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Part 1

Introduction and Background



Chapter 1
Cycloalkynes in Cycloaddition Reactions

Introduction

Cycloaddition reactions are among the most powerful transformations available to

synthetic chemists.' These processes are often the most efficient and reliable methods for

preparing cyclic organic compounds with control of regiochemistry and stereochemistry. Our

laboratory has had a longstanding interest in the development of new methods for preparing

highly substituted rings of various sizes. Among these investigations have been studies of the

intramolecular [4+2] cycloaddition of conjugated enynes with various alkenes and alkynes,

providing a convergent route to complex polycyclic aromatic systems.2 As an extension of this

cycloaddition methodology, we were interested in examining the application of strained cyclic

alkynes as 2a components in the reaction. We expected that these unusual alkynes might be

exceptionally reactive as the 2a components in cycloaddition reactions. For our synthetic

endeavors, we were most interested in six-membered cyclic acetylenes, which are the most

widely studied of the strained cycloalkynes. The subject of this thesis is the investigation of

employing cyclohexyne derivatives as 27t components in various cycloaddition reactions. To

introduce this subject I will give brief background on the most well studied cyclic acetylene

system, arynes, before giving a more in-depth examination of cycloalkyne chemistry in general.

Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon Press: New York, 1990.
2 (a) Danheiser, R. L.; Gould, A. E.; Fernandez de la Pradilla, R.; Helgason, A. L. J Org. Chem. 1994, 59, 5514. (b)
Wills, M. S. B.; Danheiser, R. L. J Am. Chem. Soc. 1998, 120, 9378. (c) Dunetz, J. R.; Danheiser, R. L. J. Am.
Chem. Soc. 2005, 127, 5776.



Arynes: Structure and Reactivity

Benzynes are perhaps the most well-known and extensively reviewed members of the

family of strained cycloalkynes. 3 Benzynes are aromatic compounds with a strained 2-bond

located in the plane of the ring, orthogonal to the aromatic 7r-system. When compared to a linear

alkyne, the triple bond of benzyne is distorted approximately 56' from linearity and elongated by

0.14 A. Benzynes are soft electrophiles that readily participate in nucleophilic addition

reactions, and they are also remarkably reactive 27r components in [2 + 2] and [4 + 2]

cycloadditions and ene reactions.

Our laboratory's most recent work with cyclic alkynes has examined the use of arynes as

a 22-component in intramolecular cycloaddition reactions, with special attention given to using

conjugated enynes as cycloaddition partners. Eq I shows a generalized example of a

cycloaddition involving an aryne-enyne system.4 The direct result of the [4 + 2] cycloaddition is

a highly strained cyclic allene intermediate (2), which then quickly isomerizes to the more stable

aromatic ring (3).

3 (a) Gilchrist, T. L. In The Chemistry of the Functional Groups, Suppl. C: The Chemistry of the Triple-Bonded

Functional Groups; Patai, S. Rappaport, Z., Eds.; Wiley: New York, 1994; Ch. 18, pp 1017-1134. (b) Hoffmann, R.

W. Dehydrobenzene and Cycloalkynes, Verlag Chemie, Weinheim, 1967. (c) Winkler, M.; Wenk, H. H.; Sander,
W. In Reactive Intermediate Chemistry, Moss, R. A.; Platz, M. S.; Jones, M. Jr., Eds.; Wiley-VCH: Hoboken, NJ,
2004; Ch. 16, pp 741-794. (d) Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701. (e) Wenk, H. H.; Winkler, M.;

Sander, W.; Angew. Chem., Int. Ed. Engl. 2003, 42, 502. (f) Dyke, Alan M.; Hester, Alison J.; Lloyd-Jones, Guy C.

Synthesis 2006,4093.
4 Hayes, M. E.; Shinokubo, H.; Danheiser, R. L. Org. Lett. 2005, 7, 3917.



K. ~ K(1)

1 2 3

OSit-BuMe
2

2.0 equiv TBAT
TfN BHT TfN OSit-BuMe2

SiMe 3

THF (0.005 M) 61% (2)
rt 6 h

4 5

Previous studies have investigated the scope of this aryne cycloaddition with respect to

the substitution on the enyne moiety (eq 2). Cycloadditions including several "hetarenynes"

have also been developed. The optimized conditions for the reaction of arynes with enynes were

also employed in intramolecular aryne-Diels-Alder reactions with simple acyclic dienes, a

reaction that previously in the literature had yielded only poor results and only in the case of

substrates benefiting from the Thorpe-Ingold effect.

Non-aromatic Cyclic Acetylenes: Structure and Reactivity

The first attempts to generate cyclic alkynes commenced in the early 2 0 th century,

beginning in 1933 with the syntheses of cycloheptadecyne and cyclopentadecyne by L. Ruzicka

6and coworkers. A. T. Blomquist, who had previously completed syntheses of cyclodecyne and

cyclononyne, synthesized the smallest isolable cyclic acetylene, cyclooctyne, in 1953.7 Since

then it has been found that smaller cycloalkynes can only be generated and trapped in situ due to

the high reactivity of the strained triple bond.

5 Buszek, K. R. Tetrahedron Lett. 1995, 36, 9125.
6 Ruzicka, L.; Htibrin, M.; Boekenoogen, H. A. Helv. Chim. Acta. 1933, 16, 498
7 (a) Blomquist, A. T.; Liu, L. H. J. Am. Chem. Soc. 1953, 75, 2153. (b) Blomquist, A. T.; Burge, R. E.; Suscy, A. C.
J. Am. Chem. Soc. 1952, 74, 3636. (c) Blomquist, A. T.; Liu, L. H.; Bohrer, J. C. J. Am. Chem. Soc. 1952, 74, 3643.
(d) Blomquist, A. T.; Burge, R. E.; Liu, L. H.; Bohrer, J. C.; Suscy, A. C.; Kleis, J.; J. Am. Chem. Soc. 1951, 73,
5510. (e) Gleiter, R.; Werz, D. B., in Science of Synthesis, 2008, 43, 631.



Like arynes, non-aromatic strained cyclic acetylenes are remarkably reactive species that

have electrophilic character and participate readily in [2 + 2] and [4 + 2] cycloadditions and

other pericyclic reactions.8 The strain in these systems originates from the steric problem of

having four linearly arranged atoms in normal to medium-sized rings. The closing of the linear

system removes the degeneracy of the a MOs of the triple bond and electron density is pushed to

the outside of the ring. As a result of this bending, the LUMO of the alkyne is stabilized by the

efficient mixing of the a* orbitals with the o* orbitals of the adjoining C-C bonds while the

HOMO remains relatively unperturbed (Figure 1).9

---) --)0 -

Figure 1: Frontier orbitals and energies for 2-butyne models and benzyne

The figure above shows the frontier molecular orbitals of 2-butyne and various distorted

2-butyne models that mimic the angles and bond lengths present in benzyne. The relative

energies of the HOMO and LUMO orbitals in this system, also shown above, were obtained

8 For reviews of the chemistry of strained cyclic acetylenes including arynes, see (a) Krebs, A.; Wilke, J. Topics in

Curr. Chem. 1983, 109, 189. (b) Meier, H. In Advances in Strain in Organic Chemistry, Vol. 1, Halton, B. Ed.; JAI

Press: London, 1991; pp 215-272. (c) Hoffman, R. W. Dehydrobenzene and Cycloalkynes, Academic Press: New

York, 1967.
9 Rondan, N. G.; Domelsmith, L. N.; Houk, K. N. Tetrahedron Lett. 1979, 35, 3237.



from ab initio calculations. The enlarged image on the right shows the mixing of the n* orbitals

with a Q* orbital that lies only slightly higher in energy, dramatically lowering the LUMO while

having a very small effect on the HOMO.

Generation of Strained Cyclic Acetylenes

Large and medium ring systems with less associated strain can often be synthesized by

cyclization reactions or via ring enlargement of systems where a triple bond is already in place.

Heavily strained cyclic systems, defined as systems in which the deviation at the acetylenic

carbon atoms is greater than 100, can only be prepared when the triple bond is introduced in the

last reaction step, usually involving an elimination or cycloelimination process.b

1,2-Elimination is a popular and convenient method for generating cycloalkynes from

cycloalkenes. Several variations of this simple but powerful method have been developed, the

most basic of which is the dehalogenation of a vinyl halide with base (eq 3). 10 One of the

benefits of this method is that it requires only an easily obtainable monofunctionalized ring as

the alkyne precursor.

6 Br KOC(CH3)3 J (
Bria 1 rw

67

More recently, metal-halogen exchange and the use of fluoride ion-induced elimination

of a silyl group have become popular methods to synthesize cycloalkynes. These systems do

require a more complex 1,2-diftnctionalized precursor, but they also offer many advantages; for

example, there are a number of convenient fluoride-ion sources that effect efficient displacement

of silyl groups under mild conditions. Further discussion and examples of these systems will be

0 Detert, H.; Rose, B.; Mayer, W.; Meier, H. Chem. Ber. 1994, 127, 1529.



discussed in the next chapter alongside the discussion of previous syntheses of cyclohexyne

derivatives.

Other methods to generate strained cycloalkynes include cycloelimination reactions and

degradation of 1,2-dihydrazone systems. Dihydrazones of 1,2-cycloalkanediones can be

oxidized by various reagents, such as Pb(OAc) 4, at low temperatures. These lower temperatures

can be an advantage when generating reactive cycloalkynes; in fact, these conditions have been

used to great advantage for the preparation of 3,3,7,7,-tetramethylcycloheptyne (eq 4), which

dimerizes upon standing at rt." In this example the cycloalkyne was trapped with

diphenylisobenzofuran (DPIBF) and the cycloaddition product was used for analysis.

N-NH2 Pb(OAc) 4, CH2CI2  (4)

N'NH2 -H20, -N2

8 9

In an example of a cycloelimination reaction, cyclopropenone systems can be

decarbonylated by either heating or irradiation." As with the dihydrazone systems, an advantage

of this method is that it can also be carried out at low temperatures, which has been especially

useful for the matrix isolation of short-lived alkynes.

- hv/Ar,13K /

C40 -CO2 0

O matrix isolation

10 11

Krebs, A.; Kimling, H. Angew. Chem. Int. Ed. 1971, 10, 509.
12 Krebs, A.; Cholcha, A.; Muller, M.; Eicher, T.; Pielartzik, H.; Schn6ckel, H. Tetrahedron Lett. 1984, 25, 5027.



Chapter 2
Previous Syntheses of Cyclohexyne Derivatives

Early Studies of Cyclohexyne

Wittig first synthesized cyclohexyne in 1960 using the metal-induced elimination of a

1,2-dihalide and trapping the resulting alkyne with diphenylisobenzofuran (DPIBF) (eq 6).13 His

later studies demonstrated that cyclohexyne trimerizes in solution; the postulated mechanism for

this transformation is shown below in eq 7.

0Br
Br

12

Mg, THF

DPIBF
25%

Ph

Ph 35%
13

9
15

01
14

Cyclohexyne has only been characterized using matrix isolation, which was achieved by

Wentrup et al. in 1988 using flash vacuum pyrolysis (FVP) (eq 8).14 In these studies,

cyclohexyne was characterized by a pair of IR bands at 2105 and 2090 cm-1.

H3C /

NO
0

18

FVP

-CH3CN

19 14

13 (a) Wittig, G.; Krebs, A.; Pohlke, R. Angew. Chem. 1960, 73, 324. (b) Wittig, G.; Krebs, A. Chem. Ber. 1961, 94,
3260.
14 Wentnip, C.; Blanch, R.; Briehl, H.; Gross, G. J. Am. Chem. Soc. 1988, 110, 1875.



Several additional syntheses of cyclohexynes have used the rearrangement of

bromomethylenecycloalkanes with strong bases, such as potassium t-butoxide or NaNH 2-t-

BuONa, leading to the exocyclic carbene intermediate 19, as shown in eq 9. In 1965, Erickson

and Wolinksky used this rearrangement to generate cyclohexyne and, as in the studies by Wittig

they trapped the resulting alkyne in situ with DPIBF (eq 9). 15

- Ph

H 
DPIBF 

(9)

Br OO
Ph 35%

20 19 14 13

In a departure from cycloaddition trapping, Caubere et al. used this generation method in

the presence of nucleophiles to examine the isomerization of various derivatives of cyclohexyne

to 1,2-cyclohexadienes (eq 10). 16

R-

X Base 22

R- | + (10)

21 R -0
23

In these studies and those of Bottini et al. the ratio of ipso/cine substitution products,

which is postulated to be related to the ratio of cyclohexyne and 1,2-cyclohexadiene in solution,

was found to vary depending on the reaction conditions. 1 7

Fujita and coworkers used a novel elimination method involving iodonium salts to

generate cyclohexynes under milder conditions and to thus avoid the isomerization to allene 23

that occurs in strong base. The purpose of these studies was to examine the intrinsic

15 Erickson, K. L.; Wolinsky, J. J. Am. Chem. Soc. 1965, 85, 1142.
(a) Brunet, J. J.; Caubere, P. Tetrahedron 1971, 27, 3515. (b) Fixari, B.; Brunet, J. J.; Caubere, P. Tetrahedron

1976, 32, 927.
17 (b) Bottini, A. T.; Corson, F. P.; Fitzgerald, R. Tetrahedron 1972, 28, 4883.



regiochemistry of nucleophilic addition to cyclohexyne species (eq 11). These studies also

included two examples of cycloadditions for trapping, shown below in eqs 12 and 13.18

R C AcONBuC R OAC

R'9 B4 CHCI3, 60 0C R is
2pso

24 25

R OAc
cine

26

AcONBu4 i4 I --- D

R' CHCl 3, 60 C, R R
1 h

24 27 28

R = Me (32%); t-Bu (49%)

Ph

-Ph Ph Ph Ph

R Ph AcON60 FC R i Ph R I
R I BF 4- CHCI3, 60 00, ON R0 R Ph

24 2 h 27 29 Ph

R = Me (84%); t-Bu (91%); Ph (98%)

(12)

(13)

Cyclohexyne Generation Using Fluoride-Induced 1,2-Elimination

In 1992, R. P. Johnson and W. Shakespeare examined the generation of cyclohexyne

derivatives using more modem methods, specifically the fluoride-induced elimination of a 1,2-

silylvinyl halide (eq 14). '9

SiMe 3 DBU SiMe 3 CsF, rt

DMSOBr DMSO a Br DMS h
Br

30 31 32
Ph

Ph

0 0

Ph 30%

33

18 (a) Fujita, M.; Sakanishi, Y.; Kim, W. H.; Okuyama, T. Chem. Lett. 2002, 908. (b) Fujita, M.; Kim, W. H.;
Sakanishi, Y.; Fujiwara, K.; Hirayama, S.; Okuyama, T.; Ohki, Y. Tatsumi, K.; Yoshioka, Y. J. Am. Chem. Soc.
2004, 126, 7548.
19 Shakespeare, W. C.; Johnson, R. P. J. Am. Chem. Soc. 1990, 112, 8578.

(11)

(14)



The trimerization of cyclohexyne has been studied recently by Guitiin and coworkers

using the same generation method. In these studies the cyclotrimerization was metal-catalyzed

using palladium or platinum (eq 15).20

Oie (a) or (b) F

SiMe3  1 ,

34 14

(a) Pd(PPh3 )4 (10 mol%), CsF, CH3CN, 20 'C, 64%;
(b) Pt(PPh 3)4 (10 mol%), CsF, CH3CN, 20 0C, 62%

(15)

Guitiin et al. also examined the metal catalyzed [2 + 2 + 2] cycloaddition of cyclohexyne

and alkynes (eq 16). In addition, they also successfully trapped cyclohexyne in situ in a

cycloaddition reaction with an c-pyrone (eq 17).

OTf R -- R

SiMe 3  Pd(PPh3)4 10%'

34 CsF, MeCN, rt

R= CO 2Me (64%)
CF3 (63%)

OTf CsF, dioxane

SiMe 3 90-100 *C, 30 h

34

0

MeO 2C OQ~j 36
-Co2

(17)
MeO 2C

36 81-86%

2 (a) Atanes, N.; Escudero, S.; Perez, D.; Guitiin, E.; Castedo, L. Tetrahedron Lett. 1998, 39, 3039. (b) Inglesias,
B.; Peia, D.; Perez, D.; Guitiin, E.; Castedo, L. Synlett. 2002, 3, 486. (c) Peia, D.; Iglesias, B.; Quitana, I. Pdrez,
D.; Guitiin, E.; Castedo, L. Pure App. Chem. 2006, 78, 451.

(16)



Chapter 3
Our Synthetic Strategy

Our Goal and Strategy

Cyclohexynes have seen almost no applications in organic synthesis. The goal of my

research has been to investigate the feasibility of employing cyclohexyne derivatives as

components in various cycloadditions, including intramolecular enyne cycloadditions in

particular. The key step in our strategy for the generation of cyclohexynes involves the 1,2-

elimination of a vinyl triflate and a group Z, shown below. This strategy would generate the

cyclohexyne in situ, to be followed immediately by intramolecular trapping and isomerization

(eq 18).

R1

r_;TfO X/X R2 (8 R2 8)

37 38 39 40

Thus far we have examined two variants of this strategy, including one in which Z is

SiMe 3 (see 41 below). In this case we would rely on a fluoride-induced 1,2-elimination to

generate the desired cycloalkyne intermediate. We have also investigated a strategy where Z is

Br (43), in which case we would use an alkyllithium to promote 1,2-elimination in a similar

manner. The latter method is based on previous syntheses of aryne species according to a

method developed by Suzuki and coworkers.21

Matsumoto, T.; Hosoya, T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett. 1991, 46, 6735.



TfO SiMe 3  TBAT (19) Br n-BuLi (20)

41 42 43 42

Because little experimentation has been done with cyclohexyne substrates to date, our

interests included examining a variety of possible cycloaddition partners in addition to

conjugated enynes. We decided to begin our studies using the furan containing substrates shown

above in eq 19 and 20. This type of structure would allow us to examine intramolecular Diels-

Alder reactions with the intermediate cycloalkyne using a diene well known to be effective in

aryne cycloadditions.

Summary

The chemistry of cyclic alkynes remains an intriguing area of study in modem synthetic

chemistry. Apart from their appeal as unique and interesting strained systems these alkynes have

significant potential utility for organic synthesis and could provide new methods to generate

complex carbocyclic scaffolds.



Part II

Studies on the Intramolecular Cycloaddition of Cyclohexynes



Chapter 1
Ketone Alkylation Strategy

Introduction

Our first target was the silyl vinyl triflate 41, which we hoped to access via a route

similar to that taken by Johnson and Guitiin in their studies on cyclohexyne reactivity. 19-20 Our

initial approach for the synthesis of triflate 41 is shown below in eq 21. Enone 45 would be

alkylated to provide 44, and then conjugate reduction of 44 followed by enolate trapping with a

triflating agent was expected to provide our desired vinyl triflate 41.

0 0
01 E:: TfO SiMe3 R I R SiMe 3 E=i SiMe 3  (21)

42 41 44 45

Ketone Alkylation Route to Cyclohexyne Precursors

The alkylation of enolate species is a well-established procedure in organic synthesis.

We anticipated that intermediate 44 could be readily prepared from the known enone 45 using

standard alkylation reactions. Enone 45 was synthesized in three steps from cyclohexanone

according to literature precedent,22 as shown below in eq 22.

22(a) Kowalski, C. J.; Weber, A. E.; Fields, K. W. J. Org. Chem. 1982, 47, 5088. (b) Li, K.; Alexakis, A. Angew.
Chem. Int. Ed. 2006, 45, 7600. (c) Anderson, J. C.; Pearson, David J. J. Chem. Soc. Perk. T. 1 1998, 2023. (d) Shih,
C.; Fritzen, E. L.; Swenton, J. S. J. Org. Chem. 1980, 45, 4462.



0 Br2 (1.05 equiv) 0 ethylene glycol (3.0 equiv) O O n-BuLi (1.2 equiv) 0
> DCM, O C; Br CSA (0.5 equiv) Br THF, -78 0C; SiMe 3  (22)

Et3N (1.7 equiv) benzene, reflux 29-72 h Me3SiCI (2.0 equiv)
54-62% 46 43-80% 47 -78 0C - rt 45

[Ref. 22a (60%), 22b (71%)] [Ref. 22c (86%)] 75-86% [Ref. 22d (72%)]

Although the bromination and silyation procedures proceeded in good yield, the

ketalization of 46 proved to be a source of frustration. Reactions performed on a scale of less

than 1 g proceeded consistently in 70% yield or higher. However, when moving to larger scales

the yields became inconsistent and the reaction produced a major side product that could not be

identified. Both CSA and TsOH were tested as acids in this reaction, in amounts ranging from

0.1-0.5 equivalents, but the formation of the side product was observed in each case.

Our desired alkylating agent 49, a known compound, was also prepared according to

literature precedent (eq 23).3

n-BuLi (1.0 equiv), THF
-78 BC - 0 *C 30 min, 0 'C 2h; Ca (0 euxv4 h

0/(C acetone, reflux, 48 h
Br ' Cl(1.0 equiv)

(2.0 equiv) 0 *C - rt, 18 h, 71-86% 48 75-86% 49

Before we attempted to alkylate enone 45 with iodide 49, the alkylation procedure was

optimized using allyl bromide. Our optimized conditions gave 50 in 63-78% yield (eq 24).

Although these yields were acceptable, they nonetheless caused some concern as we were hoping

for better results with such an activated alkylating agent.

23 Rogers, C.; Keay, B. A. Can. J. Chem. 1992, 70, 2929.



0 LDA (1.10 equiv), THF 0
SiMes -78 C, 30 min; SiMe 3  (24)

allyl bromide (1.5 equiv)

45 -78 *C - rt, 18 h 5063-78%

Indeed, when these conditions were applied with the desired alkylating agent, iodide 49,

the yield of the reaction remained poor despite our extensive attempts to improve it. Our best

conditions produced the desired product in only 22% yield (eq 25). Bases screened included

LDA, LiTMP, and LiHMDS, with and without the addition of HMPA. The reaction was also

attempted at different temperatures ranging from -78 'C to rt, both with normal and inverse

addition of the enolate and alkylating agent. The low yields were consistent with the poor

conversion that was seen in these reactions. The reaction did, however, produce few impurities

or side products and the unreacted starting material could be recovered and used for further

experiments.

O S e LDA (1.5 equiv), THF; O

I e 49 (1.5 equiv), S e(25)
-78 OC - rt, 18 h

45 22% 51

Curious about the reactivity of the alkylated species, we attempted to alkylate enone 51

with methyl iodide (eq 26). Although the reaction did occur, the conversion was again low (ca.

50% by 'H NMR analysis) and the methylated product 52 could not be separated from the

starting material.

0 / LDA (1.2 equiv), THF /
SiMe 3 0 *C, 30 min; SiMe3

Mel (1.5 equiv), Me (26)
-78 *C - rt, 18 h

51 52

ca. 50% conversion by 1H NMR analysis
compound not isolated



We then attempted to facilitate the alkylation process by incorporating an ester

substituent adjacent to the ketone. Mander's reagent (MeO 2CCN) is known to be an effective

acylating reagent in these reactions.24 However, to our surprise enone 45 proved unreactive in

acylation chemistry as well, resulting again in low yields and proceeding cleanly but with poor

conversion of the original enone (eq 27).

0 LDA (1.2 equiv), THF 0

SiMe 3 -78 'C 30 min, 0 *C 1 h; MeO 2C SiMe 3

MeO 2CCN (1.2 equiv) 6 (27)
-78 *C - rt, 3.5 -18 h

45 53

22%; 80% pure, 20% starting
material by 1H NMR analysis)

Puzzled by this result, we attempted to acylate 3-methylcyclohexenone as a model to test

our methods (eq 28). Although the yields were slightly lower than the closest literature

precedent (70% for the acylation of 3-methylcyclohexenone with allyl cyanoformate2 5 ), we were

still seeing a significant increase in reactivity compared to reactions with

trimethylsilylcyclohexenone 45.

O LIDA (1.2 equiv), O
HMPA (1.0 equiv)
0 *C, 1 h, THF; MeO 2C (28)

Me MeO 2CCN (1.2 equiv) Me
-78 *C - rt, 18 h

54 48-56% 55

To further understand the lack of reactivity of enone 45 we attempted the preparation of

the silyl enol ether derivative to examine the ease of enolate formation. This reaction went in

quantitative yield with no required purification of the product as shown in eq 29 below.

24 Crabtree, S. R.; Chu, Alex W. L.; Mander, L. C. Synlett 1990, 169.
25 Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M. Angew. Chem. Int. Ed. 2005, 44, 6924.



However, our attempts to cleave silyl enol ether 56 with methyllithium and then alkylate the

resulting lithium enolate resulted only in recovery of the original silyl enol ether with no silyl

enol ether cleavage or alkylated enone visible in the crude product by TLC and 'H NMR,

implying a surprisingly low reactivity of this enolate precursor.

0 LDA (1.2 equiv)
SiMe 3 -78 'C, 1 h, THF;

Me3SiC (1.5 equiv)
2.5h, -78 'C-rt

45 96-98%

OSiMe 3  MeLi (1.05 equiv), THF
SiMe 3 -10 "C - rt, 30 min;

allyl bromide (2.0 equiv)

56 0'C1h,rt 3h

To better understand these results, we wanted to compare the reactivity of enone 45 with

a simpler a-substituted cyclohexenone. This led us to attempt alkylations using 2-

methylcyclohexenone 57 as a model substrate. This compound was synthesized in two steps

from methylcyclohexanone according to a literature procedure.26 Although methyl enone 57 did

react with active alkylating agents in acceptable yield, when we attempted to use iodide 49 as the

alkylating agent the reaction produced no significant product (eq 30-32).

LDA (1.2 equiv), THF
0 *C, 30 min;

Mel (1.5 equiv),
0O*C - rt, 18 h

48-67%

LDA (1.2 equiv), THF
0 *C, 30 min;

allyl bromide (1.5 equiv),
o *C - rt, 18 h

47%

o LDA (1.2 equiv), THF
Me 0 C3 _, 0min;

iodide 50 (1.5 equiv),
0O*C - rt, 18 h

57 no rxn

0
Me Me

58

0
Me

59

0 0

Me

60

26 Warnhoff, E. W.; Martin, D. G.; Johnson, W. S. Org. Syn. 1957, 37, 8.

0
SiMe 3

50

(29)

0
Me

57

0
Me

57

(30)

(31)

(32)



Although surprising, it should be noted that there are relatively few examples of efficient

alkylation reactions of oa-substituted cyclohexenones in the prior literature and these alkylations

tend to go in variable yields, often producing poor results with unactivated alkylating agents (eq

33).27

0 0
Me R Me R = Me, (96%) 27a (33)

Allyl Br, (95%) 27a
Eti, (31%) 27b

61 62

One exception is the alkylation of carvone, which in our hands did proceed well, as expected

based on the prior literature (eq 34).28

0 0
Me LDA, THF Me Me

-78 *C - 0 *C;_ (34)
Mel, -78 C - rt

12 h, 87%
63

Summary

Given the difficulty of alkylating cyclohexenone 45, we decided to modify our strategy

by employing a starting material that would be more amenable to alkylation reactions. In our

next approach we decided to simplify the alkylation procedure by starting with a p-keto ester.

Keto esters in general are easier to alkylate and react under much milder conditions than those

required for our original enone. Our strategy to obtain cyclohexyne precursors using this route is

the subject of Chapter 2.

27 (a) Srikrishna, A.; Pardeshi'V. H.; Satyanarayana, G. Tetrahedron Lett. 2007, 48, 4087. (b) Yao, M.; Deng, M.
Synthesis 1993, 1095.
21 Srikrishna, A.; Vijaykumar, D. J. Chem. Soc. Perk. Trans. L 2000, 2583.



Chapter 2:
Keto Ester Alkylation Strategy

Introduction

Our keto ester strategy began with the commercially available keto ester shown below in

eq 35. In this strategy, our cyclohexyne precursor 65 would be subjected to a n-BuLi promoted

1,2-elimination to produce the desired cycloaddition product 64. The ester component would

facilitate the alkylation reactions and then could then be modified or removed as desired. This

strategy is based on Suzuki's work on aryne chemistry9 and we expected it to be effective for

the generation of cyclohexyne as well.

0

Eto 2C

64

000

TfO Br 0 Br E Eto 2C

Et6 2C EtO 2C

65 66

Keto Ester Alkylation Route to Cyclohexyne Precursors

Alkylation of the s-keto ester with our previously generated iodide 49 proceeded in good

yield and was easily scaled-up to provide us with convenient access to compound 67 (eq 36).

K2CO3 (2.0 equiv)

49 (1.5 equiv)

acetone
reflux, 36-48 h

68-71%

0/ 0

EO 2C

67

(36)

29 (a) Masumoto, T.; Hosoya, T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett. 1991, 32, 6735. (b) Hamura, T.; Hosoya,
T.; Yamaguchi, H.; Kuriyama, Y.; Tanabe, M.; Miyamoto, M. Yasui, Y.; Matsumoto, T.; Suzuki, K. Helv. Chim.
Acta 2002, 85, 3589.

(35)

0
EtO2C



The next step in our strategy required the bromination of keto ester 67. Finding optimal

conditions for this bromination reaction proved troublesome at first. Several bases were

screened, including LDA, LiTMP, LHMDS, and KHMDS, using NBS and Br2 as brominating

agents. These reactions resulted in poor conversion of the starting material and production of a

major side product that upon isolation proved to be the dibrominated ketone 68 (eq 37). The

addition of HMPA to these reactions was moderately successful in suppressing the formation of

the doubly brominated product.

0 Base (1.0-1.5 equiv) 0 0 B (
THF, time/temp varies Et Br +/ Br (7

EtO2Ct Br2 or NBS (1.5-2.0 equiv) 0t2C EtO2C

67 -78 *C - rt, times vary 66 68

Further attempts to minimize the double bromination included lowering the amount of

base to 1.0 equivalent, testing ethyl ether as a solvent, and attempting inverse addition of our

enolate to the brominating agent. The yield and conversion of the reaction, however, remained

poor. The highest conversion in these reactions was seen with the use of KHMDS as base,

resulting in a product mixture containing the dibrominated product (42%) and the desired

monobrominated species (53%). The bromination reaction was also attempted with a

brominating agent derived from Meldrum's acid, compound 690 shown below (eq 38). By using

this procedure3 we had hoped to improve the efficiency of the reaction by avoiding basic

conditions, but the reaction resulted in the production of several side products, including

products from bromination of the furan ring, and little to none of desired product.

30 Snyder, H. R.; Kruse, C. W. J. Am. Chem. Soc. 1958, 80, 1942.
31 Bloch, R. Synthesis 1978, 140.



0 / ethyl ether, rt, 2 h 0
0- / B r

Br Br
EtO2C EtO2C (8

67 O O (0.5 equiv) 66

69

The range of conditions and temperatures that have been used in brominations with

reagent 69 vary greatly, and it is therefore possible that with further optimization yields the

reaction with this reagent could be improved. This avenue was not further pursued, however,

due to the success of our next attempted bromination involving a soft enolization approach. In

this procedure we formed the boron enolate and then added that enolate to a slurry of NBS in

cold DCM. The reaction proceeded in good yield and provided ample material for triflation

experiments (eq 39).

o n-Bu 2BOTf (1.05 equiv)
0 i-Pr2EtN (1.2 equiv) 0

DCM, 0 *C 30 min; Br (39)

EtO 2C NBS (1.2 equiv) EtO2C
-78 *C, 2 h

67 63-68% 66

The next step in our synthetic strategy required the formation of the vinyl triflate 65 from

bromo ketone 66. The closest literature precedent for this reaction is the triflation of 1-bromo-

cyclohexanone, 70, which we were able to repeat in 73% yield (eq 40; literature yield 950%).)2

When these conditions were applied to ketone 66, however, none of the desired product was

obtained. All attempts to effect this reaction were unsuccessful. The reaction was attempted

using KHMDS and LDA as the base, with and without the addition of HMPA, and with triflic

anhydride and phenyltriflimide as triflating agents (eq 41).

32 Siinnemann, H. W.; Banwell, M. G.; de Meijere, A. Eur. J. Org. Chem. 2007, 3879.



0 KHMDS (1.35 equiv) OTf
Br Et20, -78 C, 30 min; Br (40)

Tf2O (1.05 equiv)

70 -78 *C - 23 C, 24 h 71
73%

0 0. KHMDS (1.35 equiv) O OTf

Br Et20, -78 C, 30 min; /4)Br
EtO 2C X EIO 2CTf20 (1.05 equiv)

66 -78 *C - 23 *C, 24 h 65

Summary

Our unexpected difficulties in generating the requisite triflate made it necessary to

abandon this strategy, causing us to again shift our focus to the fluoride-induced 1,2-elimination

of a silyl vinyl triflate to generate cyclohexyne derivatives. Our new strategy towards this goal is

described in the next chapter.



Chapter 3
Ring-Closing Metathesis Strategy

Introduction

Using enone 72 in a ring-closing metathesis (RCM) reaction would generate

trimethylsilyl(cyclohexenone) 51 while avoiding the alkylation reactions that were previously

problematic. The vinyl triflate could then be generated through the conjugate-reduction and

trapping reactions previously planned (eq 42).

O 
f !e

OTf
4 SiMe3 Z

41

.SiMe 3 E=>

0

0 SiMe3

72

There is sufficient precedent for ring-closing metathesis reactions involving vinyl

silanes (eq 43-45) that we were optimistic about following this strategy to reach our desired

enone 51.

Me3Si Me

EtO 2C CO2Et

73

(ref 33a)

Grubbs 2nd gen. cat.

3 mol %, 8 h
98%

Me
EtO2C

EtO2C
SiMe3

74

0 Grubbs 2nd gen. cat.
0 SiMe3  8 mol %, 72 h

75 79%

(ref 33a)

0 

0 

7V6 S!Me3

(44)

33 (a) Gouveneur, V.; Schuman, M. Tetrahedron Lett. 2002, 43, 3513. (b) Matsuda, T.; Yamaguchi, Y.; Murakami,
M. Synlett 2008, 4, 0561.

0

42

(42)

(43)



Sg.. ~ Grubbs 2 nd gen. cat.

Me2 Ph 5 mol %, toluene, 80 OC
98%

77

(ref 33b)

Si Ph
Me

2

78

Ring-Closing Metathesis Route to Cyclohexyne Precursors

The substrate for the key RCM reaction was expected to be available in 4 steps from 5-

hexenol. A catalytic chromium oxide oxidation34 provided acid 79 in good yield, followed by an

alkylation of the acid dianion using our previously prepared alkyl iodide 49. The resulting acid

was then converted to the corresponding Weinreb amide,35 which was then converted to the

desired ketone 72 by reaction with the lithium reagent 81 formed from (1-

bromovinyl)trimethylsilane (Scheme 1).

Cr0 3 (0.12 equiv), 0 LIDA (2.1 equiv) 0
H5106 (2.7 equiv) O THF, -78 0C - 0 C / OH
MeCN, H 20, 00C 0 DH

30min 80
80-86% I 80

49 (1.2 equiv)
-78 *C - rt, 18 h
52-65% EtsN (3.0 equiv),

RCIM
-------------

4

MsCI (1.1 equiv),
THF, 0C, 10 min;

Me(OMe)NH
(1.05 equiv)

O C, 1 h
78-92%

ether, pentane O
-78 *C, 3 h N OMe

SiMe 3  Li 0 Me

3-65% MeSi 81

Br t-BuLi (3.0 equiv)

Me 3Si ether, pentane
-78 C, 2 h

(1.5 equiv)

Scheme I

3 Zhao, M.; Li, J.; Song, Z.; Desmond, R.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. Tetrahedron Lett.
1998, 39, 5323.
35 Woo, J.; Fenster, E.; Dake, G. R. . Org. Chem. 2004, 69, 8984.

(45)



With this key intermediate in hand we then tested several different conditions for the

ring-closing metathesis. Our first attempts employed 5-20 mol % Grubbs 2nd generation catalyst

at concentrations ranging from 0.05-0.1 M. Although some of the desired product was isolated,

these reactions did not proceed to completion and the major isolated product was dimer 83 (eq

46). The major components of the dimer mixture were the trans-diastereomers, though all four

isomers were visible by GC analysis.

00
O Grubbs 2 nd Generation O

Catalyst (5-20 mol%)
SiMe 3

O SiMe 3  toluene, reflux 48 h i + SiMe3

\ 1 0.05-0.1 M \ M
72 51 72

+ (46)

SiMe 3  0 0

0 0 SiMe 3

83

Simultaneously we screened reactions using the Hoveyda-Grubbs 2nd generation catalyst.

For these reactions it proved necessary to use 60-100 mol % catalyst to force the reaction to

completion. At first this was not considered problematic because the catalyst was expected to be

recoverable in high yield. 36 We obtained our desired product, enone 51, in 49-53% yield, but we

also obtained an additional unknown product (84) that was present in approximately equal

amounts. More problematically, the catalyst appeared to be decomposing during the course of

the reaction and could not be recovered (eq 47).

(a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem Soc. 2000, 122, 8168. (b)
Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791.



U Hoveyda-Grubbs

2nd Generation Catalyst 0

O SiMe (0.66-1.0 equiv) SiMe 3 + 84 + Catalyst decomposition (47)

\ S DCM, rt, 48 h, 0.01M
72 51

49-53%

Based on the available analytical data, including 1H NMR, "C NMR, gCOSY, HMBC,

HSQC, GC-MS, and FT-JR spectra, we propose the structure of 84 to be the homologated

product shown below.

0

O / SiMe3

84

Compared to the desired enone 51, compound 84 shows an additional methylene in the

3C NMR and 'H NMR spectra. These two new protons appear as an apparent quartet at ca. 1.65

ppm and do not couple to any other protons on the gCOSY spectrum (Figures 2-3).
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Figure 2: gCOSY spectrum of
enone 51 (CDCIz, 500 MHz)
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Figure 3: gCOSY spectrum of the
unknown 84 (CDCl3 , 500 MHz),
new app quartet visible at ca 1.65

ppm.
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The MS analysis confirms the presence of an additional methylene carbon with a mass

ion 14 m/z higher than that seen for the desired enone 51. This structure is supported by the

coupling visible in the HMBC spectrum and with the proton-carbon correlations in the HSQC

spectrum as well.

When reexamining the reaction with the 2 "nd generation Grubbs catalyst at higher dilution

(0.01 M), dimer formation was avoided, however, all reactions proceeded with poor conversion

(50% or lower), and the same unknown product 84 was visible in the crude product (eq 48).

F2:
(ppm~

1.8

3.0-

I Z7

' et

; 77--



0 Grubbs 2nd Generation ' 0
Catalyst (20 mol%) O+ 84 (48

O SiMe3  Toluene, reflux 48 h SiMe 3 + 0 SiMe 3

72 51 72

Vinylsilanes are known to participate effectively in RCM reactions, so it is our hope that

this reaction could be improved in future work by removing the complication of the conjugated

enone from the system. This could be done easily by reducing the carbonyl group and protecting

the resulting alcohol so that the uninhibited vinylsilane could then undergo the RCM reaction.

The alcohol could then be oxidized to the ketone and the strategy would continue as planned.

Summary

Although we plan to continue our studies of the RCM route, we are also pursuing a route

to cyclohexyne precursors involving conjugate addition and enolate trapping using our

previously synthesized trimethylsilylenone 45. Although precursor 85 is slightly different from

our original target, the intermediate after TBAT elimination is the same (eq 49).

0 O . OTf

SiMe3  / CuLiTBAT 0

81

45 85 42
O



Part III

Studies on the Intermolecular Cycloadditions of Cyclohexyne



Chapter 1
Substrate Generation and Reactivity

Introduction

In addition to our interest in intramolecular cycloadditions involving cyclohexynes, the

intermolecular cycloadditions of these substrates have also attracted our attention, as there are

few studies of the application of these reactions in synthesis to date. Simple cyclohexyne

substrates could be formed from triflate compounds such as 34, which are also easily obtained

from our previously generated trimethylsilylenone 45 by conjugate-reduction or addition

reactions followed by enolate trapping (eq 50).

OTf 0
SiMe 3  SiMe 3  (50)

14 34 45

Synthesis of Substrates for Intermolecular Cycloaddition Reactions

Forming the vinyl triflate 34 from the parent enone was successfully carried out using L-

Selectride for the reduction, followed by Comins reagent for the triflation. Unfortunately,

despite attempts to purify the material there remained an inseparable impurity present in ca 10%

in all cases (eq 51). We also tested phenyltriflimide as a triflating agent, but encountered the

same problem.



0 L-Selectride (1.1 equiv) OTf
SiMe 3 THF, -78 *C, 1 h; SiMe 3

4 Cl 1. e 75% yield, ca. 90% pure
45. (1.1 equiv) 3

N NTf2
-78 0C - rt, 3 h; rt, 2 h

This reaction was reported to proceed in 78% yield by Guitian et al. 2 0 (eq 52) in their studies on

cyclohexyne, but no detailed procedure was given in this paper and their result could not be

replicated in our hands.

o OTf

SiMe 3  L-Selectride, THF; SiMe 3

PhNTf 2

45 78% 34

Triflate 34 has thus far been used in two cycloaddition reactions. The first reaction

involved trapping the cyclohexyne intermediate with furan (used as solvent) under conditions

typical of the previous aryne trapping work done in our laboratory (eq 53). The next

cycloaddition was performed using DPIBF to trap the cyclohexyne intermediate (eq 54).

Because DPIBF is a known, very effective diene in Diels-Alder reactions, we intend to optimize

the elimination and trapping reactions with this partner before testing other less active systems.

Thus far this reaction has only been attempted once and it is expected that yields will

significantly increase with better knowledge of the best purification method for this system.

OTf
V SiMe3 TBAT (ca. 2 equiv) , (52)

BHT (1.5 equiv)
furan, rt, 18 h

34 86

ca. 90% pure 100% yield, 75-90% pure
(estimate by 1H NMR analysis)



OTf TBAT (1.5 equiv)
SiMe3  THF, rt Ph / (53)

Ph
(1.2 equiv) Ph

34 
32%

ca. 90% pure 87
Ph

To study cuprate conjugate additions we commenced using simple lithium

dimethylcuprate and dimethyl cyanocuprate generated from CuI or CuCN and methyllithium,

followed by trapping to generate the triflate compound 86. Testing the conjugate addition

reaction without trapping shows that this reaction proceeds cleanly to completion (eq 54).

Trapping the intermediate enolate, however, has proven more difficult and produced several side

products that are difficult to separate from the desired compound (eq 55).

0 0

SiMe 3 Me2CuLi (1.3 equiv) SiMe 3  (54)

ether, 0 C; rt, 2 h Me

45 63% yield 88

0 TfO

SiMe 3 Me2CuLi (1.3 equiv) SiMe 3  (55)
ether,0 C; rt, 2 h;
Comins reagent (1.5-2.3 equiv) Me

45 89

We are attempting to optimize this system, and we will next proceed to the dibutylcuprate

system. Subsequently these two substrates can also be examined in intermolecular cycloadditions

as well (eq 51 and 52).

OTf TBAT (1.5 equiv) Ph
SiMe 3  THF, rt, 18 h------ - -- + (56)

Me (1.2 equiv) Ph

89 C 0 Me

Ph 90



OTf TBAT (1.5 equiv)
SiMe3  THF, rt Ph

S e3 ------.------ --- ------- O (57)
Ph P

n-Bu P (1.2 equiv) Ph

91 N 0 n-Bu

Ph 92



Part IV

Experimental Procedures



General Procedures

All reactions were performed in flame-dried glassware under a positive pressure of argon and

stirred magnetically unless otherwise indicated. Air- and moisture-sensitive liquids and solutions

were transferred via syringe or cannula and were introduced into reaction vessels through rubber

septa. Reaction product solutions and chromatography fractions were concentrated by using a

Btichi rotary evaporator at 15-20 mmHg. Column chromatography was performed on EM

Science silica gel 60 (35-75 tm) or Silicycle silica gel 60 (230-400 mesh).

Materials

Commercial grade reagents and solvents were used without further purification except as

indicated below.

(a) Purified by pressure filtration through activated alumina:

Dichloromethane, diethyl ether, and tetrahydrofuran

(b) Purified by pressure filtration through activated alumina and Cu(LI) oxide:

Toluene

(c) Distilled under argon or vacuum:

Hexamethyl phosphoramide

(d) Distilled under argon from calcium hydride:

Diisopropylamine, triethylamine, diisopropylethylamine, triethylamine,

methanesulfonyl chloride, trimethylsilylchloride

(e) Dried under vacuum:

Potassium carbonate was crushed with a mortar and pestle and dried overnight

at 0.10 mmHg



(f) Other:

n-Butyllithium and tert-Butyllithium were titrated according to the Watson-Eastham

method using menthol or BHT in THF at 0 'C with 1,10-phenanthroline as an

indicator37

Acetone was HPLC grade and distilled from calcium carbonate

Benzene was dried through azeotropic distillation

N,O-dimethylhydroxylamine was obtained immediately before the reaction by

distillation of the HC1 salt from ethylene glycol and triethanolamine

Molecular sieves (4 A) were dried under vacuum (0.1 mmHg) at 300 'C for 16 h

before use.

Instrumentation

Infrared spectra were obtained using a Perkin Elmer 2000 FT-IR spectrophotometer. IH NMR

and 3C NMR spectra were measured with Inova 500 and Bruker 400 MHz spectrometers. 'H

NMR chemical shifts are expressed in parts per million (6) downfield from tetramethylsilane

(with the CHCl3 peak at 7.27 ppm used as a standard on the Bruker spectrometers and 7.27 ppm

on the Inova). 13C NMR chemical shifts are expressed in parts per million (6) downfield from

tetramethylsilane (with the central peak of CHCl3 at 77.27 ppm used as a standard). High

resolution mass spectra (HRMS) were measured on a Bruker Daltonics APEXII 3 telsa Fourier

transform mass spectrometer.

3 Watson, S. C.; Eastham, J. F. J. Organomet. Chem. 1967, 9, 165. (b) Ellison, R. A.; Griffin, R.; Kotsonis, F. N.

Organomet. Chem. 1972, 369, 209.



0 0
Br Br

46 47

6-Bromo-1,4-dioxaspiro[4.5]dec-6-ene. A 1-L, round-bottomed flask was equipped with a

Dean-Stark trap fitted with a reflux condenser and argon inlet. The trap was half-filled with

benzene and 4 A molecular sieves and the flask was charged with enone 46 (5.00 g, 28.6 mmol,

1.0 equiv), ethylene glycol (3.19 mL, 3.55 g, 57.2 mmol, 2.0 equiv), CSA (3.33 g, 14.3 mmol,

0.5 equiv), and 400 mL of benzene. The reaction mixture was heated at reflux for 36 h and then

allowed to cool to room temperature. Aq satd NaHCO 3 solution (100 mL) was added and the

resulting mixture was stirred for 30 min. The aqueous layer was separated and extracted with

two 50-mL portions of EtOAc and the combined organic layers were dried over a mixture of

MgSO 4 and K2CO 3, filtered, and concentrated to afford 6.29 g of light yellow oil. Column

chromatography on 180 g of silica gel (elution with 20% EtOAc-hexanes) provided 5.00 g (80%)

of ketal 47 as a colorless oil. Spectral data was identical to that reported previously.22c



r--\ 0
0 Br SiMe3

47 45

2-(Trimethylsilyl)cyclohexenone. A 50-mL, three-necked, round-bottomed flask equipped with

an argon inlet and two rubber septa was charged with a solution of ketal 47 (1.980 g, 9.04 mmol,

1.0 equiv) in 25 mL of THF and then cooled at -78 'C while n-BuLi (2.59 M in hexane, 4.17 mL,

10.80 mmol, 1.2 equiv) was added dropwise over 7 min. The reaction mixture was stirred at -78

'C for 30 min and then Me 3 SiC1 (2.29 mL, 1.95 g, 18.08 mmol, 2.0 equiv) was added dropwise

over 5 min. After 1 h, the reaction mixture was allowed to warm to room temperature and then

stirred for 1 h. Aq satd NH4 C1 solution (5 mL) was added and the resulting mixture was

extracted with two 15-mL portions of diethyl ether. The combined organic layers were washed

with 15 mL of water and 15 mL of brine, dried over MgSO 4, filtered, and concentrated to afford

1.628 g of a light tan oil. Column chromatography on 35 g of silica gel (elution with 20%

EtOAc-hexanes) provided 1.31 g (86%) of 45 as a very light tan oil that solidified to a waxy

solid upon standing. Spectral data was identical to that reported previously.22d



0 0
SiMe 3  SiMe 3

45 50

6-Allyl-2-(trimethylsilyl)cyclohex-2-enone. A two-necked, 25-mL, round-bottomed flask

equipped with an argon inlet and rubber septum was charged with a solution of 4 mL of THF and

diisopropylamine (0.10 mL, 0.069 g, 0.068 mmol, 1.15 equiv). The solution was cooled at 0 'C

while n-BuLi (2.60 M in hexane, 0.25 mL, 0.65 mmol, 1.10 equiv) was added dropwise over 2

min. After 10 min, the reaction mixture was cooled to -78 'C and a solution of cyclohexenone

45 (0.100 g, 0.60 mmol, 1.0 equiv) in 0.5 mL of THF was added dropwise over 5 minutes. After

30 min, allyl bromide (0.108 g, 0.08 mL, 0.89 mmol, 1.5 equiv) was added rapidly dropwise and

the resulting mixture was allowed to warm to room temperature. After 18 h, 20 mL of aq satd

NH 4 Cl solution was added and the aqueous phase was separated and extracted with two 15-mL

portions of diethyl ether. The combined organic layers were washed with 15 mL of water and 15

mL of brine, dried over MgSO4, filtered, and concentrated to afford 0.142 g of tan oil. Column

chromatography on 15 g of silica gel (elution with 3% EtOAc-hexanes) provided 0.097 g (78%)

of 50 as a colorless oil: 1H NMR (400 MHz, CDCl 3) 6 7.10-7.12 (ddd, J= 4.6, 3.2, 2.8 Hz, 1 H)

5.74-5.84 (dddd, J = 9.0, 8.4, 7.8, 6.4 Hz, 1 H), 5.02-5.09 (m, 2 H), 2.59-2.67 (ddt, J= 14.6,

5.9, 1.4 Hz, I H), 2.29-2.43 (in, 3 H), 2.06-2.27 (m, 2 H), 1.63-1.73 (dddd, J= 14.9, 11.3, 9.9,

5.6, 1 H), 0.13 (s, 9 H); "C NMR (400 MHz, CDCl 3) 6 203.9, 157.3, 141.4, 136.5, 116.5, 46.3,

33.8, 27.5, 27.4, 1.3; IR, 3077, 2953, 1663, 1595, 1423, 1339, 1245, 1154
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45 56

2-trimethylsilylcyclohexenone trimethylsilyl enol ether. A 25-mL, two-necked, round-

bottomed flask equipped with a rubber septum and argon inlet was charged with a solution of

diisopropylamine (0.11 mL, 0.078 g, 0.77 mmol, 1.3 equiv) in 4 mL of THF and cooled at -78 'C

while n-BuLi (2.60 M in hexane, 0.27 mL, 0.70 mmol, 1.2 equiv) was added dropwise over 3

min. After 30 min, a solution of enone 45 (0.100 g, 0.59 mmol, 1.0 equiv) in 1 mL of THF was

added dropwise over 7 min. The reaction mixture was stirred for 1 h and then Me 3SiCl (0.11

mL, 0.096 g, 0.89 mmol, 1.5 equiv) was added rapidly dropwise over 2 min. The reaction

mixture was allowed to warm to room temperature, stirred for 1 h, and then concentrated. The

resulting yellow residue was diluted with 30 mL of pentane and filtered, and the filtrate was

concentrated to yield 0.137 g (96%) of enol ether 56 as a colorless oil that required no further

purification: 'H NMR (400 MHz, CDCl 3) 6.16-6.19 (m, 1 H), 4.74-4.77 (m, 1 H), 2.02-2.05

(m, 4H) 0.23 (s, 9 H), 0.10 (s, 4H); 13 C NMR (400 MHz, CDCl3) 6 152.1, 138.7, 138.2, 98.7,

24.0, 21.9, 0.5, -0.6; IR: 3049, 2957, 2339, 2361, 1628, 1424, 1356, 1319, 1243, 1190, 1089,

1056
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Ethyl 1-(3-(furan-2-yl)propyl)-2-oxocyclohexane carboxylate. A 100-mL, two-necked,

round-bottomed flask equipped with an argon inlet adapter and rubber septum was charged with

K2C0 3 (8.0 g, 58 mmol, 1.8 equiv), 15 mL of acetone, and ethyl 2-oxocyclohexane carboxylate

(4.55 mL, 5.00 g, 52.0 mmol, 1.0 equiv). A solution of 2-(3-iodopropyl)furan (8.31 g, 35.2

mmol, 1.1 equiv) in 17 mL of acetone was added in one portion and the resulting solution was

heated at reflux for 36 h. The resulting mixture was allowed to cool to rt and then diluted with 20

mL of H20 and 20 mL of Et20. The aqueous phase was separated and extracted with three 10-

mL portions of Et20, and the combined organic layers were washed with 20 mL of H20 and 20

mL of brine, dried over MgSO 4 , filtered, and concentrated to yield 10.79 g of orange oil.

Column chromatography on 250 g of silica gel (elution with 0-20% EtOAc-hexanes) provided

6.36 g (71%) of 67 as a light tan oil: FT-IR (film) 2941, 2867, 1713, 1596, 1507, 1451, 1367,

1339, 1308. 1206 cm 1 ; 1H NMR (500 MHz, CDCl 3) b 7.27-7.28 (dd, J= 1.0, 2.0 Hz, 1 H),

6.25-6.26 (dd, J= 2.0, 3.0 Hz, I H), 5.98-5.99 (dq, J= 1.0, 3.0 Hz, I H), 4.17-4.22 (qd, J= 1.5,

14.5 Hz, 2 H), 2.60-2.63 (m, 2 H), 2.49-2.53 (dq, J = 3.0, 14.0 Hz, 1 H), 2.42-2.46 (m, 2 H),

1.98-2.03 (m, 1 H), 1.88-1.94 (m, I H), 1.52-1.76 (m, 6 H), 1.40-1.46 (m, 1 H), 1.24-1.26 (t, J

= 7.5 Hz, 3 H); "C NMR (400 MHz, CDCl 3) 6 208.2, 172.2, 155.9, 140.9, 110.3, 105.2, 61.4,

60.9, 41.3, 36.2, 34.4, 28.2, 27.8, 23.0, 22.8, 14.4
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67 66

Ethyl 3-bromo-1-(3-(furan-2-yl)propyl)-2-oxocyclohexane carboxylate. A 50-mL, two-

necked, round-bottomed flask equipped with an argon inlet adapter and rubber septum was

charged with 10 mL of CH2Cl2 and ketone 67 (0.500 g, 1.8 mmol, 1.0 equiv). The solution was

cooled at -78 'C and i-Pr2 EtN (0.38 mL, 0.279 g, 2.2 mmol, 1.2 equiv) and Bu2BOTf solution

(1.0 M in ether, 1.9 mL, 1.9 mmol, 1.05 equiv) were added. After 15 min, the -78 'C bath was

replaced with an ice-water bath and the reaction mixture was stirred at 0 C for 1 h and then

recooled to -78 C. A 50-mL, two-necked, round-bottomed flask equipped with an argon inlet

adapter and rubber septum was charged with NBS (0.351 g, 2.0 mmol, 1.1 equiv) and 5 mL of

CH2Cl2. The slurry was cooled at -78 'C while the boron enolate solution was added dropwise

via cannula over 30 min. After I h, 10 mL of brine and 10 mL of satd Na 2S20 3 were added and

the aqueous phase was separated and extracted with two I 0-mL portions of CH 2Cl 2. The

combined organic layers were washed with 20 mL of brine, dried over MgSO 4, filtered, and

concentrated to yield 1.468 g of an oily orange solid. Column chromatography on 150 g of silica

gel (elution with benzene) provided 0.440 g (68%) of 66 as a light tan oil that was a mixture of

two diastereomers (88:12) by IH NMR analysis: FT-IR (film) 3449, 3117, 2946, 2360, 1717,

1596, 1507, 1448, 1368, 1218, 1006 cm-'; 'H NMR (500 MHz, CDCl3) for major isomer: 6 7.28-

7.29 (dd, J= 1.0, 2.0 Hz, 1 H), 6.26-6.27 (dd, J= 2.0, 3.5 Hz, 1 H), 6.00-6.01 (dq, J= 1.0, 3.0

Hz, I H), 4.82-4.86 (dd, J = 6.0, 13.0 Hz, 1 H), 4.20-4.25 (qd, J= 1.0, 7.0 Hz, 2 H), 2.51-2.65

(m, 4 H), 1.95-2.07 (m, 2 H), 1.60-1.82 (in, 4 H), 1.48-1.52 (m, 2 H), 1.25-1.28 (t, J= 7.0 Hz, 3



H). Select shifts for minor isomer: 8 7.29-7.30 (dd, J= 1.0, 2.0 Hz, I H), 5.99-6.00 (dq, J= 1.0,

3.0 Hz, 1 H), 4.52-4.54 (in, 1 H), 4.10-4.16 (m, 1 H); the remainder of the peaks overlap with

those for the major isomer; '3 C NMR (400 MHz, CDCl 3): 6 198.5, 171.6, 155.6, 141.0, 110.3,

105.3, 62.0, 61.9, 55.6, 40.1, 36.6, 35.3, 28.3, 23.9, 23.1, 14.4; Calc'd [M + Na] 379.0515,

Found 381.0508
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Hex-5-enoic acid.3 8  A 500-mL, round-bottomed flask equipped with a glass stopper was

charged with periodic acid (24.8 g, 108.8 mmol, 2.7 equiv), chromium trioxide (0.048 g, 0.48

mmol, 0.12 equiv), 1.5 mL of H20, and 198 mL of MeCN and the resulting solution was stirred

at rt for 2.5 h. A 1-L, three-necked, round-bottomed flask equipped with an argon inlet adapter,

rubber septum fitted with a thermocouple probe, and a 250-mL addition funnel was charged with

of a solution of hexenol (4.80 mL, 4.0 g, 1.0 equiv) in 1.3 mL H20 and 169 mL of MeCN and

the resulting solution was cooled to 0 'C. The solution of oxidizing agent was transferred to the

addition funnel and added to the hexenol solution dropwise over 2 h so that the internal

temperature of the reaction mixture remained below 5 'C. The resulting solution was stirred for

1 h at 0 'C and then diluted with 300 mL of satd NaHPO 4 solution. The aqueous phase was

separated and extracted with three 50-mL portions of toluene and the combined organic layers

were washed with 100 mL of a half-satd NaCl solution, 100 mL of satd NaHSO 4 solution, and

100 mL of brine, dried over MgSO 4, filtered, and concentrated to yield 3.93 g (86%) of acid 79

as a colorless oil. Spectral data was identical to that reported previously.39

38 This procedure is based on the method developed by Zhao, M.; Li, J.; Song, Z.; Desmond, R.; Tschaen, D. M.;
Grabowski, E. J.; Reider, P. J. Tetrahedron Lett. 1998, 39, 5323
39 Hwu, J. R.: Shiao, S.; Tsay, S. J. Am. Chem. Soc. 2000, 122, 5899
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2-(3-(Furan-2-yl)propyl)hex-5-enoic acid. A 100-mL, 2-necked, round-bottomed flask

equipped with an argon inlet adapter and rubber septum was charged with diisopropylamine

(2.72 mL, 1.950 g, 19.27 mmol, 2.2 equiv) and 30 mL of THE. The solution was cooled at 0 'C

while 7.3 mL of n-BuLi solution (2.53 M in hexanes, 18.5 mmol, 2.1 equiv) was added dropwise

over 10 min. The resulting solution was then cooled at -78 'C while a solution of carboxylic

acid 79 (1.00 g, 8.76 mmol, 1.0 equiv) in 2.5 mL of THF was added over 5 min. The solution

was stirred for 30 min and then stirred at 0 'C for 30 min. The reaction mixture was recooled to

-78 'C and a solution of 2-(3-iodopropyl)furan (2.14 g, 9.07 mmol, 1.03 equiv) in 2.5 mL of

THF was added via syringe over 5 min and the reaction mixture was allowed to warm to rt and

stirred for 18 h. Satd aq NH 4Cl solution was added and the aqueous phase was separated and

extracted with 10 mL of Et2O and then acidified to pH 1-2 with 20 mL of 2 N HCL. The aqueous

phase was extracted with three 10-mL portions of Et2O, and the combined organic layers were

washed with 50 mL of brine, dried over MgSO 4, filtered, and concentrated to yield 2.10 g of

deep orange-red oil. Column chromatography on 50 g of silica gel (elution with 10-20%

EtOAc-hexanes) gave 1.27 g (65%) of acid 80 as a tan oil: FT-IR (film) 2939 (br), 2361, 2339,

1700, 1641, 1597, 1507, 1457 cmf; 'H NMR (500 MHz, CDCl3) b 12.15 (br s, 1 H), 7.30-7.31

(dd, J= 1.0, 2.0 Hz, 1 H), 6.28-6.29 (dd, J= 2.0, 3.0 Hz, 1 H), 6.00 (m, I H), 5.75-5.83 (ddt, J=

6.5, 10.5, 17.5 Hz, I H) 5.02-5.07 (dq, J= 1.5, 17.0 Hz, 1 H), 4.98-4.99 (m, 1 H), 2.65-2.58 (t,

J= 7.0 Hz, 2 H), 2.42-2.46 (m, 1 H), 2.09-2.15 (m, 2 H), 1.55-1.80 (m, 6 H); "3C NMR (500



MHz, CDC13) 6 183.1, 155.8, 141.0, 137.8, 115.5, 110.3, 105.1, 44.8, 31.6, 31.3, 28.0, 25.9;

Calc'd [M - H]: 221.1183, Found: 221.1184
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2-(3-(Furan-2-yl)propyl)-N-methoxy-N-methylhex-5-enamide. A 250-mL, round-bottomed

flask equipped with an argon inlet adapter and rubber septum was charged with 40 mL of THF

and acid 80 (1.0 g, 4.49 mmol, 1.0 equiv). The solution was cooled at 0 'C while triethylamine

(1.88 mL, 1.36 g, 13.46 mmol, 3.0 equiv) and methanesulfonyl chloride (0.38 mL, 0.566 g, 4.94

mmol, 1.1 equiv) were each added in one portion. After 10 min, N,O-dimethylhydroxylamine

(0.50 mL, 0.441 g, 3.73 mmol, 1.5 equiv) was added and the resulting solution was stirred for 1 h

at 0 'C before being diluted with 50 mL of H20. The aqueous phase was separated and extracted

with three 20-mL portions of Et20 and the combined organic layers were washed with 50 mL of

brine, dried over MgSO4, filtered, and concentrated to yield 1.15 g of yellow oil. Column

chromatography on 32 g of silica gel (elution with 20% EtOAc-hexanes) provided 1.00 g (92%)

of 81 as a yellow oil: FT-IR (film) 3077, 2937, 2361, 1661, 1596, 1507, 1459, 1416, 1387, 1351

cm-1; 1H NMR (500 MHz, CDCl3) 8 7.28-7.29 (dd, J= 1.0 Hz, I H), 6.23-6.26 (in, I H), 5.96-

5.97 (in, 1 H), 5.73-5.81 (ddt, J= 6.5, 10.0, 17.0 Hz, 1 H), 4.94-5.02 (m, 2 H), 3.67 (s, 3 H),

3.19, (s, 3 H), 2.82-2.93 (br s, 1 H), 2.59-2.63 (in, 2 H), 2.02-2.05 (in, 2 H), 1.46-1.81 (in, 7 H);

13 C NMR (500 MHz, CDCl3) 6 177.4, 156.1, 140.9, 138.5, 115.0, 110.2, 105.0, 61.6, 40.1, 32.2,

31.9, 31.8, 28.2, 26.2.
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4-(3-(Furan-2-yl)propyl)-2-(trimethylsilyl)octa-1,7-dien-3-one. A 25-mL, two-necked, round-

bottomed flask equipped with an argon inlet adapter and rubber septum was charged with 4 mL

of Et2O and (1-bromovinyl)trimethylsilane (0.44 mL, 0.505 g, 2.82 mmol, 1.5 equiv) and cooled

at -78 C while 3.8 mL of t-BuLi solution (1.50 M in pentane, 5.64 mmol, 3.0 equiv) was added

dropwise over 10 min. After 30 min, the resulting solution was stirred at 0 C for 30 min and

then cooled to -78 C. A 10-mL pear flask equipped with a rubber septum was charged with

amide 81 (0.500 g, 1.88 mmol, 1.0 equiv) and 1 mL of Et 20 and cooled at -78 C. The

vinyllithium solution was then added dropwise to the amide solution via cannula over 10 min.

After 3 h, the solution was allowed to warm to 0 'C over 15 min and then diluted with 50 mL of

satd NH 4 Cl solution. The aqueous phase was separated and extracted with two 20-mL portions

of Et20, and the combined organic layers were washed with 20 mL of H20 and 20 mL of brine,

dried over MgSO 4 , filtered, and concentrated to yield 0.611 g of orange oil. Column

chromatography on 80 g of silica gel (elution with 30% benzene-hexanes) provided 0.370 g

(65%) of 72 as a light tan oil: FT-IR (film) 3076, 2950, 2858, 2361, 2338, 1661, 1507, 1247,

1147 cm-1; 'H NMR (500 MHz, CDCl3) b 7.28-7.29 (dd, J = 1.0, 1.8 Hz, 1 H), 6.45-6.46 (d, J

2.0 Hz, I H), 6.26-6.27 (dd, J= 2.0, 3.0 Hz, 1 H), 6.14 (d, J= 1.5 Hz, 1 H), 5.96 (m, 1 H), 5.71-

5.79 (ddt, J = 6.5, 10.5, 17.5 Hz, 1 H), 4.94-5.00 (m, 2 H), 3.12-3.17 (tt, J = 5.5, 8.0, 1 H),

2.57-2.61 (in, 2 H), 1.90-2.04 (m, 2 H), 1.53-1.59 (app quin, J= 7.5 Hz, 2 H), 1.40-1.50 (in, 2



H), 0.16 (s, 9 H); 13C NMR (500 MHz, CDCI3 ) 8 210.0, 156.0, 154.9, 141.0, 138.4, 135.6, 115.3,

110.3, 105.1, 45.0, 31.8, 31.7, 28.3, 26.1, -1.0; Calc'd [M + H]: 305.1931, Found: 305.1937
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6-(3-(Furan-2-yl)propyl)-2-(trimethylsilyl)cyclohex-2-enone, 7-(3-(furan-2-yl)propyl)-3-

(trimethylsilyl)cyclohept-3-enone. A 250-mL, two-necked, round-bottomed flask equipped

with an argon inlet adapter and rubber septum was charged with 82 mL of CH2C2 and enone 72

(0.250 g, 0.82 mmol, 1.0 equiv). The rubber septum was replaced with a glass stopper and

Hoveyda-Grubbs 2 "d generation catalyst (0.099 g, 0.16 mmol, 0.3 equiv) was added. Additional

portions of catalyst (each 0.099 g, 0.16 mmol, 0.3 equiv) were added after 3 h and again after 12

h. The resulting mixture was further stirred for 30 h and then concentrated to yield 0.543 g of a

black solid. Column chromatography on 55 g of silica gel (elution with 25-100% CH2Cl2-

hexanes) provided 0.110 g (49%) of 51 as a yellow oil and 0.097 g (410%) of 84 as a pale tan oil.

Compound 51: FT-IR (film) 2950, 1661, 1596, 1507, 1453, 1423, 1339, 1245, 1154 cm-1; 1H

NMR (500 MHz, CDCl 3) 6 7.29-7.30 (dd, J= 1.0, 2.0 Hz, 1 H), 7.08-7.09 (ddd, J = 1.0, 3.0, 5.5

Hz, 1 H), 6.27-6.28 (dd, J = 2.0, 3.5 Hz, 1 H), 5.99-6.00 (m, 1 H), 2.60-2.70 (m, 2 H), 2.32-

2.46 (m, 2 H), 2.23-2.91 (m, 1 H), 2.07-2.12 (dq, J= 5.0, 12.5, 1 H), 1.85-1.92 (ddt, J= 5.5, 11,

24.5 Hz, 1 H), 1.62-1.78 (m, 3 H), 1.35-1.42 (m, I H), 0.13 (s, 9 H); 13 C NMR (500 MHz,

CDCl3) 8 204.8, 157.2, 156.3, 141.6, 140.9, 110.3, 105.0, 46.8, 29.1, 28.4, 28.1, 27.1, 25.8, -1.1;

Calc'd [M + H]: 277.1618, Found: 277.3115. Compound 84: FT-IR (film) 2950, 2862, 1670,

1507, 1367, 1246, 1148 cm-I; 1H NMR (500 MHz, CDC 3) 6 7.29-7.30 (dd, J 1.0, 2.0 Hz, 1

H), 6.46-6.48 (ddd, J= 1.0, 4.0, 4.5 Hz, 1 H), 6.27-6.28 (dd, J = 2.0, 3.5 Hz, I H), 5.99-6.00

(m, I H), 2.63-2.67 (m, 2 H), 2.29-2.36 (m, 2 H), 2.04-2.09 (dq, J= 5.0, 13 Hz, 1 H), 1.82-1.89



(ddt, J = 5.5, 10.5, 13.5 Hz, 1 H), 1.62-1.77 (m, 6 H), 1.40-1.48 (m, 1 H), 0.08 (s, 9 H); 3C

NMR (500 MHz, CDCIl) 5 201.5, 156.4, 141.3, 141.0, 137.6, 110.3, 105.0, 46.8, 29.4, 28.6,

28.4, 25.9, 25.3, 19.5, -1.2; Calc'd [M + Na]: 313.1594, Found: 313.1606
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45 34

2-(Trimethylsilyl)cyclohex-1-en-1 -yl trifluoromethanesulfonate. A 25-mL, two-necked,

round-bottomed flask equipped with an argon inlet adapter and rubber septum was charged with

enone 45 (0.132 g, 0.78 mmol, 1.0 equiv) and 1.5 mL of THF and then cooled at -78 'C while L-

Selectride solution (1.0 M in THF, 0.86 mL, 0.86 mmol, 1.1 equiv) was added over 4 min. The

reaction mixture was stirred for 1 h and then a solution of Comins reagent (0.339 g, 0.86 mmol,

1.1 equiv) in 1.5 mL of THF was added via cannula over 5 min. The resulting solution was

allowed to warm to rt over 18 h and then diluted with 5 mL of H20 and 5 mL of pentane. The

aqueous phase was separated and extracted with three 10-mL portions of pentane, and the

combined organic layers were washed with two 10-mL portions of 10% NaOH solution and 10

mL of brine, dried over MgSO 4, filtered, and concentrated to yield 0.367 g of a tan oil.

Chromatography on 8 g of silica gel (elution with 3% EtOAc-hexanes) provided 0.200 g (78%)

of triflate 34 as a colorless oil (90% purity by 'H NMR analysis): FT-IR (film) 3077, 2937, 2860,

2662, 1596, 1507, 1459, 1416, 1387, 1351 cm'; IH NMR (CDCl3 , 500 MHz) 6 2.38-2.41 (m, 2

H), 2.18-2.21 (in, 2 H), 1.73-1.78 (tq, J= 3.5, 6.0 Hz, 2 H), 1.55-1.60 (tq, J= 3.5, 6.0 Hz, 2 H),

0.193 (s, 9 H); 3C NMR (CDCl3, 400 MHz) 6 154.8, 128.2, 113.8-123.3 (q, J= 317 Hz), 28.5,

23.3, 22.0, -1.0; HRMS pending
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1,4,5,6,7,8-Hexahydro-1,4-epoxynaphthalene. A 100-mL, two-necked, round-bottomed flask

equipped with an argon inlet adapter and rubber septum was charged with 17 mL of furan and

with triflate 34 (0.05 g, ca 90% purity by 'H NMR analysis, 0.17 mmol, 1.0 equiv). A slurry of

BHT (0.56 g, 0.25 mmol, 1.5 equiv) and TBAT (0.178 g, 0.33 mmol, 2.0 equiv) in 3 mL of furan

was added via cannula over ca. 2 min and the resulting mixture was stirred at rt for 5 h. A

second portion of TBAT (0.07 g, 0.13 mmol, 0.8 equiv) was then added and the reaction mixture

was stirred at rt for 18 h and then concentrated to yield 0.039 g of red-tan solid. Column

chromatography on 10 g of acetone-deactivated silica gel (elution with 3% EtOAc-hexanes)

provided 0.024 g (100%) 86 (ca 75-90% purity by 'H NMR estimate) as a tan oil: FT-IR

unavailable; 1H NMR (CDCl 3, 400 MHz) 6 7.09 (s, 2 H), 5.14 (s, 2 H), 2.35-2.39 (m, 2 H),

1.82-1.86 (in, 2 H), 1.64-1.67 (m, 2 H), 1.47-1.49 (m, 2 H); 3 C NMR (CDCl 3, 400 MHz) b

149.2, 143.9, 85.7, 24.4, 23.2; Calc'd [M + H]: 149.0961, Found: 149.0962
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5,8-Diphenyl-1,2,3,4,9,10-hexahydro-9,10-epoxyanthracene. A 10-mL, two-necked, pear-

shaped flask equipped with an argon inlet adapter and rubber septum was charged with triflate 34

(0.066 g, 0.22 mmol, 1.0 equiv), DPIBF (0.088 g, 0.32 mmol, 1.5 equiv), and 1.2 mL of THF. A

solution of TBAT (0.173 g, 0.32 mmol, 1.5 equiv) in 1.0 mL of THF was added over 5 min via

cannula and the resulting solution was stirred for 18 h and then diluted with 1 mL of EtOAc and

1 mL of Et20 and cooled at 5 'C. The resulting solution was cooled to 5 0C and after 2 h the

crystals of excess TBAT that appeared were separated via vacuum filtration. The filtrate was

concentrated to yield 0.076 g of bright yellow oil. Column chromatography on 10 g of silica gel

(elution with 0-1% EtOAc-hexanes) afforded 0.019 g (32%) of 87 as a white solid. Spectral data

was identical to that reported previously.40

40 Mishimura, T.; Kawamoto, T.; Sasaki, K. Tsurumaki, E.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 1492
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