Post-transcriptional coordination by an RNA-binding protein

JUNE 2010

© 2010 Joshua J. Wolf
All rights reserved

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created

Accepted by

Chairman, Graduate Committee

Post-transcriptional coordination by an RNA-binding protein

by

Joshua J. Wolf

Submitted to the Department of Biology in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Biology

Abstract

RNA-binding proteins can regulate the stability, localization, and translation of their target mRNAs. Post-transcriptional regulation can orchestrate dynamic changes in gene expression, and can coordinate multiple cellular processes in response to various stimuli. Filamentous growth in Saccharomyces cerevisiae is a morphogenetic switch that occurs in response to nitrogen starvation and requires alterations in cell growth, cell cycle, and cell wall functions. Tyl element retrotransposition is also induced under conditions of nitrogen starvation. I describe a role for the RNA-binding protein Khd1 in regulating these two responses to environmental stress through its mRNA targets. I identified the RNA targets of Khdl using in vivo crosslinking and immunoprecipitation (CLIP), combined with deep sequencing. This produced a high-resolution map of Khdl binding sites across the transcriptome, and provided unprecedented insight into its biological functions. Khd1 regulates multiple post-transcriptional regulatory loops to coordinate the components of filamentous growth and Ty1 retrotransposition. Although similar mechanisms were known to transcriptionally regulate these processes, the posttranscriptional coordination is a novel discovery. The feed-forward regulation that Khd1 confers on FLO11, which encodes a protein required for filamentous growth, enables asymmetric expression between mother and daughter cells to switch between filamentous and yeast form growth. In this thesis, I describe regulation of gene expression by RNAbinding proteins, methods to identify their target transcripts and recognition sequences, the KH domain, known functions of Khd1, and the phenotypes it coordinates. My work represents the first application of CLIP to budding yeast, and the growing understanding of RNA-binding proteins in this organism facilitated the placement of Khd1 into its posttranscriptional regulatory network. While many questions remain regarding the role Khdl plays in regulating cellular activities, this thesis addresses its direct role in key processes.

Thesis Advisor: Gerald R. Fink
Title: Herman and Margaret Sokol Professor, Whitehead Institute/M.I.T.

Acknowledgements

I would like to thank a number of people for their support and participation during my graduate education. The foundation of my graduate career was laid many years ago and I would like to begin by thanking my parents who instilled a love of learning without which I would not have made it through this process. They told me that as long as I tried my best, my efforts would be good enough, and I'd like to think this work satisfies those criteria. I'd also like to thank my sister. We chose different educational and professional routes but I've learned a lot from her experiences.

I'd like to thank all of my teachers from kindergarten through high school. Their efforts were very important in preparing me for higher education. I'd like specifically to mention Mrs. Smith, in whose $6^{\text {th }}$ grade class we made yarn diagrams of mitosis and meiosis that still prove strikingly relevant. I would also like to thank Mr. Samet, who introduced me to molecular biology in $10^{\text {th }}$ grade. I can trace a direct path from that unit to this thesis.

I want to thank all of my professors from UCLA. Specifically, I want to thank Bob Goldberg, who first taught me to think critically about experiments in the classroom and then allowed me to apply that knowledge in his laboratory, and Bob Simon, who managed to effectively teach a paper reading course to a lecture hall of over 200 students.

I would like to thank everyone who contributed to my education at MIT. Thank you to all of my professors from my first year classes, some of who continue to shape my graduate education. I'd also like to thank my classmates, who helped create an environment where I was really able to grow as a scientist.

I need to thank Gerry, whose insight and foresight really made this project possible. I couldn't have done this without his support, and I want to thank him and all the members of the Fink Lab that I've worked with for creating an environment where I was able to pursue the questions that my research proposed.

Phil Sharp and Frank Solomon comprised my research committee from the beginning and I really appreciate all of their contributions to this effort. I'm always amazed by their ability to identify the critical components of my project in our annual meetings, and their guidance has been instrumental to my progress.

I have received technical help from a number of people on this project. The crosslinking immunoprecipitation (CLIP) method was developed in Bob Darnell's lab, and both him and Aldo Mele were very generous with their time and advice in getting it to work. The sequencing was done in the Whitehead Genome Technology Core with JeongAh Kwon, and the sequence analysis was done in collaboration with Dave Gifford's group. I really appreciate all of their help, particularly Robin Dowell. I could not have completed this work without her assistance.

Table of Contents

Title Page 1
Abstract 3
Acknowledgements 5
Table of Contents 6
Chapter 1: Introduction 7-47
RNA-binding proteins and gene expression 8
Identifying targets of RNA-binding proteins 11
The K Homology RNA-binding domain 15
The Saccharomyces cerevisiae RNA-binding protein Khd1 23
FLO11 and filamentous Growth 31
Retrotranspostion of Ty elements 36
Coordination of filamentous growth and retrotransposition 39
References 40
Chapter 2: Feed-forward regulation of a cell fate determinant by an RNA- 48-73 binding protein generates asymmetry in yeast
Abstract 48
Introduction 48
Materials and Methods 51
Results 55
Discussion 66
Acknowledgements 70
References 71
Supporting Information 74-122
Chapter 3: High resolution identification of in vivo binding sites reveals 123-140 post-transcriptional coordination by Khd1
Abstract 123
Introduction 123
Materials and Methods 126
Results 128
Discussion 136
References 138
Chapter 4: Conclusions and Future Directions 141-147
Conclusions 141
Future Directions 143
References 146

Chapter 1: Introduction

The phenotype of a cell is determined by the ensemble of processes that control gene expression. Much of experimental biology focuses on understanding gene expression to discover the underlying mechanisms of these phenotypes. Many efforts have sought to understand the basis of phenotypic outputs through studies of whole genome transcript levels. The steady state mRNA level of a gene is often used as a proxy for its expression because mRNA levels are easily assayed on a genome-wide scale using microarray technology or high throughput sequencing. Although this approach provides important information about mRNA accumulation, it ignores subsequent steps of regulation in the gene expression pathway. Steady state mRNA levels frequently fail to correlate with protein levels (GYGI et al. 1999) because of ensuing regulatory processes including translational regulation and differences in protein stability. Understanding translational regulation is an important step towards understanding gene expression.

Methods that measure events downstream of mRNA accumulation in the gene expression pathway more accurately represent expression levels. Proteomic methods (DE GODOY et al. 2006) and techniques designed to profile the translational status of mRNAs on a genome-wide scale using either microarray technology (HALBEISEN et al. 2009) or high throughput sequencing (INGOLIA et al. 2009) provide additional metrics of global gene expression patterns. Although these approaches successfully identify variations between mRNA levels and protein levels or ribosome occupancies, they do not provide a mechanistic explanation for these differences. Understanding the discrepancies between mRNA levels and protein production requires specific characterization of posttranscriptional regulatory interactions by other methods.

In this thesis, I identify and characterize post-transcriptional regulation by the RNA-binding protein (RBP) Khd1 in Saccharomyces cerevisiae to understand its role in regulating gene expression. I used the crosslinking immunoprecipitation (CLIP) method (UlE et al. 2005) and deep sequencing to identify the direct RNA targets of this protein, and investigated its regulation of prominent targets. These experiments identified new regulatory roles for Khd1 in coordinating gene expression the post-transcriptional level. The information gained by identifying the target transcripts provides important information about the role of Khd 1 in regulating cellular activities and allowed me to identify two phenotypes it controls.

This introduction contains two disparate sections bridged by their relation to Khd1. The first section addresses functions and properties of RBPs that are relevant to my work. I begin by considering the role of RBPs in regulating gene expression, followed by a discussion of methodologies for identifying their RNA targets and specific recognition sequences. A discussion of the K homology RNA binding domain, which is found three times in Khd1, and a summary of known Khd1 activities follows. Next follows discussion of filamentous growth and Ty retrotransposition, two phenotypes that my work identifies as being regulated by Khd1. The genes that dictate these phenotypes encode the most frequent target transcripts I identify for Khd1, FLO11 mRNA and Ty1 mRNA, and known mechanisms coordinate their transcription. My work demonstrates that Khd1 coordinates their activity post-transcriptionally in the context of a broader regulatory network.

RNA-binding proteins and gene expression

RBPs associate with an mRNA molecule throughout its lifespan, forming a ribonucleoprotein complex (RNP) that dictates the behavior of the transcript (MOORE
2005). The protein composition of the RNP is dynamic, changing throughout the lifespan of the RNA (Dreyfuss 1986), and the proteins associated with a transcript at any given stage of gene expression play important roles in regulating its splicing, polyadenylation, nuclear export, stability, localization and translation (Glisovic et al. 2008). These processes are frequently coupled through interactions between the RBPs involved, lending a high degree of interconnectivity to the gene expression pathway (MANIATIS and ReED 2002). RBPs play essential roles in eukaryotes, and determination of their function is key to understanding overall gene expression.

RBPs initially bind transcripts as they emerge from the transcription machinery, forming heterogeneous nuclear RNP (hnRNP) complexes (DREYFUSS 1986). The hnRNP protein components were identified based on their purification with heterogeneous nuclear RNA (Dreyfuss 1986). Immunoprecipitation using antibodies raised against a number of individual hnRNP proteins reproducibly enriched a set of proteins, suggesting the existence of a single hnRNP complex (Dreyfuss et al. 1984). Around 20 proteins can be purified in this process, many of which remain complexed when heparin is added to compete nonspecific interactions with the RNA (PInOL-RomA et al. 1988). Additionally, many hnRNP components can be crosslinked to RNA using UV light, which requires direct contact, supporting their role as hnRNP components (Dreyfuss et al. 1984). These proteins have been shown to regulate the splicing and polyadenylation of pre-mRNAs in the nucleus, and mRNA nuclear export (Dreyfuss et al. 1993).

Whereas some hnRNP proteins are exclusively nuclear, others shuttle between the nucleus and cytoplasm (PinOL-Roma and Dreyfuss 1992), and can remain associated with specific mRNAs after export (DREYFUSS et al. 1993). Other RBPs that bind a transcript in the nucleus and remain associated during nuclear export, such as the exon junction
complex (LE HIR et al. 2000a; LE HIR et al. 2000b), impart a nuclear history to an mRNA RNP (mRNP). These nuclearly-derived components can significantly effect mRNA expression in the cytoplasm (Le Hir and Seraphin 2008).

Additional cytoplasmic RBPs are recruited to the transcript following nuclear export, further modulating mRNP function. These proteins control the stability, localization and translational activity of their target transcripts (Dreyfuss et al. 2002; Le HIr and Seraphin 2008). The components of the exon junction complex associate with spliced mRNAs and play a role in translation and quality control (Le HIR and SERAPHIN 2008). The major mRNP components, poly(A) binding protein (PABP) and YB-1, both associate with most or even all cytoplasmic mRNAs. PABP preferentially binds poly (A) sequences, while YB-1 binds mRNAs through both sequence specific and nonspecific interactions (Evdokimova and Ovchinnikov 1999). Whereas some proteins bind mRNAs nonspecifically or in a position dependent manner, most appear to recognize specific sequences frequently found in the 3' untranslated region (Gebauer and Hentze 2004).

RBPs in this context influence a number of biological events, including developmental patterning (Kuersten and Goodmin 2003) and responses to environmental cues (Siomi and Dreyfuss 1997). RBPs allow for rapid changes in gene expression by regulating the ability of mRNAs to serve as templates for translation. In response to appropriate cellular signals, RBPs can act to affect polyadenylation, translation initiation, or mRNA stability to bring about changes in gene expression independent of new transcription (MACDONALD and Smibert 1996). Under the appropriate conditions (i.e. developmental stage, spatial localization, extracellular signals) post-translational modifications of the RBPs can alter their activity, allowing for changes in expression of
their target transcripts (Huttelmaier et al. 2005; Lukong et al. 2008; PaQuin et al. 2007). These regulatory dynamics play critical roles in determining cellular activities.

Multiple studies have shown that RBPs associate with mRNAs encoding functionally related proteins. This feature forms the basis of the concept of the "post-transcriptional operon" whereby genes can be co-regulated at the post-transcriptional level through interactions with a common RBP (Keene and Tenenbaum 2002). A corollary of this phenomenon is that transcripts bound by the same RBP often encode functionally related proteins. Identifying RBP targets provides important insight into its cellular function.

Methods that identify targets of RNA-binding proteins

Discovering interactions between RBPs and their target mRNAs provides the framework in which to study RBP activity. Characterizing the effects of binding enables assignment of regulatory functions to RBPs. Functional interactions between RBPs contribute to the overall regulation of an mRNA (GLISOVIC et al. 2008). Comprehensive analysis must identify the RNAs an RBP binds, and the proteins with which it interacts to regulate these transcripts.

The use of microarray technology to discover RBP targets has contributed significantly to the understanding of post-transcriptional regulation. This approach identifies enriched transcripts following RBP immunoprecipitation and has been applied to a number of systems (KEENE 2007). Applied to S. cerevisiae, this approach revealed the potential for widespread post-transcriptional regulation. A survey that looked at 36 of the ~ 600 RBPs in budding yeast found extensive protein-mRNA associations. Of the 36 RBPs studied, 33 enrich a reproducible set of transcripts, and over 70% of mRNAs associate with at least one RBP (HOGAN et al. 2008). Many transcripts associate with multiple RBPs,
suggesting that a complex interaction network regulates gene expression at the posttranscriptional level (HOGAN et al. 2008).

Identification of the sequence constraints that dictate protein-RNA interactions provide insight into RBP function. Some RBPs bind RNA motifs in a sequence or structure specific manner, whereas others bind non-specifically or are deposited through a position dependent mechanism (MOORE 2005). RBPs that recognize primary or secondary structures may interact with targets closer to, or more degenerate than, a consensus motif based on global or local concentrations (Dreyfuss et al. 1993). Both RBP binding specificity and affinity can be altered by post-translational modifications or protein-protein interactions (Dejgaird et al. 1994; Keene 2007; Ostrowski et al. 2001; Ostrowski et al. 2000). Computational approaches may be able to identify additional mRNA targets of an RBP based on a well-characterized motif, but whether these represent in vivo interactions requires experimental validation. Compartmentalization, accessibility, and lack of expression can all prevent an RBP from interacting with a predicted target in vivo. While microarray studies provide insight into the RNAs bound by a given protein, they do not pinpoint the binding site within the transcript. In some cases, computational analysis can identify potential binding motifs in target mRNAs, but in many instances the recognition site remains unclear (HOGAN et al. 2008). Identifying the sequence constraints for recognition by an RBP requires an experimental approach that pinpoints the binding interaction with higher resolution.

Two methods identify the sequence determinants of recognition by RBPs by screening RNA libraries for molecules that bind a protein of interest. By identifying common sequences or structures, they can pinpoint features that contribute to, or detract from, protein-RNA interactions. Systematic evolution of ligands by exponential
enrichment (SELEX) takes an in vitro approach to identifying RBP target sites. A randomized RNA library is enriched through successive rounds of binding to a purified RBP in order to identify molecules recognized by the protein (SCHNEIDER et al. 1993). Yeast three-hybrid analysis can generate a similar set of sequences recognized by an RBP in a cellular environment. Expressing the RBP fused to the activation domain of a transcription factor, and tethering an RNA library to a DNA-binding domain leads to activation of reporter genes only when the two interact, allowing for selection of desired sequences and a measurement of the interaction strength (SenGupta et al. 1996). The comparison of multiple sequences identified using either of these approaches can highlight motifs that mediate specific interactions with the protein. Although these screening approaches provide a useful tool for identifying sequences bound by RBPs, they have limitations. Both techniques can sample broad sequence space but neither targets of RBPs in their natural contexts, and the protein may not recognize transcripts containing a consensus motif because of cellular constraints.

The cross-linking immunoprecipitation (CLIP) method identifies direct proteinRNA interactions, enabling the identification of in vivo RBP targets and localizing the binding sites within these transcripts (UlE et al. 2003). This approach uses UV radiation to crosslink RBPs to their direct RNA targets in vivo, providing a snapshot of binding interactions across the transcriptome. The bond formed between the species permits stringent protein purification while maintaining association with the RNA. This crosslinking overcomes a drawback of microarray analysis following immunoprecipitation. The low stringency purification used to preserve protein-RNA associations can lead to false positives because of in vitro protein-RNA associations that occur after cell lysis (MILI and STEITZ 2004). CLIP removes this obstacle. CLIP also pinpoints biologically relevant
interactions through sequencing of the target transcripts. A short sequence is sufficient to identify the transcript from which it derived, and RNAse treatment can produce a library of target sites within 60-100 nucleotide RNA fragments (Ule et al. 2003).

The CLIP method was recently developed to identify targets of Nova, a splicing factor expressed in mouse brains. CLIP showed that Nova preferentially binds neuronal transcripts to regulate alternative splicing (Ule et al. 2003). CLIP has subsequently been adapted for use with deep sequencing, which expanded the list of targets for Nova (Licatalosi et al. 2008), as well as the splicing factors Fox2 in human embryonic stem cells (Yeo et al. 2009) and SFRS1 in human embryonic kidney cells (SANFORD et al. 2009). Analysis of these proteins' global interactions increased understanding of their biological roles by cataloging their binding sites across the transcriptome.

The specificity and resolution of CLIP revealed unexpected complexity in posttranscriptional regulation. Nova, Fox2, and RFRS2 were known to interact with specific sequence motifs near alternative exons to regulate their inclusion in mRNA. However, CLIP demonstrated additional binding and regulatory activities for these proteins. CLIP identified 34 of 39 previously validated alternatively spliced transcripts regulated by Nova, and extended its activity to 46 additional transcripts shown to undergo Nova-dependent alternative splicing (Licatalosi et al. 2008). 23% of the CLIP sequences, however, map to intergenic regions, and cluster near polyadenylation sites. These sites contain the canonical Nova binding motif. Nova knockout mice display alternative polyadenylation profiles for these transcripts, establishing a new role for Nova in RNA processing.

The binding sites identified using CLIP indicate an imperfect understanding of RBP specificity. The GCAUG motif required for Fox2-mediated alternative splicing appears in only 33% of Fox2 binding clusters CLIP identifies (YeO et al. 2009). The
majority of Fox2 binding sites do not contain its canonical binding motif and the authors do not report a common sequence that explains these binding events. The number of SFRS1 motifs in predicted binding sites range from 0 to 16 (SANFORD et al. 2009), so in some instances SFRS1 binds in the absence of its known recognition site. CLIP offers unprecedented insight into protein-RNA interactions, which adds important information to the understanding of RBP function.

The K homology RNA-binding domain

RBPs contain RNA-binding domains that dictate their RNA specificities. Families of RNA-binding domains can be grouped based on protein folds to highlight common features in their interactions with RNA. Examples include the RRM motif, K homology (KH) domains, and PUF domains. These domains are widely conserved, and studies of their functions are possible in a range of organisms. Protein domains within these families adopt similar folds and share many properties in their interactions with RNA (MESSIAS and SATTLER 2004). Characterization of individual domains can provide important information about the activities of the families of proteins in which they are found.

KH domains are evolutionary conserved RNA-binding motifs that bind RNA, and in some cases single stranded DNA (ssDNA), to promote a number of regulatory activities (BOMSZTYK et al. 2004). The domain was originally identified in the human RBP hnRNP K (MATUNIS et al. 1992), from which it derives its name. KH domains frequently occur multiple times in a protein, and can be present as many as 15 times in a single polypeptide (LeWIS et al. 1999). Proteins containing KH domains exist in archaea, bacteria, and eukaryotes, and have been studied in various systems (VALVERDE et al. 2008). These proteins regulate mRNA splicing, stability, translational repression, and translational
activation, as well as transcriptional activation and repression through interactions with ssDNA (BOMSZTYK et al. 2004). KH domains consist of a core $\alpha \beta \beta \alpha$ motif linked to an additional $\beta \alpha$ N-terminal (type I) or $\alpha \beta$ C-terminal (type II) to the core by a variable region, which can range in size (Figure 1A) (Valverde et al. 2008). The KH domains found in eukaryotes are typically type I, whereas those found in bacteria and archaea are type II (Valverde et al. 2007).

Studies of the KH domain have largely focused on a group of proteins in mammals that contain three such domains. The members of this group, the poly (C) binding proteins hnRNP K and PCBP 1-4 and the neural splicing regulators Nova1 and 2, share many structural similarities but have distinct functional properties (MAKEYEV and Liebhaber 2000). These proteins all contain a central KH domain located closer to the N terminus than the C -terminus. A region of variable length connects the two C-terminal KH domains. In this context KH domains share higher homology with the corresponding domains in similar positions of other proteins than with other domains within the same protein, even between species (THISTED et al. 2001). The Nova proteins preferentially bind poly(rG) in vitro, and bind poly(rU) as well (BUCKANOVICH et al. 1996). hnRNP K, E1 (PCBP1), and E2 (PCBP2) constitute the major cellular poly(rC) binding proteins (Leffers et al. 1995) and also bind poly(rG) (DejgaARD and Leffers 1996). In different contexts, they can stabilize mRNA, and either enhance or repress translation (MAKEYEV and LIEBHABER 2002). hnRNP K also binds ssDNA and can both activate and repress transcription (BOMSZTYK et al. 2004).

The binding specificities of these proteins have been interrogated using SELEX and yeast three-hybrid analysis of the target sites recognized by various domains, global identification of mRNA targets using microarray analysis following immunoprecipitation,

A

Type I KH domain:

Type II KH domain:

Figure 1.-KH domain secondary and tertiary structures. (A) Secondary structure arrangements and tertiary conformations of type I and type II KH domain folds (Valverde et al. 2008). (B) Crystal structure of the third KH domain of hnRNP E2 in complex with telomeric DNA shown as a ribbon diagram and a surface representation with positively charged, negatively charged, uncharged hydrophilic and hydrophobic residues colored blue, red, yellow and green, respectively (BACKE et al. 2005). The binding groove contacts bases C3 through T6.
and CLIP. Structural studies on protein fragments containing one, two, or all three KH domains with and without nucleic acid targets provide further insight into their binding properties. KH domain-containing proteins interact with single stranded nucleic acids
through a common platform to regulate biological processes, but the specifics of the interactions can vary between individual domains, which results in different binding activities for the full-length proteins.

Although KH domains recognize different sequences, there are many features common to their nucleic acid interactions. The β strands of a KH domain form a threestranded β sheet, over which the α helices reside. Type I domains contain an antiparallel β sheet with the three successive strands alternating polarity, whereas the type II β sheet contains two adjacent parallel strands (Figure 1A) (Valverde et al. 2008). The adjacent α helices are connected by a G-X-X-G loop where X is usually arginine, lysine or glycine (Lewis et al. 1999). The invariant G-X-X-G loop faces the loop formed by the variable region, forming a binding groove across a platform formed by the α helices and β sheets (Figures 1B) (BACKE et al. 2005). Conserved hydrophobic residues line the floor of the groove creating a channel for nucleic acid binding (Figure 1C) (FENN et al. 2007). These common structural features define the basis of nucleic acid recognition by KH domains.

The binding groove in KH domains accommodates four nucleic acids (Figure 1B, $1 \mathrm{C})$. Interaction with four bases is seen in the all crystal structure of KH domains in complex with ssDNA or RNA (VALVERDE et al. 2008) and is consistent with the short consensus sequences identified experimentally (see below). The four bases in contact with a KH domain adopt a common conformation across the binding surface (Valverde et al. 2008). Hydrogen bonding, van der Waals contacts, and shape complementarities specify the core of the binding sequence (Du et al. 2005). There may be some flexibility in the identity of the outer bases, although they are frequently pyrimidines (BACKE et al. 2005). The consensus motif for Nova is YCAY (where Yis a pyrimidine) (Ule et al. 2003) and the target site of the first KH domain of hnRNP E2 shifts by one base when provided one
versus two repeats of the C-rich strand of human telomeric DNA, altering the outer but not the core bases it recognizes (Du et al. 2007). Some domains form additional contacts to bases outside of the binding channel (FENN et al. 2007). Unlike many RNA binding domains, the KH domain does not stabilize bases through stacking interactions with aromatic side chains (Valverde et al. 2008). Another unique feature of RNA recognition by some KH domains is the lack of interaction with 2'-OH groups, which allows these domains to interact with ssDNA molecules as well as RNA (BACKE et al. 2005). Although the overall fold of a KH domain dictates its general nucleic acid binding properties, unique contacts dictate the specific interactions.

A degenerate four base target sequence is fairly indiscriminate, and interactions between KH domains may provide additional binding specificity. The asymmetric units in crystal structures of Nova 2 KH3 (LEWIS et al. 1999) and hnRNP E2 KH1 (DU et al. 2005) contain dimeric protein complexes that suggest the potential for intermolecular interactions between KH domains. The dimerization of hnRNP E2 KH1 occurs opposite the nucleic acid binding groove where hydrophobic side chains interact between an α helix and β sheet from each monomer. The interactions produce a six-stranded β sheet, resembling intramolecular folding interactions. The hnRNP E2 KH3 domain does not form dimers during crystallization, suggesting this is a property of specific KH domains (FENN et al. 2007). The lack of dimerization from KH3 may result from the absence of the hydrophobic surface where interaction occurs between KH1 domains. Attempts to identify intermolecular interactions between KH domains in solution have been unsuccessful (DU et al. 2008) and some authors caution that the available data does not support a biological function for their homodimerization (VALVERDE et al. 2008).

Intramolecular interactions can have important effects on nucleic acid binding. NMR and X-ray crystallographic studies of the first two domains of hnRNP E2 indicate that KH1 interacts with KH2 in a manner analogous to the KH1 dimers seen in the crystal structure (Du et al. 2008; DU et al. 2007). This interaction contrasts with crystal structures of other multi KH -domain protein fragments that do not involve interactions between domains, though it should be noted that these structures were obtained from proteins with either two or four KH domains. The pseudodimer between KH1 and KH2 is not compatible with nucleic acid binding because of steric and energetic limitations (Du et al. 2008). Both domains do bind nucleic acid, however, and the three KH domains bind target RNAs cooperatively. Interactions with nucleic acid may dissociate the pseudodimer, freeing the dimerization domains for interactions with other proteins. This potential regulatory mechanism could coordinate KH domain proteins with other cellular proteins and RBPs (Du et al. 2008). The stabilization of α globin mRNA by hnRNP E1 and E2 requires PABP , and the protein-protein interactions require RNA binding by hnRNP E1 and E2 (WANG et al. 1999). The interaction of domains within a multi-KH domain protein can vary the nucleic acid binding properties of segments of the protein and can coordinate binding with other proteins. The in vivo binding activity of an RBP is determined through a combination of these factors.

Target identification experiments reinforce many of the binding features identified by KH domain structural data. Most target identification experiments suggest that proteins with multiple KH domains bind cooperatively to RNAs through short, repeated, pyrimidine-rich sequences. However, some identify single motifs of similar composition that are nevertheless sufficient for binding. Although the motifs are often consistent between SELEX and yeast three-hybrid screens, they can vary. Limited in vivo
analysis may support a simple binding interaction, but as with Fox2, binding interactions may prove more complex when extended to the entire transcriptome.

SELEX identifies short sequence motifs targeted by proteins containing multiple KH domains that can occur multiple times within a target RNA. Analysis performed using full-length hnRNP E1 identified targets containing three C-rich patches of 3-5 cytosines separated by 2-6 adenines or uracils. Guanines were largely excluded from the region spanning the C-rich patches (Thisted et al. 2001). The presence of three patches in all 26 sequenced targets suggests the three KH domains of hnRNP E1 bind cooperatively to RNA in vitro. Mutational analysis validated the importance of the cytosines and that hnRNP E1 binds cooperatively, as mutation of multiple patches have a synergistic effect on binding affinity (THISTED et al. 2001). In vitro selection of Nova-1 targets produces three UCAU tetranucleotide repeats suggesting the three domains may bind cooperatively to identical motifs (Buckanovich and Darnell 1997). The same analysis on the third KH domain identifies a single UCAY tetranucleotide (JENSEN et al. 2000). Since KH3 is both necessary and sufficient for binding, multimerization may facilitate binding by this single domain rather than intramolecular cooperative binding between domains.

In contrast to the evidence supporting cooperative binding by KH domains, SELEX identifies a single target site for hnRNP K that enriches RNAs with a single stretch of 3-4 cytosines (Thisted et al. 2001). This result is analogous to the selection of targets with a single KH domain from Nova, which suggests a single domain is responsible for the interaction. Although some of the sequences enriched with hnRNP K contain additional C-patches, most do not. This result implies that either only one of the KH domains binds RNAs, or that all three domains recognize identical sequences and a single interaction provides maximum binding affinity. The DICE motif, found 10 times in LOX15 mRNA, a
natural target of hnRNP K (Ostareck-Lederer et al. 1994), contains a similar C-rich sequence. Multiple target sites may modulate hnRNP K binding in vivo.

A yeast three-hybrid study suggested the KH domains in hnRNP K bind RNA cooperatively, but also identified targets lacking this feature. The screen identified 17 target transcripts from a human RNA library that bind hnRNP K. 13 of these transcripts contain three C-rich clusters (PAZIEWSKA et al. 2004). Three additional transcripts from the screen contain only one C-patch, similar to the targets obtained in the SELEX experiment, and one sequence has no discernible target element. Fragments of hnRNP K containing one, two, or three KH domains were used in the three-hybrid setup to measure expression levels of a β-galactosidase reporter to assess RNA binding strength. Both RNAs used in this experiment contained three C-rich clusters. Constructs containing one or two KH domains are able to bind some transcripts, but produce low β-galactosidase levels. The complete protein generates much higher activity from the reporter, suggesting that cooperativity between the domains increases affinity for RNA. Cooperative binding between KH domains within hnRNP K may increase affinity and specificity for in vivo targets, although this has only been tested for targets with three C-rich clusters.

The sequence requirements identified for hnRNP K binding differ depending on whether the results support cooperative binding. Yeast three-hybrid analysis revealed additional sequence requirements for recognition beyond those identified by SELEX, in accordance with supporting cooperative binding by the domains in hnRNP K. In some targets, two C-rich clusters flank a central C-patch. While the central patch is invariant in its cytosine composition, the external clusters can contain one or two adenines or uracils. Guanine is underrepresented in hnRNP K targets (OSTROWSKI et al. 2002). Although the data suggests that cooperative binding between KH domains occurs in the context of
these extended recognition motifs, the same yeast-three hybrid screen identified targets that contain a single C-patch as in the SELEX experiment. Target recognition cannot be simply described for even a single protein with multiple KH domains.

Many techniques have been used to identify KH domain target motifs, but considerable ambiguity remains. All reports agree that the domains interact with short, pyrimidine-rich sequence motifs. The nature of the interactions between domains is unclear, with some studies pointing to direct physical interaction, some supporting cooperative RNA binding interactions, and others refuting both of these properties. Additional constraints can lead to unexpected effects for well-defined target sites. An endogenous hnRNP E1 target, α-globin mRNA, contains the same C-rich patches as the target transcripts identified using SELEX, but has 20 -fold lower affinity for the protein in vitro. This discrepancy likely occurs because it is embedded in secondary structure, whereas the targets identified using SELEX existed in single stranded regions (THISTED et al. 2001). The presence of a well-defined target sequence does not necessitate binding by an RBP. Cellular constraints such as secondary structure, competitive binding, compartmentalization, protein-protein interactions, and post-translational modifications can affect the interactions between an RBP and its biologically relevant targets. Binding of RBPs to RNAs is an intricate interaction that depends on many factors within the cell, which complicates target prediction and binding site characterization.

The Saccharomyces cerevisiae RNA-binding protein Khd1

The RBP Khd1 is Saccharomyces cerevisiae contains a domain structure similar to hnRNP K. It contains three KH domains with $58 \%, 56 \%$, and 61% homology to the analogous domains in hnRNP K (Figure 2) (Denisenko and Bomsztyk 2002). Eight
additional proteins in yeast contain KH domains. Five proteins contain one KH domain, one protein contains two KH domains, one protein contains 14 KH domains, and one other protein contains three KH domains (Currie and Brown 1999). Pbp2, the other yeast protein with three KH domains has lower homology with K , at $45 \%, 47 \%$ and 59% for each respective domain. The second and third KH domains are separated by only 33 amino acids in Khd1, compared with 172 in hnRNP K and 112 in Pbp2 (DENISENKo and Bomsztyk 2002). The shortened region in Khd1 lacks the SH3 binding domain known to facilitate many of the regulatory functions of hnRNP K (Figure 2) (DENISENKo and Bomsztyk 2002). Despite these differences, Khd1 is an attractive model for the study of RBPs with three KH domains.

Studies have begun to describe a role for Khd1, but many aspects of its function remain unknown. Khd1 localizes at the bud tip with seven mRNAs, and is reported to interact with many more transcripts (HASEGAWA et al. 2008). It is phosphorylated in vivo, and phosphorylation affects its affinity for RNA in vitro (PAQUIN et al. 2007). The RNA binding properties of Khd1 have been probed using yeast three-hybrid analysis and functional studies, but its specificity remains uncertain. A Khd1-GFP fusion shows cytoplasmic localization (NEWMAN et al. 2006), a result supported by immunofluoresence of epitope tagged Khd1, which also localizes to the bud tip with a subset of its mRNA targets (HASEGAWA et al. 2008; IRIE et al. 2002). Chromatin immunoprecipitation (ChIP) experiments indicate that Khdl is present in the nucleus, where it plays a role in telomere maintenance and chromatin structure (Denisenko and Bomsztyk 2002; DENISENKo and BOMSZTYK 2008). Little is known about the overall role of $\mathrm{Khd1}$ in regulating global cellular activity through its target nucleic acids or how it responds to cellular signals.

Figure 2.-Comparison of human hnRNP K with yeast proteins containing 3 KH domains. Percentages represent similarities between amino acid sequences in domains of the yeast proteins relative to hnRNP K (DENISENKO and BOMSZTYK 2002). The scale depicts length in amino acids.

Khd1 plays a key role in $A S H 1$ mRNA localization. $A S H 1$ mRNA encodes a transcription factor that is asymmetrically localized after cell division. Ash1 protein accumulates specifically in the daughter nucleus where it acts to repress expression of HO endonuclease (Bobola et al. 1996; Sil and Herskowitz 1996). HO expression initiates mating type switching (Hicks and Herskowitz 1976), and its asymmetric expression in the mother but not the daughter leaves only mother cells capable of switching mating type (NASMYTH 1993). Ash1 protein asymmetry is established by localization of ASH1 mRNA to the bud tip (Figure 3) (LoNG et al. 1997). ASH1 mRNA is bound by the RBP She2, which is tethered to the motor protein Myo4 by the adaptor protein She3 (BOHL et al. 2000). Recent evidence suggests a She2-independent role for She3 in binding ASH1 mRNA as well (LANDERS et al. 2009). Myo4 moves directionally along actin filaments to localize $A S H 1$ mRNA to the bud tip (TAKIZAWA et al. 1997).

The asymmetric distribution of Ash1 protein requires asymmetric translation ASH1 mRNA. Translational repression of ASH1 mRNA by Khd1 and the RBP Puf6 prevent
synthesis of Ash1 during transport (Gu et al. 2004; IRIE et al. 2002). At the bud tip, phosphorylation of Khd1 and Puf6 reduces their affinity for $A S H 1$ mRNA, relieving repression and allowing translation to occur (DENG et al. 2008; PAQUIN et al. 2007). Ash1 protein contains a nuclear localization sequence, and preferentially enters the daughter nucleus after being produced at the bud tip. The repression conferred by Khd1 is required for establishing the asymmetric distribution. In the khdld mutant, both mother and daughter nuclei accumulate Ash1 protein although ASH1 mRNA localization is unaffected (IRIE et al. 2002).

Khd1 may regulate $A S H 1$ mRNA translation by interacting with the translation initiation factor eIF4G1 (PAQUIN et al. 2007). Khd1 from a cellular extract is retained by immobilized eIF4G1 in an RNA-dependent manner. The purified proteins also interact in vitro, although this reaction does not contain RNA. The interaction between purified components occurs through the C-terminal domain of eIF4G1. When this domain is removed in vivo, expression of an $A S H 1$ reporter construct increases in a manner similar to the increase observed in a $k h d 1 \Delta$ background, implying the repressive function is lost even though Khd1 is present. Technical issues, however, such as the changing requirement for RNA , make the conclusions from these experiments suspect.

Khd1-mediated repression must be relieved for efficient translation of ASH1 mRNA. Post-translational modifications of RBPs can affect their affinity for RNAs, and consequently their regulatory activity. The kinase Yck1 phosphorylates Khd1 in vitro (PAQUIN et al. 2007; PTACEK et al. 2005), decreasing its affinity for the E1 hairpin in ASH1 mRNA (PAQUIN et al. 2007). A Split-Venus complementation assay shows that Yck1 and Khd1 physically interact at the cell periphery in vivo. This observation led to the model

Figure 3.-Translational regulation of ASH1 mRNA enables asymmetric Ash1 protein segregation. (a) Khd1 represses translation of ASH1 mRNA during transport to the bud tip, producing accumulation of Ash1 specifically in the daughter nucleus. (b) In khd1 Δ strains, premature expression leads to expression of Ash1 in the mother cell and symmetric distribution.
that Khd1 represses translation of $A S H 1$ mRNA during its transport to the bud tip, where phosphorylation by Yck1 reduces its affinity for the transcript, relieving repression and allowing translation to occur. In support of this, a luciferase reporter containing a localization element of $A S H 1$ mRNA shows higher activity in the $k h d 1 \Delta$ mutant and decreased activity in the $y c k 1 \Delta$ mutant. The $k h d 1 \Delta y c k 1 \Delta$ double mutant displays the same activity as the $k h d 1 \Delta$ mutant, confirming that the repression in the $y c k 1 \Delta$ mutant requires Khd1 (PAQUIN et al. 2007). Interestingly, the Split-Venus complementation assay indicates that Khd1 and Yck1 interact all along the cell periphery and not only at the bud tip, suggesting potential interactions that may regulate other Khd1 activities.

Khd1 interacts with a number of mRNAs in addition to $A S H 1$ mRNA.

Immunoprecipitation of Khd1 followed by microarray analysis of the enriched transcripts identified $1,210 \mathrm{mRNAs}$ associated with the protein (HASEGAWA et al. 2008). Six of these mRNAs - MID2, MTL1, WSC2, SRL1, EGT2, and CLB2-are localized in a manner similar to ASH1 mRNA (Shepard et al. 2003), and Khd1 co-localizes with them at the bud tip (HASEGAWA et al. 2008). For MID2, MTL1, and WSC2 mRNAs, this co-localization occurs through sequences within their open reading frames (ORFs), similar to the colocalization of Khdl with ASH1 mRNA (Hasegawa et al. 2008). One obvious model is that Khd1 represses translation of these mRNAs in a manner analogous to its function in localization of ASH1 mRNA. However, of the proteins encoded by these mRNAs, only Srll levels are reduced by Khd1 overexpression in a manner similar to Ash1 (HASEGAWA et al. 2008). Mtl1 protein levels increase almost two-fold, and the levels of the other four proteins do not change upon Khd1 overexpression. The increase in Mt11 protein levels results from stabilization of MTL1 mRNA, an effect that is reversed in khdld cells (HASEGAWA et al. 2008). Khd1 overexpression was induced for only two hours before assaying proteins levels in this experiment, and Khd1 could in fact repress production of the proteins that showed no change if they have lower turnover rates than Ash1. Regardless, the effect of Khd 1 binding on protein expression varies for a small subset of co-localized transcripts. N Although the transcripts that enrich with Khdl show decreased ribosome occupancy (HOGAN et al. 2008), little is known about how Khd1 affects expression of non-localized mRNAs, or the mechanisms that regulate its activity in other contexts.

A yeast three-hybrid screen designed to identify targets of Khd1produced very different results from the microarray-based approach. The screen identified an interaction between Khd1 and a transcript antisense to 25 S rRNA represented by 13 clones. One
clone corresponded to an 18 S rRNA antisense transcript, and one to 25 S rRNA itself (PAZIEWSKA et al. 2005). No other clones were identified, suggesting Khdl may have different binding activity based on its compartmentalization.

The RNA motif recognized by Khd1 is not fully understood. Like hnRNP K, Khd1 binds poly(rC) and poly(rU) specifically in vitro (DENISENKO and BOMSZTYK 2002). Analysis of the top 35 targets from the microarray study identified CNN repeats as an enriched motif. Although this motif is overrepresented in the list of mRNAs bound by Khd1, it is not found in every target transcript and occurs in 908 mRNAs that were not called as targets of Khd1. Khd1 associates with regions that contain small stretches of these repeats within the ORFs of the localized mRNA it targets. Gel shift assays show that Khd1 binds RNA containing CNN repeats in vitro. The binding can be competed strongly by poly (rC) and weakly by poly(rU) but not by poly (rA) or poly (rG) (HASEGAWA et al. 2008). Yeast three-hybrid analysis of Khd1 binding using both human and yeast RNA libraries identified a number of transcripts that contain C-rich patches typical of hnRNP K binding. Whereas most transcripts contained three of these patches, some contained a single element corresponding to the SELEX-identified hnRNP K target or none at all (PAZIEWSKA et al. 2004; PAZIEWSKA et al. 2005). However, these studies were performed using cellular RNA libraries and did not sample the same sequence space as randomized libraries.

A separate study found that Khd1 interacts with the E1 hairpin element in the coding sequence of ASH1 mRNA to repress its translation (PAQUIN et al. 2007). The E1 element interacts with She2 to promote $A S H 1$ mRNA localization (Chartrand et al. 1999). A translational fusion with the $A S H 1$ ORF was shown to confer Khd1-mediated repression on a luciferase reporter construct only when the 250 bp E1 sequence was
included (PAQUIN et al. 2007). However, this structure only has micromolar affinity for Khd1 in vitro and the authors did not use mutational analysis to determine its role in binding. E1 does not overlap with the CNN-containing region with which Khd1 colocalizes in vivo. The sequence determinants for Khd1 binding and the effects of the interaction on target mRNA expression remain uncertain.

Khd1 has at least one nuclear function in addition to its cytoplasmic role in mRNA regulation. The finding that hnRNPs K and E1 bind telomeric DNA prompted studies of the role of KH domain proteins in telomere maintenance in S. cerevisiae. Khd1 affects silencing by heterochromatin at telomeric loci (DENISENKO and BOMSZTYK 2002). Compared to WT, khdld shows decreased expression of telomeric reporter constructs. This effect is more dramatic when PBP2, which encodes the other yeast protein that contains three KH domains, is also deleted. Khd1 levels do not effect a telomere-distal reporter. The decreased silencing at the telomeres may result from the increased telomeric lengths seen in $k h d 1 \Delta$ strains. Only the telomere proximal to the marker increases in length, regardless of which telomere it borders, raising questions about the experimental setup. However, ChIP reveals a physical association between Khd1 and subtelomeric sequences, supporting its possible role in telomere regulation.

Further exploration of this regulation identified a genetic interaction between KHD1 and SIR1 in regulating chromatin at telomeres and the mating loci (DENISENKO and Bomsztyk 2008). In sir1D, expression from the telomeric reporter decreases relative to wild type, similar to $k h d 1 \Delta$. Expression from this reporter in the sir $1 \Delta k h d 1 \Delta$ double mutant is equivalent to either individual single mutant, suggesting both genes act in the same pathway. Additional lines of evidence support this possibility. The $k h d 1 \Delta$ mutation rescues the mating deficiency of a sir 1Δ mutation that results from derepression of the
silenced mating loci. This derepression is also seen in the enhanced expression of a reporter construct at the MAT locus in khd1D. ChIP of Sir2 and Sir3 showed reduced occupancy at $H M R$ in the sirl 1Δ background, but WT levels in the sir $1 \Delta k h d 1 \Delta$ double mutant. Khd1 also localizes to $H M R$ by ChIP, suggesting a direct role in $H M R$ silencing and an effect on local chromatin composition. Khd1 therefore regulates chromatin structure at both the silent mating cassettes and telomeres.

Despite the progress made in understanding the role of Khd1, many questions remain. What are the sequence determinants for Khd1 recognition? How does binding effect expression of its target transcripts? And how do these properties combine to regulate cellular activities? To better understand the global role of Khd1 in regulating cellular activity, I used CLIP to identify its in vivo RNA targets. The goal was to identify all RNA targets of Khd1, and the specific sequences that mediate the interactions. This effort identified 1,163 transcripts that Khd1 binds in vivo. Khd1 appears to bind a C-rich motif similar to the CNN repeats previously identified, but this sequence does not explain all of its interactions with RNAs. To understand the regulation conferred by Khd1, I investigated the effects of binding on its most prominent targets, FLO11 mRNA and Tyl RNA. Khd1 represses $\mathrm{FLO11}$-dependent filamentous growth and Ty1 retrotransposition by repressing translation of these two transcripts. A discussion of these phenotypes follows.

FLO11 and filamentous growth

FLO11 encodes a cell surface protein in S. cerevisiae similar in structure to mammalian mucin proteins (Lo and Dranginis 1996). Flo11 is approximately 1,200 amino acids in length, and contains a repetitive element rich in serine and threonine residues. Efficient transcription of the DNA encoding the repetitive element requires the

THO complex (VOYNOV et al. 2006). Flo11 protein is highly glycosylated in its repetitive element, and is covalently linked to the cell wall through a C-terminal glycosylphosphatidylinisotol anchor (Lo and Dranginis 1996). There are two different repeated units in the repetitive element, and their respective contributions, as well as the overall length of the allele, differentially effect the FLO11-dependent phenotypes of diploid filamentous growth, haploid invasive growth, and biofilm formation (Fidalgo et al. 2008). Recombination between individual repeat units can produce new alleles with phenotypic consequences in as many as 1 in 250 cells under non-selective conditions (Fidalgo et al. 2008).

Diploid cells respond to low nitrogen environments by switching from yeast form to filamentous growth (GIMENO et al. 1992). Filamentation can also be stimulated by other environmental stresses such as heat, osmotic shock, and cell wall damaging agents (ZARAGOZA and Gancedo 2000). The morphogenetic switch produces elongated cells that bud in a unipolar manner in contrast with the round cells and bipolar budding pattern seen in high nitrogen (Figure 4A) (Kron et al. 1994), and results in the unidirectional outgrowth of filaments from the colony thought to act as a foraging mechanism (Figure 4B) (Gimeno et al. 1992). This growth pattern results from an altered cell cycle that includes a delay in division that allows mother and daughter cells to synchronously reenter mitosis (Kron et al. 1994). The developmental transition requires the coordinated alteration of multiple cellular processes, including the cell cycle and cell wall maintenance (GAGIANO et al. 2002), The first daughter cell under nitrogen starvation displays these properties (AHN et al. 1999), requiring rapid and coordinated alterations in multiple cellular processes.

Figure 4.- FLO11 expression and filamentous growth. (A) Yeast form and filamentous cells shown at high magnification (Kron et al. 1994). (B) Colony morphologies of wild type and flo11 $/$ flo11 Δ cells under low nitrogen conditions. Filamentous growth requires FLO 11 . (C) An overview of known pathways that regulate FLO11 expression and filamentous growth.

Filamentous growth in S. cerevisiae serves as a model for filamentous growth of pathogenic fungi. Infectious fungi such as Candida albicans undergo a transition to filamentous growth inside the host (Mrtchell 1998). Mutants defective in this growth form show decreased virulence (Lo et al. 1997). C. albicans biology hinders attempts to study filamentation in this pathogen. Cells only exist as diploids, making genetic screens for recessive traits impractical. Homologous recombination is inefficient relative to budding yeast, limiting genetic studies (NOBLE and JOHNSON 2007). The similarities between filamentous growth in S. cerevisiae and C. albicans facilitate the study of this disease-causing growth form in a model system. Similar to FLO11, members of the C.
albicans $A L S$ gene family encode cell surface proteins with repetitive elements rich in serine and threonine. The $A L S$ genes mediate adhesion to surfaces (HOYER et al. 2008) and contribute to filamentous growth (CHEN and CHEN 2000), but their high level of redundancy complicates functional studies. FLO11 plays a role in S. cerevisiae analogous to the $A L S$ genes in C. albicans, providing a tractable genetic system to investigate this developmental switch. Studies in S. cerevisiae have identified a number of pathways that regulate FLO 11 and filamentous growth.

Multiple pathways regulate $F L O 11$ expression (Figure 4C). The transcription factors Ste12 and Tec1, activated by the filamentation MAP kinase signaling pathway, and Flo8, responding to protein kinase A (PKA) signaling, act through multiple regions of the 3.5 kb FLO11 promoter, which is large compared to the average yeast promoter (RUPP et al. 1999). A transcription factor cascade involving Sok2, Phd1, and Ash1 (Pan and Heitman 2000) also activates FLO11. FLO11 expression requires each of these pathways, and the common laboratory strain S288C does not express $F L O 11$ because of a nonsense mutation in FLO8 (LIU et al. 1996). Multiple chromatin remodeling factors regulate FLO11 transcription epigenetically (HALME et al. 2004). In addition to this transcriptional regulation, FLO 11 is regulated post-transcriptionally. Translational repression through the FLO115' UTR is relieved under conditions of amino acid starvation, enabling haploid invasive growth in mutants with diminished FLO11 mRNA levels (FISCHER et al. 2008). Some of these regulatory mechanisms may also contribute to ploidy control of FLO11, which is repressed to a greater extent in higher ploidy cells through unknown mechanisms (GALITSKI et al. 1999).

The filamentation MAP kinase and PKA signaling pathways regulate distinct features of filamentous growth in addition to FLO11 expression. Cells in which PKA
signaling has been disrupted still elongate when starved for nitrogen, but do not adopt the unipolar budding pattern. Addition of cAMP activates PKA signaling and causes cells to form chains of yeast form filaments without elongation (Pan and Heitman 1999). Loss of function mutations in the MAP kinase pathway prevent cells from elongating, but do not alter the unipolar budding pattern (Pan and Heitman 1999) and activation of the pathway produces elongated buds in rich media and a hyperfilamentous phenotype under nitrogen starvation (AHN et al. 1999).

Cells within a clonal population express different levels of FLO11, with important phenotypic consequences. Two FLO11 reporter constructs best demonstrate its transcriptional variegation. A clonal population of cells containing the $P_{\text {flo11 } 1: G F P}$ transcriptional fusion contains both 'on' and 'off' cells. Time-lapse microscopy reveals that cells can switch between the two states, and that daughter cells can enter either state regardless of the state of the mother cell (BUMGARNER and Fink unpublished data). A $P_{\text {flo11 }}:$ URA3 transcriptional fusion also demonstrates the ability of cells to switch between these states. Cells can be serially passaged under conditions that select fist for, and then against URA3 expression, demonstrating the ability of the cell to switch its expression on and off through variegation of the FLO11 promoter (HALME et al. 2004).

FLO11 variegation leads to phenotypic differences within a clonal population. When grown into colonies in low nitrogen, only a subset of cells undergoes the transition to filamentous growth. Immunofluoresent staining of cells containing a Flo11::HA allele shows that these cells express Flo11 at their surface, whereas cells that remain in yeast form do not. Mutations that bias cells towards the 'on' or 'off' state modulate the expression of Floll and enhance or diminish filamentation respectively (HALME et al. 2004). Regulation of FLO11 has important consequences for filamentous growth.

Ty element retrotransposition

Ty elements are retrotransposons found in budding yeast (BOEKE et al. 1985). There are five families of Ty elements classified by the homology of their reverse transcriptases. Ty3 is a Metaviridiae (gypsy-like element), whereas Ty1, Ty2, Ty4, and Ty5 are Pseudoviridiae (copia/Ty elements) (LesAGE and Todeschini 2005). Ty elements are 5-7 kb in length depending on the type, and are flanked by long terminal direct repeats (LTRs) of approximately 300 bp . Two overlapping ORFs, TYA and TYB, encode the proteins required for retrotransposition in all families except Ty5, which contains a single ORF encoding both polypeptides. TYA encodes a structural capsid protein and TYB encodes protease, integrase, and reverse transcriptase (LESAGE and Todeschini 2005). The Ty1 and Ty2 elements are highly homologous to each other, differing primarily in a 1.8 kb region spanning TYA, a .9 kb region in TYB (Curcio and Garfinkel 1991a) and by a single base indel in their LTRs (KIM et al. 1998).

Ty elements require a programmed frameshift followed by extensive posttranslational processing to generate the mature proteins required for transposition. A +1 frameshift that occurs at a frequency of 35% enables TyB expression by generating a TyATyB fusion protein (KAWAKAMI et al. 1993). The fusion protein must be posttranslationally processed to generate functional reverse transcriptase, integrase, and protease enzymes from TyB (Garfinkel et al. 1991). The TyA primary translation product also undergoes programmed proteolysis to achieve its functional form (MERKULOV et al. 1996). In the absence of frameshifting, translation terminates after completing TyA synthesis, and TyA cannot be processed to its mature form.

The structural and functional features of Ty elements make them excellent models for studying retroviruses (Curcio and Garfinkel 1991a). Although Ty elements never
leave the cell and are not infectious, their transposition through an RNA intermediate, overlapping ORFs flanked by LTRs, and programmed frameshift are reminiscent of retroviral replication. TYA corresponds to the viral gag gene, and TYB, pol. Mature TyA proteins assemble into virus-like particles (VLPs) that contain the components required retrotransposition, similar to retroviral preintegration complexes (LesAGE and Todeschini 2005). The frameshift mechanism differs between Ty elements and retroviruses. In retroviruses, ribosome stalling at RNA secondary structures enables the simultaneous slippage of adjacent tRNAs into the -1 reading frame at specific heptamers (Balvay et al. 2007). In Ty element translation, the availability of the low abundance tRNA $\mathrm{R}(\mathrm{CCU})$ regulates ribosome pausing and subsequent shift into the +1 reading frame due to a promiscuous anticodon (Belcourt and Farabaugh 1990). Changes in frameshifting efficiencies dramatically affect transposition rates. Increasing the ratio of Gag-Pol to Gag for HIV, analogous to increasing frameshifting, decreases infectivity up to 1,000-fold (SHEHU-XHILAGA et al. 2001), and either increasing or decreasing frameshifting by modulating tRNA $\mathrm{R}(\mathrm{CCU}$) expression decreases Ty1 transposition (KAWAKAMI et al. 1993; Xu and Boeke 1990).

Ty element retrotransposition can be mutagenic, and is regulated by the host to maintain its genomic integrity. Recombination between Ty elements can lead to inversions, deletions, and translocations, and the proliferation of these sequences in the genome increases the chances of deleterious events (GARFINKEL 2005). Insertion of a Ty element in a promoter or ORF can produce a null allele by preventing normal gene expression, but certain insertions activate gene expression. Although Tyl elements usually insert near Pol III transcribed genes, they will infrequently insert near Pol II transcribed genes. If an insertion occurs upstream of a gene, within 175 bp of its initiation codon and
in the opposite orientation, sequences within TYA act as upstream activation sequences to promote transcription. These ROAM alleles adopt novel and cell type dependent regulation that may provide adaptive benefits (Lesage and Todeschini 2005).

Expression of Ty1, the best-characterized family of Ty element, is regulated at multiple levels. In addition to the programmed frameshift and proteolytic cleavage previously mentioned, Ty1 elements are subject to transcriptional, post-transcriptional, and post-translational controls that contribute to its overall transposition activity. Ty1 transcription is dependent on host factors including SPT3 (WinsTON et al. 1984) and TEC1 (Laloux et al. 1990). All Ty1 elements in a cell are either transcribed or silenced simultaneously, and can switch between the two states. Within a clonal population, at any given moment some cells express Ty1 while others do not. This is seen in Ty1-URA3 fusions that can grow in both media lacking uracil and media containing 5-FOA. Ura ${ }^{+}$ cells enriched in media lacking uracil contain abundant Ty1 RNA as assessed by Northern blot, while Ura- cells enriched in 5-FOA express very low levels of Ty1 (JIANG 2002). Ty1 is also subject to post-transcriptional co-suppression. Inserting Ty1 elements into strains that lack endogenous transposons revealed that increasing the copy number decreased transposition of a marked element without affecting its RNA levels (GARFINKEL et al. 2003). A Ty1 antisense RNA represses transcriptional activity through histone modifications at the promoter, further modulating transposition activity (BERRETTA et al. 2008).

Differences between expression patterns of the Ty families necessitate different modes of regulation to limit their activities. For Ty1 and Ty2, the most highly transcribed elements, regulation is primarily post-transcriptional. Although Tyl RNA can account for 1% of total cellular RNA, any given element undergoes transposition in only one of every
10^{7} cell divisions (CURCIO and Garfinkel 1991b). Nevertheless, transcription factors specifically activate one family or the other. Tec1 enhances Ty1 transcription without affecting Ty2 (Laloux et al. 1990). In contrast to the highly transcribed Ty1 and Ty2 elements, Ty3 and Ty5 RNAs are barely detectable under normal conditions and require transcriptional activation for transposition activity. The addition of mating pheromones to haploid cells activates transcription and subsequent transposition of Ty3 and Ty5 elements while repressing Tyl at a post-transcriptional level (Lesage and Todeschini 2005).

Coordination of filamentous growth and retrotransposition

Similar regulatory mechanisms control Tyl and FLO11. The variegated expression of Ty1 and FLO11, where cells within a clonal population differ in their expression profiles for these genes, has already been described. In addition, both are highly expressed in haploids but silenced in diploids under high nitrogen conditions. Low nitrogen activates their expression and their dependent phenotypes, filamentous growth and Tyl transposition, in this cell type (Lo and Dranginis 1998; Morillon et al. 2000). The filamentation MAP kinase pathway regulates expression of FLO11 and Ty1. Loss of function mutations in the pathway disable both filamentous growth and Ty 1 transposition, and hyperactive alleles augment the phenotypes (MORILLON et al. 2000; MOSCH and Fink 1997; ROBERTS and Fink 1994). This common regulation is thought to coordinate responses to environmental stress. Under low nitrogen conditions, filamentous growth allows cells to forage for better nutritional environments, and transposition can generate new ROAM alleles that may provide a selective advantage (MORILLON et al. 2000). Multiple MAP kinase pathways affect both transposition and filamentous growth. Fus3, the mating pheromone MAP kinase, suppresses transposition of Ty1 elements by
destabilizing VLPs (CONTE et al. 1998). It also plays a role in signaling specificity between the filamentation and pheromone response MAP kinase pathways (MADHANI and Fink 1998).The ability of FUS3 to regulate Ty1 retrotransposition depends on the transcription factors Ste12 and Tec1 that operate downstream of the filamentation MAP kinase Kss1, but not Far1 which acts downstream of mating pheromone response MAP kinase signaling (CONTE et al. 1998). Deletion of HOG1, which leads to an increase in filamentation, shows a similar increase in Tyl transposition but the molecular mechanisms have not been characterized (MADHANI et al. 1997).

My thesis demonstrates that Khd1 regulates filamentous growth and Ty1 transposition post-transcriptionally. Khd1 binds FLO11 mRNA and Ty1 RNA and represses translation of these transcripts. Khd1 has an additional function in controlling FLO11 transcription through its repression of $A S H 1$ mRNA. The resulting feed-forward regulation enables asymmetric $F L O 11$ expression and switching between yeast form and filamentous growth. Khd1 overexpression represses both filamentation and Ty1 retrotransposition. Deletion of KHD1 produces hyperfilamentous cells, but Ty1 transposition is unaffected suggesting that additional mechanisms may repress Tyl translation. Taken together, these data demonstrate novel coordination for Tyl transposition and filamentous growth.

REFERENCES

Ahn, S. H., A. Acurio and S. J. Kron, 1999 Regulation of G2/M progression by the STE mitogen-activated protein kinase pathway in budding yeast filamentous growth. Mol Biol Cell 10: 3301-3316.
Backe, P. H., A. C. Messias, R. B. Ravelli, M. Sattler and S. Cusack, 2005 X-ray crystallographic and NMR studies of the third KH domain of hnRNP K in complex with single-stranded nucleic acids. Structure 13: 1055-1067.

Balvay, L., M. Lopez Lastra, B. Sargueil, J. L. Darlix and T. Ohlmann, 2007 Translational control of retroviruses. Nat Rev Microbiol 5: 128-140.
Belcourt, M. F., and P. J. Farabaugh, 1990 Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62: 339352.

Berretta, J., M. Pinskaya and A. Morillon, 2008 A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev 22: 615-626.
Bobola, N., R. P. Jansen, T. H. Shin and K. NaSmyth, 1996 Asymmetric accumulation of Ashlp in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84: 699-709.
Boeke, J. D., D. J. Garfinkel, C. A. Styles and G. R. Fink, 1985 Ty elements transpose through an RNA intermediate. Cell 40: 491-500.
Bohl, F., C. Kruse, A. Frank, D. Ferring and R. P. Jansen, 2000 She2p, a novel RNAbinding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. Embo J 19: 5514-5524.
Bomsztyk, K., O. Denisenko and J. Ostrowski, 2004 hnRNP K: one protein multiple processes. Bioessays 26: 629-638.
Buckanovich, R. J., and R. B. Darnell, 1997 The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Mol Cell Biol 17: 3194-3201.
Buckanovich, R. J., Y. Y. Yang and R. B. Darnell, 1996 The onconeural antigen Nova-1 is a neuron-specific RNA-binding protein, the activity of which is inhibited by paraneoplastic antibodies. J Neurosci 16: 1114-1122.
Bumgarner, S., and G. R. Fink, unpublished data.
Chartrand, P., X. H. Meng, R. H. Singer and R. M. Long, 1999 Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo. Curr Biol 9: 333-336.
Chen, X., and J. Y. Chen, 2000 Cloning and Functional Analysis of ALS Family Genes from Candida albicans. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 32: 586-594.
Conte, D., Jr., E. Barber, M. Banerjee, D. J. Garfinkel and M. J. Curcio, 1998 Posttranslational regulation of Tyl retrotransposition by mitogen-activated protein kinase Fus3. Mol Cell Biol 18: 2502-2513.
Curcio, M. J., and D. J. Garfinkel, 1991a Regulation of retrotransposition in Saccharomyces cerevisiae. Mol Microbiol 5: 1823-1829.
Curcio, M. J., and D. J. Garfinkel, 1991b Single-step selection for Ty1 element retrotransposition. Proc Natl Acad Sci U S A 88: 936-940.
Currie, J. R., and W. T. Brown, 1999 KH domain-containing proteins of yeast: absence of a fragile X gene homologue. Am J Med Genet 84: 272-276.
de Godoy, L. M., J. V. Olsen, G. A. de Souza, G. Li, P. Mortensen et al., 2006 Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol 7: R50.
Dejgande, K., and H. Leffers, 1996 Characterisation of the nucleic-acid-binding activity of KH domains. Different properties of different domains. Eur J Biochem 241: 425-431.
Dejgaard, K., H. Leffers, H. H. Rasmussen, P. Madsen, T. A. Kruse et al., 1994 Identification, molecular cloning, expression and chromosome mapping of a family of
transformation upregulated hnRNP-K proteins derived by alternative splicing. J Mol Biol 236: 33-48.
Deng, Y., R. H. Singer and W. Gu, 2008 Translation of ASH1 mRNA is repressed by Puf6pFun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev 22: 10371050.

Denisenko, O., and K. Bomsztyk, 2002 Yeast hnRNP K-like genes are involved in regulation of the telomeric position effect and telomere length. Mol Cell Biol 22: 286-297.
Denisenko, O., and K. Bomsztyk, 2008 Epistatic interaction between the K-homology domain protein HEK2 and SIR1 at HMR and telomeres in yeast. J Mol Biol 375: 1178-1187.
Dreyfuss, G., 1986 Structure and function of nuclear and cytoplasmic ribonucleoprotein particles. Annu Rev Cell Biol 2: 459-498.
Dreyfuss, G., Y. D. Choi and S. A. Adam, 1984 Characterization of heterogeneous nuclear RNA-protein complexes in vivo with monoclonal antibodies. Mol Cell Biol 4: 11041114.

Dreyfuss, G., V. N. Kim and N. Kataoka, 2002 Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3: 195-205.
Dreyfuss, G., M. J. Matunis, S. Pinol-Roma and C. G. Burd, 1993 hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62: 289-321.
Du, Z., S. Fenn, R. Tjhen and T. L. James, 2008 Structure of a construct of a human poly(C)binding protein containing the first and second KH domains reveals insights into its regulatory mechanisms. J Biol Chem 283: 28757-28766.
Du, Z., J. K. Lee, S. Fenn, R. Tjhen, R. M. Stroud et al., 2007 X-ray crystallographic and NMR studies of protein-protein and protein-nucleic acid interactions involving the KH domains from human poly(C)-binding protein-2. RNA 13: 1043-1051.
Du, Z., J. K. Lee, R. Tuhen, S. Li, H. Pan et al., 2005 Crystal structure of the first KH domain of human poly(C)-binding protein-2 in complex with a C-rich strand of human telomeric DNA at 1.7 A. J Biol Chem 280: 38823-38830.
Evdokimova, V. M., and L. P. Ovchinnikov, 1999 Translational regulation by Y-box transcription factor: involvement of the major mRNA-associated protein, p50. Int J Biochem Cell Biol 31: 139-149.
Fenn, S., Z. Du, J. K. Lee, R. Tjhen, R. M. Stroud et al., 2007 Crystal structure of the third KH domain of human poly(C)-binding protein-2 in complex with a C-rich strand of human telomeric DNA at 1.6 A resolution. Nucleic Acids Res 35: 2651-2660.
Fidalgo, M., R. R. Barrales and J. Jimenez, 2008 Coding repeat instability in the FLO11 gene of Saccharomyces yeasts. Yeast 25: 879-889.
Fischer, C., O. Valerius, H. Rupprecht, M. Dumkow, S. Krappmann et al., 2008 Posttranscriptional regulation of FLO11 upon amino acid starvation in Saccharomyces cerevisiae. FEMS Yeast Res 8: 225-236.
Gagiano, M., F. F. Bauer and I. S. Pretorius, 2002 The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2: 433-470.
Galitski, T., A. J. Saldanha, C. A. Styles, E. S. Lander and G. R. Fink, 1999 Ploidy regulation of gene expression. Science 285: 251-254.
Garfinkel, D. J., 2005 Genome evolution mediated by Ty elements in Saccharomyces. Cytogenet Genome Res 110: 63-69.

Garfinkel, D. J., A. M. Hedge, S. D. Youngren and T. D. Copeland, 1991 Proteolytic processing of pol-TYB proteins from the yeast retrotransposon Ty1. J Virol 65: 45734581.

Garfinkel, D. J., K. Nyswaner, J. Wang and J. Y. Cho, 2003 Post-transcriptional cosuppression of Ty1 retrotransposition. Genetics 165: 83-99.
Gebauer, F., and M. W. Hentze, 2004 Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5: 827-835.
Gimeno, C. J., P. O. Luungdahl, C. A. Styles and G. R. Fink, 1992 Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 1077-1090.
Glisovic, T., J. L. Bachorik, J. Yong and G. Dreyfuss, 2008 RNA-binding proteins and posttranscriptional gene regulation. FEBS Lett 582: 1977-1986.
Gu, W., Y. Deng, D. Zenklusen and R. H. Singer, 2004 A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev 18: 1452-1465.
Gygi, S. P., Y. Rochon, B. R. Franza and R. Aebersold, 1999 Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19: 1720-1730.
Halbeisen, R. E., T. Scherrer and A. P. Gerber, 2009 Affinity purification of ribosomes to access the translatome. Methods.
Halme, A., S. Bumgarner, C. Styles and G. R. Fink, 2004 Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116: 405-415.
Hasegawa, Y., K. Irie and A. P. Gerber, 2008 Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14: 2333-2347.
Hicks, J. B., and I. Herskowitz, 1976 Interconversion of Yeast Mating Types I. Direct Observations of the Action of the Homothallism (HO) Gene. Genetics 83: 245-258.
Hogan, D. J., D. P. Riordan, A. P. Gerber, D. Herschlag and P. O. Brown, 2008 Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6: e255.
Hoyer, L. L., C. B. Green, S. H. Oh and X. Zhao, 2008 Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family--a sticky pursuit. Med Mycol 46: 115.

Huttelmaier, S., D. Zenklusen, M. Lederer, J. Dictenberg, M. LorenZ et al., 2005 Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438: 512-515.
Ingolia, N. T., S. Ghaemmaghami, J. R. Newman and J. S. Weissman, 2009 Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324: 218-223.
Irie, K., T. Tadauchi, P. A. Takizawa, R. D. Vale, K. Matsumoto et al., 2002 The Khd1 protein, which has three KH RNA-binding motifs, is required for proper localization of ASH1 mRNA in yeast. Embo J 21: 1158-1167.
Jensen, K. B., K. Musunuru, H. A. Lewis, S. K. Burley and R. B. Darnell, 2000 The tetranucleotide UCAY directs the specific recognition of RNA by the Nova K-homology 3 domain. Proc Natl Acad Sci U S A 97: 5740-5745.
JiANG, Y. W., 2002 Transcriptional cosuppression of yeast Tyl retrotransposons. Genes Dev 16: 467-478.

Kawakami, K., S. Pande, B. Faiola, D. P. Moore, J. D. Boeke et al., 1993 A rare tRNA$\operatorname{Arg}(\mathrm{CCU})$ that regulates Tyl element ribosomal frameshifting is essential for Tyl retrotransposition in Saccharomyces cerevisiae. Genetics 135: 309-320.
KeEne, J. D., 2007 RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8: 533-543.
Keene, J. D., and S. A. Tenenbaum, 2002 Eukaryotic mRNPs may represent posttranscriptional operons. Mol Cell 9: 1161-1167.
Kim, J. M., S. Vanguri, J. D. Boeke, A. Gabriel and D. F. Voytas, 1998 Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8: 464-478.
Kron, S. J., C. A. Styles and G. R. Fink, 1994 Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell 5: 1003-1022.
Kuersten, S., and E. B. Goodwin, 2003 The power of the 3^{\prime} UTR: translational control and development. Nat Rev Genet 4: 626-637.
Laloux, I., E. Dubois, M. Dewerchin and E. Jacobs, 1990 TEC1, a gene involved in the activation of Tyl and Ty1-mediated gene expression in Saccharomyces cerevisiae: cloning and molecular analysis. Mol Cell Biol 10: 3541-3550.
Landers, S. M., M. R. Gallas, J. Little and R. M. Long, 2009 She3p possesses a novel activity required for ASH1 mRNA localization in Saccharomyces cerevisiae. Eukaryot Cell.
Le Hir, H., E. Izaurralde, L. E. Maquat and M. J. Moore, 2000a The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19: 6860-6869.
Le Hir, H., M. J. Moore and L. E. Maquat, 2000b Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev 14: 1098-1108.
Le Hir, H., and B. Seraphin, 2008 EJCs at the heart of translational control. Cell 133: 213-216.
Leffers, H., K. Dejgaard and J. E. Celis, 1995 Characterisation of two major cellular poly(rC)-binding human proteins, each containing three K-homologous (KH) domains. Eur J Biochem 230: 447-453.
Lesage, P., and A. L. Todeschini, 2005 Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 110: 70-90.
Lewis, H. A., H. Chen, C. Edo, R. J. Buckanovich, Y. Y. Yang et al., 1999 Crystal structures of Nova-1 and Nova-2 K-homology RNA-binding domains. Structure 7: 191-203.
Licatalosi, D. D., A. Mele, J. J. Fak, J. Ule, M. Kayikci et al., 2008 HitS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456: 464-469.
Liu, H., C. A. Styles and G. R. Fink, 1996 Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144: 967-978.
Lo, H. J., J. R. Kohler, B. DiDomenico, D. Loebenberg, A. Cacciapuoti et al., 1997 Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939-949.
Lo, W. S., and A. M. Dranginis, 1996 FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178: 7144-7151.
Lo, W. S., and A. M. Dranginis, 1998 The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9: 161-171.

Long, R. M., R. H. Singer, X. Meng, I. Gonzalez, K. Nasmyth et al., 1997 Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277: 383-387.
Lukong, K. E., K. W. Chang, E. W. Khandjian and S. Richard, 2008 RNA-binding proteins in human genetic disease. Trends Genet 24: 416-425.
Macdonald, P. M., and C. A. Smibert, 1996 Translational regulation of maternal mRNAs. Curr Opin Genet Dev 6: 403-407.
Madhani, H. D., and G. R. Fink, 1998 The riddle of MAP kinase signaling specificity. Trends Genet 14: 151-155.
Madhani, H. D., C. A. Styles and G. R. Fink, 1997 MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91: 673-684.
Makeyev, A. V., and S. A. Liebhaber, 2000 Identification of two novel mammalian genes establishes a subfamily of KH-domain RNA-binding proteins. Genomics 67: 301-316.
Makeyev, A. V., and S. A. Liebhaber, 2002 The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA 8: 265-278.
Maniatis, T., and R. Reed, 2002 An extensive network of coupling among gene expression machines. Nature 416: 499-506.
Matunis, M. J., W. M. Michael and G. Dreyfuss, 1992 Characterization and primary structure of the poly (C)-binding heterogeneous nuclear ribonucleoprotein complex K protein. Mol Cell Biol 12: 164-171.
Merkulov, G. V., K. M. Swiderek, C. B. Brachmann and J. D. Boeke, 1996 A critical proteolytic cleavage site near the C terminus of the yeast retrotransposon Tyl Gag protein. J Virol 70: 5548-5556.
Messias, A. C., and M. Sattler, 2004 Structural basis of single-stranded RNA recognition. Acc Chem Res 37: 279-287.
Mili, S., and J. A. Steitz, 2004 Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. Rna 10: 16921694.

Mitchell, A. P., 1998 Dimorphism and virulence in Candida albicans. Curr Opin Microbiol 1: 687-692.
Moore, M. J., 2005 From birth to death: the complex lives of eukaryotic mRNAs. Science 309: 1514-1518.
Morillon, A., M. Springer and P. Lesage, 2000 Activation of the Kss1 invasive-filamentous growth pathway induces Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol Cell Biol 20: 5766-5776.
Mosch, H. U., and G. R. Fink, 1997 Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145: 671-684.
Nasmyth, K., 1993 Regulating the HO endonuclease in yeast. Curr Opin Genet Dev 3: 286-294.
Newman, J. R., S. Ghaemmaghami, J. Ihmels, D. K. Breslow, M. Noble et al., 2006 Singlecell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441: 840-846.
Noble, S. M., and A. D. Johnson, 2007 Genetics of Candida albicans, a diploid human fungal pathogen. Annu Rev Genet 41: 193-211.
Ostareck-Lederer, A., D. H. Ostareck, N. Standart and B. J. Thiele, 1994 Translation of 15-lipoxygenase mRNA is inhibited by a protein that binds to a repeated sequence in the 3' untranslated region. EMBO J 13: 1476-1481.

Ostrowski, J., Y. Kawata, D. S. Schullery, O. N. Denisenko, Y. Higaki et al., 2001 Insulin alters heterogeneous nuclear ribonucleoprotein K protein binding to DNA and RNA. Proc Natl Acad Sci U S A 98: 9044-9049.
Ostrowski, J., D. S. Schullery, O. N. Denisenko, Y. Higaki, J. Watts et al., 2000 Role of tyrosine phosphorylation in the regulation of the interaction of heterogenous nuclear ribonucleoprotein K protein with its protein and RNA partners. J Biol Chem 275: 36193628.

Ostrowski, J., L. Wyrwicz, L. Rychlewski and K. Bomsztyk, 2002 Heterogeneous nuclear ribonucleoprotein K protein associates with multiple mitochondrial transcripts within the organelle. J Biol Chem 277: 6303-6310.
Pan, X., and J. Heitman, 1999 Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19: 4874-4887.
Pan, X., and J. Heitman, 2000 Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol 20: 83648372.

Paquin, N., M. Menade, G. Poirier, D. Donato, E. Drouet et al., 2007 Local activation of yeast ASH1 mRNA translation through phosphorylation of Khdlp by the casein kinase Yck1p. Mol Cell 26: 795-809.
Paziewska, A., L. S. Wyrwicz, J. M. Bujnicki, K. Bomsztyk and J. Ostrowski, 2004 Cooperative binding of the hnRNP K three KH domains to mRNA targets. FEBS Lett 577: 134-140.
Paziewska, A., L. S. Wyrwicz and J. Ostrowski, 2005 The binding activity of yeast RNAs to yeast Hek2p and mammalian hnRNP K proteins, determined using the three-hybrid system. Cell Mol Biol Lett 10: 227-235.
Pinol-Roma, S., Y. D. Choi, M. J. Matunis and G. Dreyfuss, 1988 Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev 2: 215-227.
Pinol-Roma, S., and G. Dreyfuss, 1992 Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355: 730-732.
Ptacek, J., G. Devgan, G. Michaud, H. Zhu, X. Zhu et al., 2005 Global analysis of protein phosphorylation in yeast. Nature 438: 679-684.
Roberts, R. L., and G. R. Fink, 1994 Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8: 2974-2985.
Rupp, S., E. Summers, H. J. Lo, H. Madhani and G. Fink, 1999 MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. Embo J 18: 1257-1269.
Sanford, J. R., X. Wang, M. Mort, N. Vanduyn, D. N. Cooper et al., 2009 Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res 19: 381-394.
Schneider, D., L. Gold and T. Platt, 1993 Selective enrichment of RNA species for tight binding to Escherichia coli rho factor. FASEB J 7: 201-207.
SenGupta, D. J., B. Zhang, B. Kraemer, P. Pochart, S. Fields et al., 1996 A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci U S A 93: 84968501.

Shehu-Xhilaga, M., S. M. Crowe and J. Mak, 2001 Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J Virol 75: 1834-1841.
Shepard, K. A., A. P. Gerber, A. Jambhekar, P. A. Takizawa, P. O. Brown et al., 2003 Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc Natl Acad Sci U S A 100: 11429-11434.
Sil, A., and I. Herskowitz, 1996 Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84: 711-722.
Siomi, H., and G. Dreyfuss, 1997 RNA-binding proteins as regulators of gene expression. Curr Opin Genet Dev 7: 345-353.
Takizawa, P. A., A. Sil, J. R. Swedlow, I. Herskowitz and R. D. Vale, 1997 Actindependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389: 90-93.
Thisted, T., D. L. Lyakhov and S. A. Liebhaber, 2001 Optimized RNA targets of two closely related triple KH domain proteins, heterogeneous nuclear ribonucleoprotein K and alphaCP-2KL, suggest Distinct modes of RNA recognition. J Biol Chem 276: 1748417496.

Ule, J., K. Jensen, A. Mele and R. B. Darnell, 2005 CLIP: a method for identifying proteinRNA interaction sites in living cells. Methods 37: 376-386.
Ule, J., K. B. Jensen, M. Ruggiu, A. Mele, A. Ule et al., 2003 CLIP identifies Nova-regulated RNA networks in the brain. Science 302: 1212-1215.
Valverde, R., L. Edwards and L. Regan, 2008 Structure and function of KH domains. FEBS J 275: 2712-2726.
Valverde, R., I. Pozdnyakova, T. Kajander, J. Venkatraman and L. Regan, 2007 Fragile X mental retardation syndrome: structure of the KH1-KH2 domains of fragile X mental retardation protein. Structure 15: 1090-1098.
Voynov, V., K. J. Verstrepen, A. Jansen, V. M. Runner, S. Buratowski et al., 2006 Genes with internal repeats require the THO complex for transcription. Proc Natl Acad Sci U S A 103: 14423-14428.
Wang, Z., N. Day, P. Trifillis and M. Kiledjian, 1999 An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol Cell Biol 19: 4552-4560.
Winston, F., K. J. Durbin and G. R. Fink, 1984 The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39: 675-682.
Xu, H., and J. D. Boeke, 1990 Host genes that influence transposition in yeast: the abundance of a rare tRNA regulates Tyl transposition frequency. Proc Natl Acad Sci U S A 87: 83608364.

Yeo, G. W., N. G. Coufal, T. Y. Liang, G. E. Peng, X. D. Fu et al., 2009 An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol 16: 130-137.
Zaragoza, O., and J. M. Gancedo, 2000 Pseudohyphal growth is induced in Saccharomyces cerevisiae by a combination of stress and cAMP signalling. Antonie Van Leeuwenhoek 78: 187-194.

Chapter 2: Feed-forward regulation of a cell fate determinant by an RNA-binding protein generates asymmetry in yeast

Abstract

Saccharomyces cerevisiae can divide asymmetrically so that the mother and daughter cells have different fates. We show that the RNA-binding protein Khd1 regulates asymmetric expression of $F L O 11$ to determine daughter cell fate during filamentous growth. Khd1 represses transcription of FLO11 indirectly through its regulation of ASH1 mRNA. Khd1 also represses $\operatorname{FLO} 11$ through a post-transcriptional mechanism independent of $A S H 1$. Cross-linking immunoprecipitation (CLIP) coupled with highthroughput sequencing shows that Khd1 directly binds repetitive sequences in FLO 11 mRNA. Khd1 inhibits translation through this interaction, establishing feed-forward repression of $\mathrm{FLO11}$. This regulation enables changes in FLO11 expression between mother and daughter cells, which establishes the asymmetry required for the developmental transition between yeast form and filamentous growth.

INTRODUCTION

Asymmetric cell division produces two cells with different developmental fates (Horvitz and Herskowitz 1992). The unequal inheritance of cell fate determinants establishes this asymmetry in many systems through diverse mechanisms that ultimately produce asymmetric gene expression between cells (MACARA and MILI 2008). In multicellular eukaryotes, this process directs a cell lineage down a developmental path. In Saccharomyces cerevisiae, each mitotic division requires a new decision to determine the fate of the daughter cell, providing a tractable model to study the underlying mechanisms of asymmetric cell division.

The RNA-binding protein Khd1 (KH-domain protein 1) regulates asymmetric expression of $A S H 1$ in budding yeast to control mating type switching, a key developmental event in haploid cells (HASEGAWA et al. 2008; IRIE et al. 2002; PAQUIN et al. 2007). Ash1 protein accumulates specifically in the nuclei of daughter cells (BOBOLA et al. 1996; Sil and Herskowitz 1996). Genetic and biochemical analysis led to the model that Khd1 represses translation of $A S H 1$ mRNA during transport to the bud tip, where phosphorylation by Yck1 reduces the affinity of Khd1 for the transcript, relieving repression and allowing translation to occur (Chartrand et al. 2002; Irie et al. 2002; LONG et al. 1997; PAQUIN et al. 2007). As Ash1 is a transcription factor that represses mating type switching, translational repression of ASH1 mRNA in the mother but not the daughter leads to asymmetry - the mother can switch mating type, but the daughter can not (Chartrand et al. 2002; Paquin and Chartrand 2008; Strathern and Herskowitz 1979).

ASH1 has also been implicated in the regulation of filamentous growth, another developmental event in S. cerevisiae (Chandarlapaty and Errede 1998). Under conditions of nitrogen starvation, diploid cells enact a specialized growth program characterized by an elongated morphology and unipolar budding that leads to the formation of filaments (Gimeno et al. 1992). The transition to filamentous growth requires an asymmetric cell division, as a yeast form mother cell produces a filamentous daughter cell. ASH1 regulates filamentous growth by activating expression of FLO 11 (PAN and Heitman 2000), which encodes a cell wall protein required for this growth form (Lambrechts et al. 1996; Lo and Dranginis 1996; Lo and Dranginis 1998). Cells induce FLO11 expression to activate filamentation in response to nitrogen starvation (Lo and

Dranginis 1998). Deletion of $A S H 1$ prevents both $F L O 11$ expression (Pan and Heitman 2000) and the transition to filamentous growth (Chandarlapaty and Errede 1998).

Khd1 has no known role in regulating filamentous growth. However, since Khd1 represses $A S H 1$ in the context of mating type switching, it may regulate $A S H 1$ during filamentation as well. Given that RNA-binding proteins can coordinate the expression of mRNAs encoding functionally related proteins (KEENE 2007), Khd1 may regulate additional genes in the filamentation pathway. Microarray analysis following immunoprecipitation of Khd1 has been used to identify its mRNA targets (HASEGAWA et al. 2008; HogAN et al. 2008), but the strains used do not transcribe FLO11 mRNA (LIU et al. 1996) and the binding of Khd1 to mRNAs of the filamentation pathway such as FLO11 would not have been detected.

The ability to comprehensively define post-transcriptional regulatory networks has been enormously advanced by the cross-linking immunoprecipitation (CLIP) method. CLIP utilizes UV radiation to crosslink an RNA-binding protein to its direct RNA targets in vivo, providing a snapshot of binding interactions. Direct sequencing of the RNAs following RNAse treatment localizes binding sites to a 60-100 nucleotide region within target transcripts (UlE et al. 2003). CLIP has been used in combination with highthroughput sequencing to comprehensively identify RNA targets of mammalian RNAbinding proteins (LICATALOSI et al. 2008; SANFORD et al. 2009; Yeo et al. 2009), but has not been previously applied to yeast.

In this report, we use genetic analysis and CLIP coupled with high-throughput sequencing to determine the role of Khd1 in regulating filamentous growth. We find that Khdl regulates both transcription and translation of $F L O 11$ to repress filamentation. Khd1 represses $F L O 11$ at the transcriptional level through its inhibition of $A S H 1$, as we
predicted based on published regulatory interactions (Chandarlapaty and Errede 1998; Hasegawa et al. 2008; Irie et al. 2002; Pan and Heitman 2000; PaQuin et al. 2007), and at the post-transcriptional level by directly repressing translation of $F L O 11 \mathrm{mRNA}$. The feedforward regulation of $F L O 11$ by Khd1 provides a dynamic mechanism to generate asymmetric expression and determine daughter cell fate following cell division. FLO11 mRNA is the predominant unique transcript bound by Khd1, indicating this regulation is a primary function of the protein. Khd1 binds to repeated sequences in the coding region of $F L O 11$ mRNA and mRNAs encoding many other cell surface proteins, suggesting that this RNA binding protein may coordinate the synthesis of many disparate proteins that assemble into the cell wall.

MATERIALS AND METHODS

Yeast strains, media and growth conditions

All yeast strains used in this study are derived from $\Sigma 1278$ b and listed in Table S1. Standard yeast media, yeast transformations and genetic manipulations were performed as previously described (GUTHRIE and Fink 1991). To induce filamentation, strains were grown on nitrogen-poor SLAD media (GIMENO et al. 1992). Approximately 20 cells per strain were spotted onto a SLAD plate in $50 \mu \mathrm{~L}$ of water to compare filamentation under comparable conditions. To assay agar adhesion, 10^{6} cells were spotted onto a YPD plate in $5 \mu \mathrm{~L}$ and grown for 3 days at $30^{\circ} \mathrm{C}$ prior to washing. Yeast strains carrying gene deletions were constructed by PCR amplification of kanamycin-resistance gene cassettes from the yeast deletion library (WINZELER et al. 1999) with approximately 200 bases of flanking sequence and transformation into $\Sigma 1278 \mathrm{~b}$. Yeast strains carrying TAP-tagged Khd1 were similarly constructed by amplification of the KHD1-TAP::HIS3 construct from the TAP-tag
library (Ghaemmaghami et al. 2003) and transformation into $\Sigma 1278$ b. Strains carrying $P_{A D H}$ or $P_{C Y C 1}$ (JANKE et al. 2004) were constructed by PCR amplification with primers containing 50bp of homology to the target locus and transformation into $\Sigma 1278 \mathrm{~b}$. Strains carrying GFP::ADH 3' UTR::URA3 or ADH 3' UTR::URA3 were similarly constructed using a plasmid provided by Sherwin Chan. See Table S2 for primer sequences.

Plasmid construction

The Khd1 overexpression construct was made by amplifying the gene using PCR, with oligonucleotides that added restriction sites (NotI at the 5^{\prime} end, XhoI at the 3^{\prime} end) to the final product (Table S2). Amplified DNA was digested using NotI and XhoI and cloned into p413TEF (MUMBERG et al. 1995).

Flow cytometry and immunofluoresence

Single colonies were picked after 2 days of growth on YPD plates and resuspended in 1.5 mL liquid YPD. Cells were inoculated into 10 mL liquid YPD and grown for 18 hours to $\mathrm{OD}_{600} 0.13-0.16$, washed twice with PBS , and resuspended in $50 \mu \mathrm{~L} \mathrm{PBS}$ containing $1 / 4$ μ L Alexafluor 488-conjugated anti-hemaglutinin antibody (Molecular Probes A-21287). Cells were incubated 30 minutes at $4^{\circ} \mathrm{C}$ and washed three times in PBS prior to flow cytometry using the BD FACSCalibur, or imaging with the Nikon Eclipse TE2000-S.

qPCR

Total RNA was obtained by standard acid phenol extraction from 1 ml of cultures grown to $\mathrm{OD}_{600} 0.9-1.1$ in YPD. The Qiagen QuantiTect Reverse Transcription Kit was used to remove residual genomic DNA and reverse transcribe the RNA templates to
generate cDNAs. Aliquots of cDNA were used in Real Time PCR analyses with reagents from Applied Biosystems and the ABI 7500 real-time PCR system.

Immunoprecipitation for measuring RNA enrichment

TAP tag immunoprecipitation and RNA isolation was performed as previously described (Gerber et al. 2004), using 200 mL of starting culture rather than 1 L and proportionately fewer reagents.

Cross-linking immunoprecipitation

Khd1-TAP was purified from 1 L of cells grown to an OD_{600} of 2.5 and UVcrosslinked three times at $400 \mathrm{~mJ} / \mathrm{cm}^{2}$. Purification using calmodulin sepharose was followed by binding to magnetic IgG beads (File S1). The CLIP protocol was then followed as previously described (UlE et al. 2005). The resulting cDNA was amplified using PCR with oligonucleotides containing sequences for hybridization to the Illumina flow cell (Table S2).

Illumina sequencing

Samples were sequenced using Illumina sequencing with a custom primer (Table S2), returning $16,026,920$ thirty-six nucleotide long reads. Reads containing unresolved bases (N) were ignored. The complete set of reads contained $6,324,854$ unique sequences. All reads were mapped to the $\sum 1278$ b genome (Dowell et al. 2010) using Novoalign (v1.05; 2nd September 2008) with default settings. All mappings are included, weighted inversely by the number of genomic locations to which a read maps. The reads have been deposited in the Sequence Read Archive under accession number SRA012416.

Peak calling

The peak caller uses a rolling window approach (10 base windows; 5 base offset) to compare the observed reads to those expected from a Poisson background model. Adjacent enriched windows are combined into peaks. Peaks are assigned to genes based on overlap with existing annotation, extending 500 nucleotides in each direction (unless the extension overlaps adjacent annotation) to account for UTRs.

A local (5 kb) window is used to parameterize the background model. A visual examination of the read mappings relative to available tiled expression data (DANFORD et al. 2010) indicates reads are strand specific and show perfect correspondence with expressed segments, indicating the background of possible RNA binding sites is the transcriptome, not the genome. A weak correlation is observed between the expression levels of a transcript and the number of observed reads.

We set a peak cutoff by maximizing the correspondence of gene targets predicted relative to the targets reported by Hasegawa (HASEGAWA et al. 2008). The peaks are weighted by the corresponding expression level of each transcript, as determined from tiled expression data (DANFORD et al. 2010). Only peaks containing at least 50% of the reads of the transcript's maximal peak size are considered.

Motif discovery

Three methods were utilized to identify the motif recognized by Khd1. First, MEME (v4.1; (BAILEY and Elkan 1994)) was utilized on the sequences under the peaks, filtering to remove highly identical sequences (80% identity). Second, all k-mers were evaluated (for $\mathrm{k}=1,2-, 3,4$) to identify over-represented sequences under the peaks. Random non-peak windows of matching length were selected from the same set of
transcripts as the peaks to calculate the distribution of background k-mers. Finally, RNApromo (RABANI et al. 2008) and CMfinder (YAO et al. 2006) were applied to the peaks to search for potential secondary structure. The structure motifs returned were single stranded loops with sequence patterns consistent with the primary sequence motif identified by MEME. Presence of the discovered MEME motif within the peak list was determined using MAST (v4.1; (Bailey and Gribskov 1998)) with default parameters.

Western blot analysis

Protein was prepared using TCA precipitation from 3 mL of culture grown to OD_{600} of .9-1.1, resuspended in $150 \mu \mathrm{~L}$ SDS loading buffer, and boiled for 10 minutes. 10 $\mu \mathrm{L}$ were run on a 10% SDS-polyacrylamide gel and transferred to nitrocellulose filter paper. Blotting against GFP was performed with mouse anti-GFP primary antibody (Roche 11814460001) and HRP-conjugated sheep anti-mouse secondary antibody (Amersham NA931V), and against tubulin using rat anti-tubulin (Accurate Chemicals MCA77G) and HRP-conjugated goat anti-rat antibody (Jackson ImmunoResearch 112-035-062). Blots were detected using SuperSignal West Femto Substrate (Thermo Scientific 34095).

RESULTS

Khd1 has ASH1-dependent and ASH1-independent functions in repressing $\operatorname{FLO} 11$

Given that ASH1 promotes filamentous growth (Chandarlapaty and Errede 1998) by activating transcription of $F L O 11$ (Pan and Heitman 2000), and that Khdl represses $A S H 1$ in the context of mating type switching (HASEGAWA et al. 2008; IRIE et al. 2002; PAQUIN et al. 2007), we hypothesized that Khd1 regulates filamentous growth. Genetic analysis shows that Khdl represses filamentation. The $k h d 1 \Delta / k h d 1 \Delta$ mutant is
hyperfilamentous relative to wild type, and cells fail to filament when Khd1 is overexpressed (Figure 1A). The hyperfilamentation phenotype of the $k h d 1 \Delta / k h d 1 \Delta$ mutant requires $F L O 11$. As is the case with the flo11 $\Delta /$ flo 11Δ mutant, the $k h d 1 \Delta / k h d 1 \Delta$ flo11D/flo11D mutant is nonfilamentous (Figure 1B). These findings are consistent with our prediction that Khd1 regulates filamentation by repressing transcription of FLO11 indirectly through its translational repression of $A S H 1$ mRNA.

However, Khd1 represses filamentation at least in part through an ASH1independent pathway. The $k h d 1 \Delta / k h d 1 \Delta$ ash $1 \Delta /$ ash 1Δ double mutant is filamentous,

unlike the ash $1 \Delta /$ ash 1Δ single mutant, indicating that Khd1 represses filamentation independent of ASH1 (Figure 1B). This finding extends to haploid agar adhesion, another FLO11-dependent phenotype. Cells deleted for KHD1 adhere more than wild type cells, and khdld ash 1Δ double mutants adhere more than ash 1Δ single mutants (Figure 1C). As is the case for filamentation, adhesion of both wild type and khd1s cells requires FLO11 (Figure 1C; Lambrechts et al. 1996, Lo and Dranginis 1998). These data show that Khd1 represses FLO11-dependent phenotypes independent of ASH1.

Given the repression of FLO11-dependent phenotypes by Khd1, we tested whether Khd1 regulates FLO11 expression. To quantify FLO11 expression, we employed a FLO11::HA allele that permits the measurement of Flo11 protein in individual cells (GUO et al. 2000). Flo11 protein is expressed in a subset of cells in a clonal population because of variegating transcription from the FLO11 promoter (Bumgarner et al. 2009; Halme et al. 2004). Mutations that affect $F L O 11$ mRNA levels and filamentation show a corresponding change in the number of cells containing the $F L O 11:: H A$ allele that stain positive using an anti-HA antibody (HALME et al. 2004).

Flow cytometry shows that Khd1 represses expression of Flo11 protein. Deletion of

Table 1

Khd1 represses Flo11 protein expression independent of ASH1

Strain	\% Cells Expressing Flo11	Mean Expression in Flo11 Positive Cells
wild type	58 ± 6	100 ± 13
khd $1 \Delta /$ khd 1Δ	80 ± 4	153 ± 18
	14 ± 2	56 ± 3
khd14/khd14 ash14/ash14	32 ± 5	61 ± 5

Values are average of four independent trials. Error reported as standard deviation.

KHD1 increases the percentage of diploid cells expressing Flo11 protein (Table 1). In addition, the $k h d 1 \Delta / k h d 1 \Delta$ cells that express Flo11 protein do so at a higher level than wild type cells expressing Flo11.

Similar to its regulation of filamentous growth, Khd1 represses Flo11 protein expression independent of $A S H 1$. Although the populations of $k h d 1 \Delta / k h d 1 \Delta$ ash $1 \Delta / a s h 1 \Delta$ and ash1 $\Delta /$ ash 1Δ cells that express Flo11 display similar levels of the protein, a higher percentage of $k h d 1 \Delta / k h d 1 \Delta$ ash $1 \Delta / a s h 1 \Delta$ cells express Flo11 (Table 1). The Flo11 expression data, together with the filamentation and agar adhesion phenotypes, point to an ASH1-independent function for Khd1 in repressing $F L O 11$.

To explore the regulation of FLO 11 by Khd1, we used qPCR to measure FLO 11 mRNA levels. $k h d 1 \Delta / k h d 1 \Delta$ mutants have increased $F L O 11$ mRNA levels relative to wild type (Figure 2), which indicates that Khd1 represses $F L O 11$ mRNA accumulation. In contrast to its ASH1 independent repression of filamentation and Floll protein expression, Khd1 represses FLO11 mRNA levels exclusively through its regulation of ASH1. khd1 $/$ /khd1 Δ ash1 $/$ ash1 Δ double mutants display the same $F L O 11$ mRNA levels as ash 1Δ /ash 1Δ single mutants, which are below that of wild type (Figure 2). We conclude that Khd1 represses transcription of FLO11 mRNA through its regulation of $A S H 1$. The

Figure 2-Khd1 represses FLO 11 mRNA levels through ASH1. FLO11 mRNA levels normalized to ACT1 mRNA. Values are average of four independent experiments. Error reported as standard deviation.
restoration of filamentation and increased Flo11 protein expression in $k h d 1 \Delta / k h d 1 \Delta$ ash $1 \Delta / a s h 1 \Delta$ relative to ash $1 \Delta / a s h 1 \Delta$, without a concomitant increase in $\mathrm{FLOl1}$ mRNA levels, suggests that Khd1 represses FLO11 through a posttranscriptional mechanism as well.

Khd1 binds repeated sequences in the FLO11 open reading

frame

The post-transcriptional regulation of $F L O 11$ by Khd1 suggested that Khd1 might interact with FLO11 mRNA. To address this possibility, we tested whether FLO11 mRNA co-immunoprecipitates with a TAP-tagged version of Khd1. qPCR shows that immunoprecipitation of Khd1-TAP enriches FLO11 mRNA more than 50-fold (Figure 3A). The same immunoprecipitation does not enrich FLO11 mRNA when Khd1 is untagged. Immunoprecipitations testing for an interaction between Khd1 and constructs containing different combinations of the $F L O 11$ open reading frame and untranslated regions indicate that Khd1 interacts with the FLO11 coding sequence (Figure S 1).

To examine the interaction between Khd1 and $F L O 11$ mRNA further, we identified RNA binding sites for Khd1 using CLIP in conjunction with high-throughput sequencing (File S2, Figure S2, Table S3). The CLIP analysis shows that Khd1 interacts directly with repetitive sequences in FLO11 mRNA in vivo (Figure 3B). FLO11 mRNA is the most frequently represented unique mRNA in the data set; of the 16 million sequences we generated, 1.97 million derive from Khd1 binding to $F L O 11$ mRNA.

To determine whether the repeated sequences in $F L O 11$ mRNA are sufficient for recognition by Khd1, we generated a construct that isolates the $F L O 11$ repetitive element. Immunoprecipitation of Khd1-TAP enriches a transcript with the FLO11 repeats fused to GFP driven by the $A D H$ promoter (Figure 3C). Because the repeats cause a ten-fold decrease in $G F P$ mRNA levels relative to the $A D H$ promoter driving $G F P$ alone (Figure S3), we used the weaker $C Y C 1$ promoter to express comparable levels of $G F P$ without the repeated sequences. GFP mRNA does not enrich in the Khd1-TAP immunoprecipitation when driven by either promoter in the absence of the FLO11 repetitive element (Figure

3C). We conclude that the repeated sequences in $F L O 11 \mathrm{mRNA}$ are sufficient for recognition by Khd1.

Figure 3.-Khd1 binds repetitive sequences in the $F L O 11$ open reading frame. (A) Enrichment of FLO11 mRNA following immunoprecipitation from cells expressing either Khd1-TAP or untagged Khd1. (B) Khd1 target sequences from CLIP map to the FLO11 repetitive element. Histogram of read mappings overlaid on a dot plot highlighting the repetitive region of the FLO11 open reading frame from the $\sum 1278 \mathrm{~b}$ genome (http://www.vivo.colostate.edu/molkit/dnadot/ window size $=11$, mismatch limit $=1$). (C) Enrichment of constructs following immunoprecipitation of Khd1-TAP. Enrichments expressed as the level of the transcript relative to $A C T 1 \mathrm{mRNA}$ in the immunoprecipitate divided by the level of the transcript relative to $A C T 1$ mRNA in the input. Values are average of four independent experiments. Error reported as standard deviation.

Khd1 represses translation through the FLO11 repetitive element

We used the construct with GFP fused to the FLO11 repetitive element to test the effect of Khd1 binding to this region. Western blotting shows that GFP protein levels from this fusion construct increase 12 -fold in $k h d 1 \Delta$ relative to wild type (Figure 4 A compare lanes 1 and 2). qPCR measurements show that Khd1 expression causes a two-fold decrease in mRNA levels from this construct (Figure 4B compare lanes 1 and 2). We attribute the remaining six-fold difference in GFP protein levels relative to $G F P \mathrm{mRNA}$ levels between wild type and khd1D to translational repression that results from Khd1 binding the FLO11 repetitive element. Khd1 overexpression further represses the construct with the FLO11 repeats fused to $G F P$, reducing the amount of GFP protein below that seen with the empty vector, without affecting $G F P \mathrm{mRNA}$ (Figure $4 \mathrm{~A}, 4 \mathrm{~B}$, compare lanes 1 and 3).

B

Figure 4.-Khd1 represses translation through the FLO11 repeats. (A) Western blot analysis of GFP protein levels from constructs expressing GFP alone, or GFP fused to the FLO11 repetitive sequences. $P_{\text {TEF }}-K H D 1$ is an overexpressio n construct. The only visible band detected from wild type, and the predominant band from the khd1 Δ mutant, migrate at the same molecular weight as GFP alone, suggesting that translation initiated at the GFP start codon. The higher migrating band from khdld may result from low levels of translation initiation inside the repetitive element that become visible after derepression. (B) GFP mRNA levels normalized to TUB1 mRNA levels for the strains shown in (A). Values are average of four independent experiments. Error reported as standard deviation.

Neither deletion or overexpression of Khd1 affects protein or mRNA levels from constructs lacking the $\mathrm{FLO11}$ repetitive element (Figure 4A, 4B lanes 5-8, Figure S4). In addition to repressing transcription of FLO11 by regulating ASH1 expression, Khd1 represses translation through its interaction with repeated sequences in $F L O 11$ mRNA.

Translational repression of the fusion construct is consistent with the posttranscriptional repression of Flo11 protein expression by Khd1. Although Khdl does not appear to regulate endogenous $F L O 11$ mRNA levels independent of $A S H 1$ (Figure 2), mRNA levels from the construct with the $F L O 11$ repeats fused to $G F P$ increase in the $k h d 1 \Delta$ mutant (Figure 4B). The fusion transcript may be subject to different regulation than FLO11 mRNA independent of Khd1. Alternatively, low levels of FLO11 mRNA in the ash1 1 /ash 1Δ mutant may preclude detection of small changes in stability. To test FLO11 mRNA stability, we used the $A D H$ promoter to transcribe full-length FLO11 mRNA and measured its steady-state levels, similar to our measurement of mRNA from the fusion construct. In the $k h d 1 \Delta$ mutant, $F L O 11$ mRNA levels from this construct are 63% of those in wild type. Changes in mRNA stability alone do not explain the differences between mRNA and protein levels for either the fusion construct or endogenous FLO11 in the absence of Khd1. Therefore, translational repression through the repeats is the predominant post-transcriptional regulation of $F L O 11$ mRNA by Khd1.

Khd1 regulates Flo11 asymmetry

Flo11 protein expression determines daughter cell fate during filamentous growth. To determine whether the transcriptional and translational regulation by Khd1 affects Flo11 expression between mother and daughter cells, we scored Flo11 expression patterns using the $F L O 11:: H A$ allele and fluorescence microscopy. The four possible expression patterns

Figure 5.-Khd1 regulates mother-daughter Flo11 expression. Fluorescence microscopy was used to visualize Flol1 protein expression from the FLO11::HA allele. (A) Flo11 expression patterns in mother-daughter pairs. (B) Khd1 affects the frequency at which daughter cells express Flo11 protein. The chance that a mother cell gives rise to a daughter cell expressing Flo11 protein increases when KHD1 is deleted, independent of $A S H 1$ and whether or not the mother cell expresses Flo11 protein. The frequency of a daughter cell expressing Flo11 protein being produced from a mother cell that expresses Floll protein was determined by dividing the number of these mother-daughter pairs by the total number of pairs in which the mother expresses Flo11 protein. The frequency of a daughter cell expressing Flol1 protein being produced from a mother cell that does not express Floll protein was determined by dividing the number of these mother-daughter pairs by the total number of pairs in which the mother does not express Flol1. 250 mother-daughter pairs were analyzed per genotype in each of nine separate trials. Error reported as standard deviation.
between mother and daughter cells were each observed (Figure 5A). Mother cells that express Flo11 can give rise to daughter cells that also express the protein, or those that
switch Flo11 expression off. Reciprocally, mother cells that do not express Flo11 can produce daughter cells that similarly do not express the protein, or those that switch Flo11 expression on. We calculated probabilities for daughter cell Flo11 expression given the Flo11 expression of the mother cell based on the frequencies of these expression patterns.

Repression by Khd1 reduces the frequency of Flo11 expression in daughter cells. Compared to wild type daughter cells, $k h d 1 \Delta / k h d 1 \Delta$ daughter cells are more likely to express Flo11 protein whether or not it is expressed in the mother (Figure 5B). These increases result from the loss of the combined transcriptional and translational repression of $F L O 11$ by Khd1. More $k h d 1 \Delta / k h d 1 \Delta$ ash1 $/$ ash 1Δ daughter cells than ash1 $/$ ash 1Δ daughter cells also express Flo11 protein whether or not it is expressed in the mother (Figure 5B). These increases result solely from the loss of translational repression by Khd1, since the deletion of $A S H 1$ inactivates the transcriptional regulation. Although the loss of Khd1-mediated translational repression of FLO 11 mRNA increases the expression of Flo11 protein in daughter cells, maximal induction of Flo11 expression in daughter cells, seen in the $k h d 1 \Delta / k h d 1 \Delta$ mutant, requires the dual relief of both the transcriptional and translational repression of FLO11 by Khd1.

Khd1 binds many mRNAs that encode cell wall proteins

Khd1 binds a number of mRNAs encoding cell wall proteins in addition to FLO11 mRNA. 54 of the Khd 1 target mRNAs we identify using CLIP (Table S4) encode proteins that play a role in cell wall function, nearly half of the 114 genes with this annotation ($\mathrm{p}=$ 5.85×10^{-15}) (BEISSBARTH and Speed 2004). Similar to FLO11 mRNA, many of the Khd1 targets that encode cell surface proteins contain repeated sequences. When target genes
are sorted by the number of sequences that map to their binding sites, nine of the top ten - FLO11, SED1, YIL169C, AGA1, SCW10, MSB2, RPO21, CRH1, and YNL190W- contain repeats (reported in VERSTREPEN et al. 2005 or determined by visual inspection) and eight of these nine encode cell surface proteins, with the lone exception being RPO21. With the exception of CRH1 mRNA, Khd1 binds these nine transcripts through their repetitive elements (Figure S5, Figure 3B), implying that Khd1 frequently binds repeated sequences. Khd1 appears to have a bias for messages with repeated sequences as it binds mRNAs transcribed from 32 of the 44 S. cerevisiae genes previously reported to contain intragenic repeats (VERSTREPEN et al. 2005).

However, the presence of repeats is not the only determinant of Khd1 binding. First, not all mRNAs bound by Khd1 have repeated sequences. Second, in some cases where Khd1 binds to messages with repeated sequences, the binding is not in the region of repeats (Figure S3, CRH1). Third, Khd1 does not bind all mRNAs that contain repeated sequences.

To understand the determinants of recognition by Khd1, we analyzed the sequences within its binding sites. MEME analysis (BAILEY and Elkan 1994) produces a

Figure 6.-Motif recognized by Khd1. MEME result from the sequences within the binding sites identified by CLIP.
degenerate octamer motif (Figure 6) that occurs in 12% of the Khd1 binding sites. This result is consistent with the CNN repeats found to mediate Khd l binding in a previous study (HASEGAWA et al. 2008). Examination of our motif reveals additional features that may contribute to the interaction between Khd1 and its target RNAs. The repeating CA pattern is similar to the one found in RNAs
recognized by the mammalian RNA-binding protein Nova (BUCKANOVICH and DARNELL 1997; Jensen et al. 2000; Licatalosi et al. 2008; Ule et al. 2003). Khd1 and Nova both contain three K-homology RNA-binding domains (Buckanovich et al. 1993; Currie and Brown 1999), and structural studies indicate that the third KH domain in Nova makes specific contacts with the internal CA in a YCAY (where Yindicates a pyrimidine, U or C) tetramer (LeWIS et al. 2000). CA is the most enriched dinucleotide (1.8-fold relative to background) in the Khdl binding sites. Two of the four tetranucleotides with the highest enrichments relative to background - CAAC, CUCC, CAUC, and CUAC are enriched 3.3-, 3.0-, 2.9-, and 2.6-fold respectively - contain CA in the first and second position, but not internally as in the YCAY motif. All four contain C in the first and last position. This analysis identifies new possible determinants of recognition by Khd1, but despite our high-resolution detection of in vivo binding sites, we do not find a motif to explain the specificity of Khd1 for all of its RNA targets.

DISCUSSION

Our genetic and biochemical studies show that Khd1 acts post-transcriptionally on two mRNAs to repress FLO11 expression and filamentation. Previous studies showed that ASH1 activates FLO11 expression (PAN and Heitman 2000) and filamentous growth (Chandarlapaty and Errede 1998), and that Khd1 represses translation of ASH1 mRNA in the context of mating type switching (Hasegawa et al. 2008; Irie et al. 2002; PaQuin et al. 2007). Our results demonstrate that Khd1 represses FLO11 expression both through its regulation of $A S H 1$, and by directly inhibiting translation of $F L O 11$ mRNA through repetitive sequences in the open reading frame. This dual inhibition places Khd1 at the
head of a feed-forward loop regulating FLO 11 (Figure 7) and raises the question of why cells employ this regulatory architecture.

Figure 7.-Feed-torward regulation of FLO 11 by Khd1. Khd1 regulates transcription of $\mathrm{FLO11}$ through its repression of $A S H 1 \mathrm{mRNA}$, and directly represses translation by binding repeated sequences in the onen reading frame of FLO . 11 mRNA .

The answer may reside in the biology of FLO11, whose function is required to switch from the yeast form to the filamentous form (Halme et al. 2004; LAMBRECHTS et al. 1996; LO and Dranginis 1998). In the first cell cycle under conditions of nitrogen starvation, over 90% of yeast form cells produce a filamentous bud (AHN et al. 1999). The immediate relief of Khd1mediated translational repression on an existing pool of FLO11 mRNA would allow for the rapid production of Floll protein in the first daughter cell even if the mother cell did not express the protein during yeast form growth. This effect is seen comparing Flo11 protein expression between ash $1 \Delta / a s h 1 \Delta$ and $k h d 1 \Delta / k h d 1 \Delta$ ash $1 \Delta / a s h 1 \Delta$. More $k h d 1 \Delta / k h d 1 \Delta$ ash $1 \Delta /$ ash 1Δ cells express Flo11 protein than ash $1 \Delta /$ ash 1Δ cells (Table 1), resulting from the higher likelihood that a daughter cell expresses Floll protein whether or not it is expressed in the mother cell (Figure 5B). Given that there is not a concomitant increase in FLO11 mRNA levels (Figure 2), this change represents increased translation of FLO11 mRNA upon the loss of Khd1-mediated repression. The rapid inductive response leading to filamentation in the daughter suggests that repression by Khd1 may be quickly relieved under conditions of nitrogen starvation.

A filamentous cell expressing Flo11 protein can divide to produce a yeast form cell that does not express Flo11 protein (Halme et al. 2004). Such a rapid transition may require inhibition of both transcription and translation of $F L O 11 \mathrm{mRNA}$. This dual control would repress preexisting $F L O 11$ mRNA from the mother, and prevent the daughter from transcribing new $F L O 11$ mRNA. Khd1 can execute both of these functions to produce asymmetric Flo11 protein expression. Since Flo11 protein is required in the daughter cell to maintain filamentous growth, the increase in Flo11 protein expression when repression by Khd1 is lost in the $k h d 1 \Delta / k h d 1 \Delta$ mutant (Table 1, Figure 5C) likely explains its hyperfilamentation phenotype (Figure 1A).

This model for asymmetric FLO11 expression and developmental switching posits differential Khd1 activity between cells. This heterogeneity would explain a surprising aspect of the changes in Flo11 protein expression between the ash1 1Δ /ash 1Δ and $k h d 1 \Delta / k h d 1 \Delta$ ash $1 \Delta / a s h 1 \Delta$ mutants. In the absence of $A S H 1$, the loss of Khd1 enables a higher percentage of cells to express Flo11 protein, but not more of it (Table 1). Individual cells can therefore express Flo11 protein at the same level whether or not they can express Khd1. Because $A S H 1$ is deleted, deletion of $K H D 1$ relieves translational repression on FLO 11 mRNA , but does not affect FLO 11 transcription (Figure 7). If Khd1 repressed translation of $F L O 11$ mRNA uniformly across all cells, its absence in $k h d 1 \Delta / k h d 1 \Delta$ ash $1 \Delta /$ ash 1Δ cells would result in increased levels of Flo11 protein. Instead, it appears that some cells containing Khd1 fail to repress translation of FLO11 mRNA, and deletion of KHD1 simply expands this population. Phosphorylation of Khd1 by Yck1 regulates its repression of $A S H 1$ mRNA during mating type switching (PAQUIN et al. 2007). Although deletion of YCK1 does not affect filamentous growth (data not shown), post-translational modifications may regulate Khd1 to generate heterogeneous
activity and enable the rapid changes in FLO11 expression that underlie asymmetry during filamentous growth.

The asymmetry that arises when a yeast form mother cell produces a filamentous daughter cell has similarities to the asymmetry of mothers and daughters with respect to mating type switching. In both morphogenetic events, the mother and daughter have different developmental outcomes dependent on asymmetric gene expression. The two processes also have some differences. One striking difference is that Ash1 activates filamentation but represses mating type switching, which could reflect the different potentials of the mother and daughter cells between the two processes. The asymmetric expression of ASH1 allows the mother to switch mating type, but prevents the daughter from doing so (Chartrand et al. 2002; PaQuin and Chartrand 2008; Strathern and HERSKOWITZ 1979). However, an elliptical yeast form mother cell already encased in a cell wall of defined structure does not elongate. Instead it is the daughter cell that must express Flo11 protein to develop into a filamentous cell.

The developmental potential of the mother cell is constrained because filamentous growth requires a different program for construction of the cell wall. In this context it may be significant that Khdl binds 54 mRNAs that encode proteins annotated to function in this macromolecular structure. Post-transcriptional regulation of these genes by Khd1 could provide a unifying mechanism for constructing this organelle. One mechanism for coordinating translational control of these messages would be to have a signature binding site in the mRNAs dedicated to this function. Although we observe a motif consistent with a previous report that used other methods to identify Khd 1 binding sites (HASEGAWA et al. 2008), we do not identify a sequence that comprehensively explains recognition by Khd1.

These data suggest that although the motif we identify contributes to target recognition by Khd1, there must be additional recognition determinants.

Our studies identify a new biological role for Khd1. Its bipartite repression of FLO11 provides dynamic regulation that controls the expression of a cell fate determinant in the daughter cell. Given the prevalence of sequences derived from FLO11 in the CLIP experiment, this likely represents a major function for Khd1. Khdl binds a number transcripts that encode cell wall proteins through repetitive sequences in addition to FLO11 mRNA, and Khd1 may regulate the synthesis of many proteins that play a role in this structure. The documented expansion and contraction of the repeats bound by Khd1 (VERSTREPEN et al. 2005) would generate target sequences of diverse lengths that could be bound differentially, and as a consequence produce altered levels of these cell surface proteins. These changes could have important consequences for the structure and function of the yeast cell wall.

ACKNOWLEDGEMENTS

We thank the members of the laboratories of G.R.F. and D.K.G. for discussions; A. Mele and R. Darnell for advice and technical support with CLIP; A. Rolfe for assistance with computational methods; B. Chin for critical reading of the manuscript. This work was supported by NIH Grants GM04026, GM035010, and GM069676, and the Abraham Siegel Fellowship and NSF Graduate Research Fellowship to J.J.W. G.R.F is an American Cancer Society Professor.

REFERENCES

Ahn, S. H., A. Acurio and S. J. Kron, 1999 Regulation of G2/M progression by the STE mitogen-activated protein kinase pathway in budding yeast filamentous growth. Mol Biol Cell 10: 3301-3316.
Bailey, T. L., and C. Elkan, 1994 Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2: 28-36.
Bailey, T. L., and M. Gribskov, 1998 Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14: 48-54.
Beissbarth, T., and T. P. Speed, 2004 GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20: 1464-1465.
Bobola, N., R. P. JANSEN, T. H. Shin and K. NASmyth, 1996 Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84: 699-709.
Buckanovich, R. J., and R. B. Darnell, 1997 The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Mol Cell Biol 17: 3194-3201.
Buckanovich, R. J., J. B. Posner and R. B. Darnell, 1993 Nova, the paraneoplastic Ri antigen, is homologous to an RNA-binding protein and is specifically expressed in the developing motor system. Neuron 11: 657-672.
Bumgarner, S. L., R. D. Dowell, P. Grisafi, D. K. Gifford and G. R. Fink, 2009 Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc Natl Acad Sci U S A 106: 18321-18326.
Chandarlapaty, S., and B. Errede, 1998 Ash1, a daughter cell-specific protein, is required for pseudohyphal growth of Saccharomyces cerevisiae. Mol Cell Biol 18: 2884-2891.
Chartrand, P., X. H. Meng, S. Huttelmaier, D. Donato and R. H. Singer, 2002 Asymmetric sorting of Ash1p in yeast results from inhibition of translation by localization elements in the mRNA. Mol Cell 10: 1319-1330.
Currie, J. R., and W. T. Brown, 1999 KH domain-containing proteins of yeast: absence of a fragile X gene homologue. Am J Med Genet 84: 272-276.
Danford, T. W., R. D. Dowell, S. Agarwala, P. Grisafi, G. R. Fink et al., 2010 Discoverying regulatory overlapping RNA transcripts. Fourteenth International Conference on Research in Computational Molecular Biology: Lisbon, Portugal.
Dowell, R. D., O. Ryan, A. Jansen, D. Cheung, S. Agarwala et al., 2010 Genotype to phenotype: a complex problem. Science 328: 469.
Gerber, A. P., D. Herschlag and P. O. Brown, 2004 Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2: E79.
Ghaemmaghami, S., W. K. Huh, K. Bower, R. W. Howson, A. Belle et al., 2003 Global analysis of protein expression in yeast. Nature 425: 737-741.
Gimeno, C. J., P. O. Ljungdahl, C. A. Styles and G. R. Fink, 1992 Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 1077-1090.
Guo, B., C. A. Styles, Q. Feng and G. R. Fink, 2000 A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A 97: 1215812163.

Guthrie, C., and G. R. Fink, 1991 Guide to yeast genetics and molecular biology. Academic Press, San Diego.

Halme, A., S. Bumgarner, C. Styles and G. R. Fink, 2004 Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116: 405-415.
Hasegawa, Y., K. Irie and A. P. Gerber, 2008 Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14: 2333-2347.
Hogan, D. J., D. P. Riordan, A. P. Gerber, D. Herschlag and P. O. Brown, 2008 Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6: e255.
Horvitz, H. R., and I. Herskowitz, 1992 Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68: 237-255.
Irie, K., T. Tadauchi, P. A. Takizawa, R. D. Vale, K. Matsumoto et al., 2002 The Khd1 protein, which has three KH RNA-binding motifs, is required for proper localization of ASH1 mRNA in yeast. Embo J 21: 1158-1167.
Janke, C., M. M. Magiera, N. Rathfelder, C. Taxis, S. Reber et al., 2004 A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947-962.
Jensen, K. B., K. Musunuru, H. A. Lewis, S. K. Burley and R. B. Darnell, 2000 The tetranucleotide UCAY directs the specific recognition of RNA by the Nova K-homology 3 domain. Proc Natl Acad Sci U S A 97: 5740-5745.
Keene, J. D., 2007 RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8: 533-543.
Lambrechts, M. G., F. F. Bauer, J. Marmur and I. S. Pretorius, 1996 Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A 93: 8419-8424.
Lewis, H. A., K. Musunuru, K. B. Jensen, C. Edo, H. Chen et al., 2000 Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Cell 100: 323-332.
Licatalosi, D. D., A. Mele, J. J. Fak, J. Ule, M. Kayikci et al., 2008 HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456: 464-469.
Liu, H., C. A. Styles and G. R. Fink, 1996 Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144: 967-978.
Lo, W. S., and A. M. Dranginis, 1996 FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178: 7144-7151.
Lo, W. S., and A. M. Dranginis, 1998 The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9: 161-171.
Long, R. M., R. H. Singer, X. Meng, I. Gonzalez, K. Nasmyth et al., 1997 Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277: 383-387.
Macara, I. G., and S. Mili, 2008 Polarity and differential inheritance--universal attributes of life? Cell 135: 801-812.
Mumberg, D., R. Muller and M. Funk, 1995 Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119-122.
Pan, X., and J. Heitman, 2000 Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol 20: 83648372.

PAQUIN, N., and P. Chartrand, 2008 Local regulation of mRNA translation: new insights from the bud. Trends Cell Biol.
Paquin, N., M. Menade, G. Poirier, D. Donato, E. Drouet et al., 2007 Local activation of yeast ASH1 mRNA translation through phosphorylation of Khdlp by the casein kinase Yck1p. Mol Cell 26: 795-809.
Rabani, M., M. Kertesz and E. Segal, 2008 Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes. Proc Natl Acad Sci U S A 105: 14885-14890.
Sanford, J. R., X. Wang, M. Mort, N. Vanduyn, D. N. Cooper et al., 2009 Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res 19: 381-394.
Sil, A., and I. Herskowitz, 1996 Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84: 711-722.
Strathern, J. N., and I. Herskowitz, 1979 Asymmetry and directionality in production of new cell types during clonal growth: the switching pattern of homothallic yeast. Cell 17: 371381.

Ule, J., K. Jensen, A. Mele and R. B. Darnell, 2005 CLIP: a method for identifying proteinRNA interaction sites in living cells. Methods 37: 376-386.
Ule, J., K. B. Jensen, M. Ruggiu, A. Mele, A. Ule et al., 2003 CLIP identifies Nova-regulated RNA networks in the brain. Science 302: 1212-1215.
Verstrepen, K. J., A. Jansen, F. Lewitter and G. R. Fink, 2005 Intragenic tandem repeats generate functional variability. Nat Genet 37: 986-990.
Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson et al., 1999 Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901-906.
Yao, Z., Z. Weinberg and W. L. Ruzzo, 2006 CMfinder--a covariance model based RNA motif finding algorithm. Bioinformatics 22: 445-452.
Yeo, G. W., N. G. Coufal, T. Y. Liang, G. E. Peng, X. D. Fu et al., 2009 An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol 16: 130-137.

SUPPORTING INFORMATION

File S1

Supporting Methods

Cross-linking Immunoprecipitation

1 L of cells containing the KHD1-TAP allele were harvested at OD 2.5, washed twice with water and resuspended in 10X pellet volume. UV crosslinking was performed by irradiating shallow layers of this suspension three times at $400 \mathrm{~mJ} / \mathrm{cm}^{2}$. Cells were washed in calmodulin binding buffer (CBB) with $.1 \%$ NP-40 (RIGAUT et al. 1999) and protease inhibitors (leupeptin, pepstatin, PMSF), resuspended in 10 mL and separated and into FastPrep tubes. 600 micron glass beads were added to $\sim 1 / 3$ volume and lysis performed three times, 45 seconds at maximum speed in a FastPrep 3000.

The lysate was collected by puncturing the bottom of the tube and spinning the sample into a 15 mL tube. Samples were spun at $3,000 \mathrm{rpm}$ for 5 minutes and the supernatant was collected. The pellet was resuspended in 5 mL CBB with $.1 \%$ NP-40 and protease inhibitors, spun again at $3,000 \mathrm{rpm}$ for 5 minutes, and the supernatant collected. This process was repeated one more time. RNAse A (USB 70194Y) was added to the pooled supernatants at a dilution of 1:50,000 or 1:1,000 and incubated at 37 Celsius for 10 minutes. The sample was split into microcentrifuge tubes and spun at $9,500 \mathrm{rpm}$ for 5 minutes. The supernatant was transferred to fresh tubes and spun at $12,000 \mathrm{rpm}$ for 5 minutes. The supernatant was used for immunoprecipitation.
$300 \mu \mathrm{~L}$ calmodulin-agarose beads (GE Healthcare 17-0529-01) were equilibrated for ten minutes in CBB with $.1 \%$ NP-40 three times. The equilibrated beads were added to the supernatant and incubated for 2 hours at 4 Celsius on a rocking platform. The beads were collected through a column and washed twice in 5 mL CBB with $.1 \%$ NP-40 and
twice in 5 mL CBB with $.02 \%$ NP-40. Protein was incubated in 3 mL calmodulin elution buffer (CEB) (Rigaut et al. 1999) for 45 minutes at 4 Celsius on a rocking platform and then collected in a 15 mL tube. The beads were twice washed with 1 mL CEB which was pooled with the initial eluate.
$800 \mu \mathrm{~L}$ Dynalbeads (Invitrogen 112-010) were equilibrated in CEB three times for ten minutes, added to the eluate, and incubated for 1 hour at 4° Celsius on a rocking platform. The beads were collected using a magnet and transferred to a microcentrifuge tube. They were washed with Nelson stringent buffer (5 mM Tris, $\mathrm{pH} 7.5,5 \mathrm{mM}$ EDTA, 2.5 mM EGTA, 1% Triton X-100, $1 \% \mathrm{Na}-\mathrm{DOC}, 0.1 \% \mathrm{SDS}, 120 \mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM} \mathrm{KCl})$ followed by Nelson high salt buffer (15 mM Tris, pH 7.5, 5 mM EDTA, 2.5 mM EGTA, 1% Triton X-100, $1 \% \mathrm{Na}-\mathrm{DOC}, 0.1 \% \mathrm{SDS}, 1 \mathrm{M} \mathrm{NaCl})$ for 10 minutes each at 4° Celsius on a rocking platform and transferred to a new tube where they were washed twice in Nelson low salt buffer (15 mM Tris, pH 7.5, 5 mM EDTA).

After this immunoprecipitation, the CLIP protocol was followed as previously described to obtain DNA molecules for sequencing (UlE et al. 2005), with the exception of the primers used for cDNA amplification as noted in the main text.

LITERATURE CITED

Rigaut, G., A. Shevchenko, B. Rutz, M. Wilm, M. Mann et al., 1999 A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17: 1030-1032.
Ule, J., K. Jensen, A. Mele and R. B. Darnell, 2005 CLIP: a method for identifying proteinRNA interaction sites in living cells. Methods 37: 376-386.

File S2

Supporting Results

CLIP specifically identifies in vivo RNA targets of Khd1

Multiple control experiments were conducted to ensure that CLIP specifically identified in vivo RNA targets of Khd1. As part of this analysis, Khd1-RNA complex formation was visualized by end labeling RNAs following immunoprecipitation of Khd1TAP and treatment with RNAse A as previously described (Ule et al. 2005). Non-specific RNA contaminants migrate at a much lower molecular weight than protein-RNA complexes, and can be separated using SDS-PAGE. Additionally, transfer to nitrocellulose membrane retains the protein-RNA complexes, but not free RNA (SANFORD et al. 2008; Ule et al. 2003). Khd1-RNA complexes were then visualized using autoradiography.

Khd1-RNA complex formation requires UV crosslinking (Figure S2) as has been previously demonstrated using mammalian RNA-binding proteins (SANFORD et al. 2008; Ule et al. 2003). Khd1-TAP has a predicted molecular weight of approximately 63 kilodaltons (kDa), but Western blot analysis shows the protein migrates at slightly less than 75 kDa during SDS-PAGE (data not shown). When a high concentration of RNAse A is used, Khd1-RNA complexes migrate slightly higher than 75 kDa (Figure S2). With lower RNAse A concentrations, longer RNA molecules are maintained leading to an increase in the molecular weight of the complexes (Figure S2).

Immunoprecipitation of Khd1-TAP from un-crosslinked cells was used to determine whether pure samples of Khd1 were obtained. Mass spectrometry of the band at about 75 kDa revealed no major protein species co-migrating with Khd1-TAP (data not shown), suggesting the signal on the autoradiogram derives specifically from Khd1-RNA complexes.

Immunoprecipitation of other RNA-binding proteins following crosslinking resulted in the formation of protein-RNA complexes of an expected size based on the molecular weight of the protein, but no complexes were seen when proteins without RNA-binding domains were used (data not shown).

Based on the above results, we conclude the sequences we obtained derive specifically from interactions between Khdl and its endogenous RNA targets.

LITERATURE CITED

Sanford, J. R., P. Coutinho, J. A. Hackett, X. Wang, W. Ranahan et al., 2008 Identification of nuclear and cytoplasmic mRNA targets for the shuttling protein SF2/ASF. PLoS One 3: e3369.
Ule, J., K. Jensen, A. Mele and R. B. Darnell, 2005 CLIP: a method for identifying proteinRNA interaction sites in living cells. Methods 37: 376-386.
Ule, J., K. B. Jensen, M. Ruggiu, A. Mele, A. Ule et al., 2003 CLIP identifies Nova-regulated RNA networks in the brain. Science 302: 1212-1215.

Figure S1.-Khd1 Interaction with FLO11 mRNA requires the ORF. Enrichment following immunoprecipitation from cells expressing Khd1-TAP or untagged Khd1 calculated as in Figure 3. The FLO11 5', 3'construct contains a complete replacement of the FLO11 ORF with URA3. The FLO11 5' and 3' UTRs remain intact in this construct. The FLO11 5' construct retains the FLO11 5' UTR but replaces everything downstream of the start codon with GFP followed by the ADH1 3' UTR. The FLO11 5', ORF construct maintains the FLO11 5' UTR and ORF but substitutes the ADH1 3' UTR for the FLO11 3' UTR. Neither FLO11 UTR is sufficient for the interaction with Khd1; immunoprecipitation of Khdl-TAP only enriches transcripts containing the FLO11 ORF.

Figure S2.- CLIP identifies RNA targets of Khd1. Following immunoprecipitation of Khd1-TAP, protein RNA complexes were labeled as previously described (ULE et al. 2005), separated by size using SDS PAGE, and visualized using autoradiography. (A) Khd1-RNA complex formation is dependent on UV crosslinking. (B) Increased digestion with RNAse A increases complex mobility. A band from the sample with the $1: 50,000$ RNAse A dilution was isolated for sequencing as previously described (ULE et al. 2005).

Figure S3.-Fusion to the FLO11 repeats decreases GFP mRNA levels. GFP mRNA normalized to TUB1 mRNA. Constructs diagrammed in Figure 4. Values are average of four independent experiments. Error reported as standard deviation.
A
Prow 1 Gap

construct	$P_{A D H}-G F P$		
	vector		
plasmid	$P_{\text {TEF }}-K H D 1$		
genomic KHD1	WT Δ	WT $\quad \Delta$	

B

Figure S4.-KHD1 does not affect expression from the $A D H$ promoter. (A) Western blot analysis of $P_{A D H}-G F P$ reporter construct. (B) $G F P$ mRNA normalized to $T U B 1 \mathrm{mRNA}$ for the strains shown in (A). Values are average of four independent experiments. Error reported as standard deviation.

Figure S5.-Top Khd1 targets contain repetitive sequences. Nine of the top ten targets identified by CLIP contain internal repeats ($F L O 11$ depicted in Figure 3B). Histogram of read density from CLIP experiment overlaid on a dot plot highlighting the repetitive region of each ORF. For each ORF, histogram scale shown at top right, ORF length shown at bottom right. See Figure 4 for dot plot specifications.

TABLE S1

Yeast strains and plasmids used in this study.

Strain	Genotype	Source
JW971	MATa/ α his3::hisG/his3::hisG ura3-52/ura3-52	This study
JW1064	MATa/ α his3::hisG/his3::hisG ura3-52/ura3-52 khd1::kanMX4/khd1::kanMX4	This study
JW1066	MATa/ α his3::hisG/his3::hisG ura3-52/ura3-52 ash 1::kanMX4/ash1::kanMX4	This study
JW1068	MATa/ α his3::hisG/his3::hisG ura3-52/ura3-52 flo11::kanMX4/flo11::kanMX4	This study
JW1033	MATa/ α his3::hisG/his3::hisG ura3-52/ura3-52 ash1::kanMX4/ash1::kanMX4 khd1::kanMX4/khd1::kanMX4	This study
JW1027	MATa/ α his3::hisG/his3::hisG ura3-52/ura3-52 flo11::kanMX4/flo11::kanMX4 khd1::kanMX4/khd1::kanMX4	This study
JW928	MATa his3::hisG ura3-52	This study
JW994	MATa his3::hisG ura3-52 khd1::kanMX4	This study
JW1052	MAT ${ }^{\text {his } 3:: h i s G ~ u r a 3-52 ~ a s h ~ 1:: k a n M X 4 ~}$	This study
JW1055	MAT α his3::his $\mathrm{ura3-52}$ flo11::kanMX4	This study
JW1032	MAT α his3::hisG ura3-52 ash1::kanMX4 khd1::kanMX4	This study
JW1026	MAT ${ }^{\text {his3::hisG ura3-52 flo11::kanMX4 khdl::kanMX4 }}$	This study
L6902	MATa/ FLO11::HA/FLO11::HA his3::hisG/his3::hisG ura3-52/ura3-52	Fink laboratory collection
JW214	MATa/ α FLO11::HA/FLO11::HA his3::hisG/his3::hisG ura3-52/ura3-52 khd1::kanMX4/khd1::kanMX4	This study
JW364	MATa/ α FLO11::HA/FLO11::HA his3::hisG/his3::hisG ura3-52/ura3-52 ash1::kanMX4/ash1::kanMX4	This study
JW1045	MATa/ α FLO11::HA/FLO11::HA his3::hisG/his3::hisG ura3-52/ura3-52 ash 1::kanMX4/ash1::kanMX4 khd1::kanMX4/khd1::kanMX4	This study
JW295	MATa his3::hisG trp1::hisG leu2::hisG ura3-52 KHD1-TAP::HIS3	This study
JW700	MATa his3::hisG trp1::hisG leu2::hisG ura3-52 KHD1-TAP::HIS3 $P_{\text {FLOII }}$:URA3	This study
JW248	MATa his3::hisG trp1::hisG leu2::hisG ura3-52 KHD1-TAP::HIS3 $P_{\text {FLOII } 1: G F P:: A D H 1 ~ 3 ' ~ U T R:: U R A 3 ~}^{\prime}$	This study
JW715	MAT人 his3::hisG trp1::hisG leu2::hisG ura3-52 KHD1-TAP::HIS3 FLO11::ADH1 3' UTR::URA3	This study
JW1239	MATa his3::hisG ura3-52 KHD1-TAP::HIS3 flo11::natNT2:: $P_{A D H}:: F L O 11$ repeats::GFP::ADH1 3' UTR::URA3	This study
JW1255	MATa his3::hisG ura3-52 KHD1-TAP::HIS3 flo11::natNT2::P ADH $:$ GFP:::ADH1 3' UTR::URA3	This study
JW1778	MATa his3::hisG ura3-52 KHD1-TAP::HIS3 flo11::natNT2::P $P_{C Y C 1}:$:GFP::ADH1 3' UTR::URA3	This study
JW1226	MATa his3::hisG ura3-52 flo11::natNT2::P $P_{A D H}:: F L O 11$ repeats::GFP::ADH1 3' UTR::URA3	This study
JW1245	MATa his3::hisG ura3-52 khd1::kanMX4 flo11::natNT2:: ADH: :FLO11 repeats::GFP::ADH1 3' UTR::URA3	This study
JW1547	MATa his3::hisG ura3-52 flo11::natNT2::P ADH $:$:GFP::ADH1 3' UTR::URA3	This study
JW1564	MATa his3::hisG ura3-52 flo11::natNT2::P $P_{A D H}:$ GFP::ADH1 3' UTR::URA3 khd1::kanMX4	This study
JW1549	MATa his3::hisG ura3-52 flo11::natNT2::P CYC1: GFP::ADH1 3' UTR::URA3	This study
JW1566	MATa his3::hisG ura3-52 flo11::natNT2::P $P_{C Y C 1}:$ GFP::ADH1 3' UTR::URA3 khd1::kanMX4	This study
JW1330	MATa his3::hisG ura3-52 natNT2:: $\mathrm{P}_{\text {ADH }}:$ FLO11	This study

JW1430	MATa his3::hisG ura3-52 natNT2:: $P_{A D H}::$ FLO11 khd1::kanMX4	This study
Plasmid	Insert	Source
p413TEF		Mumberg et al. 1995
p413TEF-KHD1	KHD1	This study
yEGFP3::ADH1 3' UTR::URA3	Sherwin Chan	

TABLE S2

Oligonucleotides used in this study

Name	Sequence (5' to 3')	Description
JW4	caaacttgctgagtccatgc	amplify KHD1-TAP::HIS3
JW5	cgcgaaatgtttaaagcaag	amplify KHD1-TAP::HIS3
JW17	tggtcatcctgtaggtttgttg	amplify khd1::kanMX4
JW18	cagttctgccgggatacagt	amplify khdl::kanMX4
JW39	cgtgcgtctgatttctacga	amplify ash1::kanMX4
JW44	aagcaggttccgctatttca	amplify ash1::kanMX4
JW46	aattgggattcaaggcatca	amplify flo 11:: kanMX4
JW47	aattgggattcaaggcatca	amplify flo 11::kanMX4
JW48	aaggaaaaaagcggccgctggtcatcetgtaggttgttg	clone KHD1
JW49	atatatccgctcgagcgttgtattgttgttcggattg	clone KHDI
JW176	taattaagaatatactttgtaggcctcaaaaatccatatacgcacactatgcgtacgetgcaggtcgac	$P_{A D H} / P_{C Y C I}$ amplification
JW186	caattgttgtcacaatctatgttccaatagaagcctgggaaatctgtttgcatcgatgaattctctgtcg	$P_{A D H}$ fused to $\mathrm{FLO11}$ repeats
JW218	tcaaccaaaattgggacaacaccagtgaataattcttcacctttagacat-catcgatgaattctctgtcg	$P_{C Y C I}$ fused to $G F P$
JW228	aatgatacggcgaccaccgacagagggaggacgatgcgg	CLIP RT-PCR
JW229	caagcagaagacggcatacgaccgctggaagtgactgacac	CLIP RT-PCR
JW230	cgacagagggaggacgatgcgg	Illumina sequencing
FLO11 FW	cactttgaagtttatgccacacaag	FLO11 qPCR
FLO11 RV	cttgcatattgagcggcactac	FLO11 qPCR
ACT1 FW	ctccaccactgctgaaagagaa	$A C T 1$ qPCR
ACT1 RV	ccaaggcgacgtaacatagtttt	$A C T 1$ qPCR
Vla292	cactggtgttgtcccaatttg	$G F P \mathrm{qPCR}$
Vla293	caccggagacagaaaatttgtg	GFP qPCR
JW348	aggaggacgcggctaataatta	TUB1 qPCR
JW349	tcgcceaaaatttctctacca	TUB1 qPCR

TABLE S3

CLIP peaks

Chromosome:coordinates;strand		
1:7210-7274;-	2:59535-59589;+	2:376455-376499;+
1:7285-7459;-	2:60080-60129;+	2:377350-377469;-
1:30355-30399;+	2:61855-61909;+	2:381115-381154;+
1:43565-43610;-	2:62000-62044;+	2:390895-390944;-
1:48375-48444;+	2:72660-72704;-	2:393155-393197;-
1:49860-49989;-	2:80970-81014;-	2:393325-393374;-
1:55540-55639;+	2:83805-83889;-	2:421215-421294;+
1:55745-56004;+	2:89001-89037;+	2:431970-432074;-
1:56740-56869;+	2:93110-93146;+	2:432255-432454;-
1:68925-68969;-	2:102595-102644;+	2:432500-432629;-
1:78430-78475;+	2:107115-107594;-	2:446155-446199;+
1:91340-91429;-	2:114730-114994;-	2:446455-446504;+
1:94620-94654;-	2:115025-115119;-	2:447210-447284;+
1:94675-94774;-	2:129405-129449;+	2:457395-457499;-
1:96960-97014;-	2:143735-143779;+	2:473825-473869;+
1:115325-115379;+	2:143890-143934;+	2:494060-494169;-
1:125470-125514;-	2:147510-147559;-	2:510065-510154;+
1:127045-127119;+	2:176040-176090;+	2:532530-532679;-
1:145355-145433;-	2:181780-181829;-	2:543365-543403;-
1:151810-151891;-	2:195975-196024;-	2:548285-548334;-
1:163160-163284;-	2:208687-208724;+	2:549500-549549;-
1:164490-164534;-	2:213525-213574;+	2:573848-573889;+
1:164560-164594;-	2:226735-226779;-	2:573965-574004;+
1:176660-176709;+	2:233750-233934;-	2:575745-575799;+
1:193345-193469;+	2:233980-234084;-	2:580800-580844;-
1:193775-193874;+	2:234380-234524;-	2:581200-581374;-
1:194095-194219;+	2:241005-241144;+	2:586790-586899;-
1:198750-198839;+	2:267570-267614;-	2:613475-613519;+
1:198970-199124;+	2:271015-271064;+	2:618690-618819;-
1:199150-199239;+	2:271740-271844;+	2:620025-620064;-
1:203550-203594;+	2:278787-278829;+	2:620090-620124;-
1:205290-205326;+	2:304140-304199;+	2:625340-625394;-
2:13395-13449;-	2:304335-304424;+	2:630860-630909;+
2:13495-13509;-	2:313655-313699;+	2:630990-631039;+
2:17185-17214;-	2:323545-323589;-	2:633395-633529;+
2:17495-17534;-	2:329905-329954;-	2:634730-634829;+
2:18625-18664;-	2:364060-364129;+	2:642820-642868;-
2:21100-21184;+	2:364205-364289;+	2:647345-647444;-
2:27295-27329;-	2:364300-364504;+	2:648250-648299;-
2:49570-49629;+	2:364515-364604;+	2:649425-649469;-
2:52640-52689;-	2:364700-364844;+	2:653710-653759;+
2:52785-52829;-	2:365075-365139;+	2:654305-654399;+

2:56465-57009;+	2:367806-367869;-
2:663750-663799;-	3:242260-242304;+
2:678910-679064;-	3:242415-242459;+
2:718515-718559;-	3:245905-246089;-
2:721090-721179;+	3:269730-269764;+
2:721320-721358;+	3:271625-271704;-
2:722294-722330;+	3:273335-273494;-
2:754310-754379;-	3:277705-277769;+
2:759640-759714;+	3:282725-282864;+
2:761137-761184;+	3:282995-283154;+
2:762390-762434;+	3:297220-297259;+
2:764715-764899;+	4:23410-23455;-
2:805350-805394;-	4:24055-24109;+
3:43235-43279;-	4:25905-25943;+
3:48050-48119;-	4:27315-27359;-
3:50205-50260;-	4:32355-32504;+
3:50465-50574;-	4:32635-32709;+
3:52590-52639;-	4:41810-41874;-
3:52685-52749;-	4:41970-42109;-
3:53835-53879;+	4:46545-46584;-
3:55030-55074;+	4:66640-66654;-
3:56155-56199;+	4:66755-66799;-
3:60450-60534;-	4:84480-84519;-
3:60925-61064;-	4:91895-91904;-
3:67659-67709;-	4:93925-93969;+
3:73905-74164;+	4:96835-97114;+
3:79665-79714;-	4:105295-105344;+
3:87350-87399;+	4:109095-109114;+
3:102530-102574;-	4:109935-109979;+
3:107490-107534;+	4:113300-113324;-
3:109125-109165;+	4:113585-113629;+
3:121650-121674;-	4:117215-117255;-
3:126310-126459;+	4:135688-135724;+
3:135230-135324;+	4:141550-141599;-
3:135340-135409;+	4:148285-148329;-
3:135900-135974;+	4:155175-155219;+
3:147620-147794;+	4:157270-157399;-
3:159775-159829;+	4:159560-159597;+
3:175490-175644;-	4:192135-192439;-
3:186410-186599;-	4:197405-197459;-
3:186660-186709;-	4:208550-208596;-
3:186740-186859;-	4:213090-213134;+
3:190085-190128;-	4:215914-215959;+
3:202576-202629;+	4:252464-252506;-
3:227860-227904;+	4:258520-258594;-
3:228105-228154;+	4:274750-274847;+
3:228165-228359;+	4:286181-286217;-
3:228480-228524;+	4:293710-293754;-
3:241985-242039;+	4:295935-295979;+
3:242130-242174;+	4:313900-313909;+

2:661575-661614;-4:317200-317289;-
4:318115-318154;+
4:327465-327489;-
4:327545-327589;-
4:330060-330099;+
4:340545-340594;+
4:343600-343739;-
4:347942-347988;-
4:354410-354574;-
4:354660-354724;-
4:354740-354844;-
4:368900-369004;-
4:369195-369238;-
4:372265-372379;-
4:377850-377894;-
4:393660-393764;-
4:394005-394182;-
4:394320-394394;-
4:394435-394499;-
4:400130-400184;+
4:400220-400264;+
4:403835-403879;-
4:408773-408812;-
4:418625-418667;-
4:423085-423109;-
4:424825-424864;+
4:424885-424929;+
4:426135-426264;+
4:434175-434219;-
4:452745-452994;-
4:465610-465654;+
4:473995-474024;-
4:475185-475219;-
4:483790-483859;+
4:485725-485819;+
4:492800-492839;-
4:492860-492904;-
4:492920-492959;-
4:493145-493224;-
4:501725-501789;+
4:522938-522977;-
4:523025-523034;-
4:523120-523139;-
4:523400-523414;-
4:526500-526544; +
4:538225-538269;-
4:544120-544164;+
4:544253-544289; +
4:544445-544509;+

4:548785-548829;+	4:812305-812389;-	4:1076555-1076604;
4:552260-552309;+	4:814770-814819;-	4:1087060-1087154;-
4:552600-552640;+	4:814855-814894;-	4:1088335-1088384;-
4:552848-552889;+	4:815705-815794;-	4:1089855-1089899;-
4:565970-566039;-	4:816170-816264;-	4:1089920-1089984;-
4:570875-570954;-	4:819470-819524;+	4:1102860-1102904;+
4:572645-572689;+	4:840530-840574;+	4:1109485-1109534;+
4:574350-574384;+	4:846960-847009;-	4:1138589-1138649;-
4:574540-574584;+	4:847170-847219;-	4:1141415-1141460;+
4:574605-574654;+	4:849975-850024;+	4:1145220-1145339;+
4:574730-574774;+	4:850045-850114;+	4:1167795-1167842;+
4:575550-575607;+	4:859680-859734;+	4:1191675-1191719;+
4:580725-580834;+	4:859900-859948;+	4:1203400-1203454;+
4:580885-581454;+	4:883595-883644;-	4:1205515-1205644;+
4:606335-606414;-	4:886745-886789;+	4:1212655-1212704;+
4:618770-618819;+	4:886855-886944;+	4:1215765-1215784;-
4:619980-620039;+	4:888355-888394;+	4:1260410-1260444;+
4:620245-620313;+	4:891785-891834;-	4:1261965-1262054;+
4:629290-629379;+	4:897685-897729;+	4:1267805-1267859;+
4:633605-633634;+	4:898720-898859;-	4:1267895-1268139;+
4:633710-633749;+	4:898935-899054;-	4:1268305-1268399;+
4:634130-634174;+	4:912140-912179;-	4:1268835-1268884;+
4:634245-634284;+	4:913290-913324;-	4:1269590-1269714;+
4:647090-647214;-	4:914785-914799;+	4:1280150-1280194;+
4:648420-648464;-	4:923615-923664;+	4:1282225-1282279;+
4:648490-648524;-	4:929285-929294;+	4:1288555-1288604;+
4:649390-649419;+	4:929320-929329;+	4:1294325-1294363;+
4:679775-679884;-	4:935120-935134;-	4:1306531-1306574;-
4:680100-680144;-	4:943865-943894;-	4:1311930-1311979;-
4:701435-701509;-	4:943920-943954;-	4:1316675-1316719;-
4:701730-701834;-	4:949890-949939;+	4:1319775-1319844;+
4:701910-702063;-	4:950090-950144;+	4:1332310-1332344;+
4:707225-707269;-	4:950995-951079;+	4:1347120-1347164;+
4:721240-721284;-	4:954600-954642;+	4:1361205-1361269;+
4:723120-723184;-	4:957065-957114;-	4:1366645-1366684;-
4:723200-723249;-	4:962205-962334;-	4:1382345-1382389;+
4:724895-724999;-	4:963540-963579;-	4:1384335-1384379;-
4:727575-727659;+	4:963605-963644;-	4:1404065-1404108;-
4:744387-744429;+	4:972395-972434;-	4:1417290-1417374;-
4:745925-745959;-	4:1010010-1010049;+	4:1425160-1425269;-
4:746056-746092;-	4:1015655-1015695;-	4:1438050-1438094;+
4:748005-748054;-	4:1019865-1019984;-	4:1447425-1447489;-
4:748180-748224;-	4:1025725-1025759;-	4:1448615-1448699;-
4:750260-750349;-	4:1028735-1028779;+	4:1450745-1450794;+
4:768375-768421;-	4:1043101-1043144;-	4:1453469-1453514;+
4:773895-774004;-	4:1051150-1051269;-	5:9616-9659;+
4:781330-781519;-	4:1051460-1051509;-	5:10019-10064;+
4:785850-785904;+	4:1051655-1051704;-	5:36040-36094;-
4:789730-789799;+	4:1055175-1055254;-	5:43765-43809;-

5:44820-44869;-	5:294385-294404;-	5:526285-526434;+
5:44945-44999;-	5:294495-294539;-	5:533890-533944;+
5:71825-71924;-	5:297800-297894;-	5:537745-537824;+
5:72135-72204;-	5:309315-309409;+	5:560295-560384;+
5:75585-75639;+	5:310585-310629;+	5:560425-560514;+
5:76265-76414;+	5:316495-316574;+	5:584050-584214;-
5:82440-82689;+	5:325465-325509;-	5:584240-584354;-
5:86475-86574;-	5:334490-334539;+	6:15165-15284;-
5:88970-89054;+	5:344680-344724;+	6:40440-40639;-
5:89195-89269;+	5:347915-347999;-	6:44285-44334;+
5:89495-89579;+	5:348285-348434;-	6:45185-45229;+
5:96310-96359;+	5:349530-349644;-	6:50100-50144;-
5:104525-104609;+	5:378865-378904;+	6:50170-50184;-
5:105250-105299;+	5:396805-396874;-	6:58855-58931;-
5:120375-120414;+	5:400340-400389;-	6:59415-59489;-
5:120435-120479;+	5:402800-402814;+	6:62290-62335;+
5:121685-121814;+	5:407311-407354;-	6:69985-70021;+
5:127645-127689;-	5:413770-413819;-	6:74112-74154;-
5:130225-130284;-	5:421295-421339;+	6:80845-80895;-
5:132170-132219;-	5:421360-421394;+	6:83835-83994;+
5:133065-133119;-	5:425750-425799;+	6:132890-132934;+
5:133275-133319;-	5:425810-425929;+	6:171910-171989;-
5:137910-138024;-	5:426550-426594;+	6:174985-175124;+
5:139660-139704;+	5:434645-434684;+	6:200005-200051;+
5:139715-139769;+	5:439285-439339;+	6:200880-200924;+
5:141091-141130;-	5:442820-442864;-	6:209010-209079;-
5:142578-142619;+	5:443620-443659;-	6:215290-215339;-
5:150710-150759;-	5:449220-449274;+	6:229925-229984;-
5:153650-153693;+	5:450160-450199;-	6:240115-240219;-
5:154730-154784;-	5:450880-450924;-	6:241375-241419;+
5:155145-155289;-	5:462350-462474;-	6:243155-243196;-
5:158680-158759;+	5:471305-471347;+	7:22800-22919;+
5:182280-182321;-	5:473250-473379;-	7:23280-23364;+
5:210740-210774;+	5:482815-482859;+	7:38895-38984;+
5:212780-212829;+	5:486000-486054;-	7:48835-48879;+
5:212967-213008;+	5:486210-486294;-	7:49993-50034;+
5:221695-221732;+	5:486405-486484;-	7:51580-51639;-
5:235995-236054;-	5:490060-490104;+	7:54865-54969;+
5:236195-236249;-	5:490275-490324;+	7:56235-56289;+
5:238765-238814;-	5:490400-490454;+	7:75270-75344;+
5:245470-245569;+	5:495575-495644;-	7:75405-75450;+
5:250735-250854;-	5:495905-495984;-	7:75535-75639;+
5:251040-251124;-	5:503460-503509;-	7:78490-78569;-
5:251290-251334;-	5:503535-503579;-	7:79225-79274;-
5:252965-253014;-	5:504545-504589;-	7:79350-79479;-
5:255770-255819;-	5:504945-504999;-	7:81270-81279;-
5:256130-256174;-	5:510550-510674;-	7:81690-81739;-
5:256310-256354;-	5:511880-511924;-	7:82100-82129;-
5:260270-260324;-	5:511945-511984;-	7:86490-86729;+

7:87480-87664;+	7:408680-408722;+	7:707340-707377;+
7:95045-95089;+	7:412297-412434;-	7:721690-721734;+
7:95370-95406;+	7:412625-412674;-	7:725825-725879;+
7:95460-95504;+	7:429285-429334;-	7:750795-750984;-
7:98760-98800;+	7:433920-433964;+	7:760270-760319;+
7:104710-104754;-	7:435015-435129;-	7:760470-760524;+
7:120530-120574;+	7:435455-435504;-	7:761375-761459;+
7:125350-125399;+	7:440990-441059;-	7:762695-762784;+
7:125810-125874;+	7:442525-442594;+	7:762885-762929;+
7:166315-166394;+	7:445605-445654;-	7:763310-763364;+
7:168135-168254;+	7:445850-445899;-	7:765900-765944;+
7:168285-168429;+	7:452145-452189;-	7:775810-775899;-
7:179635-179671;+	7:453710-453729;-	7:776085-776134;-
7:183975-184024;-	7:458315-458339;+	7:790262-790314;+
7:188835-188884;-	7:470420-470484;+	7:791525-791579;+
7:216540-216644;+	7:472460-472519;-	7:800255-800379;-
7:216910-216964;+	7:479875-479970;-	7:803845-803889;+
7:219955-220004;-	7:481620-481689;-	7:804200-804249;+
7:222415-222456;-	7:482670-482774;-	7:808335-808378;-
7:226295-226344;-	7:485830-485964;-	7:810947-810989;+
7:234581-234624;-	7:489865-489914;+	7:835140-835189;-
7:243385-243454;+	7:501870-501914;-	7:835855-835898;-
7:252380-252434;+	7:502225-502274;-	7:836065-836117;-
7:258725-258754;-	7:520090-520134;+	7:843875-843929;-
7:258765-258809;-	7:522215-522534;+	7:855895-855942;+
7:266465-266524;-	7:527820-527859;-	7:856405-856604;-
7:267320-267394;-	7:529110-529149;+	7:858705-858749;+
7:267435-267529;-	7:530278-530319;-	7:858905-858959;+
7:271550-271594;+	7:533080-533354;+	7:859800-859854;+
7:275715-275924;+	7:537760-537804;-	7:872545-872579;+
7:277745-277914;-	7:546100-546144;+	7:875495-875864;-
7:317255-317295;+	7:547975-548019;+	7:887641-887677;+
7:335565-335609;+	7:552745-552794;+	7:898753-898794;+
7:352265-352309;+	7:561502-561538;+	7:913685-913754;+
7:361695-361744;-	7:582170-582219;+	7:925565-925574;+
7:369490-369560;+	7:588430-588519;+	7:926300-926349;+
7:376445-376524;+	7:588555-588609;+	7:930875-930949;-
7:393610-393669;-	7:596150-596224;+	7:931155-931189;-
7:396615-396794;+	7:613130-613244;+	7:942135-942274;+
7:397190-397239;+	7:622795-622844;-	7:950816-950859;-
7:399795-399814;+	7:626980-627024;+	7:957010-957089;-
7:400759-400804;+	7:633330-633404;-	7:966830-966884;-
7:403730-403814;+	7:634753-634804;-	7:967205-967339;-
7:404130-404214;+	7:642865-642964;+	7:968675-968769;-
7:404305-404374;+	7:646700-646744;+	7:981834-981877;+
7:405050-405139;+	7:666280-666344;+	7:982445-982489;+
7:405240-405369;+	7:688375-688464;-	7:982545-982589;+
7:405665-405714;+	7:688745-688804;-	7:982705-982754;+
7:408250-408309;+	7:690290-690344;-	7:994485-994544;+

7:995290-995379;+	8:283495-283539;+	9:52445-52494;+
7:997826-997869;+	8:283660-283699;+	9:52610-52619;+
7:1035482-1035524;-	8:283922-283964;+	9:52650-52694;+
7:1043120-1043319;-	8:286890-286934;+	9:52745-52754;+
7:1056245-1056284;-	8:296185-296219;-	9:52850-52887;+
8:125-154;-	8:305705-305749;-	9:57375-57424;-
8:180-229;-	8:309285-309339;-	9:67160-67204;+
8:34250-34269;-	8:316151-316194;+	9:67402-67444;+
8:39632-39684;+	8:327030-327079;+	9:70060-70109;+
8:45885-45933;-	8:337300-337344;+	9:75115-75194;-
8:46150-46199;-	8:337570-337619;+	9:75210-75259;-
8:47865-48084;+	8:349290-349354;-	9:78350-78449;-
8:50480-50619;+	8:369684-369729;+	9:78955-79004;-
8:60305-60348;-	8:380750-381029;-	9:88495-88539;+
8:60520-60564;-	8:390315-390359;-	9:88585-88634;+
8:63325-63379;-	8:394025-394144;+	9:95710-95753;-
8:73885-74159;+	8:403000-403089;-	9:97394-97432;+
8:88575-88629;-	8:409495-409559;+	9:111790-112149;+
8:90115-90159;-	8:419270-419328;+	9:114755-114784;+
8:91870-91914;+	8:423250-423296;-	9:115070-115104;+
8:97020-97029;+	8:423355-423399;-	9:120255-120334;-
8:111840-111894;-	8:428620-428694;-	9:142480-142524;-
8:114625-114704;-	8:440290-440304;-	9:152515-152544;-
8:119315-119355;+	8:459850-459904;+	9:158830-158899;-
8:121550-121604;+	8:459960-460009;+	9:168725-168784;+
8:122455-122539;+	8:460817-460864;+	9:175145-175182;-
8:123030-123099;+	8:470660-470764;+	9:180120-180144;-
8:123775-123864;+	8:478590-478629;+	9:181440-181534;-
8:135205-135334;-	8:478665-478709;+	9:187570-187589;-
8:136535-136579;-	8:490605-490704;-	9:191085-191123;+
8:136605-136639;-	8:512595-512684;-	9:197230-197279;-
8:143050-143087;+	8:517985-518069;+	9:208960-209029;-
8:150645-150694;-	8:522325-522389;+	9:228920-228969;+
8:194635-194764;+	8:522635-522678;+	9:229245-229288;+
8:208105-208114;+	8:529735-529859;+	9:229370-229454;+
8:224710-224759;-	8:525740-525874;+	9:230006-230049;+
8:235000-235064;-	8:534520-534604;+	9:231375-231419;-
8:245050-245099;+	8:535485-535549;+	9:233360-233479;+
8:247455-247503;+	8:535635-535754;+	9:235275-235309;-
8:251880-251924;+	8:535810-535929;+	9:236110-236174;-
8:252370-252414;+	8:551040-551174;+	9:236460-236524;-
8:256051-256087;+	8:551270-551364;+	9:255060-255114;+
8:260860-260894;+	8:555615-555744;-	9:259545-259589;-
8:269610-269664;-	8:556950-556994;-	9:259755-259819;-
8:277145-277199;-	8:557015-557054;-	9:267825-267869;-
8:277220-277274;-	9:7490-7584;-	9:278410-278454;-
8:277585-277634;-	9:8855-9154;-	9:295275-295315;+
8:278025-278069;-	9:21515-21559;+	9:303120-303139;-
8:278236-278279;-	9:37380-37417;-	9:306875-307004;-

9:307315-307369;-	10:282000-282049;+	10:549720-549729;+
9:352055-352144;-	10:282060-282099;+	10:557200-557254;+
9:352775-352869;-	10:290795-290984;-	10:563795-563849;+
9:359565-359604;+	10:291050-291324;-	10:599120-599199;-
9:369150-369189;-	10:292350-292399;-	10:610475-610524;+
9:373920-374019;-	10:293700-293779;-	10:626875-626913;+
9:374220-374279;-	10:295285-295349;-	10:628806-628847;+
9:374290-374374;-	10:298435-298479;+	10:644325-644389;+
9:374690-374884;-	10:306850-306894;+	10:648900-648944;+
9:374930-375989;-	10:320170-320206;+	10:648980-649054;+
9:385370-385424;+	10:321410-321454;+	10:650060-650104;+
9:400345-400484;+	10:326520-326529;+	10:653605-653734;+
9:418650-418684;-	10:336885-336929;+	10:662405-662444;-
9:418720-418799;-	10:340635-340939;+	10:662485-662589;-
9:418860-418919;-	10:346699-346735;+	10:662765-662814;-
10:57295-57349;+	10:357485-357529;+	10:663160-663209;-
10:78145-78194;+	10:364285-364334;+	10:700945-700989;-
10:79810-79869;-	10:368000-368049;+	10:703550-703594;-
10:97190-97254;+	10:368060-368149;+	10:704145-704186;-
10:97575-97644;+	10:376585-376629;-	10:706440-706499;+
10:99570-99752;+	10:391991-392039;-	10:716268-716529;-
10:99925-99967;+	10:401980-402067;-	11:21595-21629;+
10:103945-103984;-	10:402115-402364;-	11:24740-24784;+
10:119125-119159;+	10:407780-407814;+	11:54600-54699;+
10:119185-119229;+	10:407894-407939;+	11:78705-78742;-
10:120435-120559;+	10:408083-408124;+	11:94345-94509;+
10:128735-128874;+	10:417030-417074;+	11:99780-99824;+
10:128900-129149;+	10:427448-427489;+	11:100515-100564;+
10:129180-129259;+	10:427817-427864;+	11:101410-101594;+
10:129295-129459;+	10:430845-430882;+	11:109485-109579;+
10:130705-131009;-	10:444700-444729;-	11:119355-119389;+
10:147685-147729;-	10:445300-445434;-	11:141285-141634;-
10:157070-157134;-	10:456005-456349;-	11:152845-152854;-
10:157180-157244;-	10:466255-466300;-	11:161800-161842;-
10:158177-158364;-	10:475025-475064;+	11:162985-163119;-
10:159350-159439;-	10:475085-475129;+	11:196335-196372;-
10:162195-162284;-	10:476340-476459;+	11:202345-202389;+
10:164860-164904;-	10:508255-508359;-	11:207910-207946;+
10:180365-180482;-	10:515210-515259;-	11:214368-214404;+
10:180820-180884;-	10:517120-517164;-	11:214545-214581;+
10:212375-212424;-	10:517556-517597;-	11:225070-225109;+
10:218865-218969;-	10:521840-521869;-	11:225130-225174;+
10:230255-230309;-	10:533740-533779;+	11:226380-226509;+
10:247590-247674;+	10:534720-534761;+	11:243075-243120;+
10:250665-250724;+	10:539255-539344;-	11:243465-243514;+
10:262660-262724;-	10:539625-539684;-	11:243530-243564;+
10:266015-266059;-	10:541290-541339;-	11:257090-257139;-
10:266115-266159;-	10:548732-548768;+	11:261185-261339;+
10:279185-279244;-	10:548889-548934;+	11:269815-270069;+

11:291285-291314;+	12:34615-34659;-	12:256445-256504;+
11:294570-294614;+	12:37010-37054;-	12:260575-260624;+
11:323280-323334;+	12:37275-37316;-	12:281935-281975;+
11:324775-324813;+	12:37575-37594;-	12:314750-314834;-
11:334720-334769;+	12:37685-37729;-	12:317295-317339;+
11:337270-337359;-	12:39180-39269;+	12:324555-324609;-
11:337400-337481;-	12:85345-85404;-	12:324630-324684;-
11:346370-346414;-	12:86270-86314;-	12:324843-324887;-
11:346770-346824;-	12:92385-92414;+	12:329455-329495;+
11:347325-347569;-	12:92565-92614;+	12:350145-350224;-
11:352470-352519;+	12:96520-96604;-	12:360925-360969;+
11:366565-366664;+	12:97055-97093;-	12:361120-361174;+
11:367000-367104;+	12:105325-105364;+	12:362020-362109;+
11:379905-379949;+	12:112630-112764;-	12:363345-363439;+
11:380913-380974;+	12:112790-113064;-	12:369995-370119;-
11:381360-381427;+	12:113235-113289;-	12:371325-371369;-
11:391210-391439;-	12:118920-118964;-	12:371390-371429;-
11:393700-393779;-	12:119350-119364;-	12:376950-376989;+
11:402385-402544;-	12:119380-119394;-	12:380725-380809;-
11:411525-411612;-	12:151130-151169;-	12:392275-392329;+
11:425995-426069;-	12:151390-151433;-	12:396800-396849;-
11:426285-426344;-	12:152181-152223;-	12:396995-397044;-
11:464415-464458;+	12:157755-157804;-	12:398915-399009;-
11:468840-468869;-	12:162150-162244;-	12:399085-399144;-
11:469315-469353;+	12:163085-163144;-	12:415640-415748;-
11:474955-475234;+	12:172582-172620;+	12:421455-421494;+
11:480840-480894;+	12:175239-175324;+	12:432285-432349;-
11:481375-481419;+	12:181655-181704;-	12:432550-432634;-
11:492875-492924;+	12:183070-183089;-	12:432760-432809;-
11:526340-526379;+	12:190755-190814;-	12:432965-433014;-
11:526400-526444;+	12:191405-191471;-	12:433050-433154;-
11:527650-527774;+	12:196960-197034;-	12:455905-455959;-
11:535170-535189;-	12:213830-213959;-	12:461785-461829;-
11:537515-537579;+	12:215165-215209;-	12:462615-462664;-
11:537835-537939;+	12:215230-215269;-	12:465420-465464;-
11:548815-548854;+	12:223795-223839;-	12:465940-465989;-
11:550560-550596;-	12:224030-224324;-	12:470845-470889;-
11:573190-573279;+	12:225195-225239;-	12:471670-471724;-
11:573855-573899;+	12:227795-227849;-	12:474475-474519;-
11:597615-597639;-	12:228250-228344;-	12:474995-475044;-
11:602070-602174;+	12:228530-228644;-	12:489820-489909;-
11:628815-628844;+	12:237750-237804;+	12:490190-490249;-
11:634840-634889;+	12:237845-237904;+	12:492775-492874;+
11:635960-636039;-	12:240900-240949;-	12:493455-493509;+
11:652185-652194;-	12:242255-242299;+	12:501835-501964;-
11:665475-665529;+	12:249305-249404;+	12:503170-503209;-
11:665605-665824;+	12:249480-249774;+	12:503235-503274;-
11:666170-666214;+	12:249925-249969;+	12:507425-507549;-
11:671255-671299;+	12:252865-252954;-	12:508755-508799;-

12:508825-508859;-	12:828410-828534;+	12:1077590-1077639;+
12:529820-529869;+	12:829000-829074;+	12:1085105-1085146;-
12:540615-540659;-	12:834045-834244;-	13:21100-21142;-
12:542290-542344;+	12:839800-839844;+	13:30545-30596;-
12:546095-546139;+	12:845490-845719;+	13:35855-35899;-
12:547140-547289;+	12:848765-848809;+	13:53461-53504;+
12:558285-558459;+	12:856145-856189;-	13:73970-74024;-
12:571430-571699;-	12:859060-859104;+	13:77665-77714;+
12:580815-580824;-	12:866765-866807;-	13:80110-80184;+
12:582475-582514;-	12:867184-867244;-	13:92410-92474;-
12:585315-585359;+	12:867995-868064;-	13:96880-96999;-
12:585400-585449;+	12:872973-873014;+	13:112230-112279;+
12:595300-595344;-	12:875485-875523;+	13:112405-112459;+
12:623375-623429;+	12:875670-875729;+	13:112490-112544;+
12:624275-624364;+	12:891935-891976;-	13:112695-112739;+
12:625600-625694;+	12:893675-893789;+	13:113205-113254;+
12:630880-630959;-	12:900105-900154;-	13:129810-129854;-
12:631520-631579;-	12:900365-900424;-	13:138285-138325;-
12:668630-668709;+	12:900495-900539;-	13:162920-162959;-
12:677395-677644;+	12:902515-902559;+	13:163500-163529;-
12:677850-678004;+	12:906225-906384;-	13:164555-164604;-
12:682671-682714;+	12:907205-907379;-	13:166245-166289;+
12:703930-703989;+	12:930845-930889;-	13:170380-170479;-
12:715035-715073;+	12:932540-932599;-	13:171860-171903;-
12:723380-723419;-	12:933970-934274;+	13:175885-175979;-
12:723630-723674;-	12:956290-956514;+	13:191315-191349;+
12:723825-723904;-	12:975425-975514;+	13:191375-191414;+
12:723925-723969;-	12:976415-976559;+	13:192620-192749;+
12:725840-725884;-	12:978135-978176;-	13:203070-203104;+
12:726015-726054;-	12:988320-988369;+	13:208340-208384;-
12:726877-726919;-	12:989052-989089;+	13:210740-210784;-
12:727090-727129;-	12:1000855-1000899;-	13:224025-224154;-
12:731345-731389;-	12:1027297-1027339;-	13:241970-242294;-
12:731980-732174;-	12:1028485-1028533;-	13:243045-243079;-
12:741238-741284;-	12:1028980-1029024;-	13:257840-257934;-
12:743800-743849;-	12:1029040-1029114;-	13:277455-277494;+
12:744890-744939;-	12:1029210-1029254;-	13:282825-282954;-
12:759090-759139;-	12:1029615-1029664;-	13:285680-285718;-
12:764636-764684;-	12:1030340-1030384;-	13:286565-286609;-
12:778583-778624;-	12:1031785-1031834;+	13:287175-287229;-
12:779825-779904;-	12:1031985-1032022;+	13:287750-287794;-
12:806950-806989;-	12:1033850-1033969;+	13:289710-289779;+
12:808640-808709;+	12:1033995-1034049;+	13:296890-296959;+
12:814920-815019;+	12:1037720-1037809;-	13:308480-308574;-
12:818345-818399;+	12:1045395-1045433;+	13:323795-323839;+
12:818570-818664;+	12:1053435-1053484;+	13:349055-349134;-
12:819255-819334;+	12:1059010-1059124;-	13:352295-352344;-
12:819830-819899;+	12:1066258-1066294;+	13:358595-358974;+
12:820570-820659;+	12:1074035-1074084;+	13:361787-361829;-

13:364820-364859;-	13:628145-628194;-
13:374800-374929;-	13:628350-628399;-
13:376135-376174;-	13:628415-628484;-
13:376200-376234;-	13:628880-628959;-
13:382725-382764;+	13:628980-629069;-
13:402860-402909;-	13:629095-629139;-
13:408250-408364;+	13:636745-636854;+
13:408430-408519;+	13:637830-637868;+
13:424270-424319;+	13:638095-638144;+
13:428580-428629;-	13:638430-638469;+
13:428713-428750;-	13:643660-643704;+
13:428820-428864;-	13:651855-651894;+
13:428880-428924;-	13:656875-656913;+
13:428985-429029;-	13:668210-668264;+
13:437650-437694;+	13:668515-668569;+
13:440284-440329;+	13:671910-671964;+
13:452625-452669;+	13:672855-673019;+
13:461885-461929;-	13:678570-678704;-
13:464465-464519;-	13:678740-678949;-
13:464895-464939;-	13:702155-702201;+
13:465045-465134;-	13:702225-702269;+
13:466365-466454;-	13:702455-702504;+
13:467300-467354;-	13:702580-702620;+
13:467510-467554;-	13:707100-707179;+
13:475091-475134;-	13:718305-718350;-
13:475575-475619;-	13:726390-726434;-
13:479445-479484;-	13:737305-737404;+
13:485060-485109;-	13:752155-752199;-
13:488375-488424;+	13:756190-756234;+
13:489295-489414;+	13:757470-757659;-
13:503590-503679;-	13:764010-764059;+
13:511865-511929;-	13:766210-766254;+
13:513010-513119;-	13:776430-776464;+
13:515120-515394;+	13:803750-803804;+
13:519210-519354;+	13:803830-803889;+
13:519395-519449;+	13:805029-805078;+
13:532574-532619;+	13:813010-813054;+
13:545670-545779;+	13:815805-815844;-
13:545820-545874;+	13:816290-816384;-
13:546305-546354;+	13:820965-821004;-
13:552887-552929;+	13:824165-824209;+
13:554820-554859;-	13:824275-824318;+
13:559120-559164;-	13:824350-824424;+
13:562310-562359;-	13:853943-853979;+
13:562395-562435;-	13:854515-854569;-
13:587204-587240;-	13:858075-858124;+
13:591900-591944;-	13:858140-858159;+
13:592270-592321;-	13:864490-864569;-
13:613185-613194;+	13:878015-878064;-

13:883605-883914;-13:891770-891914;+ 13:892360-892514;+ 13:897460-897554;-13:897600-897744;-13:900135-900179;-13:900455-900499;-13:902330-902404;+ 13:905985-906021;+ 13:909597-909633;+ 13:911650-911664;+ 14:245-279;+ 14:2575-2624;-14:17390-17433;-14:20435-20494;+ 14:20525-20824;+ 14:28655-28754;-14:45230-45271;-14:48490-48534;+ 14:51345-51389;-14:59625-59674;-14:60840-61074;+ 14:64860-64904;+ 14:65005-65149;+ 14:65160-65244;+ 14:65255-65439;+ 14:68307-68344;-14:70510-70534;-14:86115-86159;+ 14:87595-87709;+ 14:92170-92219;+ 14:97500-97544;+ 14:101005-101229;-14:103985-104029;+ 14:111020-111059;+ 14:111225-111274;+ 14:111370-111419;+ 14:126505-126559;-14:162285-162329;-14:193020-193089;-14:195695-195734;+ 14:197425-197469;+ 14:212705-212749;-14:231905-231949;-14:248285-248434;+ 14:248570-248719;+ 14:263695-263959;-14:264745-264787;-14:271710-271809;+

14:271980-272049;+	14:492530-492604;-	14:713450-713524;-
14:277385-277434;+	14:494880-494894;+	14:720975-721014;+
14:277595-278044;+	14:496995-497039;+	14:721035-721079;+
14:286040-286089;+	14:513760-513844;-	14:722285-722414;+
14:289700-289754;-	14:513960-514004;-	14:726545-726589;-
14:290605-290649;-	14:514030-514084;-	14:757965-758049;-
14:294765-294809;-	14:515005-515089;+	14:758135-758194;-
14:300815-300864;-	14:515115-515154;+	14:766455-766499;+
14:301070-301119;-	14:516360-516489;+	14:766880-766899;+
14:301361-301404;-	14:521670-521724;+	14:766910-766924;+
14:301450-301614;-	14:536700-536739;-	15:27775-27809;-
14:301670-301834;-	14:538280-538324;+	15:27840-27879;-
14:302175-302214;-	14:540686-540729;+	15:29845-29889;-
14:306444-306480;+	14:542655-542699;+	15:66630-66677;-
14:314975-315049;-	14:543640-543724;+	15:68550-68594;-
14:328385-328504;+	14:559975-560064;-	15:73275-73309;+
14:331930-332024;+	14:561275-561384;-	15:76410-76459;+
14:332110-332214;+	14:562230-562289;-	15:80775-80819;-
14:332725-332784;+	14:562445-562484;-	15:114150-114224;-
14:335100-335147;+	14:575082-575144;+	15:115852-115888;-
14:339165-339259;-	14:579370-579409;-	15:117205-117479;+
14:340740-340789;-	14:590780-590814;-	15:118000-118044;+
14:342325-342379;+	14:591265-591309;-	15:122450-122479;+
14:342435-342464;+	14:597665-597724;+	15:130972-131094;+
14:342575-342619;+	14:598605-598699;+	15:155230-155294;-
14:352175-352214;-	14:611390-611434;+	15:156385-156443;-
14:353965-353989;+	14:633120-633282;+	15:159295-159514;-
14:362895-362944;+	14:638085-638134;+	15:171205-171494;+
14:363785-363829;-	14:638285-638319;+	15:194190-194239;+
14:389115-389224;+	14:644095-644149;-	15:213460-213599;-
14:389385-389494;+	14:644395-644444;-	15:234190-234269;+
14:392770-392806;+	14:646815-646829;+	15:234585-234719;+
14:399710-399754;-	14:646900-646944;+	15:234890-234994;+
14:416626-416669;-	14:652515-652561;-	15:251660-251709;-
14:423850-423894;+	14:655815-655864;-	15:254895-254939;+
14:424140-424204;+	14:663290-663334;+	15:257000-257038;+
14:430115-430234;+	14:667755-667809;-	15:267885-267959;+
14:438580-438669;-	14:673955-673998;+	15:284715-284794;+
14:439445-439494;-	14:674390-674504;+	15:288695-288859;+
14:442915-442959;+	14:678705-678719;-	15:288955-289004;+
14:443406-443449;+	14:681215-681259;+	15:306005-306049;+
14:450585-450634;+	14:687900-687944;-	15:310555-310599;-
14:451200-451244;+	14:690755-690798;+	15:315555-315599;+
14:462095-462134;+	14:691395-691432;+	15:316465-316585;+
14:463960-464004;+	14:698180-698624;+	15:316780-316818;+
14:464605-464654;+	14:699435-699529;+	15:328845-328979;+
14:482430-482529;-	14:699570-699634;+	15:328995-329114;+
14:487535-487629;+	14:702970-703014;+	15:340375-340484;-
14:491745-491764;-	14:703765-703849;+	15:356325-356564;+

15:364562-364598;+	15:723760-723830;-
15:374890-374994;-	15:727805-727849;+
15:415980-416039;-	15:746820-746889;-
15:416100-416144;-	15:755860-755884;+
15:425215-425274;-	15:756515-756558;+
15:443660-443704;+	15:789705-789924;+
15:449270-449459;+	15:790105-790234;+
15:475885-475924;-	15:798477-798519;-
15:475995-476029;-	15:806545-806591;+
15:476150-476199;-	15:816025-816459;-
15:480890-481224;+	15:821090-821154;-
15:484375-484415;-	15:823200-823244;-
15:506720-506769;-	15:831830-831884;-
15:507040-507185;-	15:846795-846829;+
15:519115-519129;+	15:846855-846894;+
15:520225-520269;+	15:848100-848224;+
15:526175-526224;+	15:856775-856824;-
15:533105-533149;+	15:868028-868069;+
15:534530-534619;+	15:880475-880584;+
15:547085-547128;+	15:895875-895929;-
15:560480-560524;+	15:897865-897962;-
15:571365-571409;+	15:903560-903649;+
15:573590-573634;+	15:914735-914777;+
15:574450-574504;+	15:916390-916434;-
15:574835-574964;+	15:934575-934864;-
15:577150-577215;+	15:942100-942144;-
15:582250-582299;-	15:966075-966119;-
15:585935-586019;+	15:970555-970599;-
15:586485-586529;+	15:973760-973784;-
15:587135-587239;+	15:977840-977879;-
15:602465-602509;-	15:993773-993814;-
15:611985-612029;+	15:995440-995479;-
15:613150-613196;+	15:999545-999594;+
15:620450-620484;-	15:999605-999654;+
15:659985-659994;-	15:999725-999839;+
15:668070-668169;+	15:999985-1000029;+
15:668490-668674;+	15:1005716-1005939;+
15:668790-668889;+	15:1014285-1014324;-
15:679840-679889;+	15:1023615-1023699;-
15:697975-698034;-	15:1028550-1028604;-
15:698555-698649;-	15:1032530-1032568;+
15:699320-699389;-	15:1059280-1059434;+
15:699480-699564;-	15:1077805-1077854;-
15:699920-699974;-	15:1078000-1078084;-
15:708985-709034;+	16:24230-24284;+
15:711115-711174;-	16:29140-29184;+
15:711370-711464;-	16:33200-33249;-
15:715745-715789;+	16:37295-37334;-
15:717740-717776;+	16:40625-40684;-

16:71900-71944;-16:84475-84574;+ 16:97285-97376;+ 16:97415-97514;+ 16:110880-110924;+ 16:130315-130384;-16:130670-130714;-16:140675-140724;+ 16:140735-140814;+ 16:143363-143409;-16:149600-149644;+ 16:161680-161734;-16:169365-169409;+ 16:172940-172984;-16:173135-173159;-16:183670-183884;+ 16:186835-186879;+ 16:213444-213486;+ 16:216736-216814;-16:217350-217524;-16:235578-235649;-16:246675-246715;+ 16:259430-259479;-16:273130-273174;+ 16:278075-278349;+ 16:282105-282149;-16:286383-286479;+ 16:309085-309244;-16:309425-309499;-16:309550-309824;-16:310521-310569;-16:325985-326119;-16:354140-354354;-16:363965-364044;+ 16:364650-364713;+ 16:368220-368274;+ 16:382215-382259;+ 16:385575-385604;+ 16:387685-387759;+ 16:389025-389074;+ 16:396055-396099;+ 16:401545-401599;+ 16:404625-404674;+ 16:406235-406279;+ 16:419455-419509;-16:420950-420989;-16:424093-424129;+ 16:430255-430429;-16:449755-449804;-

16:453720-453759;+	16:760460-760544;+
16:453780-453824;+	16:763330-763388;+
16:456960-457059;-	16:781890-781919;-
16:457090-457159;-	16:791496-791539;+
16:457200-457254;-	16:792345-792389;+
16:457850-457924;-	16:796570-796819;+
16:458045-458099;-	16:806735-806769;+
16:458675-458724;-	16:806795-806834;+
16:459205-459259;-	16:808040-808169;+
16:468805-468889;-	16:820300-820319;-
16:469995-470014;-	16:827950-827959;+
16:489140-489204;+	16:840425-840479;+
16:489250-489334;+	16:840731-840768;+
16:495810-495874;+	16:853855-853999;-
16:496005-496199;+	16:857180-857234;+
16:501650-501694;-	16:857590-857630;+
16:528385-528434;+	16:885560-885654;+
16:549730-549774;+	16:885950-886089;+
16:552755-552799;-	16:891120-891209;+
16:552850-552879;-	
16:574400-574454;-	
16:574475-574554;-	
16:578370-578420;+	
16:578458-578514;+	
16:601907-601949;+	
16:602900-602944;+	
16:611010-611087;+	
16:612680-612724;+	
16:613855-613904;+	
16:615075-615134;+	
16:619695-619744;-	
16:619980-620024;-	
16:648500-648574;+	
16:648835-648939;+	
16:659285-659329;+	
16:659535-659569;+	
16:669090-669139;+	
16:669845-669919;+	
16:674495-674509;+	
16:682345-682389;+	
16:691870-691914;-	
16:699115-699189;-	
16:708505-708542;+	
16:712205-712254;+	
16:727815-727864;+	
16:740770-740799;+	
16:749965-750009;+	
16:750040-750084;+	
16:750110-750119;+	

TABLE S4

Khd1 target RNAs

Systematic Name	Standard Name	Binding Site Coordinates
ARS1604		-75-21
BAL002C		235-299
BAR009W	BIO1A	1313-1357
BIL038C		-107-22
BIR039C		-310-251, -190-111, -75-41
BMR058C		909-953
BNL060C		4285-4334
BPR065W	FLO16	2300-2394, 2690-2829
BPR066W		55-144
LSR1		86-135
RDN37-1		2446-2495, 5771-5820, 6606-6650
RDN37-2		2448-2497, 5768-5822, 6603-6647
RDN58-1		117-161
RDN58-2		119-163
SNR11		226-264
SNR128		91-135
SNR14		70-111
SNR189		145-188
SNR37		166-220
SNR6		49-88
SNR71		$34-92$
telomeric-14L		234-268
telomeric-5L		402-445
tH(GUG) G2		100-140
tK(CUU)D1		32-79
tK(CUU)D2		25-74
tK(CUU)E1		26-75
tK(CUU)E2		27-71
tK(CUU) F		25-74
tK(CUU) G 1		33-77
tK(CUU) G2		24-73
tK(CUU) $\mathrm{G}^{\text {3 }}$		32-79
tK(CUU)I		25-69
tK(CUU) J		33-77
tK(CUU)K		33-77
tK(CUU) M		27-76
tK(CUU)P		34-78
$t L(C A A) K$		82-120
TLC1		445-487
tR(CCU) J		33-74
tR(UCU) B		32-76

tR(UCU) D		31-75
tR(UCU)E		33-76
tR(UCU) G 1		34-76
tR(UCU) G 2		30-73
tR(UCU) G 3		32-76
tR(UCU) 11		34-78
tR(UCU) 22		29-73
tR(UCU) K		30-72
tR(UCU) M1		26-70
tR(UCU) M2		30-70
tT(UGU)G1		33-77
tT(UGU)G2		33-76
tT(UGU)P		30-79
tW(CCA) P		31-70
YAL003W	EFB1	451-525
YAL005C	SSA1	340-384
YAL012W	CYS3	103-157
YAL021C	CCR4	266-320, 2506-2605
YAL022C	FUN26	-300-266
YAL023C	PMT2	1047-1136
YAL027W		-27-18
YAL031C	GIP4	1834-1878
YAL038W	CDC19	-23-76, 182-441, 1177-1306
YAL040C	CLN3	1323-1452
YAL041W	CDC24	1748-1817
YAL043C	PTA1	1234-1279
YAL053W	FLC2	669-713
YAL063C	FLO9	4325-4499
YAR014C	BUD14	1934-2012
YAR019C	CDC15	1741-1822
YAR042W	SWH1	2-51
YAR050W	FLO1	1338-1462, 1768-1867, 2088-2212
YAR066W		1199-1288
YAR068W		53-207, 233-322
YAR071W	PHO11	1343-1379
YBL002W	HTB2	367-416
YBL004W	UTP20	4444-4481
YBL007C	SLA1	2879-2928
YBL014C	RRN6	2437-2486
YBL016W	FUS3	1066-1116
YBL030C	PET9	-21-28
YBL032W	HEK2	13-57, 168-212
YBL038W	MRPL16	-289-245
YBL047C	EDE1	1085-1179, 1210-1474
YBL051C	PIN4	1329-1808
YBL054W		845-894
YBL060W		986-1022
YBL063W	KIP1	2923-2959
YBL066C	SEF1	421-505, 3296-3340

YBL072C	RPS8A	615-659
YBL079W	NUP170	80-134, 625-674, 2400-2454, 2545-2589
YBL081W		403-947
YBL084C	CDC27	815-859, 955-1004
YBL085W	BOI1	1499-1558
YBL096C		349-383
YBL099W	ATP1	-153-69
YBL101C	ECM21	175-214, 1305-1344, 1625-1654
YBL103C	RTG3	554-568, 614-668
YBR007C	DSF2	916-960
YBR011C	IPP1	130-274, 570-674, 720-904
YBR016W		7-146
YBR029C	CDS1	873-917
YBR031W	RPL4A	95-144, 820-924
YBR048W	RPS11B	552-611, 747-836
YBR054W	YRO2	-203-159
YBR057C	MUM2	257-301
YBR059C	AKL1	775-824
YBR078W	ECM33	394-463, 539-623, 634-838, 849-938, 1034-1178, 1409-1473
YBR079C	RPG1	954-1017
YBR082C	UBC4	247-366
YBR083W	TEC1	1402-1441
YBR086C	IST2	210-259, 387-429, 2640-2689
YBR106W	PHO88	60-139
YBR112C	CYC8	1641-1770, 1816-2015, 2196-2300
YBR118W	TEF2	-13-31, 287-336, 1042-1116
YBR126C	TPS1	1394-1498
YBR136W	MEC1	-341-297
YBR140C	IRA1	1077-1186
YBR149W	ARA1	1468-1557
YBR162C	TOS1	581-730
YBR169C	SSE2	1284-1322
YBR172C	SMY2	514-563, 1729-1778
YBR189W	RPS9B	735-776, 852-891
YBR191W-A		-27-27
YBR195C	MSII	-336-292
YBR196C	PGII	1152-1326
YBR198C	TAF5	250-359
YBR212W	NGR1	948-997, 1078-1127
YBR214W	SDS24	-36-98, 1299-1398
YBR218C	PYC2	1404-1452
YBR221C	PDB1	-23-26, 832-931
YBR222C	PCS60	905-949
YBR225W		1063-1112, 1658-1752
YBR230C	OM14	461-500
YBR238C		264-418
YBR260C	RGD1	960-1004
YBR263W	SHM1	-51-38, 179-217, 1153-1189
YBR283C	SSH1	931-1000

YBR286W	APE3	48-122, 1545-1592
YBR287W	ZSP1	927-971
YBR289W	SNF5	159-343
YBR302C	COS2	1223-1267
YCL001W	RER1	-279-239
YCL004W	PGS1	897-941
YCL009C	ILV6	465-509
YCL025C	AGP1	12241273
YCL028W	RNQ1	739-998
YCL031C	RRP7	878-928
YCL037C	SRO9	629-768, 1159-1243
YCL039W	GID7	493-537
YCL040W	GLK1	-18-26, 1177-1221
YCL043C	PDI1	491-555; 601-650
YCL044C	MGR1	784-893, 1098-1153
YCL045C		1780-1849
YCL049C		438-482
YCR008W	SAT4	350-499
YCR012W	PGK1	-6-88, 104-173, 664-738
YCR024C-A	PMP1	-124-30
YCR030C	SYP1	1050-1169, 1200-1249, 1310-1499
YCR034W	FEN1	515-568
YCR052W	RSC6	1421-1465
YCR053W	THR4	-36-13, 24-218, 339-383
YCR065W	HCM1	1214-1268, 1359-1403, 1489-1533, 1644-1688
YCR067C	SED4	1751-1935
YCR081W	SRB8	3846-3880
YCR084C	TUP1	474-633, 2264-2343
YCR088W	ABP1	1124-1188
YCR089W	FIG2	3778-3917, 4048-4207
YCR093W	CDC39	5524-5563
YDL005C	MED2	538-582
YDL007C-A		609-633
YDL012C		199-241
YDL019C	OSH2	-16-23
YDL020C	RPN4	112-156
YDL022W	GPD1	1019-1073, 1109-1153
YDL025C		0-64, 105-179, 317-494, 735-839
YDL035C	GPR1	1461-1505
YDL037C	BSC1	481-595
YDL038C		1701-1744
YDL039C	PRM7	152-256
YDL048C	STP4	196-300, 316-380, 466-630
YDL054C	MCH1	135-181
YDL055C	PSA1	-145-6
YDL056W	MBP1	834-883
YDL060W	TSR1	1616-1655
YDL061C	RPS29B	39-83, 139-163
YDL070W	BDF2	251-290

YDL072C	YET3	$1-90$
YDL073W		$459-468$
YDL082W	$R P L 13 A$	$970-1014$
YDL083C	$R P S 16 B$	$579-623$
YDL088C	$A S M 4$	$330-366$
YDL095W	$P M T 1$	$1152-1249$
YDL106C	$P H O 2$	$95-169$
YDL109C		$1484-1526$
YDL130W-A	$S T F 1$	$-42-3$
YDL132W	$C D C 53$	$2001-2045$
YDL133C-A	$R P L 41 B$	$-8-38$
YDL140C	$R P O 21$	$-142-88,4878-5182$
YDL159W	$S T E 7$	$329-366$
YDL160C	$D H H 1$	$1284-1413$
YDL161W	$E N T 1$	$698-742$
YDL167C	NRP1	$1591-1635$
YDL171C	GLT1	$807-856$
YDL173W	PST1	$733-769$
YDL184C		

YDR074W	TPS2	595-629, 785-829, 850-899, 975-1019, 1795-1852
YDR077W	SED1	70-179, 230-799
YDR091C	RLI1	1983-2062
YDR096W	GIS1	767-816, 1977-2036, 2242-2310
YDR099W	BMH2	695-784
YDR103W	STE5	267-296, 372-411, 792-836, 907-946
YDR123C	INO2	236-280, 496-605
YDR133C		318-392
YDR134C		-52-101, 177-281
YDR135C	YCF1	815-859
YDR142C	PEX7	850-894
YDR143C	SAN1	1159-1208, 1224-1288
YDR144C	MKC7	1636-1740
YDR145W	TAF12	306-390
YDR150W	NUM1	8227-8269
YDR151C	CTH1	366-402, 499-533
YDR153C	ENT5	1050-1094, 1220-1269
YDR155C	CPR1	-46-43
YDR166C	SEC5	2121-2167
YDR169C	STB3	1206-1315
YDR170C	SEC7	2025-2214
YDR172W	SUP35	87-156
YDR184C	ATC1	446-530
YDR186C		550-644, 1020-1109, 1920-1959, 1995-2044
YDR189W	SLY7	-253-199
YDR205W	MSC2	236-280
YDR207C	UME6	1252-1301, 1462-1511
YDR208W	MSS4	805-854, 875-944
YDR213W	UPC2	876-930, 1096-1144
YDR224C	HTB1	125-174
YDR227W	SIR4	120-164, 230-319, 1730-1769
YDR228C	PCF11	1019-1068
YDR232W	HEM1	1183-1227
YDR233C	RTN1	334-453, 529-668
YDR239C		370-409
YDR240C	SNU56	957-991
YDR246W	TRS23	545-594
YDR251W	PAM1	49-58, 84-93
YDR255C	RMD5	1135-1149
YDR259C	YAP6	275-309, 335-364
YDR266C		1272-1311
YDR288W	NSE3	1459-1498
YDR292C	SRP101	675-715
YDR293C	SSD1	767-886
YDR295C	HDA2	247-281
YDR297W	SUR2	828-872
YDR303C	RSC3	291-334
YDR309C	GIC2	543-592, 738-787, 978-1097
YDR310C	SUM1	1085-1164

YDR322W	MRPL35	$13-62$
YDR326C	YSP2	$898-962,983-1027,2498-2547,3728-3822$
YDR334W	SWR1	$969-1013$
YDR335W	MSN5	$2358-2407$
YDR349C	YPS7	$1356-1416$
YDR351W	SBE2	$729-848$
YDR379W	RGA2	$1315-1359$
YDR385W	EFT2	$-19-35,2096-2225$
YDR389W	SAC7	$-72-23$
YDR390C	UBA2	$1256-1275$
YDR416W	SYF1	$1788-1822$
YDR418W	$R P L 12 B$	$157-246$
YDR420W	$H K R 1$	$1347-1401,1437-1681,1847-1941,2377-2426,3132-3256$
YDR425W	SNX41	$602-646$
YDR427W	$R P N 9$	$536-590$
YDR432W	NPL3	$288-337$
YDR436W	$P P Z 2$	$41-79$
YDR443C	SSN2	$2830-2873$
YDR449C	$U T P 6$	$1382-1426$
YDR450W	RPS18A	$656-725$
YDR457W	TOM1	$3325-3359$
YDR463W	STP1	$1442-1486$
YDR471W	RPL27B	$573-637$
YDR475C		

YEL045C		379-448
YEL046C	GLY 7	184-283
YEL060C	PRB1	618-672, 748-797, 1808-1852
YEL063C	CAN1	1036-1090
YEL074W		173-218
YER020W	GPA2	754788
YER021W	RPN3	1012-1061, 1199-1240
YER025W	GCD11	1626-1663
YER033C	ZRG8	101-155, 296-355
YER036C	ARB1	1449-1498
YER040W	GLN3	605-704
YER043C	SAH1	860-904, 1070-1154, 1340-1459
YER044C	ERG28	77-126
YER045C	ACA1	224-268, 404-448, 759-808
YER047C	SAP1	1232-1286
YER061C	CEM1	219-263, 354-373
YER064C		1460-1554
YER068W	MOT2	1147-1241
YER069W	ARG5\%2C6	57-101
YER070W	RNR1	2425-2504
YER075C	PTP3	828-872
YER079W		443-492
YER086W	ILV1	1080-1124
YER087C-B	SBH1	-43-41
YER088C	DOT6	669-783, 1879-2028
YER102W	RPS88B	643-682
YER110C	KAP123	354-423
YER111C	SWT4	613-662
YER112W	LSM4	439-453
YER114C	BOI2	1490-1533
YER118C	SHO1	368-417
YER123W	YCK3	1353-1397, 1418-1452
YER125W	RSP5	434-483, 494-613, 1234-1278
YER129W	SAK1	2240-2279
YER131W	RPS26B	209-263
YER132C	PMD1	1917-1956, 2712-2756
YER133W	GLC7	1601-1655
YER143W	DDI1	770-812
YER144C	UBP5	1063-1192
YER150W	SPI1	216-260
YER151C	UBP3	172-251, 362-446, 602-656
YER154W	OXA1	811-855, 1026-1075, 1151-1205
YER155C	BEM2	1096-1175, 1436-1505
YER158C		-175-121, 235-279, 1245-1289, 1315-1364
YER165W	PAB1	1670-1819
YER167W	BCK2	1506-1560
YER169W	RPH1	208-287
YER177W	BMH1	516-605, 646-735
YER188C-A		-275-161, -135-29

YFL021W	GAT1	$1350-1509$
YFL022C	FRS2	$637-687$
YFL024C	EPL1	$2708-2750$
YFL026W	STE2	$920-956$
YFL031W	$H A C 1$	$626-671$
YFL033C	$R I M 15$	$1426-1500,1984-2060$
YFL034C-B	MOB2	$275-289,315-359$
YFL036W	$R P O 41$	$-46-2$
YFL037W	TUB2	$1487-1536$
YFL039C	ACT1	$522-721$
YFL051C		$1720-1839$
YFR017C	FAB1	$-55-24$
YFR019W	$P T R 3$	$1413-1552$
YFR029W	$R P L 2 A$	$475-521,1350-1394$
YFR031C-A	DUG1	$935-1004$
YFR044C	$R E T 2$	$52-111$
YFR051C	$R P N 12$	$184-288$
YFR052W		

YGL135W	RPL1B	$-4-50$
YGL139W	FLC3	$-74-5$
YGL142C	GPI10	$1696-1739$
YGL147C	RPL9A	$186-235$
YGL150C	INO80	$1317-1358,3769-3818$
YGL151W	NUT1	$761-865,1131-1185$
YGL167C	PMR1	$-154-105$
YGL172W	NUP49	$677-713$
YGL178W	MPT5	$705-784,2525-2644,2675-2819$
YGL197W	MDS3	$2425-2474,2885-2949$
YGL206C	CHC1	$1181-1225$
YGL207W	$S P T 16$	$1363-1403$
YGL208W	$S I P 2$	$-306-262$
YGL209W	MIG2	$762-806,1087-1123$
YGL215W	$C L G 1$	$173-412,1163-1347$
YGL219C	MDM34	$464-493,854-903,1314-1323$
YGL222C	EDC1	$141-270,346-395$
YGL223C	COG1	$230-309$
YGL225W		

YGR161C	RTS3	539-663
YGR162W	TIF4631	175-219, 530-579
YGR166W	KRE11	822-864
YGR180C	RNR4	-209-157, 10-53, 719-768
YGR184C	UBR1	1435-1489
YGR189C	CRH1	1043-1242
YGR191W	HIP1	-141-107
YGR192C	TDH3	218-587
YGR198W	YPP1	676-712
YGR204W	ADE3	547-588
YGR214W	RPSOA	850-919
YGR218W	CRM1	188-237
YGR221C	TOS2	1380-1414, 1620-1694
YGR227W	DIE2	1141-1280
YGR233C	PHO81	929-972
YGR237C		2144-2223
YGR240C	PFK1	-27-107, 428-482
YGR241C	YAP1802	1390-1484
YGR249W	MGA1	209-252, 820-864, 920-964, 1080-1129
YGR254W	ENO1	-18-41, 787-876
YGR274C	TAF1	1154-1196
YGR279C	SCW4	215-414
YGR285C	ZUO1	445-484
YHL001W	RPL14B	599-608
YHL004W	MRP4	507-551
YHL007C	STE20	-74-30, 1456-1510
YHL015W	RPS20	-18-256
YHL021C	FMP12	1020-1074
YHL023C	RMD11	545-589, 761-804
YHL027W	RIM101	893-1032
YHL028W	WSC4	666-885
YHL029C	OCA5	208-257, 474-522
YHL030W	ECM29	1112-1164
YHL033C	RPL8A	195-214
YHL050C		1696-1745, 1771-1800
YHR007C	ERG11	1612-1666
YHR007C-A		-112-33
YHR010W	RPL27A	968-1008
YHR017W	YSC83	1051-1088
YHR021C	RPS27B	689-738
YHR042W	NCP1	1314-1443
YHR048W		713-722
YHR056C	RSC30	1168-1217
YHR064C	SSZ1	172-236
YHR071W	PCL5	-56-7
YHR072W	ERG7	252-300
YHR073W	OSH3	1310-1354, 1800-1844
YHR074W	QNS1	1870-1906
YHR076W	PTC7	1771-1805

YHR079C	IRE1	-94-40
YHR082C	KSP1	1251-1294, 1461-1505, 1896-1945, 2256-2310, 2331-2385
YHR084W	STE12	1338-1382, 1503-1542, 1765-1807
YHR086W	NAM8	755-799
YHR092C	HXT4	578-612
YHR097C		842-886
YHR098C	SFB3	577-631
YHR099W	TRA1	5411-5454
YHR102W	KIC1	2479-2528
YHR108W	GGA2	1018-1062, 1288-1337
YHR115C	DMA1	-13-51
YHR127W		789-834
YHR135C	YCK1	1286-1565
YHR141C	RPL42B	401-445
YHR143W	DSE2	509-628
YHR149C	SKG6	1580-1669
YHR152W	SPO12	54118
YHR158C	KEL1	1790-1834, 1893-1939
YHR161C	YAP1801	1631-1705
YHR165C	PRP8	4783-4797
YHR174W	ENO2	386-440, 496-545
YHR175W	CTR2	-192-145
YHR179W	OYE2	21-125
YHR182W		2234-2273, 2309-2353
YHR188C	GPI16	1271-1370
YHR203C	RPS4B	1054-1143
YHR205W	SCH9	417-501
YHR206W	SKN7	1388-1452, 1698-1741, 1798-1922
YHR208W	BAT1	5-139
YHR211W	FLO5	925-1009, 1890-1954, 2040-2159, 2215-2334
YHR214W-A		-172-38, 58-152
YIL018W	RPL2B	1170-1210
YIL034C	CAP2	430-474
YIL038C	NOT3	1042-1106, 1272-1316
YIL041W	GVP36	320-374
YIL051C	MMF1	-8-56, 342-406
YIL052C	RPL34B	-10-24
YIL053W	RHR2	12-131
YIL055C		743-787
YIL056W	VHR1	695-744, 1020-1063, 1145-1229, 1781-1824
YIL069C	RPS24B	856-925
YIL075C	RPN2	936-985
YIL078W	THS1	1072-1110
YLL083C		18-37
YLL088C	$A V T 7$	824918
YIL091C		1342-1379
YIL095W	PRK1	1462-1521
YIL101C	XBP1	1679-1748
YIL105C	SLM1	425-454

YIL109C	SEC24	984-1028
YIL119C	RPI1	940-1019
YIL122W	POG1	778-807, 1093-1127
YIL123W	SIM1	271-630
YIL128W	MET18	220-258
YIL129C	TAO3	855-898
YIL130W	ASG1	2437-2481, 2527-2576
YIL135C	VHS2	650-699, 1205-1304
YIL137C	TMA108	808-857, 873-952
YIL140W	AXL2	1418-1467
YIL142W	CCT2	582-626, 824-866
YIL146C	ECM37	1627-1676
YIL148W	RPL40A	462-511, 627-636, 667-711, 762-771, 867-904
YIL154C	IMP2'	875-912
YIL162W	SUC2	858-902
YLL69C		577-876, 2147-2241
YIR006C	PAN1	579-673, 1304-1393
YIR010W	DSN1	592-631
YRR018C-A		28-67
YR019C	MUC1	720-1779, 1825-2019, 2335-2419, 2430-2489, 2690-2789
YIR023W	DAL81	2543-2597
YIR033W	MGA2	1193-1332
YJL005W	CYR1	425-466, 794-841, 3822-3859
YJL016W		-115-81, -1-44, 188-229
YJL020C	BBC1	2354-2603, 2651-2738
YJL029C	VPS53	895-943
YJL041W	NSP1	139-188, 199-288
YJL042W	MHP1	959-1008
YJL050W	MTR4	2099-2135
YJL052W	TDH1	286-590
YJL054W	TIM54	542-586
YJL060W	BNA3	1009-1018
YJL062W	LAS21	760-796, 2000-2044
YJL073W	JEM1	1531-1575
YJL076W	NET1	1051-1095
YJL078C	PRY3	718-782, 2288-2367
YJL079C	PRY1	361-410
YJL080C	SCP160	-117-157, 223-412
YJL083W	TAX4	1164-1213, 1224-1263
YJL084C	ALY2	756-815
YJL090C	DPB11	889-933, 989-1033
YJL091C	GWT1	1825-1889
YJL095W	BCK1	1417-1476
YJL097W	PHS1	1-90
YJL109C	UTP10	339-443
YJL110C	GZF3	1012-1061
YJL129C	TRK1	4466-4530
YJL130C	URA2	-72-45
YJL136C	RPS21B	496-540

YJL138C	TIF2	$534-623$
YJL139C	YUR1	$1687-1776$
YJL141C	YAK1	$154-341,1274-1338,1384-1448$
YJL158C	CIS3	$77-381$
YJL159W	HSP150	$153-292,318-567,598-677,713-877$
YJL168C	SET2	$2093-2132$
YJL172W	CPS1	$175-357,530-572$
YJL174W	KRE9	$444-508,829-898$
YJL187C	SWE1	$1051-1110$
YJL189W	RPL39	$564-613$
YJL201W	ECM25	$1294-1348$
YJR003C		$-307-278$
YJR004C	SAG1	$1296-1430$
YJR009C	TDH2	$210-554$
YJR016C	ILV3	$1787-1832$
YJR041C	URB2	$1856-1960$
YJR044C	VPS55	$418-467$
YJR045C	SSC1	$486-527,919-963$
YJR047C	ANB1	$-12-17$
YJR054W		PBAR1

YKL068W	NUP100	2558-2612
YKL081W	TEF4	1166-1210
YKL084W	HOT13	263-292
YKL096W-A	CWP2	-16-238
YKL101W	HSL1	1689-1843
YKL103C	LAP4	1122-1171
YKL109W	HAP4	240-285, 630-679, 695-729
YKL121W		902-938, 1079-1115
YKL125W	RRN3	351-387
YKL129C	MYO3	3110-3147
YKL152C	GPM1	580-714
YKL159C	RCN1	911-920
YKL164C	PIR1	387-736
YKL175W	ZRT3	1003-1037
YKL180W	RPL17A	657-751
YKL182W	FAS1	285-334, 1180-1364
YKL183W	LOT5	1500-1544
YKL185W	ASH1	287-451
YKL193C	SDS22	702-739
YKL204W	EAP1	1341-1440
YKL216W	URA1	-27-17
YKL217W	JEN1	-191-157
YKR008W	RSC4	1539-1582
YKR013W	PRY2	322-601
YKR016W	FMP13	446-500, 981-1025
YKR021W	ALYI	1951-2000
YKR042W	UTH1	314-378, 634-738
YKR051W		277-316
YKR052C	MRS 4	453-489
YKR059W	TIF1	540-629
YKR060W	UTP30	-326-282
YKR075C		853-877
YKR077W		682-786
YKR090W	PXL1	2132-2161
YKR093W	PTR2	1432-1481
YKR094C	RPL40B	392-471
YKR098C	UBP11	665-674
YKR102W	FLO10	1452-1506, 1582-1801, 2147-2191
YKR103W,YKR104W	NFT1	997-1041
YLL010C	PSR1	40-54, 70-84, 470-514
YLL013C	PUF3	886-940, 1111-1385, 1411-1545
YLL017W,YLL016W	SDC25	3635-3674
YLL019C	KNS1	267-305, 756-840
YLL021W	SPA2	1982-2011, 2162-2211
YLL024C	SSA2	339-383, 1249-1308
YLL043W	FPS1	83-172
YLL045C	RPL8B	61-105, 196-215, 474-515, 736-780
YLL048C	YBT1	577-621
YLR006C	SSK1	726-768, 1516-1559, 1780-1819

YLR017W	MEU1	43-81
YLR019W	PSR2	20-105
YLR023C	IZH3	359-408
YLR024C	UBR2	5135-5154
YLR026C	SED5	-56-10, 601-660
YLR029C	RPL15A	499-573
YLR039C	RIC1	-297-253
YLR040C		204-498
YLR042C		158-202
YLR044C	PDC1	383-497, 683-777, 1178-1232
YLR048W	RPSOB	576-630, 671-730
YLR050C		66-115
YLR052W	IES3	115-159
YLR056W	ERG3	503-602, 678-972
YLR057W		-325-281
YLR058C	SHM2	1456-1545
YLR060W	FRS1	460-519
YLR064W		116-165
YLR079W	SIC1	113-153
YLR089C	ALT1	63-147
YLR091W		119-163
YLR095C	IOC2	2109-2153, 2312-2366, 2387-2441
YLR096W	KIN2	1988-2028
YLR106C	MDN1	8386-8465
YLR110C	CCW12	-44-40
YLR116W	MSL5	1118-1172
YLR120C	YPS1	1514-1563, 1709-1758
YLR121C	YPS3	1464-1523, 1599-1693
YLR131C	ACE2	1409-1517
YLR134W	PDC5	380-419
YLR139C	SLS1	447-551, 587-636, 792-841, 967-1051, 1252-1316
YLR153C	ACS2	1640-1694
YLR167W	RPS31	60-109
YLR176C	RFX1	401-445
YLR177W		410-464
YLR180W	SAM1	15-59, 1060-1209
YLR187W	SKG3	2908-3082
YLR194C		391-660
YLR202C		333-342
YLR203C	MSS51	-33-6
YLR206W	ENT2	437-481, 522-571
YLR212C	TUB4	1018-1062
YLR228C	ECM22	759-818, 1379-1458
YLR249W	YEF3	1977-2056
YLR256W	HAP1	1107-1356, 1562-1716
YLR257W		455-498
YLR270W	DCS1	-330-271
YLR274W	CDC46	433-471

YLR278C		$\begin{aligned} & -55-16,155-197,1020-1059,1190-1234,3105-3149,3170-3249,3400- \\ & 3444,3655-3694 \end{aligned}$
YLR285C-A		-60-16
YLR286C	CTS1	953-1147
YLR290C		-315-269
YLR293C	GSP1	572-621
YLR294C		82-131
YLR304C	ACO1	1400-1449
YLR305C	STT4	2170-2218
YLR310C	CDC25	86-165, 1366-1407
YLR327C	TMA10	-29-10
YLR328W	NMA1	157-226
YLR332W	MID2	694793
YLR335W	NUP2	969-1093, 1559-1633
YLR337C	VRP1	875-1074
YLR342W	FKS1	-208-164, 5482-5711
YLR347C	KAP95	499-543
YLR350W	ORM2	57-101
YLR354C	TAL1	119-179, 556-598
YLR355C	ILV5	1195-1264
YLR357W	RSC2	1639-1680
YLR359W	ADE13	1200-1238, 1385-1444
YLR370C	ARC18	282-323
YLR371W	ROM2	960-1074
YLR373C	VID22	832-876, 947-1006, 1217-1266
YLR375W	STP3	817-861
YLR378C	SEC61	-196-22, 799-958
YLR389C	STE23	37-96, 1747-1791
YLR390W-A	CCW14	274578
YLR403W	SFP1	754978
YLR413W		283-372, 1273-1417
YLR414C		-43-2
YLR420W	URA4	169-218, 901-938
YLR436C	ECM30	$\begin{aligned} & 145-189,865-914,1275-1319,1415-1489,1505-1549,1996-2044, \\ & 3190-3232 \end{aligned}$
YLR438W	CAR2	-9-40, 191-228
YLR439W	MRPL4	66-185, 211-265
YLR441C	RPS1A	397-486
YLR446W		879-917
YLR450W	HMG2	1502-1551
YLR452C	SST2	1555-1669
YLR454W	FMP27	2949-2985
YLR455W		1025-1074
YLR459W	GAB1	877-926
YLR463C		940-981
YML006C	GIS4	277-371
YML015C	TAF11	819-853
YML016C	PPZ1	113-437
YML026C	RPS18B	545-674

YML034C-A		$-83-39$
YML035C	AMD1	$1353-1397$
YML053C		$221-315$
YML054C	CYB2	$1847-1890$
YML056C	IMD4	$139-238$
YML058W	SML1	$429-473$
YML059C	NTE1	$93-142,1168-1197,1738-1777$
YML073C	RPL6A	$776-820$
YML081W		$1004-1053,1179-1233,1264-1318,1469-1513,1979-2028$
YML091C	RPM2	$192-311$
YML092C	PRE8	$699-763$
YML100W	TSL1	$564-613,3009-3083$
YML103C	NUP188	$4-58$
YML111W	BUL2	$11-54$
YML120C	NDI1	$414-458$
YML123C	PHO84	$1710-1761$
YML129C	COX14	$147-189$
YMR002W	MIC17	$110-149$
YMR006C	PLB2	$1882-2011$
YMR008C	PLB1	$510-564,1130-1174,2021-2059$
YMR009W	ADI1	$456-525$
YMR012W	CLU1	$604-673$
YMR016C	SOK152	$1920-2014$
YMR022W		

YMR164C	MSS11	1352-1403, 1729-1773
YMR173W-A		169-178
YMR181C		-27-42, 58-107, 263-312
YMR182C	RGM1	405-449, 475-564, 585-664
YMR186W	HSC82	16-125, 1101-1139, 1366-1415, 1701-1740
YMR189W	GCV2	1787-1831
YMR192W	GYL1	364-403
YMR199W	CLN1	1193-1247, 1498-1552
YMR202W	ERG2	2-56
YMR203W	TOM40	-8-156
YMR205C	PFK2	156-365, 401-535
YMR215W	GAS3	1082-1128, 1152-1196, 1382-1431, 1507-1547
YMR217W	GUA1	1033-1112
YMR221C	FMP42	1360-1405
YMR226C	TMA29	225-269
YMR230W	RPS10B	631-730
YMR241W	YHM2	-30-14
YMR242C	RPL20A	800-989
YMR246W	FAA4	-56-7, 2144-2188
YMR250W	GAD1	1362-1396
YMR266W	RSN1	966-1020, 1046-1105, 2245-2294
YMR273C	ZDS1	2184-2278, 2724-2763
YMR275C	BUL1	2166-2205
YMR276W	DSK2	750-794, 860-903, 935-1009
YMR289W	ABZ2	694-730
YMR290C	HAS1	1352-1406
YMR291W		1409-1458, 1474-1493
YMR296C	LCB1	361-440
YMR303C	ADH2	313-362
YMR305C	SCW10	159-468
YMR307W	GAS1	929-1073, 1519-1673
YMR309C	NIP1	1525-1669, 1715-1809
YMR310C		13-57, 333-377
YMR312W	ELP6	85-159
YMR314W	PRE5	436-472
YMR316W	DIA1	932-968
YMR317W		446-460
YNL009W	IDP3	1812-1856
YNL016W	PUB1	0-59, 940-1034
YNL020C	ARK1	991-1035, 1486-1520
YNL025C	SSN8	643-682
YNL027W	CRZ1	744-806
YNL042W	BOP3	-302-258, 683-767
YNL044W	YIP3	216-259
YNL045W		115-159
YNL047C	SLM2	347-386
YNL054W	$V A C 7$	382-436
YNL055C	POR1	-33-21, 47-91, 207-291
YNL066W	SUN4	278-322

YNL067W	RPL9B	-3-11
YNL068C	FKH2	890-964, 1730-1749
YNL071W	LAT1	810-904
YNL074C	MLF3	800-899
YNL085W	MKT1	-227-188, 1638-1682, 2283-2332
YNL091W	NST1	2993-3042, 3608-3652
YNL094W	APP1	120-164, 611-654
YNL096C	RPS7B	10-59, 835-924
YNL101W	AVT4	-90-29
YNL103W	MET4	930-974, 1220-1284
YNL106C	INP52	2998-3041
YNL118C	DCP2	979-1023
YNL123W	NMA111	2920-2956
YNL124W	NAF1	1058-1167, 1328-1437
YNL137C	NAM9	1394-1438
YNL138W	SRV2	989-1038
YNL142W	MEP2	1349-1373
YNL143C		138-177
YNL152W		852-906, 962-991, 1102-1146
YNL153C	GIM3	432-481
YNL154C	YCK2	1180-1274
YNL158W	PGA1	328-375
YNL160W	YGP1	225-319, 405-509, 1020-1079
YNL161W	CBK1	628-747
YNL167C	SKO1	1462-1536
YNL172W	APC1	656-692
YNL176C		-79-40, 301-465, 521-685, 731-774, 1016-1065, 1271-1320
YNL180C	RHO5	897-941
YNL183C	NPR1	-89-45, 806-860
YNL186W	UBP10	1459-1508
YNL190W		-94-45, 116-565
YNL192W	CHS1	121-220, 391-460
YNL197C	WHI3	-115-73, 713-977
YNL209W	SSB2	1210-1359, 1495-1644
YNL219C	ALG9	733-777
YNL230C	ELA1	936-980
YNL238W	KEX2	-22-22
YNL239W	LAP3	107-146
YNL241C	ZWF1	-137-68
YNL255C	GIS2	471-515
YNL271C	BNI1	3815-3869
YNL278W	CAF120	2766-2805, 2971-3020, 3116-3165
YNL281W	HCH1	535-579
YNL283C	WSC2	453-677
YNL287W	SEC21	424-538
YNL288W	CAF40	635-679
YNL297C	MON2	1232-1256, 3422-3459
YNL298W	CLA4	845-889, 990-1134, 1145-1229, 1240-1424
YNL300W		-6-228

YNL301C	RPL18B	$-12-37$
YNL307C	MCK1	$1275-1319$
YNL309W	STB1	$740-784$
YNL311C	SKP2	$1512-1553$
YNL322C	KRE1	$564-663$
YNL327W	EGT2	$1204-1263,1294-1593$
YNL329C	PEX6	$386-429$
YNR006W	VPS27	$1377-1539$
YNR009W	NRM1	$638-687$
YNR010W	$C S E 2$	$-216-182$
YNR013C	PHO91	$1439-1488,1734-1788$
YNR014W		$181-195,266-310$
YNR016C	ACC1	$-317-268,2986-3032$
YNR021W		$743-787$
YNR026C	SEC12	$1053-1107$
YNR030W	ALG12	$985-1028,1420-1534$
YNR031C	SSK2	$513-527$
YNR033W	ABZ1	$-335-291$
YNR035C	ARC35	$11-55$
YNR038W		

YOR002W	ALG6	964-1098, 1114-1233
YOR008C	SLG1	390-499
YOR014W	RTS1	240-479
YOR018W	ROD1	1781-1817
YOR023C	AHC1	11041208
YOR047C	STD1	69-113, 174-233
YOR052C		465-524
YOR063W	RPL3	518-562
YOR066W		1376-1565
YOR081C	TGL5	1463-1512, 1633-1667, 1738-1777
YOR085W	OST3	384-718
YOR086C	TCB1	841-881
YOR098C	NUP1	1956-2101, 2372-2421
YOR107W	RGS2	-200-186, 910-954
YOR109W	INP53	2940-2989
YOR113W	AZF1	1073-1117, 2498-2587
YOR118W		2301-2344
YOR127W	RGA1	1385-1429
YOR132W	VPS17	254-298
YOR133W	EFT1	850-894, 1710-1764, 2095-2224
YOR134W	$B A G 7$	943-1008
YOR138C	RUP1	1587-1636
YOR140W	SFL1	1395-1479, 1945-1989, 2595-2699
YOR149C	SMP3	369-413
YOR153W	PDR5	656-700, 1821-1867
YOR156C	NFI1	1554-1588
YOR178C	GAC1	1578-1587
YOR181W	LAS17	804-903, 1224-1408, 1524-1623
YOR188W	MSB1	2757-2806
YOR197W	MCA1	626-675
YOR198C	BFR1	-123-29, 167-226
YOR204W	DED1	424-468, 2419-2455
YOR207C	RET1	2041-2111
YOR208W	PTP2	1423-1467
YOR219C	STE13	407-476
YOR227W		745-769, 1400-1443
YOR248W		-49-170, 351-480
YOR254C	SEC63	243-285
YOR260W	GCD1	825-871
YOR267C	HRK1	95-529
YOR270C	VPH1	1088-1152
YOR271C	FSF1	482-526
YOR275C	RIM20	869-923
YOR290C	SNF2	1062-1111
YOR296W		199-240
YOR303W	CPA1	-50-59
YOR310C	NOP58	60-114
YOR312C	RPL20B	848-945
YOR315W	SFG1	1174-1263

YOR321W	PMT3	1075-1117
YOR322C	LDB19	2261-2305
YOR329C	SCD5	2126-2415
YOR333C		456-500
YOR343C		11-55
YOR344C	TYE7	1063-1107
YOR347C	PYK2	2178-2217
YOR353C	SOG2	612-653
YOR354C	MSC6	1345-1384
YOR355W	GDS1	807-856, 867-916, 987-1101, 1247-1291
YOR359W	VTS1	950-1173
YOR363C	PIP2	2490-2529
YOR370C	MRS6	899-983
YOR372C	NDD1	1472-1526
YOR373W	NUD1	2095-2133
YOR385W		640-794
YOR394C-A		-115-31, 115-164
YPL011C	TAF3	643-687
YPL014W		642-706, 837-1031
YPL016W	SWII	505-569, 615-699
YPL026C	SKS1	-27-8, 1098-1182
YPL032C	SVL3	$\begin{aligned} & -91-37,444-493,1069-1123,1244-1318,1914-1968,2009-2078,2109- \\ & 2208 \end{aligned}$
YPL036W	PMA2	2996-3035, 3056-3100
YPL037C	EGD1	-19-30
YPL049C	DIG1	1292-1466
YPL054W	LEE1	458-494
YPL057C	SUR1	-38-1, 1442-1496
YPL063W	TIM50	-64-15, 1546-1590
YPL066W		561-615
YPL070W	MUK1	354-398
YPL075W	GCR1	677-751, 2017-2066
YPL076W	GPI2	379-408
YPL079W	RPL21B	826-870
YPL085W	SEC16	2145-2224, 2830-2893, 6400-6454
YPL089C	RLM1	1552-1766
YPL106C	SSE1	1240-1374
YPL115C	BEM3	-94-46, 651-925, 976-1050, 1231-1390
YPL126W	NAN1	1189-1285
YPL128C	TBF1	1059-1103
YPL131W	RPL5	-30-244
YPL135W	ISU1	593-637
YPL141C		1569-1618
YPL149W	ATG5	381-421
YPL154C	PEP4	269-340
YPL163C	SVS1	163-337
YPL164C	MLH3	-330-252
YPL166W	ATG29	1124-1166
YPL179W	PPQ1	375-589

YPL184C	MRN1	-230-206, -55-11
YPL187W	MF(ALPHA) 1	579-623
YPL190C	NAB3	1132-1186
YPL198W	RPL7B	1374-1418
YPL202C	AFT2	1006-1052
YPL204W	HRR25	1325-1374, 1385-1464
YPL210C	SRP72	571-615, 901-970
YPL220W	RPL1A	-3-41
YPL226W	NEW1	439-530, 569-668
YPL231W	FAS2	685-784
YPL240C	HSP82	1818-1862
YPL256C	CLN2	1076-1135
YPL259C	APM1	747-796
YPL262W	FUM1	483-527
YPR013C		342-371, 422-466
YPR022C		406-485, 506-560
YPR024W	YME1	289-339, 377-433
YPR032W	SRO7	185-227, 1178-1222
YPR035W	GLN1	1203-1280
YPR036W	VMA13	1245-1289
YPR036W-A		306-355
YPR040W	TIP41	171-230
YPR042C	PUF2	1240-1284, 1520-1569
YPR065W	ROX1	611-685, 946-1050
YPR072W	NOT5	971-1015, 1221-1255
YPR080W	TEF1	286-335, 1041-1115
YPR083W	MDM36	1431-1445
YPR089W		1212-1256
YPR095C	SYT1	667-711
YPR102C	RPL11A	423-497
YPR106W	ISR1	641-678
YPR117W		-92-43
YPR119W	CLB2	1582-1611
YPR122W	AXL1	385-429, 460-504, 530-539
YPR129W	SCD6	266-350
YPR132W	RPS23B	858-916
YPR144C	NOC4	1132-1161
YPR149W	NCE102	-47-4
YPR150W		-294-250
YPR154W	PIN3	377-626
YPR161C	SGV1	1806-1825
YPR164W	MMS1	1547-1556
YPR171W	BSP1	898-952, 1204-1241
YPR181C	SEC23	1370-1514
YPR183W	DPM1	726-780
YPR184W	GDB1	-153-113

173 binding sites map to Ty elements

Chapter 3: High resolution identification of in vivo binding sites reveals post-transcriptional coordination by Khd1

Abstract

RNA-binding proteins can interact with mRNAs encoding functionally related proteins to coordinate their expression. Our analysis of the RNA-binding protein Khd1 in Saccharomyces cerevisiae using cross-linking immunoprecipitation (CLIP) identified a post-transcriptional network that coordinates cellular responses to environmental stress. We previously showed that Khd1 binds FLO11 and ASH1 mRNAs to regulate filamentous growth, which cells enact under conditions of nitrogen starvation. Here we show that Khd1 binds additional transcripts that encode regulators of $F L O 11$ and filamentation. Khd1 also represses retrotransposition of Ty1 elements, another cellular response to low nitrogen conditions, by repressing translation of Ty1 mRNA. Through interactions with its target transcripts, Khd1 coordinates two responses to environmental stress.

INTRODUCTION

Many cellular processes require coordinated expression of multiple genes. The organization of related genes into polycistronic operons permits translation of multiple genes from a single mRNA to coordinate gene expression in bacteria. Transcriptional operons are rare in eukaryotic organisms (Blumenthal 1998), but growing evidence points to the widespread use of post-transcriptional regulons in eukaryotic systems (KeENE and LAGER 2005). RNA-binding proteins coordinately affect the localization, stability, and translation of mRNAs encoding functionally related proteins by recognizing specific sequences or structures in target transcripts (KeEne 2007). Genes subject to coordinated post-transcriptional regulation are likely to share related functions (KeEne 2007; KeEne
and Lager 2005; Keene and Tenenbaum 2002). RNA-binding proteins can change their binding patterns upon cellular differentiation, suggesting they play a role in altering cellular processes (TENENBAUM et al. 2000).

Under conditions of nitrogen starvation, diploid Saccharomyces cerevisiae cells undergo a morphogenetic transition to filamentous growth that requires the coordinated alteration of multiple cellular processes (GAGIANO et al. 2002). In rich nitrogen, diploid cells have an elliptical morphology and undergo bipolar divisions. The filamentous growth program employs a modified cell cycle to generate elongated cells that undergo unipolar divisions (Gimeno et al. 1992; Kron et al. 1994). This change initiates with the first cell division (AHN et al. 1999), and leads to the directional outgrowth of filaments from the colony, which is thought of as a foraging mechanism (Gimeno et al. 1992).

Filamentous growth requires expression of FLO11 (LAMBRECHTS et al. 1996; Lo and Dranginis 1998), which encodes a cell surface protein (Lo and Dranginis 1996). Multiple signaling pathways converge on the $F L O 11$ promoter, which at 3.5 kb is unusually large for a yeast promoter, to control transcription (Figure 1). A mitogen-activated protein (MAP) kinase pathway and a protein kinase A (PKA) pathway each regulate transcription through multiple regions of the FLO11 promoter (RUPP et al. 1999). Activated Kss1, the filamentation MAP kinase, phosphorylates the transcription factors Tecl and Ste12, which bind in tandem to the FLO11 promoter to activate transcription (MADHANI and Fink 1997). PKA signaling activates the transcription factor Flo8, which promotes FLO11 transcription (PAN and HeITMAN 1999). In a parallel transcription factor cascade, Sok2 regulates Phd1 and Ash1 to activate FLO11 transcription (Pan et al. 2000). In addition to activating $F L O 11$, regulators of filamentous growth control other aspects of the developmental program (Figure 1). The filamentation MAP kinase pathway

Figure 1.-Coordinate regulation of processes required for filamentous growth. Genetic interactions represented in black control FLO 11 transcription. Genetic interactions in red coordinate FLO11 transcription with other processes required for filamentous growth. Khd1 binds mRNAs shown in blue.
alters the cell cycle to control cell elongation (AHN et al. 1999), and PKA signaling promotes the unipolar budding pattern (Pan and Heitman 1999). The RNA-binding protein Puf5 inhibits the filamentation MAP kinase pathway by repressing translation of STE 7 and TEC1 mRNAs (PRINZ et al. 2006), and also binds PHD1 mRNA (Gerber et al. 2004), although the effect of this interaction is not known. Puf5 also plays a role in maintaining cell wall structure (KaEberlein and Guarente 2002), which undergoes changes during the transition to filamentous growth (CiD et al. 1995). These networks coordinate the cellular processes that contribute to filamentous growth.

In addition to coordinating components of filamentous growth, the filamentation MAP kinase pathway coordinates the morphogenetic switch with retrotransposition. In diploid cells, Ty1 retrotransposition, like filamentation, occurs only in low nitrogen. Both Tecl and Ste12, the downstream transcription factors of the filamentation MAP kinase pathway, are required for Tyl transcription (Laloux et al. 1990; Morillon et al. 2000). Filamentation allows cells to search out more habitable environments, and transposition
has the potential to generate mutations that provide advantages in the existing conditions (MORILLON et al. 2000). Through this regulation, the filamentation MAP kinase pathway transcriptionally enables two cellular responses to environmental stress. However, posttranscriptional regulation enables the rapid switch to filamentous growth under conditions of nitrogen starvation (Chapter 2) and a similar mechanism may regulate retrotransposition as well.

We report post-transcriptional coordination of retrotransposition and filamentation by the RNA-binding protein Khd1. Identification of the RNA targets of Khd1 revealed its role in regulating asymmetric expression of FLO11 during filamentous growth (Chapter 2). Khd1 binds $A S H 1$ and FLO 11 mRNAs to regulate FLO 11 expression, but also binds additional transcripts, a number of which affect processes involved in filamentous growth. These mRNA targets relate to the previously described role for Khd1 in regulating filamentous growth. We expand this role to include repression of retrotransposition. Khd 1 represses retrotransposition by repressing translation of Tyl RNA, coordinating filamentation and retrotransposition through a common posttranscriptional regulator. Interactions between Khd1 and its RNA targets, including mRNAs encoding other post-transcriptional regulators, coordinate related processes within the cell.

MATERIALS AND METHODS

Yeast strains and media

Yeast strains used in this study (Table 1) are derived from $\Sigma 1278$ b 10560-2B. Standard yeast media, yeast transformations and genetic manipulations were performed as previously described (GUTHRIE and Fink 1991). Yeast strains carrying gene deletions were
constructed by PCR amplification of kanamycin-resistance gene cassettes from the yeast deletion library (WINzELER et al. 1999) and transformation into $\Sigma 1278$ b.

Plasmid construction

The Khdl overexpression construct was made by amplifying the gene using PCR, with oligonucleotides that added restriction sites (NotI at the 5^{\prime} end, XhoI at the 3^{\prime} end) to the final product. Amplified DNA was digested using NotI and XhoI and cloned into p415TEF (Mumberg et al. 1995).

Western Blot Analysis

Protein was prepared using TCA precipitation from 3 mL of strains carrying either $P_{\text {TEF }}-K H D 1$ construct or the empty vector grown to OD_{600} of .9-1.1 and resuspended in 150 mL SDS loading buffer. 10 mL were run on 10% SDS-polyacrylamide gels and transferred to nitrocellulose filter paper. Blotting was performed against TyA with rabbit anti-VLP antiserum generously provided by David Garfinkel and HRP-conjugated donkey anti-rabbit secondary antibody (Amersham NA934V), and against tubulin using rat antitubulin (Accurate Chemicals MCA77G) and HRP-conjugated goat anti-rat antibody (Jackson ImmunoResearch 112-035-062). Blots were detected using SuperSignal West Femto Substrate (Thermo Scientific 34095).

Northern Blot Analysis

Ty1 mRNA was detected as previously described (DRINNENBERG et al. 2009).

Frequency of Ty1 his3-AI mobility

Tyl his3-AI mobility was measured as previously described (Nyswaner et al. 2008). In brief, $\sim 10^{3}$ cells carrying $P_{\text {TEF }}-K H D 1$ or empty vector were inoculated into 1 mL of SC Leu -Ura, grown to saturation, and spread on both SC -Leu -Ura and SC - Leu -Ura -His plates. The frequency of Tylhis3-AI mobility was calculated by dividing the average number of $\mathrm{Leu}^{+} \mathrm{His}^{+} \mathrm{Ura}^{+}$cells per milliliter by the average number of $\mathrm{Leu}^{+} \mathrm{Ura}^{+}$cells per milliliter. To adjust for the slow growth caused by Khd1 overexpression, an equal number of cells were inoculated into 10 mL of media and aliquots from the 1 mL culture were plated when the 10 mL culture had grown to an OD_{600} of 1 .

Table 1. Yeast strains and plasmids used in this study

Strain	Genotype	Source
JW1552	MATa his3::natNT2 ura3-52 leu2::hisG Tyl his 3-AI	This study
JW1571	MATa his3::natNT2 ura3-52 leu2::hisG Ty1 his3-AI khd1::kanMX4	This study
Plasmid	Insert	Source
pBJC573	Ty1 his3-AId1	Nyswaner et al. 2008
p415TEF		Mumberg et al. 1995
p415TEF-KHD1	KHD1	This study

RESULTS

Khd1 binds related RNA targets in vivo

We identified the transcriptome-wide targets of Khd1 using the cross-linking immunoprecipitation (CLIP) method (Chapter 2) to provide comprehensive understanding of its role in regulating cellular activities. Khd1 binds 1,114 unique mRNAs, as well as mRNAs transcribed from approximately 30 homologous Ty1 and Ty2 loci. Khd1 binds ten mRNAs encoded in the $\Sigma 1287$ b genome that are not present in the S288c reference genome. The $\Sigma 1287$ b strain was used because, unlike S288c, it is competent for filamentous growth. Khd1 also binds 47 noncoding RNAs, including rRNA, tRNAs, snRNAs, snoRNAs, and telomerase RNA. Khd1 binds a subset of tRNAs: tK(CUU),
$\mathrm{tR}(\mathrm{UCU}), \mathrm{tR}(\mathrm{CCU}), \mathrm{tT}(\mathrm{UGU}), \mathrm{tH}(\mathrm{GUG}), \mathrm{tL}(\mathrm{CAA})$, and $\mathrm{tW}(\mathrm{CCA})$. Khd1 binds only a single version of tH (GUG) ($1 / 8$ genomic copies), $\mathrm{tL}(\mathrm{CAA})(1 / 35)$ and $\mathrm{tW}(\mathrm{CCA})(1 / 13)$, but 3 of $12 \mathrm{tT}(\mathrm{UGU}), 11$ of $26 \mathrm{tK}(\mathrm{CUU})$ and 12 of $21 \mathrm{tR}(\mathrm{UCU})$. These tRNAs all appear to be valid targets of Khd1, since non-specific interactions would produce an even distribution across all tRNAs. With the exception of Ty elements, Khd1 binds a single site in most of its target RNAs. Khd1 binds Ty1 and Ty2 RNAs through sites that are highly homologous between individual elements within each family, as well as between the two families, precluding identification of the specific elements it targets.

CLIP identified known binding sites for Khd1. Khd1 binds ASH1 mRNA, its beststudied target transcript, within a 165 nucleotide region in the open reading frame (Figure 2). These sequences fall within a region of the open reading frame previously shown to be necessary and sufficient for Khd1 recognition of $A S H 1$ mRNA (HASEGAWA et al. 2008). Similar to its interaction with $A S H 1$ mRNA, Khd1 binds 87% of its target mRNAs within the open reading frame. We identified Khd1 binding sites within regions of three other transcripts previously shown to be sufficient for recognition, although Khd1 binds two of these transcripts through additional regions as well (Figure 2). The successful identification of known in vivo Khd1 binding sites supports the biological relevance of the previously unknown binding sites CLIP identified.

We looked for enrichments within the functional annotations of Khd1 target mRNAs to provide insight into its biological function. The target list is enriched for multiple functional annotations, including the cell wall (54 out of $114, \mathrm{p}<3.9 \mathrm{e}-16$), filamentous growth (46 out of $96, \mathrm{p}<5.0 \mathrm{e}-14$), and mRNA catabolic processes, deadenylation-dependent decay (16 of 24, 4.4e-6) (Beissbarth and Speed 2004). Ty elements are the most abundant Khd1 target in the data set, but we cannot determine the
exact number of elements that Khd1 binds. Khd1 also binds the single copy of $\mathrm{tR}(\mathrm{CCU})$, which regulates the frequency of programmed frameshifting in Ty expression (KAWAKAMI et al. 1993).

Figure 2.-CLIP identifies known Khd1 targets. Histograms of sequences from CLIP mapped to the four Khdl target mRNAs with previously defined binding sites. Black bars represent regions shown to be sufficient for Khd1 binding (Hasegawa et al. 2008).

The mRNAs bound by Khd1 affect multiple aspects of filamentous growth (Figure 1). Khd1 binds FLO11 mRNA, and a number of mRNAs encoding proteins that regulate FLO11 transcription. These transcripts include mRNAs encoding Phd1 and Sok2, which act in a transcription factor cascade with Ash1, and components of the filamentation MAP kinase signaling pathway. In addition, Khd1 binds a number of mRNAs that encode components of the cell wall, and may play a role in its reconfiguration during filamentous growth. Some of the Khd1 target mRNAs involved in filamentation, such as KSS1 and
$C L B 2$ mRNA, localize to the bud tip similarly to $A S H 1$ mRNA (SHEPARD et al. 2003). $C L B 2$ encodes a mitotic cyclin that acts to promote cell elongation during filamentation in conjunction with the filamentation MAP kinase pathway. clb2 $/$ /clb2 2Δ mutants filament in rich nitrogen, and CLB2 overexpression represses filamentous growth (AHN et al. 1999). Khd1 binds CLN1, CLN2, and CLN3 mRNAs, which encode G1 cyclins that play a role during filamentous growth as well (LOEB et al. 1999; Oehlen and Cross 1998).

Khdl binds a number of mRNAs encoding other RNA-binding proteins. These targets are contained in the enriched functional category mRNA catabolic processes, deadenylation-dependent decay. In addition to binding transcripts encoding these posttranscriptional regulators, Khd1 binds many of their target mRNAs as well. It binds within the coding sequences of two transcripts encoding components of the filamentation MAP kinase pathway, STE7 and TEC1 mRNAs, that Puf5 represses through interactions with their 3' untranslated regions (PRINZ et al. 2006). Comparison with a study that identified the genome-wide targets of five Puf proteins using microarray analysis following immunoprecipitation (GERBER et al. 2004) shows that Khd1 shares 50 additional targets with Puf5, including PHD1 mRNA. Khd1 also binds PUF5 mRNA, conferring feed-forward regulation on their common targets. Khd1 displays this network motif with the RNAbinding proteins Puf1, Puf2, Puf3, and Puf4 as well, binding to both their mRNAs as well as a subset of their target transcripts (Figure 3). Khd1 binds 143 mRNA targets of the Puf proteins. The overlaps vary, with Khd1 binding over 40% of the targets identified for Puf1 and Puf2, but less than 10% of those for Puf3. Khd1 binds mRNAs encoding decapping and deadenylation enzymes, as well as its own mRNA, adding an autoregulatory feed back loop to its post-transcriptional network.

Figure 3.-Khd1 confers feed-forward regulation on many mRNAs within the cell. Khd1 binds mRNAs encoding the Puf family of RNA-binding proteins, and a subset of their target mRNAs. The specific effect of protein binding on the expression of most target mRNAs is not known.

Khd1 represses Ty1 translation and retrotransposition

Sequences mapping to Ty RNAs are the most abundant category in our CLIP data set. Because Ty RNA comprises up to 1% of total RNA in yeast (CURCIO et al. 1990), its prevalence could be a consequence of non-specific binding. However, the clustering of sequences into discrete peaks (Fig. 4A) argues that Khd1 binds specific sites within Ty1 and Ty2 RNAs in vivo. Regulation of retrotransposition by Khd1 would support this interaction.

We measured mobility of the Ty1 his3-AI construct (Nyswaner et al. 2008) to test regulation of retrotransposition by Khd1. The parent strain containing this construct cannot grow on media lacking histidine. An artificial intron interrupts the HIS3 coding sequence in the antisense orientation, and the splicing machinery does not recognize the intron when HIS3 is transcribed from its own promoter. However, the intron lies in the sense orientation relative to the Ty element, and if the entire element is transcribed,

Table 2. Khdl represses Ty1 retrotransposition

	Tyl his3-AI mobility $\times 10^{-5}(\mathrm{SD})$	Fold change
Strain	$8.4(1.4)$	1
wild type	$10(1.8)$	1.2
khd1D	$.64(.08)$	0.08

Values calculated as described in Nyswaner, et. al, 2008. Error represented as standard deviation.
spliced, reverse transcribed, and
reintegrated into the genome, the cell can grow without histidine.

Reintegration of Ty cDNA can occur via transposition or gene conversion, but transposition is more frequent.

Mobility of the Tylhis3-AI construct in khdld is not significantly different from wild type, but Khd1 overexpression reduces its mobility 13-fold (Table 2). To investigate the mechanism of this repression, we performed Western blotting using antiserum against Ty virus-like particles (VLPs). TYA encodes the structural component of the VLPs and corresponds to the retroviral gag gene. The initial translation product is posttranslationally processed by a C-terminal proteolytic cleavage to its mature form by a product of TYB.

TyA levels upon KHD1 deletion or overexpression mirror the changes in Ty1 his3$A I$ mobility. TyA levels are unchanged in $k h d 1 \Delta$, and Khdl overexpression reduces TyA protein levels 8 -fold (Fig. 4B). The levels of both the primary product of translation and mature TyA decrease upon Khdl overexpression, and the ratio between them does not change. Northern blotting shows that Ty1 RNA levels remain constant in all three strains (Fig. 4C). Given the CLIP results indicating that Khd1 binds Ty1 RNA, these experiments suggest that Khdl represses Ty1 retrotransposition by repressing translation of Ty1 RNA.

Given that Khd1 overexpression, but not deletion, decreases TyA levels and Ty1 his3-AI mobility, these results do not prove a role for Khd1 in regulating retrotransposition under physiological conditions. We attempted to use a sensitized assay

Figure 4.-Khd1 binds Ty1 RNA to repress translation. (A) Histograms of sequences from CLIP mapped to a representative Ty1 element. (B) Western blot analysis of TyA protein levels. $P_{\text {TEF }}$ KHD1 is an overexpression construct. (C) Northern blot analysis of Ty1 RNA for the strains shown in (B). Ethidium bromide staining of rRNA demonstrates equal loading. Khd1 overexpression reduces TyA protein levels without affecting Ty1 mRNA levels.
to uncover a physiological role. A previous study reported that immunoprecipitation of the RNA-binding protein She2 enriches Ty RNA (Shepard et al. 2003). She2 binds both ASH1 mRNA and the localization machinery, leading to the localization of ASH1 mRNA (BOHL et al. 2000), but an attempt to visulize localized Ty RNA elements using in situ hybridization was unsuccessful (SHEPARD et al. 2003). Low levels of Ty RNA localization,
able to escape visual detection, could potentially be detected functionally using the Ty1 his 3-AI allele and mutations that affect localization. However, retrotransposition frequencies are similar for wild type, she 2Δ, and she $2 \Delta k h d 1 \Delta$ (data not shown). The specific role for Khd1 in regulating transposition remains to be determined.

DISCUSSION

Rapid changes in cellular processes require regulation that cannot be accomplished solely at the transcriptional level (Mansfield and Keene 2009). The transition from yeast form to filamentous growth, which occurs with the first cell division under low nitrogen conditions (AHN et al. 1999), is enabled by regulation of FLO11 at both the transcriptional and translation level (Chapter 2). The change in growth form requires the coordinated alteration of multiple cellular processes in addition to FLO11 expression, including the cell cycle, and cell wall maintenance (GANCEDO 2001). Khd1 regulates asymmetric FLO11 expression (Chapter 2), and binds mRNAs encoding cell cycle regulators and components of the cell wall. Khd1 may regulate these processes during filamentation as well. Studies have shown that RNA-binding proteins can alter the complement of mRNAs they bind upon differentiation (Tenenbaum et al. 2000). Khd1 could undergo a similar transition in response to nitrogen starvation to control filamentous growth.

The effects of Khdl binding need not be the same on expression of all of these genes. Khd1 can differentially affect its target genes (HASEGAWA et al. 2008), though the details that determine the specific regulation remain unknown. The binding sites we identify in MTL1 and MID2 in addition to those previously shown to be sufficient for colocalization with Khd1 may contribute to this differential regulation.

Khd1 binds a number of mRNAs encoding RNA-binding proteins, making it a hub in the broader post-transcriptional regulatory network in yeast. By controlling expression of these post-transcriptional regulators, Khd1 can impart dynamic regulation on many transcripts in addition to its direct targets. Many RNA-binding proteins target mRNAs encoding other RNA-binding proteins, forming interconnected post-transcriptional regulatory networks (MANSFIELD and KeEne 2009). Studies in mammalian cells identified such interactions between six RNA-binding proteins, where each bound its own transcript as well as transcripts encoding other members of the study (Pullmann et al. 2007). Khd1 has similar properties, binding within its own coding sequence and those of other posttranscriptional regulators. Khd1 also binds some of the same target mRNAs as the RNAbinding proteins whose mRNAs it targets. In addition, Khd1 binds mRNAs encoding decapping and deadenylation enzymes, and may regulate the stability of a number of transcripts, including but not limited to those it binds directly.

Repression of both transposition and filamentous growth by Khdl is an example of its ability to coordinate cellular events. We identify Khd1 as a repressor of Ty1 transposition, similar to the role we identified for its repression of filamentation (Chapter 2). A previous study found that similar to filamentous growth, Ty1 retrotransposition is induced in diploid cells by nitrogen starvation, and requires the filamentation MAP kinase pathway for transcription (MORILLON et al. 2000). The study identified a larger increase in transposition frequency than in Tyl mRNA levels following genetic modulation of signaling through the filamentation MAP kinase pathway, suggestive of posttranscriptional regulation. Khd1 may contribute to this post-transcriptional regulation.

Khdl overexpression reduces both TyA protein levels and mobility of the Ty1 his 3$A I$ allele. Although Khd1 binds near the site of the programmed frameshift between TYA
and TYB, and binds the tR (CCU) tRNA whose availability regulates frameshifting efficiency (KAWAKAMI et al. 1993), the symmetrical decline in both primary translation product and mature TyA implicates Khd1 in translational repression. Increased frameshifting resulting from loss of $\mathrm{tR}(\mathrm{CCU})$ elevates protease levels derived from TYB to an extent that quickly processes TyA to its mature form (KAWAKAMI et al. 1993). The primary TyA translation product is not detectable by Western blot in a mutant lacking $\mathrm{tR}(\mathrm{CCU})$ (data not shown). The upper band in Figure 4 blots implies that Khd1 overexpression does not affect Ty1 transposition by regulating the frameshift.

Our experiments did not reveal any regulation of Ty1 retrotransposition by Khd1 under physiological conditions. Although Khd1 overexpression has a clear phenotype related to Ty1, deletion of KHD1 does not affect TyA levels or mobility of the Ty1 his 3-AI allele. One hypothesis is that other mechanisms repress Tyl translation in parallel to Khd1 to maintain wild type TyA levels and transposition rates in the $k h d 1 \Delta$ background. Another is that Khd1 overexpression produces regulation that does not occur under physiological conditions. Given that the interaction between Khd1 and Ty mRNA was identified using Khd 1 expressed from its endogenous promoter, we believe that the interaction is physiologically relevant and other factors act in parallel to repress retrotransposition in the absence of Khd1. The cell must carefully regulate transposition to avoid deleterious effects, and additional post-transcriptional repressors would ensure this protection.

Khd1 binds a number of mRNAs in vivo to regulate cellular processes. The functions of these targets point to post-transcriptional coordination of various aspects of filamentous growth with Ty1 retrotransposition. The integration of multiple posttranscriptional regulatory networks through Khd1 binding suggests an even broader role
for Khd1 in coordinating cellular activities. Genome-wide approaches have identified widespread networks of these interactions in other systems, but the extent of their effect on cellular activity remains an open question. Future studies will be needed to determine the global effects of regulation by Khd1.

REFERENCES

Ahn, S. H., A. Acurio and S. J. Kron, 1999 Regulation of G2/M progression by the STE mitogen-activated protein kinase pathway in budding yeast filamentous growth. Mol Biol Cell 10: 3301-3316.
Beissbarth, T., and T. P. Speed, 2004 GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20: 1464-1465.
Blumenthal, T., 1998 Gene clusters and polycistronic transcription in eukaryotes. Bioessays 20: 480-487.
Bohl, F., C. Kruse, A. Frank, D. Ferring and R. P. Jansen, 2000 She2p, a novel RNAbinding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. Embo J 19: 5514-5524.
Cid, V. J., A. Duran, F. del Rey, M. P. Snyder, C. Nombela et al., 1995 Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59: 345386.

Curcio, M. J., A. M. Hedge, J. D. Boeke and D. J. Garfinkel, 1990 Ty RNA levels determine the spectrum of retrotransposition events that activate gene expression in Saccharomyces cerevisiae. Mol Gen Genet 220: 213-221.
Drinnenberg, I. A., D. E. Weinberg, K. T. Xie, J. P. Mower, K. H. Wolfe et al., 2009 RNAi in budding yeast. Science 326: 544-550.
Gagiano, M., F. F. Bauer and I. S. Pretorius, 2002 The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2: 433-470.
Gancedo, J. M., 2001 Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev 25: 107-123.
Gerber, A. P., D. Herschlag and P. O. Brown, 2004 Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2: E79.
Gimeno, C. J., P. O. Luungdahl, C. A. Styles and G. R. Fink, 1992 Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 1077-1090.
Guthrie, C., and G. R. Fink, 1991 Guide to yeast genetics and molecular biology. Academic Press, San Diego.
Hasegawa, Y., K. Irie and A. P. Gerber, 2008 Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14: 2333-2347.
Kaeberlein, M., and L. Guarente, 2002 Saccharomyces cerevisiae MPT5 and SSD1 function in parallel pathways to promote cell wall integrity. Genetics 160: 83-95.

Kawakami, K., S. Pande, B. Faiola, D. P. Moore, J. D. Boeke et al., 1993 A rare tRNA$\operatorname{Arg}(\mathrm{CCU})$ that regulates Tyl element ribosomal frameshifting is essential for Tyl retrotransposition in Saccharomyces cerevisiae. Genetics 135: 309-320.
KeEne, J. D., 2007 RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8: 533-543.
Keene, J. D., and P. J. Lager, 2005 Post-transcriptional operons and regulons co-ordinating gene expression. Chromosome Res 13: 327-337.
Keene, J. D., and S. A. Tenenbaum, 2002 Eukaryotic mRNPs may represent posttranscriptional operons. Mol Cell 9: 1161-1167.
Kron, S. J., C. A. Styles and G. R. Fink, 1994 Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell 5: 1003-1022.
Laloux, I., E. Dubois, M. Dewerchin and E. Jacobs, 1990 TEC1, a gene involved in the activation of Tyl and Tyl-mediated gene expression in Saccharomyces cerevisiae: cloning and molecular analysis. Mol Cell Biol 10: 3541-3550.
Lambrechts, M. G., F. F. Bauer, J. Marmur and I. S. Pretorius, 1996 Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A 93: 8419-8424.
Lo, W. S., and A. M. Dranginis, 1996 FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178: 7144-7151.
Lo, W. S., and A. M. Dranginis, 1998 The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9: 161-171.
Loeb, J. D., T. A. Kerentseva, T. Pan, M. Sepulveda-Becerra and H. Liu, 1999 Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway. Genetics 153: 1535-1546.
Madhani, H. D., and G. R. Fink, 1997 Combinatorial control required for the specificity of yeast MAPK signaling. Science 275: 1314-1317.
Mansfield, K. D., and J. D. Keene, 2009 The ribonome: a dominant force in co-ordinating gene expression. Biol Cell 101: 169-181.
Morillon, A., M. Springer and P. Lesage, 2000 Activation of the Kss1 invasive-filamentous growth pathway induces Tyl transcription and retrotransposition in Saccharomyces cerevisiae. Mol Cell Biol 20: 5766-5776.
Mumberg, D., R. Muller and M. Funk, 1995 Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119-122.
Nyswaner, K. M., M. A. Checkley, M. Yi, R. M. Stephens and D. J. Garfinkel, 2008 Chromatin-associated genes protect the yeast genome from ty 1 insertional mutagenesis. Genetics 178: 197-214.
Oehlen, L. J., and F. R. Cross, 1998 Potential regulation of Ste20 function by the Cln1-Cdc28 and Cln2-Cdc28 cyclin-dependent protein kinases. J Biol Chem 273: 25089-25097.
Pan, X., T. Harashima and J. Heitman, 2000 Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Curr Opin Microbiol 3: 567572.

Pan, X., and J. Heitman, 1999 Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19: 4874-4887.

Prinz, S., C. Aldridge, R. Ramsey, R. J. Taylor, B. Marzolf et al., 2006 Control of signaling in a MPA-kinase pathway by an RNA-binding protein. manuscript.
Pullmann, R., Jr., H. H. Kim, K. Abdelmohsen, A. Lal, J. L. Martindale et al., 2007 Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs. Mol Cell Biol 27: 6265-6278.
Rupp, S., E. Summers, H. J. Lo, H. Madhani and G. Fink, 1999 MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. Embo J 18: 1257-1269.
Shepard, K. A., A. P. Gerber, A. Jambhekar, P. A. Takizawa, P. O. Brown et al., 2003 Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc Natl Acad Sci U S A 100: 11429-11434.
Tenenbaum, S. A., C. C. Carson, P. J. Lager and J. D. Keene, 2000 Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci U S A 97: 14085-14090.
Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson et al., 1999 Functional characterization of the S . cerevisiae genome by gene deletion and parallel analysis. Science 285: 901-906.

Chapter 4: Conclusions and Future Directions

CONCLUSIONS

I pursued a role for the RBP Khd1 in S. cerevisiae based on interactions described in the literature. Once I identified Khd1 as a repressor of filamentous growth, my goal was to identify cellular functions for Khd1 by characterizing its in vivo interactions with RNAs. The application of CLIP and deep sequencing to this pursuit was incredibly successful, and identified a number of targets for Khd 1 that relate to its biological function. I experimentally confirmed a role for Khd1 in regulating the two most prevalent target mRNAs in the CLIP data, but the global details of Khd1 mRNA recognition and regulation remain unknown. The pioneering studies of RBPs using CLIP and deep sequencing have shown that RBP binding specificity is not easily described. My work supports some aspects of our understanding of post-transcriptional regulation by RBPs, but shows limitations in our understanding of these regulators.

Khd1 associates with mRNAs encoding functionally related proteins. The identification of target transcripts encoding proteins involved in filamentous growth was of particular interest because the regulation of filamentation by Khd1 initiated the CLIP study. My work describing Khd1 as a repressor of both filamentous growth and retrotransposition nicely fits the model for coordinated regulation by RBPs, but this study cannot be used to draw conclusions about the consequences of Khd1 binding for other transcripts. Khd1 differentially regulates its target mRNAs that localize to the bud tip (HASEGAWA et al. 2008), and could have opposing effects on the expression of even functionally related genes.

I did not anticipate the difficulty we encountered identifying a target motif for Khd1. I believe the lack of a consensus target sequence or structure represents the biology
of Khdl rather than experimental limitations. Although studies using microarray analysis following immunoprecipitation rarely report high percentages of targets that contain a consensus motif, there are errors inherent in this approach for RNA target identification. Although I conceptually believed we had a superior approach, there is little precedent for the use of CLIP with deep sequencing to identify protein-RNA interactions. KH domain proteins interact with varied sequences in vitro. Published reports tend to focus on the common features in their experiments to fit a simple model, but the data sets as a whole do not conform to this assumption. With our transcriptome-wide identification of Khd1 binding sites, we revealed the complex nature of its binding interactions. Other applications of CLIP in conjunction with deep sequencing also identify many target mRNAs that lack the consensus binding motif (Yeo et al. 2009), which necessitates modified thinking about protein-RNA interactions.

Orthogonal binding data would prove extremely useful in characterizing RNAbinding protein specificities. I am convinced that we identified a number of biologically relevant targets of Khd1. This belief comes from our ability to identify with high precision known interactions shown to have in vivo relevance, and my work testing two of the new targets we identify. However, I was unable to identify a complementary assay to test candidate binding sites in a high throughput manner.

The existing literature is contradictory with respect to the known Khd1 target, $A S H 1$ mRNA. Two non-overlapping regions of $A S H 1$ mRNA, each approximately 250 bases in length, are reported to mediate the interaction with Khd1. One study identifies a region that is sufficient for Khd1-mediated repression of a luciferase reporter construct expression of both endogenous Ash1 protein and the reporter increases in $k h d 1 \Delta$ cells (PAQUIN et al. 2007). Another study identifies a distinct region that is both necessary and
sufficient for binding to Khd1, and uses a co-localization reporter construct to assay binding because the authors see no change in Ash1 protein levels in $k h d 1 \Delta$ cells (Hasegawa et al. 2008). These discrepancies could result from the use of different strain backgrounds. However, the identification of mutually exclusive binding sites in a highly conserved transcript is unlikely to reflect the actual biological function of Khd1. In the strain where I conducted my study, deletion of KHDI does not affect Ash1 protein levels. Khdl overexpression also has no effect on Ash1 protein levels in this strain. This contrasts with the study that used co-localization to monitor Khdl binding that reports a reduction in Ash1 protein levels upon Khd1 overexpression, even though Ash1 protein levels are unaffected by the KHD1 deletion (HASEGAWA et al. 2008).

These findings limit options for experimental validation of Khd 1 target sites. Changes in protein levels are a poor assay in a reporter system since Khd1 expression differentially affects its targets (Hasegawa et al. 2008). Colocalization of Khd1 with reporter constructs containing its binding sites within target mRNAs may not identify sites from endogenous transcripts that do not undergo localization. CLIP identified the regions of two mRNAs, MTL1 and MID2, that were shown to be both necessary and sufficient for colocalization with Khd1, but also identified much stronger binding interactions in other regions of the transcripts. A high-throughput assay would allow for more rapid testing of candidate target sequences or, ideally, screens enabling their identification. The best option may be yeast- 3 hybrid studies, which would enable rapid testing of potential target sequences (HOOK et al. 2005). However, this approach establishes an unnatural context in which to study protein-RNA interactions and may not accurately represent native activities.

The most broadly applicable finding from this study may be the high level of interconnectivity of the post-transcriptional regulatory network. There are many previous reports of RBPs that bind mRNAs encoding other RBPs (MANSFIELD and Keene 2009). The best insight into this phenomenon has come from combining deep sequencing with CLIP because of the previously discussed capabilities of the technique. The real advantage of this study is the second-level understanding of the interactions. Khd1 binds not only mRNAs encoding Puf RBPs, but a number of mRNAs bound by the Puf proteins as well. This understanding is enabled by previous studies of the Puf proteins in yeast (GERBER et al. 2004). Interactions between post-transcriptional regulators has emerged as an important component of cellular activities (MANSFIELD and KEENE 2009). I expect that this network topology is not unique to Khd1 and that future studies will add to our understanding of these functional relationships.

FUTURE DIRECTIONS

The functional characterization of RBPs through the transcriptome-wide discovery of their binding targets and the downstream effects of their interactions is an expanding field with many opportunities for further study. My work revealed new regulatory functions for Khd1, but I believe the majority of its functions remain unknown. Other global analyses can reveal additional phenotypes regulated by this RBP through its effects on other genes. How Khd1 participates in the broader post-transcriptional regulatory network is also an interesting question. Finally, the potential for functional conservation between possible Khd1 orthologs in pathogenic fungi is an area with important medical implications. My work has elucidated aspects of post-transcriptional regulation by Khd1, and generated additional avenues for future study.

The global role Khd1 plays in regulating cellular activities remains unknown. I characterized the effect of Khd1 binding on two of its targets because of their prominence in the data set and their relationship to interesting phenotypes. Little is known about the effect of Khd1 binding on its additional targets or its indirect effects through interactions with mRNAs encoding other biological regulators. Proteins containing KH-domains regulate mRNAs in numerous ways, and individual proteins can have different effects on different targets. hnRNP K has been implicated in both translational silencing and translational activation of its target mRNAs (Evans et al. 2003; Ostareck et al. 1997). I have shown a role for Khd1 in translational silencing, but it may have different effects on the expression of its other targets. Its interactions with transcripts encoding other posttranscriptional regulators add even more potential functions to its regulatory repertoire. It would be interesting to apply the recently developed ribosome profiling technique to characterize the global role Khd1 plays in regulating gene expression. This approach identifies the positions of cycloheximide-stalled ribosomes using deep sequencing to quantify ribosome-protected mRNA fragments, providing a method to simultaneously interrogate the translational state of every transcript in the cell (Ingolia et al. 2009). Sequencing counts are normalized to transcript levels similarly evaluated using deep sequencing, which would address both changes in mRNA levels and ribosome loads for genes regulated both directly and indirectly by Khd1. Applying this technique to wild type cells and those either overexpressing or deleted for $K H D 1$ would identify the global effects of Khd1 and point to additional phenotypes it regulates.

Khd1 acts as part of a larger post-transcriptional regulatory network. It associates with seven mRNAs that are localized through their interaction with the RBP She2 (HASEGAWA et al. 2008). Although microarray technology has been used to identify mRNA
targets of She2, CLIP identified a number of RNA targets of Khd1 that were not identified by microarray analysis, and some mRNAs localized through their interaction with She2 may have been similarly missed. It would be interesting to apply CLIP to She2 in order to gain a deeper understanding of its mRNA targets. This approach could expand the list of localized mRNAs in yeast, and enable the comparison of regulation of targets that are bound by both proteins to those targeted by one or the other. The transcriptome-wide identification of additional RBPs that target a subset of the mRNAs bound by Khd1 would continue to expand understanding of the post-transcriptional regulatory network in yeast.

Nothing is known about the mechanisms that regulate Khd1 in contexts other than mRNA localization to the bud tip. Given that so few of its targets appear to be localized in this manner, it is likely that additional pathways regulate its activities in other contexts. I generated a construct that fuses the FLO11 repetitive element to $U R A 3$, similar to the GFP reporter I used to test the effect of Khd1 binding to the FLO11 repetitive element. The ability of cells with the URA3 construct to grow under selection and counterselection against URA3 expression is altered by changes in Khd 1 expression. A variety of genetic selections could identify pathways that regulate the activity of Khd1 binding to the FLO11 repetitive element, and possibly other targets as well. This would expand understanding of the mechanisms that control this important regulator.

Finally, it would be interesting to see how these findings translate to other systems. Many fungal pathogens undergo dimorphic switches inside their hosts similar to the transition to pseudohyphal growth regulated by Khd1 (Gow et al. 2002). The pathogenic fungus Candida albicans can adopt two filamentous growth forms, and mutants that cannot filament are avirulent in a mouse model (Lo et al. 1997). This species contains a putative RBP with homology to Khd1. Given the role Khd1 plays in regulating
pseudohyphal growth in S. cerevisiae, it would be interesting to test the role of this putative ortholog in C. albicans. The $A L S$ gene family in C. albicans encodes cell surface proteins similar to Flo11. The Khd1 homolog could potentially bind $A L S$ mRNAs through their repetitive elements. If this homolg regulates filamentous growth in C. albicans, the protein would offer a potential drug target in treating the most frequently isolated fungal pathogen from humans (EDWARDS, 1990).

There are many potential avenues for research based on the studies presented in this thesis. My work has provided a strong foundation for investigating the role of Khd1 in regulating cellular activities, and points to future directions that could reveal interesting biological regulatory mechanisms relevant to all eukaryotic systems.

REFERENCES

Edwards, E.J.J. Candida species. In Principles and Practice of Infectious Diseases. G.L. Mandell, R.G. Douglas, and J.E. Bennett, eds. 1990 (New York: Churchill Livingstone), pp. 1943-1958
Evans, J. R., S. A. Mitchell, K. A. Spriggs, J. Ostrowski, K. Bomsztyk et al., 2003 Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene 22: 8012-8020.
Gerber, A. P., D. Herschlag and P. O. Brown, 2004 Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2: E79.
Gow, N. A., A. J. Brown and F. C. Odds, 2002 Fungal morphogenesis and host invasion. Curr Opin Microbiol 5: 366-371.
Hasegawa, Y., K. Irie and A. P. Gerber, 2008 Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14: 2333-2347.
Hook, B., D. Bernstein, B. Zhang and M. Wickens, 2005 RNA-protein interactions in the yeast three-hybrid system: affinity, sensitivity, and enhanced library screening. RNA 11: 227-233.
Ingolia, N. T., S. Ghaemmaghami, J. R. Newman and J. S. Weissman, 2009 Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324: 218-223.
Lo, H. J., J. R. Kohler, B. DiDomenico, D. Loebenberg, A. Cacciapuoti et al., 1997 Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939-949.

MAnsfield, K. D., and J. D. Keene, 2009 The ribonome: a dominant force in co-ordinating gene expression. Biol Cell 101: 169-181.
Ostareck, D. H., A. Ostareck-Lederer, M. Wilm, B. J. Thiele, M. Mann et al., 1997 mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15lipoxygenase translation from the 3' end. Cell 89: 597-606.
Paquin, N., M. Menade, G. Poirier, D. Donato, E. Drouet et al., 2007 Local activation of yeast ASH1 mRNA translation through phosphorylation of Khdlp by the casein kinase Yck1p. Mol Cell 26: 795-809.
Yeo, G. W., N. G. Coufal, T. Y. Liang, G. E. Peng, X. D. Fu et al., 2009 An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol 16: 130-137.

