulting generated code has been augmented with statements that record the

system time into a file before and after the code corresponding to each rule executes.

After running the program several times, under whatever environmental variations

are appropriate for the system, the resulting file can be imported into the TASM tool.

The rules with violated timing constraints are then highlighted.
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Appendix B

Electronic Throttle Controller

TASM Model

Authored By: Martin Ouimet, Edited By: David Wang

This appendix provides the listings for the low level TASM model of the Electronic

Throttle Controller (ETC) case study, as discussed in Chapter 5. The model expresses

the scheduling, tasking, and functional behavior of the ETC. In total, The TASM

model contains 5 main machines, 14 function machines, and 20 sub machines.

Table B.1 and B.2 provide a summary of how the listings are organized. For

brevity several aspects of the listings have been removed, that do not affect their

functionality. Notably:

" TASM models allow multiple configurations of a single environment, but require

at least one configuration per model. The configuration initializes the main ma-

chines and provides alternate initializations of the variables in the environment.

No configuration is provided for this model because only one instance of each

main machine is used and the default initializations of the environmental vari-

ables are used.

" Since TASM is a literate specification language, all constructs of the language

(i.e. Environment, Main Machines, Sub Machines, etc...) have a name and

description. The descriptions are not listed.

143



" The Main Machines all have default constructors: constructors that do not alter

the initial values of any variables. These constructors are not listed.

" The TASM Specification uses a form of redundancy, where the variables involved

in the main, sub, and function machines are listed separate from the rules. These

listings are not included.

" The TASM grammar allows the machines to be saved to one file. For clarity,

the model is shown, divided by machine. The keyword delimiters required for

the saving of these machines into a single text file have been removed.

Name Type Purpose Listing
Types N/A List of types Listing B.1
Resources N/A List of resources Listing B.2
Variables N/A List of variables Listing B.3, B.4
CLOCK Main Ticks at 1 ms intervals Listing B.5
DRIVER Main Simulates the behavior of the driver Listing B.6, B.7
SCHEDULER Main Assigns tasks to the processor Listing B.8

based on fixed priority and period
TASKS Main Performs the controller functions Listing B.9
VEHICLE Main Simulates the environment Listing B.10, B.11
Cruise Function Determines the cruise control mode Listing B.12
Cruise-lode Function Sets the cruise mode Listing B.13
Cruise_ Throttle_ C Function Calculates the cruise mode current Listing B.14
Driver_ Throttle_ C Function Calculates the human mode current Listing B.15
Driving-Throttle- C Function Calculates the driving mode current Listing B.16
Fault Function Detects if a fault is present Listing B.17
Limiting_ ThrottleC Function Calculates the limiting mode current Listing B.18
Over-Rev Function Determines whether the engine Listing B.19

revolution is too high

OverRevMode Function Sets the revolution limiting mode Listing B.20
OverRev_ Throttle_ C Function Calculates the revolution Listing B.21

limiting mode current

OverTorque Function Determines whether the vehicle Listing B.22
torque is too high

Table B.1: List of machines used in the low level ETC model (part 1)
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Name Type Purpose Listing

OverTorqueMode Function Sets the traction limiting mode Listing B.23
Over_ Torque-Throttle- C Function Calculates the traction Listing B.24

limiting mode current

finished-to-waiting Function Resets completed tasks Listing B.25
CALCULATEOUTPUT Sub Wrapper machine to calculate Listing B.26

the desired current
DOSHUTDOWN Sub Performs the shut down functions Listing B.27
DO-STARTUP Sub Performs the start up functions Listing B.28
HANDLEFA ULT Sub Performs the fault tolerance functions Listing B.29
MANAGERTICK Sub Keeps track of manager task period Listing B.30
MONITOR-HEALTH Sub Detects the presence of faults Listing B.31
MONITORTICK Sub Keeps track of monitor task period Listing B.32
SAMPLE-STATE Sub Reads the state through sensors Listing B.33

for the controller
SERVOTICK Sub Keeps track of servo task period Listing B.34
SETEXECUTING_ Sub Assigns execution of a task Listing B.35
TASK if the processor is free
SETEXECUTION_ Sub Decides on the next task to execute Listing B.36,
PRIORITY based on priority ordering B.37

SETMAJOR-MODE Sub Wrapper machine to set the Listing B.38
major controller mode

SETMAJORMODEWORK Sub Sets the controller major mode Listing B.39
SETMINORMODE Sub Wrapper machine to set the Listing B.40

minor controller mode
SETMINOR-MODE-WORK Sub Sets the controller minor mode Listing B.41
UPDATETASK_ Sub Resets finished tasks to waiting Listing B.42
STATUSES I

WAKEUPMANAGER Sub Releases manager task on the period Listing B.43
WAKEUPMONITOR Sub Releases monitor task on the period Listing B.44
WAKEUPSERVO Sub Releases servo task on the period Listing B.45
WAKEUPTASKS Sub Wrapper machine to release tasks Listing B.46

Table B.2: List of machines used in the low level ETC model (part 2)
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B. 1 Environment

Listing B.1 User-defined types of the model
BinaryMode {active, inactive};

BinaryStatus {on, off};

HealthStatus {nominal, faultdetected};

Mode {off, startup, shutdown, driving, limiting, faulty};

GearStatus {park, drive};

DesiredCurrent {none.c, humanc, cruise-c, tractionc, rev-c, minlimiting-c,

max-driving-c, fault_c, error-c};

SimulationMode {begin_s, drive_s, random_s, stop-s, done-s};

TaskStatus {waiting, released, executing, finished};

Scheduler {wakeup, update, execute, wait, updatestate};

ManagerStep {majormode, minor-mode};

Listing B.2 Resources of the model
memory [0, 2048000]; //in bytes

power [0, 1000000]; //in milliWatts

Listing B.3 Variables of the model (part 1)
//internal controller modes

BinaryMode revlimiting-mode inactive;

BinaryMode tractionmode inactive;

BinaryMode cruise-mode inactive;

Mode controllermode off;

ControlMode controlmode sample;

HealthStatus systemhealth nominal;

Boolean startupdone False;

Boolean shutdown-done False;

//powertrain sensors

Integer[0, 120] vehicle-speed 0; //mph

Integer[0, 8000] engine-speed 0; //rpm

Integer[0, 250] vehicle-torque 0; //kPa

Boolean fault False; //is there a fault?

//driver inputs

BinaryStatus ignition off;

BinaryStatus cruiseswitch off;

Integer[0, 45] pedal-angle 0; //degrees

GearStatus gear park;

BinaryMode breakpedal inactive;
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Listing B.4 Variables of the model (part 2)
//constants
Const Integer
Const Integer
Const Integer

//controller inputs
Integer[0, 120]
Integer[0, 8000]
Integer[0, 250]
Boolean
BinaryStatus
BinaryStatus
Integer[0, 45]
GearStatus
BinaryMode

//controller output
DesiredCurrent

//simulation mode
SimulationMode
Boolean
Boolean

//Task properties
TaskStatus
TaskStatus
TaskStatus

//Constants
Const Integer
Const Integer
Const Integer
Const Integer

MAXENGINESPEED
MAXTORQUE
MIN.CRUISESPEED

c_vehicle-speed
c-engine-speed
c_vehicle-torque
c_fault
cignition
c_cruise-switch
c-pedalangle
c-gear
c_break-pedal

desiredcurrent

driver-s
vehicle-over-rev-s
vehicleovertor_s

manager-s
monitor-s
servo-s

MANAGERPERIOD
MONITORPERIOD
SERVOPERIOD
MAJORCYCLE

6000; //rpm
110; //kPA
30; //mph

0;
0; //rpm
0; //kPa
False;
off;
off;
0; //degrees
park;
inactive;

none-c;

begin.s;
False;
False;

released;
released;
released;

10;
30;
3;
30;

//in
//in
//in
//in

//Scheduler
Scheduler
Integer
Integer
Integer
Integer
Integer

scheduler-s
tick
oldtick
managertick
monitortick
servotick

//Extra variables for refinement
ManagerStep manager-s-step

update-state;
0;
0;
0;
0;
0;

major-mode;
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B.2 Main Machines

Listing B.5 CLOCK main machine
R1: Tick, no reset

{
t := 1000;

if tick != MAJORCYCLE then

tick := tick + 1;

MANAGERTICKO;

MONITORTICKO;

SERVOTICKO;
}

R2: Tick, with reset

{
t := 1000;

if tick = MAJORCYCLE then
tick 1;
MANAGERTICKO;

MONITORTICKO;
SERVOTICKO;

}
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Listing B.6 DRIVER main machine (part 1)
Ri: Turn on the car
{

if driver-s = begin-s and controllermode = off and

ignition = off then

ignition on;

driver-s drive_s;

}

R2: Start driving

{
if driver-s = drives and controllermode = driving and

vehicle-speed = 0 and gear = park then

gear drive;

pedal-angle 22;

vehicle-speed 30;

driver-s := random-s;

}

R3: Turn on cruise, slow speed

if driver-s = random_s

cruise-switch := on;

vehicle-speed := 10;

and cruise-switch = off then

R4: Turn on cruise, normal speed

{
if drivers = random_s

cruiseswitch := on;

vehicle-speed 30;

and cruise-switch = off then

R5: Turn off cruise

{
if drivers = randoms and cruise-switch = on then

cruise-switch := off;
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Listing B.7 DRIVER main machine (part 2)
R6: Press break pedal

if drivers = randoms and breakpedal = inactive then

break-pedal := active;

}

R7: Depress break pedal

{
if drivers = random-s and breakpedal = active then
break-pedal := inactive;

}

R8: Stop

{
if driver-s =

gear

vehicle-spee

ignition

driver_s

randoms then
park;

d 0;

off;

stop-s;

Do nothing

if driver_s
skip;

}

R10: Stopped

{
if driver_s

skip;

}

R11: Else

{
else then

skip;

= randoms then

= stop-s then
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Listing B.8 SCHEDULER main machine
RO: Step 0, update state

{
if scheduler_s = updatestate then
SAMPLESTATEO;

schedulers := updatetasks;
}

Ri: Step 1, set status

{
if schedulers = updatetasks then
UPDATETASKSTATUSES();

scheduler-s := wakeup;
}

R2: Step 2, wake up tasks

{
if scheduler-s = wakeup then
WAKEUPTASKSO;

scheduler-s := execute;
}

R3: Step 3, set executing

{
if scheduler-s = execute then
SETEXECUTINGTASK();

scheduler-s := wait;
}

R4: Wait for a tick

t := 1000;

else then
scheduler-s := updatestate;

}
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Listing B.9 TASKS main machine
R11: Execute manager

{
t [0, 3];

if manager-s = executing and manager-s-step = major-mode then

SETMAJORMODEO;

manager-s-step := minormode;

}

R12: Execute manager

{
t := [0, 2];

if manager-s = executing and manager-s-step = minormode then

SETMINORMODEO;

manager-s-step := majormode;

manager-s := finished;

}

R2: Execute monitor

{
t := [100, 200];

if monitors = executing then
MONITORHEALTHO;

monitors := finished;
}

R3: Execute servo

t := [70, 100];

if servo-s = executing then
CALCULATEOUTPUTO;

servo-s := finished;
}

R4: Else, do nothing, wait for event

{
t := next;

else then

skip;

}
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Listing B.10 VEHICLE main machine (part 1)
Ri: Randomly change, do nothing

{
if drivers = random-s and vehicleoverrevs = False and

vehicle-overtors = False then

skip;

}

R2: Randomly change RPM

{
if drivers = random-s and vehicleoverrevs = False and

vehicleover-tor-s = False then
engine-speed := MAXENGINESPEED + 1;
vehicle-overrev_s True;

}

R3: Randomly change Traction

{
if driver-s = random-s and vehicleoverrevs = False and

vehicle-overtors = False then

vehicletorque MAXTORQUE + 1;
vehicle-overtors True;

}

R4: Randomly change Both

{
if driver-s = random-s and vehicleoverrevs = False and

vehicle-overtors = False then

engine-speed MAXENGINESPEED + 1;
vehicleover-rev-s True;

vehicletorque := MAX_TORQUE + 1;
vehicleovertors True;

}

R5: Randomly change RPM, correct

{
if driver-s = random-s and vehicleoverrevs = True and

vehicle-over-tor-s = False and desired-current = revc then
engine-speed MAXENGINESPEED;

vehicle-overrevs := False;

}
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Listing B.11 VEHICLE main machine (part 2)
R6: Randomly change traction, correct

{
if drivers = randoms and vehicleoverrevs = False and

vehicleovertors = True and desiredcurrent = traction-c then
vehicle-torque MAXTORQUE;

vehicleovertors False;

}

R7: Randomly change both, correct

{
if driver-s = random-s and vehicle-over-rev-s = True and

vehicle over tor s = True and desiredcurrent = minlimiting-c then

vehicletorque MAXTORQUE;

vehicle-overtors False;

engine-speed MAXENGINESPEED;

vehicleover-rev-s False;

}

R8: Randomly put in a fault

{
if drivers = random-s and fault = False then

fault := True;
}

R9: Else

{
else then

skip;

}
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B.3 Function Machines

Listing B.12 Cruise function machine
R1: Cruise condition

if cvehiclespeed >= MINCRUISESPEED
and c-gear = drive

and c-break-pedal = inactive
and ccruiseswitch = on then

outb := True;
}

R2: Else

{
else then

outb := False;

Listing B.13 CruiseMode function machine
R1: Cruise Active
{

if Cruise() then

out := active;

}

R2: Else

{
else then

out := inactive;

}

Listing B.14 CruiseThrottle-C function machine
R1: Always

{
memory 128;

power 800;

if True then

out := cruise-c;

}
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Listing B.15 DriverThrottleC function machine
R1: Always
{
memory [196, 3601;

power := [769, 895];

if True then

out := human-c;

}

Listing B.16 DrivingThrottleC function machine
Rl: Cruise enabled, driver input

memory [324, 826];

power [864, 1695];

if cruise-mode = active and c-pedal-angle != 0 then

out := max-driving-c;
}

R2: Cruise enabled, no driver input

{
if cruisemode = active and c-pedal-angle = 0 then

out := CruiseThrottleCO;

}

R3: Else

{
else then

out := DriverThrottleCO;

Listing B.17 Fault function machine
Ri: Main loop

{
if fault then

outb := True;

}

R2: Else

{
else then

outb := False;

}
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Listing B.18 LimitingThrottleC function machine
R1: Both //if both over rev and over torque are active
{
memory 648;
power := 1425;

if rev-limiting-mode = active and traction-mode = active then
out := min-limiting-c;

}

R2: OverRev //if only over rev is active
{
if rev-limiting-mode = active and traction-mode = inactive then

out := OverRevThrottleCo;
}

R3: OverTorque //if only over torque is active

{
if rev-limiting-mode = inactive and tractionmode = active then

out := OverTorqueThrottleCo;
}

R4: Else //both are inactive. This should never happen!

{
else then

out := error-c;
}

Listing B.19 OverRev function machine
RI: Over Rev Condition

if c-engine-speed > MAXENGINESPEED then
outb := True;

}

R2: No Over Rev
{

else then
outb := False;

}
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Listing B.20 OverRevMode function machine
R1: Over Rev Mode

{
if OverRev() then

out := active;

}

R2: Else {
else then

out := inactive;

}

Listing B.21 Over-Rev-ThrottleC function machine
R1: Always

{
memory : 256;

power 1200;

if True then

out := rev-c;

}

Listing B.22 OverTorque function machine
Ri: Over Torque Condition

{
if cvehicletorque > MAXTORQUE then

outb := True;

}

R2: No Over Torque

{
else then

outb := False;
}

Listing B.23 OverTorqueMode function machine
R1: Over Torque Mode

{
if OverTorque() then

out := active;

}

R2: Else

{
else then

out := inactive;

}
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Listing B.24 OverTorqueThrottleC function machine
Ri: Always

{
memory 256;

power 1200;

if True then

out := traction-c;

}

Listing B.25 finishedto-waiting function machine
R1:

{
if in = finished then

out waiting;

}

R2:

{
else then

out := in;

}
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B.4 Sub Machines

Listing B.26 CALCULATEOUTPUT sub machine
Ri: Driving Mode

{
if controllermode = driving then

desiredcurrent DrivingThrottleCo;

R2: Limiting Mode

{
if controller-mode = limiting then

desiredcurrent := LimitingThrottleCo;

R3: Fault Mode

{
if controllermode

HANDLEFAULTO;

}

R4: Startup Mode

{
if controllermode

DOSTARTUP(;

}

R5: Shutdown Mode

{
if controllermode

DOSHUTDOWNo;

= faulty then

= startup then

= shutdown then

R6: Fault Mode

{
if controller-mode = off then

desiredcurrent none-c;
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Listing B.27 DOSHUTDOWN sub machine
Ri: Do shutdown only when vehicle is stationary
{
memory 256;

power 900;

if cvehiclespeed = 0
and c-gear = park

and ignition = off then
desired-current := none-c;

shutdowndone := True;

}

R2: No shutdown

{
else then

desiredcurrent := none-c;

shutdowndone False;

}

Listing B.28 DOSTARTUP sub machine
Ri: Do startup only when vehicle is stationary

{
memory := 128;

power 900;

if cvehiclespeed = 0 and c-gear = park and
c-break-pedal = active and c-cruise-switch = off then

desiredcurrent none-c;
startup-done True;

}

R2: No startup

{
else then

desired-current none-c;

startup-done False;

}
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Listing B.29 HANDLEFAULT sub machine
Rl: Handle the fault

{
memory 512;

power 895;

if cvehiclespeed =

desiredcurrent

controllermode

fault

c-fault

0 and c-gear = park then
none-c;
shutdown;

False;

False;

R2: Else

{
memory := 512;

power : 895;

else then

desired-current := fault_c;

Listing B.30 MANAGERTICK sub machine
R1: tick

{
if managertick = MANAGERPERIOD then

managertick 1;

}

R2: reset

{
else then

managertick managertick + 1;

}
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Listing B.31 MONITORHEALTH sub machine
R1: Find Fault

{
memory [512, 1024];

power [1530, 1624];

if Fault() then

systemhealth := faultdetected;

}

R2: Else do nothing

{
memory := [512, 1024];

power [1530, 1624];

else then

system-health := nominal;

Listing B.32 MONITOR-TICK sub machine
R1: tick

{
if monitortick = MONITORPERIOD then

monitortick 1;

}

R2: reset

{
else then
monitortick := monitortick + 1;

}

Listing B.33 SAMPLESTATE sub machine
R1: Cache the state

{
if True then

c_vehicle-speed vehiclespeed;

c_enginespeed engine-speed;

c-vehicle-torque vehicle-torque;

c_ignition ignition;

c-cruise-switch cruiseswitch;

c_pedal-angle pedalangle;

c-gear gear;

c_break-pedal breakpedal;

:=vhcesed
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Listing B.34 SERVO-TICK sub machine
R1: tick
{

if servotick = SERVOPERIOD then

servotick := 1;

}

R2: reset

{
else then

servotick := servotick + 1;
}

Listing B.35 SETEXECUTING-TASK sub machine
Ri: Someone is still executing, do nothing
{

if manager-s = executing or monitors = executing or
servos = executing then

skip;

}

R2: Processor is free, assign a task

{
else then

SETEXECUTIONPRIORITY();

}
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Listing B.36 SETEXECUTIONPRIORITY sub machine (part 1)
R1: All released

if manager-s = released and
servos = released then

manager-s := executing;
}

R2: manager, monitor released
{
if manager-s = released and

servo s != released then

manager-s executing;

monitors = released and

monitors = released and

R3: manager, servo released
{
if manager-s = released and servo-s = released and

monitor-s released then
manager-s := executing;

}

R4: monitor, servo released
{
if monitors = released and servo-s = released and

manager-s != released then
monitors executing;
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Listing B.37 SET-EXECUTIONPRIORITY sub machine (part 2)
R5: only manager

if manager-s = released and
servo s != released then

manager-s := executing;

monitors != released and

R6: only monitor

if monitors = released and
servo-s released then
monitors := executing;

manager-s != released and

R7: only servo
{
if servos = released and manager-s != released and

monitor s != released then

servos := executing;
}

R8: no one released
{
if manager-s != released and monitors != released and

servos != released then

skip;

Listing B.38 SETMAJORMODE sub machine
Ri: No fault

{
if system-health = nominal then

SETMAJORMODEWORK();
}

R2: Else there are faults
{
if system-health = fault-detected and controller-mode != shutdown then

controller-mode = faulty;

R3: Else
{
else then

skip;

166



Listing B.39 SETMAJORMODEWORK sub machine
Ri: Off -> Startup

{
if controllermode = off and ignition = on then
controller-mode startup;

}

R2: Startup -> Driving

if controller-mode = startup and

controller-mode := driving;

}

R3: Driving -> Limiting

{
if controller-mode = driving and

ignition = on then

controllermode := limiting;

startup-done = True then

(OverRev() or OverTorqueo) and

R4: Limiting -> Driving

{
if controller-mode = limiting and not (OverRev() or OverTorqueo) and

ignition = on then

controller-mode := driving;

R5: Driving, Limiting, Faulty -> Shutdown

if (controller-mode = limiting or
controllermode = faulty) and

controller-mode := shutdown;
}

R6: Shutdown -> Off

f
if controller-mode = shutdown and

controllermode off;

}

R7: Any other case, do nothing

f
else then

skip;

controllermode = driving or
ignition = off then

shutdown-done = True then
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Listing B.40 SETMINORMODE sub machine
Ri: No f ault

{
if system-health = nominal then

SETMINORMODEWORK();

}

R2: Else

{
else then

skip;

}

Listing B.41 SETMIINORMODEWORK sub machine
R1: Else

{
if True then

cruise-mode CruiseMode(;

rev-limiting-mode := OverRevMode(;

traction-mode := OverTorqueMode(;

}

Listing B.42 UPDATETASKSTATUSES sub machine
R1: We are at a tick

{
if tick != oldtick then

manager-s := finished-to-waiting(manager-s);

monitors := finished-to-waiting(monitor-s);

servo-s finishedto-waiting(servo-s);

}

R2: Not at a tick

{
else then
skip;

}

Listing B.43 WAKEUPMANAGER sub machine
Ri: wakeup

{
if manager-s = waiting and managertick = MANAGERPERIOD then
manager-s := released;

}

R2: otherwise

{
else then

skip;

}
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Listing B.44 WAKEUPMONITOR sub machine
Ri: wakeup

{
if monitor-s = waiting and monitortick = MONITORPERIOD then
monitor-s released;

}

R2: otherwise

{
else then

skip;

}

Listing B.45 WAKEUPSERVO sub machine
Ri: wakeup

{
if servo-s = waiting and servotick = SERVOPERIOD then
servo-s released;

}

R2: otherwise

{
else then

skip;

Listing B.46 WAKEUP-TASKS sub machine
Ri: wakeup

{
if oldtick != tick then

WAKEUPMANAGER();

WAKEUPMONITOR();

WAKEUPSERVO();

oldtick := tick;

}

R2: Else

{
else then

skip;

}
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Appendix C

Electronic Throttle Controller
Java Model

This appendix includes the listing of the Java code generated from the low level ETC
TASM model listed in Appendix A.

Table C.1: List of Java files generated from the low level ETC model.

Environment.java

package ETCLowLevel;

public class Environment {

public enum BinaryMode {active, inactive};
public enum BinaryStatus {on, off};
public enum Health-Status {nominal, fault detected};
public enum Mode {off, startup, shutdown, driving, limiting, faulty};
public enum GearStatus {park, drive};
public enum ControlMode {sample, mode-set-major, mode-set-minor, output, health}; 10
public enum Desired-Current {none-c, human-c, cruise_c, traction-c, rev_c, min.limiting-c, max-driving-c,
public enum SimulationMode {begin-s, drive_s, random-s, stop-s};
public enum TaskStatus {waiting, released, executing, finished};
public enum Scheduler {wakeup, update-tasks, execute, wait, update-state};
public enum ManagerStep {major-mode, minor-mode};

//internal controller modes
public static BinaryMode rev-limiting-mode = BinaryMode.inactive;
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static
static
static
static
static
static
static

BinaryMode traction-mode = BinaryMode.inactive;
BinaryMode cruise-mode = BinaryMode.inactive;
Mode controller-mode = Mode.off;
ControlMode control-mode ControlMode.sample;
HealthStatus system-health HealthStatus.nominal;
boolean startup-done = false;
boolean shutdown-done = false;

//powertrain sensors
public static int vehicle-speed = 0; //mph
public static int engine-speed = 0; //rpm
public static int vehicle-torque = 0; //kPa
public static boolean fault = false; //is there a fault?

//driver input
public static
public static
public static
public static
public static

//constants
public static
public static
public static

BinaryStatus ignition = BinaryStatus.off;
BinaryStatus cruise-switch = BinaryStatus.off;
int pedal-angle = 0; /degrees
GearStatus gear = GearStatus.park;
BinaryMode break-pedal = BinaryMode.inactive;

MAXENGINESPEED = 6000; //rpm
MAX-TORQUE = 110; //kPA
MINCRUISESPEED = 30; //mph

//controller inputs
public static int cvehicle-speed = 0;
public static int c-engine-speed = 0; //rpm
public static int c-vehicle-torque = 0; /kPa
public static boolean c-fault = false;
public static Binary-Status c-ignition = BinaryStatus.off;
public static BinaryStatus c-cruise-switch = Binary-Status.off;
public static int c-pedal-angle = 0; /degrees
public static GearStatus c-gear = GearStatus.park;
public static BinaryMode c-break-pedal = BinaryMode.inactive;

//controller output
public static DesiredCurrent desired-current = DesiredCurrent.none-c;

//simulation mode
public static Simulation-Mode driver-s = SimulationMode.begins;
public static boolean vehicle-over-rev-s = false;
public static boolean vehicle-over tor-s = false;

/Task
public
public
public

properties
static TaskStatus manager-s TaskStatus.released;
static TaskStatus monitor-s Task-Status.released;
static TaskStatus servo-s = TaskStatus. released;

/Constants
public static
public static
public static

final int MANAGERPERIOD 10; //in ms
final int MONITORPERIOD 30; //in ms
final int SERVOPERIOD = 3; //in ms
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public static final int MAJORCYCLE = 30; //in ms

//Scheduler
public static
public static
public static
public static
public static
public static

Scheduler scheduler-s
int tick = 0;
int oldtick = 0;
int managertick 0;
int monitortick 0;
int servotick = 0;

= Scheduler.wakeup;

/Extra variables for refinement
public static ManagerStep manager-s-step = ManagerStep.major-mode;
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ConfigurationSimple.java

package ETCLowLevel;

public class ConfigurationSimple {

public static void main(String[] args){
/7 VARIABLE INITIALIZATIONS

/7 MACHINE INITIALIZATIONS
Clock clock = new Clock(;
Driver driver = new DriverO; 10
Scheduler scheduler = new Schedulero;
Tasks tasks = new Taskso;
Vehicle vehicle= new Vehicle(;

clock.start(;
driver.startO;
scheduler.start();
tasks.startO;
vehicle.start();

} 20

}
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Clock.java

package ETCLowLevel;

public class Clock extends Thread {

public Clocko {
}

public void run() {
if (Environment.tick != Environment.MAJORCYCLE) {

// Ri: Tick, no reset 10
Environment.tick = Environment.tick + 1;
MANAGERTICKO;
MONITORTICK(;
SERVOTICKO;

} else if (Environment.tick == Environment.MAJOR-CYCLE) {
// R2: Tick, with reset
Environment.tick = 1;
MANAGERTICKO;
MONITORTICKO;
SERVOTICKO; 20

}
}
public void MANAGERTICK() {

if (Environment.managertick == Environment.MANAGERPERIOD) {
// RI: tick
Environment.managertick = 1;

} else {
// R2: reset
Environment.managertick = Environment.managertick + 1; 30

}
}
public void MONITORTICK() {

if (Environment.monitortick == Environment.MONITORPERIOD) {
// RI: tick
Environment.monitortick = 1;

} else {
// R2: reset
Environment.monitortick = Environment.monitortick + 1; 40

}
}
public void SERVO-TICKO {

if (Environment.servotick == Environment.SERVO-PERIOD) {
// Ri: tick
Environment.servotick = 1;

} else {
// R2: reset
Environment.servotick = Environment.servotick + 1; 50

}
}
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Driver.java

package ETC-LowLevel;

import ETCLowLevel.Environment.BinaryMode;
import ETCLowLevel.Environment.BinaryStatus;
import ETCLowLevel.Environment.GearStatus;
import ETCLowLevel.Environment.Mode;
import ETC-LowLevel.Environment.SimulationMode;

public class Driver extends Thread {
10

public Driver() {
}

public void run() {
while (true) {

if (Environment.driver-s == SimulationMode.begin_s
&& Environment. controller-mode == Mode.off
&& Environment.ignition == BinaryStatus.off) {

// R1: Turn on the car
Environment.ignition = BinaryStatus.on; 20
Environment. driver-s = SimulationMode.drive-s;

} else if (Environment.drivers == SimulationMode.drive-s
&& Environment. controller-mode == Mode.driving
&& Environment.vehicle-speed == 0
&& Environment.gear == GearStatus.park) {

/7 R2: Start driving
Environment.gear = Gear-Status.drive;
Environment.pedal-angle = 22;
Environment.vehicle-speed = 30;
Environment. driver-s = SimulationMode. random_s; 30

} else if (Environment.driver-s == SimulationMode. random-s
&& Environment.cruise-switch == Binary-Status.off) {

/7 R3: Turn on cruise, slow speed
Environment. cruise-switch = Binary-Status.on;
Environment. vehicle-speed = 10;

} else if (Environment.driver-s == SimulationMode.random-s
&& Environment.cruise-switch == BinaryStatus.off) {

7/ R4: Turn on cruise, normal speed
Environment. cruise-switch = BinaryStatus.on;
Environment.vehicle-speed = 30; 40

} else if (Environment. driver-s == Simulation-Mode.random-s
&& Environment. cruise-switch == BinaryStatus.on) {

/7 R5: Turn off cruise
Environment. cruise-switch = BinaryStatus.off;

} else if (Environment.driver-s == Simulation-Mode.random _s
&& Environment.break-pedal == BinaryMode.inactive) {

/7 R6: Press break pedal
Environment. break-pedal = BinaryMode. active;

} else if (Environment.driver-s == SimulationMode.random-s
&& Environment.break-pedal == BinaryMode.active) { 50

/7 R7: Depress break pedal
Environment. break-pedal = BinaryMode. inactive;
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} else if (Environment.driver-s == SimulationMode.random-s) {
// R8: Stop
Environment.gear = GearStatus.park;
Environment.vehicle-speed = 0;
Environment.ignition = BinaryStatus.off;
Environment. driver-s = Simulation-Mode.stop-s;

} else if (Environment.driver-s SimulationMode.random-s) {
// R9: Do nothing 60

continue; // skip;
} else if (Environment.driver-s SimulationMode.stops) {

// RIO: Stopped
continue; /7 skip;

} else {
continue; /7 skip;

}
}

}
70

}
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Scheduler.java

package ETCLowLevel;

import ETCLowLevel.Environment.TaskStatus;

public class Scheduler extends Thread {

public Scheduler() {
}

public void run( { 10
while (true) {

if (Environment.scheduler-s == Environment. Scheduler. update-state) {
// RO: Step 0, update state
SAMPLESTATEO;
Environment.scheduler-s = Environment. Scheduler. update-tasks;

} else if (Environment.scheduler-s == Environment. Scheduler. update-tasks) {
// RI: Step 1, set status
UPDATE-TASKSTATUSESO;
Environment.scheduler-s = Environment. Scheduler.wakeup;

} else if (Environment.scheduler-s == Environment.Scheduler.wakeup) { 20
// R2: Step 2, wake up tasks
WAKEUPTASKSO;
Environment.scheduler-s = Environment. Scheduler.execute;

} else if (Environment.scheduler-s == Environment.Scheduler.execute) {
// R3: Step 3, set executing
SETEXECUTINGTASKO;
Environment. scheduler-s = Environment. Scheduler. wait;

} else if (Environment. scheduler-s == Environment. Scheduler. wait) {
// R4: Wait for a tick
Environment. scheduler-s = Environment. Scheduler. update-state; 30

}
}

}

public void SAMPLE-STATE() {
if (true) {

// Ri: Cache the state
Environment. c-vehicle-speed Environment. vehicle-speed;
Environment. c-engine-speed Environment. engine-speed;
Environment. cvehicle-torque = Environment.vehicle-torque; 40
Environment. c-ignition = Environment. ignition;
Environment. c-cruise-switch = Environment. cruise-switch;
Environment.c-pedal-angle = Environment.pedal-angle;
Environment. cgear = Environment. gear;
Environment. c-break-pedal = Environment. break-pedal;
Environment. cfault = Environment. fault;

}
}

public void SETEXECUTINGTASK() { 50
if (Environment. manager-s == TaskSt atus. executing

I Environment.monitor-s == TaskStatus.executing
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I I Environment.servo-s == Task-Status.executing) {
/7 Ri: Someone is still executing, do nothing

} else {
// R2: Processor is free, assign a task
SETEXECUTIONPRIORITYo;

}
}

60

public void SETEXECUTIONPRIORITY() {
if (Environment. manager-s == TaskStatus. released

&& Environment. monitor-s == TaskStatus. released
&& Environment. servo-s == Task_ Status. released) {

/7 RI: All TaskStatus.released
Environment. manager-s = TaskStatus. executing;

} else if (Environment.manager-s TaskStatus.released
&& Environment. monitor-s - TaskStatus. released
&& Environment. servo-s != TaskStatus. released) {

/7 R2: manager, monitor Task-Status. released 70

Environment. manager-s = TaskStatus. executing;
} else if (Environment.manager-s == TaskStatus.released

&& Environment. servo-s == TaskStatus. released
&& Environment.monitor-s != TaskStatus.released) {

/7 R3: manager, servo TaskStatus.released
Environment.manager-s = TaskStatus. executing;

} else if (Environment.monitor-s == Task-Status.released
&& Environment.servo-s == TaskStatus. released
&& Environment.manager-s != TaskStatus.released) {

/7 R4: monitor, servo TaskStatus.released 80

Environment. monitor-s = TaskStatus. executing;
} else if (Environment.manager-s TaskStatus.released

&& Environment.monitor-s TaskStatus.released
&& Environment.servo-s != TaskStatus.released) {

/7 R5: only manager
Environment. manager-s = TaskSt atus. executing;

} else if (Environment.monitor-s == TaskStatus.released
&& Environment. manager-s != TaskStatus.released
&& Environment.servo-s != TaskStatus.released) {

/7 R6: only monitor 90

Environment.monitor-s = TaskStatus.executing;
} else if (Environment.servo-s == TaskStatus.released

&& Environment. manager-s TaskStatus. released
&& Environment.monitor-s TaskStatus.released) {

/7 R7: only servo
Environment. servo-s = TaskStatus. executing;

} else if (Environment.manager-s TaskStatus.released
&& Environment.monitor-s TaskStatus.released
&& Environment. servo-s != Task-Status. released) {

/7 R8: no one TaskStatus.released 100

}
}

public void UPDATE.TASK-STATUSES() {
if (Environment.tick != Environment.oldtick) {

// Ri: We are at a tick
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Environment. manager-s finished -to-waiting(Environment. manager-s);
Environment. monitor-s finished-to-waiting(Environment. monitor-s);
Environment.servo-s = finished-to-waiting(Environment. servo-s);

} else { 110
// R2: Not at a tick

}
}

public void WAKEUPMANAGER() {
if (Environment. manager-s == TaskStatus. waiting

&& Environment.managertick == Environment.MANAGERPERIOD) {
/7 R1: wakeup
Environment.manager-s = Task-Status.released;

} else { 120
/7 R2: otherwise

}
}

public void WAKE-UP-MONITOR() {
if (Environment.monitor-s == TaskStatus.waiting

&& Environment.monitortick == Environment.MONITOR-PERIOD) {
/7 RI: wakeup
Environment. monitor-s = TaskStatus.released;

} else { 130
7/ R2: otherwise

}
}

public void WAKEUPSERVO() {
if (Environment.servo-s == TaskStatus.waiting

&& Environment.servotick == Environment.SERVOPERIOD) {
7/ Ri: wakeup
Environment. servo-s = TaskStatus. released;

} else { 140
/7 R2: otherwise

}
}

public void WAKEUPTASKS() {
if (Environment.oldtick != Environment.tick) {

// Ri: wakeup
WAKEUPMANAGERO;
WAKEUPMONITORO;
WAKEUPSERVO(); 150
Environment.oldtick = Environment.tick;

} else {
/7 R2: Else

}

public TaskStatus finished-to-waiting(TaskStatus in) {
TaskStatus out;
if (in == Task-Status.finished) {

// RI: 160
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out Task-Status.waiting;
} else {

// R 2:
out = in;

}
return out;

}

}
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Tasks.java

package ETCLowLevel;

import ETCLowLevel.Environment.BinaryMode;
import ETCLow-Level.Environment.Binary-Status;
import ETCLowLevel. Environment. DesiredCurrent;
import ETCLowLevel.Environment.Gear-Status;
import ETCLowLevel.Environment.HealthStatus;
import ETCLowLevel.Environment.ManagerStep;
import ETCLowLevel.Environment.Mode;
import ETCLowLevel.Environment.TaskStatus; 10

public class Tasks extends Thread {

public Tasks() {
}

public void run() {
while (true) {

if (Environment.manager-s == Task-Status.executing
&& Environment. manager-s-step == ManagerStep.major.mode) { 20

/ R11: Execute manager
SETMAJOR-MODEO;
Environment. managers-step = ManagerStep. minor-mode;

} else if (Environment.manager-s == TaskStatus.executing
&& Environment. managers-step == ManagerStep.minor-mode) {

/7 R12: Execute manager
SETMINORMODEO;
Environment. managers-step = ManagerStep. major-mode;
Environment. manager.s = TaskStatus. finished;

} else if (Environment.monitors == TaskStatus.executing) { 30
// R2: Execute monitor
MONITORHEALTHO;
Environment. monitor-s = TaskStatus. finished;

} else if (Environment.servo-s == Task-Status.executing) {
// R3: Execute servo
CALCULATE-OUTPUTO;
Environment.servo.s = TaskStatus. finished;

}
}

} 40

public void CALCULATEOUTPUT() {
if (Environment.controller-mode == Mode.driving) {

// Ri: Driving Mode
Environment.desired-current = DrivingThrottleC(;
/7 from
/7 throttle-v

} else if (Environment.controller-mode == Mode.limiting) {
// R2: Limiting Mode
Environment.desired-current = LimitingThrottleCO; 50

} else if (Environment.controller-mode == Mode.faulty) {
// R3: Fault Mode
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HANDLEFAULTO;
} else if (Environment.controller-mode Mode.startup) {

// R4: Startup Mode
DOSTARTUPO;

} else if (Environment.controller-mode Mode.shutdown) {
// R5: Shutdown Mode
DOSHUTDOWNO;

} else if (Environment.controller-mode Mode.off) { 60

// R6: Fault Mode
Environment. desired-current DesiredCurrent. none-c;

}
}
public void DOSHUTDOWN() {

if (Environment. cvehicle-speed == 0
&& Environment.c-gear == GearStatus.park
&& Environment.ignition == BinaryStatus.off) {

7/ Ri: Do shutdown only when vehicle is stationary 70
Environment. desired-current = Desired Current. nonec;
Environment.shutdown-done = true;

} else {
// R2: No shutdown
Environment. desired-current = DesiredCurrent. none-c;
Environment. shutdown-done = false;

}
}
public void DOSTARTUP() { 80

if (Environment.c-vehicle-speed 0
&& Environment. cgear Gear-Status. park
&& Environment.c-break-pedal BinaryMode.active
&& Environment.c-cruise-switch BinaryStatus.off) {

/7 Ri: Do startup only when vehicle is stationary
Environment. desired-current = DesiredCurrent. none-c;
Environment.startup-done = true;

} else {
// R2: No startup
Environment. desired-current = DesiredCurrent. none-c; 90

Environment. startup-done = false;

}
}
public void HANDLE-FAULT() {

if (Environment.c-vehicle-speed 0
&& Environment.c-gear Gear-Status.park) {

/7 Ri: Handle the fault
Environment. desired-current DesiredCurrent. none-c;
Environment. controller-mode Mode.shutdown; 100
Environment.fault = false;
Environment.c fault = false;

} else {
// R2: Else
Environment. desired-current DesiredCurrent. fault _c;

}
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public void MONITORHEALTH() {
if (Faulto) { 110

// RI: Find Fault
Environment.system-health = HealthStatus.fault-detected;

} else {
// R2: Else do nothing
Environment.system-health = HealthStatus.nominal;

}
}
public void SETMAJORMODE() {

if (Environment.system-health == HealthStatus.nominal) { 120
// Ri: No fault
SETMAJORMODE-WORKo;

} else if (Environment.system -health == HealthStatus.fault-detected
&& Environment.controller-mode != Mode.shutdown) {

7/ R2: Else there are faults
Environment. controller-mode = Mode.faulty;

} else {
/7 R3: Else

}
} 130

public void SETMAJOR-MODEWORK() {
if (Environment. controller-mode = Mode.off

&& Environment.ignition BinaryStatus.on) {
/Ri: Off -> Startup

Environment. controller-mode = Mode.startup;
} else if (Environment.controller-mode == Mode.startup

&& Environment.startup-done == true) {
/7 R2: Startup -> Driving
Environment. controller-mode = Mode.driving; 140

} else if (Environment. controller-mode == Mode.driving
&& (OverRev() || OverTorque()
&& Environment.ignition == BinaryStatus.on) {

/7 R3: Driving -> Limiting
Environment. controller-mode = Mode.limiting;

} else if (Environment.controller-mode == Mode.limiting
&& !(OverRev() || OverTorqueo)
&& Environment.ignition == BinaryStatus.on) {

7/ R4: Limiting -> Driving
Environment. controller-mode = Mode.driving; 150

} else if ((Environment.controller-mode == Mode.limiting
Environment.controller-mode Mode.driving
Environment. controller-mode = Mode.faulty)

&& Environment.ignition == Binary_ Status.off) {
77 R5: Driving, Limiting, Faulty -> Shutdown
Environment. controller-mode = Mode.shutdown;

} else if (Environment.controller-mode Mode.shutdown
&& Environment.shutdown-done true) {

Environment. controller-mode = Mode.off;
// R6: Shutdown -> Off 160
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} else {
/7 R7: Any other case, do nothing

}
}
public void SETMINORMODE() {

if (Environment.system-health == HealthStatus.nominal) {
// Ri: No fault
SETMINORMODEWORKo;

} else { 170
/7 R2: Else

}
}
public void SETMINORMODEWORK() {

if (true) {
// RI: Else
Environment. cruise-mode = CruiseModeo;
Environment. rev-limiting-mode = OverRevMode();
Environment. traction-mode = OverTorqueMode(); 180

}
}

public boolean Cruise() {
boolean outb;
if (Environment.c-vehicle-speed >= Environment.MINCRUISESPEED

&& Environment. cgear == Gear.. Status. drive
&& Environment.c-break-pedal BinaryMode.inactive
&& Environment. c-cruise-switch BinaryStatus. on) {

/7 Ri: Cruise condition 190
outb = true;

} else {
// R2: Else
outb = false;

}
return outb;

}

public BinaryMode CruiseMode() {
Binary-Mode out; 200
if (Cruiseo) {

// RI: Cruise Active
out Binary-Mode.active;

} else {
// R2: Else
out = BinaryMode.inactive;

}
return out;

}
210

public DesiredCurrent DriverThrottle-CO {
DesiredCurrent out;
if (true) {

// RI: Always
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out = DesiredCurrent.human-c;

}
return out;

}

public DesiredCurrent DrivingThrottleC() { 220

DesiredCurrent out;
if (Environment. cruise-mode == Binary-Mode. active

&& Environment.c-pedal-angle != 0) {
7/ Ri: Cruise enabled, driver input
out = DesiredCurrent.max- driving-c;

} else if (Environment.cruise-mode == BinaryMode.active
&& Environment.c-pedal-angle == 0) {

7/ R2: Cruise enabled, no driver input
out DesiredCurrent. cruise-c;

} else { 230
// R3: Else
out = Driver-ThrottleCo;

}
return out;

}

public boolean Fault() {
Boolean outb;
if (Environment.c-fault) {

// Ri: Main loop 240

outb = true;
} else {

// R2: Else
outb = false;

}
return outb;

}

public DesiredCurrent LimitingThrottleC() {
DesiredCurrent out; 250

if (Environment.rev-limiting-mode == BinaryMode.active
&& Environment. traction-mode == Binary-Mode. active) {

/7 Ri: Both /if both over rev and over torque are active
out = DesiredCurrent.min-limiting-c;

} else if (Environment.rev-limiting-mode == Binary-Mode.active
&& Environment. traction-mode == BinaryMode. inactive) {

77 R2: OverRev /if only over rev is active
out = OverRev-ThrottleCo;

} else if (Environment.rev-limiting-mode == BinaryMode.inactive
&& Environment.traction mode == Binary-Mode.active) { 260

/7 R3: Over-Torque /if only over torque is active
out OverTorqueThrottle-C);

} else {
// R4: Else /both are inactive. This should never happen!
out = DesiredCurrent.error-c;

}
return out;

}
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public boolean OverRev() { 270

Boolean outb;
if (Environment.c-engine-speed > Environment.MAXENGINE-SPEED) {

// Ri: Over Rev Condition
outb = true;

} else {
// R2: No Over Rev
outb = false;

}
return outb;

} 280

public BinaryMode OverRev-Mode() {
BinaryMode out;
if (OverRev() {

// RI: Over Rev Mode
out BinaryMode.active;

} else {
// R2: Else
out = BinaryMode.inactive;

} 290
return out;

}

public Desired-Current OverRevThrottleC() {
DesiredCurrent out;
if (true) {

// Ri: Always
out = DesiredCurrent. rev_c;

}
return out; 300

}

public boolean OverTorque() {
Boolean outb;
if (Environment.c-vehicle-torque > Environment.MAX-TORQUE) {

// Ri: Over Torque Condition
outb = true;

} else {
// R2: No Over Torque
outb = false; 310

}
return outb;

}

public BinaryMode OverTorqueMode() {
Binary-Mode out;
if (OverTorque() {

// R1: Over Torque Mode
out BinaryMode.active;

} else { 320
// R2: Else
out = BinaryMode.inactive;
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}
return out;

}

public DesiredCurrent OverTorqueThrottleC() {
DesiredCurrent out;
if (true) {

// RI: Always 330
out = DesiredCurrent. traction_c;

}
return out;

}

}
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Vehicle.java

package ETCLow-Level;

import ETCLowLevel. Environment. Desired Current;
import ETCLowLevel.Environment.Simulation-Mode;

public class Vehicle extends Thread {

public Vehicle() {
}

10
public void runo {

while (true) {
if (Environment. driver-s == Simulation-Mode. random_s

&& Environment. vehicle-over-rev-s false
&& Environment.vehicle-over-tor-s false) {

7/ Ri: Randomly change, do nothing
continue;

} else if (Environment.driver-s == SimulationMode.random-s
&& Environment. vehicle-over-rev-s false
&& Environment.vehicle-over-tor-s false) { 20

/7 R2: Randomly change RPM
Environment.engine-speed = Environment.MAXENGINESPEED + 1;
Environment. vehicle-over-rev-s = true;

} else if (Environment.driver-s == SimulationMode.random-s
&& Environment. vehicle-over-rev-s = false
&& Environment.vehicle-over-tor-s false) {

/7 R3: Randomly change Traction
Environment.vehicle-torque = Environment.MAXTORQUE + 1;
Environment.vehicle-over-tor-s = true;

} else if (Environment.driver-s == Simulation-Mode.random-s 30

&& Environment. vehicle-over-rev _s false
&& Environment.vehicle over-tor-s false) {

7/ R4: Randomly change Both
Environment.engine-speed = Environment.MAXENGINESPEED + 1;
Environment.vehicle over-rev-s = true;
Environment.vehicle-torque = Environment.MAX-TORQUE + 1;
Environment.vehicle-over-tor-s = true;

} else if (Environment.driver-s == SimulationMode.random- s
&& Environment.vehicle-over-rev-s true
&& Environment.vehicle-over-tor-s false 40

&& Environment. desired-current == DesiredCurrent. rev-c) {
7/ R5: Randomly change RPM, correct
Environment.engine-speed = Environment.MAXENGINESPEED;
Environment. vehicle-over-rev-s = false;

} else if (Environment.driver-s == SimulationMode.random-s
&& Environment. vehicle-over-revs false
&& Environment. vehicle-over-tor-s true
&& Environment. desired-current == DesiredCurrent. traction~c) {

/7 R6: Randomly change traction, correct
Environment.vehicle-torque = Environment.MAXTORQUE; 50

Environment. vehicle-over-tor-s = false;
} else if (Environment.driver-s == SimulationMode.random-s
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&& Environment. vehicle-over-rev-s true
&& Environment. vehicle-over-tor-s true
&& Environment. desired-current == DesiredCurrent. min-limiting-c) {

7/ R7: Randomly change traction, correct
Environment.vehicle-torque = Environment.MAXTORQUE;
Environment.vehicle-over-tor-s = false;
Environment.engine-speed = Environment.MAXENGINESPEED;
Environment.vehicle-over-rev-s = false; 60

} else if (Environment. driver-s == SimulationMode. random _s
&& Environment.fault == false) {

/7 R8: Randomly put in a fault
Environment.fault = true;

} else {
// R9: Else
continue;

}
}

} 70

}
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