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Abstract

This study focuses on the development of a FORTRAN program that generates
forward models for the pressure-temperature-time paths of metamorphic rocks in
extensional settings. Extension of the lithosphere occurs through three principal
mechanisms: pure shear thinning, normal faulting along a single large-scale
detachment zone in the crust, and movement along a series of imbricate normal
faults. The program written for this study models the thermal effects of each kind
of extension, but the emphasis is placed on the process of normal faulting along one
discrete fault.

The effects of systematic variations in the angle of fault dip and the rate of lateral
movement were tested by monitoring the depth-temperature-time paths of rock
particles in the footwall of the normal fault that are initially at the same depth
relative to the detachment and relative to the surface. Varying the angle of dip of
the fault between 60 and 170, while holding the rate of lateral displacement
constant at 5 mm/yr, does not produce differences in depth-temperature-time paths
large enough to cause detectable changes in the textures or mineralogy of
metamorphic rocks. When the angle of dip of the fault is varied, but the unroofing
rate (unroofing rate equals rate of lateral displacement times tangent of angle of
fault dip) is held constant at 0.5 mm/yr, the depth-temperature-time paths for rocks
originating at the same level are almost exactly the same. It is therefore not
possible to distinguish 'between the depth-temperature-time paths of rocks that are
unroofed at the same rate below detachment surfaces dipping at different angles.

The effects of varying the lateral displacement rate of the hanging wall between
2 mm/yr and 7.5 mm/yr were studied by monitoring the depth-temperature-time
conditions of rock particles in the footwall of a normal fault dipping at 110. At
faster rates of displacement, rocks do not experience as much syntectonic cooling as
they do when the hanging wall is displaced more slowly, but they undergo a larger
drop in temperature once they have reached their final depths. The comparison of
depth-temperature-time paths for rocks at different depths relative to the
detachment surface shows that, for particles close to the detachment level, different
rates of movement will not produce significant differences in the depth-temperature
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curves. For rocks more than about 20 km below the detachment level, the depth-
temperature paths show greater variation for different rates of lateral displacement
of the hanging wall.

The depth-temperature-time paths for rocks uplifted from 15 km to 10 km as a
result of pure shear thinning of the lithosphere were compared to those unroofed by
movement along a normal fault surface. For the pure shear case, rocks undergo
isothermal uplift followed by isobaric cooling through a relatively large change in
temperature. At 100 Ma, these rocks have not yet reached the background steady-
state temperature. A particle at the same initial and final depths, but unroofed as
a result of movement along a normal fault, experiences a significant syntectonic
cooling effect and continues to cool isobarically through a small temperature
interval for about 20 my following the end of displacement along the fault. After
the completion of this interval of post-tectonic cooling (at about 40 Ma for the case
studied here), the rock remains at the same temperature. The particle in the pure
shear terrain, on the other hand, experiences its greatest temperature changes
during the post-tectonic interval.
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Chapter 1

Introduction

Two fundamental tectonic processes have been proposed to explain how rocks

metamorphosed at intermediate crustal levels are uplifted to the Earth's surface.

Compressional tectonics provides a mechanism by which the lithosphere is

thickened, setting the stage for subsequent erosion during isostatic readjustment.

Although uplift induced by an initial crustal thickening event is clearly an

important process in some tectonic settings, extensional faulting also appears to be

an important mechanism for uplift and tectonic denudation in some orogenic belts.

An important problem in the study of extensional tectonics is characterizing

ways in which thinning of the lithosphere occurs. Although geologists have

proposed several mechanisms -- including normal faulting and pure shear thinning

of the lithosphere -- to explain how extension occurs, a principle difficulty still

remains quantifying the various parameters that describe extension of the

lithosphere. In the case of normal faulting, for example, the stratigraphic throw is

often known, but parameters that describe the dip of the detachment surface and

the rate of movement along the fault must often be inferred from sketchy field data.

Metamorphic rocks in extensional terrains, however, provide an accurate record of

the pressure-temperature conditions to which they have been subjected and often

include minerals suitable for isotopic dating. If the information in metamorphic

rocks can be extracted and the pressure-temperature-time path reconstructed, it

should be possible -to determine the rate at which uplift occurred and the

approximate depth and temperature of the particle at specific times in the

metamorphic history of a rock. Metamorphic rocks, then, probably hold the key to
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understanding how extension occurs and at what rates rocks are uplifted in various

tectonic settings.

Reconstruction of the pressure-temperature-time paths of metamorphic rocks

defines an inverse problem; the metamorphic history is inferred on the basis of

information stored in the chemistry of the rock. Royden and Hodges (1984) devised

a method to invert the pressure-temperature paths of rocks in thrust terrains, and,

theoretically, a similar technique could be employed to infer the complete pressure-

temperature history of a suite of rocks from extensional terrains. Once the

metamorphic history of a rock can be determined, however, it is nearly impossible to

interpret the pressure-temperature-time path in terms of uplift rate, fault dip

angle, or mechanism of uplift (pure shear vs. normal faulting) without theoretical

models that test the effects of varying extensional parameters on the depth-

temperature-time paths of metamorphic rocks. This study attempts to establish

some of the theoretical models necessary for the interpretation of reconstructed

metamorphic paths through the use of a computer program that generates forward

models for the thermal history of a thinning lithosphere. The focus of this study is

primarily on testing the effects of systematic variation in the extensional

parameters on the pressure-temperature-time paths of rocks at various structural

levels in terrains being thinned by either pure shear or normal faulting processes.

1.1 Extensional Processes in Metamorphic Terrains

Extension in a lithospheric plate may be accomodated by normal faulting and

ductile stretching, processes that bring progressively deeper crustal layers nearer to

the surface through tectonic denudation and pure shear thinning. In geophysical

modelling, ductile stretching (pure shear) of the entire lithospheric column has

traditionally been favored (Hamilton and Myers, 1966; Stewart, 1971) since it
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provides a simplified view of extension as a process in which all particles of the

lithosphere change position uniformly relative to one another. A more complicated,

and perhaps more geologically-realistic model, explains extension as a process of

differential mass transfer: material in the footwall of a major normal fault moves

upward along a master detachment or a series of imbricate fault surfaces, and

progressively deeper footwall rocks are extracted from beneath the hanging wall. In

this model, the original spatial relationship of particles across the detachment

surface is completely altered. Though both the footwall and hanging wall of the

normal fault are involved in the sort of extension described by this model, it is

primarily the footwall rocks that experience the most drastic temperature and

pressure changes as tectonic denudation occurs.

The precise role of normal faulting in extension of the lithosphere is not

completely understood. Wernicke (1981, 1985) proposed that major low-angle

detachments root into the base of the lithosphere, making possible large lateral

displacements across a single normal fault zone. High-angle normal faults that

either penetrate to deep crustal levels or root into major detachment surfaces are

also important in extending the lithosphere. Small movements along a series of

these faults can result in more localized thinning of the lithosphere and the rotation

of blocks of crustal material. High-angle faults penetrating to deep crustal levels

may also play an important role in the extension of the footwall following its

extraction from beneath the hanging wall along a major low-angle detachment.

Listric normal faulting, low-angle faulting in which the detachment surface is non-

planar and extension occurs through movement along a series of hanging wall

imbricate faults, has been proposed as another way of accomodating lithospheric

extension. The geometric complications introduced by the listric model, however,

render it unsuited to the application of simple physical and mathematical



techniques, and the model is ignored in the discussion that follows. Instead, this

study focusses primarily on extension resulting from movement on one low-angle

detachment.

In the Cordilleran orogenic belt, metamorphic core complexes, uplifted

"domes" of metamorphic rock that form the footwall of major Cenozoic detachments,

provide a fine laboratory for the investigation of the extensional uplift of rocks from

intermediate crustal levels. Metamorphic core complexes are structural features

consisting of a mylonitized core flanked by metasediments (Eskola, 1948; Davis and

Coney, 1979; Coney, 1980). A warped master decollement surface separates non-

metamorphosed hanging wall slices from ductilely-deformed metamorphic rocks in

the footwall. In core complexes north of Arizona, at least two distinct phases of

deformation have been recognized. Regional metamorphism related to compression

in the Sevier fold and thrust belt first affected a large region of the Cordillera in

Jurassic-Cretaceous time. This event was followed by a period of rapid uplift and

extension that accompanied widespread plutonism during Cenozoic time

(Coney, 1979). Where plutonism did not play a locally significant role, previously

metamorphosed rocks underwent retrograde metamorphism in response to

decompression and cooling associated with uplift. Rocks close to intrusive bodies,

however, experienced prograde metamorphism, and their textures and chemical

compositions record the thermal changes associated with the intrusion of hotter

material.

Core complexes generally comprise a region's highest topography, and exposed

footwall metasediments often yield metamorphic pressures corresponding to depths

of 10 to 15 km or more. The substantial uplift of these rocks from mid-crustal

levels was probably accomplished through a combination of processses: in a purely

mechanical sense, erosion during the entire history of the orogenic belt probably
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plays an important role in unroofing deeply-buried rocks and, when coupled with

tectonic denudation resulting from movement along a normal fault, acts to expose

lower plate rocks very rapidly. On the scale of the entire lithosphere, density

changes caused by the intrusion of hot peraluminous granite and isostatic

reequilibration in response to tectonic unloading may also contribute significantly

to the overall uplift of the core complex structure, but a mechanical process like

erosion is still required to unroof rocks from intermediate and deep crustal depths.

The role of ductile stretching processes in carrying deeply buried metamorphic

rocks to higher crustal levels remains poorly understood. The pure shear model has

been used to simplify the analysis of regions as large as the Basin and Range

Province of the Western Cordillera (Stewart, 1971) and the Pannonian Basin

System of southeastern Europe (Royden et al., 1983), and it is tempting to apply the

model to extension related to core complex uplift as well. The importance of

metamorphic complexes, however, is that, theoretically, the metasediments of the

footwall carry an accurate record of pressure-temperature changes during the

processes of uplift, and these decompression and cooling paths should distinguish

between normal-fault movement and pure shear thinning as the primary

mechanism of uplift. For the reconstructed uplift paths of metamorphic rocks to

have maximal usefulness and validity, a quantitative understanding of the

relationship between extensional tectonics and the thermal structure of the

lithosphere must be established. This study endeavors to examine the effects of

extension on geothermal regimes and to establish quantitative models for pressure-

temperature-time histories of rocks at various structural levels in extensional

terrains.
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Figure 1-1: The relaxation of a sawtooth geotherm produced by doubling the
crustal thickness in an instantaneous compressional event.

Reequilibrating geotherms are given for 0, 1, 5, 10, 25, and 75 Ma.

1.2 Forward-Modelling

Forward-modelling of geothermal relaxation in various extensional settings

provides a basis not only for the interpretation of uplift in core complexes, but also

for understanding the pressure and temperature histories of rocks on a larger and

more general scale. The problems of geotherm relaxation and prediction of

theoretical pressure-time paths of metamorphic rocks were first solved for

compressional models by Oxburgh and Turcotte (1959). Furlong and Londe (in
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press) have recently used a finite difference technique to develop similar models for

Basin and Range extension. In the idealized case, thrust faulting instantaneously

doubles the thickness of the lithosphere, creating a sawtooth geotherm with a

discontinuity where the bottom of the hot upper plate meets the top of the cool

lower plate. As the geotherm reequilibrates, cooling of upper plate rocks and

heating in the lower plate produce, respectively, retrograde and prograde

metamorphism. Fig. 1-1 shows the reequilibration of a sawtooth geotherm created

by instantanous doubling of the elastic thickness of the lithosphere for times 0 Ma,

1 Ma, 5 Ma, 10 Ma, 25 Ma, and 75 Ma. The stationary point at 62.5 km and

650*C is an artifact of the special case chosen for this analysis.

A similar model can be applied in areas undergoing extension by means of

movement on a normal fault surface. In this case, cool upper plate rocks move onto

hotter lower plate rocks, producing a steplike discontinuity in the geotherm.

Reequilibration of the geotherms, shown in Fig. 1-2, involves heating of the

relatively thin hanging wall and cooling in the thick stationary footwall, thermal

adjustments that may cause prograde metamorphism of upper plate rocks and slow

retrogression in the lower plate. The pure shear model, in contrast to the

compressional and extensional scenarios, does not involve mechanical movement

along discrete normal faults and therefore creates no discontinuities in the

geotherm. Instantaneous stretching leaves each particle of the lithosphere at its

original temperature but closer to the surface. Assuming that the geotherm then

re-equilibrates to the level of the pre-stretching lithospheric thickness as shown in

Figure 1-3, all rocks must undergo net cooling and therefore retrograde

metamorphism.

The next chapters will introduce a computer technique that can be used to

generate quantitative models for the relaxation of geotherms perturbed by extension
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Figure 1-2: Relaxation of step discontinuity in a geotherm produced by
instantaneous extension of the crust through movement along a normal

fault surface. Reequilibrating geotherms are shown for times 0, 1, 5,
15, and 50 Ma. Stationary point at 62.5 km and 6500 C

is a result of special conditions used in this problem.

of the lithosphere. The focus will be placed on understanding how changing the

geometry of a normal fault or the rate of movement along the detachment surface

affects the depth-time-temperature paths of metamorphic rocks in the footwall.

Finally, the relative effects of thinning the lithosphere through pure shear

extension and tectonic denudation above a normal fault surface will be discussed

through the comparison of depth-temperature-time paths generated by the forward

modelling computer program.
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Figure 1-3: Relaxation of a geotherm perturbed by pure shear extension of the
lithosphere with 8 = y = 1.75 (75% extension of the entire

lithosphere). Curves are given for times 0 Ma (end of instantaneous
stretching episode) and 10, 25, 50 and 100 Ma.
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Chapter 2

Quantitative Modelling

The development of a quantitative model for cooling and uplift paths of rocks

in extending terrains requires the use of a mathematical technique that can be

applied repeatedly and accurately over long time periods. Flexibility and ease of

c.alculation are also important considerations, and the functional relationship

employed must hold for all initial conditions. Even with the use of high-speed

computers, certain mathematical techniques, particularly those involving the

calculation and summation of many terms, are particularly cumbersome and

difficult to check with a hand-held calculator. Fourier analysis is traditionally used

to calculate the evolution of various geotherms, but the repeated calculation of sine

and cosine coefficients and the necessity of summing over a large number of terms

in the time intervals immediately following a thermal perturbation renders the

uniform application of this technique undesirable. The error function provides a

good alternative to lengthy Fourier summation for calculations during the several

million years postdating a thermal disturbance, but combining the techniques --

using the more convenient error function for the initial stages of re-equilibration

and switching to the lmore accurate Fourier summations once the length of the

expressions becomes manageable -- introduces a functional discontinuity into the

analysis. Numerical analysis, on the other hand, can be applied continuously from

the beginning of a problem without the necessity of changing to a more manageable

functional relationship after some initial period of time and provides a flexible

technique suitable to the introduction of faults in the lithosphere.
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2.1 Forward Modelling with Finite Difference Methods

Finite difference iteration, described by Carslaw and Jaeger (1959) for linear

heat flow in infinite regions, provides a flexible, fairly accurate, and

computationally-simple alternative to Fourier summations. In order to calculate

geotherms using any analytical mathematical technique, it is necessary to find

solutions to the second-order differential equation for the diffusion of heat in a

solid, given by: ... 6T
6rc K '(2.1)

where T(x,t)=temperature function
x= thermal diffusivity, assumed constant

Solutions of the heat flow equation are of the form:

T= Tmx/l + (2Tm/r )1(1/n)sin(nif x/1) e-n2, 21 t

where l=lithospheric thickness
Tm=constant temperature base of lithosphere

T=temperature at time t and depth x

The size of the exponential expression for a given time obviously governs the

number of terms needed in the summation and introduces a complication in the

Fourier technique: not until the exponential part of each term under the

summation sign has a value less than about 0.01 can many of the terms be

dropped. By replacing partial derivatives with arithmetic expressions, the finite

difference method avoids solving the heat flow equation, making direct computation

of T possible for a set interval in x and t space. Finite difference iteration is

perhaps most easily understood by examining the derivatives of a function y= f(x).

If y1 = f(xl) is one point on the curve, then another point is given by

y2= y1 + Ay = f(x1 + Ax). Subtracting the two yields:

Ayl= f(xl+ Ax) - f(xl)= y2 - y1

and this Ay, becomes the first forward difference. By analogy, the forward
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difference Ay. is given by Ay. = y 1- Y. if all intervals up to n + 1 are regularly

spaced. In a similar manner, the second forward difference of a function A2yn is

calculated as follows:

A2Y1 = y 1 =AY2 - Ayl (2.2)

given: A y2 =Y3-Y2 and

Ayl=y 2 -y1

A2y1 = y3-2y 2 +yl

and, in general,

2 = y - 2yn + yn

Note that the forward differences given are for y as a function of only one

variable, although the original heat flow equation requires a solution for T as a

function of both spatial and temporal variables. This difficulty is easily avoided,

however, by evaluating T at a point x = me , where e is the size of an interval and m

is one in a set of consecutive integers. This step effectively reduces T(x,t) to T(t),

and the original heat flow equation can be rewritten, replacing the result in

Equation (2.2) by the corresponding second forward difference:

e /K 2[6T/6t] = TM+(t) - 2Tm(t) + Tmi(t) (2.3)

This equation does not yet provide a completely numerical formula for

calculating T since the partial time derivative remains. Applying the reasoning

about evenly-spaced intervals to the time derivative and writing t=nr where

r =time interval and n is a set of consecutive integers, Equation (2.3) can be

rewritten:
Tm/t = [Tm i- Tmn]/r

or:
(2.4)

Tmn+1= ( *r/ 2) [Tm+1,n+ Tm-1,n] -( 2
xr /e 2 - 1) Tmn
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This expression provides a completely numerical method for calculating equally-

spaced solutions to the heat flow equation. Although second forward differences are

neglected in writing out the differential equation in numerical form, these terms are

generally small and can be dropped without losing much of the accuracy of the

approximation. The reliability of the method is, in fact, much more sensitive to the

size of the constant or modulus M= r/, 2 than to dropping higher order

differences. As the modulus value changes in response to variations in r and e, the

stability and convergence conditions must be met. Using simple error propagation

techniques, Carslaw and Jaeger (1959) show that finite difference equation given

above is stable -- errors do not increase when the technique is repeatedly applied --

when the modulus M meets the condition:

M= xr /e 2 <= 0.5

Table 2-I shows the calculated values for M using a set value of 0.008 cm2/sec (or

3.344 W/m-K) for thermal diffusivity and various values of 1 . In this application, i

represents the size of the depth increment to be used in dividing up the lithospheric

slab, and r is a time increment to be used in repeated calculation of geothermal

relaxation out to several million years. Though M=0.167 is the optimal value for

the minimization of errors, the technique used must also be computationally-

efficient, able to be completed quickly on a high-speed computer. For the purposes

of this study, it was found that setting r = 0.1 my and e =2.5 km (corresponding to

M=0.4125) provided both a fast and fairly accurate method for the relaxation of

geotherms over long time periods.

An important characteristic of the finite difference technique is the necessity

of specifying the boundary conditions for the linear relaxation problem. In practice,

however, the entire initial geotherm (for time t =0.0 my) must be given as a "seed"

for the first iteration. Finite difference techniques use values from the immediately
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f M-0.167 r , .M-0.5 y
1.0 km 0.007 my 0.012 my
2.5 km 0.041 my 0.124 my
5.0 km 0.165 my 0.495 my

10.0 km 0.660 my 1.980 my
15.0 km 1.485 my 4.450 my
20.0 km 2.640 my 7.920 my

Table 2-1: Table showing the relative values of r and E necessary
to maintain the value of the modulus M: 0.167< M < 0.5

preceding time interval to generate figures for the next interval. It is therefore not

sufficient to specify only the boundary conditions -- the temperatures at the base

and top of the lithosphere -- unless the geotherm is linear between the upper and

lower boundaries. In order for the finite difference technique to be applied

accurately and repeatedly, it is also necessary that the grid-spacing (i.e. the size of

e, the spatial interval, and r, the time interval) remain constant and that the

boundary condition temperatures either change not at all or only slowly relative to

Ir.

2.2 Applicability to Real Geologic Problems

In practice, any mathematical technique used to describe the behavior of real

physical systems serves, at best, as an approximation to the actual state of the

system. Forward-modelling of geotherm relaxation in various tectonic settings

relies heavily on the assumption of ideal behavior of a closed system and the use of

the small amount of physical data available. Surface heat flow data, for example,

serves to establish a working model for the near-surface thermal gradient, and

parameters like the conductivity of the lithosphere can probably be safely assumed.

More difficult to pinpoint are the rate of movement on fault surfaces, the precise
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nature of the compressional or extensional event that produced the original

temperature perturbation, radioactive heat production at various crustal levels,

and the thermal thickness of continental lithosphere.

The primary importance of an iterative technique in physical applications is

the use of previous geotherms in calculating those in the next time interval. The

thermal state in the lithosphere at any given time is obviously dependent on the

prior temperature distribution, a fact that makes the finite difference method

conceptually simple. In Fourier analysis of geotherm relaxation, the temperature

structure is completely recalculated at each time interval, and there is no clear

relationship between the geotherms at two different times. Finite difference

techniques also provide a rough approximation of one-dimensional heat flow.

Figure 2-1 shows the qualitative relationship between the temperature at depth

x=mE at times nr and (n+1)r. Note that, in a gross sense, the process of

calculating the geotherm at (n + 1)r requires the heat from elements above and

below depth x=mE at time t=nr to effect changes in the temperature at the same

depth in the next time interval (t =(n + 1)r ). This yields an intuitively simple

model for understanding the linear heat flow problem in one-dimension. Finally,

perhaps the most important advantage of numerical analysis in examining

changing temperature structures is its flexibility. Unlike the Fourier technique,

finite difference modelling is applicable even in problems in which parts of the

lithosphere are displaced along discrete normal fault zones.

The full two-dimensional heat flow problem requires more calculations than

the one-dimensional description, but proper application of the one-dimensional

solution provides a good description of two-dimensional heat transfer. In order to

use this approximation technique to follow the temperature changes experienced by

a set of particles, the one-dimensional problem must be solved simultaneously for
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(m-1)E T.(

)x M +

mE Tm,n x (2M-1)

(m+1)f T

(n+ 1)r
nr

Figure 2-1: The qualitative relationship between the values calculated at
time t=nr and at time t=(n+1)r .

several columns. Simple linear extrapolation between the one-dimensional

solutions then provides a reasonable description of the two-dimensional part of the

problem. This approximation of two-dimensional heat flow assumes that the

principal direction of heat transfer within the lithosphere is vertical and that

horizontal heat flow can be ignored. The cooling effects of displacing the hanging

wall of a normal fault will cause the greatest temperature changes in the vertical

direction, and neglecting horizontal heat flow provides a simplified and realistic

approximation for the transfer of heat in the lithosphere.

Like Fourier analysis, finite difference modelling examines temperature
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changes in an immobile column of the lithosphere. In the terminology of continuum

mechanics, the method yields a Eulerian description of the system's behavior, one in

which the observer remains fixed at a point and watches the changes that occur in

a one-dimensional line of sight. This concept is of special importance in the sort of

forward modelling problems that have been examined in this study: When the

footwall of a normal fault moves upward from beneath the dipping fault surface,

the particles in the lower plate obviously move together. In a Lagrangian

description of the problem, the observer attaches himself to the particles in the

footwall and moves with them, noting temperature changes that occur in the same

set of particles throughout their entire history. His frame-of-reference moves with

the footwall, allowing him to observe the complete time and position changes of one

set of particles. The Lagrangian description, then, is of obvious importance in

modelling the depth-temperature-time paths of individual rock particles, but

requires a two-dimensional coordinate system in the place of the one-dimensional

column of data generated by the finite difference method.

A finite difference technique based on the linear heat flow equation can be

seen as providing a Eulerian description of the system in the simplest case of

calculating geotherms at a set position in the lithosphere, but the repeated

application of one-dimensional techniques can, as described above, lead to a

Lagrangian description. Only through the application of the method to several one-

dimensional columns at a given time period can a complete description of the

geological problem be given. The ability of the finite difference technique to provide

both Eulerian and Lagrangian descriptions makes it especially useful in forward-

modelling. It provides the geotherms needed for understanding the effect of tectonic

events on temperature regimes, and the pressure-temperature paths used for

predicting theoretical metamorphic assemblages and theoretical cooling paths.
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2.3 Assumptions Inherent in Analytical Techniques

An important problem in modelling geologic systems is balancing the

assumptions of ideality with complicated descriptions of real physical systems.

Simplifying assumptions are necessary to satisfy the constraints of the

mathematical techniques and to make the particular models tested applicable to a

wide range of geologic problems. Theoretically, it is possible to vary almost all

problem parameters, to introduce inhomogeneities in the lithosphere, and to model

non-linear relaxation of geotherm perturbations. These complications, although

possibly rendering a particular model more realistic, serve to obscure the

qualitative response of a generalized lithosphere. As the number of dynamic

parameters increases, it becomes more difficult to trace anomalies in relaxation

patterns to a particular lithospheric property, and the usefulness of the technique is

radically reduced.

The most fundamental assumption made in all models developed for this

study is that of ideal lithospheric behavior. Not only is it assumed that the

lithosphere can be modelled as a homogeneous solid of constant thickness, density,

and thermal conductivity, but the lithosphere is also assumed to display perfectly

isotropic behavior during pure shear extension and perfectly brittle behavior during

normal-faulting episodes. Homogeneity of the lithosphere is undoubtedly the

poorest assumption made in this study and also the one that poses the greatest

conceptual difficulty. Extension of the lithosphere through the normal-faulting

mechanism requires the presence of a detachment surface that, in real geologic

settings, often serves as both a structural and compositional boundary between the

hanging wall and footwall. By imposing the constraint of lithospheric homogeneity

but retaining the normal fault mechanism, the models tested here imply that a

detachment surface serves only as a structural boundary and that the rocks below
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the detachment can somehow be metamorphosed while adjacent hanging wall rocks

with the same bulk compositions and same gross properties remain

unmetamorphosed. In real geologic situations, sedimentary rocks typically occur

above the detachment level while crystalline basement or plutonic rocks form the

footwall. To a first order, this compositional contrast across the detachment

represents a discontinuity in density and thermal conductivity across the fault

surface.

The most fundamental modification to the computer program used in this

study would involve the thermal diffusivity parameter because only this value is

involved in every finite difference calculation. Thermal diffusivity x is defined as:
x =k/pc

where k= thermal conductivity
p= density
c = specific heat

Thermal conductivity, density, and specific heat are all properties that are

primarily dependent on the nature of the medium they describe. As a function of

these properties, thermal diffusivity (x ) must theoretically be changed each time the

composition of the system is altered. Because the models developed here aim only to

provide a crude approximation of the theoretical pressure-temperature-time paths

of metamorphic rocks, variations in x only complicate the analysis and will not be

considered here.

The techniques used in this study require no quantification of the

lithosphere's elastic properties, but several assumptions are inherent in the

modelling of tectonic processes. As discussed in Section 3.2, the mathematics of the

problem of pure shear extension of the crust is taken from the model of

Royden et al. (1983), which assumes that a long stretching event may be broken up

into a number of instantaneous stretching episodes. Throughout this pure shear

kawim""NOW.
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process, the area of a unit element is preserved, an indication that isotropy is an

inherent assumption of this technique. Although the idealized homogeneous

lithosphere does not necessarily have to deform isotropically, nonisotropic behavior

is difficult to model because complicated numerical techniques are required to

evaluate the integrals involved in the continuum mechanics description of the

system. Nonisotropic behavior of the lithosphere is therefore not considered in this

study.

The mathematics of the normal-faulting routines, on the other hand, is

premised on the assumption of perfectly brittle behavior of the lithosphere. In real

geologic settings, brecciation, mylonitization, shear heating, and ductile attenuation

in the hanging wall are often associated with movement of material along a normal

fault. Although important, these effects are difficult to quantify and must be

ignored in idealized models of perfectly brittle responses to deformation. The

normal fault routines, working on the simple premise that a particle must maintain

a constant spatial relationship with every other particle in the same wall of the

normal fault, are able to mimic brittle behavior in a homogeneous lithosphere.

Related to the problem of parameterizing the elastic and thermal properties of

the lithosphere is the difficulty introduced by the presence of hot asthenospheric

material at the base of the lithosphere. In the Earth, the asthenosphere acts as a

heat source, introducing heat into the lithosphere from below and causing the

lowermost lithosphere to undergo partial melting, a decrease in density, and

deformation that is more complicated than the simplified pure shear and brittle

failure normal-faulting models used here. This assumption of closed system

behavior for a cooling slab renders the problem much less realistic, but, on the

small scale of the sort of normal faulting effects studied here (typically less than

200 km in lateral extent), the closed system approximation is convenient, practical,

and not too inaccurate.
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Besides ignoring the transfer of heat from the asthenosphere to the lower

lithosphere, the models developed for this study hold the rate of radioactive heat

production constant over the duration of each program loop. In order to test the

validity of this assumption, it is necessary to examine the decay rates of the most

common isotopes of uranium, thorium, and potassium, the elements that produce

most of the Earth's radioactively-derived heat. The decay schemes of the four most

abundant isotopes of these elements -- 2 38U, 2 35U, 232Th, 4 0K -- have half-lives of

4.47 Ga, 0.74 Ga, 14.0 Ga, and 1.25 Ga respectively. Only in the case of 2 3 5U is

the half-life even of the same order of magnitude as the longest possible program

run (100 my), the half-lives of the other three isotopes being considerably greater

than 100 my. Though the rate of heat release is an order of magnitude greater for

235U than for the other abundant radioactive isotopes, its half-life is still long

enough to make the assumption of constant heat production from radioactive decay

plausible over periods of 100 my or shorter.



-26-

Chapter 3

Computer Forward-Modelling in Thermal Problems

Regardless of the mathematical technique chosen, forward-modelling of

geothermal relaxation over long periods of time necessarily involves thousands of

computations, and it is only practical to approach these calculation-intensive

problems with high-speed computers capable of handling very large arrays. For the

purpose of this study, a lengthy FORTRAN 77 program was written for execution

on DEC VAX 11/750 macroprocessors running under the Berkeley UNIX 4.3

operating system. Though FORTRAN 77 suffers from a lack of elegant recursion

algorithms, poor output and string-handling capabilities, and the troublesome

requirements of array space allocation prior to running a program, it remains the

primary computer language in geophysics, is among the most portable between

different systems, and, most importantly, is a fairly efficient language for long

programs that require repeated evaluation of arithmetic expressions while avoiding

complicated algorithms. FORTRAN's efficiency in handling repetitive calculations

was complemented in this study by the use of the high-speed VAX 11/750

computers. The forward-modelling of geotherm evolution over a period of one

thousand time intervals may involve up to one million evaluations of arithmetic

expressions. A VAX running the FORTRAN program written for this study usually

completes the forward-model in under five minutes.

Appendix 1 contains the FORTRAN source-code for the principal programs

used in this study. The main program formodel.f contains all of the routines

necessary for the actual computation of forward-modelled geotherms and is linked,

via the penplot library capability available at MIT, to the plotting subroutines
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subplot.f and subpath.f. The first of these subroutines produces a plot of

temperature as a function of depth at several time intervals, while the latter reads

data from a file created by formodel.f, plotting the temperature-depth-time path of

a chosen rock particle. Appendix 1 also contains the source code for several

auxiliary programs, including fourier.f, which calculates geotherms using the

traditional Fourier summation technique, and indplot.f and indpath.f, plotting

routines that are not directly linked to the main program. Subroutine marker.f is

a subprogram that is linked to the plotting routines to produce labels on tic marks

in the graphs. Another subprogram splining.f fits the temperature-depth and

temperature-time output paths of formodel.f using FORTRAN cubic spline

subroutines available in the NAG (Numerical Algorithms Group) library,

generating the slope values at each data point and providing a quantitative way to

compare curves.

The program written for this study is built around the finite difference

calculation routine, and it is important to note that only this part of the program is

fundamental in all problem applications. By structuring the routines that

calculate the effects of tectonic processes, radioactive heat production, and linear

transfer of heat around the kernel of the finite difference expression, it was possible

to attain a program with maximal flexibility: In the most elementary case, the

program simply models the re-equilibration of a perturbed geotherm prescribed by

the user. Figures 1-1, 1-2, and 1-3 give clear examples of this sort of

straightforward linear relaxation in which the initial geotherm (at time t= 0.0 Ma)

adjusts toward the steady-state without the addition of heat production terms.

More complicated models can by analyzed through the introduction of radioactive

heat sources at various levels in the lithosphere or the repeated application of the

relaxation routines at several places in the lithosphere in order to approximate two-
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dimensional heat flow. Finally, the attributes of these simpler scenarios can be

combined with the actual movement of parts of the lithosphere to provide the most

sophisticated and geologically-realistic models for use in thermal studies. The

program is designed to analyze not only the effects of diachronous pure shear

thinning or movement of material along a normal fault, but also the result of

simultaneously extending the lithosphere using both the pure shear and normal

fault models.

3.1 Program Input Parameters

Table 3-I gives the basic problem parameters that must be prescribed by the

user, and the physical interpretaion of these parameters is shown in Figure 3-1. Of

all the variables provided by the user, the most fundamental is the lithospheric

thickness x, generally taken between 100 and 125 km for the continents (Sclater et

al., 1980). Though it is widely admitted that the continents and ocean floor differ

greatly in their heat flow characteristics, geophysicists often use the simplifying

assumptions applied to oceanic lithosphere when analyzing the behavior of

continental lithosphere and assign the calculated oceanic lithospheric thickness of

125 km (Parsons and Sclater, 1977) to the continents as well. Elevated heat flow

and the extreme attenuation of the crust in continental settings such as the Basin

and Range Province o'f the western United States imply that the lithosphere is

considerably thinned beneath a large part of the Province and that 125 km is

probably a gross overestimate of the present-day lithospheric thickness in this area.

It is important to note, however, that this thinned lithosphere is an effect of

Cenozoic extensional processes, and that the pre-Cenozoic lithosphere can probably

be safely assumed to have been at least 100 to 125 km thick.

Two other parameters of extreme importance in setting up the initial
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Variable Meaning
imbric number of imbricate fault structures

col number of lithospheric columns

x thickness of lithosphere .(km)

dx size of thickness increment (km)

time total time to run problem (my)

dt time increment (my)

lat array of distances bet. adj. columns (km)

mbegin time at which mvt. on fault begins (my)

mend time at which mvt. on fault ends (my)

disp amt. of horizontal displacement on fault (km)

decoll decollement depth in each column

upxten % pure shear extension above detachment

loxten % pure shear extension below detachment
tinit time at which pure shear begins (my)

tend time at which pure shear ends (my)

Geotherm initialization routine

tbase temp. at base of lithosphere (C)

pnum number of thermal pulses in the lithosphere

pdept depths of thermal pulses

ptemp initial temp. at depth of thermal pulse

disc number of discontinuities in initial geotherm

tabov initial temp. at discontinuity

tat initial temp. one interval below discontiniuity

Initialization of radioactivity distribution

pts number of points in radioactive array

dept depth of points in radioactive array (km)

rad radioactive heat production of single point source

deep depth of single point source

radio radioactivity values (16"3 cal/cm 3-s)

Table 3-I: Problem parameters that must be input by the user and their
physical interpretation. Variable names correspond to those used in

program formodeL.f listed in Appendix 1.

characteristics of the problem are the time increment, represented by r in the

discussion in Chapter 2 and by dt in the program, and the depth increment, denoted

by E in Equation (2.4) and by dx in the program. These variables prescribe the

mesh-size of the finite difference grid and are bounded by the accuracy constraint

0.167 < M < 0.5 placed on the modulus. As discussed in Chapter 2, most of the

program runs done in course of this study used a r value of 0.1 my and an e value
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Figure 3-1: Graphical representation of the physical meaning of input
problem parameters. Variable names are elaborated in Table 2-I.

of 2.5 km, corresponding to a modulus value of M=0.4125. Though this modulus

value is far from the more optimal M=0.167, it does meet the basic accuracy

constraint, and its adoption has several advantages. The speed of the program is

obviously a major concern for the user; with r =0.1 my the program retains its

speed since only ten, and not twenty (r =0.05 my), time increments are necessary

for each million year period. In addition, it is desirable to keep the arrays small

enough that the program can be run without loading data onto a hard disk during

its execution, a necessity when the program's main temperature array has more

than about one thousand elements in its time dimension. For the particular
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computer system used in this study, the array size was also limited by the amount

of core space available on the VAX. The constraints on array size limit the

relaxation time to t=100 Ma when r =0.1 my and to only t=50 Ma when

r = 0.05 my. A r value of 0.1 my is probably a wiser choice for long-term geotherm

re-equilibration studies and, as discussed in Section 2.3, the accuracy improvement

derived from using r = 0.1 my instead of r = 0.05 my will be negligible in most

cases.

The choice of the depth increment E is much less dependent on factors of

array size and program speed, being subject only to constraints placed on the

modulus and the value assigned to the thickness of the lithosphere. The

temperature grid established by a finite difference method must include both the

surface of the lithosphere and the asthenosphere-lithosphere interface in order to

describe completely the characteristics of the cooling slab and to meet the boundary

condition constraints discussed in Chapter 2. Not only is it most convenient from

the user's standpoint to divide the lithosphere into an integral number of small

depth increments, but the finite difference method essentially requires that the

lithospheric thickness be evenly divisible by the E value since the validity of

replacing the partial derivatives in the heat flow equation with forward differences

is dependent on equal spacing of T values in both space and time. With x= 124 km,

for example, the use of F =2.5 km would produce 55 evenly-spaced depth nodes in

the finite difference grid from x=0 km to x=122.5 kIn, leaving a 1.5 km thin slab

adjacent to the lithosphere-asthenosphere interface to be either completely ignored

or added to a 1.0 km piece of the asthenosphere to make one last 2.5 km depth

increment. Neither of these solutions is acceptable since the first excludes the

boundary condition temperature at the asthenosphere interface and the second

essentially causes a slab of hotter asthenosphere material to be plated onto the
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bottom of the lithosphere. For most of the program runs done for this study, the

initial lithospheric thickness x was taken as 125 km or some other multiple of 5 km.

A e value of 2.5 km divides the lithosphere into an integral number of thin slabs

and allows r to vary between r = 0.04 my and r = 0.12 my while maintaining the

modulus value within the acceptable range. One disadvantage of a depth

increment as large as 2.5 km, however, is obvious in some of the models discussed in

Chapter 4. In order to set up a problem in which the lithosphere is thinned either

through pure shear or mass movement along a normal fault surface, it is necessary

to specify detachment levels within the crust. Even with a grid as fine-meshed as

2.5 km by 0.05 or 0.1 my, very fine structures in which the decollement occurs at a

depth that is not a multiple of 2.5 km can not be easily analyzed. In principle,

linear extrapolation between the spatial mesh points would make possible the

analysis of problems in which the detachment occurs at 4 km depth, for example,

and linear extrapolation is indeed used to follow the upward movement of the

decollement surface as the crust is thinned by pure shear extension. It is important

to realize, however, that all geological models used in this study are gross

approximations of much more complicated structures and that, at most, the

decollement level can be half of a depth increment or 1.25 km from its actual

position, an inaccuracy that is fundamentally insignificant when compared to other

simplifications made in the analyses.

An important effect of crustal extension by either the pure shear or normal

fault mechanisms is the lateral movement of lithospheric material. In a lithosphere

being thinned by a pure shear mechanism, particles move both vertically and

horizontally as the lithosphere is stretched (Figure 3-2a). The normal-fault case is

more complicated, with rocks in the footwall moving upward and obliquely relative

to fixed particles in the hanging wall (Figure 3-2b). The linear heat flow equation
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Figure 3-2: The lateral movement of specific rock particles during a) pure
shear extension and b) normal faulting.

expresses temperature T as a function of time and a single spatial variable x and

has no provision for the simultaneous vertical (in x) and lateral (in y) conduction of

heat that occurs in a thinning lithosphere. The two-dimensional heat flow equation

is given by: i+ i-Y 0
&t2 6t 2  (3.1

also known as Laplace's equation in two variables. Using the sort of reasoning

outlned in Chapter 2 tor the one-dimensional heat flow equation, it is possioie O

replace the partial derivatives in Equation (3.1) by forward differences, thus

reducing Laplace's equation to an arithmetic expression similar to Equation (2.4).

For the purposes of this study, however, a method based on extrapolating between

several parallel one-dimensional geothermal relaxation problems was judged more
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straightforward, less calculation-intensive, and fairly accurate in approximating

the effects of two-dimensional heat transfer. The generalized lithosphere can be

pictured as an horizontally-infinite slab of thickness x with an x-y coordinate

system centered at x=0.0 km (the surface) and y=0.0 kIn, an arbitrarily chosen

horizontal position within the slab. At time t=0.0 my, a geotherm is specified for

this first one-dimensional column at y=0.0 km and for several other columns of the

lithosphere at various distances from the first. Since the finite difference

calculation is applied to each column independently, the many one-dimensional

problems being solved provide a good, but sketchy, description of the geothermal

regime over a large part of the lithosphere. Linear extrapolation between the

columns of data completes the two-dimensional description of the temperature

distribution within the lithosphere, but does not solve the problem of two-

dimensional heat flow. As approached in this study, two-dimensional heat flow

necessarily requires mass transport: some of the particles from column 2, for

example, must move horizontally as a result of stretching or normal-faulting in

some part of the lithosphere. For the purposes of the finite difference calculations,

rock particles are viewed in a Lagrangian sense, having a certain temperature and

position attached to them at any given time during their movement. Assuming for a

moment that particles move only horizontally, instead of both horizontally and

vertically, a particle that moves out of column 2 must be replaced by another

particle that moves into the same place in the column. In all two-dimensional

movements of lithospheric material, then, every depth interval me always has a

temperature associated with it, and no particle is ever "lost" except by being

transported beyond the last column in a problem. At any time interval, the position

and temperature of the particle that is about to move into a particular place in a

column can be calculated through simple linear extrapolation in both x and y space
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given the rate of movement along the fault or stretching. After the column has

been filled with the incoming set of particles and the calculated temperatures, the

normal finite difference iteration is carried out on the new geotherm and the

process of moving particles is then repeated. An approximation of two-dimensional

heat flow is developed by first moving new temperatures into a lithospheric column

and then using this new geotherm as the seed for the next finite difference

calculation, a process that would be impossible with the Fourier technique.

An approximation of two-dimensional heat flow is of fundamental importance

in models that involve the movement of pieces of the lithosphere, and the

parameters that describe all aspects of this movement are the most variable within

the framework of the forward-modelling program. The user must provide values

that describe how many lithospheric columns to use (up to five are permitted), the

spacing of these columns, the total amount of time (in my) to run the problem, the

temperature at the base of the lithosphere, and the parameters that describe the

rate of fault movement, the y and f values for pure shear stretching, and the

distribution of radioactive sources in the lithosphere. As the program is set up,

problems must be run with at least two lithospheric columns, even if no fault

movement (displacement disp=0.0 km) and no stretching (upward and lower

extensional parameters, upxten and loxten are 0.0) occur. All problems that are

modelled with more tlan one lithospheric column necessarily require the user to

specify the depth of the detachment horizon in each column. In normal-fault

problems, the detachment serves to physically separate rocks in the footwall from

rocks in the hanging wall, but, in the case of pure shear extension, the detachment

zone is only an artificial boundary between pieces of the lithosphere that are

stretched at different rates. The breakaway zone -- where the dipping detachment

intersects the surface at x=0.0 km -- always occurs in column 1 which can be seen
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as consisting entirely of footwall material. The detachment horizons in other

columns must be specified to describe a constantly-dipping surface that intersects

the columns at depths equal to integral multiples of E . For example, if the

intercolumnar spacing of five lithospheric columns is input as 15 ki and a low-

angle detachment surface is required, then the values 0.0 km, 2.5 km, ..., 10.0 km

would be specified for the depth of the decollement in each of the five columns,

assuming an E value of 2.5 km. For the simplification of problem geometry and

mathematics, only detachments with constant dips were considered in this study.

3.2 Program Flow

Figure 3-3 provides a graphical illustration of the flow of logic in program

formodel.f. The program initially queries the user for the values of the problem

parameters listed in Table 2-I. Control then passes completely to the internal

calculation schemes until after all intermediate computations and finite difference

iterations have been completed. The first program module that follows the input

queries uses the problem variables to calculate various indices related to the

number of iterations in time and space and the duration of pre-tectonic, syntectonic,

and post-tectonic phases in each model. The main temperature array temp is

initialized, according to the specifications given by the user, with a steady-state

linear geotherm, a disc'ontinuous geotherm similar to those in Figures 1-1 and 1-2,

an exponentially increasing geotherm, or a linear geotherm with one or several

thermal pulses that die out exponentially with time. Typically, a lithosphere-

asthenosphere interface temperature of 13000 C is assumed for a 125 km thick

lithosphere, making the steady-state geothermal gradient 10.4*C/km.

As initialized by this program, discontinuous geotherms present a conceptual

difficulty for the user. A geotherm produced by instantaneous thrusting, for



-37-

Read initial
geotherms

Ifrom internal file

Initialize linear

steady-state

geotherm

Radioactivity

from discrete

point sources

Linear
distribution of

raioactivity

No radioactivity

Figure 3-3: Flowchart showing the logic of routine sequence in proram
formodel.f. Diagram continues on next page.

i



-38-



-39-

Graphics

output

desired?

N
Subproga Subpro

SGEOPLOT.F SGEOP

rite geother PENPLOT

p4otting file

Subprogram display

MARKER.F on term

PENPLOT library
calls

Display output

on terminal

END



-40-

example, is usually modelled by assigning two temperatures to one crustal level. In

Figure 1-1 , this would correspond to giving the temperature at 62.5 km as both

13000 C and 520C, obviously an impossibility for the program, which can handle

only one temperature value in each array cell. To overcome this difficulty, it is

necessary to assign the array element at 62.5 km a temperature of 13000C and

place the 52 0C value in the cell at 55 km depth, effectively spreading the

discontinuity out over a 2.5 km thick zone. Another possible discontinuous

geotherm has one or more thermal pulses at various depths in the lithospheric

columns. The user describes the position and temperature of the thermal pulses

that may be viewed as representing the intrusion and subsequent cooling of

plutonic material. The program calculates the difference in temperature between

the pulse and the background steady-state geotherm, multiplies by an exponential

factor e-"t (the first term in the Fourier expansion where t=total time), and adds

the result, the new temperature difference, to the background steady-state geotherm

in the next time increment. Since the temperature difference becomes smaller and

smaller as the exponential term goes to its limit of e 1 , the value of the temperature

difference term being added to the background temperature in each time interval

approaches 01C.

One of the greatest advantages afforded by the program's flexibility is the

recycling of final geotierms calculated in the first model structure as the initial

geotherms in the next model structure, modelling the effects of imbricate faulting in

the lithosphere. After the first run of the program, final geotherms for each column

that will be included in the next problem are written into an internal file. If the

user decides to analyze three consecutive fault structures, then, after the first

initialization of the geotherm as steady-state, discontinuous, or exponentially

dependent on depth, all geotherm initialization will be handled internally by the
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program, which will pass final geotherms from the first fault structure into the

array that specifies the initial geotherm for the second structure. This capability

renders the program exceedingly useful in the analysis of imbricate faults in the

hanging wall of a major detachment and also serves to make the models more

realistic since the geothermal perturbations caused by the movement on one fault

will continue to affect temperature relaxation as movement on the next fault

begins.

After temperature initialization has been completed, control passes to the

radioactivity routine. The program models radioactive heat production in the

lithosphere either as a set of point sources at various levels in the slab or as a

linear function of depth between known values of heat production provided by the

user for specific horizons. The heat flow Equation (2.1) can be modified to include a

heat production term:

of K 6t K

The temperature increase caused by a source producing heat at the constant rate of

A , W/m 3 is given by:
AT = Ax dt/k

where x=thermal diffusivity (m2 /S)

k=thermal conductivity (W/m0K)

For a problem in which no mass transport occurs, AT is simply added directly to the

temperature value at the depth of the source in each iteration. In geologic settings,

it is often possible to specify the heat production rate at several depths within the

lithosphere. Instead of assuming that these are the only heat sources within the

lithosphere, it is probably more realistic to regard these values as those that

happen to be known and to use a linear extrapolation routine to assign heat

production rates to depth levels that do not coincide with the known points. For



-42-

very generalized models for which a grossly-quantitative solution is required or no

radioactive heat production rates are known, the radioactivity routine can be

bypassed.

The pure shear extension routine, though not strictly necessary in many

problem applications, is executed each time the program is run. Among the

required input parameters are upxten and loxten, the variables that describe the

percentage by which the lithosphere is stretched through pure shear deformation,

and these are simply set to 0.0 when it is desirable to avoid pure shear altogether.

Geophysicists typically use the factors like B and y in mathematical modelling of

the effects of pure shear extension. B and y can be physically interpretated as

ratios: With 75% extension in the upper part of the lithosphere (upxten=0.75), a

unit element of pre-tectonic lithosphere will be y = 1.0+ upxten = 1.75 as long and

1.75-1 as thick in its post-tectonic state. It is important to note that, in the ideal

case, the pure shear mechanism preserves area through correlated horizontal and

vertical transport of mass elements.

Continuing the example above, in order to reach a net y factor of 1.75 over a

period of ten time increments, it is necessary to develop a relation for instantaneous

stretching in the lithosphere at the beginning of each time interval. Simply

dividing the y factor or the upxten value by the number of time intervals to obtain

0.175 and 0.075 for 'y idt and upxtenldt respectively will not produce the final

desired 75% extension rate. With a lithosphere 100 km thick and using the

upxtenldt value of 0.075, the lithospheric thickness after each of the few time

increments is:
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n = 1 100.0 - (100.0)(0.075) = 92.50 km
2 92.50 - (92.50)(0.075) = 85.56 km
3 85.56 - (85.56)(0.075) = 79.14 km
4 79.14 - (79.14)(0.075) = 73.20 km
5 73.20 - (73.20)(0.075) = 67.71 km
6 67.71 - (67.71)(0.075) = 62.63 km
7 62.63 - (62.63)(0.075) = 57.93 km
8 57.93 - (57.93)(0.075) = 53.59 km

By the time the eighth instantaneous stretching event is completed, this

faulty method produces a lithosphere thinner than the final desired thickness of

100 km/1.75 = 57.14 km. What is required, then, is a technique that divides up

the instantaneous stretching events among the ten time increments in such a way

that the desired final thickness is achieved in the correct number of iterations.

Royden et al. (1983) outline a method that requires the recalculation of a dy value

for each time period in a pure shear episode but produces the desired results. The

relation:

dy= {[(y - 1.0)] / [t + (n - 1) ]}+1.0

gives the value of dy for time interval nr . In this expression, t is the total amount

of time over which pure shear extension occurs, and n is an integral value ranging,

in the case above, from 1 to 10. Assuming that the extension takes place over

1.0 my, corresponding to a r value of 0.1 my for each of ten increments, the

lithospheric thickness after each instantaneous stretching episode is now:

n = 1 = 1.075 100.00 / 1.075 = 93.02 km
2 = 1.070 93.02 / 1.070 = 86.95 km
3 = 1.065 86.95 / 1.065 = 81.63 km
4 = 1.061 81.63 / 1.061 = 76.94 km
5 = 1.058 76.94 I 1.058 = 72.74 km
6 = 1.055 72.74 / 1.055 = 68.94 km
7 = 1.052 68.94 I 1.052 = 65.54 km
8 = 1.049 65.54 / 1.049 = 62.48 km
9 = 1.047 62.48 / 1.047 = 59.67 km

10 = 1.045 59.67 / 1.045 = 57.10 km
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The variation between this final lithospheric thickness of 57.10 km and the

value of 57.14 km obtained above by simply dividing the pre-tectonic thickness by

the y value is merely an artifact of having retained only three significant figures in

dy and two in lithospheric thicknesses in the hand calculations. Using the method

of Royden et al. (1983), it is possible to stretch pieces of lithosphere above and

below the chosen detachment level simultaneously and by different amounts. This

capability is particularly valuable if a detachment level is introduced at a depth

corresponding to the upper-lower crust interface or the crustal-lower lithosphere

boundary. Though the elastic properties of the slabs above and below fhe arbitrary

detachment level can not be changed, extending the two parts of the lithosphere by

different amounts permits the upper plate to stretch relatively more quickly or more

slowly than the lower plate and provides a rough model for the response of an

isotropic solid being deformed inhomogeneously.

After arrays have been filled with the thicknesses of the upper and lower

plates following each instantaneous extensional event, the program enters the main

incrementation routine that lies at the core of all problems. Theoretically, the

one-line finite difference expression should be the only necessary element in this

part of the program, but, in practice, several complicated two-dimensional linear

extrapolation routines are required to determine the temperatures at the depth

intervals mu as particles move in x and y space. In the pure shear events of the

sort discussed above, particles move both vertically and horizontally at a

progressively slower and slower rate. Thinning of the lithosphere by the relative

movement of the hanging wall and footwall of a normal fault, however, is much

more easily modelled since mass tranfer takes place at a constant rate over a period

of time. If the total displacement along the fault measured in the horizontal plane

is 10 km over a period of 10 my, the program assumes that horizontal displacement
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occurs at the rate of 1 km/my or 1 mm/yr. If a column of the lithosphere at y = 10

km and with a detachment surface at 5 km (angle of dip is 450) is subsequently

introduced, it is seen that a particle moves 1 km/my in the horizontal dimension

and 0.5 km/my in the vertical dimension for a total displacement of 1.25 km/my

parallel to the dipping fault surface. In practice, the program holds the surface

steady as a datum level and models movement along the normal fault as the

downslope displacement of the hanging wall. In real geologic settings, though, the

hanging wall typically consists of sedimentary rocks and poorly-consolidated fill,

and it is the footwall that moves upward, causing the break-up of the hanging wall

rocks. The problem is entirely one of relativity, however, since modelling the

thermal response to the downward movement of the hanging wall is mathematically

equivalent to modelling the temperature changes resulting from upward movement

of the footwall.

Following the last finite difference iteration for a problem, control passes to a

number of user-interface routines that write specific information in files. The first

of these routines provides a two-dimensional description of the temperature

structure by creating the file twodee that lists the geotherms for each column at

fourteen time intervals chosen by the user. An internal file nxt.st containing the

final geotherms of each column necessary for the next problem application is also

created at this time. .The routine that follows is the most important and most

complicated of the entire program and is solely responsible for providing the

Lagrangian description of particle motion. The program queries the user for the

original position of the particle whose time-temperature-depth path is desired, and

then, through a series of complicated and inelegant "if" statements, determines

whether, at a given time, the tectonic regime is one of pure shear extension, normal

fault movement, or no activity. The file words contains a header that gives all
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problem parameters, a graphical representation of the distances involved in the

calculations, and the time-temperature-depth and lateral position information for

the particles chosen. It is this information that is the most useful in making the

leap from theoretical forward-modelling to metamorphic petrology. The

temperature-depth points are also recorded in a plotting file named by the user and

can later be used as the input for both the plotting routines indpath.f and for an

RPL data analysis system (RS/1) available at MIT.

As discussed in Chapter 3, an important consequence of the program's

flexibility is its ability to loop back to the input parameter queries and proceed with

the analysis of a new fault structure using initial geotherms generated by the

analysis of a previous fault structure. Figure 3-4 shows a two-stage extension

process in which movement along two low-angle normal faults produces net

thinning of the crust. Using five lithospheric columns spaced at

y = 0.0 km, 15 km, ... , 60 km and with the detachment levels as

x = 0.0 kIn, 2.5 km, ..., 10.0 km respectively, the hanging wall of the first fault

moves until the breakaway is at y = 15 km, effectively thinning the lithosphere by

2.5 km. If the second fault has the same dip and a breakaway zone at the position

of the original column 3, the computer is told to retain the last three of the original

columns for the next analysis. The original column 3 is shifted over to the

column 1 position within the program's arrays, and final geotherms from the first

run are copied into the initial temperature array for the second run such that:

original column 3 ----- > new column 1
original column 4 ----- > new column 2
original column 5 ----- > new column 3

Since no data are available for the new columns 4 and 5, it is assumed that the

lithosphere at these positions has the same temperature regime as the new

column 3. Now, with the temperature array initialized and given the new
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Figure 3-4: A two-stage extension process: Consecutive movement on faults
1 and 2 causes thinning of the crust. Geotherms calculated during

movement along first fault serve as the initial geotherms for the stage
two faulting.

lithospheric thickness of 122.5 km, the program proceeds to carry on the second

stage of normal fault movement. Theoretically, an infinite number of imbricate

fault structures could be run. The program requires, however, that a great deal of

information be provided at the onset of each new faulting episode, and running the

program for more than three or four fault structures can become tedious, especially

since a failure to use properly formatted input will cause the termination of the

program and the loss of generated data.
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After movement along the last fault has been completed, control finally

passes out of the loop that encompasses most of the program and into a short

sequence that permits direct connection with plotting routines. At this point, the

user needs to determine only whether a plot of geotherms or the time-temperature-

depth path of a specific particle is desired. In either case, it should be noted that

the files read by the plotting routines will contain only the data generated by

movement on the final fault. Once finished with the program, however, it is

possible to use plotting files generated during the run to provide x-y pairs for

graphs using indpath.f or RS/1 (some knowledge of linking FORTRAN ASCII files

into RPL required) or to read from the plotting files and fit cubic splines to the data

using splining.f.

3.3 Systematic Errors

Approximating the analytic Fourier solution for the geothermal relaxation

problem through the application of a finite difference method is expected to cause

discrepencies in the results of the two techniques. Since the Fourier solution is

analytic and can theoretically be reached exactly by summing over an infinite

number of terms, error analysis is best undertaken by comparing the results of

several finite difference calculations with the Fourier solution. Using the simple

program fourier.f listed in Appendix 1, analytic solutions were found for the

relaxation of the geotherm in which the surface temperature is 0*C while the rest of

the lithosphere is assigned the asthenosphere temperature of 1300*C. The program

calculates and sums the first twenty Fourier terms at a time t Ma given by the

user and- prints these values in an internal file. Though the discrepancy between

temperature values calculated with the Fourier model and the finite difference

method using both r =0.1 my and r = 0.05 my may be be as great as 150 C at
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smaller t, this represents less than a 1.5% difference between the Fourier and finite

difference calculated values at these depths. By t=20 Ma, the Fourier and finite

difference geotherms differ by less than 0.5% for r =0.05 my and 1.0% for

r = 0.1 my, a range of errors well within the tolerance limits for this study. Of

particular importance is that fact that decreasing the r value to 0.05 my

(M=x r /2) from 0.10 my (M=0.4125) places the modulus value more acceptably

within the limits of the constraint 0.25 < M < 0.5 and should presumably give a

considerably more stable solution, but the accuracy improves by only one-half of one

percent, not enough to merit the additional time required to run the program with

a smaller r increment.
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Chapter 4

Forward Models of Depth-Temperature-Time Paths

The primary purpose of this study is the development of quantitative

relationships between the pressure-temperature-time paths of rocks in extensional

terrains and parameters that describe how the lithosphere thins. Theoretically, any

change in the problem parameters listed in Table 2-I will produce a variation in

the path of a particle, but, for the purposes of this study, it is most important to

determine the effect of changing the most basic of the parameters, namely the dip of

the normal fault and the rate of movement along discrete fault zones in the crust.

Input Parameters for Models Tested

lithospheric thickness 125 km
thickness increment () 2.5 km
total time to run problem 99.9 my
time increment (r) 0.1 my
distance bet. adjacent columns 25 km
% pure shear extension 0% (Y 8 l.0)
radioactive heat production 5 pW/m
thickness of radioactive layer 20 km

temperature at lithosphere base 13000C
normal fault mvt. begins 0.1 my

Table 4-1: The set of input problem parameters for each of the models
tested.

Table 4-1 lists the full set of problem parameters used in testing the models. In

order to simplify the comparison of p-T-t curves, only five models were tested, and

in all cases the upper plate was moved until five kilometers of material remained

above the decollement at a distance of 100 km from the origin. The initial geotherm
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for these runs was developed by superimposing radioactive heat production of

5 p W/m 3 in the upper 20 km on a linear steady-state background geotherm until

thermal effects had raised the temperature of the particle at 40 km to 6000C. This

geotherm, shown in Figure 4-0, then became the initial temperature structure for

each run, and radioactive heat production was allowed to continue at the same rate

in the upper 20 km of lithosphere during the course of the run. For the models

tested here, the thermal boundary layer, corresponding to the thickness of the

lithosphere for the purposes of this study, was taken at a depth of 125 km and a

temperature of 13000C in accordance with the values determined by Parsons and

Sclater (1977) for the oceanic case.

4.1 Effects of Fault Dip on Particle Paths

The first group of models was designed to test the effects of fault dip on the

temperature-time uplift path of particles. The parameters for the three models

tested are given in Table 4-I and illustrated in Figure 4-1. In each of the models,

the hanging wall was moved at a rate of 5 mm/yr (measured along the horizontal)

above the detachment surface as the paths of particles at various depths within the

lithosphere were monitored. Since the amount of cover being removed varies from

column to column, comparison of the depth-temperature paths for these models

shows only the primary effect of particles originally at the same depth in each

column ending up at different depths and yields little information about the overall

relationship between fault dip and thermal changes related to varying only this

parameter.

The primary difference in geometry among models in which the dip angle has

been varied is the depth to the detachment surface in each of the stationary

columns. In the 60 case, for example, the depth to the decollement in column 2 is
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Figure 4-0: The initial geotherm used for each of the models run. This
temperature structure was generated by introducing a 20 km thick

layer with radioactive heat production of 5p W/m 3 at the top
of the lithosphere and allowing the geotherm to develop for about 96

my, until a temperature of 6004C was reached at a depth of 40
km.

2.5 km whereas for the 170 model, the detachment lies at 7.5 km below the surface.

Obviously, an increase in fault dip angle will result in cool upper plate rocks being

placed on deeper particles in the lithosphere.

The direct effect of varying the angle of fault dip is evident in Figure 4-2

where time is plotted against the normalized temperature of particles that begin at

2.5 km below the decollement at a horizontal distance of 25 ki from the

breakaway. In the 17' dip model, this particle undergoes a very rapid temperature
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Depth
to detachment

col. 1 2 3 4 -

0 2 5 5.0 7.5 10

Horizontal
displacement

50.0 km

Duration of
displacement

10 my

7.5 15 66.7 km

0 5.0 10. 15. 20 75.0 km

0 7.5 15. 22.5 30 83.3 km

13.4 my 5 mm/yr

15 my 5 mm/yr

16.7 my 5 mm/yr

Table 4-II: Input parameters used for testing the effects of fault dip
variation on the depth-temperature-time paths of rocks.

25km

vertically-exaggerated

m-

m

i I U

a A

50km 75km 100km

Figure 4-1: An illustration of the geometry in the three models used to
test the variation of rock path with changes in fault dip angle.

decrease as the cool and thin upper plate is first moved over and then completely off

Dip angle

9 0

110

17 0

Horiz.
disp. rate
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the top of column 2. The particle at the same structural level in the 60 model,

however, undergoes equally rapid but less pronounced initial cooling and remains at

a temperature slightly greater than half its initial temperature for the remaining

85 my of the run. (In all of the plots that follow in this chapter, the end of the

period of displacement along the normal fault is marked by a square on the time-

temperature curves.) This analysis is particularly important as it provides a first-

order comparison of the effect of dip angle changes on the temperature of rocks at

the same structural level as opposed to the same absolute depth within the

lithospheric column. (For the purposes of this study, "structural" level refers to the

depth of a particle relative to the detachment.) Unfortunately, however, the

differences in T-t and d-T paths are merely the result of cooler rocks being carried

over deeper structural levels as the fault dip is increased for each model. Rocks

that begin nearer the surface have a lower initial temperature and do not undergo

as much cooling in response to tectonic denudation as rocks farther below the

surface but at the same structural level relative to the detachment. Although these

rocks begin and end at the same structural level then, they do not provide a good

basis for direct comparison.

Comparison of the t-T and d-T paths of rocks originally at the same absolute

level within a single lithospheric column also suffers from the difficulty outlined

above. Figure 4-3 shows the time-temperature and depth-temperature paths of rock

particles that begin at a depth of 25 km in the same lithospheric column for each of

the tested dip angles. In this case, though the rocks begin at the same temperature,

their final depths and therefore pressures are different. For a dip of 64, the particle

that begins at a depth of 25 km is uplifted to 22.5 kIn, and its temperature

therefore re-equilibrates to the expected steady-state background temperature at its

new crustal level. A particle originally at 25 km below a detachment dipping at
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170, however, reaches a post-tectonic level of 17.5 km and re-equilibrates to the

lower steady-state temperature at this crustal horizon. The greater drop in

temperature observed for the particle originally at the 25 km level below a fault

interface dipping at 170 is seen merely as result of its ending up nearer the surface.

A direct comparison of t-T and d-T paths of rocks is only possible, then, when

particles begin at both the same structural and initial depths within the

lithosphere. As discussed in Chapter 3, the computer program written for this

study sets up a system of two to five lithospheric columns for which the user

specifies the detachment levels and lateral spacing. By choosing rocks originally at

10 km depth and 2.5 km below the detachment horizon from different columns, the

effect of varying fault dip angle can be studied independently of other parameters.

The original positions of particles whose depth-temperature-time paths were

monitored are shown in Figure 4-4, and the depth-temperature and time-

temperature paths are plotted in Figure 4-5. Note that a different intermediate dip

angle was used for these analyses in order to simplify the geometry. From

Figure 4-5a, it is obvious that there is no significant variation in the depth-

temperature paths of rocks that begin at the same structural level in the footwall of

normal faults with displacements of 5 mm/yr, even when the fault angle varies

between 60 and 170. The particles below the fault surfaces dipping at these two

angles arrive at their final depth of 2.5 km with only a 250 C difference in

temperature, a change in temperature that would not be detectable in the rocks'

compositions or textures. These rocks then quickly equilibrate isobarically,

reaching the same temperature by 20 Ma.

The time-temperature plots in Figure 4-5b also show little variation for

different dip angles, the only notable difference being that the particle monitored

for the 60 dip case does not reach the isothermal part of the t-T path until about
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vertically-exaggerated
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Figure 4-4: Original positions of the particles whose
depth-temperature-time paths were monitored in order to directly compare

the effects of dip angle.

5 my after the other two particles. This effect is clearly a result of the original

horizontal position of the monitored particle. For the 60 case, the monitored

particle occurs at a distance of 75 km from the breakaway, the place where the

detachment zone intersects the surface. In contrast, for the 170 case where the

monitored particle is 75 km from the breakaway, unroofing is not completed until

several million years later, after unroofing of particles nearer the breakaway zone

has ended, and cooling to the isothermal part of the path is therefore delayed. Once

again, however, this time-temperature difference is not significant, and it can be

concluded that there is nearly no variation in the depth-temperature-time paths of

particles that begin at the same structural and absolute depths and are exposed by
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constant lateral displacement of the hanging wall, even when these particles occur

below faults that dip at different angles.

The discussion above dealt with the effects of varying dip angle while holding

the rate of lateral displacement constant. The vertical displacement rate on a fault

can be related to the lateral movement rate by the expression:
vert. disp. rate=horiz. disp. rate x tan(6 of fault dip)

Although the horizontal displacement rate is held constant as the dip angle varies,

in each case outlined above, material is being unroofed at a different rate. In the

17*C case, for example, the lower plate is being unroofed at a rate of 1.5 mm/yr

while for the 60 case the unroofing takes place at a rate of only 0.5 mm/yr. It is

important, then, to study the effects of varying the dip angle while holding the

unroofing rate constant. The depth-time-temperature paths of the same particles

chosen for study above were monitored for the 6* and 170 cases, and plots of this

information are given in Figure 4-6. Whereas the curves differed in minor ways for

constant rates of lateral displacement (different rates of unroofing), the depth-

temperature and time-temperature paths are exactly the same when the unroofmg

rate is held constant. These results have important implications in terms of

understanding the histories of geologic samples since they show that varying two of

the three parameters of fault dip, rate of lateral displacement, and unroofmg rate

while holding the other one constant will have no significant effect on the depth-

time-temperature paths of particles.
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Figure 4-5. The depth-temperature and time-temperature paths of rocks that

begin at the same structural and initial depths below fault surfaces
with different dips. The original positions of the particles is shown

in Figure 4-4.
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Figure 4-6: The depth-temperature and time-temperature paths of rocks that
begin at the same structural and absolute depths below fault surfaces
with different dips. In this case, the unroofing rate is held constant

while the lateral displacement rate is allowed to vary.
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4.2 Effects of Varying Rate of Lateral Movement

Variations in the rate of movement along the normal fault should

theoretically have a notable effect on the predicted depth-temperature-time paths of

rock particles. In order to isolate the effects of varying the rate of movement, runs

were done for a fault surface dipping at 110 for movement at the rate of 2, 5, and

7.5 mm/yr. The input parameters for these runs are the same as those given in

Table 4-I, and values specific to these particular runs are listed in Table 4-III.

Since the fault dip is held constant for each of these cases, rocks that have the same

initial depth with respect to the surface and begin at the same horizontal positions

are also at the same structural depths and always end up at the same depth

relative to the surface regardless of how the rate of lateral displacement is varied.

For these runs, then, it is possible to compare directly the depth-temperature-time

paths of rocks that begin at the same depth in the same column for different rates

of fault displacement, eliminating the problems associated with comparing the

paths of particles that are at different horizontal distances from the breakaway.

Depth Horizontal Duration of Horiz.
Dip angle to detachment displacement displacement disp. rate

Col, 1 5 10 1 2
110 0 5 10 15 20 75 km 37.5 my 2 mm/yr
110 0 5 10 15 20 75 km 15 my 5 mm/yr

11* 0 5 10 15 20 75 km 10. my 7.5 mm/yr

Table 4-III: Input parameters used for testing the effects of variation in
the rate of lateral displacement on the depth-temperature-time paths of

footwall rocks.

Figures 4-7 and 4-9 show the cooling paths of particles initially at the same

absolute depth in two different columns and for two different rates of displacement
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of the hanging wall. For the fast rate of 7.5 mm/yr, particles initially at the same

depth in the two columns cool primarily during the period of displacement and the

ten million years immediately following the end of movement along the normal

fault, but reach the isothermal parts of their temperature paths earlier than for the

2 mm/yr rate. As expected, particles that start closer to the detachment level

experience a greater change in temperature. At the slower rate of displacement for

the particle in column 5, geotherms re-equilibrate nearly as quickly as they are

perturbed by the movement of cool upper plate material over the deeper footwall

rocks, producing a nearly linear time-temperature path for this rock during the

period of displacement along the normal fault. The particle in column 2, being

farther from the detachment level, does not experience a significant change in

temperature until it has already reached its final depth and the temperature drop

near the surface has had time to effect changes at greater depths.
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Figure 4-7: The T-t paths of particles at 25 km depth for a dip of 110
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Figure 4-9 : The depth-temperature paths of particles originally at 25
km depth in column 5.

particle that begins at a depth of 17.5 km in column 4 (75 km from the breakaway).

Varying the rate of lateral displacement has little effect on the depth-temperature

paths of rocks that begin at this level, and the temperature and depth conditions of

the particles show only minor differences after 40 Ma. A particle originally at a

depth of 25 km (Figure 4-11) at the same distance from the breakaway has

distinctly different temperature-depth paths for the two rates of movement however.

For a lateral displacement rate of 2 mm/yr, the particle reaches its final depth

50 0C cooler than for the faster displacement rate, and depth versus temperature

changes occur at a constant rate of approximately 150C/km. At this slower rate of

displacement, some sort of steady-state is reached between relaxation of the

geotherms and the downward penetration of cooling effects of unroofing to greater

depths. Based on the plots in Figures 4-10 and 4-11, it can be tentatively concluded
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that the depth-temperature paths of rocks near the detachment level are not

significantly affected by varying the rate of lateral displacement along the normal

fault. The time-temperature paths are somewhat more perturbed, however, and

differences between the curves are significant enough that dating methods would

probably be able to distinguish between the two cases. In contrast to the rock at a

depth of 2.5 km below the detachment, particles that begin at greater depths

relative to the decollement have depth-temperature paths that show significant

differences as the movement rate is changed.

Although the depth-temperature paths (Figure 4-10a) of particles originally

at 17.5 km depth are not very different for the two rates of lateral displacement

along the fault, the time-temperature curves (Figure 4-10b) for the same particle

show that, at a faster rate of displacement, the near-equilibrium temperature is

reached much more quickly. At a distance of 75 km from the breakaway,

significant changes in temperature continue throughout the duration of movement

along the normal fault since unroofing is not completed until late in the period of

hanging wall displacement. The isothermal part of the time-temperature path is

therefore reached after only about 20 my for lateral displacement at a rate of

7.5 mm/yr while the particle takes 40 my to reach the same temperature when

rocks are displaced at only 2 mm/yr. This result has potentially important

implications for predicting metamorphic textures and assemblages since, for the

faster rate of displacement, it is unlikely that a rock would remain at certain

pressure-temperature conditions long enough to begin equilibrating. In addition,

Figure 4-10a suggests that it may be possible to determine the rate of lateral

displacement along a normal fault zone by dating of metamorphic rocks.

In Figure 4-10 it will be noted that small discontinuities occur in the depth-

temperature and time-temperature plots for the slow rates of fault displacement.

I----- --.--- W. ._-11-.__-__1-__1__ IN
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These discontinuities are an artifact of problems encountered in applying the finite

difference technique to problems in which unroofing is occurring at a rate of less

than about 1 mm/yr. The discontinuities do not present a serious difficulty and can

probably be eliminated by decreasing the size of the finite difference grid. The best

approximation of depth-temperature-time paths at slow rates of displacement can

be obtained by smoothing out the discontinuous curves across the temperature

jumps.

26 D-T PATH: particle originally at 25 km depth and 75 km from breakaway
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Figure 4-11.: The depth-temperature paths of particles originally at 25
km depth at 75 km from the breakaway for two rates of lateral
displacement along the fault. These rocks are 2.5 km below the

detachment surface. Note the differences between the depth-temperature
paths in this figure and those in Figure 4-10.

The final set of depth-temperature and time-temperature plots, shown in

Figures 4-12 and 4-13, provide a basis for comparing the combined effects of

particle depth and rate of displacement on the cooling paths of rocks at the same

horizontal distance from the breakaway zone. Figures 4-12 and 4-13 show the
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depth-temperature and time-temperature plots of particles that are originally at

depths of 25 and 50 km in a column 100 km from the breakaway. The particles

occur at 5 and 30 km below the detachment surface respectively. For a

displacement rate of 2 mm/yr, the particle originally at 25 km (Figures 4-12a and

4-13a) follows a path that is slightly concave toward the depth axis as it is uplifted

and cooled. At a displacement rate of 7.5 mm/yr, however, the depth-temperature

path for this particle is slightly convex during the period of uplift, and the rock

reaches its fmal depth 750C hotter than for the slower displacement rate. From the

time-temperature plot for this particle (Figure 4-13a), it is seen that, regardless of

the rate of lateral displacement, the particles cool to the nearly the same

temperature by 100 Ma. Cooling of the particles occurs more quickly for the

7.5 mm/yr displacement rate, but, following the period of uplift, the particles must

undergo an isobaric change in temperature greater than that for the 2.5 mm/yr

case.

The time-temperature and depth-temperature paths for the particle that

begins at a depth of 50 km also at a distance of 100 km from the breakaway are

shown in Figures 4-12b and 4-13b. The very different shapes of these curves as

compared to those in the 25 km case demonstrate the effect of particle depth on the

depth-time-temperature path of a metamorphic rock. At the slow 2 mm/yr

displacement rate, the initial p-T path is one of isothermal uplift, but, by about

5 my after the onset of faulting (as seen on the time plot in Figure 4-12b), the

effects of moving cool upper plate rocks over a decollement set at 20 km have

penetrated to the depth of the particles originally at 50 km, and cooling of these

rocks begins. The linear portion of the depth-temperature plot has a slope of

approximately 80C/km and represents a level in the column where the effects of

emplacing the cool upper plate rocks is almost exactly balanced by the relaxation of
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the geotherm. The change in temperature along the isobaric cooling path of the

50 km particles is much greater than for the corresponding part of the 25 km plot,

indicating that the geotherm continues to relax significantly at great depths long

after the active displacement has ended. For rapid rates of displacement, the

particle originally at 50 km is unroofed nearly isothermally during the period of

tectonic denudation and then cools isobarically following the completion of

movement along the fault. The isothermal part of this path is an effect of the

cooler near-surface temperatures not having had time to penetrate to the mid-

lithospheric levels before the period of displacement has ended. Once the rock has

reached its final depth, however, it must undergo over 2000 C of cooling before

reaching equilibrium.

The time-temperature plot for the particle originally at a depth of 50 km has

two important features. Most significant is the fact that the time-temperature

curves have the same shape and that there is at most a 10 my time difference

between when rocks unroofed at the two displacement rates reach the same

temperature. Some dating methods may be refined enough to distinguish between

points on these time-temperature curves. Secondly, at 100 Ma, the temperature of

the rapidly unroofed particle varies from that of the more slowly unroofed particle

by less than 10*C, a completely insignificant amount in terms of the pressure-

temperature conditions that will be recorded in the rock at this time interval. For

the particle originally at 50 km then, distinguishing between the metamorphic

effects of different rates of lateral displacement is probably nearly impossible unless

the early uplift path of the rock can be determined to be either nearly isothermal or

spread out over a measureable change in temperature.
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Figure 4-12: Depth-temperature plots for particles originally at 25 km
and at 50 km at a distance of 100 km from the breakaway for two

rates of movement.
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4.3 Effects of Pure Shear Extension vs. Extension by Normal Faulting

As discussed in Chapter 1, two processes have been proposed to explain how

the lithosphere is thinned. The pure shear mechanism involves simultaneously

thinning and lengthening a lithospheric element while preserving its overall area

whereas the normal faulting thins the lithosphere by causing the displacement of

near-surface particles relative to footwall rocks. An important question is whether

it is possible to distinguish between the two mechanisms by studying the

nietamorphic paths of rocks in extensional terrains. A forward modelling computer

program like the one developed for this study provides a basis for straightforward

comparison of the theoretical depth-temperature-time paths of rocks in a

lithosphere undergoing either pure shear extension or thinning as a result of

normal faulting.

Two models were chosen to compare the effects of pure shear and brittle

extension of the lithosphere. The initial geotherm used for these analyses was

linear and steady-state between 00 C at the surface and 13000 C at the base of a

125 km lithospheric plate. Radioactive heat production was set at 0 g W/m 3 for

each run, and the period of active thinning of the lithosphere lasted 25 my. For the

case of normal faulting, a dip angle of 110 was used, and the hanging wall was

moved down the fault surface until the lithosphere had been thinned by 5 km to a

thickness of 120 km. The depth-temperature-time changes of a particle 50 km from

the breakaway and 5 km below the decollement (at an original depth of 15 km) were

monitored as the particle was unroofed to the depth of 10 km.

For the pure shear case, there were two ways to set up the problem for direct

comparison with the normal faulting scenario. As discussed above, the normal

fault model was designed to yield a post-displacement lithospheric thickness of
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120 km, and it would be possible to thin the entire lithosphere by 5 km with a pure

shear mechanism by setting B =y =1.04. Although this model is theoretically the

most valid in terms of directly comparing the effects of pure shear and normal

faulting processes that thin the lithosphere by the same amount, the discussion in

the previous sections has focussed on the comparison of the depth-temperature-time

paths of particles that begin at the same depth and have the same post-uplift

depths as well. In order for a particle originally at 15 km to be uplifted to the

10 km depth through a pure shear process, the lithosphere must be thinned by 66%

(B = =1.66). Since thinning by this amount provides a basis for directly

comparing the effecs of pure shear and normal faulting for a specific rock particle,

this f =y = 1.66 value was deemed most appropriate, and the problem was set up to

monitor the depth-temperature-time changes of the particle originally at 15 km.

Figure 4-14 shows the depth-temperature and time-temperature plots of the

particle originally at 15 km in the two extensional models. For the pure shear

model, the syntectonic path is one of isothermal uplift followed by isobaric cooling

after extension has been completed. In the normal faulting case, however, the rock

cools primarily during the period of active displacement along the fault and for

approximately 20 my years after movement ends, and follows a nearly isothermal

path after 40 Ma. The change in temperature for the isobaric cooling path of the

rock in the normal fault model is smaller than that for the particle in the pure

shear case by only 170C, it is expected that for particles originally at greater crustal

depths, the AT along the isobaric part of the cooling path would be considerably

larger for the pure shear model. The time-temperature paths also show an

interesting effect at 100 Ma; although 75 my have passed since the end of the pure

shear episode, the temperatures at a depth of 10 km for this model have not relaxed

completely to the background steady-state temperature of 104*C.
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This comparison of the effects of thinning by pure shear versus normal

faulting provides only a preliminary basis for understanding how these two

extensional processes affect the depth-temperature-time paths of rocks, but the

qualitative differences are important. Theoretically, it may be possible to

distinguish between rocks uplifted primarily through a pure shear or normal fault

mechanisms if the overall depth-temperature-time relationship can be determined.

For rocks that begin at deeper lithospheric levels, it is expected that the difference

between the temperatures at the same time would be greater than those observed in

the time-temperature plot in Figure 4-14. In that case, dating methods might be

useful in distinguishing between the two modes of extension. Without dating

methods, it might still be possible to distinguish between pure shear and normal

faulting if it were known that the early depth-temperature path was one of

isothermal uplift as opposed to gradual cooling as the rocks approached their final

depths.
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Chapter 5

Conclusions and Suggestions for Further Study

One of the primary aims of this study was to establish a realistic framework

for understanding the metamorphic conditions associated with extensional

tectonics. On the basis of the models presented in Chapter 4, it is obvious that

extension through simple shear along discrete normal fault zones produces a wide

variety of depth-temperature-time paths. The shape of these paths depends on the

initial depth of the particle relative to the surface and to the detachment, the rate

of displacement along the fault zone, the angle of dip of the normal fault surface,

the horizontal distance between a particle and the breakaway, and the rate of

unroofing of the footwall.

This study shows that varying the dip of a fault has little effect on the depth-

temperature-time paths of particles that are initially at the same depth below the

surface and at the same depth relative to the detachment. Regardless of the angle of

dip of the fault, unroofing rocks at the same rate will produce exactly the same

depth-temperature-time relationships for rocks initially at the same depths below

the detachment and the surface. Holding the angle of dip constant while increasing

the rate of movement along the normal fault causes footwall rocks to experience a

smaller drop in temperature during the period of faulting and unroofmg. After

reaching their final depths, these rocks cool isobarically through a greater interval

than those below a hanging wall displaced at slower rates.

Thb depth of a particle below the detachment is an important factor in

distinguishing between the depth-temperature curves of rocks unroofed at different

rates. Particles near the detachment horizon yield depth-temperature paths that
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are very similar despite the variation in displacement rate. However, rocks that

begin 20 km or more below the decollement level have depth-temperature paths

that vary significantly with displacement rate, and these variations might be

important in the analysis of data from metamorphic terrains.

A preliminary comparison of the effects of uplifting a particle from 15 km to

10 km depth through pure shear extension and through thinning the lithosphere by

movement along a normal fault revealed important differences in the pressure-

temperature-time paths. Whereas the rock in the normal fault model underwent

cooling throughout the duration of tectonic activity and for approximately 20 my

following the end of movement along the fault zone, there is no syntectonic cooling

for a particle that begins and ends at this same level in the pure shear mode. For

the pure shear case, the particle is uplifted isothermally and begins cooling only

after it has reached its final depth. The change in temperature is therefore much

larger for the isobaric part of the cooling path for the particle in the pure shear

model than for the rock in the normal fault model.

The computer program developed in this study can be used to generate

forward models of the thermal structure in a variety of extensional terrains. The

flexibility of the program makes it applicable to many tectonic settings and renders

it especially useful in studying the changes in the depth-temperature-time paths of

rocks in response to varying a single problem parameter. Further work is necessary

to solve specific problems with the present version of the forward modelling

program. As discussed in Chapter 4, a modification is necessary to eliminate the

temperature discontinuities that occur in the depth-temperature and time-

temperatire paths of rocks being unroofed at very slow rates. Reducing the size of

the depth increment E may solve this problem, but it will probably be necessary to

rewrite substantial portions of the program to make possible the use of the larger
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temperature arrays required for finer grid spacing. Other changes are necessary to

simulate simultaneous pure shear thinning and displacement of the hanging wall of

the normal fault, and several extrapolation routines must be modified to permit the

tracking of depths and temperatures of particles near the surface (within the upper

7.5 km) in the hanging wall. At present, however, the program yields useful

information about the depth-temperature-time paths of rocks in the footwall of

normal faults and, for the preliminary work presented here, provides forward

models that establish a good basis for the direct comparison of metamorphic rocks

that have been uplifted by tectonic denudation.

A final goal of this study will be to predict the theoretical depth-temperature-

time paths of metamorphic rocks in extensional terrains. By assuming an initial

bulk composition for a rock at a particular structural level (particular depth below

the detachment), and modelling its theoretical depth-temperature path, the forward

models developed for this study can be extended to predict the mineralogy and

textural changes that would be expected in certain extensional settings. In the

future, work should concentrate on establishing a complete set of forward models

that test the effects of varying not only lateral displacement rate and fault dip

angle, but also the initial radioactive heat distribution, the initial geotherm, and

the number of imbricate faults used to thin the lithosphere. After this complete set

of models is developed, it will be possible to decide which of the differences in the

depth-temperature and time-temperature paths will be sufficiently large to produce

noticeable variation in a standard metamorphic assemblage. In particular, future

work should focus on analyzing the depth-temperature-time changes experienced by

rocks that begin and end at the same depths relative to the detachment and to the

surface because information about the horizontal distance between a particle and

the breakaway zone is almost never available.
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Much work is still needed in order to transfer the theoretical information

produced by this study to the domain of practical applications. Eventually, it may

be possible to use a technique like that outlined for thrust terrains by Royden and

Hodges (1984) to determine the complete pressure-temperature path of a

metamorphic rock in an extensional setting. In the final analysis, only this sort of

inverse modelling will provide a completely valid basis for comparison with the

theoretical forward models. If the pressure-temperature information from

metamorphic rocks in extensional terrains can be inverted, it should be possible to

use the forward models to determine the values between which physical parameters

can vary while still producing pressure-temperature paths similar to those inferred

from field data. Defining the possible ranges in variation of the physical

parameters may help to characterize the extensional processes primarily responsible

for the uplift of a particular metamorphic sample. The comparison of the forward

models with the reconstructed pressure-temperature paths of rocks from

metamorphic terrains should provide an understanding of the relative importance

of pure shear extension in uplifting rocks from intermediate or deep crustal depths.
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Appendix A

FORTRAN Source-Code

A.1 Formodel.f

FORTRAN source-code for the main thermal modelling program. This

program uses formatted input, and great care should be taken in entering numbers

according to the indicated format code. In the future, some of the sections in this

program will be broken out as subroutines, but, at this time, a working model has

highest priority, and the code was left in inelegant form when necessary. This

version contains several modifications necessary to run the models tested for this

study.

C PROGRAM TO DO THERMAL MODELLING USING A FINITE DIFFERENCE METHOD

C by C.D. Ruppel, 1985-86
C Copyright (C) 1986 Massachusetts Institute of Technology
C Thesis Supervisor: Prof. Leigh Royden

C This program models the thermal structure of a lithosphere
C undergoing extension either through a pure shear
C mechanism or as a result of movement along normal
C fault surfaces.

C The user of the program must input the following problem
C parameters:
C number of consecutive fault movements to be studied
C how many columns of lithosphere to examine
C thickness of lithosphere
C depth increment (x part of mesh-spacing for calculations)
C total time to run the problem
C time increment (t part of mesh-spacing for calculations)
C what sort of initial geotherm to use
C temperature at the base of the l i thosphere
C distance between lithospheric columns
C amount of movement on fault
C time period of fault movement
C depth of decollement in each column
C percent pure shear extension above and below decollement
C time during which pure shear extension occurs
C radioactive heat production

C This program uses formatted input. The format codes are given
C in parentheses after each query. Use a decimal point for
C all real input; never use a decimal in integer input.
C Failure to input numbers properly will cause the program
C to crash.
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C Be certain to calculate ahead of time thickness of the lithosphere
C after the faults have removed the upper part of the crust.
C The program can be run for a maximum of 100 my if 0.1 my increments
C are used. For 0.05 my incrementation, then, the maximum is
C 50 my. Pure shear extension may last up to 200 time
C increments.

character*10 string
character*7 name
character*1 dum(S)
integer answ,tincr,increm,pts,i,j,yorn,j,j2,sum,suml,sum

2

integer kl,pl,w,l,ia,ib,diff,nl,n2,s,a,g,p,imbric,resp,disc
integer tpts,npts,n4,c,col,cl,rcol,n6,ic,id,div,c2,cont,break
integer pnum,pulse,v,vl,count
integer 13(25),n3(25),i5(14),d(5),i2(5),h(5),c3(10),idept(5)
real base(5),baset(5),baseb(5),horiz(203,121,5),add(

203 )
real x,dx,dt,k,f,dtsec,time,m2,tinit,tend,strtch,upthin
real cond,thin,disp,ddisp,val,mend,mbegin,extra
real power, tbase, sumgam, sumbet, sumh, suma, tmax , dmax
real deltat,beta,gamma,upxten,loxten,vert,verti,vertic
real rad(5),deep(5),1thick(5),parcel(25),radio(52,5)
real dbeta(200),dgamma(200),ctime(14),ddepth(5),decoll(S)
real m(121,5),b(121,5),ml(121,5),bl(121,5),number(52,5)
real ptemp(5),pdept(5)
real radio1(52,5),radio2(52,5),slope(25,5),dept(52,5)
real depth(121,5),depth2(201,121,5),r(55,5),rl(55,5),ql(55,5)
real z(25,25),y(25,25),1at(5),angle(5),sumlat(5),q(55,5)
real tprint(25),xprint(25,55),dprint(25,55),dprint2(25,55)
real temp(1001,121,5),temp2(201,55,5),temp3(201,55,5)
real temp5(52,5),tempB(201,52,5),temp7(25,55,5)
real temp4(25,55,5),tabov(5),tat(5),ddisc(5)

C Variable list:

C imbric = number of fault structures
C col = number of lithospheric columns
C cont = number of columns whose final geotherms are to be saved
C for next fault structure
C x = thickness of lithosphere in km
C dx = size of thickness increment in km
C time = total time to run problem in my
C dt = time increment in my
C break = at what column breakaway will be in next run
C lat = array of distances between adjacent columns
C mbegin = time at which fault movement begins (my)
C mend = time at which fault movement ends (my)
C disp = amount of horizontal displacement on fault (ki)
C decoll = array of decollement depths in each column
C upxten = % pure shear extension above the decallement
C loxten = % pure shear extension below the decallement
C tinit = time at which pure shear begins (my)
C tend = time at which pure shear ends (my)
C tbase = temperature at base of lithosphere (C)
C pnum = number of thermal pulses in the lithosphere
C pdept = depths of thermal pulses
C ptemp = initial temperature at the depth of the thermal pulse

open (7,file=awordshl,form=nformatteds)
open (11,file="twodee"l,formfrmatted")

C nUser inputs how many imbricate structures are to be analyzed

write(*, 120)
120 format('How many faults are there? (input I far set data)')

read(t*,121) imbric
121 format(i2)
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C Input variables of problem to be studied

write(*,806)
806 format('Input number of lithospheric columns (up to 5) (int)')

read(*,807)col
807 format(12)

if (imbric.eq.1) go to 2

write(*,895)
895 format('How many columns from this problem are needed in the next

+problem?')
read(*,896)cont

896 format(il)

breakzcol-cont+1

2 do 1,1=1,imbric

write (*,10)
10 format ('Enter thickness of lithosphere, depth increment 2(f5.2)')

read (*,20)x,dx
20 format (f5.1,f5.2)

write (*,330)
330 format ('Enter time increment (my) and total time (f4.2,f5.1)')

read (*,40)dt,time
40 format (f4.2,f5.1)

if (l.eq.1) go to 883
write(*,897)cont,(lat(n2),n2=break,break+cont-2)

897 format('Distance between first ',i1,' columns is assumed ',3f7.2,
+'respectively.')

do 885,n2=1,cont-1
lat(n2)=1at(break+n2-1)

885 continue

write(*,898)col-cont
898 format('Input the last ',l1,', intercolumnar distances (f5.2)')

read(*,882)(lat(n2),n2=break+cont-2,col-1)
882 format(4(f5.2))

go to 990

883 write(*,662)col-1
662 format('Dtstance between adjacent columns:',13,' values (fB.2)')

read(*,663)(1at(n2),n2=1,col-1)
663 format(4(f6.2))

990 write(*,864)
664 format('Fault moves between what times? (f4.1)')

read(*,665)mbegin,mend
665 format(f4.1,f4.1)

write(*,886)
666 format('Final amount of horizontal displacement on fault (f6.2)')

read(*,667)disp
667 format(f6.2)

write(*,801)col
801 format('Input depth to decollement in col. 1 through',12'; note:co

+1umn one must be at breakaway (depth to decollement=0.0 km) f5.2')
read(*,802)(decoll(n),n=1,col)

802 format(5f5.1)
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894 write(*,803)
803 format('Input % extension

read(*,804)upxten
804 format(f4.2)

write(*,800)
800 format('Input % extension

read(*,805)loxten
805 format(f4.2)

write(*,810)
810 format('Extension begins?

read(*,815)tinit,tend
815 format(f4.1,f4.1)

(as decimal) above decollement (f4.2)')

(as decimal) below decollement (f4.2)')

Extension ends? (my) 2(f4.1)')

C Input parameters for initial geotherms
if (l.ne.1) go to 134

write(*,132)
132 format('Temperature at base of lithosphere in degrees C?')

read(*,133)tbase
133 format(f7.2)

write(*,130)
130 format('Initial temperature structure is 1)1lnear 2)discontinuous

+3)an exponential funtion of depth')
read(*,131)resp

131 format(il)

if (resp.eq.3) go to 134
if (resp.eq.2) go to 135

write(*,260)
260 format('Do you want to include a thermal pulse? 1yes')

read(*,261)pulse
261 format(il)

if (pulse.ne.1) go to 134
write(*,262)

262 format('At how many depths do
read(*,263)pnum

263 format(il)
write(*,264)

264 format('Input depth 1, space,
do 267,i=1,pnum
read(*,265)pdept(i ),ptemp(i)

265 format(f6.1,f6.1)
267 continue

go to 134

thermal pulses occur?')

temp. at this depth <CR> 2(f6.1):')

135 write(*,138)
138 format('How many discontinuities are there?')

read(*,139)disc
139 format(il)

write(*,170)
170 format('Do the discontinuities occur at the same depth in each

+column? yes=1')
read(*,171)answ

171 format(ii)

write(*,140)
140 format('Input depth of discontinuity, temp. at discontinuity,

+and temp. below discontinuity. New line each entry. 3(f6.1)')
read(*,141)(ddisc(i),tabov(i),tat(i),i=1,disc)

141 format(3(f6.1))
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C Calculation of basic problem parameters
134 tincr=int(time/dt)

increm=int(x/dx)
dtsec=dt*3.15527
k=0.008
cond=0.0075
ic.int(mbegin/dt)+1
id=int(mend/dt)+1
ddisp=disp/(id-ic)
ddisc(disc+1)=x

do 268,i=1,pnum
idept(i)=int(pdept(i)/dx)+1

268 continue
sumlat(1)=0.0
do 607,c=2,col
sumlat(c)=sumlat(c-1)+1at(c-1)

607 continue

do 809, c=1,col
d(c)=int(decoll(c)/dx)+1

809 continue

do 8,i=1,5
dum(i)=''

8 continue

C Calculate initial thermal gradient
if (l.gt.1) go to 146

if (resp.ne.3) go to 1901

open(3,file='exp',form='formatted',statusz'old')
read(3,1850,end=1849)(depth(j,1),temp(1,j,1),J=l,increm+1)

1850 format(2f7.2)
1849 k=0.008

close(3)

do 1904,c=1,col
do 1903,j=1,120
if (j.le. increm+1) temp(1,j,c)=tenp(I,j,1)
if (j.gt.increm+1) temp(1,j,c)=tbase
if (j.le.increm+1) depth(j,c)=depth(j,1)
if (j.gt.increm+1) depth(j,c)=(J-1)*dx

1903 continue
1904 continue

go to 71

1901 do 49, c=1,col
do 50, j=1,120

m2=real(j-1)
depth(j,c)=m2*dx
if (resp.eq.1) go to 51

C ...for discontinuous geotherm
do 150,i=1,disc

if (depth(j,c).1e.ddisc(1)) f=tabov(1)*(dx/ddisc(1))*m2
if (depth(j,c).gt.ddisc(disc)) go to 149
if (depth(j,c).gt.ddisc(i) .and. depth(j,c).le.ddisc(i+1))

+f=(tat(i)-tabov(i+1))/(ddisc(i)-ddisc(i+1)+dx)*(depth(j,c)-
+ddisc(i)-dx)+tat(i)

go to 148
149 f=(tbase-tat(disc))/(x-ddisc(disc)-dx)

+*(depth(j,c)-ddisc(disc)-dx)+tat(i)
148 k=0.008
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150 contirue
go to 53

C ...for linear geotherm
51 f=(m2*tbase*dx)/x

go to 53

C ... for exponent i al geotherm
52 fmtbase*((1-exp(-m2*dx/(k*100.)))/(1-exp(-x/(k*100.))))
53 temp(1,j,c)=f

C ... temp. at base of lithosphere must be tbase
if (depth(j,c).gt.x) temp(1,j,c)=tbase
if (pulse.ne.1) go to 215

C ... temperature with pulse added
do 216,il=1,pnum
if (J.eq.idept(i)) temp(1,j,c)=ptemp(i)

216 continue
215 k=0.008
50 continue

do 62, i=2,tincr+1
temp(i,I,c)=temp(1,1,c)
temp( i, increm+1,c)=temp(1, increm+1,c)

62 continue
49 continue

go to 71

C Geotherm initialization routine when analyzing several faults
146 open(9,file='nxt.st',form='formatted',status='old')

do 480,j=1,increm+1
read(9,143,end=294)(temp(1,j,c),c=1,cont)

143 format(4(f7.2))
480 continue

294 do 145,c=1,cont
do 293,j=increm+2,120
temp(1,j,c)=tbase

293 continue
145 continue

close(9)

do 880,c=cont+1,col
do 881,j=1,120
temp(1,j,c)=temp(I,j,cont)

881 continue
880 continue

71 write(*,70)
70 format ('Include radioactive heating? 1.pt.source, 2=linear gradie

+nts, 3=no')
read (*,65)yorn

65 format(ii)
if (yorn.eq.1) goto 199
if (yorn.eq.3) goto 818

C Radioactive heating routines
C linear extrapolation between several point sources

write(*,72)
72 format('Enter no. of pts at which you will specify radio heating')

read(*,74)pts
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74 format(i3)
write(*,76)

76 format('Input radioactive term in units of cal/cc-sec, space, then
+the depth for which this figure applies. The first value must be
+for 0 km (surface) depth, followed by your number of points, then the
+value for the base of the lithosphere. for columns:')
write(2,73)

73 format(/'Radioactivity values:')
do 78, i=1,pts+2

read(*,79)radio(i,1),dept(i,1)
79 format(f4.1,f5.1)

write(7,75)radio(i,1),dept(i,1)
75 format(5x,f5.2,' cal/sec cm**3 at ',f5.1,' kmi')

number(I,1)=dept(i,I)/dx+1.0
78 continue

do 1650,c=1,col
do 1649, i=1,pts+2
radio(i,c)=radio(i,1)
dept(i,c)=dept(i,1)
number(ic)=number(i,1)

1649 continue
1650 continue

do 85, i=l,pts+1
slope(i,1)=(radio(i+1,1)-radio(i,1))/(dept(i+1,1)-

+dept(i,1))
b(i,1)=radio(i,1)-slope(i,1)*dept(i,1)

85 continue
do 86, i=1,pts+1
ji=int(number(i,1))
j2=int(number(i+1,1))

do 95, w=jl,j2-1
radio(w,1)=slope(i,1)*depth(w,1)+b(i,1)
radiol(w,1)=radio(w,1)*dtsec*k/cond

95 continue
86 continue

temp(1,1,1)=0.0
do 417,c=1,col
do 100, j=1,increm+1
radia1(j,c)=radio1(j,1)
temp(l,j,c)=temp(1,j,c)+radiol(j,c)

100 continue
write(*,435)(radiol(w,c),w=1,increm+1)

435 format(10(f7.4))
417 continue

go to 818

C Radioactive with point sources, no linear gradients between
c rad = heat production due to point source
c deep = depth of point source
c ptsrc = temperature chg. due to point source

199 write(*,395)
395 format('How many columns have a point source for radioactivity')

read(*,415)rcol
415 format(i2)

do 416,c=1,rcol
write(*,200)c

200. format('Input radioactivity & depth of point source for column'
+,i2)
read(*,210)rad(c),deep

210 format(f4.2,f5.2)
write(7,220)deep,rad(c)

220 format('Heating due to pt. source at',f5.2,'km is',f4.2,'
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+cal/cc-sec')
i2(c)=int((deep(c)/dx)+1.0)
radiol(12(c),c)crad(c)*dtsec*k/cond
temp(1,12(c),c)=temp(1,12(c),c)+radiol(12(c),c)

do 495,J=1,increm+1
if (J.ne.12(c)) radiol(j,c)=0.0

495 continue
416 continue

C - Pure shear extension of lithosphere
c calculate amount of time to extend lithosphere and
c amount to extend by in each increment of that time in
c order to get a net extension of "xtend" % over the entire
c time interval.

C beta = lower crust extensional parameter
C gamma = upper crust extensional parameter
c deltat = (delta-t) time of extension = tend-tinit
c tinit = input initial time of extension
c tend = input ending time of extension
c ia,ib = indices to indicate which array element to read
c depth2 = storage array for depths to horizons after extension
c diff = time period of extension
c sum = indexing variable

818 beta=1.0+loxten
gamma=1.0+upxten
deltatatend-tinit
ia=int(tinit/dt)+1
ib=int(tend/dt)+1
diff=ib-ia
add(1)=0.0
do 919,c=1,col
1thick(c)=x-decol1(c)
if (c.eq.1) go to 723
do 722,j=1,120
horiz(1,j,c)=sumlat(c)

722 continue

723 d(c)=int(decoll(c)/dx)+1
do 819, sum=O,diff
dbeta(sum+1)=dt*loxten/(deltat+(sum*dt*loxten))+1.0
dgamma(sum+1)=dt*upxten/(deltat+(sum*dt*upxten))+1.0
add(sum+2)=add(sum+1)+(sumlat(2)*(1.0-1.0/dbeta(sum+1)))
if (d(c).eq.1) go to 884

do 820,j=l,d(c)
if (sum.gt.0) go to 816
depth2(1,j,c)=depth(j,c)/dgamma(sum+1)
go to 817

816 depth2(1+sum,j,c)=depth2(sum,j,c)/dgamma(sum+1)
817 horiz(sum+2,j,c)=horiz(sum+1,j,c)*dgamma(sum+1)

820 continue

884 1thick(c)=lthick(c)/dbeta(sum+1)
if (d(c).eq.1) depth2(1+sum,d(c),c)=0.O
depth2(1+sum, increm+1,c)=lthick(c)+depth2(1+sum,d(c),c)
ddepth(c)=1thick(c)/( increm+1-d(c))
sum1=O
do 821,j=d(c),120
depth2(1+sum,j,c)=depth2(1+sum,d(c),c)+suml*ddepth(c)
horiz(sum+2,j,c)=horiz(sum+1,j,c)*dbeta(sum+1)
sumi=sum1+1

821 continue
819 continue
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919 continue

c..... iteration/calculation of thermal structure
c use carslaw and Jaeger finite difference equation to
c determine temperature structure. extend the l ithospheric
c plate, extrapolate between temperature elements to find
c the new temperatures at the original depth levels. repeat
c the loop until extension has finished. then continue iterating
c to adjust the geotherm to equilibrium value after several
c hundred million years.

c temp2 = storage array for newly calc. temp.
c temp3 = temperature array for printout temperatures
c m = slope storage array for extrapolating t
c bI = intercept storage array for extrapolating t
c nl,n2,n4 = indexing variables
c sum,suml = do loop lap counters

81 do 957, c=1,col
sum=O
vert1=0.0
sum2=1
do 80, i=1,tincr+1,1

c do not execute the following statements if extension has been
c completed (i.e. the extensional time parameters do not meet the
c prescribed conditions.)

if ((i+1).lt.ia .or. (i+1).gt.ib) go to 788

c extrapolate between temperatures calculated above: find
c lines between two adjacent temperature points and solve for
c the temperature at the printout depths.

do 910,nl=2,120
do 905,n=1,increm+1
if (depth2(1+sum,nl,c).1e.depth(n+1,c) .and.

+depth2(1+sum,nl,c).ge.depth(n,c)) n4=n
905 continue
901 if (nl.le.d(c)) thin=dgamma(sum+1)*depth(n4,c)

if (nl.gt.d(c)) thin=dbeta(sum+1)*depth(n4,c)+
+(dgamma(sum+1)-dbeta(sum+1))*depth2(1+sum,d(c),c)

n6=int(thin/dx+1.0)
m(n4,c)=(temp(i,nS+1,c)-temp(i,n8,c))/dx
b(n4,c)=temp(i,nB,c)-m(n4,c)*depth(n6,c)
temp2(1+sum,n4,c)=m(n4,c)*thin+b(n4,c)

904 if (nl.ne.d(c)) go to 902
temp2(1+sum,n4,c)=m(n4-1,c)*thin+b(n4-1,c)

902 k=0.008
910 continue

if (c.eq.1) go to 94

do 532,nl=1,increm+1
if (c.ne.2) go to 542
strtch=horiz(sum+2,nl,2)-add(sum+2)
go to 543

542 strtch=horiz(sum+2,n1,c)-horiz(sum+2,n1,c-1)
543 m(n1,c)=(temp2(1+sum,nl,c)-temp2(1+sum,nl,c-1))/strtch

b(nl,c)=temp2(1+sum,n,c)-m(n1,c)*horiz(sum+
2,n1,c)

if (nl.le.d(c)) go to 537
tempB(1+sum,nl,c)=m(nl,c)*sumlat(c)/dbeta(sum+1)+b(nl,c)
go to 531

537 temp6(1+sum,n1,c)=m(n1,c)*sumlat(c)/dgamma(sum+1)+b(nl,c)
531 k=0.008
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532 continue

c incrementation routine within the times of extension

94 do 90, j=2,119
if (j.gt.increm) go to 743
if (c.eq.1) go to 713
temp( i+1,j ,c)=(k*dtsec*1000.0/(dx**2))*(temp6(1+sum,j+1 ,c)+

+temp6(1+sum,j-1,c))-((2.0*k*dtsec*1000.0)/(dx**2)-1.0)*
+(temp6 (1+sum,j ,c))

go to 714
713 temp(i+1,j,c)=(k*dtsec*1000.0/(dx**2))*(temp2(1+sum,j+1,c)+

+temp2(1+sum,j-1,c))-((2.0*k*dtsec*1000.0)/(dx**2)-1.0)*
+(temp2(1+sum,j,c))

714 temp(i+1,j,c)=temp(i+1,j,c)+radiol(j,c)
if (12(c).eq.j) temp(i+1,12(c),c)=temp(i+1,12(c),c)+radiol(j,c)
go to 967

743 temp(i+1,j,c)=tbase
967 k=0.008
90 continue

c test if overlap of extension and fault movement
if ((i+1).1t.ic) go to 744

do 677,n1=2,d(c)+1
if (temp(i,ni,c).eq.O.0) temp(i+1,nl,c)=0.0

677 continue

c calculation of temperature at decollement
744 do 222,n1=2,increm+1

do 223,n=1,increm
if (depth2(1+sum,ni,c).1e.depth(n+1,c) .and.

+depth2(1+sum,nl,c).ge.depth(n,c)) n4=n
223 continue

if (nl.ne.d(c)) go to 629
if (ni.eq.d(c)) base(c)=(temp(i+1,n4,c)-temp(i+1,n4-1,c))/dx
baseb(c)=temp(i+1,n4,c)-m(nl,c)*depth(n4,c)
baset(c)=base(c)*depth2(1+sum,d(c),c)+baseb(c)

629 k=0.008
222 continue

if (c.eq.1) go to 609
if ((i+1).gt.id) go to 609

c branch to another extrapolation loop
go to 787

c incrementation routine when no extension
788 do 91,j=2,119

if ((i+1).1t.ib) go to 99
538 temp(i,j,c)=(k*dtsec*1000.0/(dx**2))*(temp(-I,j+1,c)+

+temp(i-1,j-1,c))-((2.0*k*dtsec*1000.0)/(dx**2)-1.0)*
+(temp(i - 1, j,c))

if (j.ge.(increm+1)) tenp(i,j,c)=tbase

go to 97

99 temp(i+1,j,c)=(k*dtsec*1000.0/(dx**2))*(tem(i,j+l,c)+
+temp(i,j-1,c))-((2.0*k*dtsec*1000.0)/(dx**2)-1.0)*
+(temp(ij,c))

if (j.gt.d(c) .and. j.lt.increm+1) temp(i+1,j,c)=
+temp(i+1,j,c)+radio1(j,c)
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do 525,v=1,pnum
extra=temp(i,J,c)-temp(i+1,j,c)
if (j.eq.idept(v)) temp(i+1,J,c)=temp(i+1,j,c)+extra*

+exp(-(i-1)*dt/time)
525 continue

C Assign temperature at base of lithosphere equal to constant
if (j.ge.(increm+1)) temp(i+1,j,c)=tbase

97 k=0.008
91 continue

if (c.eq.1 .and. (i+1).1t.ic) go to 789
if((i+1).1t.ic) go to 789

do 676,j=2,d(c)+1
if ((i+1).1t.ib .and. (temp(i,j,c)).eq.0.0) temp(i+1,j,c)=0.0
if ((i+1).ge.ib .and. (temp(i-1,j,c)).eq.0.0) temp(i,j,c)=0.0

676 continue

if ((i+1).ge.id .and. (i+1).1t.ia) go to 789
if (c.eq.1) go to 789

787 if ((i+1).1t.ia) h(c)=d(c)
if ((i+1).ge.ia .and. (i+1).1t.ib) h(c)=int(depth2(sum+1,d(c),c)

+/dx+1.0)
if ((i+1).ge.ib) h(c)=int(depth2(ib-ia,d(c),c)/dx+1.0)

do 670,n2=1,h(c)
go to 1720
r(n2,c)=(radiol(n2,c)-radiol(n2,c-1))/1at(c-1)
q(n2,c)=radiol(n2,c)-r(n2,c)*1at(c-1)
radio2(n2,c)=r(n2,c)*(1at(c-1)-ddisp)+q(n2,c)

1720 m(n2,c)=(temp(i+1,n2,c)-temp(i+1,n2,c-1))/(1at(c-1)+ddisp)
temp5(n2,c)=temp(i+1,n2,c-1)+m(n2,c)*1at(c-1)

670 continue

if ((i+1).1t.ia) angle(c)=atan(decoll(c)/sumlat(c))
if ((i+1).ge.ia .and. (i+1).le.ib) angle(c)=

+atan(depth2(sum+1,d(c),c)/sumlat(c))
if ((i+1).gt.ib) angle(c)=atan(depth2(lb-ia,d(c),c)/sumlat(c))
vert=ddisp*deco11(c)/sumlat(c)
vertl=vertl+vert
div=int((vert1+0.025)/dx)+1

if ((i+1).1e.ia .and. vert1.ge.(decoll(c)))
+ div=d(c)

if ((i+1).gt.ib .and. vertl.gt.(depth2(ib-ia,d(c),c)+0.0001))
+ go to 609

if ((i+1).1t.ia .or. (i+1).gt.ib) go to 611
if (vert1.gt.depth2(sum+1,d(c),c)) go to 609

611 do 692,n6=1,div
temp(i +1,n6,c)=0.0
radiol(n6,c)=0.0

692 continue
valcdecol1(c)
if (div.eq.d(c)) go to 609

do 693,n6=div+1,h(c)
go to 1710
r1(nS,c)=(radio2(nS,c)-radio2(n6-1,c))/dx
q1(n6,c)=radio2(nB,c)-r1(n6,c)*(val+(n6-h(c))*dx)
radiol(n6,c)=r1(n6,c)*(val-vert+(n6-h(c))*dx)+ql(n6,c)

1710 if (n6.eq.(div+1)) temp(i+1,n6,c)=temp5(n,c)-(temp5(n6,c)/
+dx)*vert
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if (n6.eq.(div+1)) go to 1777
ml(n6,c)=(tenp5(n6,c)-tenp5(n-1,c))/dx

1999 if (yorn.ne.3 .and. x.eq.125.) go to 1700
if (yorn.ne.3 .and. x.eq.120.) go to 1701
temp(i+1,n6,c)=temp5(n6,c)-m1(n6,c)*vert
go to 1777

temp(i+1,n6,c)=m1(n6,c)*(val-vert+(n-h(c))*dx)+b1(nS,c)+
+radiol(n6,c)

1700 if (n6.gt.1 .and. n6.1e.9) temp(i+1,n6,c)=temp5(n6,c)-
+ml(n6,c)*vert+radiol(1,2)

go to 1777
1701 if (n8.gt.1 .and. n8.le.7) temp(i+1,n6,c)=temp5(n,c)-

+ml(n6,c)*vert+radiol(1,2)
1777 k=0.008
693 continue

sum2=sum2+1

609 if ((i+1).1t.ia .or. (i+1).ge.ib) go to 789
sum=sum+1
sum1=suml+1

789 k=O.008

80 continue
write(*,499)verti,(radiol(j,c),j=1,increm+l)

499 format(9f8.5)
957 continue

if (imbric.eq.1) go to 991
c routine to print out data for individual columns

open(9,file='nxt.st',form='formatted')
kl=int((deco11(2)/lat(1)*disp+0.01)/dx)
do 475,j=kl1+,increm+1
write(9,292)(temp(tincr+1,j,c),Cibreak,Col)

292 format(4(f7.2))
475 continue

close(9)

991 write(*,61)
61 format('Do you want to print out geotherms for columns? Izyes')

read(*,67)p
67 format(12)

if (p.ne.1) go to 509
write(*,380)

380 format('linput times for which you want thermal data for each colum
+n (14 times required) --- (7f6.2 on two lines)')
read(*,381)(ctime(n),n=1,14)

381 format(7f6.2)

do 391,a=l,14
15(a)=int((ctime(a)+0.05)/dt)+1.0

391 continue

do 398, c=1,col
write(11,384)c

384 format(//8x,'columnl',13,':depth(km) vs time(my) profile of temper

+ature (c)')
write(11,425)decoll(c)

425 format(12x,'decollement at ',f5.2,' kmi')
write(11,385)(ctime(n),n=1,7)

385 format(//2x,'time(my)',7(10(1x,f6.1,
2x)))

do 386, j=1,increm+1

-- ----- -----
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write(11,387)depth(j,c)
387 format(f6.2,'km')

write(11,388)(temp(15(s),j.,c),s=1,7)
388 format(9x(7(2x,f7.2)))
386 continue

write(11,612)(ctime(n),n=8,14)
612 format(////2x,'time(my)',7(10(lx,f6.1,2x)))

do 613,j=1,increm+1
write(11,623)depth(j,c)

623 format(f6.2,'km')
write(11,614)(temp(15(s),j,c),s=8,14)

614 format(9x(7(2x,f7.2)))
613 continue

398 continue

c routine to print out extensional parameters, radioactivity etc.
509 write(7,510)x,dt,dx,time,100.0*upxten,gamma,100.0*loxten,beta,

+tinit,tend,disp,mbegin,mend
510 format(//'Lithospheric thickness: ',f6.2/,'Grid spacing: ',f3.1,

+'my by ',f4.1,'km'/,'Total iteration time: ',f6.2,'my'/,'% Extens
+ion above decollement: ',f5.1,' (gamma: ',f5.2,')'/,'% Extension
+ below decollement: ',f5.1,' (beta: ',f5.2,')'/,'Extension betwe
+en: ',f4.1,' my and ',f4.1,' my'/,'Total movement on fault (measu
+red along horizontal): ',f5.1,'km'/,'Movement along fault occurs b
+etween: ',f4.1,' my and ',f4.1,' my'//)

write(7,281)(dum(s),s=1,col)
281 format(5(5x,a,'_ '))

do 276, i=1,15
if (i.eq.5) go to 274
write(7,275)(dum(s),s=1,col)

275 format(5(5x,a,'|',6x,''))
go to 271

274 write(7,277)(decoll(s),s=1,Col)
277 format(5(6x,'j',f6. 1,''))
271 k=0.008
276 continue

write(7,278)(dum(s),s=1,col-1)
278 format(7x,4(a,'-------------->1))

write(7,279)(sumlat(s),s=1,col)
279 format(6x,f5.1,4(10x,f5.1))

write(*,1790)
1790 format('Create an intermediate geotherm plotting file? 1=yes')

read(*,1795)answ
1795 format(il)

if (answ.ne.1) go to 1100

write(*,1800)
1800 format('How many geotherms do you want to plot on one graph?')

read(*,1810)pl
1810 format(12)

write(*,1820)
1820 format('Input column number of the geotherms and times')

read(*,1830)(c3(i),ctime(i),i=1,pl)
1830 format(10(i2,f5.2))

do 1840,i=1,pl
15(i)=int(ctime(i)/dt)+1

1840 continue

write(*,1805)
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1805 format('What do you want to call the intermediate temp. file?')
read(*,1807)name

1807 format(a7)
open (4,file=name,form='formatted')

do 8410,j=1,increm+1
write(4,8400)depth(j,1),(temp(i5(i),J,c3(i)),i1,pl)

8400 format(11f7.2)
8410 continue

close(4)

1100 count=1
c routine to print out temperature, depth, and time path of specif
c rock parcel
551 write(*,319)
319 format('print out specific t-t-depth information for a rock parc

+ 1=yes, 2=no')
read(*,331)yorn

331 format(il)
if (yorn.eq.2) go to 790

409 write(*,332)
332 format('input no. of "parcels" for which you want information:')

read(*,333)npts
333 format(12)

write(*,397)
397 format('input column number of the rock "parcels"')

read(*,371)cl
371 format(12)

write(*,334)
334 format('input original depths of "parcels" (f5.1)')

read(*,335)(parcel1),i=1,npts)
335 format(20(f5.1))

if (count.eq.1) go to 403
write(*,399)

399 format('Use the same time printout increms. as last time? 1=yes'
read(*,401)vl

401 format(il)
if (vl.eq.1) go to 402

403 write(*,336)
336 format('input no. of time increments for which you want values')

read(*,337)tpts
337 format(12)

write(*,338)
338 format('input the times: 13(f5.1)')

read(*,339)(tprint(i),i=1,tpts)
339 format(13(f5.1))
402 do 340,i=1,npts

n3(I)=int(parcel(i)/dx)+1
340 continue

if (vl.eq.1) go to 404
do 341,i=1,tpts
13(i)=int((tprint(i)+0.05)/dt)+1

341 continue
countmcount+1

ic

el?

404 sum= 1
do 352,i=1,tpts

n=i3(i)
if (n.1t.ia .or. n.ge.ib) go to 356
g=(n-ia+1)

C Calculate depths and temperatures for times within pure shear
C extensional period

C (There are ways to consolidate the following string of
C "if" statements. These will be modified in later

)
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C versions of this program.)

C Horizontal linear extrapolation of temperatures
do 702,nl=1,increm+1
if (cl.eq.1) go to 717
if (n.ge.ic .and. n.1t.id) go to 421
if (n1.gt.d(cl)) sumh=horiz(g+1,n1,c1)
if (n.ge.id) sumh=sumlat(cl)+disp
if (n.1t.ic) sumh=horiz(g+1,nl,cl)
if (n.ge.id .and. nl.gt.d(cl)) sumh=horiz(g+1,n1,cI)
go to 711

421 if (nl.le.d(cl)) sumh=sumlat(c1)+ddisp*(ia-ic)
if (nl.gt.d(cl)) sumh=sumlat(cl)

423 do 422,j=1,g
if (nl.le.d(cl)) sumh=sumh*dgamma(j)
if (n1.gt.d(c1)) sumh=sumh*dbeta(j)

422 continue
if (nl.le.d(cl) .and. n.1t.id) sumh=sumh+ddisp*(n-ia+1)

go to 711
717 if (n.ge.ic .and. n.lt.id) sumh=add(g+1)+ddisp

if (n.ge.id) sumh=add(g+1)+disp
if (n.lt.ic) sumh=add(g+1)
if (nl.gt.d(cl)) sumh=add(g+1)

711 do 772,c2=1,col
if (sumh.ge.sumlat(c2) .and. sumh.le.sumlat(c2+1)) a=c2
if (sumh.ge.sumlat(col)) a=col-1

772 continue

if (a.eq.1) m(n1,a)=(temp(n,n1,2)-temp(n,nl,1))/1at(1)
if (a.eq.1) go to 703

718 m(n1,a)=(temp(n,ni,a+1)-tmp(n,nl1,a))/1at(a)
703 b(ni,a)=temp(n,ni,a)

temp3(sum,n1,a)=m(n1,a)*(sumh-sumlat(a))+b(nl,a)
xprint(i,nl)=sumh
if (nl.lt.d(a)) go to 755
if (xprint(i,n1).ne.xprint(i,d(c1))) temp4(sum,ni,c1)=

+m(n1,a)*(xprint(i,d(cl))-sumlat(a))+b(nl,a)
755 k=0.008
702 continue

C Vertical linear extrapolation of temperatures
do 933,n1=2,inerem+1
if (n.lt.ic) sumgamadecoll(c1)/sumat(c1)*xprint(i,nl)
if (n.ge.ic .and. n.1t.id) sumgamadecoll(cl)/sumlat(c1)*

+ddisp*(n-ic+1)
if (n.ge.id) sumgam=decoll(cl)/sumlat(cl)*disp
sumbet=depth(n1,cl)-deco11(c1)/sumlat(cl)*xprint(i,nl)
upthin=deco11(c1)/sumlat(cl)*xprint(i,n1)-sumgam

do 280,j=1,g
sumbet=sumbet/dbeta( j)
upthin=upthi n/dgamma( j)

280 continue

do 937,n2=2,increm+1
if (n.ge.ic) go to 730
go to 731

730 if (nl.gt.d(cl)) dprint(i,n1)=depth2(g,n1,c1)
if (nl.le.d(cl)) dprint(i,nl)=depth2(g,nl,cl)
if (nl.gt.d(cl)) dprint2(i,nl)=depth2(g,nl,cl)-(decoll(cl)

+-upthin)
if (n1.le.d(cl)) dprint2(i,nl)=depth2(g,ni,c)+sumgam
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731 if (dprint2(i,n1).lt.depth(n2,1) .and.
+dprint2(i,nl).ge.depth(n2-1,1)) n4=n2

937 continue
936 m(nl,cl)=(temp3(sum,n4,c1)-temp3(sum,n4-1,c1))/dx

b1(n1,cl)=temp3(sum,n4,c1)-m(nl,cl)*depth(n4,c1)
temp7(sum,n1,c1)=m(ni,cl)*(dprint2(i,nl))+b1(n1,cl)
if (dprint2(i,n1).ge.decoll(a) and. nl.le.d(a)) go to 21
go to 32

31 if (n4.eq.(d(c1)+1)) go to 29
m(n1,c1)=(temp4(sum,n4,cl)-temp4(sum,n4-1,c1))/dx
go to 27

29 m(ni,cl)=(temp4(sum,n4,c1)-temp3(sum,n4-1,c1))/dx
27 b1(n1,c1)=temp4(sum,n4,c1)-m(n1,c1)*depth(n4,1)

temp7(sum,ni,c1)=dprint2(i,n1)*m(n1,c1)+bl(nI,c1)
32 k=0.008

933 continue
go to 682

C Calculate depths and temperatures for times not within period of

C pure shear extension

C Lateral linear extrapolation of temperatures
356 do 502,nl=1,increm+1

if (n.ge.ic .and. n.lt.id) go to 521
if (n.ge.id) go to 3020
if (n.lt.ic) sumh=sumlat(c1)
suma=sumh
go to 511

3020 if (n.ge.id) sumhzsumlat(cl)+disp
sumamsumlat(c1)+disp
if (n.ge.id .and. nl.gt.d(cl)) sumhmsumlat(cl)
go to 511

521 if (nl.le.d(cl)) sumh=sumlat(cl)+ddisp*(n-ic+1)
sumamsumlat(cl)+ddisp*(n-ic+1)
if (nl.gt.d(cl)) sumh=sumlat(c1)

511 if (nl.le.d(cl) .and. cl.ne.1) go to 582
if (n.ge.ib .and. nl.gt.d(cl)) sumh=beta*sumh
if (n.ge.ib .and. cl.eq.1) sumh=add(ib-ia+1)+sumh
go to 581

582 if (n.ge.ib) sumh=gamma*sumh
if (n.ge.ib and. ib.le.id) sumh=gamma*(sumlat(c1)+ddisp

+*(ia-ic))+ddisp*(n-ia+1)

581 do 514,c2=1,col
if (suma.ge.sumlat(c2) .and. suma.le.sumlat(c2+1)) azc2
if (suma.ge.sumlat(col)) a=col-1

514 continue

if (a.eq.1) m(n1,a)=(temp(n,n1,2)-temp(n,nl,1))/1at(1)
if (a.eq.1) go to 503

513 m(n1,a)=(temp(n,nl,a+1)-temp(n,nl,3))/1at(a)
503 b(nl,a)=temp(n,nl,a)

temp3(sum,n1,cl)=m(nl,a)*(suma-sumlat(a))+b(nl,a)
xprint(i,nI)=sumh
if (n1.1t.d(a)) go to 555
if (xprint(i,nl).ne.xprint(i,d(c1))) temp4(sum,nl,cl)z

+m(nl,a)*(xprint(i,d(cl))-sumlat(a))+b(ni,a)
555 k=0.008
502 continue

do 644,nl=2,increm+1
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do 14, c2=1,col
if (suma.ge.sumlat(c2) .and. suma.le.sumlat(c2+1)) a=c2
if (suma.ge.sumlat(col)) amcol

14 continue

C Vertical linear extrapolation of temperatures

C If pure shear extension has not been completed, execute this
C sequence then exit to end of DO loop

do 641,n2=2,increm+1
if (cl.eq.1) vert=O.0
if (cl.eq.1) go to 833
if (n.ge.ic) go to 830
go to 833

830 if (n.1t.id) vert=(decoll(cl)/sumlat(cl))*ddisp*(n-ic+1)
if (n.ge.id) vert=(decoll(cl)/sumlat(cl))*disp
if (vert.gt.decoll(cl) .and. n1.gt.d(cl)) vert=decoll(cl)
if (vert.gt.decoll(cl) .and. n1.le.d(cl)) vertavert
if (n.1t.ic) vert=0.0

833 if (n.ge.ib) go to 832
vertic=vert
if (n.1t.ic) vert=0.0
if (n1.gt.d(c1)) dprint(i,n1)=depth(ni,c1)-vert
if (nl.le.d(cl)) dprint(i,n1)=depth(n1,c1)
if (nl.gt.d(cl)) dprint2(i,n1)=depth(n1,c1)
if (n1.le.d(cl)) dprint2(i,nl)=depth(nl,cl)+vert

836 if (dprint2(i,ni).lt.depth(n2,1) .and.
+dprint2(i,nl).ge.depth(n2-1,1)) n4=n2

go to 831

C If pure shear extension has been completed, execute this sequence
C to calculate new depths
832 if (n.lt.ic) sumgam=0.0

if (n.ge.ic .and. n.lt.id) sumgam=decoll(c1)/sumlat(c1)*
+ddisp*(n-ic+1)

if (n.ge.id) sumgam=decoll(cl)/sumlat(cl)*disp
sumbet=depth(n1,cl)-deco11(c1)/sumlat(cl)*xprint(i,n1)
upthin=deco11(c1)/sumlat(cl)*xprint(i,nl)-sumgam
if (upthin.1t.O.0) upthin=0.0

if (ni.gt.d(cl)) dprint(i,nl)zdepth2(ib-ia,n1,cl)
if (nl.le.d(cl)) dprint(i,nl)=depth2(ib-ia,n1,cl)
if (nl.gt.d(cl)) dprint2(i,nl)=depth2(ib-ia,nl,cl)
if (nl.le.d(cl)) dprint2(i,n1)=depth2(ib-ia,nl,cl)
if (dprint2(i,n1).lt.depth(n2,a) .and.

+dprint2(i,nl).ge.depth(n2-1,a)) n4=n2

831 k=0.008
641 continue

if (n1.le.d(cl)) go to 19
if (n.ge.ib) go to 19
temp7(sum,n1,c1)=temp(n,n1,c1)
go to 834

19 m(nl,cl)=(temp3(sum,n4,cl)-temp3(sum,n4-1,cl))/dx
bl(nl,cl)=temp3(sum,n4,cl)-m(nl,cl)*depth(n4,1)
temp7(sum,n1,c1)=m(n1,c1)*dprint2(i,n1)+b1(n1,c1)
go to 834
if (dprint2(i,n1).ge.decoll(a) .and. nl.le.d(a)) go to 21
go to 834
if (n4.eq.(d(cl)+1)) go to 21
go to 834
m(nl,cl)=(temp4(sum,n4,cl)-temp4(sum,n4-1,cl))/dx

go to 834
21 m(nl,cl)=(temp4(sum,n4,cl)-temp3(sum,n4-1,cl))/dx
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22 b1(nl,cl)=temp4(sum,n4,c1)-m(nl,c1)*depth(n4,1)
temp7(sum,n1,cl)=dprint2(i,nl)*m(nl,cl)+bl(nl,cl)

834 k=0.OO8
644 continue
682 sumzsum+1
352 continue

C Print calculated depths and temperatures into output file
C "words". Print same values into a plotting file named
C by user.

write(7,372)cl,decoll(c1)
372 format(/'COLUMN ',i3,' Decollement at: ',f5.2,' ki')

do 343, j=1,npts
write(7,342)parcel(j)

342 format(//'Rock parcel originally at ',f6.2,' km:')

do 377, i=1,tpts
write(7,344)tprint(i),temp7(i,n3(j),cl),dprint(i,n3(j)),
+xprint(i,n3(j))

344 format('at time ',f5.1,'my, temp = ',f7.2,' depth= ',f6.2, 'km
+xdist= ',f6.2,' kmi')

377 continue

343 continue

write(*,500)
500 format('What do you want to call the path data file?')

read(*,501)string
501 format(a10)

open(8,file=string,form='formatted')
write(8,844)(tprint(i),(temp7(i,n3(j),cl),dprint(i,n3(j)),
+j=1,4),izI,tpts)

844 format(9(f7.2))

C This loop for use with subroutine sgeoplot.f only.
do 843,i=1,tpts
do 445,j=1,4
z(i,j)=temp7(i,n3(j),c1)
y(i,j)=dprint(i,n3(j))

445 continue
843 continue

close(8)

C Loop to allow user to input new points and times
write(*,407)

407 format('Input new points and times? 1=yes, 2=no')
read(*,408)yorn

408 format(il)
write(7,411)

411 format(//)
if (yorn.ne.2) go to 409

790 k=0.008

C End of do loop started at beginning of program; loop back to
C beginning for the analysis of imbricate fault structures.
I continue

C Graphics output routines
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write(*,575)
575 format('Do you want graphics output? 1=yes, 2=no')

read(*,576)answ
576 format(ii)

if (answ.ne.1) go to 552

write(*,577)
577 format('Do you want to plot rock paths(1) or geotherms(2)')

read(*,578)answ
578 format(il)

if (answ.eq.1) go to 553
write(*,180)

180 format('How many geotherms do you want to plot on one graph?')
read(*,181)pl

181 format(12)
write(*,182)

182 format('Input column number of the geotherms and times')
read(*,183)(c3(i),ctime(i),i=1,p1)

183 format(10(i2,f5.2))
do 184,i=1,p1
i5(i)=int(ctime(i)/dt)+1

184 continue

C Create plotting file for geotherms

open (4,file='plot.dat',form='formatted')
do 841,j=1increm+1
write(4,840)depth(j,1),(temp(15(i),j,c3(i)),i=1,p1)

840 format(11f7.2)
841 continue

close(4)

go to 430

C Sorting routine to determine maximum depth and temperature for
C scaling of rock path plot

553 tmax=0.0
dmax=0.0

851 do 846,i=1,tpts
if (z(i,1).gt.tmax) tmaxcz(i,1)
if (y(i,1).gt.dmax) dmax=y(i,1)

846 continue
write(*,15)tmax,dmax,dx,tpts

15 format(4f7.2)

C Call to plotting routine for rock paths
call geopath(tmax,dmax,dx,tpts)

C
430

Call to geotherm plotting routine
call geoplot(tbase,x,dx,increm+1,pl)

552 close(7)
close(11)
end
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A.2 Subroutine sgeoplot.f

This subroutine uses an internal data file produced by formodel.f to produce

plots of geotherms at time intervals chosen by the user. The program includes calls

to the subroutine marker.f listed below and to penplot, a graphics library

available at MIT.

C * ***** ****SUBROUTINE GEOPLOT* *** ********

C This subroutine connects to the main program and uses an internal
C data file created by formodel.f to generate plots of
C geotherms at time intervals chosen by the user.

subroutine geoplot(tmax,dmax,dx,inc,mnum)
character*8 variable
integer b,e,f,i,k,j,flag
character*5 xaxis(15),yaxis(15)
character*25 lab
character*10 temp
character*12 depth
real r,c,g,sfine
real x(75,10),y(75),xsm(75,10),ysm(75)
open(unit=4,f ile= 'plot . dat ' , status= 'old' )
temp='TEMP. (C) '
lab='PLOT OF GEOTHERMS'
depth='DEPTH (km),'

do 100,i=1,15
xaxis(i)='
yaxis(i)='

100 continue

C Calculation of parameters for tick marks
b=int(tmax/100.0)
if (b.lt.16) go to 5
bzb*o.5
flag=1
go to 7

5 flag=O
7 r=380.0/b

e=int(dmax/(dx*10.0))
f=int(dmax/(dx*2.0))
sf ine=380. 0/f

C Call to the subroutine that creates labels for the axes
call marker(b,e,xaxis,yaxis,flag)

C Beginning of call sequence to penplot library.
call terminal(7)
call show(-225.,225.,-225.,225.)
call pen(1)

C Draw axes for the graph
call move(-190. ,190.)
call draw(-190.,-190.)
call move(-190.,190.)
call draw(190.,190.)
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C Draw tick marks for the axes
do 15,i=l,b
careal(i*r)
call move(-190.0+c,193.)
call draw(-190.0+c,190.)
call move(-197.0+c,205.)
call letter(2.5,0.5,0.0,0.0)
call label(xaxis(i))

15 continue

do 25,i=1,f
gzreal(i*sfine)
if (mod(i,5).eq.0.0) go to 30
call move(-192.0,190.0-g)
call draw(-190.0,190.0-g)
go to 35

30 ji/5
call move(-194.0,190.0-g)
call draw(-190.0,190.0-g)
call move(-210.0,192.0-g)
if (yaxis(j).1t.'100') yaxis(j)=yaxis(j)(2:4)
call label(yaxis(j))

35 k=1
25 continue

C Label the axes
call move(192.0,180.0)
call letter(3.,0.7,0.0,0.0)
call label(temp)
call move(-224.0,35.0)
call letter(3.,.7,-90.,0.)
call label(depth)

call move(-100.0,-220.0)
call letter(3.,.7,0.,0.)
call label(lab)

C Read data from the file created by formodel.f
do 45,k=1,inc
read(unit=4,fmt='(10f7.2)',end=75)ysm(k),

+(xsm(k,i),i=1,mnum)
75 1=1
45 continue

C Plot the geotherms
21 do 26,i=l1,mnum
19 do 20,k=1,inc

x(k,I)=380.0*(xsm(k,i)/tmax)-190.0
y(k)=-380.0*(ysm(k)/dmax)+190.0
call plot(x(k,i),y(k))

20 continue
call penup

26 continue

46 call tsend(7)

C Program will become "hung" here to allow user to view graph.
C Any character typed in from the keyboard will terminate the
C program.

read*, variable

call endplt(7)
stop
end
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A.3 Subroutine sgeopath.f

This program produces very crude and unlabelled plots of cooling paths of

rocks. Plots like those produced in the text can only be done using the RS/1

graphics package. This program connects with formodel.f and includes calls to the

penplot library of FORTRAN plotting routines.

subroutine geopath(tmax,dmax,dx, j)
character*8 variable
integer b,e,f,i
character*5 temp, depth
character*25 lab
real r,c,g,k,sfine
real x(75),y(75),xsm(75),ysm(75)
open(unit=8,fi le='path.dat' ,status='old')
temp='temp '
lab='P-T PATHS OF ROCKS'
depth='depth'
call terminal(7)
call show(-200.,200.,-200. ,200.)
call pen(1)
call move(-190.,190.)
call draw(-190.,-190.)
call move(-190.,190.)
call draw(190.,190.)

bmint (tmax/100.0)+1
r=380.0/b

do 15,i=1,b
c=real(i*r)
call move(-190.0+c,193.)
call draw(-190.0+c,190.)
call move(-190.0+c,194.)

15 continue

fmint(dmax/dx)
sf ine=380. 0/f

do 25,i=1,f
g=real (i*sfine)
if (mod(i,e).eq.O.0) go to 30
call move(-192.0,190-g)
call draw(-190.0,190-g)
go to 35

30 call move(-194.0,190-g)
call draw(-190.0,190-g)

35 k=0.008
25 continue

call move(195.0,180.0)
call label(temp)
call move(-198.0,50.0)
call letter(3.,.7,-90.,0.)
call label(depth)

40 read(unit=8,fmt='(f7.2,f7.2)',end=39)(xsm(i),ysm(i), i=1,j)
39 do 45,i=1,j

x(i)=380.0*(xsm(i)/tmax)-190.0
y(i )=-380.O*(ysm(i )/dmax)+190.0
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call plot(x(i),y(I))
45 continue

call move(50.0,120.0)
call letter(3.,.7,0.,O.)
call label(lab)

46 call tsend(7)
read*, variable

call endplt(7)
stop

end
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A.4 Subroutine marker.f

This subroutine is responsible for generating the labels on the graphs

produced by sgeoplot.f and the independent program indplot.f. The program

involves simply the conversion of the desired numerical labels to characters, a task

that can only be accomplished by using the internal symbols of the FORTRAN

library.

C *********** SUBROUTINE MARKER*********

C This subroutine connects to plotting programs and merely
C generates the label s for the graphs.

subroutine marker(ia,ib,taxis,daxis,ik)
integer symbol ,step,dig1,dig2,dig3
real s
character*5 taxis(15),daxis(15)
integer i,j,intic

C Conversion of integer to character values using conpiler's
C internal string conversion code

C Labelling routine for temperature axis
if (ik.ne.1) go to 5
if (ik.eq.1) ic=2*ia
step=2
int=2
go to 15

5 step=1
int=1
ic=ia

15 do 10,imint,ic,step
symbol =48+i
if (ik.eq.1) j~i/2
if (ik.ne.1) j=i
if (i.ge.10 .and. i.1t.20) go to 30
if (i.ge.20) go to 35
taxis(j)=char(symbol)//char(48)//char(48)
go to 25

30 symbol=38+i
dig1=49
go to 27

35 if (symbol.ge.58) symbol=28+i
dig1=50

27 taxis(j)=char(dig1)//char(symbol)//char(48)//char(48)
25 write(*,20)taxis(i)
20 format(a5)
10 continue

C Labelling routine for depth axis
do 40,i=1,ib
symbol=i*25
s=real (symbol)
if (mod(s,10.0).eq.0.0) dig3=48

woftow"016 ow
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if (mod(s,10.0).ne.0.0) dig3=53
if (s.ge.100.0) dig1=49
if (s.1t.100.0) digl=31
do 50,j=1,15
if (symbol.ge.(j*10) and. symbol.1t.(J+1)*10) dig2=48+j

50 continue
if (s.ge.100.0) dig2adig2-10
daxis(i)=char(dig1)//char(dig2)//char(dig3)
write(*,60)daxis(i)

60 format(a5)
40 continue

return

end
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A.5 Program fourier.f

This program does a summation of the first twenty Fourier terms for a

geotherm that is at the base temperature throughout the entire lithospheric

thickness and at 00C on the surface. Output is to the file "fourie".

C ...................... PROGRAM FOURIER.F...........................

C Program to do simple thermal relaxation models by Fourier methods.

real a,x,tbase,t,pi,dx,tseC,k
real four(20,60),sum(60),temp(60)
integer inc,i,n,j
open(8,f ile='fourie',form='formatted')

write(*, 10)
10 format('Input lithosphere thickness, depth increment, and

+ base T:')
read(*,20)x,dx, tbase

20 format(f6.1,f4.1,f6.1)

30 write(*,40)
40 format('At what time should the expression be evaluated?')

read(*,50)t
50 format(f6.2)

inc=int(x/dx)+1
k=0.008
tsec=3155.27
pi=3.14159

do 60,i=2,inc
sum( i )=0.0
do 70,n=1,20
a-real (n)
four(n,i)=1.0/a*sin(n*pi*(i-1)*dx/x)*exp(-(n**2)*(pi**2)*k

+*tsec*t/(x**2))
sum(i)=sum(i)+four(n,i)

70 continue
80 continue

write(8,75)t
75 format(/'At time 'f5.2,' my after the initial state:')

do 80,i=1inc
if (i.eq.1) go to 85
temp(i)=tbase*(i-1)*dx/x+(2.0*tbase/pi)*sum(i)

85 temp(1)=0.0
write(8,90)(i-I)*dx,temp(i)

90 format(f6.1,'km',5x,f7.2)
80 continue

write(*, 100)
100 format('Input a new time? 1=yes')

read ( *, 110) j
110 format(ii)

if (j.eq.1) go to 30

close(8)
end
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A.6 Program splining.f

This program, though of limited usefulness, fits splines to depth-temperature

and time-temperature points generated by the formodel.f. It also produces two

auxiliary files that are named by the user and include quantitative information

about the plots. The first derivative is probably the most useful of the generated

quantities, as this permits comparison of the depth-temperature or time-

temperature gradients between curves that have different characteristics. The

program reads from files formatted for the plotting routines by formodel.f. The

spline values can be transferred over to RS/1 for plotting directly on the particle

path graphs. The program includes calls to the NAG (Numerical Algorithms

Group) subroutine package.

C Program to do cubic spline calculations between points of
C temperature-depth curves
C This program includes several calls to the nag library
C available on the Athena system and must be compiled with
C the -lnag option for the Fortran 77 compiler.
C It is important to note that the number of intervals
C used to calculate the cubic spline may not exceed
C the number of points in the data file - seven.
C The complicated printout routines at the end of this
C file are adapted versions of the example program texts
C provided in the nag library manual, copyright 1978 by the
C nag corporation.

logical midpt
double precision temp2(25,55,5),dept(25,55)
double precision wt(26),ord(26),abc(26),wk1(26)
double precision wk2(4,26),c(15),k1(15)
double precision ssq,fit,xarg,s(4)
integer i,j,n,ifal,pass,part,divi,r,r2,num2,1,left,yorn
character*7 str,str2,str3,str4

write(*,77)
77 format('What do you want to call the info. output file?')

read(*,78)str2
write(*,79)

79 format('Name of derivative output file?')
read(*,78)str4

78 format(a7)
open(4,file=str2,form='formatted')
open(10,file=str4,form='formatted')

4 write(*,5)
5 format('File to be splined?')

read(*,7)str
7 format(a7)
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open(8,file=str,form=lformatted',status='old')
num=14
do 10, i=num,1,-1
read(8,25)(temp2(i,j,1),dept(i,J),j=1,4)

25 format(4(f7.2,f7.2))
10 continue

C Set weights for splining = one
do 30,i=1,num
wt(i1.0

30 continue

write(*,40)
40 format('Particle path to

read(*,45)part
45 format(il)

fit with cubic spline, 1-4?')

C Initialize the abscissa and ordinate values of function
do 50,i=1,num
abc(i)=temp2(i,part,1)
ord(i)=dept(i,part)

50 continue

write(*,55)
55 format('Splines should be fit using how many intervals?')

read(*,60)n
60 format(ii)

pass=n+8

divicint(num/n)
do 65,i=divi,num-1,divi
k1(i/divi+4)=abc(i)
if ((i/divi).gt.n) go to 75
write(*,70)k1(i/divi+4),ord(i)

70 format(2(f9.2))
75 p=3
65 continue

write(4,83)str,part
write(10,83)str,part

83 format(//'Input path file is',a8,'; particle ',i3)

write(4,87)
87 format(/1x,'Point no.',8x,'Abscissa X(m)',3x,'Ordinate X(m)')

do 85,i=1,num
write(4,90)i,abc(i),ord(i)

90 format(5xj2,3x,2e20.5)
85 continue

call eo2baf(num,pass,abc,ord,wt,kl,wk1,wk2,c,ssq,ifal)
write(4,80)ssq

80 format(/'Residual sum of squares is = ',e20.5/)
j=1
write(4,100)j,c(1)
do 110, j=2,n+3
J2=j+2
write(4,105)j,k1(j2),c(j)

105 format(lx,J3,2e20.5)
110 continue

write(4,100)n+4,c(n+4)
100 format(1x,i3,20x,e20.5)

midpt=.false.
num2=2*num-1
r=0
write(4,125)

125 format(//lx,'Point no.',3x,'Abscissa X',8x,'Approximation',7x,
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+'Residual 'I/)
write(*,600)

600 format('What do you want to call the spline plot output file?')
read(*,610)str3

610 format(a7)

open(11,file=str3,form='formatted')
do 300,r2=1,num2

if (.not.midpt) go to 280
xarg=0.5*(abc(r)+abc(r+1))
ifal1=
call eO2bbf(pass,kl,c,xarg,fit,ifal)
if (ifal.ne.0) go to 260
write(4,115)xarg,fit
write(11,120)xarg,fit
go to 320
write(*,117)xarg
go to 320
r=r+1
ifal=1
call eO2bbf(pass,k1,c,abc(r),fit,ifal)
if (ifal.ne.0) go to 310
res=fit-ord(r)
write(4,118)r,abc(r),fit,res
write(11,120)abc(r),fit
go to 320
write(*,119)r,xarg
midpt=.not.midpt

continue
format(2e20.5)
format(5x,2e20.5)
format(5x,e20.5, 'argument not in range')
format(1x,13,3e20.5)
format(1x,13,e20.5,'argument not in range')

260

280

310
320
300
120
115
117
118
119

write(4,96)
write(10,98)

96 format(//5x,'X',20x,'SPLINE',4x,'lst Deriv',2x,
+'2nd Deriv',2x,'3rd Deriv')

do 400,i=1,num
do 450,left=1,2
ifal=l
call eO2bcf(pass,kl,c,abc(i),1eft,s,ifal)
if (ifal.ne.0 .and. left.eq.1) write(4,94)abc(i),ifal
if (ifal.ne.0 .and. left.ne.1) write(4,93)abc(i),ifal
if (ifal.eq.0 .and. left.eq.1) write(4,92)abc(i),

+(s(1 ),1=1,4)
if (ifal.eq.0 .and. left.eq.1) write(10,98)i,

+(s(1,1=1,4)
if (ifal.eq.0 and. left.ne.1) write(4,91)abc(i),

+(s(l),1=1,4)
450 continue
400 continue

91 format(lx,ell.3,6x,'right',4e11.3)
92 format(lx,ell.3,6x,'left ',4e11.3)
93 format(lx,ell.3,12x,'right','fail',i4)
94 format(lx,ell.3,12x,'left ','fail',i4)
98 format(2i,lOx,411.3)

close(11)
close(S)
write(*,500)

500 format('Run again? 1=yes')
read(*,510)yorn

510 format(il)
if (yorn.eq.1) go to 4
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stop
end
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Appendix B

Sample Program Output

The following is an example of the textual output provided by a run of

formodel.f. The problem parameters input by the user are listed at the beginning

of the file, followed by a simple graphical representation of the fault geometry, and

any depth-temperature-time information requested by the user.

* * * * * SAMPLE TEXT OUTPUT *

0. cal/sec cm**3
11.00 cal/sec cm**3
11.00 cal/sec cm**3
0. cal/sec cm**3
0. cal/sec cm**3

0. km
2.5 km

20.0 km
22.5 km

125.0 km

* * * *

X1OE-13

Lithospheric thickness: 125.00
Grid spacing: 0.1my by 2.5km
Total iteration time: 50.OOmy
% Extension above decollement: 0. (gaimma: 1.00)
% Extension below decollement: 0. (beta: 1.00)
Extension between: 49.9 my and 50.0 my
Total movement on fault (measured along horizontal): 25.Okm
Movement along fault occurs between: 0.1 my and 25.0 my

I . I

I I
I I
I I
I I
I I
I I
| |
I I
I I

I I
I !I
I !
| |

I I

I I
1 I
I I
I I

I I
I I
I I

I I

I I

| |
i I

I I
I I

i I
I I
I i

I |I

i I
I I
I I
I I
I I

I I
II
I 2 .
I

I I
I I

210.0!,

I I
I I

0-----------0--------------

0. 25.0 50.0 75.0 100.0

COLUMN 4 Decollement at: 15.00 km

Rock parcel originally
at time 0. my, temp
at time 1.Omy, temp
at time 5.Omy, temp
at time 10.Omy, temp

15.00
408.62
384.37
336.58
313.45

km:
depth=
depth=
depth=
depth=

15.00km
15.OOkm
15.OOkm
15.OOkm

xdist=
xdist=
xdist=
xdi st=

75.00 km
76.00 km
80.02 km
85.04 km

A _________________________



time
time
time
time
time
time

15. Omy,
20. Omy,
25.Omy,
30. Omy,
35.Omy,
49.9my,

temp
temp
temp
temp
temp
temp

Rock parcel originally
time
time
time
time
time
time
time
time
time
time

0. my,
I . Omy,
5. Omy,

10. Omy,
15. Omy,
20.Omy,
25.Omy,
30. Omy,
35.Omy,
49. 9my,

temp
temp
temp
temp
temp
temp
temp
temp
temp
temp

Rock parcel originally
time
time
time
time
time
time
time
time
time
time

0. my,
I .0my,

5. Omy,
10. 0my,
15. Omy,
20. Omy,
25. Omy,
30. Omy,
35.Omy,
49.9my,

temp
temp
temp
temp
temp
temp
temp
temp
temp
temp

COLUMN 2 Decollement at: 5.00 km

Rock parcel originally at
time
time
time
time
time
time
time
time

0. my,
2. Smy,
5. Omy,

15. Omy,
25.Omy,
35.Omy,
45.Omy,
49.9my,

temp
temp
temp
temp
temp
temp
temp
temp

Rock parcel originally
time
time
time
time
time
time
time
time

0. my,
2.5my,
5. Omy,

15. Omy,
25.Omy,
35. Omy,
45.Omy,
49. 9my,

temp
temp
temp
temp
temp
temp
temp
temp

Rock parcel originally
at time 0. my, temp
at time 2.5my, temp
at time 5.Omy, temp
at time 15.Omy, temp
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290.07
268.31
254.00
231.93
219.47
278.54

20.00
469.48
459.00
414.32
385.12
362.95
341.51
329.70
306.84
295.02
278.54

50.00
672.65
673.37
675.70
673.09
666.86
659.39
651.03
642.92
634.15
611.57

depth=
depth=
depth=
depth=
depth=
depth=

km:
depth=
depth=
depth=
depth=
depth=
depth=
depth=
depth=
depth=
depth=

km:
depth=
depth=
depth=
depth=
depth-
depth=
depth=
depth=
depth=
depth=

15.00km
15.00km
15.00km
15.00km
15.00km
15.00km

20.00km
19.80km
19.00km
17.99km
16. 99km
15.98km
15.00km
15.00km
15.00km
15.00km

50.00km
49.80km
49.00km
47.99km
46.99km
45.98km
45.00km
45.00km
45.00km
45.00km

xdists
xdist=
xdist=
xdists
xdist=
xdist=

xdist=
xdi st=
xdi stc
xdistm
xdist=
xdistr
xdistr-
xdist=
xdist=
xdist=

xdist=
xdi st=
xdist=
xdist=
xdist=
xdist=
xdist=
xdist=
xdist=
xdist=

90.06
95.08

100.00
100.00
100.00
100.00

75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00

75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00

10.00
311.38
295.66
289.97
247.54
216.39
160.92
155.80
154.45

22.50
478.89
481.39
478.11
466.45
440.88
397.76
382.86
378.65

75.00
866.97
868.71
870.39
876.43

km:
depth=
depth=
depth=
depth=
depth=
depth=
depth=
depth=

km:
depth=
depth=
depth=
depth=
depth=
depth=
depth=
depth=

km:
depth=
depth=
depth=
depth=

10.00km
9.50km
9.00km
6. 99km
5.00km
5.00km
5.00km
5.00km

22.50km
22.00km
21.50km
19.49km
17.50km
17.50km
17.50km
17.50km

75.00km
74.50km
74.00km
71.99km

xdi st=
xdist:
xdi st=
xdist=
xdist=
xdi st=
xdist=
xdist=

xdist=
xdi st=
xdist=
xdIst=
xdi st=
xdist:-
xdist=
xdi st=

xdist=
xdist=
xdist=
xdist=

25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00

25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00

25.00
25.00
25.00
25.00



at tine
at time
at time
at time

25.Omy,
35. 0my,
45.Omy,
49. 9my,

70.00km
70.00km
70.00km
70.00km

25.00 km
25.00 km
25.00 km
25.00 km

temp =
temp =
temp =
temp =
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depth=
depth=
depth=
depth=

880.57
881.67
879.11
876.98

xdist=
xdist=
xdist=
xdist=
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