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The structures of systems with high-voltage cascade frequency converters containing multi-winding transform-

ers and low-voltage low-power converters connected in series at each output phase of the load are considered. Low-
voltage blocks contain three-phase diode or active rectifiers, DC capacitor filters, single-phase stand-alone voltage 
inverters and block disconnecting devices in partial modes (in case of failure when part of the blocks are discon-
nected). The possibilities of operation of cascade converters are determined, equations for correcting tasks to units in 
partial modes are given, tables of correction of tasks with estimates of achievable load characteristics are proposed. 
The results of experiments on the model of a powerful installation with a cascade frequency converter are presented, 
confirming the possibility of ensuring the symmetry of the load currents when disconnecting part of the blocks and 
the asymmetry of the circuit. 
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Introduction. Powerful semiconductor frequency converters (FC) are widely used in enter-

prises of the mineral raw materials complex [1, 3-5, 7, 8]. They are used in electric drives of 
mills, fan drives for main ventilation of mines [8], excavators, heavy-duty dump trucks [7], mine 
hoists, pump drives, drilling rigs, etc. As an example, it can be noted that more than 700 fre-
quency-controlled electric drives with high-voltage drives with a capacity of 4 to 12.5 MW are 
used on Russian gas pipelines [5]. Of the many types of inverters, cascade frequency converters 
(CFC) are most in demand. CFC are supplied by many well-known companies – Siemens AG (Si-
namics perfect harmony GH180 converters), Toshiba Mitsubishi-Electric (TMdrive-MVe2 con-
verters), Hyundai (N5000 converters), etc. 

Cascading frequency converters are built using low-voltage transistor-based converters (TBC) 
with a single-phase output. The CFC usually includes a transformer (Tr), which has a three-phase 
primary winding and several secondary windings. Each TBC receives power from an individual sec-
ondary winding Tr. In each phase of the CFC load, low-voltage TBCs are connected in series and 
form a high-voltage three-phase power supply with adjustable voltage and frequency. The load of the 
inverter can be synchronous or asynchronous machines or other devices. CFC is usually performed at 
voltages of 3, 6, 10 kV, etc. 

The widespread use of the CFC is due to the following advantages: 
• slight distortion of voltages and currents at the input and output of the CPC, which allows to 

apply them without additional filters; 
• the ability to build high-voltage installations on low-voltage elements; 
• ample opportunities to reserve semiconductor elements and ensure the operability of systems in 

case of failure of some elements [8, 15]. 
The article discusses the structure of the CFC and their capabilities to ensure the specified modes 

of operation in case of failure of part of the semiconductor elements. 
The structures of electric drives with a CFC are determined by a given power, input  

and output voltages, energy recovery requirements, the nature of the load (fan drive, propeller, 
rolling mill, hoist), other requirements (efficiency, reliability, survivability, cyclic stability of 
IGBT-modules), element base (voltage and current of IGBT-modules, diodes, capacitors, etc.). 
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If energy recovery of the motors through the CFC is not required to the supply network, then 
diode rectifiers are used in low-voltage TBC. To reduce distortion of currents and network voltages, 
a multi-winding transformer is used, in which the secondary windings are mutually shifted in phase. 
The drive circuit with a 10-winding transformer and a converter with nine low-voltage TBCs with 
diode rectifiers is shown in Fig.1. 

In the circuit (Fig.1) in the phases of the power supply circuit of an induction motor (IM) three 
TBCs are connected in series. The mutual phase shift of the triples of the transformer secondary 
windings is performed at angles that are multiples of π/N, where N is the number of TBC in the CFC. 
In the circuit, every three secondary windings of the transformer coincide in phase, and these three 
windings are made with phase shifts relative to the network voltage by angles of –20, 0, +20 degrees, 
which corresponds to an 18-pulse rectification circuit. Each TBC contains a three-phase diode recti-
fier, a DC capacitor filter, a protection circuit against an increase in the rectified voltage with a chop-
per and a resistor, as well as a single-phase autonomous voltage inverter (AVI). As part of the TBC, 
fuses in the rectifier phases and a switching device at the output of the AVI can be used. With these 
elements, the unit is excluded from operation when it malfunctions. The remaining operating TBC 
provide the specified mode of operation of the CBC. 

Recovery of IM energy into the supply network is not possible, since diode rectifiers are used 
in the CFC. However, part of the energy of IM can be returned through the AVI in the circuit of the 
rectified current and spent in the resistors of the protective circuits. If the drive requires recovery of 
significant energy (mine hoists, etc.), then in the TBC rectifiers are active, for example, on IGBT 
modules [2, 6-10]. 

CFC control algorithms in normal operation. Algorithms for controlling multilevel fre-
quency converters are considered in many publications [8, 13, 14]. In the considered CFC control 
systems (CS) of automatic circuit breaker (ACB) and AVI can be performed with independent con-
trol from each other [2, 7]. In the control system of single-phase AVIs, transistor control pulses are 
generated as a result of comparing the control voltage uy with the reference voltages uom (m is the 
number of BPC in the phase). If several TBCs are used in the load phase (for example, 2, 3, 4 or 5), 
then there are several reference voltages, as shown in Fig.2. 

In the normal mode of operation of the CFC, all sawtooth voltages have the same amplitude of 
ripple. Moreover, they are offset in level relative to each other so that the minima of some of the 
saws correspond to the maxima of the other saws. The instantaneous values of all saws are within 
±1 p.u. A single saw-tooth pulses family is used to control all TBCs. In each phase of the load, the 
control pulses of each AVI are assigned to a specific saw. The formation of transistor control pulses 

 

Fig.1. The installation scheme of the CFC and TBC with diode rectifiers 
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of any AVI is carried out as a result of comparing the phase control voltage with the reference volt-
age system of this AVI. At each moment of time in the PWM mode, only one AVI operates in each 
phase of the load, other AVIs of this phase are in overmodulation mode. It is also possible that all 
AVIs of this phase are in overmodulation mode. 

Features of the operation of the CFC when disconnecting part of the TBS. In the event of a 
failure of the part of the TBC, the remaining blocks in the work create a symmetrical three-phase 
system of load voltages. If the voltage or current reserves are not provided for in the CFC, then the 
voltage and load power are reduced. 

If in each phase of a three-phase load the number of TBCs is equal to m, then the total number 
of states of the CFC during operation of all TBCs or their parts is determined by 

.)1( 3 mM  (1) 
For a CFC with three TBCs in each phase of the load, the total number of CFC states is  

M = 64. Data on the CFC states, depending on the number of operational TBCs, are shown in Table 1. 
 

Table 1 
 

Mutual phase shifts and CFC load voltage with nine TBCs depending on the number of serviceable units 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.2. Support and control voltages of the CFC with two TBCs (a), three (b), four (c), five (d) 
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The top row of the table shows the phase numbers. The second line at the top shows the designa-
tion of the angles of shift of the stress vectors of the 2nd and 3rd phases of the CFC relative to the 1st 
phase (12 and 13). Columns with the headings “N” indicate the status numbers of the CFC. In the 
other rows of Table 1, the number of operational BPFs in each load phase is indicated, as well as 
those phase shifts of the stress vectors (in degrees) relative to the 1st phase vector, at which the sym-
metry of the three-phase system of load voltages is ensured with the maximum use of operating TBC. 
The highest symmetrical load voltages, which are provided by serviceable TBCs, are also indicated. 
The operating states of the CFC are shown on a light background, the gray background shows the 
states from which it is necessary to switch to the operating states (for example, from state N 12 to 
state N 33), against a dark background – shutdown the unit (Stop). 

For a CPC with nine TBCs, some states of the system are shown in Fig.3 in the form of phase 
voltage diagrams during the formation of a three-phase symmetric system of load voltages (de-
pending on the number of operational BPCs). 

If the CFC contains 15 TBCs (5 each in the load phases), then the state of the system, de-
pending on the number of operational TBCs in phases, is presented in Table 2. The system states 
are numbered, the permissible ones for operation are indicated (on a light background). 

Figure 4 under N 1 shows a vector diagram of the phase voltages during operation of all 
TBCs. Angles of mutual shift of vectors is 120 deg. The stress phase vector of the load is formed 
as the sum of the stress vectors of the operating AVI. The lines connecting the ends of the phase 
voltage vectors form a symmetrical three-phase system of load voltages (100 %). 

Fig.4 under N 37 shows the voltage diagram when disconnecting one TBC in the 1st phase of 
the load. The creation of a symmetric system of linear load voltages is provided by changing the 
phases of the 2nd and 3rd stress vectors (the angle of mutual shift of the 2nd and 3rd vectors is 
shown in Fig.4 – 107 electric degrees). In this case, the effective value of the symmetric system of 
linear load stresses decreases to approximately 93 %. 

When three TBCs in the 1st phase and two TBCs in the 2nd phase (N 121) are disconnected, 
the CFC can form a symmetrical system of load voltages with an effective value of up to 53.6 %. 

Fig.3. The formation of a three-phase symmetric voltage system at the output of the CFC with nine TBCs  
in case of failure of part of the TBC 

N 1. Uout = 100 % N 17. Uout = 87.8 % N 33. Uout = 73.6 % N 49. Uout = 57.7 % 

N 13. Uout = 57.7 % N 21. Uout = 75.5 % N 25. Uout = 51.3 % 
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Table 2 
 

The state of the CFC with 15 TBCs depending on the blocks operable condition 
 

N 1 2 3 N 1 2 3 N 1 2 3 N 1 2 3 N 1 2 3 N 1 2 3 N 1 2 3 N 1 2 3 N 1 2 3 
1 5 5 5   25 5 1 5   49 4 3 5   73 3 5 5   97 3 1 5 121 2 3 5 145 1 5 5 169 1 1 5 193 0 3 5 
2 5 5 4   26 5 1 4   50 4 3 4   74 3 5 4   98 3 1 4 122 2 3 4 146 1 5 4 170 1 1 4 194 0 3 4 
3 5 5 3   27 5 1 3   51 4 3 3   75 3 5 3   99 3 1 3 123 2 3 3 147 1 5 3 171 1 1 3 195 0 3 3 
4 5 5 2   28 5 1 2   52 4 3 2   76 3 5 2 100 3 1 2 124 2 3 2 148 1 5 2 172 1 1 2 196 0 3 2 
5 5 5 1   29 5 1 1   53 4 3 1   77 3 5 1 101 3 1 1 125 2 3 1 149 1 5 1 173 1 1 1 197 0 3 1 
6 5 5 0   30 5 1 0   54 4 3 0   78 3 5 0 102 3 1 0 126 2 3 0 150 1 5 0 174 1 1 0 198 0 3 0 
7 5 4 5   31 5 0 5   55 4 2 5   79 3 4 5 103 3 0 5 127 2 2 5 151 1 4 5 175 1 0 5 199 0 2 5 
8 5 4 4   32 5 0 4   56 4 2 4   80 3 4 4 104 3 0 4 128 2 2 4 152 1 4 4 176 1 0 4 200 0 2 4 
9 5 4 3   33 5 0 3   57 4 2 3   81 3 4 3 105 3 0 3 129 2 2 3 153 1 4 3 177 1 0 3 201 0 2 3 

  10 5 4 2   34 5 0 2   58 4 2 2   82 3 4 2 106 3 0 2 130 2 2 2 154 1 4 2 178 1 0 2 202 0 2 2 
  11 5 4 1   35 5 0 1   59 4 2 1   83 3 4 1 107 3 0 1 131 2 2 1 155 1 4 1 179 1 0 1 203 0 2 1 
  12 5 4 0   36 5 0 0   60 4 2 0   84 3 4 0 108 3 0 0 132 2 2 0 156 1 4 0 180 1 0 0 204 0 2 0 
  13 5 3 5   37 4 5 5   61 4 1 5   85 3 3 5 109 2 5 5 133 2 1 5 157 1 3 5 181 0 5 5 205 0 1 5 
  14 5 3 4   38 4 5 4   62 4 1 4   86 3 3 4 110 2 5 4 134 2 1 4 158 1 3 4 182 0 5 4 206 0 1 4 
  15 5 3 3   39 4 5 3   63 4 1 3   87 3 3 3 111 2 5 3 135 2 1 3 159 1 3 3 183 0 5 3 207 0 1 3 
  16 5 3 2   40 4 5 2   64 4 1 2   88 3 3 2 112 2 5 2 136 2 1 2 160 1 3 2 184 0 5 2 208 0 1 2 
  17 5 3 1   41 4 5 1   65 4 1 1   89 3 3 1 113 2 5 1 137 2 1 1 161 1 3 1 185 0 5 1 209 0 1 1 
  18 5 3 0   42 4 5 0   66 4 1 0   90 3 3 0 114 2 5 0 138 2 1 0 162 1 3 0 186 0 5 0 210 0 1 0 
  19 5 2 5   43 4 4 5   67 4 0 5   91 3 2 5 115 2 4 5 139 2 0 5 163 1 2 5 187 0 4 5 211 0 0 5 
  20 5 2 4   44 4 4 4   68 4 0 4   92 3 2 4 116 2 4 4 140 2 0 4 164 1 2 4 188 0 4 4 212 0 0 4 
  21 5 2 3   45 4 4 3   69 4 0 3   93 3 2 3 117 2 4 3 141 2 0 3 165 1 2 3 189 0 4 3 213 0 0 3 
  22 5 2 2   46 4 4 2   70 4 0 2   94 3 2 2 118 2 4 2 142 2 0 2 166 1 2 2 190 0 4 2 214 0 0 2 
  23 5 2 1   47 4 4 1   71 4 0 1   95 3 2 1 119 2 4 1 143 2 0 1 167 1 2 1 191 0 4 1 215 0 0 1 
  24 5 2 0   48 4 4 0   72 4 0 0   96 3 2 0 120 2 4 0 144 2 0 0 168 1 2 0 192 0 4 0 216 0 0 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Changes in the control algorithm for the CFC when a part of the TBC is disabled. If the 

CFC contains five TBCs in each phase and all the blocks work, then in each phase of the load a 
complete system of sawtooth voltages is used to form transistor control pulses. The number of saws 
is five, as indicated in Fig.2, d. When one TBC is turned off in the 1st phase of the load in this 
phase, reference voltage systems with four saws are used to generate control pulses of the remaining 

Fig.4. The formation of a three-phase symmetric voltage system at the output of the CFC with 15 TBCs  
in case of failure of part of the TBCs 
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AVIs, as shown in Fig.2, c, in other phases, 
five reference voltages are used. If in the 
first phase of the load three TBCs remain in 
operation, then the number of reference 
voltages in the AVI of this phase decreases 
to three, as indicated in Fig.2, b. 

With an unequal number of operating 
TBCs in phases, the angles change by 
which the phase voltage vectors are  
mutually shifted during the formation  

of a symmetric system of linear voltages. These shear angles are determined using the  
diagram (Fig.5, a). In this case, the stresses of the phases of the load and the position of point 0 
change (Fig.5, b). 

Equations for a symmetric three-phase linear load voltage system: 

,, 31122312 UUUU   (2) 

where U12, U23, U31 – Line voltages RMS values. 
Equations (2) can be written using phase voltages U1, U2, U3 and the angles between them  

α, β, γ (phase voltages are proportional to the number of operating TBC): 
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The system of equations (3) can be solved with respect to unknown angles α, β, γ by iterative 
methods, for example, in the next record of equations: 
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where n – iteration number; Z – parameter ensuring stability of the calculation process. 
Not all CFC states can determine the angles α, β, and γ. For example, in case of a malfunction 

of all TBCs in two load phases in accordance with Table 1, system states N 16, 32, 48, 52, 56, 60, 
61, 62, 63, 64 are impossible. 

As a result of solving equations (4), using the known phases α, β, and γ and CFC voltages U1 
and U2, the highest load stresses with zero point 0 are determined (Fig.5, b): 

.3/;cos2 lf21
2
2

2
1l UUUUUUU   (5) 

The voltages defined by expressions (5) should be considered as the voltage limitations at the 
output of the CFC that acts in the control system. Actual voltages may be less and are determined 
by the regulation system. The task of iterative calculation of phases and stresses by formulas (4)  
and (5) is solved in Excel. 

Coordination of the characteristics of the CFC and the load in partial modes. If the load of 
the CFC is a synchronous motor, and the CFC does not provide a margin for output voltage, then 
when a part of the TBC is turned off, the motor voltage should be reduced, for example, by reduc-
ing the magnetic flux of the motor. While maintaining the load power, this leads to an increase in 
the currents at the output of the CFC, i.e. the equipment must have a current margin. 

 

Fig.5. Phase and line voltage diagrams for the state  
of the TBC N 49 

а b 
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Another solution is that the voltage reserve is provided in the CFC. For example, in the CFC 
with active rectifiers, when the part of the TBC is turned off, the rectified voltages increase and due 
to this, the output voltages are supported. 

Experimental research. An experimental verification of the considered technical solutions 
was carried out at PJSC “Power mashines” on the layout of the installation containing an asyn-
chronized generator-motor (AGM) with a three-phase rotor and an active CFC, which is con-
nected to the rotor through slip rings. The stator of AGM is connected to the power supply net-
work of 6 kV, 50 Hz. CFC inputs are connected to the same electric network through transformers. 
A simplified layout diagram is shown in Fig.6, a. AGM has a power of 2530 kVA.  
Sliding is adjustable within ± 40 %. In the CFC in each phase of the load two TBCs are connected 
in series. PWM frequency of CFC is 4 kHz. The installation is equipped with a vector control sys-
tem that supports a given operating mode of the installation, creating a three-phase symmetrical 
system of currents in the AGM rotor. 

One of the research objectives is to evaluate the capabilities of the CFC and the control 
system for creating a symmetric system of currents in the AGM rotor in various modes when a 
part of the TBCs is turned off. Fig.6, b shows a diagram of the currents and voltages of the in-
stallation when the TBC6 is turned off in the third phase. In this mode, the AGM slip is 40 %. 
The instantaneous values of the variables are shown in Fig.6, b. In this case, the following con-
trol option is used. With an increase in the rotor voltage, TBC5 cannot create the required phase 
voltage, since TBC6 is turned off, and TBC5 goes into overmodulation mode – its control volt-
age exceeds 1 p.u. In the control system, a portion of the control voltage of the TBC5, exceeding 
1 p.u., is remembered as a component of the zero sequence, which is subtracted from the control 
voltages of all phases. The resulting voltages are used as modified control voltages. Correspond-
ing to the form of the modified voltages, the shape of the power phase voltages at the output of 
the CFC changes – the symmetry of the power stresses is lost, but the symmetry of the rotor cur-
rents is ensured, as can be seen from Fig.6, b). 

 

Fig.6. Layout diagram with a frequency converter, voltage and currents of a frequency converter when disconnecting one TBC6 
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In particular, the voltages of the 1st and 2nd phases are mutually shifted by less than 90 deg. 
(instead of 120 electric degrees in symmetrical modes). 

It should be noted that in the asymmetric mode of operation of the CFC, the phase currents of 
the supply network are distorted. It should be expected that with a larger number of TBCs as part 
of the CFC, disconnection of one unit will lead to less distortion of the grid current. 

Conclusions. Cascade frequency converters make it possible to create high-voltage systems 
using low-voltage power units. They have small distortions of currents and voltages at the input and 
output, provide galvanic isolation of power networks and loads, have high survivability, and allow 
adjusting the engine speed in the full range. Due to these advantages, cascade converters are widely 
used in the drives of gas line compressors, mine fans, pumps, in mine hoists, and in many other  
installations. 

To implement effective control algorithms and increase the reliability and survivability  
of drives with cascade frequency converters, the analysis of the operating modes and characteristics 
of the converters in partial modes (in case of failure and disconnection of a different number of 
power units) is performed. It was revealed that for the formation of a symmetric system of load 
currents, it is necessary to correct tasks for the mutual shift of the phase voltage vectors depending 
on the number of working blocks. The state tables of converters are proposed, which determine the 
tasks by phase of the voltages, characterizing the possibilities of creating a symmetric three-phase 
system of load voltages in partial modes. The algorithm for calculating the settings for the phases of 
the voltage was mathematically determined. 

On the breadboard installation with an asynchronized generator-motor with a power of 
2530 kVA and an active cascade frequency converter of comparable power, experiments were per-
formed confirming the effectiveness of the considered technical solutions. The converter control 
system uses a relatively simple algorithm for adjusting the phases of the output voltage in partial 
modes, based on the conversion of a part of the control voltage that goes beyond the reference  
voltage into a zero-sequence component and in the subtraction of this component from all phase  
control voltages. The implementation of this algorithm made it possible to ensure an almost sinu-
soidal shape of the phase currents at a PWM frequency of the converter 4000 Hz. 
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