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ABSTRACT

RNA-binding proteins can regulate the stability, localization, and translation of their
target mRNAs. Post-transcriptional regulation can orchestrate dynamic changes in gene
expression, and can coordinate multiple cellular processes in response to various stimuli.
Filamentous growth in Saccharomyces cerevisiae is a morphogenetic switch that occurs in
response to nitrogen starvation and requires alterations in cell growth, cell cycle, and cell
wall functions. Tyl element retrotransposition is also induced under conditions of
nitrogen starvation. I describe a role for the RNA-binding protein Khdl in regulating
these two responses to environmental stress through its mRNA targets. I identified the
RNA targets of Khdl using in vivo crosslinking and immunoprecipitation (CLIP),
combined with deep sequencing. This produced a high-resolution map of Khdl binding
sites across the transcriptome, and provided unprecedented insight into its biological
functions. Khdl regulates multiple post-transcriptional regulatory loops to coordinate the
components of filamentous growth and Tyl retrotransposition. Although similar
mechanisms were known to transcriptionally regulate these processes, the post-
transcriptional coordination is a novel discovery. The feed-forward regulation that Khdl
confers on FLO11, which encodes a protein required for filamentous growth, enables
asymmetric expression between mother and daughter cells to switch between filamentous
and yeast form growth. In this thesis, I describe regulation of gene expression by RNA-
binding proteins, methods to identify their target transcripts and recognition sequences,
the KH domain, known functions of Khdl, and the phenotypes it coordinates. My work
represents the first application of CLIP to budding yeast, and the growing understanding
of RNA-binding proteins in this organism facilitated the placement of Khdl into its post-
transcriptional regulatory network. While many questions remain regarding the role Khdl
plays in regulating cellular activities, this thesis addresses its direct role in key processes.

Thesis Advisor: Gerald R. Fink

Tide: Herman and Margaret Sokol Professor, Whitehead Institute/M.I.T.
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Chapter 1: Introduction

The phenotype of a cell is determined by the ensemble of processes that control

gene expression. Much of experimental biology focuses on understanding gene

expression to discover the underlying mechanisms of these phenotypes. Many efforts have

sought to understand the basis of phenotypic outputs through studies of whole genome

transcript levels. The steady state mRNA level of a gene is often used as a proxy for its

expression because mRNA levels are easily assayed on a genome-wide scale using

microarray technology or high throughput sequencing. Although this approach provides

important information about mRNA accumulation, it ignores subsequent steps of

regulation in the gene expression pathway. Steady state mRNA levels frequently fail to

correlate with protein levels (GYGI et a]. 1999) because of ensuing regulatory processes

including translational regulation and differences in protein stability. Understanding

translational regulation is an important step towards understanding gene expression.

Methods that measure events downstream of mRNA accumulation in the gene

expression pathway more accurately represent expression levels. Proteomic methods (DE

GODOY et aL. 2006) and techniques designed to profile the translational status of mRNAs

on a genome-wide scale using either microarray technology (HALBEISEN et a]. 2009) or

high throughput sequencing (INGOLIA et aL. 2009) provide additional metrics of global

gene expression patterns. Although these approaches successfully identify variations

between mRNA levels and protein levels or ribosome occupancies, they do not provide a

mechanistic explanation for these differences. Understanding the discrepancies between

mRNA levels and protein production requires specific characterization of post-

transcriptional regulatory interactions by other methods.



In this thesis, I identify and characterize post-transcriptional regulation by the

RNA-binding protein (RBP) Khdl in Saccharomyces cerevisiae to understand its role in

regulating gene expression. I used the crosslinking immunoprecipitation (CLIP) method

(ULE et al 2005) and deep sequencing to identify the direct RNA targets of this protein,

and investigated its regulation of prominent targets. These experiments identified new

regulatory roles for Khdl in coordinating gene expression at the post-transcriptional level.

The information gained by identifying the target transcripts provides important

information about the role of Khdl in regulating cellular activities and allowed me to

identify two phenotypes it controls.

This introduction contains two disparate sections bridged by their relation to

Khdl. The first section addresses functions and properties of RBPs that are relevant to my

work. I begin by considering the role of RBPs in regulating gene expression, followed by a

discussion of methodologies for identifying their RNA targets and specific recognition

sequences. A discussion of the K homology RNA binding domain, which is found three

times in Khdl, and a summary of known Khdl activities follows. Next follows discussion of

filamentous growth and Ty retrotransposition, two phenotypes that my work identifies as

being regulated by Khdl. The genes that dictate these phenotypes encode the most

frequent target transcripts I identify for Khdl, FLO11 mRNA and Tyl mRNA, and known

mechanisms coordinate their transcription. My work demonstrates that Khdl coordinates

their activity post-transcriptionally in the context of a broader regulatory network.

RNA-binding proteins and gene expression

RBPs associate with an mRNA molecule throughout its lifespan, forming a

ribonucleoprotein complex (RNP) that dictates the behavior of the transcript (MOORE



2005). The protein composition of the RNP is dynamic, changing throughout the lifespan

of the RNA (DREYFUSS 1986), and the proteins associated with a transcript at any given

stage of gene expression play important roles in regulating its splicing, polyadenylation,

nuclear export, stability, localization and translation (GLISOVIC et aL. 2008). These

processes are frequently coupled through interactions between the RBPs involved,

lending a high degree of interconnectivity to the gene expression pathway (MANIATIS and

REED 2002). RBPs play essential roles in eukaryotes, and determination of their function is

key to understanding overall gene expression.

RBPs initially bind transcripts as they emerge from the transcription machinery,

forming heterogeneous nuclear RNP (hnRNP) complexes (DREWuSS 1986). The hnRNP

protein components were identified based on their purification with heterogeneous

nuclear RNA (DREYFUSS 1986). Immunoprecipitation using antibodies raised against a

number of individual hnRNP proteins reproducibly enriched a set of proteins, suggesting

the existence of a single hnRNP complex (DREYFUSS et aL. 1984). Around 20 proteins can

be purified in this process, many of which remain complexed when heparin is added to

compete nonspecific interactions with the RNA (PINOL-ROMA et aL. 1988). Additionally,

many hnRNP components can be crosslinked to RNA using UV light, which requires

direct contact, supporting their role as hnRNP components (DREYFUSS et aL 1984). These

proteins have been shown to regulate the splicing and polyadenylation of pre-mRNAs in

the nucleus, and mRNA nuclear export (DREYFUSS et aL. 1993).

Whereas some hnRNP proteins are exclusively nuclear, others shuttle between the

nucleus and cytoplasm (PINOL-RoMA and DREwUSS 1992), and can remain associated with

specific mRNAs after export (DREYFUSS et a. 1993). Other RBPs that bind a transcript in

the nucleus and remain associated during nuclear export, such as the exon junction



complex (LE HIR et al. 2000a; LE HIR et al. 2000b), impart a nuclear history to an mRNA

RNP (mRNP). These nuclearly-derived components can significantly effect mRNA

expression in the cytoplasm (LE HIR and SERAPHIN 2008).

Additional cytoplasmic RBPs are recruited to the transcript following nuclear

export, further modulating mRNP function. These proteins control the stability,

localization and translational activity of their target transcripts (DREW'uss et aL 2002; LE

HIR and SERAPHIN 2008). The components of the exon junction complex associate with

spliced mRNAs and play a role in translation and quality control (LE HIR and SERAPHIN

2008). The major mRNP components, poly(A) binding protein (PABP) and YB-1, both

associate with most or even all cytoplasmic mRNAs. PABP preferentially binds poly(A)

sequences, while YB-1 binds mRNAs through both sequence specific and nonspecific

interactions (EVDOKIMOVA and OVCHINNIKOV 1999). Whereas some proteins bind mRNAs

nonspecifically or in a position dependent manner, most appear to recognize specific

sequences frequently found in the 3' untranslated region (GEBAUER and HENTZE 2004).

RBPs in this context influence a number of biological events, including

developmental patterning (KUERSTEN and GOODWIN 2003) and responses to

environmental cues (SIOMI and DREXWUss 1997). RBPs allow for rapid changes in gene

expression by regulating the ability of mRNAs to serve as templates for translation. In

response to appropriate cellular signals, RBPs can act to affect polyadenylation, translation

initiation, or mRNA stability to bring about changes in gene expression independent of

new transcription (MACDONALD and SMIBERT 1996). Under the appropriate conditions

(i.e. developmental stage, spatial localization, extracellular signals) post-translational

modifications of the RBPs can alter their activity, allowing for changes in expression of



their target transcripts (HUTTELMAIER et a]. 2005; LUKONG et aL. 2008; PAQUIN et aL. 2007).

These regulatory dynamics play critical roles in determining cellular activities.

Multiple studies have shown that RBPs associate with mRNAs encoding functionally

related proteins. This feature forms the basis of the concept of the "post-transcriptional

operon" whereby genes can be co-regulated at the post-transcriptional level through

interactions with a common RBP (KEENE and TENENBAUM 2002). A corollary of this

phenomenon is that transcripts bound by the same RBP often encode functionally related

proteins. Identifying RBP targets provides important insight into its cellular function.

Methods that identify targets of RNA-binding proteins

Discovering interactions between RBPs and their target mRNAs provides the

framework in which to study RBP activity. Characterizing the effects of binding enables

assignment of regulatory functions to RBPs. Functional interactions between RBPs

contribute to the overall regulation of an mRNA (GLIsovIc et a]. 2008). Comprehensive

analysis must identify the RNAs an RBP binds, and the proteins with which it interacts to

regulate these transcripts.

The use of microarray technology to discover RBP targets has contributed

significantly to the understanding of post-transcriptional regulation. This approach

identifies enriched transcripts following RBP immunoprecipitation and has been applied

to a number of systems (KEENE 2007). Applied to S. cerevisiae, this approach revealed the

potential for widespread post-transcriptional regulation. A survey that looked at 36 of the

~600 RBPs in budding yeast found extensive protein-mRNA associations. Of the 36 RBPs

studied, 33 enrich a reproducible set of transcripts, and over 70% of mRNAs associate

with at least one RBP (HOGAN et aL. 2008). Many transcripts associate with multiple RBPs,



suggesting that a complex interaction network regulates gene expression at the post-

transcriptional level (HOGAN et a]. 2008).

Identification of the sequence constraints that dictate protein-RNA interactions

provide insight into RBP function. Some RBPs bind RNA motifs in a sequence or

structure specific manner, whereas others bind non-specifically or are deposited through a

position dependent mechanism (MOORE 2005). RBPs that recognize primary or secondary

structures may interact with targets closer to, or more degenerate than, a consensus motif

based on global or local concentrations (DRExFuss et al. 1993). Both RBP binding

specificity and affinity can be altered by post-translational modifications or protein-protein

interactions (DEJGAARD et aL 1994; KEENE 2007; OSTROWSKI et al. 2001; OSTROWSKI et aL

2000). Computational approaches may be able to identify additional mRNA targets of an

RBP based on a well-characterized motif, but whether these represent in vivo interactions

requires experimental validation. Compartmentalization, accessibility, and lack of

expression can all prevent an RBP from interacting with a predicted target in vivo. While

microarray studies provide insight into the RNAs bound by a given protein, they do not

pinpoint the binding site within the transcript. In some cases, computational analysis can

identify potential binding motifs in target mRNAs, but in many instances the recognition

site remains unclear (HOGAN et aL 2008). Identifying the sequence constraints for

recognition by an RBP requires an experimental approach that pinpoints the binding

interaction with higher resolution.

Two methods identify the sequence determinants of recognition by RBPs by

screening RNA libraries for molecules that bind a protein of interest. By identifying

common sequences or structures, they can pinpoint features that contribute to, or detract

from, protein-RNA interactions. Systematic evolution of ligands by exponential



enrichment (SELEX) takes an in vitro approach to identifying RBP target sites. A

randomized RNA library is enriched through successive rounds of binding to a purified

RBP in order to identify molecules recognized by the protein (SCHNEIDER et aL 1993).

Yeast three-hybrid analysis can generate a similar set of sequences recognized by an RBP

in a cellular environment. Expressing the RBP fused to the activation domain of a

transcription factor, and tethering an RNA library to a DNA-binding domain leads to

activation of reporter genes only when the two interact, allowing for selection of desired

sequences and a measurement of the interaction strength (SENGUPTA et aL. 1996). The

comparison of multiple sequences identified using either of these approaches can

highlight motifs that mediate specific interactions with the protein. Although these

screening approaches provide a useful tool for identifying sequences bound by RBPs, they

have limitations. Both techniques can sample broad sequence space but neither targets of

RBPs in their natural contexts, and the protein may not recognize transcripts containing a

consensus motif because of cellular constraints.

The cross-linking immunoprecipitation (CLIP) method identifies direct protein-

RNA interactions, enabling the identification of in vivo RBP targets and localizing the

binding sites within these transcripts (ULE et aL. 2003). This approach uses UV radiation

to crosslink RBPs to their direct RNA targets in vivo, providing a snapshot of binding

interactions across the transcriptome. The bond formed between the species permits

stringent protein purification while maintaining association with the RNA. This

crosslinking overcomes a drawback of microarray analysis following immunoprecipitation.

The low stringency purification used to preserve protein-RNA associations can lead to

false positives because of in vitro protein-RNA associations that occur after cell lysis (MIL

and STEITZ 2004). CLIP removes this obstacle. CLIP also pinpoints biologically relevant



interactions through sequencing of the target transcripts. A short sequence is sufficient to

identify the transcript from which it derived, and RNAse treatment can produce a library

of target sites within 60-100 nucleotide RNA fragments (ULE et aL. 2003).

The CLIP method was recently developed to identify targets of Nova, a splicing

factor expressed in mouse brains. CLIP showed that Nova preferentially binds neuronal

transcripts to regulate alternative splicing (ULE et aL 2003). CLIP has subsequently been

adapted for use with deep sequencing, which expanded the list of targets for Nova

(LIcATALosI et aL. 2008), as well as the splicing factors Fox2 in human embryonic stem

cells (YEO et aL. 2009) and SFRS1 in human embryonic kidney cells (SANFORD et a]. 2009).

Analysis of these proteins' global interactions increased understanding of their biological

roles by cataloging their binding sites across the transcriptome.

The specificity and resolution of CLIP revealed unexpected complexity in post-

transcriptional regulation. Nova, Fox2, and RFRS2 were known to interact with specific

sequence motifs near alternative exons to regulate their inclusion in mRNA. However,

CLIP demonstrated additional binding and regulatory activities for these proteins. CLIP

identified 34 of 39 previously validated alternatively spliced transcripts regulated by Nova,

and extended its activity to 46 additional transcripts shown to undergo Nova-dependent

alternative splicing (LICATALOSI et aL. 2008). 23% of the CLIP sequences, however, map to

intergenic regions, and cluster near polyadenylation sites. These sites contain the

canonical Nova binding motif. Nova knockout mice display alternative polyadenylation

profiles for these transcripts, establishing a new role for Nova in RNA processing.

The binding sites identified using CLIP indicate an imperfect understanding of

RBP specificity. The GCAUG motif required for Fox2-mediated alternative splicing

appears in only 33% of Fox2 binding clusters CLIP identifies (YEO et a]. 2009). The



majority of Fox2 binding sites do not contain its canonical binding motif and the authors

do not report a common sequence that explains these binding events. The number of

SFRS1 motifs in predicted binding sites range from 0 to 16 (SANFORD et al. 2009), so in

some instances SFRS1 binds in the absence of its known recognition site. CLIP offers

unprecedented insight into protein-RNA interactions, which adds important information

to the understanding of RBP function.

The K homology RNA-binding domain

RBPs contain RNA-binding domains that dictate their RNA specificities. Families of

RNA-binding domains can be grouped based on protein folds to highlight common

features in their interactions with RNA. Examples include the RRM motif, K homology

(KH) domains, and PUF domains. These domains are widely conserved, and studies of

their functions are possible in a range of organisms. Protein domains within these families

adopt similar folds and share many properties in their interactions with RNA (MESSIAS

and SATTLER 2004). Characterization of individual domains can provide important

information about the activities of the families of proteins in which they are found.

KH domains are evolutionary conserved RNA-binding motifs that bind RNA, and

in some cases single stranded DNA (ssDNA), to promote a number of regulatory activities

(BoMszTYK et aL. 2004). The domain was originally identified in the human RBP hnRNP K

(MATUNIS et aL. 1992), from which it derives its name. KH domains frequently occur

multiple times in a protein, and can be present as many as 15 times in a single polypeptide

(LEwis et al. 1999). Proteins containing KH domains exist in archaea, bacteria, and

eukaryotes, and have been studied in various systems (VALVERDE et aL. 2008). These

proteins regulate mRNA splicing, stability, translational repression, and translational



activation, as well as transcriptional activation and repression through interactions with

ssDNA (BOMSZTYK et aL 2004). KH domains consist of a core cs1C motif linked to an

additional Pc N-terminal (type I) or cP C-terminal (type II) to the core by a variable

region, which can range in size (Figure IA) (VALVERDE et a]. 2008). The KH domains

found in eukaryotes are typically type I, whereas those found in bacteria and archaea are

type II (VALVERDE et a]. 2007).

Studies of the KH domain have largely focused on a group of proteins in mammals

that contain three such domains. The members of this group, the poly(C) binding

proteins hnRNP K and PCBP 1-4 and the neural splicing regulators Noval and 2, share

many structural similarities but have distinct functional properties (MAKEYEV and

LIEBHABER 2000). These proteins all contain a central KH domain located closer to the N-

terminus than the C-terminus. A region of variable length connects the two C-terminal

KH domains. In this context KH domains share higher homology with the corresponding

domains in similar positions of other proteins than with other domains within the same

protein, even between species (THISTED et aL 2001). The Nova proteins preferentially

bind poly(rG) in vitro, and bind poly(rU) as well (BUCKANOVICH et a]. 1996). hnRNP K,

El (PCBP1), and E2 (PCBP2) constitute the major cellular poly(rC) binding proteins

(LEFFERS et a]. 1995) and also bind poly(rG) (DEJGAARD and LEFFERS 1996). In different

contexts, they can stabilize mRNA, and either enhance or repress translation (MAKEYEV

and LIEBHABER 2002). hnRNP K also binds ssDNA and can both activate and repress

transcription (BOMSZTYK et aL 2004).

The binding specificities of these proteins have been interrogated using SELEX

and yeast three-hybrid analysis of the target sites recognized by various domains, global

identification of mRNA targets using microarray analysis following immunoprecipitation,
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Figure 1.-KH domain secondary and tertiary structures. (A) Secondary structure arrangements
and tertiary conformations of type I and type II KH domain folds (VALVERDE et al 2008). (B)
Crystal structure of the third KH domain of hnRNP E2 in complex with telomeric DNA shown as a
ribbon diagram and a surface representation with positively charged, negatively charged,
uncharged hydrophilic and hydrophobic residues colored blue, red, yellow and green, respectively
(BACKE etal. 2005). The binding groove contacts bases C3 through T6.

and CLIP. Structural studies on protein fragments containing one, two, or all three KH

domains with and without nucleic acid targets provide further insight into their binding

properties. KH domain-containing proteins interact with single stranded nucleic acids

lilillmllim& ............



through a common platform to regulate biological processes, but the specifics of the

interactions can vary between individual domains, which results in different binding

activities for the full-length proteins.

Although KH domains recognize different sequences, there are many features

common to their nucleic acid interactions. The @ strands of a KH domain form a three-

stranded @ sheet, over which the a helices reside. Type I domains contain an antiparallel

1 sheet with the three successive strands alternating polarity, whereas the type 11 sheet

contains two adjacent parallel strands (Figure 1A) (VALVERDE et al. 2008). The adjacent a

helices are connected by a G-X-X-G loop where X is usually arginine, lysine or glycine

(LEWIS et a. 1999). The invariant G-X-X-G loop faces the loop formed by the variable

region, forming a binding groove across a platform formed by the a helices and @ sheets

(Figures IB) (BACKE et a. 2005). Conserved hydrophobic residues line the floor of the

groove creating a channel for nucleic acid binding (Figure 1 C) (FENN et a. 2007). These

common structural features define the basis of nucleic acid recognition by KH domains.

The binding groove in KH domains accommodates four nucleic acids (Figure IB,

1 C). Interaction with four bases is seen in the all crystal structure of KH domains in

complex with ssDNA or RNA (VALVERDE et a]. 2008) and is consistent with the short

consensus sequences identified experimentally (see below). The four bases in contact with

a KH domain adopt a common conformation across the binding surface (VALVERDE et aL

2008). Hydrogen bonding, van der Waals contacts, and shape complementarities specify

the core of the binding sequence (Du et a]. 2005). There may be some flexibility in the

identity of the outer bases, although they are frequently pyrimidines (BACKE et aL 2005).

The consensus motif for Nova is YCAY (where Yis a pyrimidine) (ULE et al. 2003) and the

target site of the first KH domain of hnRNP E2 shifts by one base when provided one



versus two repeats of the C-rich strand of human telomeric DNA, altering the outer but

not the core bases it recognizes (Du et aL 2007). Some domains form additional contacts

to bases outside of the binding channel (FENN et a]. 2007). Unlike many RNA binding

domains, the KH domain does not stabilize bases through stacking interactions with

aromatic side chains (VALVERDE et aL. 2008). Another unique feature of RNA recognition

by some KH domains is the lack of interaction with 2'-OH groups, which allows these

domains to interact with ssDNA molecules as well as RNA (BACKE et a]. 2005). Although

the overall fold of a KH domain dictates its general nucleic acid binding properties,

unique contacts dictate the specific interactions.

A degenerate four base target sequence is fairly indiscriminate, and interactions

between KH domains may provide additional binding specificity. The asymmetric units in

crystal structures of Nova 2 KH3 (LEWIS et a]. 1999) and hnRNP E2 KHl (Du et a. 2005)

contain dimeric protein complexes that suggest the potential for intermolecular

interactions between KH domains. The dimerization of hnRNP E2 KHl occurs opposite

the nucleic acid binding groove where hydrophobic side chains interact between an a

helix and P sheet from each monomer. The interactions produce a six-stranded P sheet,

resembling intramolecular folding interactions. The hnRNP E2 KH3 domain does not

form dimers during crystallization, suggesting this is a property of specific KH domains

(FENN et aL. 2007). The lack of dimerization from KH3 may result from the absence of the

hydrophobic surface where interaction occurs between KHi domains. Attempts to identify

intermolecular interactions between KH domains in solution have been unsuccessful (DU

et al. 2008) and some authors caution that the available data does not support a biological

function for their homodimerization (VALVERDE et aL 2008).



Intramolecular interactions can have important effects on nucleic acid binding.

NMR and X-ray crystallographic studies of the first two domains of hnRNP E2 indicate

that KH1 interacts with KH2 in a manner analogous to the KH1 dimers seen in the crystal

structure (Du et aL 2008; Du et aL 2007). This interaction contrasts with crystal structures

of other multi KH-domain protein fragments that do not involve interactions between

domains, though it should be noted that these structures were obtained from proteins

with either two or four KH domains. The pseudodimer between KH1 and KH2 is not

compatible with nucleic acid binding because of steric and energetic limitations (Du et aL

2008). Both domains do bind nucleic acid, however, and the three KH domains bind

target RNAs cooperatively. Interactions with nucleic acid may dissociate the pseudodimer,

freeing the dimerization domains for interactions with other proteins. This potential

regulatory mechanism could coordinate KH domain proteins with other cellular proteins

and RBPs (Du et al. 2008). The stabilization of c globin mRNA by hnRNP El and E2

requires PABP, and the protein-protein interactions require RNA binding by hnRNP El

and E2 (WANG et al. 1999). The interaction of domains within a multi-KH domain protein

can vary the nucleic acid binding properties of segments of the protein and can

coordinate binding with other proteins. The in vivo binding activity of an RBP is

determined through a combination of these factors.

Target identification experiments reinforce many of the binding features

identified by KH domain structural data. Most target identification experiments suggest

that proteins with multiple KH domains bind cooperatively to RNAs through short,

repeated, pyrimidine-rich sequences. However, some identify single motifs of similar

composition that are nevertheless sufficient for binding. Although the motifs are often

consistent between SELEX and yeast three-hybrid screens, they can vary. Limited in vivo



analysis may support a simple binding interaction, but as with Fox2, binding interactions

may prove more complex when extended to the entire transcriptome.

SELEX identifies short sequence motifs targeted by proteins containing multiple

KH domains that can occur multiple times within a target RNA. Analysis performed using

full-length hnRNP El identified targets containing three C-rich patches of 3-5 cytosines

separated by 2-6 adenines or uracils. Guanines were largely excluded from the region

spanning the C-rich patches (THISTED et a]. 2001). The presence of three patches in all 26

sequenced targets suggests the three KH domains of hnRNP El bind cooperatively to

RNA in vitro. Mutational analysis validated the importance of the cytosines and that

hnRNP El binds cooperatively, as mutation of multiple patches have a synergistic effect

on binding affinity (THISTED et aL 2001). In vitro selection of Nova-i targets produces

three UCAU tetranucleotide repeats suggesting the three domains may bind cooperatively

to identical motifs (BUCKANOVICH and DARNELL 1997). The same analysis on the third KH

domain identifies a single UCAY tetranucleotide (JENSEN et a. 2000). Since KH3 is both

necessary and sufficient for binding, multimerization may facilitate binding by this single

domain rather than intramolecular cooperative binding between domains.

In contrast to the evidence supporting cooperative binding by KH domains,

SELEX identifies a single target site for hnRNP K that enriches RNAs with a single stretch

of 3-4 cytosines (THISTED et aL. 2001). This result is analogous to the selection of targets

with a single KH domain from Nova, which suggests a single domain is responsible for the

interaction. Although some of the sequences enriched with hnRNP K contain additional

C-patches, most do not. This result implies that either only one of the KH domains binds

RNAs, or that all three domains recognize identical sequences and a single interaction

provides maximum binding affinity. The DICE motif, found 10 times in LOX15 mRNA, a



natural target of hnRNP K (OSTARECK-LEDERER et aL 1994), contains a similar C-rich

sequence. Multiple target sites may modulate hnRNP K binding in vivo.

A yeast three-hybrid study suggested the KH domains in hnRNP K bind RNA

cooperatively, but also identified targets lacking this feature. The screen identified 17

target transcripts from a human RNA library that bind hnRNP K. 13 of these transcripts

contain three C-rich clusters (PAZIEWSKA et aL 2004). Three additional transcripts from

the screen contain only one C-patch, similar to the targets obtained in the SELEX

experiment, and one sequence has no discernible target element. Fragments of hnRNP K

containing one, two, or three KH domains were used in the three-hybrid setup to measure

expression levels of a @-galactosidase reporter to assess RNA binding strength. Both RNAs

used in this experiment contained three C-rich clusters. Constructs containing one or two

KH domains are able to bind some transcripts, but produce low -galactosidase levels.

The complete protein generates much higher activity from the reporter, suggesting that

cooperativity between the domains increases affinity for RNA. Cooperative binding

between KH domains within hnRNP K may increase affinity and specificity for in vivo

targets, although this has only been tested for targets with three C-rich clusters.

The sequence requirements identified for hnRNP K binding differ depending on

whether the results support cooperative binding. Yeast three-hybrid analysis revealed

additional sequence requirements for recognition beyond those identified by SELEX, in

accordance with supporting cooperative binding by the domains in hnRNP K. In some

targets, two C-rich clusters flank a central C-patch. While the central patch is invariant in

its cytosine composition, the external clusters can contain one or two adenines or uracils.

Guanine is underrepresented in hnRNP K targets (OSTROWSKI et aL. 2002). Although the

data suggests that cooperative binding between KH domains occurs in the context of



these extended recognition motifs, the same yeast-three hybrid screen identified targets

that contain a single C-patch as in the SELEX experiment. Target recognition cannot be

simply described for even a single protein with multiple KH domains.

Many techniques have been used to identify KH domain target motifs, but

considerable ambiguity remains. All reports agree that the domains interact with short,

pyrimidine-rich sequence motifs. The nature of the interactions between domains is

unclear, with some studies pointing to direct physical interaction, some supporting

cooperative RNA binding interactions, and others refuting both of these properties.

Additional constraints can lead to unexpected effects for well-defined target sites. An

endogenous hnRNP El target, a-globin mRNA, contains the same C-rich patches as the

target transcripts identified using SELEX, but has 20-fold lower affinity for the protein in

vitro. This discrepancy likely occurs because it is embedded in secondary structure,

whereas the targets identified using SELEX existed in single stranded regions (THISTED et

al. 2001). The presence of a well-defined target sequence does not necessitate binding by

an RBP. Cellular constraints such as secondary structure, competitive binding,

compartmentalization, protein-protein interactions, and post-translational modifications

can affect the interactions between an RBP and its biologically relevant targets. Binding of

RBPs to RNAs is an intricate interaction that depends on many factors within the cell,

which complicates target prediction and binding site characterization.

The Saccharomyces cerevisiae RNA-binding protein Khdl

The RBP Khdl is Saccharomyces cerevisiae contains a domain structure similar to

hnRNP K. It contains three KH domains with 58%, 56%, and 61% homology to the

analogous domains in hnRNP K (Figure 2) (DENISENKO and BOMSZTYK 2002). Eight



additional proteins in yeast contain KH domains. Five proteins contain one KH domain,

one protein contains two KH domains, one protein contains 14 KH domains, and one

other protein contains three KH domains (CURRIE and BROWN 1999). Pbp2, the other

yeast protein with three KH domains has lower homology with K, at 45%, 47% and 59%

for each respective domain. The second and third KH domains are separated by only 33

amino acids in Khdl, compared with 172 in hnRNP K and 112 in Pbp2 (DENISENKO and

BOMSZTYK 2002). The shortened region in Khdl lacks the SH3 binding domain known to

facilitate many of the regulatory functions of hnRNP K (Figure 2) (DENISENKO and

BOMSZTYK 2002). Despite these differences, Khdl is an attractive model for the study of

RBPs with three KH domains.

Studies have begun to describe a role for Khdl, but many aspects of its function

remain unknown. Khdl localizes at the bud tip with seven mRNAs, and is reported to

interact with many more transcripts (HASEGAWA et aL 2008). It is phosphorylated in vivo,

and phosphorylation affects its affinity for RNA in vitro (PAQUIN et a]. 2007). The RNA

binding properties of Khdl have been probed using yeast three-hybrid analysis and

functional studies, but its specificity remains uncertain. A Khdl-GFP fusion shows

cytoplasmic localization (NEWMAN et a]. 2006), a result supported by immunofluoresence

of epitope tagged Khdl, which also localizes to the bud tip with a subset of its mRNA

targets (HASEGAWA et a]. 2008; IRIE et a]. 2002). Chromatin immunoprecipitation (ChIP)

experiments indicate that Khdl is present in the nucleus, where it plays a role in telomere

maintenance and chromatin structure (DENISENKO and BOMSZTYK 2002; DENISENKO and

BOMSZTYK 2008). Little is known about the overall role of Khdl in regulating global

cellular activity through its target nucleic acids or how it responds to cellular signals.
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Figure 2.-Comparison of human hnRNP K with yeast proteins containing 3 KH domains.
Percentages represent similarities between amino acid sequences in domains of the yeast proteins
relative to hnRNP K (DENISENKO and BOMSZTYK 2002). The scale depicts length in amino acids.

Khd1 plays a key role in ASH1 mRNA localization. ASH1 mRNA encodes a

transcription factor that is asymmetrically localized after cell division. Ashl protein

accumulates specifically in the daughter nucleus where it acts to repress expression of HO

endonuclease (BOBoLA et al. 1996; SIL and HERSKOWITZ 1996). HO expression initiates

mating type switching (HICKS and HERSKOWITZ 1976), and its asymmetric expression in

the mother but not the daughter leaves only mother cells capable of switching mating

type (NASMYTH 1993). Ashi protein asymmetry is established by localization of ASH1

mRNA to the bud tip (Figure 3) (LONG et a 1997). ASH] mRNA is bound by the RBP

She2, which is tethered to the motor protein Myo4 by the adaptor protein She3 (BOHL et

al. 2000). Recent evidence suggests a She2-independent role for She3 in binding ASH1

mRNA as well (LANDERS et at 2009). Myo4 moves directionally along actin filaments to

localize ASH1 mRNA to the bud tip (TAKIzAWA et at. 1997).

The asymmetric distribution of Ashl protein requires asymmetric translation ASHi

mRNA. Translational repression of ASH1 mRNA by Khdl and the RBP Puf6 prevent



synthesis of AshI during transport (Gu et al. 2004; IRIE et aL. 2002). At the bud tip,

phosphorylation of Khd1 and Puf6 reduces their affinity for ASH] mRNA, relieving

repression and allowing translation to occur (DENG et al. 2008; PAQUIN et al. 2007). AshI

protein contains a nuclear localization sequence, and preferentially enters the daughter

nucleus after being produced at the bud tip. The repression conferred by Khdl is

required for establishing the asymmetric distribution. In the khd]A mutant, both mother

and daughter nuclei accumulate Ash1 protein although ASH] mRNA localization is

unaffected (IRIE et aL. 2002).

Khdl may regulate ASH] mRNA translation by interacting with the translation

initiation factor eIF4Gl (PAQUIN et aL. 2007). Khdl from a cellular extract is retained by

immobilized eIF4G1 in an RNA-dependent manner. The purified proteins also interact in

vitro, although this reaction does not contain RNA. The interaction between purified

components occurs through the C-terminal domain of eIF4Gl. When this domain is

removed in vivo, expression of an ASH] reporter construct increases in a manner similar

to the increase observed in a khd1A background, implying the repressive function is lost

even though Khdl is present. Technical issues, however, such as the changing

requirement for RNA, make the conclusions from these experiments suspect.

Khdl-mediated repression must be relieved for efficient translation of ASH1

mRNA. Post-translational modifications of RBPs can affect their affinity for RNAs, and

consequently their regulatory activity. The kinase Yckl phosphorylates Khdl in vitro

(PAQUIN et aL. 2007; PTACEK et aL. 2005), decreasing its affinity for the El hairpin in ASH]

mRNA (PAQUIN et aL 2007). A Split-Venus complementation assay shows that Yckl and

Khdl physically interact at the cell periphery in vivo. This observation led to the model
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Figure 3.-Translational regulation of ASH1 mRNA enables asymmetric Ashl protein
segregation. (a) Khd1 represses translation of ASH1 mRNA during transport to the bud tip,
producing accumulation of Ashl specifically in the daughter nucleus. (b) In khdlA strains,
premature expression leads to expression of Ashl in the mother cell and symmetric distribution.

that Khdl represses translation of ASH1 mRNA during its transport to the bud tip, where

phosphorylation by Yckl reduces its affinity for the transcript, relieving repression and

allowing translation to occur. In support of this, a luciferase reporter containing a

localization element of ASH1 mRNA shows higher activity in the khd1A mutant and

decreased activity in the yck1A mutant. The khd1A ycklA double mutant displays the

same activity as the khd1A mutant, confirming that the repression in the ycklA mutant

requires Khdl (PAQUIN et al. 2007). Interestingly, the Split-Venus complementation assay

indicates that Khdl and Yckl interact all along the cell periphery and not only at the bud

tip, suggesting potential interactions that may regulate other Khdl activities.



Khdl interacts with a number of mRNAs in addition to ASH] mRNA.

Immunoprecipitation of Khdl followed by microarray analysis of the enriched transcripts

identified 1,210 mRNAs associated with the protein (HASEGAWA et aL. 2008). Six of these

mRNAs - MID2, MTL1, WSC2, SRL1, EGT2, and CLB2- are localized in a manner similar

to ASH] mRNA (SHEPARD et aL. 2003), and Khdl co-localizes with them at the bud tip

(HASEGAWA et aL. 2008). For MID2, MTL1, and WSC2 mRNAs, this co-localization occurs

through sequences within their open reading frames (ORFs), similar to the colocalization

of Khd1 with ASH] mRNA (HASEGAWA et aL. 2008). One obvious model is that Khdl

represses translation of these mRNAs in a manner analogous to its function in localization

of ASH] mRNA. However, of the proteins encoded by these mRNAs, only Srl1 levels are

reduced by Khd1 overexpression in a manner similar to Ashl (HASEGAWA et aL. 2008).

Mdl protein levels increase almost two-fold, and the levels of the other four proteins do

not change upon Khd1 overexpression. The increase in Mdl protein levels results from

stabilization of MTL1 mRNA, an effect that is reversed in khd1A cells (HASEGAWA et aL.

2008). Khdl overexpression was induced for only two hours before assaying proteins

levels in this experiment, and Khdl could in fact repress production of the proteins that

showed no change if they have lower turnover rates than Ash 1. Regardless, the effect of

Khd1 binding on protein expression varies for a small subset of co-localized transcripts. N

Although the transcripts that enrich with Khdl show decreased ribosome occupancy

(HOGAN et a]. 2008), little is known about how Khdl affects expression of non-localized

mRNAs, or the mechanisms that regulate its activity in other contexts.

A yeast three-hybrid screen designed to identify targets of KhdIproduced very

different results from the microarray-based approach. The screen identified an interaction

between Khdl and a transcript antisense to 25S rRNA represented by 13 clones. One



clone corresponded to an 18S rRNA antisense transcript, and one to 25S rRNA itself

(PAZIEWSKA et aL. 2005). No other clones were identified, suggesting Khd1 may have

different binding activity based on its compartmentalization.

The RNA motif recognized by Khd1 is not fully understood. Like hnRNP K, Khd1

binds poly(rC) and poly(rU) specifically in vitro (DENISENKO and BoMszTYK 2002).

Analysis of the top 35 targets from the microarray study identified CNN repeats as an

enriched motif. Although this motif is overrepresented in the list of mRNAs bound by

Khdl, it is not found in every target transcript and occurs in 908 mRNAs that were not

called as targets of Khdl. Khd1 associates with regions that contain small stretches of these

repeats within the ORFs of the localized mRNA it targets. Gel shift assays show that Khdl

binds RNA containing CNN repeats in vitro. The binding can be competed strongly by

poly(rC) and weakly by poly(rU) but not by poly(rA) or poly(rG) (HASEGAWA et a]. 2008).

Yeast three-hybrid analysis of Khd1 binding using both human and yeast RNA libraries

identified a number of transcripts that contain C-rich patches typical of hnRNP K binding.

Whereas most transcripts contained three of these patches, some contained a single

element corresponding to the SELEX-identified hnRNP K target or none at all

(PAZIEWSKA et aL 2004; PAZIEWSKA et aL. 2005). However, these studies were performed

using cellular RNA libraries and did not sample the same sequence space as randomized

libraries.

A separate study found that Khd1 interacts with the El hairpin element in the

coding sequence of ASH] mRNA to repress its translation (PAQUIN et aL. 2007). The El

element interacts with She2 to promote ASH] mRNA localization (CHARTRAND et a].

1999). A translational fusion with the ASH] ORF was shown to confer Khdl-mediated

repression on a luciferase reporter construct only when the 250 bp El sequence was



included (PAQUIN et aL 2007). However, this structure only has micromolar affinity for

Khdl in vitro and the authors did not use mutational analysis to determine its role in

binding. El does not overlap with the CNN-containing region with which Khd1 co-

localizes in vivo. The sequence determinants for Khd1 binding and the effects of the

interaction on target mRNA expression remain uncertain.

Khdl has at least one nuclear function in addition to its cytoplasmic role in mRNA

regulation. The finding that hnRNPs K and El bind telomeric DNA prompted studies of

the role of KH domain proteins in telomere maintenance in S. cerevisiae. Khd1 affects

silencing by heterochromatin at telomeric loci (DENISENKO and BOMSZTYK 2002).

Compared to WT, khd1A shows decreased expression of telomeric reporter constructs.

This effect is more dramatic when PBP2, which encodes the other yeast protein that

contains three KH domains, is also deleted. Khd1 levels do not effect a telomere-distal

reporter. The decreased silencing at the telomeres may result from the increased

telomeric lengths seen in khd1A strains. Only the telomere proximal to the marker

increases in length, regardless of which telomere it borders, raising questions about the

experimental setup. However, ChIP reveals a physical association between Khd1 and

subtelomeric sequences, supporting its possible role in telomere regulation.

Further exploration of this regulation identified a genetic interaction between

KHDI and SIR1 in regulating chromatin at telomeres and the mating loci (DENISENKO

and BOMSZTYK 2008). In sir1A, expression from the telomeric reporter decreases relative

to wild type, similar to khd1A. Expression from this reporter in the sirlA khd1A double

mutant is equivalent to either individual single mutant, suggesting both genes act in the

same pathway. Additional lines of evidence support this possibility. The khd1A mutation

rescues the mating deficiency of a sir1A mutation that results from derepression of the



silenced mating loci. This derepression is also seen in the enhanced expression of a

reporter construct at the MAT locus in khd1A. ChIP of Sir2 and Sir3 showed reduced

occupancy at HMR in the sir1A background, but WT levels in the sir1A khd1A double

mutant. Khd1 also localizes to HMR by ChIP, suggesting a direct role in HMR silencing

and an effect on local chromatin composition. Khdl therefore regulates chromatin

structure at both the silent mating cassettes and telomeres.

Despite the progress made in understanding the role of Khd1, many questions

remain. What are the sequence determinants for Khd1 recognition? How does binding

effect expression of its target transcripts? And how do these properties combine to

regulate cellular activities? To better understand the global role of Khdl in regulating

cellular activity, I used CLIP to identify its in vivo RNA targets. The goal was to identify all

RNA targets of Khdl, and the specific sequences that mediate the interactions. This effort

identified 1,163 transcripts that Khd1 binds in vivo. Khdl appears to bind a C-rich motif

similar to the CNN repeats previously identified, but this sequence does not explain all of

its interactions with RNAs. To understand the regulation conferred by Khdl, I

investigated the effects of binding on its most prominent targets, FLO 11 mRNA and Tyl

RNA. Khdl represses FLO11-dependent filamentous growth and Tyl retrotransposition

by repressing translation of these two transcripts. A discussion of these phenotypes follows.

FLO]1 and filamentous growth

FLO11 encodes a cell surface protein in S. cerevisiae similar in structure to

mammalian mucin proteins (Lo and DRANGINIS 1996). Flol is approximately 1,200

amino acids in length, and contains a repetitive element rich in serine and threonine

residues. Efficient transcription of the DNA encoding the repetitive element requires the



THO complex (VOYNOV et a]. 2006). Flol protein is highly glycosylated in its repetitive

element, and is covalently linked to the cell wall through a C-terminal

glycosylphosphatidylinisotol anchor (LO and DRANGINIS 1996). There are two different

repeated units in the repetitive element, and their respective contributions, as well as the

overall length of the allele, differentially effect the FLO 1-dependent phenotypes of

diploid filamentous growth, haploid invasive growth, and biofilm formation (FIDALGO et

aL 2008). Recombination between individual repeat units can produce new alleles with

phenotypic consequences in as many as 1 in 250 cells under non-selective conditions

(FIDALGO et a]. 2008).

Diploid cells respond to low nitrogen environments by switching from yeast form

to filamentous growth (GIMENO et a]. 1992). Filamentation can also be stimulated by other

environmental stresses such as heat, osmotic shock, and cell wall damaging agents

(ZARAGOZA and GANCEDO 2000). The morphogenetic switch produces elongated cells that

bud in a unipolar manner in contrast with the round cells and bipolar budding pattern

seen in high nitrogen (Figure 4A) (KRON et aL 1994), and results in the unidirectional

outgrowth of filaments from the colony thought to act as a foraging mechanism (Figure

4B) (GIMENO et aL 1992). This growth pattern results from an altered cell cycle that *

includes a delay in division that allows mother and daughter cells to synchronously re-

enter mitosis (KRON et aL 1994). The developmental transition requires the coordinated

alteration of multiple cellular processes, including the cell cycle and cell wall maintenance

(GAGIANO et a]. 2002), The first daughter cell under nitrogen starvation displays these

properties (AHN et a]. 1999), requiring rapid and coordinated alterations in multiple

cellular processes.
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Figure 4.- FLO11 expression and filamentous growth. (A) Yeast form and filamentous cells

shown at high magnification (KRON et al. 1994). (B) Colony morphologies of wild type and
flol1A/flol1A cells under low nitrogen conditions. Filamentous growth requires FLO11. (C) An
overview of known pathways that regulate FLO11 expression and filamentous growth.

Filamentous growth in S. cerevisiae serves as a model for filamentous growth of

pathogenic fungi. Infectious fungi such as Candida albicans undergo a transition to

filamentous growth inside the host (MrrCHELL 1998). Mutants defective in this growth

form show decreased virulence (Lo et al. 1997). C. albicans biology hinders attempts to

study filamentation in this pathogen. Cells only exist as diploids, making genetic screens

for recessive traits impractical. Homologous recombination is inefficient relative to

budding yeast, limiting genetic studies (NOBLE and JOHNSON 2007). The similarities

between filamentous growth in S. cerevisiae and C. albicans facilitate the study of this

disease-causing growth form in a model system. Similar to FLO1I, members of the C.



albicans ALS gene family encode cell surface proteins with repetitive elements rich in

serine and threonine. The ALS genes mediate adhesion to surfaces (HOYER et a. 2008)

and contribute to filamentous growth (CHEN and CHEN 2000), but their high level of

redundancy complicates functional studies. FLO11 plays a role in S. cerevisiae analogous

to the ALS genes in C. albicans, providing a tractable genetic system to investigate this

developmental switch. Studies in S. cerevisiae have identified a number of pathways that

regulate FLO11 and filamentous growth.

Multiple pathways regulate FLO]1 expression (Figure 4C). The transcription

factors Ste12 and Tecd, activated by the filamentation MAP kinase signaling pathway, and

Flo8, responding to protein kinase A (PKA) signaling, act through multiple regions of the

3.5 kb FLO]1 promoter, which is large compared to the average yeast promoter (RuPp et

a]. 1999). A transcription factor cascade involving Sok2, Phdl, and Ashl (PAN and

HEITMAN 2000) also activates FLO11. FLO11 expression requires each of these pathways,

and the common laboratory strain S288C does not express FLO11 because of a nonsense

mutation in FLO8 (Liu et al. 1996). Multiple chromatin remodeling factors regulate

FLO11 transcription epigenetically (HALME et aL 2004). In addition to this transcriptional

regulation, FLO11 is regulated post-transcriptionally. Translational repression through

the FLO11 5' UTR is relieved under conditions of amino acid starvation, enabling haploid

invasive growth in mutants with diminished FLO11 mRNA levels (FISCHER et a]. 2008).

Some of these regulatory mechanisms may also contribute to ploidy control of FLO1 1,

which is repressed to a greater extent in higher ploidy cells through unknown

mechanisms (GALITSKI et a]. 1999).

The filamentation MAP kinase and PKA signaling pathways regulate distinct

features of filamentous growth in addition to FLO11 expression. Cells in which PKA



signaling has been disrupted still elongate when starved for nitrogen, but do not adopt

the unipolar budding pattern. Addition of cAMP activates PKA signaling and causes cells

to form chains of yeast form filaments without elongation (PAN and HEITMAN 1999). Loss

of function mutations in the MAP kinase pathway prevent cells from elongating, but do

not alter the unipolar budding pattern (PAN and HEITMAN 1999) and activation of the

pathway produces elongated buds in rich media and a hyperfilamentous phenotype under

nitrogen starvation (AHN et al. 1999).

Cells within a clonal population express different levels of FLO 11, with important

phenotypic consequences. Two FLO11 reporter constructs best demonstrate its

transcriptional variegation. A clonal population of cells containing the Pflo1::GFP

transcriptional fusion contains both 'on' and 'off' cells. Time-lapse microscopy reveals

that cells can switch between the two states, and that daughter cells can enter either state

regardless of the state of the mother cell (BUMGARNER and FINK unpublished data). A

Pflo 1 ::URA3 transcriptional fusion also demonstrates the ability of cells to switch between

these states. Cells can be serially passaged under conditions that select fist for, and then

against URA3 expression, demonstrating the ability of the cell to switch its expression on

and off through variegation of the FLO1 promoter (HALME et a]. 2004).

FLO11 variegation leads to phenotypic differences within a clonal population.

When grown into colonies in low nitrogen, only a subset of cells undergoes the transition

to filamentous growth. Immunofluoresent staining of cells containing a Flol l::HA allele

shows that these cells express Flol at their surface, whereas cells that remain in yeast

form do not. Mutations that bias cells towards the 'on' or 'off' state modulate the

expression of Flol and enhance or diminish filamentation respectively (HALME et a].

2004). Regulation of FLO11 has important consequences for filamentous growth.



Ty element retrotransposition

Ty elements are retrotransposons found in budding yeast (BOEKE et aL. 1985).

There are five families of Ty elements classified by the homology of their reverse

transcriptases. Ty3 is a Metaviridiae (gypsy-like element), whereas Tyl, Ty2, Ty4, and Ty5

are Pseudoviridiae (copia/Ty elements) (LESAGE and TODESCHINI 2005). Ty elements are

5-7 kb in length depending on the type, and are flanked by long terminal direct repeats

(LTRs) of approximately 300 bp. Two overlapping ORFs, TYA and TYB, encode the

proteins required for retrotransposition in all families except Ty5, which contains a single

ORF encoding both polypeptides. TYA encodes a structural capsid protein and TYB

encodes protease, integrase, and reverse transcriptase (LESAGE and TODESCHINI 2005).

The Tyl and Ty2 elements are highly homologous to each other, differing primarily in a

1.8 kb region spanning TYA, a .9 kb region in TYB (CURCIO and GARFINKEL 1991a) and by

a single base indel in their LTRs (KiM et al. 1998).

Ty elements require a programmed frameshift followed by extensive post-

translational processing to generate the mature proteins required for transposition. A +1

frameshift that occurs at a frequency of 35% enables TyB expression by generating a TyA-

TyB fusion protein (KAWAKAMI et aL 1993). The fusion protein must be post-

translationally processed to generate functional reverse transcriptase, integrase, and

protease enzymes from TyB (GARFINKEL et al. 1991). The TyA primary translation product

also undergoes programmed proteolysis to achieve its functional form (MERKULOV et al.

1996). In the absence of frameshifting, translation terminates after completing TyA

synthesis, and TyA cannot be processed to its mature form.

The structural and functional features of Ty elements make them excellent models

for studying retroviruses (CURCIO and GARFINKEL 1991a). Although Ty elements never

i Y



leave the cell and are not infectious, their transposition through an RNA intermediate,

overlapping ORFs flanked by LTRs, and programmed frameshift are reminiscent of

retroviral replication. TYA corresponds to the viral gag gene, and TYB, pol. Mature TyA

proteins assemble into virus-like particles (VLPs) that contain the components required

retrotransposition, similar to retroviral preintegration complexes (LESAGE and

TODESCHINI 2005). The frameshift mechanism differs between Ty elements and

retroviruses. In retroviruses, ribosome stalling at RNA secondary structures enables the

simultaneous slippage of adjacent tRNAs into the -1 reading frame at specific heptamers

(BALVAY et aL. 2007). In Ty element translation, the availability of the low abundance

tRNA R(CCU) regulates ribosome pausing and subsequent shift into the +1 reading frame

due to a promiscuous anticodon (BELCOURT and FARABAUGH 1990). Changes in

frameshifting efficiencies dramatically affect transposition rates. Increasing the ratio of

Gag-Pol to Gag for HIV, analogous to increasing frameshifting, decreases infectivity up to

1,000-fold (SHEHU-XHILAGA et aL 2001), and either increasing or decreasing frameshifting

by modulating tRNA R(CCU) expression decreases Tyl transposition (KAwAKAMI et a].

1993; Xu and BOEKE 1990).

Ty element retrotransposition can be mutagenic, and is regulated by the host to

maintain its genomic integrity. Recombination between Ty elements can lead to

inversions, deletions, and translocations, and the proliferation of these sequences in the

genome increases the chances of deleterious events (GARFINKEL 2005). Insertion of a Ty

element in a promoter or ORF can produce a null allele by preventing normal gene

expression, but certain insertions activate gene expression. Although Tyl elements usually

insert near Pol III transcribed genes, they will infrequently insert near Pol II transcribed

genes. If an insertion occurs upstream of a gene, within 175 bp of its initiation codon and



in the opposite orientation, sequences within TYA act as upstream activation sequences to

promote transcription. These ROAM alleles adopt novel and cell type dependent

regulation that may provide adaptive benefits (LESAGE and TODESCHINI 2005).

Expression of Tyl, the best-characterized family of Ty element, is regulated at

multiple levels. In addition to the programmed frameshift and proteolytic cleavage

previously mentioned, Tyl elements are subject to transcriptional, post-transcriptional,

and post-translational controls that contribute to its overall transposition activity. Tyl

transcription is dependent on host factors including SPT3 (WINSTON et aL. 1984) and

TEC1 (LALoux et aL. 1990). All Tyl elements in a cell are either transcribed or silenced

simultaneously, and can switch between the two states. Within a clonal population, at any

given moment some cells express Tyl while others do not. This is seen in Tyl-URA3

fusions that can grow in both media lacking uracil and media containing 5-FOA. Ura+

cells enriched in media lacking uracil contain abundant Tyl RNA as assessed by Northern

blot, while Ura- cells enriched in 5-FOA express very low levels of Tyl (JIANG 2002). Tyl is

also subject to post-transcriptional co-suppression. Inserting Tyl elements into strains that

lack endogenous transposons revealed that increasing the copy number decreased

transposition of a marked element without affecting its RNA levels (GARFINKEL et aL.

2003). A Tyl antisense RNA represses transcriptional activity through histone

modifications at the promoter, further modulating transposition activity (BERRETTA et aL

2008).

Differences between expression patterns of the Ty families necessitate different

modes of regulation to limit their activities. For Tyl and Ty2, the most highly transcribed

elements, regulation is primarily post-transcriptional. Although Tyl RNA can account for

1 % of total cellular RNA, any given element undergoes transposition in only one of every



107 cell divisions (CURCIO and GARFINKEL 1991b). Nevertheless, transcription factors

specifically activate one family or the other. Tec1 enhances Tyl transcription without

affecting Ty2 (LALOUX et a]. 1990). In contrast to the highly transcribed Tyl and Ty2

elements, Ty3 and Ty5 RNAs are barely detectable under normal conditions and require

transcriptional activation for transposition activity. The addition of mating pheromones to

haploid cells activates transcription and subsequent transposition of Ty3 and Ty5 elements

while repressing Tyl at a post-transcriptional level (LESAGE and TODESCHINI 2005).

Coordination of filamentous growth and retrotransposition

Similar regulatory mechanisms control Tyl and FLO11. The variegated expression

of Tyl and FLO] 1, where cells within a clonal population differ in their expression

profiles for these genes, has already been described. In addition, both are highly

expressed in haploids but silenced in diploids under high nitrogen conditions. Low

nitrogen activates their expression and their dependent phenotypes, filamentous growth

and Tyl transposition, in this cell type (LO and DRANGINIS 1998; MORILLON et a]. 2000).

The filamentation MAP kinase pathway regulates expression of FLO11 and Tyl. Loss of

function mutations in the pathway disable both filamentous growth and Tyl transposition,

and hyperactive alleles augment the phenotypes (MORILLON et aL 2000; MOSCH and FINK

1997; ROBERTS and FINK 1994). This common regulation is thought to coordinate

responses to environmental stress. Under low nitrogen conditions, filamentous growth

allows cells to forage for better nutritional environments, and transposition can generate

new ROAM alleles that may provide a selective advantage (MORILLON et aL 2000).

Multiple MAP kinase pathways affect both transposition and filamentous growth.

Fus3, the mating pheromone MAP kinase, suppresses transposition of Tyl elements by



destabilizing VLPs (CONTE et a]. 1998). It also plays a role in signaling specificity between

the filamentation and pheromone response MAP kinase pathways (MADHANI and FINK

1998).The ability of FUS3 to regulate Tyl retrotransposition depends on the transcription

factors Ste12 and Tec1 that operate downstream of the filamentation MAP kinase Kssl,

but not Farl which acts downstream of mating pheromone response MAP kinase signaling

(CONTE et a]. 1998). Deletion of HOG1, which leads to an increase in filamentation,

shows a similar increase in Tyl transposition but the molecular mechanisms have not

been characterized (MADHANI et a. 1997).

My thesis demonstrates that Khdl regulates filamentous growth and Tyl

transposition post-transcriptionally. Khd1 binds FLO11 mRNA and Tyl RNA and

represses translation of these transcripts. Khdl has an additional function in controlling

FLO11 transcription through its repression of ASH] mRNA. The resulting feed-forward

regulation enables asymmetric FLO11 expression and switching between yeast form and

filamentous growth. Khdl overexpression represses both filamentation and Tyl

retrotransposition. Deletion of KHDi produces hyperfilamentous cells, but Tyl

transposition is unaffected suggesting that additional mechanisms may repress Tyl

translation. Taken together, these data demonstrate novel coordination for Tyl

transposition and filamentous growth.
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Chapter 2: Feed-forward regulation of a cell fate determinant by an
RNA-binding protein generates asymmetry in yeast

ABSTRACT

Saccharomyces cerevisiae can divide asymmetrically so that the mother and

daughter cells have different fates. We show that the RNA-binding protein Khd1 regulates

asymmetric expression of FLO11 to determine daughter cell fate during filamentous

growth. Khdl represses transcription of FLO1 indirectly through its regulation of ASH1

mRNA. Khdl also represses FLO1] through a post-transcriptional mechanism

independent of ASH1. Cross-linking immunoprecipitation (CLIP) coupled with high-

throughput sequencing shows that Khdl directly binds repetitive sequences in FLO11

mRNA. Khdl inhibits translation through this interaction, establishing feed-forward

repression of FLO1 . This regulation enables changes in FLO11 expression between

mother and daughter cells, which establishes the asymmetry required for the

developmental transition between yeast form and filamentous growth.

INTRODUCTION

Asymmetric cell division produces two cells with different developmental fates

(HORVITZ and HERSKOWITZ 1992). The unequal inheritance of cell fate determinants

establishes this asymmetry in many systems through diverse mechanisms that ultimately

produce asymmetric gene expression between cells (MAcARA and MILi 2008). In

multicellular eukaryotes, this process directs a cell lineage down a developmental path. In

Saccharomyces cerevisiae, each mitotic division requires a new decision to determine the

fate of the daughter cell, providing a tractable model to study the underlying mechanisms

of asymmetric cell division.



The RNA-binding protein Khdl (KH-domain protein 1) regulates asymmetric

expression of ASH] in budding yeast to control mating type switching, a key

developmental event in haploid cells (HASEGAWA et a]. 2008; IRIE et a]. 2002; PAQUIN et a].

2007). Ash1 protein accumulates specifically in the nuclei of daughter cells (BOBOLA et aL

1996; SIL and HERSKOWITZ 1996). Genetic and biochemical analysis led to the model that

Khd1 represses translation of ASH] mRNA during transport to the bud tip, where

phosphorylation by Yckl reduces the affinity of Khd1 for the transcript, relieving

repression and allowing translation to occur (CHARTRAND et aL 2002; IRIE et a]. 2002;

LONG et aL 1997; PAQUIN et a]. 2007). As Ashl is a transcription factor that represses

mating type switching, translational repression of ASH] mRNA in the mother but not the

daughter leads to asymmetry - the mother can switch mating type, but the daughter can

not (CHARTRAND et a]. 2002; PAQUIN and CHARTRAND 2008; STRATHERN and HERSKOWITZ

1979).

ASH1 has also been implicated in the regulation of filamentous growth, another

developmental event in S. cerevisiae (CHANDARLAPATY and ERREDE 1998). Under

conditions of nitrogen starvation, diploid cells enact a specialized growth program

characterized by an elongated morphology and unipolar budding that leads to the

formation of filaments (GIMENO et aL 1992). The transition to filamentous growth

requires an asymmetric cell division, as a yeast form mother cell produces a filamentous

daughter cell. ASH1 regulates filamentous growth by activating expression of FLO11 (PAN

and HEITMAN 2000), which encodes a cell wall protein required for this growth form

(LAMBRECHTS et a]. 1996; LO and DRANGINIS 1996; Lo and DRANGINIS 1998). Cells induce

FLO11 expression to activate filamentation in response to nitrogen starvation (Lo and



DRANGINIS 1998). Deletion of ASH] prevents both FLO11 expression (PAN and HEITMAN

2000) and the transition to filamentous growth (CHANDARLAPATY and ERREDE 1998).

Khdl has no known role in regulating filamentous growth. However, since Khdl

represses ASH1 in the context of mating type switching, it may regulate ASH1 during

filamentation as well. Given that RNA-binding proteins can coordinate the expression of

mRNAs encoding functionally related proteins (KEENE 2007), Khdl may regulate

additional genes in the filamentation pathway. Microarray analysis following

immunoprecipitation of Khd1 has been used to identify its mRNA targets (HASEGAWA et

aL. 2008; HOGAN et a]. 2008), but the strains used do not transcribe FLO11 mRNA (Liu et

aL. 1996) and the binding of Khd1 to mRNAs of the filamentation pathway such as FLO11

would not have been detected.

The ability to comprehensively define post-transcriptional regulatory networks has

been enormously advanced by the cross-linking immunoprecipitation (CLIP) method.

CLIP utilizes UV radiation to crosslink an RNA-binding protein to its direct RNA targets in

vivo, providing a snapshot of binding interactions. Direct sequencing of the RNAs

following RNAse treatment localizes binding sites to a 60-100 nucleotide region within

target transcripts (ULE et aL. 2003). CLIP has been used in combination with high-

throughput sequencing to comprehensively identify RNA targets of mammalian RNA-

binding proteins (LICATALOSI et aL. 2008; SANFORD et a]. 2009; YEo et aL. 2009), but has

not been previously applied to yeast.

In this report, we use genetic analysis and CLIP coupled with high-throughput

sequencing to determine the role of Khdl in regulating filamentous growth. We find that

Khdl regulates both transcription and translation of FLO11 to repress filamentation.

Khdl represses FLO]1 at the transcriptional level through its inhibition of ASH], as we



predicted based on published regulatory interactions (CHANDARLAPATY and ERREDE 1998;

HASEGAWA et al. 2008; IRIE et a]. 2002; PAN and HEITMAN 2000; PAQUIN et a]. 2007), and at

the post-transcriptional level by directly repressing translation of FLO11 mRNA. The feed-

forward regulation of FLO11 by Khdl provides a dynamic mechanism to generate

asymmetric expression and determine daughter cell fate following cell division. FLO11

mRNA is the predominant unique transcript bound by Khdl, indicating this regulation is

a primary function of the protein. Khd1 binds to repeated sequences in the coding region

of FLO11 mRNA and mRNAs encoding many other cell surface proteins, suggesting that

this RNA binding protein may coordinate the synthesis of many disparate proteins that

assemble into the cell wall.

MATERIALS AND METHODS

Yeast strains, media and growth conditions

All yeast strains used in this study are derived from 11278b and listed in Table Si.

Standard yeast media, yeast transformations and genetic manipulations were performed as

previously described (GUTHRIE and FINK 1991). To induce filamentation, strains were

grown on nitrogen-poor SLAD media (GIMENO et aL. 1992). Approximately 20 cells per

strain were spotted onto a SLAD plate in 50 pL of water to compare filamentation under

comparable conditions. To assay agar adhesion, 106 cells were spotted onto a YPD plate in

5 pL and grown for 3 days at 30*C prior to washing. Yeast strains carrying gene deletions

were constructed by PCR amplification of kanamycin-resistance gene cassettes from the

yeast deletion library (WINZELER et aL. 1999) with approximately 200 bases of flanking

sequence and transformation into 11278b. Yeast strains carrying TAP-tagged Khdl were

similarly constructed by amplification of the KFID1-TAP::HIS3 construct from the TAP-tag



library (GHAEMMAGHAMI et aL. 2003) and transformation into I I278b. Strains carrying

PADH or PCYC (JANKE et aL. 2004) were constructed by PCR amplification with primers

containing 50bp of homology to the target locus and transformation into 1278b. Strains

carrying GFP.ADH 3' UTR:: URA3 or ADH 3' UTR:: URA3 were similarly constructed

using a plasmid provided by Sherwin Chan. See Table S2 for primer sequences.

Plasmid construction

The Khd1 overexpression construct was made by amplifying the gene using PCR,

with oligonucleotides that added restriction sites (Not[at the 5' end, XhoIat the 3' end)

to the final product (Table S2). Amplified DNA was digested using Not! and XhoI and

cloned into p413TEF (MUMBERG et a]. 1995).

Flow cytometry and immunofluoresence

Single colonies were picked after 2 days of growth on YPD plates and resuspended

in 1.5 mL liquid YPD. Cells were inoculated into 1 OmL liquid YPD and grown for 18 hours

to OD600 0.13-0.16, washed twice with PBS, and resuspended in 50 tL PBS containing 1/4

itL Alexafluor 488-conjugated anti-hemaglutinin antibody (Molecular Probes A-21287).

Cells were incubated 30 minutes at 4C and washed three times in PBS prior to flow

cytometry using the BD FACSCalibur, or imaging with the Nikon Eclipse TE2000-S.

qPCR

Total RNA was obtained by standard acid phenol extraction from 1 ml of cultures

grown to OD 0.9-1.1 in YPD. The Qiagen QuantiTect Reverse Transcription Kit was

used to remove residual genomic DNA and reverse transcribe the RNA templates to



generate cDNAs. Aliquots of cDNA were used in Real Time PCR analyses with reagents

from Applied Biosystems and the ABI 7500 real-time PCR system.

Immunoprecipitation for measuring RNA enrichment

TAP tag immunoprecipitation and RNA isolation was performed as previously

described (GERBER et aL 2004), using 200mL of starting culture rather than IL and

proportionately fewer reagents.

Cross-linking immunoprecipitation

Khd1-TAP was purified from IL of cells grown to an OD600 of 2.5 and UV-

crosslinked three times at 400 mJ/cm2. Purification using calmodulin sepharose was

followed by binding to magnetic IgG beads (File Sl). The CLIP protocol was then

followed as previously described (ULE et aL. 2005). The resulting cDNA was amplified

using PCR with oligonucleotides containing sequences for hybridization to the Illumina

flow cell (Table S2).

Illumina sequencing

Samples were sequenced using Illumina sequencing with a custom primer (Table

S2), returning 16,026,920 thirty-six nucleotide long reads. Reads containing unresolved

bases (N) were ignored. The complete set of reads contained 6,324,854 unique

sequences. All reads were mapped to the I1278b genome (DOWELL et aL. 2010) using

Novoalign (v1.05; 2 nd September 2008) with default settings. All mappings are included,

weighted inversely by the number of genomic locations to which a read maps. The reads

have been deposited in the Sequence Read Archive under accession number SRA012416.



Peak calling

The peak caller uses a rolling window approach (10 base windows; 5 base offset) to

compare the observed reads to those expected from a Poisson background model.

Adjacent enriched windows are combined into peaks. Peaks are assigned to genes based

on overlap with existing annotation, extending 500 nucleotides in each direction (unless

the extension overlaps adjacent annotation) to account for UTRs.

A local (5 kb) window is used to parameterize the background model. A visual

examination of the read mappings relative to available tiled expression data (DANFORD et

a]. 2010) indicates reads are strand specific and show perfect correspondence with

expressed segments, indicating the background of possible RNA binding sites is the

transcriptome, not the genome. A weak correlation is observed between the expression

levels of a transcript and the number of observed reads.

We set a peak cutoff by maximizing the correspondence of gene targets predicted

relative to the targets reported by Hasegawa (HASEGAWA et aL. 2008). The peaks are

weighted by the corresponding expression level of each transcript, as determined from

tiled expression data (DANFORD et aL. 2010). Only peaks containing at least 50% of the

reads of the transcript's maximal peak size are considered.

Motif discovery

Three methods were utilized to identify the motif recognized by Khdl. First,

MEME (v4. 1; (BAILEY and ELKAN 1994)) was utilized on the sequences under the peaks,

filtering to remove highly identical sequences (80% identity). Second, all k-mers were

evaluated (for k=1,2-,3,4) to identify over-represented sequences under the peaks.

Random non-peak windows of matching length were selected from the same set of



transcripts as the peaks to calculate the distribution of background k-mers. Finally,

RNApromo (RABANI et al. 2008) and CMfinder (YAo et al. 2006) were applied to the

peaks to search for potential secondary structure. The structure motifs returned were

single stranded loops with sequence patterns consistent with the primary sequence motif

identified by MEME. Presence of the discovered MEME motif within the peak list was

determined using MAST (v4. 1; (BAILEY and GRIBSKOV 1998)) with default parameters.

Western blot analysis

Protein was prepared using TCA precipitation from 3 mL of culture grown to

OD of .9-1.1, resuspended in 150 ptL SDS loading buffer, and boiled for 10 minutes. 10

pL were run on a 10% SDS-polyacrylamide gel and transferred to nitrocellulose filter

paper. Blotting against GFP was performed with mouse anti-GFP primary antibody (Roche

11814460001) and HRP-conjugated sheep anti-mouse secondary antibody (Amersham

NA931V), and against tubulin using rat anti-tubulin (Accurate Chemicals MCA77G) and

HRP-conjugated goat anti-rat antibody (Jackson ImmunoResearch 112-035-062). Blots

were detected using SuperSignal West Femto Substrate (Thermo Scientific 34095).

RESULTS

Khd1 has ASH1-dependent and ASH1-independent functions in repressing FLOJ1

Given that ASH1 promotes filamentous growth (CHANDARLAPATY and ERREDE

1998) by activating transcription of FLO1] (PAN and HEITMAN 2000), and that KhdI

represses ASH1 in the context of mating type switching (HASEGAWA et aL 2008; IRIE et al.

2002; PAQUIN et a]. 2007), we hypothesized that Khdl regulates filamentous growth.

Genetic analysis shows that Khdl represses filamentation. The khd1A/khd1A mutant is



hyperfilamentous relative to wild type, and cells fail to filament when Khd1 is

overexpressed (Figure 1A). The hyperfilamentation phenotype of the khd1A/khdlA

mutant requires FLO]1. As is the case with the flo11A/flo1A mutant, the khd1A/khd1A

flol1A/flolA mutant is nonfilamentous (Figure IB). These findings are consistent with

our prediction that Khd1 regulates filamentation by repressing transcription of FLO11

indirectly through its translational repression of ASH1 mRNA.

However, Khd1 represses filamentation at least in part through an ASH1-

independent pathway. The khd1A/khd1A ash1A/ash1A double mutant is filamentous,

A C
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wild type wild type
+ vector + -KHD1

kTEF
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+ vector + PTEF-KHD1

B Figure 1.-Khd1 represses
FLO11-dependent phenotypes
independent of ASH1. (A)
Khd1 represses filamentous
growth in diploid cells. PTEF -

wild type fillA /lol1A ashlA /ashlA KID1 is an overexpression
construct. (B) Khd1 represses
filamentation independent of
ASH1. (C) ASHJ-independent
repression of haploid agar
adhesion by Khdl. Picture
taken of the same plate before
and after washing.

khdlA /khdlA khdlA /khdlA khdA /khdlA
folA/Afo11A ash1A /ash1A



unlike the ash1A/ash1A single mutant, indicating that Khdl represses filamentation

independent of ASH1 (Figure 1B). This finding extends to haploid agar adhesion,

another FLO] 1-dependent phenotype. Cells deleted for KHD1 adhere more than wild

type cells, and khdlA ash1A double mutants adhere more than ash1A single mutants

(Figure 1 C). As is the case for filamentation, adhesion of both wild type and khd1A cells

requires FLO11 (Figure IC; LAMBRECHTS et a. 1996, Lo and DRANGINis 1998). These data

show that Khdl represses FLO11-dependent phenotypes independent of ASH].

Given the repression of FLO] 1-dependent phenotypes by Khdl, we tested whether

Khdl regulates FLO11 expression. To quantify FLO11 expression, we employed a

FLO1 1::H4 allele that permits the measurement of Flol protein in individual cells (Guo

et a]. 2000). Flo 1 protein is expressed in a subset of cells in a clonal population because

of variegating transcription from the FLO11 promoter (BuMGARNER et a]. 2009; HALME et

a]. 2004). Mutations that affect FLO11 mRNA levels and filamentation show a

corresponding change in the number of cells containing the FLO11::HA allele that stain

positive using an anti-HA antibody (LALME et al. 2004).

Flow cytometry shows that Khdl represses expression of Flol protein. Deletion of

Table 1

Khd1 represses Flol1 protein expression independent of ASH1

% Cells Expressing Mean Expression in Flo 1
Strain Flo 1 Positive Cells
wild type 58 ± 6 100 ± 13
khdlA/khdlA 80 ± 4 153 ± 18
ash1A/ash1A 14 ± 2 56 ± 3

khdlA/khdlA
ashlA/ashlA 32 ± 5 61 ± 5

Values are average of four independent trials. Error reported as
standard deviation.

KHD1 increases the

percentage of diploid cells

expressing Flo 1 protein

(Table 1). In addition, the

khdlA/khdA cells that

express Flo 1 protein do so

at a higher level than wild

type cells expressing Flol 1.



Similar to its regulation of filamentous growth, Khdl represses Flol protein expression

independent of ASH]. Although the populations of khd1A/khdlA ash1A/ash1A and

ash1A/ash1A cells that express Flol display similar levels of the protein, a higher

percentage of khd1A/khd1A ashlA/ash1A cells express Flo 1 (Table 1). The Flol

expression data, together with the filamentation and agar adhesion phenotypes, point to

an ASH1-independent function for Khdl in repressing FLO11.

To explore the regulation of FLO]1 by Khdl, we used qPCR to measure FLO11

mRNA levels. khdlA/khd1A mutants have increased FLO11 mRNA levels relative to wild

type (Figure 2), which indicates that Khd1 represses FLO11 mRNA accumulation. In

contrast to its ASH1-independent repression of filamentation and Flol protein

expression, Khd1 represses FLO11 mRNA levels exclusively through its regulation of

ASH]. khd1A/khd1A ash1A/ash1A double mutants display the same FLO11 mRNA levels

as ash1A/ash1A single mutants, which are below that of wild type (Figure 2). We conclude

that KhdI represses transcription of FLO11 mRNA through its regulation of ASH]. The

6 restoration of filamentation and

5 increased Flo11 protein expression

4 in khdlA/khdA ashlA/ashlA

3 relative to ash 1A/ash1A, without a

concomitant increase in FLO]1

mRNA levels, suggests that Khdl

wild type khdlAkhdlA ashlA/ashIA khdlAlkhdlA represses FLO11 through a post-
ash A/ash 1A

transcriptional mechanism as well.
Figure 2-Khdl represses FL011 mRNA levels through

ASH1. FLO11 mRNA levels normalized to ACT1 mRNA. Khd1 binds repeated sequences
Values are average of four independent experiments.
Error reDorted as standard deviation in the FLOJ1 open reading



frame

The post-transcriptional regulation of FLO11 by Khdl suggested that Khdl might

interact with FLO11 mRNA. To address this possibility, we tested whether FLO11 mRNA

co-immunoprecipitates with a TAP-tagged version of Khdl. qPCR shows that

immunoprecipitation of Khd1-TAP enriches FLO11 mRNA more than 50-fold (Figure

3A). The same immunoprecipitation does not enrich FLO11 mRNA when KhdI is

untagged. Immunoprecipitations testing for an interaction between Khdl and constructs

containing different combinations of the FLO11 open reading frame and untranslated

regions indicate that Khdl interacts with the FLO11 coding sequence (Figure Sl).

To examine the interaction between Khdl and FLO11 mRNA further, we

identified RNA binding sites for Khdl using CLIP in conjunction with high-throughput

sequencing (File S2, Figure S2, Table S3). The CLIP analysis shows that Khdl interacts

directly with repetitive sequences in FLO11 mRNA in vivo (Figure 3B). FL011 mRNA is

the most frequently represented unique mRNA in the data set; of the 16 million

sequences we generated, 1.97 million derive from Khd1 binding to FLO11 mRNA.

To determine whether the repeated sequences in FLO11 mRNA are sufficient for

recognition by Khdl, we generated a construct that isolates the FLO11 repetitive element.

Immunoprecipitation of Khdl-TAP enriches a transcript with the FLOJ1 repeats fused to

GFP driven by the ADH promoter (Figure 3C). Because the repeats cause a ten-fold

decrease in GFP mRNA levels relative to the ADH promoter driving GFP alone (Figure

S3), we used the weaker CYC1 promoter to express comparable levels of GFPwithout the

repeated sequences. GFPmRNA does not enrich in the Khdl-TAP immunoprecipitation

when driven by either promoter in the absence of the FLO11 repetitive element (Figure



3C). We conclude that the repeated sequences in FLO11 mRNA are sufficient for

recognition by Khdl.

A
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Khdl-TAP Khdl |F FLO11
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3,633 bp

IPH FLO11 repeats PA4 H-FLO11 repeats-GFP

PH -GFP

cyc 1-GFP

50 100 150 200

Figure 3.-Khdl binds repetitive sequences in the FLO11 open reading frame. (A) Enrichment
of FLO11 mRNA following immunoprecipitation from cells expressing either Khd1-TAP or
untagged Khdl. (B) Khd1 target sequences from CLIP map to the FLO11 repetitive element.
Histogram of read mappings overlaid on a dot plot highlighting the repetitive region of the
FLO11 open reading frame from the X1278b genome
(http://www.vivo.colostate.edu/molkit/dnadot/ window size = 11, mismatch limit = 1). (C)
Enrichment of constructs following immunoprecipitation of Khd1-TAP. Enrichments expressed as
the level of the transcript relative to ACT1 mRNA in the immunoprecipitate divided by the level of
the transcript relative to ACT1 mRNA in the input. Values are average of four independent
experiments. Error reported as standard deviation.



Khdl represses translation through the FLO11 repetitive element

We used the construct with GFP fused to the FLO11 repetitive element to test the

effect of Khdl binding to this region. Western blotting shows that GFP protein levels from

this fusion construct increase 12-fold in khd1A relative to wild type (Figure 4A compare

lanes 1 and 2). qPCR measurements show that Khd1 expression causes a two-fold decrease

in mRNA levels from this construct (Figure 4B compare lanes 1 and 2). We attribute the

remaining six-fold difference in GF? protein levels relative to GFP mRNA levels between

wild type and khd1A to translational repression that results from Khdl binding the FLOJ1

repetitive element. Khdl overexpression further represses the construct with the FLO11

repeats fused to GFP, reducing the amount of GFP protein below that seen with the empty

vector, without affecting GFP mRNA (Figure 4A, 4B, compare lanes 1 and 3).

A NFigure 4.-Khdl
ADH IFLO1i repeats I PCyC1 represses translation

through the FLO11
construct PADH -FLO11 repeats-GFP PcYCIGFP

plasmid vector P-KHD1 " vector PF-KHD1 blot analysis of GFP
--- i WV A W protein levels from

genomic KHD1 WT WT A constructs expressing
GGP alone, or GFP

GFP W0 Ao 4S401M04S00 fused to the FLOJJ
repetitive sequences.

Tubulin 40 9o 0"aw ~PTFFKHD1 is an

Ratio 1 12 .2 .2 10 10 10 10 overexpressio
n construct. The only

B 3visible band detected
from wild type, and the
predominant band

2 from the khdL1A
mutant, migrate at the
same molecular weight

1 as GFP alone,
suggesting that
translation initiated at
the G P start codon.

The higher migrating band from kbdlA may result from low levels of translation initiation inside
the repetitive element that become visible after derepression. (B) GFP mRNA levels normalized to
TUBf mRNA levels for the strains shown in (A). Values are average of four independent
experiments. Error reported as standard deviation.



Neither deletion or overexpression of Khdl affects protein or mRNA levels from

constructs lacking the FLO11 repetitive element (Figure 4A, 4B lanes 5-8, Figure S4). In

addition to repressing transcription of FLO1I by regulating ASHI expression, Khd1

represses translation through its interaction with repeated sequences in FLO11 mRNA.

Translational repression of the fusion construct is consistent with the post-

transcriptional repression of Flol protein expression by Khdl. Although Khdl does not

appear to regulate endogenous FLO11 mRNA levels independent of ASH1 (Figure 2),

mRNA levels from the construct with the FLO1] repeats fused to GFP increase in the

khd1A mutant (Figure 4B). The fusion transcript may be subject to different regulation

than FLO11 mRNA independent of Khdl. Alternatively, low levels of FLO11 mRNA in the

ash 1A/ash ]A mutant may preclude detection of small changes in stability. To test FLO11

mRNA stability, we used the ADH promoter to transcribe full-length FLO11 mRNA and

measured its steady-state levels, similar to our measurement of mRNA from the fusion

construct. In the khd1A mutant, FLO11 mRNA levels from this construct are 63% of those

in wild type. Changes in mRNA stability alone do not explain the differences between

mRNA and protein levels for either the fusion construct or endogenous FLO1 1in the

absence of Khdl. Therefore, translational repression through the repeats is the

predominant post-transcriptional regulation of FLO11 mRNA by Khdl.

Khdl regulates Flol asymmetry

Flol protein expression determines daughter cell fate during filamentous growth. To

determine whether the transcriptional and translational regulation by Khd1 affects Flol

expression between mother and daughter cells, we scored Flol expression patterns using

the FLO1::H4 allele and fluorescence microscopy. The four possible expression patterns
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Figure 5.-Khd1 regulates mother-daughter F1011 expression. Fluorescence microscopy was
used to visualize Floll protein expression from the FLO11::HA allele. (A) Floll expression
patterns in mother-daughter pairs. (B) Khdl affects the frequency at which daughter cells express
Floll protein. The chance that a mother cell gives rise to a daughter cell expressing Floll protein
increases when KHD1 is deleted, independent of ASH1 and whether or not the mother cell
expresses Fbi11 protein. The frequency of a daughter cell expressing Floi1 protein being
produced from a mother cell that expresses F10 1 protein was determined by dividing the number
of these mother-daughter pairs by the total number of pairs in which the mother expresses Floll
protein. The frequency of a daughter cell expressing Floll protein being produced from a

mother cell that does not express Floli protein was determined by dividing the number of these

mother-daughter pairs by the total number of pairs in which the mother does not express F10 1.

250 mother-daughter pairs were analyzed per genotype in each of nine separate trials. Error

reported as standard deviation.

between mother and daughter cells were each observed (Figure 5A). Mother cells that

express Flo 1 can give rise to daughter cells that also express the protein, or those that

ashlashA on30%* 6%nkhdlA/khdlA Pr-.'f



switch F1011 expression off. Reciprocally, mother cells that do not express Flol can

produce daughter cells that similarly do not express the protein, or those that switch

Flol expression on. We calculated probabilities for daughter cell Flol expression given

the Flol expression of the mother cell based on the frequencies of these expression

patterns.

Repression by Khdl reduces the frequency of Flol expression in daughter cells.

Compared to wild type daughter cells, khd1A/khdlA daughter cells are more likely to

express Flol protein whether or not it is expressed in the mother (Figure 5B). These

increases result from the loss of the combined transcriptional and translational repression

of FLO]1 by Khdl. More khdlA/khd1A ashl A/ashlA daughter cells than ashlA/ashlA

daughter cells also express Flol protein whether or not it is expressed in the mother

(Figure 5B). These increases result solely from the loss of translational repression by

Khdl, since the deletion of ASH1 inactivates the transcriptional regulation. Although the

loss of Khdl-mediated translational repression of FLO11 mRNA increases the expression

of Flol protein in daughter cells, maximal induction of Flo 11 expression in daughter

cells, seen in the khd1A/khd1A mutant, requires the dual relief of both the

transcriptional and translational repression of FLO11 by Khdl.

Khdl binds many mRNAs that encode cell wall proteins

Khdl binds a number of mRNAs encoding cell wall proteins in addition to FLO11

mRNA. 54 of the Khdl target mRNAs we identify using CLIP (Table S4) encode proteins

that play a role in cell wall function, nearly half of the 114 genes with this annotation (p

5.85 x 10-15) (BEISSBARTH and SPEED 2004). Similar to FLO11 mRNA, many of the Khdl

targets that encode cell surface proteins contain repeated sequences. When target genes



are sorted by the number of sequences that map to their binding sites, nine of the top ten

- FLOl1, SED1, IL169C, AGA1, SCWi0, MSB2, RPO21, CRH1, and YNL190W- contain

repeats (reported in VERSTREPEN et al. 2005 or determined by visual inspection) and eight

of these nine encode cell surface proteins, with the lone exception being RPO21. With

the exception of CRH1 mRNA, Khdl binds these nine transcripts through their repetitive

elements (Figure S5, Figure 3B), implying that Khdl frequently binds repeated

sequences. Khd1 appears to have a bias for messages with repeated sequences as it binds

mRNAs transcribed from 32 of the 44 S. cerevisiae genes previously reported to contain

intragenic repeats (VERSTREPEN et al. 2005).

However, the presence of repeats is not the only determinant of Khd1 binding.

First, not all mRNAs bound by Khdl have repeated sequences. Second, in some cases

where Khdl binds to messages with repeated sequences, the binding is not in the region

of repeats (Figure S3, CRH1). Third, Khd1 does not bind all mRNAs that contain

repeated sequences.

To understand the determinants of recognition by Khdl, we analyzed the

sequences within its binding sites. MEME analysis (BAILEY and ELKAN 1994) produces a

degenerate octamer motif (Figure 6) that occurs in

12% of the Khd1 binding sites. This result is

consistent with the CNN repeats found to mediate

Khdl binding in a previous study (HASEGAWA et al.

2008). Examination of our motif reveals additional

5.m " 0 ~features that may contribute to the interaction
Figure 6.-Motif recognized by

Khdl. MEME result from the between Khdl and its target RNAs. The repeating
sequences within the binding sites
identified by CLIP. CA pattern is similar to the one found in RNAs



recognized by the mammalian RNA-binding protein Nova (BucKANOVICH and DARNELL

1997; JENSEN et aL. 2000; LICATALOSI et a]. 2008; ULE et a]. 2003). Khdl and Nova both

contain three K-homology RNA-binding domains (BuCKANovICH et aL 1993; CURRIE and

BROWN 1999), and structural studies indicate that the third KH domain in Nova makes

specific contacts with the internal CA in a YCAY (where Yindicates a pyrimidine, U or C)

tetramer (LEWIS et aL 2000). CA is the most enriched dinucleotide (1.8-fold relative to

background) in the Khdl binding sites. Two of the four tetranucleotides with the highest

enrichments relative to background - CAAC, CUCC, CAUC, and CUAC are enriched 3.3-,

3.0-, 2.9-, and 2.6-fold respectively - contain CA in the first and second position, but not

internally as in the YCAY motif. All four contain C in the first and last position. This

analysis identifies new possible determinants of recognition by Khdl, but despite our

high-resolution detection of in vivo binding sites, we do not find a motif to explain the

specificity of Khdl for all of its RNA targets.

DISCUSSION

Our genetic and biochemical studies show that Khdl acts post-transcriptionally on

two mRNAs to repress FLO11 expression and filamentation. Previous studies showed that

ASH] activates FLO11 expression (PAN and HEITMAN 2000) and filamentous growth

(CHANDARLAPATY and ERREDE 1998), and that Khd1 represses translation of ASH] mRNA

in the context of mating type switching (HASEGAWA et a]. 2008; IRIE et a]. 2002; PAQUIN et

aL 2007). Our results demonstrate that Khdl represses FLO11 expression both through

its regulation of ASH], and by directly inhibiting translation of FLO 11 mRNA through

repetitive sequences in the open reading frame. This dual inhibition places Khdl at the



head of a feed-forward loop regulating FLO 11 (Figure 7) and raises the question of why

cells employ this regulatory architecture.

Khd1 The answer may reside in the biology of

FLOJ1, whose function is required to switch from

the yeast form to the filamentous form (HALME et

al 2004; LAMBRECHTS et a]. 1996; Lo and

ASH1 DRANGINIS 1998). In the first cell cycle under

conditions of nitrogen starvation, over 90% of

yeast form cells produce a filamentous bud (AHN

FLO11 et A. 1999). The immediate relief of KhdlI-

FLO11
Figure 7.-Feed-torward regulation mediated translational repression on an existing

of FLO11 by Khdl. Khdl regulates
transcription of FLO11 through its Pool Of FLO mRNA would allow for the rapid
repression of ASH] mRNA, and
directly represses translation by production of Fo 1 protein in the first daughter
binding repeated sequences in the
onen readin g frame of FLO/ mRNA. cell even if the mother cell did not express the

protein during yeast form growth. This effect is seen comparing Flo 1 protein expression

between ashlA/ashlA and khdlA/khd1A ashlA/ashlA. More khdlA/khdA

ash A/ash 1A cells express Flo 1 protein than ash 1A/ash1A cells (Table 1), resulting from

the higher likelihood that a daughter cell expresses Flo 1 protein whether or not it is

expressed in the mother cell (Figure 5B). Given that there is not a concomitant increase

in FLOJ1 mRNA levels (Figure 2), this change represents increased translation of FLO11

mRNA upon the loss of Khd1-mediated repression. The rapid inductive response leading

to filamentation in the daughter suggests that repression by Khdl may be quickly relieved

under conditions of nitrogen starvation.



A filamentous cell expressing Flol protein can divide to produce a yeast form cell

that does not express Flol protein (1HALME et aL. 2004). Such a rapid transition may

require inhibition of both transcription and translation of FLO11 mRNA. This dual

control would repress preexisting FLO11 mRNA from the mother, and prevent the

daughter from transcribing new FLO11 mRNA. Khd1 can execute both of these functions

to produce asymmetric Flol protein expression. Since Flol protein is required in the

daughter cell to maintain filamentous growth, the increase in Flol protein expression

when repression by Khdl is lost in the khd1A/khdlA mutant (Table 1, Figure 5C) likely

explains its hyperfilamentation phenotype (Figure 1A).

This model for asymmetric FLO11 expression and developmental switching posits

differential Khdl activity between cells. This heterogeneity would explain a surprising

aspect of the changes in FloI protein expression between the ash1A/ash1A and

khd1A/khd1A ashlA/ash1A mutants. In the absence of ASH1, the loss of Khd1 enables a

higher percentage of cells to express Flol protein, but not more of it (Table 1).

Individual cells can therefore express Flol protein at the same level whether or not they

can express Khdl. Because ASH1 is deleted, deletion of KHD1 relieves translational

repression on FLO11 mRNA, but does not affect FL011 transcription (Figure 7). If Khd1

repressed translation of FLO11 mRNA uniformly across all cells, its absence in

khd1A/khd1A ash1A/ash1A cells would result in increased levels of Flol protein.

Instead, it appears that some cells containing Khdl fail to repress translation of FLO11

mRNA, and deletion of KHD1 simply expands this population. Phosphorylation of Khd1

by Yckl regulates its repression of ASH] mRNA during mating type switching (PAQUIN et

al. 2007). Although deletion of YCK1 does not affect filamentous growth (data not

shown), post-translational modifications may regulate Khdl to generate heterogeneous



activity and enable the rapid changes in FLO11 expression that underlie asymmetry

during filamentous growth.

The asymmetry that arises when a yeast form mother cell produces a filamentous

daughter cell has similarities to the asymmetry of mothers and daughters with respect to

mating type switching. In both morphogenetic events, the mother and daughter have

different developmental outcomes dependent on asymmetric gene expression. The two

processes also have some differences. One striking difference is that AshI activates

filamentation but represses mating type switching, which could reflect the different

potentials of the mother and daughter cells between the two processes. The asymmetric

expression of ASH] allows the mother to switch mating type, but prevents the daughter

from doing so (CHARTRAND et aL. 2002; PAQUIN and CHARTRAND 2008; STRATHERN and

HERSKOWITZ 1979). However, an elliptical yeast form mother cell already encased in a cell

wall of defined structure does not elongate. Instead it is the daughter cell that must

express Flol protein to develop into a filamentous cell.

The developmental potential of the mother cell is constrained because filamentous

growth requires a different program for construction of the cell wall. In this context it

may be significant that Khd1 binds 54 mRNAs that encode proteins annotated to function

in this macromolecular structure. Post-transcriptional regulation of these genes by Khdl

could provide a unifying mechanism for constructing this organelle. One mechanism for

coordinating translational control of these messages would be to have a signature binding

site in the mRNAs dedicated to this function. Although we observe a motif consistent with

a previous report that used other methods to identify Khd1 binding sites (HASEGAWA et a].

2008), we do not identify a sequence that comprehensively explains recognition by Khdl.



These data suggest that although the motif we identify contributes to target recognition by

Khdl, there must be additional recognition determinants.

Our studies identify a new biological role for Khdl. Its bipartite repression of

FLO11 provides dynamic regulation that controls the expression of a cell fate determinant

in the daughter cell. Given the prevalence of sequences derived from FLO11 in the CLIP

experiment, this likely represents a major function for Khdl. Khdl binds a number

transcripts that encode cell wall proteins through repetitive sequences in addition to

FL011 mRNA, and Khdl may regulate the synthesis of many proteins that play a role in

this structure. The documented expansion and contraction of the repeats bound by Khdl

(VERSTREPEN et aL 2005) would generate target sequences of diverse lengths that could be

bound differentially, and as a consequence produce altered levels of these cell surface

proteins. These changes could have important consequences for the structure and

function of the yeast cell wall.

ACKNOWLEDGEMENTS

We thank the members of the laboratories of G.R.F. and D.K.G. for discussions; A. Mele

and R. Darnell for advice and technical support with CLIP; A. Rolfe for assistance with

computational methods; B. Chin for critical reading of the manuscript. This work was

supported by NIH Grants GM04026, GM035010, and GM069676, and the Abraham Siegel

Fellowship and NSF Graduate Research Fellowship to J.J.W. G.R.F is an American Cancer

Society Professor.



REFERENCES

AHN, S. H., A. ACURIo and S. J. KRON, 1999 Regulation of G2/M progression by the STE
mitogen-activated protein kinase pathway in budding yeast filamentous growth. Mol Biol
Cell 10: 3301-3316.

BAILEY, T. L., and C. ELKAN, 1994 Fitting a mixture model by expectation maximization to
discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2: 28-36.

BAILEY, T. L., and M. GRIBSKOV, 1998 Combining evidence using p-values: application to
sequence homology searches. Bioinformatics 14: 48-54.

BEISSBARTH, T., and T. P. SPEED, 2004 GOstat: find statistically overrepresented Gene
Ontologies within a group of genes. Bioinformatics 20: 1464-1465.

BOBOLA, N., R. P. JANSEN, T. H. SHIN and K. NASMYTH, 1996 Asymmetric accumulation of
Ashlp in postanaphase nuclei depends on a myosin and restricts yeast mating-type
switching to mother cells. Cell 84: 699-709.

BUCKANOVICH, R. J., and R. B. DARNELL, 1997 The neuronal RNA binding protein Nova-I
recognizes specific RNA targets in vitro and in vivo. Mol Cell Biol 17: 3194-3201.

BUCKANOVICH, R. J., J. B. POSNER and R. B. DARNELL, 1993 Nova, the paraneoplastic Ri
antigen, is homologous to an RNA-binding protein and is specifically expressed in the
developing motor system. Neuron 11: 657-672.

BUMGARNER, S. L., R. D. DOWELL, P. GRISAFI, D. K. GIFFORD and G. R. FINK, 2009 Toggle
involving cis-interfering noncoding RNAs controls variegated gene expression in yeast.
Proc Natl Acad Sci U S A 106: 18321-18326.

CHANDARLAPATY, S., and B. ERREDE, 1998 Ashl, a daughter cell-specific protein, is required for
pseudohyphal growth of Saccharomyces cerevisiae. Mol Cell Biol 18: 2884-2891.

CHARTRAND, P., X. H. MENG, S. HUTTELMAIER, D. DONATO and R. H. SINGER, 2002
Asymmetric sorting of Ash Ip in yeast results from inhibition of translation by
localization elements in the mRNA. Mol Cell 10: 1319-1330.

CURRIE, J. R., and W. T. BROWN, 1999 KH domain-containing proteins of yeast: absence of a
fragile X gene homologue. Am J Med Genet 84: 272-276.

DANFORD, T. W., R. D. DOWELL, S. AGARWALA, P. GRISAFI, G. R. FINK et al., 2010
Discoverying regulatory overlapping RNA transcripts. Fourteenth International
Conference on Research in Computational Molecular Biology: Lisbon, Portugal.

DOWELL, R. D., 0. RYAN, A. JANSEN, D. CHEUNG, S. AGARWALA et al., 2010 Genotype to
phenotype: a complex problem. Science 328: 469.

GERBER, A. P., D. HERSCHLAG and P. 0. BROWN, 2004 Extensive association of functionally and
cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol
2: E79.

GHAEMMAGHAMI, S., W. K. HUH, K. BOWER, R. W. HOWSON, A. BELLE et al., 2003 Global
analysis of protein expression in yeast. Nature 425: 737-741.

GIMENO, C. J., P. 0. LJUNGDAHL, C. A. STYLES and G. R. FINK, 1992 Unipolar cell divisions in
the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell
68: 1077-1090.

Guo, B., C. A. STYLES, Q. FENG and G. R. FINK, 2000 A Saccharomyces gene family involved
in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A 97: 12158-
12163.

GUTHRIE, C., and G. R. FINK, 1991 Guide to yeast genetics and molecular biology. Academic
Press, San Diego.



HALME, A., S. BUMGARNER, C. STYLES and G. R. FINK, 2004 Genetic and epigenetic regulation
of the FLO gene family generates cell-surface variation in yeast. Cell 116: 405-415.

HASEGAWA, Y., K. IRIE and A. P. GERBER, 2008 Distinct roles for KhdIp in the localization and
expression of bud-localized mRNAs in yeast. RNA 14: 2333-2347.

HOGAN, D. J., D. P. RIORDAN, A. P. GERBER, D. HERSCHLAG and P. 0. BROWN, 2008 Diverse
RNA-binding proteins interact with functionally related sets of RNAs, suggesting an
extensive regulatory system. PLoS Biol 6: e255.

HORVITZ, H. R., and I. HERSKOWITZ, 1992 Mechanisms of asymmetric cell division: two Bs or
not two Bs, that is the question. Cell 68: 237-255.

IRIE, K., T. TADAUCHI, P. A. TAKIZAWA, R. D. VALE, K. MATSUMOTO et al., 2002 The Khd1
protein, which has three KH RNA-binding motifs, is required for proper localization of
ASHI mRNA in yeast. Embo J 21: 1158-1167.

JANKE, C., M. M. MAGIERA, N. RATHFELDER, C. TAXIS, S. REBER et al., 2004 A versatile
toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers
and promoter substitution cassettes. Yeast 21: 947-962.

JENSEN, K. B., K. MUSUNURU, H. A. LEWIS, S. K. BURLEY and R. B. DARNELL, 2000 The
tetranucleotide UCAY directs the specific recognition of RNA by the Nova K-homology
3 domain. Proc Natl Acad Sci U S A 97: 5740-5745.

KEENE, J. D., 2007 RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:
533-543.

LAMBRECHTS, M. G., F. F. BAUER, J. MARMUR and I. S. PRETORIUS, 1996 Mucd, a mucin-like
protein that is regulated by Mss 10, is critical for pseudohyphal differentiation in yeast.
Proc Natl Acad Sci U S A 93: 8419-8424.

LEWIS, H. A., K. MUSUNURU, K. B. JENSEN, C. EDO, H. CHEN et al., 2000 Sequence-specific
RNA binding by a Nova KH domain: implications for paraneoplastic disease and the
fragile X syndrome. Cell 100: 323-332.

LICATALOSI, D. D., A. MELE, J. J. FAK, J. ULE, M. KAYIKCI et al., 2008 HITS-CLIP yields
genome-wide insights into brain alternative RNA processing. Nature 456: 464-469.

LIu, H., C. A. STYLES and G. R. FINK, 1996 Saccharomyces cerevisiae S288C has a mutation in
FLO8, a gene required for filamentous growth. Genetics 144: 967-978.

Lo, W. S., and A. M. DRANGINIS, 1996 FLO 11, a yeast gene related to the STA genes, encodes a
novel cell surface flocculin. J Bacteriol 178: 7144-7151.

Lo, W. S., and A. M. DRANGINIS, 1998 The cell surface flocculin Fo 11 is required for
pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9:
161-171.

LONG, R. M., R. H. SINGER, X. MENG, 1. GONZALEZ, K. NASMYTH et al., 1997 Mating type
switching in yeast controlled by asymmetric localization of ASHI mRNA. Science 277:
383-387.

MACARA, I. G., and S. MILI, 2008 Polarity and differential inheritance--universal attributes of
life? Cell 135: 801-812.

MUMBERG, D., R. MULLER and M. FUNK, 1995 Yeast vectors for the controlled expression of
heterologous proteins in different genetic backgrounds. Gene 156: 119-122.

PAN, X., and J. HEITMAN, 2000 Sok2 regulates yeast pseudohyphal differentiation via a
transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol 20: 8364-
8372.



PAQUIN, N., and P. CHARTRAND, 2008 Local regulation of mRNA translation: new insights from

the bud. Trends Cell Biol.
PAQUIN, N., M. MENADE, G. POIRIER, D. DONATO, E. DROUET et al., 2007 Local activation of

yeast ASHI mRNA translation through phosphorylation of KhdIp by the casein kinase

Ycklp. Mol Cell 26: 795-809.
RABANI, M., M. KERTESZ and E. SEGAL, 2008 Computational prediction of RNA structural

motifs involved in posttranscriptional regulatory processes. Proc Natl Acad Sci U S A
105: 14885-14890.

SANFORD, J. R., X. WANG, M. MORT, N. VANDUYN, D. N. COOPER et al., 2009 Splicing factor

SFRS 1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res 19:
381-394.

SIL, A., and I. HERSKOWITZ, 1996 Identification of asymmetrically localized determinant, Ashlp,
required for lineage-specific transcription of the yeast HO gene. Cell 84: 711-722.

STRATHERN, J. N., and I. HERSKOWITZ, 1979 Asymmetry and directionality in production of new

cell types during clonal growth: the switching pattern of homothallic yeast. Cell 17: 371-
381.

ULE, J., K. JENSEN, A. MELE and R. B. DARNELL, 2005 CLIP: a method for identifying protein-

RNA interaction sites in living cells. Methods 37: 376-386.
ULE, J., K. B. JENSEN, M. RUGGIU, A. MELE, A. ULE et al., 2003 CLIP identifies Nova-regulated

RNA networks in the brain. Science 302: 1212-1215.
VERSTREPEN, K. J., A. JANSEN, F. LEWITTER and G. R. FINK, 2005 Intragenic tandem repeats

generate functional variability. Nat Genet 37: 986-990.
WINZELER, E. A., D. D. SHOEMAKER, A. ASTROMOFF, H. LIANG, K. ANDERSON et al., 1999

Functional characterization of the S. cerevisiae genome by gene deletion and parallel

analysis. Science 285: 901-906.
YAO, Z., Z. WEINBERG and W. L. Ruzzo, 2006 CMfinder--a covariance model based RNA motif

finding algorithm. Bioinformatics 22: 445-452.
YEO, G. W., N. G. COUFAL, T. Y. LIANG, G. E. PENG, X. D. Fu et al., 2009 An RNA code for

the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells.
Nat Struct Mol Biol 16: 130-137.



SUPPORTING INFORMATION

File Si

Supporting Methods

Cross-linking Immunoprecipitation

1 L of cells containing the KID1-TAP allele were harvested at OD 2.5, washed

twice with water and resuspended in lOX pellet volume. UV crosslinking was performed

by irradiating shallow layers of this suspension three times at 400 mJ/cm 2. Cells were

washed in calmodulin binding buffer (CBB) with .1% NP-40 (RIGAUT et a]. 1999) and

protease inhibitors (leupeptin, pepstatin, PMSF), resuspended in 10 mL and separated

and into FastPrep tubes. 600 micron glass beads were added to ~1/3 volume and lysis

performed three times, 45 seconds at maximum speed in a FastPrep 3000.

The lysate was collected by puncturing the bottom of the tube and spinning the

sample into a 15 mL tube. Samples were spun at 3,000 rpm for 5 minutes and the

supernatant was collected. The pellet was resuspended in 5 mL CBB with .1 % NP-40 and

protease inhibitors, spun again at 3,000 rpm for 5 minutes, and the supernatant collected.

This process was repeated one more time. RNAse A (USB 70194Y) was added to the

pooled supernatants at a dilution of 1:50,000 or 1:1,000 and incubated at 37 Celsius for

10 minutes. The sample was split into microcentrifuge tubes and spun at 9,500 rpm for 5

minutes. The supernatant was transferred to fresh tubes and spun at 12,000 rpm for 5

minutes. The supernatant was used for immunoprecipitation.

300 piL calmodulin-agarose beads (GE Healthcare 17-0529-01) were equilibrated

for ten minutes in CBB with .1 % NP-40 three times. The equilibrated beads were added to

the supernatant and incubated for 2 hours at 4 Celsius on a rocking platform. The beads

were collected through a column and washed twice in 5 mL CBB with .1% NP-40 and



twice in 5 mL CBB with .02% NP-40. Protein was incubated in 3 mL calmodulin elution

buffer (CEB) (RIGAUT et aL. 1999) for 45 minutes at 4 Celsius on a rocking platform and

then collected in a 15 mL tube. The beads were twice washed with 1 mL CEB which was

pooled with the initial eluate.

800 iL Dynalbeads (Invitrogen 112-010) were equilibrated in CEB three times for

ten minutes, added to the eluate, and incubated for 1 hour at 4* Celsius on a rocking

platform. The beads were collected using a magnet and transferred to a microcentrifuge

tube. They were washed with Nelson stringent buffer (5 mM Tris, pH 7.5, 5 mM EDTA,

2.5 mM EGTA, 1% Triton X-100, 1% Na-DOC, 0.1% SDS, 120 mM NaCl, 25 mM KCl)

followed by Nelson high salt buffer (15 mM Tris, pH 7.5, 5 mM EDTA, 2.5 mM EGTA, 1%

Triton X-100, 1% Na-DOC, 0.1% SDS, 1 M NaCl) for 10 minutes each at 4* Celsius on a

rocking platform and transferred to a new tube where they were washed twice in Nelson

low salt buffer (15 mM Tris, pH 7.5, 5 mM EDTA).

After this immunoprecipitation, the CLIP protocol was followed as previously

described to obtain DNA molecules for sequencing (ULE et a]. 2005), with the exception

of the primers used for cDNA amplification as noted in the main text.
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Supporting Results

CLIP specifically identifies in vivo RNA targets of Khd1

Multiple control experiments were conducted to ensure that CLIP specifically

identified in vivo RNA targets of Khdl. As part of this analysis, Khdl-RNA complex

formation was visualized by end labeling RNAs following immunoprecipitation of Khd1-

TAP and treatment with RNAse A as previously described (ULE et a]. 2005). Non-specific

RNA contaminants migrate at a much lower molecular weight than protein-RNA

complexes, and can be separated using SDS-PAGE. Additionally, transfer to nitrocellulose

membrane retains the protein-RNA complexes, but not free RNA (SANFORD et aL. 2008;

ULE et a]. 2003). Khdl-RNA complexes were then visualized using autoradiography.

Khdl-RNA complex formation requires UV crosslinking (Figure S2) as has been

previously demonstrated using mammalian RNA-binding proteins (SANFORD et aL 2008;

ULE et a]. 2003). Khd1-TAP has a predicted molecular weight of approximately 63

kilodaltons (kDa), but Western blot analysis shows the protein migrates at slightly less

than 75 kDa during SDS-PAGE (data not shown). When a high concentration of RNAse A

is used, Khdl-RNA complexes migrate slightly higher than 75 kDa (Figure S2). With lower

RNAse A concentrations, longer RNA molecules are maintained leading to an increase in

the molecular weight of the complexes (Figure S2).

Immunoprecipitation of Khd1-TAP from un-crosslinked cells was used to

determine whether pure samples of Khdl were obtained. Mass spectrometry of the band

at about 75 kDa revealed no major protein species co-migrating with Khdl-TAP (data not

shown), suggesting the signal on the autoradiogram derives specifically from Khdl-RNA

complexes.



Immunoprecipitation of other RNA-binding proteins following crosslinking resulted in

the formation of protein-RNA complexes of an expected size based on the molecular

weight of the protein, but no complexes were seen when proteins without RNA-binding

domains were used (data not shown).

Based on the above results, we conclude the sequences we obtained derive

specifically from interactions between Khdl and its endogenous RNA targets.
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Figure S1.-Khd1 Interaction with FLO11 mRNA requires the ORF. Enrichment following
immunoprecipitation from cells expressing Khd1-TAP or untagged Khdl calculated as in Figure 3. The
FLO11 5, 3'construct contains a complete replacement of the FLO11 ORF with URA3. The FLO11 5' and
3' UTRs remain intact in this construct. The FLO11 5'construct retains the FLO11 5' UTR but replaces
everything downstream of the start codon with GFP followed by the ADH1 3' UTR. The FLO]1 5', ORF
construct maintains the FLO11 5' UTR and ORF but substitutes the ADH1 3' UTR for the FLO11 3' UTR.
Neither FLO11 UTR is sufficient for the interaction with Khd1; immunoprecipitation of Khd1-TAP only
enriches transcripts containing the FLOM1 ORF.
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Figure S2.- CLIP identifies RNA targets of Khdl. Following immunoprecipitation of Khd1-TAP,
protein RNA complexes were labeled as previously described (ULE et al. 2005), separated by size using SDS
PAGE, and visualized using autoradiography. (A) Khd1-RNA complex formation is dependent on UV
crosslinking. (B) Increased digestion with RNAse A increases complex mobility. A band from the sample
with the 1:50,000 RNAse A dilution was isolated for sequencing as previously described (ULE et al. 2005).



10

8

6

4-

2 -

PADH -GFP PADH -FLO1 Irepeats-GFP
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mRNA. Constructs diagrammed in Figure 4. Values are average of four independent experiments. Error reported
as standard deviation.

80



construct

plasmid

genomic KHD1

GFP

PADH -GFP

vector P KHD1

W I
WT A WT A

Tubulin ._..._....

-i i
Figure S4.-KID1 does not affect expression from the ADH promoter. (A) Western blot analysis of

PADH - GFP reporter construct. (B) GFP mRNA normalized to TUB1 mRNA for the strains shown in (A).
Values are average of four independent experiments. Error reported as standard deviation.

FADH,,

i



- 70,000
reads

r~LiLLi
1,017 bp

- 30,000
reads

1,170 bp

- 7,000
reads

fZN
2,988 bp

- 10,000
reads

2,178 bp

- 10,000
reads

16,000
'reads

3,921 bp 5,202 bp

34,000
reads

-1

- 12,000
reads

CRH1 YN190W
1,524 bp 615 bp
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scale shown at top right, ORF length shown at bottom right. See Figure 4 for dot plot specifications.



TABLE Si

Yeast strains and plasmids used in this study.

Strain
JW971

JW1064

JW1066

JW1068

JW1033

JW1027

JW928

JW994

JW1052

JW1055

JW1032

JW1026

L6902

JW214

JW364

JW1045

JW295

JW700

JW248

JW715

JW1239

JW1255

JW1778

JW1226

JW1245

JW1547

JW1564

JW1549

JW1566

JW1330

Genotype
MA Ta/a his3::hisG/his3::hisG ura3-52/ura3-52

MA Ta/a his3::hisG/his3:hisG ura3-52/ura3-52
khdl::kanMX4/khdl::kanMX4
MA Ta/a his3::hisG/his3::hisG ura3-52/ura3-52 ash l::kanMX4/ash l::kanMX4

MA Ta/a his3::hisG/his3::hisG ura3-52/ura3-52
flol l::kanMX4/fol l::kanMX4
MA Ta/a his3::hisG/his3::hisG ura3-52/ura3-52 ash l::kanMX4/ash l::kanMX4
khdl::kanMX4/khdl::kanMX4
MA Ta/a his3::hisG/his3::hisG ura3-52/ura3-52
flol l::kanMX4/flol 1::kanMX4 khdl::kanMX4/khdl::kanMX4
MA Ta his3::hisG ura3-52

MATa his3::hisG ura3-52 khdl::kanMX4

MA Ta his3::hisG ura3-52 ash l::kanMX4

MATa his3::hisG ura3-52 fol l::kanMX4

MA Ta his3::hisG ura3-52 ash 1::kanMX4 khdl::kanMX4

MA Ta his3::hisG ura3-52 fol l::kanMX4 khdl::kanMX4

MA Ta/a FLOJ1::HA/FLOJ1::HA his3::hisG/his3::hisG ura3-52/ura3-52

MA Ta/a FLO1::HA/FLO11::HA his3::hisG/his3::hisG ura3-52/ura3-52
khdl::kanMX4/khdl::kanMX4
MATa/a FLOJ1::HA/FLO1::HA his3::hisG/his3::hisG ura3-52/ura3-52
ash 1::kanMX4/ashl::kanMX4
MATa/a FLOJ1::HA/FLO11::HA his3::hisG/his3::hisG ura3-52/ura3-52
ash 1::kanMX4/ashl::kanMX4 khdl::kanMX4/khdl::kanMX4
MATa his3::hisG trpl::hisG Jeu2::hisG ura3-52 KHDJ-TAP::HIS3

MATa his3::hisG trpl::hisG Jeu2::hisG ura3-52 KHDJ-TAP::HIS3
PFL 0 11 ::URA3
MA Ta his3::hisG trpl::hisG leu2::hisG ura3-52 KHDJ-TAP::HIS3
PFLOJ1::GFP::ADHJ 3' UTR::URA3
MA Ta his3::hisG trpl::hisG leu2::hisG ura3-52 KHDJ-TAP::HIS3
FLO11::ADHI 3' UTR:URA3
MATa his3::hisG ura3-52 KHDJ-TAP::HIS3
flo1l::natNT2::PADH::FLO11 repeats::GFP::ADHJ 3' UTR::URA3
MATa his3::hisG ura3-52 KHDJ-TAP::HIS3
fo 11::natNT2::PADH::GFP::ADH1 3' UTR::URA3
MATa his3::hisG ura3-52 KHDI-TAP::HIS3
fioll::natNT2::PCyCl::GFP::ADH1 3' UTR::URA3
MA Ta his3::hisG ura3-52
fol1::natNT2::PADH::FLO11 repeats::GFP::ADHJ 3' UTR::URA3
MA Ta his3::hisG ura3-52 khdl::kanMX4
fiolJ::natNT2::PADH::FLO11 repeats::GFP::ADHJ 3' UTR::URA3
MATa his3::hisG ura3-52fioll::natNT2::PADH::GFP:ADH1 3' UTR::URA3

MA Ta his3::hisG ura3-52 fol l::natNT2::PADH::GFP::ADH1 3' UTR::URA3
khdl::kanMX4
MATa his3::hisG ura3-52 flo I::natNT2::PCYCj::GFP::ADH1 3' UTR::URA3

MATa his3::hisG ura3-52fioll::natNT2::PCyC1::GFP::ADH1 3' UTR::URA3
khdl::kanMX4
MATa his3::hisG ura3-52 natNT2::PADH::FLO11

Source
This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

Fink laboratory
collection
This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study

This study



MA Ta his3::hisG ura3-52natNT2::PADH::FLO11 khdl::kanMX4

Plasmid Insert

p413TEF

p413TEF-KHD1 KHD1

yEGFP3::ADH1 3' UTR::URA3

Source

Mumberg et al. 1995

This study

Sherwin Chan

JW1430 This study



TABLE S2

Oligonucleotides used in this study

Name

JW4

JW5

JW17

JW18

JW39

JW44

JW46

JW47

JW48

JW49

JW176

JW186

JW218

JW228

JW229

JW230

FLO11 FW

FLOl1 RV

ACTI FW

ACTI RV

Vla292

Vla293

JW348

JW349

Sequence (5' to 3')

caaacttgctgagtccatgc

cgcgaaatgtttaaagcaag

tggtcatcctgtaggtttgttg

cagttctgccgggatacagt

cgtgcgtctgatttctacga

aagcaggttccgctatttca

aattgggattcaaggcatca

aattgggattcaaggcatca

aaggaaaaaagcggccgctggtcatcctgtaggtttgttg

atatatccgctcgagcgttgtattgttgttcggattg

taattaagaatatacttttgtaggcctcaaaaatccatatacgcacactatgcgtacgctgcaggtcgac

caattgttgtcacaatctatgttccaatagaagcctgggaaatctgtttgcatcgatgaattctctgtcg

tcaaccaaaattgggacaacaccagtgaataattcttcacctttagacat-catcgatgaattctctgtcg

aatgatacggcgaccaccgacagagggaggacgatgcgg

caagcagaagacggcatacgaccgctggaagtgactgacac

cgacagagggaggacgatgcgg

cacttttgaagtttatgccacacaag

cttgcatattgagcggcactac

ctccaccactgctgaaagagaa

ccaaggcgacgtaacatagtttt

cactggtgttgtcccaattttg

caccggagacagaaaatttgtg

aggaggacgcggctaataatta

tcgcccaaaatttctctacca

Description

amplify KHDJ-TAP::HIS3

amplify KHD1-TAP::HIS3

amplify khdl::kanMX4

amplify khdl::kanMX4

amplify ashl::kanMX4

amplify ashl::kanMX4

amplify floll::kanMX4

amplify floll::kanMX4

clone KHD1

clone KHD1

PADH/PCYCI amplification

PADH fused to FLO11 repeats

Pcyc1 fused to GFP

CLIP RT-PCR

CLIP RT-PCR

Illumina sequencing

FLO11 qPCR

FLO11 qPCR

ACT1 qPCR

ACT1 qPCR

GFPqPCR

GFPqPCR

TUB1 qPCR

TUB1 qPCR



TABLE S3

CLIP peaks

Chromosome:coordinates;strand

1:7210-7274;-

1:7285-7459;-

1:30355-30399;+
1:43565-43610;-

1:48375-48444;+

1:49860-49989;-

1:55540-55639;+
1:55745-56004;+

1:56740-56869;+

1:68925-68969;-

1:78430-78475;+

1:91340-91429;-

1:94620-94654;-

1:94675-94774;-

1:96960-97014;-

1:115325-115379;+

1:125470-125514;-

1:127045-127119;+
1:145355-145433;-

1:151810-151891;-

1:163160-163284;-

1:164490-164534;-

1: 164560-164594;-

1: 176660-176709;+
1: 193345-193469;+

1:193775-193874;+
1:194095-194219;+

1: 198750-198839;+

1:198970-199124;+
1:199150-199239;+

1:203550-203594;+

1:205290-205326;+

2:13395-13449;-

2:13495-13509;-

2:17185-17214;-

2:17495-17534;-

2:18625-18664;-

2:21100-21184;+

2:27295-27329;-

2:49570-49629;+

2:52640-52689;-
2:52785-52829;-

2:59535-59589;+

2:60080-60129;+
2:61855-61909;+

2:62000-62044;+

2:72660-72704;-

2:80970-81014;-

2:83805-83889;-

2:89001-89037;+
2:93110-93146;+

2:102595-102644;+

2:107115-107594;-

2:114730-114994;-

2:115025-115119;-

2:129405-129449;+

2:143735-143779;+

2:143890-143934;+

2:147510-147559;-
2:176040-176090;+
2:181780-181829;-

2:195975-196024;-

2:208687-208724;+

2:213525-213574;+

2:226735-226779;-

2:233750-233934;-
2:233980-234084;-

2:234380-234524;-

2:241005-241144;+

2:267570-267614;-
2:271015-271064;+
2:271740-271844;+

2:278787-278829;+
2:304140-304199;+

2:304335-304424;+

2:313655-313699;+

2:323545-323589;-

2:329905-329954;-

2:364060-364129;+

2:364205-364289;+

2:364300-364504;+

2:364515-364604;+

2:364700-364844;+

2:365075-365139;+

2:376455-376499;+

2:377350-377469;-

2:381115-381154;+
2:390895-390944;-

2:393155-393197;-

2:393325-393374;-

2:421215-421294;+

2:431970-432074;-

2:432255-432454;-

2:432500-432629;-

2:446155-446199;+

2:446455-446504;+

2:447210-447284;+

2:457395-457499;-

2:473825-473869;+

2:494060-494169;-

2:510065-510154;+

2:532530-532679;-

2:543365-543403;-

2:548285-548334;-

2:549500-549549;-

2:573848-573889;+

2:573965-574004;+

2:575745-575799;+
2:580800-580844;-

2:581200-581374;-
2:586790-586899;-
2:613475-613519;+

2:618690-618819;-
2:620025-620064;-

2:620090-620124;-

2:625340-625394;-

2:630860-630909;+

2:630990-631039;+

2:633395-633529;+

2:634730-634829;+

2:642820-642868;-

2:647345-647444;-

2:648250-648299;-
2:649425-649469;-

2:653710-653759;+
2:654305-654399;+



2:56465-57009;+

2:663750-663799;-
2:678910-679064;-
2:718515-718559;-

2:721090-721179;+

2:721320-721358;+

2:722294-722330;+

2:754310-754379;-
2:759640-759714;+

2:761137-761184;+

2:762390-762434;+

2:764715-764899;+
2:805350-805394;-

3:43235-43279;-
3:48050-48119;-

3:50205-50260;-
3:50465-50574;-

3:52590-52639;-
3:52685-52749;-

3:53835-53879;+
3:55030-55074;+

3:56155-56199;+

3:60450-60534;-

3:60925-61064;-

3:67659-67709;-
3:73905-74164;+

3:79665-79714;-

3:87350-87399;+

3:102530-102574;-

3:107490-107534;+

3:109125-109165;+

3:121650-121674;-

3:126310-126459;+

3:135230-135324;+
3:135340-135409;+

3:135900-135974;+
3:147620-147794;+

3:159775-159829;+
3:175490-175644;-

3:186410-186599;-

3:186660-186709;-

3:186740-186859;-

3:190085-190128;-

3:202576-202629;+

3:227860-227904;+

3:228105-228154;+

3:228165-228359;+

3:228480-228524;+

3:241985-242039;+

3:242130-242174;+

2:367806-367869;-

3:242260-242304;+

3:242415-242459;+

3:245905-246089;-

3:269730-269764;+

3:271625-271704;-

3:273335-273494;-

3:277705-277769;+
3:282725-282864;+

3:282995-283154;+

3:297220-297259;+

4:23410-23455;-

4:24055-24109;+

4:25905-25943;+

4:27315-27359;-

4:32355-32504;+

4:32635-32709;+

4:41810-41874;-

4:41970-42109;-

4:46545-46584;-

4:66640-66654;-

4:66755-66799;-

4:84480-84519;-

4:91895-91904;-

4:93925-93969;+

4:96835-97114;+

4:105295-105344;+

4:109095-109114;+

4:109935-109979;+

4:113300-113324;-

4:113585-113629;+

4:117215-117255;-

4:135688-135724;+
4:141550-141599;-

4:148285-148329;-

4:155175-155219;+
4:157270-157399;-

4:159560-159597;+

4:192135-192439;-

4:197405-197459;-

4:208550-208596;-

4:213090-213134;+

4:215914-215959;+

4:252464-252506;-

4:258520-258594;-

4:274750-274847;+

4:286181-286217;-

4:293710-293754;-
4:295935-295979;+
4:313900-313909;+

2:661575-661614;-

4:317200-317289;-

4:318115-318154;+
4:327465-327489;-

4:327545-327589;-
4:330060-330099;+

4:340545-340594;+

4:343600-343739;-

4:347942-347988;-

4:354410-354574;-

4:354660-354724;-

4:354740-354844;-

4:368900-369004;-

4:369195-369238;-
4:372265-372379;-

4:377850-377894;-

4:393660-393764;-

4:394005-394182;-

4:394320-394394;-

4:394435-394499;-

4:400130-400184;+

4:400220-400264;+

4:403835-403879;-

4:408773-408812;-
4:418625-418667;-

4:423085-423109;-

4:424825-424864;+

4:424885-424929;+

4:426135-426264;+

4:434175-434219;-

4:452745-452994;-

4:465610-465654;+

4:473995-474024;-

4:475185-475219;-
4:483700-483859;+

4:485725-485819;+
4:492800-492839;-

4:492860-492904;-

4:492920-492959;-

4:493145-493224;-

4:501725-501789;+

4:522938-522977;-

4:523025-523034;-

4:523120-523139;-

4:523400-523414;-

4:526500-526544;+

4:538225-538269;-

4:544120-544164;+

4:544253-544289;+

4:544445-544509;+



4:548785-548829;+

4:552260-552309;+

4:552600-552640;+

4:552848-552889;+

4:565970-566039;-

4:570875-570954;-

4:572645-572689;+
4:574350-574384;+

4:574540-574584;+

4:574605-574654;+

4:574730-574774;+

4:575550-575607;+
4:580725-580834;+

4:580885-581454;+
4:606335-606414;-

4:618770-618819;+

4:619980-620039;+

4:620245-620313;+

4:629290-629379;+

4:633605-633634;+

4:633710-633749;+
4:634130-634174;+

4:634245-634284;+

4:647090-647214;-

4:648420-648464;-

4:648490-648524;-

4:649390-649419;+

4:679775-679884;-
4:680100-680144;-

4:701435-701509;-

4:701730-701834;-
4:701910-702063;-
4:707225-707269;-

4:721240-721284;-

4:723120-723184;-
4:723200-723249;-

4:724895-724999;-

4:727575-727659;+

4:744387-744429;+

4:745925-745959;-
4:746056-746092;-

4:748005-748054;-

4:748180-748224;-

4:750260-750349;-

4:768375-768421;-

4:773895-774004;-

4:781330-781519;-

4:785850-785904;+
4:789730-789799;+

4:812305-812389;-
4:814770-814819;-

4:814855-814894;-

4:815705-815794;-

4:816170-816264;-

4:819470-819524;+

4:840530-840574;+

4:846960-847009;-

4:847170-847219;-
4:849975-850024;+

4:850045-850114;+

4:859680-859734;+

4:859900-859948;+

4:883595-883644;-
4:886745-886789;+

4:886855-886944;+

4:888355-888394;+

4:891785-891834;-

4:897685-897729;+

4:898720-898859;-

4:898935-899054;-

4:912140-912179;-

4:913290-913324;-

4:914785-914799;+

4:923615-923664;+
4:929285-929294;+

4:929320-929329;+
4:935120-935134;-

4:943865-943894;-

4:943920-943954;-

4:949890-949939;+
4:950090-950144;+

4:950995-951079;+

4:954600-954642;+

4:957065-957114;-
4:962205-962334;-
4:963540-963579;-
4:963605-963644;-

4:972395-972434;-

4:1010010-1010049;+

4:1015655-1015695;-

4:1019865-1019984;-

4:1025725-1025759;-

4:1028735-1028779;+

4:1043101-1043144;-

4:1051150-1051269;-

4:1051460-1051509;-

4:1051655-1051704;-

4:1055175-1055254;-

4:1076555-1076604;+

4:1087060-1087154;-

4:1088335-1088384;-

4:1089855-1089899;-

4:1089920-1089984;-

4:1102860-1102904;+

4:1109485-1109534;+

4:1138589-1138649;-
4:1141415-1141460;+

4:1145220-1145339;+

4:1167795-1167842;+
4:1191675-1191719;+

4:1203400-1203454;+

4:1205515-1205644;+

4:1212655-1212704;+

4:1215765-1215784;-

4:1260410-1260444;+

4:1261965-1262054;+

4:1267805-1267859;+

4:1267895-1268139;+

4:1268305-1268399;+

4:1268835-1268884;+

4:1269590-1269714;+

4:1280150-1280194;+

4:1282225-1282279;+

4:1288555-1288604;+
4:1294325-1294363;+

4:1306531-1306574;-

4:1311930-1311979;-

4:1316675-1316719;-

4:1319775-1319844;+
4:1332310-1332344;+

4:1347120-1347164;+

4:1361205-1361269;+
4:1366645-1366684;-
4:1382345-1382389;+
4:1384335-1384379;-
4:1404065-1404108;-

4:1417290-1417374;-

4:1425160-1425269;-

4:1438050-1438094;+

4:1447425-1447489;-

4:1448615-1448699;-

4:1450745-1450794;+

4:1453469-1453514;+

5:9616-9659;+

5:10019-10064;+

5:36040-36094;-

5:43765-43809;-



5:44820-44869;-

5:4494544999;-

5:71825-71924;-

5:72135-72204;-

5:75585-75639;+

5:76265-76414;+

5:82440-82689;+

5:86475-86574;-

5:88970-89054;+

5:89195-89269;+

5:89495-89579;+
5:96310-96359;+

5:104525-104609;+

5:105250-105299;+

5:120375-120414;+

5:120435-120479;+

5:121685-121814;+

5:127645-127689;-

5:130225-130284;-

5:132170-132219;-

5:133065-133119;-

5:133275-133319;-

5:137910-138024;-

5:139660-139704;+

5:139715-139769;+

5:141091-141130;-

5:142578-142619;+

5:150710-150759;-
5:153650-153693;+

5:154730-154784;-

5:155145-155289;-

5:158680-158759;+

5:182280-182321;-
5:210740-210774;+

5:212780-212829;+
5:212967-213008;+

5:221695-221732;+
5:235995-236054;-

5:236195-236249;-
5:238765-238814;-
5:245470-245569;+
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16:760460-760544;+

16:763330-763388;+

16:781890-781919;-

16:791496-791539;+
16:792345-792389;+

16:796570-796819;+
16:806735-806769;+

16:806795-806834;+

16:808040-808169;+

16:820300-820319;-

16:827950-827959;+
16:840425-840479;+

16:840731-840768;+

16:853855-853999;-

16:857180-857234;+

16:857590-857630;+
16:885560-885654;+

16:885950-886089;+

16:891120-891209;+



TABLE S4

Khdl target RNAs

Standard
me Name Binding Site Coordinates

-75-21

BIO1A

FLO16

Systematic Na
ARS1604
BAL002C
BAR009W
BIL038C
BIR039C
BMR058C
BNL060C
BPR065W
BPR066W
LSR1
RDN37-1
RDN37-2
RDN58-1
RDN58-2
SNR11
SNR128
SNR14
SNR189
SNR37
SNR6
SNR71
telomeric-14L
telomeric-5L
tH(GUG)G2
tK(CUU) Dl
tK(CUU)D2
tK(CUU)E1
tK(CUU)E2
tK(CUU)F
tK(CUU)GI
tK(CUU)G2
tK(CUU)G3
tK(CUU)I
tK(CUU)J
tK(CUU)K
tK(CUU)M
tK(CUU)P
tL(CAA)K
TLC1
tR(CCU)J
tR(UCU)B

235-299
1313-1357
-107-22
-310--251, -190-111, -75-41
909-953
4285-4334
2300-2394, 2690-2829
55-144
86-135
2446-2495, 5771-5820, 6606-6650
2448-2497, 5768-5822, 6603-6647
117-161
119-163
226-264
91-135
70-111
145-188
166-220
49-88
34-92
234-268
402-445
100-140
32-79
25-74
26-75
27-71
25-74
33-77
24-73
32-79
25-69
33-77
33-77
27-76
34-78
82-120
445-487
33-74
32-76



tR(UCU)D
tR(UCU)E
tR(UCU)G1
tR(UCU)G2
tR(UCU)G3
tR(UCU)J1
tR(UCU)J2
tR(UCU)K
tR(UCU)M1

tR(UCU)M2
tT(UGU)G1
tT(UGU)G2
tT(UGU)P
tW(CCA)P
YALOO3W
YAL005C
YAL012W
YAL021C

YAL022C
YAL023C
YAL027W
YALO31C
YAL038W
YALO40C
YAL041W
YALO43C

YAL053W
YAL063C
YAR014C
YAR019C
YAR042W
YAR050W
YAR066W
YAR068W
YAR071W
YBL02W
YBL004W
YBLO07C
YBLO14C

YBLO16W
YBLO30C
YBL032W
YBLO38W
YBLO47C

YBL051C

YBL054W
YBL060W
YBL063W
YBL066C

EFB1
SSAI
CYS3
CCR4
FUN26
PMT2

GIP4
CDC19
CLN3
CDC24
PTA1
FLC2
FLO9
BUD14
CDC15
SW'1"
FLO]

PHO11
HTB2
UTP20
SLA1
RRN6
FUS3
PET9
HEK2
MRPL16
EDE1
PIN4

KIP1
SEF1

31-75
33-76
34-76
30-73
32-76
34-78
29-73
30-72
26-70
30-70
33-77
33-76
30-79
31-70
451-525
340-384
103-157
266-320, 2506-2605
-300-266
1047-1136
-27-18
1834-1878
-23-76, 182-441, 1177-1306
1323-1452
1748-1817
1234-1279
669-713
4325-4499
1934-2012
1741-1822
2-51
1338-1462, 1768-1867, 2088-2212
1199-1288
53-207, 233-322
1343-1379
367-416
4444-4481
2879-2928
2437-2486
1066-1116
-21-28
13-57, 168-212
-289-245
1085-1179, 1210-1474
1329-1808
845-894
986-1022
2923-2959
421-505, 3296-3340

100



YBLO72C
YBL079W
YBL081W
YBL084C
YBL085W
YBL096C
YBL099W
YBL1O1C
YBL103C
YBRO07C
YBRO1IC
YBRO16W
YBR029C
YBR031W
YBR048W
YBR054W
YBR057C
YBR059C
YBR078W
YBR079C
YBR082C
YBR083W
YBR086C
YBR106W
YBR112C
YBR1 18W
YBR126C
YBR136W
YBR140C
YBR149W
YBR162C
YBR169C
YBR172C
YBR189W
YBR191W-A
YBR195C
YBR196C
YBR198C
YBR212W
YBR214W
YBR218C
YBR221C
YBR222C
YBR225W
YBR230C
YBR238C
YBR260C
YBR263W
YBR283C

101

RPS8A
NUP1 70

CDC27
BOI1

A TP1
ECM21
RTG3
DSF2
Ippi

CDS1
RPL4A
RPS11B

YRO2
MUM2
AKL1
ECM33
RPG1
UBC4
TEC1
IST2
PH088
CYC8
TEF2
TPS1
MEC1
IRA1
ARA
TOS1
SSE2
SM12
RPS9B

MSI1
PGI1
TAF5
NGR1
SDS24
PYC2
PDB1
PCS60

OM14

RGD1
SHM1
SSH1

615-659
80-134, 625-674, 2400-2454, 2545-2589
403-947
815-859, 955-1004
1499-1558
349-383
-153-69
175-214, 1305-1344, 1625-1654
554-568, 614-668
916-960
130-274, 570-674, 720-904
7-146
873-917
95-144, 820-924
552-611, 747-836
-203-159
257-301
775-824
394-463, 539-623, 634-838, 849-938, 1034-1178, 1409-1473
954-1017
247-366
1402-1441
210-259, 387-429, 2640-2689
60-139
1641-1770, 1816-2015, 2196-2300
-13-31, 287-336, 1042-1116
1394-1498
-341-297
1077-1186
1468-1557
581-730
1284-1322
514-563, 1729-1778
735-776, 852-891
-27-27
-336-292
1152-1326
250-359
948-997, 1078-1127
-36-98, 1299-1398
1404-1452
-23-26, 832-931
905-949
1063-1112, 1658-1752
461-500
264-418
960-1004
-51-38, 179-217, 1153-1189
931-1000



YBR286W
YBR287W
YBR289W
YBR302C
YCLOO1W
YCLO04W
YCLO09C
YCL025C
YCL028W
YCL031C
YCL037C
YCL039W
YCL040W
YCL043C
YCLO44C
YCL045C
YCLO49C
YCRO08W
YCRO12W
YCR024C-A
YCR030C
YCR034W
YCR052W
YCR053W
YCR065W
YCR067C
YCR081W
YCR084C
YCR088W
YCR089W
YCR093W
YDLO05C
YDLO07C-A
YDLO12C
YDLO19C
YDL020C
YDL022W
YDL025C
YDL035C
YDL037C
YDL038C
YDL039C
YDL048C
YDL054C
YDL055C
YDL056W
YDL060W
YDL061C
YDL070W

102

APE3
zsP1
SNF5
COS2
RERI
PGS1
ILV6
AGP1
RNQ1
RRP7
SRO9
GID7
GLK1
PDI1
MGR1

SAT4
PGK1
PMP1
SYP1
FEN1
RSC6
THR4
HCM1
SED4
SRB8
TUP1
ABP1
FIG2
CDC39
MED2

OSH2
RPN4
GPD1

GPR1
BSC1

PRM7
STP4
MCH1
PSA1
MBP1
TSR1
RPS29B
BDF2

48-122, 1545-1592
927-971
159-343
1223-1267
-279-239
897-941
465-509
1224-1273
739-998
878-928
629-768, 1159-1243
493-537
-18-26, 1177-1221
491-555, 601-650
784-893, 1098-1153
1780-1849
438-482
350-499
-6-88, 104-173, 664-738
-124-30
1050-1169, 1200-1249, 1310-1499
515-568
1421-1465
-36-13, 24-218, 339-383
1214-1268, 1359-1403, 1489-1533, 1644-1688
1751-1935
3846-3880
474-633, 2264-2343
1124-1188
3778-3917, 4048-4207
5524-5563
538-582
609-633
199-241
-16-23
112-156
1019-1073, 1109-1153
0-64, 105-179, 317-494, 735-839
1461-1505
481-595
1701-1744
152-256
196-300, 316-380, 466-630
135-181
-145-6
834-883
1616-1655
39-83, 139-163
251-290



YDL072C
YDL073W
YDL082W
YDL083C
YDL088C
YDL095W
YDL106C
YDL109C
YDL130W-A
YDL132W
YDL133C-A
YDL140C
YDL159W
YDL160C
YDL161W
YDL167C
YDL171C
YDL173W
YDL184C
YDL185C-A
YDL185W
YDL189W
YDL191W
YDL195W
YDL197C
YDL203C
YDL211C
YDL223C
YDL224C
YDL229W
YDL231C
YDL232W
YDL233W
YDL234C
YDR006C
YDR012W
YDR017C
YDR023W
YDR025W
YDR028C
YDR033W
YDR043C
YDR044W
YDR051C
YDR055W
YDR060W
YDR069C
YDR072C
YDR073W

103

YET3

RPL13A
RPS16B
ASM4
PMT1
PHO2

STF1

CDC53
RPL41B
RPO21
STE7
DHH1
ENT1

NRP1
GLT1

RPL41A

TFP1
RBS1
RPL35A
SEC31
ASF2
ACK1

HBT1
WHI41

SSB1
BRE4
OST4

GYP7
SOK1
RPL4B
KCS1
SES1
RPS11A
REG1
MRH1
NRG1
HEM13

PST1

MAK21

DOA4

IPT1
SNF1 1

1-90
459-468
970-1014
579-623
330-366
1152-1249
95-169
1484-1526
-42-3
2001-2045
-8-38
-142-88, 4878-5182
329-366
1284-1413
698-742
1591-1635
807-856
733-769
-7-33
275-299
37-81
117-136, 957-1001
869-918
-45-1, 2865-3144
1355-1364
199-238
377-421, 522-536
581-620
1075-1214, 1310-1374
1203-1352, 1483-1557
1975-2019
331-369
171-225
112-157
706-955
101-145
789-823, 1984-2013
612-681
544-638
1297-1376, 1562-1601, 1617-1661, 1682-1721
-58-6

--69-55, 206-225, 311-320, 368-407
-3-41
-342-298
722-766, 855-891, 1047-1111
1740-1789, 2080-2120, 2328-2369
1548-1617
255-334
344-388



YDR074W TPS2 595-629, 785-829, 850-899, 975-1019, 1795-1852
YDR077W SED1 70-179, 230-799
YDR091C RLI1 1983-2062
YDR096W GIS1 767-816, 1977-2036, 2242-2310
YDR099W BMH2 695-784
YDR103W STE5 267-296, 372-411, 792-836, 907-946
YDR123C IN02 236-280, 496-605
YDR133C 318-392
YDR134C -52-101, 177-281
YDR135C YCF1 815-859
YDR142C PEX7 850-894
YDR143C SAN1 1159-1208, 1224-1288
YDR144C MKC7 1636-1740
YDR145W TAF12 306-390
YDR150W NUM1 8227-8269
YDR151C CTH1 366-402, 499-533
YDR153C ENT5 1050-1094, 1220-1269
YDR155C CPR1 -46-43
YDR166C SEC5 2121-2167
YDR169C STB3 1206-1315
YDR170C SEC7 2025-2214
YDR172W SUP35 87-156
YDR184C ATC1 446-530
YDR186C 550-644, 1020-1109, 1920-1959, 1995-2044
YDR189W SL.Y1 -253-199
YDR205W MSC2 236-280
YDR207C UME6 1252-1301, 1462-1511
YDR208W MSS4 805-854, 875-944
YDR213W UPC2 876-930, 1096-1144
YDR224C HTB1 125-174
YDR227W SIR4 120-164, 230-319, 1730-1769
YDR228C PCF11 1019-1068
YDR232W HEM1 1183-1227
YDR233C RTN1 334-453, 529-668
YDR239C 370-409
YDR240C SNU56 957-991
YDR246W TRS23 545-594
YDR251W PAM1 49-58, 84-93
YDR255C RMD5 1135-1149
YDR259C YAP6 275-309, 335-364
YDR266C 1272-1311
YDR288W NSE3 1459-1498
YDR292C SRP1O 675-715
YDR293C SSD1 767-886
YDR295C HDA2 247-281
YDR297W SUR2 828-872
YDR303C RSC3 291-334
YDR309C GIC2 543-592, 738-787, 978-1097
YDR310C SUM1 1085-1164

104



YDR322W
YDR326C
YDR334W
YDR335W
YDR349C
YDR351W
YDR379W
YDR385W
YDR389W
YDR390C
YDR416W
YDR418W
YDR420W
YDR425W
YDR427W
YDR432W
YDR436W
YDR443C
YDR449C
YDR450W
YDR457W
YDR463W
YDR471W
YDR475C
YDR484W
YDR485C
YDR497C
YDR505C
YDR508C
YDR518W
YDR524C
YDR524C-B
YDR527W
YDR528W
YEL007W
YEL008C-A
YEL009C
YEL015W
YEL016C
YELO1 7C-A
YEL017W
YEL026W
YEL027W
YEL031W
YELO33W
YELO34W
YEL036C
YELO40W
YEL043W

105

MRPL35
ISP2
SWR1
MSN5
YPS7
SBE2
RGA2
EFT2
SAC7
UBA2
SYFI
RPL12B
HKR1
SNX41
RPN9
NPL3
PPZ2
SSN2
UTP6
RPS18A
TOM1
STP1
RPL27B
JIP4
VPS52
VPS72
ITR1
PSP1
GNP1
EUG1
AGE1

RBA50
HLR1

GCN4
EDC3
NPP2
PMP2
GTT3
SNU13
CUP5
SPF1

HYP2
ANP1
UTR2

13-62
898-962, 983-1027, 2498-2547, 3728-3822
969-1013
2358-2407
1356-1416
729-848
1315-1359
-19-35, 2096-2225
-72-23
1256-1275
1788-1822
157-246
1347-1401, 1437-1681, 1847-1941, 2377-2426, 3132-3256

602-646
536-590
288-337
41-79
2830-2873
1382-1426
656-725
3325-3359
1442-1486
573-637
2275-2314
722-766
1691-1735
228-271
714-798
2005-2114
586-630
355-419
-47-37
801-850
33-78
1838-1917
482-626
-69-15
661-702
379-418
196-310
715-759, 770-824
-9-40
440-524
2736-2785
0-84
-22-62, 203-277
1297-1396
1071-1320
1791-1845, 2471-2620



YELO45C
YELO46C
YEL060C
YELO63C
YELO74W
YER020W
YER021W
YER025W
YER033C
YER036C
YER040W
YER043C
YER044C
YER045C
YER047C
YER061C
YER064C
YER068W
YER069W
YER070W
YER075C
YER079W
YER086W
YER087C-B
YER088C
YER102W
YER110C
YER111C
YER1 12W
YER114C
YER1 18C
YER123W
YER125W
YER129W
YER131W
YER132C
YER133W
YER143W
YER144C
YER150W
YER151C
YER154W
YER155C
YER158C
YER165W
YER167W
YER169W
YER177W
YER188C-A

106

GLY1
PRB1
CAN1

GPA2
RPN3
GCD11
ZRG8
ARB1
GLN3
SAH1
ERG28
ACA1
SAP1
CEM1

MOT2
ARG5%2C6
RNR1
PTP3

ILV1
SBH1
DOT6
RPS8B
KAP123
SWI4
LSM4
BOI2
SHO1
YCK3
RSP5
SAK1
RPS26B
PMD1
GLC7
DDI1
UBP5
SPIl
UBP3
OXA1
BEM2

PAB1
BCK2
RPH1
BMH1

379-448
184-283
618-672, 748-797, 1808-1852
1036-1090
173-218
754-788
1012-1061, 1199-1240
1626-1663
101-155, 296-355
1449-1498
605-704
860-904, 1070-1154, 1340-1459
77-126
224-268, 404-448, 759-808
1232-1286
219-263, 354-373
1460-1554
1147-1241
57-101
2425-2504
828-872
443-492
1080-1124
-43-41
669-783, 1879-2028
643-682
354-423
613-662
439-453
1490-1533
368-417
1353-1397, 1418-1452
434-483, 494-613, 1234-1278
2240-2279
209-263
1917-1956, 2712-2756
1601-1655
770-812
1063-1192
216-260
172-251, 362-446, 602-656
811-855, 1026-1075, 1151-1205
1096-1175, 1436-1505
-175-121, 235-279, 1245-1289, 1315-1364
1670-1819
1506-1560
208-287
516-605, 646-735
-275-161, -135-29



YFL021W GATI 1350-1509
YFLO22C FRS2 637-687
YFL024C EPL1 2708-2750
YFL026W STE2 920-956
YFLO31W HAC 626-671
YFL033C RIM15 1426-1500,1984-2060
YFL034C-B MOB2 275-289, 315-359
YFLO36W RPO41 -46-2
YFLO37W TUB2 1487-1536
YFLO39C ACT] 522-721
YFL051C 1720-1839
YFRO17C -55-24
YFRO19W FAB1 1413-1552
YFR029W PTR3 475-521, 1350-1394
YFR031C-A RPL2A 935-1004
YFR044C DUG1 52-111
YFR051C RET2 184-288
YFR052W RPN12 273-317
YFR053C HXK1 453-494
YGL06W PMC1 712-761
YGLO08C PMA1 -67-67, 3123-3227
YGLO09C LEU1 194-263, 1913-2008
YGLO13C PDR1 3012-3071
YGLO14W PUF4 1078-1142
YGL021W ALK1 336-360
YGL023C PIB2 1572-1591
YGL025C PGD1 965-1009
YGL028C SCW11 204-253, 449-498
YGL030W RPL30 242-311
YGL031C RPL24A 69-138
YGL035C MIG1 766-815, 1141-1255
YGL036W 2142-2186
YGL038C OCH1 648-697
YGL049C TIF4632 108-157, 348-485
YGL052W 108-153
YGL053W PRM8 -8-11
YGL055W OLE] 774-953, 1349-1398
YGL056C SDS23 1166-1225
YGL066W SGF73 1618-1697
YGL071W AFT] 259-329
YGLO76C RPL7A 1474-1523
YGL083W SCY1 1988-2032
YGL092W NUP145 286-330
YGL122C NAB2 355-524
YGL123W RPS2 355-564
YGL125W MET13 1287-1331
YGL128C CWC23 361-455, 496-570
YGL129C RSM23 410-469
YGL131C SNT2 4796-4840, 4851-4880
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YGL135W
YGL139W
YGL142C
YGL147C
YGL150C
YGL151W
YGL167C
YGL172W
YGL178W
YGL197W
YGL206C
YGL207W
YGL208W
YGL209W
YGL215W
YGL219C
YGL222C
YGL223C
YGL225W
YGL234W
YGL237C
YGL238W
YGL245W
YGL253W
YGRO02C
YGRO14W
YGRO18C
YGRO19W
YGR020C
YGR023W
YGR027C
YGR032W
YGR034W
YGR040W
YGR054W
YGR056W
YGR060W
YGR070W
YGR077C
YGR080W
YGR085C
YGR086C
YGR089W
YGR097W
YGR1 16W
YGR124W
YGR138C
YGR146C
YGR155W

108

RPL1B
FLC3
GPI10
RPL9A
INO80
NUT1
PMR1
NUP49
MPT5
MDS3
CHC1
SPT16
SIP2
MIG2
CLG1
MDM34
EDC1
COG1
VRG4
ADE5%2C7
HAP2
CSE1
GUS1
HXK2
SWC4
MSB2

UGA1
VMA 7
MTL1
RPS25A
GSC2
RPL26B
KSS1

RSC1
ERG25
ROM1
PEX8
TWiF1
RPL11B
PIL1
NNF2
ASK10
SPT6
ASN2
TPO2

CYS4

-4-50
-74-5
1696-1739
186-235
1317-1358, 3769-3818
761-865, 1131-1185
-154-105
677-713
705-784, 2525-2644, 2675-2819
2425-2474, 2885-2949
1181-1225
1363-1403
-306-262
762-806, 1087-1123
173-412, 1163-1347
464-493, 854-903, 1314-1323
141-270, 346-395
230-309
-55-19, 80-125, 210-314
-48-56, 1322-1376
321-380
871-915, 2029-2070
1460-1549
450-569, 930-1014
864-913, 1224-1268
-79-35, 2046-2365
106-145
613-652
283-324
546-820
80-124
665-709, 2540-2584
169-218
875-911
547-596
1847-1936, 1972-2026
669-743
405-519
1591-1640
51-95
423-497
733-784
988-1087
2663-2727
1614-1651
564-618
-57-132
14-63, 249-338
287-339, 1550-1604



YGR161C
YGR162W
YGR166W
YGR180C
YGR184C
YGR189C
YGR191W
YGR192C
YGR198W
YGR204W
YGR214W
YGR218W
YGR221C
YGR227W
YGR233C
YGR237C
YGR240C
YGR241C
YGR249W
YGR254W
YGR274C
YGR279C
YGR285C
YHLOO1W
YHLO04W
YHLO07C
YHLO15W
YHL021C
YHL023C
YHL027W
YHL028W
YHL029C
YHL030W
YHL033C
YHL050C
YHRO07C
YHRO07C-A
YHRO1OW
YHRO17W
YHR021C
YHR042W
YHR048W
YHR056C
YHR064C
YHR071W
YHR072W
YHR073W
YHR074W
YHR076W

109

RTS3
TIF4631
KRE11
RNR4
UBR1
CRH1
HIP1
TDH3
YPP1
ADE3
RPSOA
CRM1
TOS2
DIE2
PHO81

PFK1
YAP1802
MGA1
ENO1
TAF1
SCW4
ZUo1
RPL14B
MRP4
STE20
RPS20
FMP12
RMD ii
RIM1O
WSC4
OCA5
ECM29
RPL8A

ERG11

RPL27A
ISC83

RPS27B
NCP1

RSC30
SSZ1
PCL5
ERG7
OSH3
QNS1
PTC7

539-663
175-219, 530-579
822-864
-209-157, 10-53, 719-768
1435-1489
1043-1242
-141-107
218-587
676-712
547-588
850-919
188-237
1380-1414, 1620-1694
1141-1280
929-972
2144-2223
-27-107, 428-482
1390-1484
209-252, 820-864, 920-964, 1080-1129
-18-41, 787-876
1154-1196
215-414
445-484
599-608
507-551
-74-30, 1456-1510
-18-256
1020-1074
545-589, 761-804
893-1032
666-885
208-257, 474-522
1112-1164
195-214
1696-1745, 1771-1800
1612-1666
-112-33
968-1008
1051-1088
689-738
1314-1443
713-722
1168-1217
172-236
-56-7
252-300
1310-1354, 1800-1844
1870-1906
1771-1805



YHR079C
YHR082C
YHR084W
YHR086W
YHR092C
YHR097C
YHRO98C
YHR099W
YHR102W
YHR108W
YHR1 15C
YHR127W
YHR135C
YHR141C
YHR143W
YHR149C
YHR152W
YHR158C
YHR161C
YHR165C
YHR174W
YHR175W
YHR179W
YHR182W
YHR188C
YHR203C
YHR205W
YHR206W
YHR208W
YHR21 1W
YHR214W-A
YIL018W
YILO34C
YILO38C
YIL041W
YIL051C
YIL052C
YIL053W
YIL055C
YIL056W
YIL069C
YIL075C
YILO78W
YIL083C
YIL088C
YIL091C
YIL095W
YIL101C
YIL105C

IRE1
KSP1
STE12
NAM8
HXT4

SFB3
TRA1
KIC1
GGA2
DMA11

YCK1
RPL42B
DSE2
SKG6
SPO12
KEL1
YAP1801
PRP8
ENO2
CTR2
OYE2

GPI16
RPS4B
SCH9
SKN7
BAT]
FLO5

RPL2B
CAP2
NOT3
GVP36
MMF1
RPL34B
RHR2

VHR1
RPS24B
RPN2
THS1

AVT7

PRK1
XBP1
SLM1

-94-40
1251-1294, 1461-1505, 1896-1945, 2256-2310, 2331-2385
1338-1382, 1503-1542, 1765-1807
755-799
578-612
842-886
577-631
5411-5454
2479-2528
1018-1062, 1288-1337
-13-51
789-834
1286-1565
401-445
509-628
1580-1669
54-118
1790-1834, 1893-1939
1631-1705
4783-4797
386-440, 496-545
-192-145
21-125
2234-2273, 2309-2353
1271-1370
1054-1143
417-501
1388-1452, 1698-1741, 1798-1922
5-139
925-1009, 1890-1954, 2040-2159, 2215-2334
-172-38, 58-152
1170-1210
430-474
1042-1106, 1272-1316
320-374
-8-56, 342-406
-10-24
12-131
743-787
695-744, 1020-1063, 1145-1229, 1781-1824
856-925
936-985
1072-1110
18-37
824-918
1342-1379
1462-1521
1679-1748
425-454
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YIL109C SEC24 984-1028
YIL119C RPI1 940-1019
YIL122W POG1 778-807, 1093-1127
YIL123W SIM1 271-630
YIL128W MET18 220-258
YIL129C TA03 855-898
YIL130W ASG1 2437-2481, 2527-2576
YIL135C VHS2 650-699, 1205-1304
YIL137C TMA 108 808-857, 873-952
YIL140W AXL2 1418-1467
YIL142W CCT2 582-626, 824-866
YIL146C ECM37 1627-1676
YIL148W RPL40A 462-511, 627-636, 667-711, 762-771, 867-904
YIL154C IMP2' 875-912
YIL162W SUC2 858-902
YIL169C 577-876, 2147-2241
YIR006C PAN1 579-673, 1304-1393
YIROlOW DSN1 592-631
YIR018C-A 28-67
YIR019C MUC1 720-1779, 1825-2019, 2335-2419, 2430-2489, 2690-2789
YIR023W DAL81 2543-2597
YIR033W MGA2 1193-1332
YJL005W CYR1 425-466, 794-841, 3822-3859
YJL016W -115-81, -1-44, 188-229
YJL020C BBC1 2354-2603, 2651-2738
YJL029C VPS53 895-943
YJL041W NSP1 139-188, 199-288
YJL042W MHP1 959-1008
YJL050W MTR4 2099-2135
YJL052W TDH1 286-590
YJL054W TIM54 542-586
YJL060W BNA3 1009-1018
YJL062W LAS21 760-796, 2000-2044
YJL073W JEM1 1531-1575
YJL076W NET] 1051-1095
YJL078C PRY3 718-782, 2288-2367
YJL079C PRY1 361-410
YJL080C SCP160 -117-157, 223-412
YJL083W TAX4 1164-1213, 1224-1263
YJL084C ALY2 756-815
YJL090C DPB11 889-933, 989-1033
YJL091C GWT1 1825-1889
YJL095W BCK1 1417-1476
YJL097W PHS1 1-90
YJL109C UTP1O 339-443
YJL11OC GZF3 1012-1061
YJL129C TRK1 4466-4530
YJL130C URA2 -72-45
YJL136C RPS21B 496-540
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YJL138C TIF2 534-623
YJL139C YUR1 1687-1776
YJL141C YAK1 154-341, 1274-1338, 1384-1448
YJL158C CIS3 77-381
YJL159W HSP150 153-292, 318-567, 598-677, 713-877
YJL168C SET2 2093-2132
YJL172W CPS1 175-357, 530-572
YJL174W KRE9 444-508, 829-898
YJL187C SWE1 1051-1110
JL189W RPL39 564-613

YJL201W ECM25 1294-1348
YJR003C -307-278
YJR004C SAG1 1296-1430
YJR009C TDH2 210-554
YJR016C IL V3 1787-1832
YJR041C URB2 1856-1960
YJR044C VPS55 418-467
YJR045C SSC1 486-527, 919-963
YJR047C ANB1 -12-17
YJR054W 1217-1256
JR059W PTK2 1341-1377, 1498-1543, 2329-2338
YJR064W CCT5 -318-264
YJR066W TOR1 2754-2808
YJR091C JSN1 760-839
YJR094W-A RPL43B 550-599
JR106W ECM27 416-454

YJR107W -196-155
YJR117W STE24 943-1007
YJR121W A TP2 -88-44, -8-66, 1072-1116
JR123W RPS5 322-451

YJR127C RSF2 1242-1291, 1637-1686, 1862-1966, 2007-2046
YJR143C PMT4 1020-1064
JR145C RPS4A 277-318, 869-913

YJR147W HMS2 851-910
YJR151C DAN4 452-713
YKLO14C URB1 1272-1331, 1547-1621
YKL020C SPT23 1143-1230
YKL025C PAN3 397-556
YKL029C MAE1 1436-1515
YKL032C IXR1 907-1136
YKL035W UGP1 -1-43, 1007-1068, 1454-1521
YKLO43W PHD1 236-340
YKL044W 231-330
YKL051W SFK1 1142-1191
YKL054C DEF1 1203-1447, 1948-2002
YKL055C OAR1 -299-255
YKL060C FBA1 -22-59, 100-189
YKL062W MSN4 1521-1570
YKL067W YNK1 -17-21
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YKL068W
YKL081W
YKL084W
YKL096W-A
YKL1O1W
YKL103C
YKL109W
YKL121W
YKL125W
YKL129C
YKL152C
YKL159C
YKL164C
YKL175W
YKL180W
YKL182W
YKL183W
YKL185W
YKL193C
YKL204W
YKL216W
YKL217W
YKRO08W
YKRO13W
YKRO16W
YKR021W
YKR042W
YKR051W
YKR052C
YKR059W
YKR060W
YKR075C
YKR077W
YKR090W
YKR093W
YKR094C
YKR098C
YKR102W
YKR103W,YKR104W
YLLO1OC
YLL013C
YLL017W,YLL016W
YLL019C
YLL021W
YLL024C
YLL043W
YLL045C
YLL048C
YLR006C

NUP100
TEF4
HOT13
CWP2
HSL1
LAP4
HAP4

RRN3
MYO3
GPM1
RCN1
PIR1
ZRT3
RPL1 7A
FAS1
LOT5
ASH1
SDS22
EAP1
URA1

JEN1
RSC4
PRY2
FMP13
AL17
UTH1

MRS4
TIF1
UTP30

PXL1
PTR2
RPL40B
UBP11
FLO10
NT1
PSRI
PUF3
SDC25
KNS1
SPA2
SSA2
FPS1
RPL8B
YBT1
SSK1

2558-2612
1166-1210
263-292
-16-238
1689-1843
1122-1171
240-285, 630-679, 695-729
902-938, 1079-1115
351-387
3110-3147
580-714
911-920
387-736
1003-1037
657-751
285-334, 1180-1364
1500-1544
287-451
702-739
1341-1440
-27-17
-191-157
1539-1582
322-601
446-500, 981-1025
1951-2000
314-378, 634-738
277-316
453-489
540-629
-326-282
853-877
682-786
2132-2161
1432-1481
392-471
665-674
1452-1506, 1582-1801, 2147-2191
997-1041
40-54, 70-84, 470-514
886-940,1111-1385,1411-1545
3635-3674
267-305, 756-840
1982-2011, 2162-2211
339-383, 1249-1308
83-172
61-105, 196-215, 474-515, 736-780
577-621
726-768, 1516-1559, 1780-1819
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YLRO17W
YLRO19W
YLR023C
YLR024C
YLR026C
YLR029C
YLR039C
YLR040C
YLR042C
YLR044C
YLR048W
YLR050C
YLR052W
YLR056W
YLR057W
YLR058C
YLR060W
YLR064W
YLR079W
YLR089C
YLR091W
YLR095C
YLR096W
YLR106C
YLR110C
YLR1 16W
YLR120C
YLR121C
YLR131C
YLR134W
YLR139C
YLR153C
YLR167W
YLR176C
YLR177W
YLR180W
YLR187W
YLR194C
YLR202C
YLR203C
YLR206W
YLR212C
YLR228C
YLR249W
YLR256W
YLR257W
YLR270W
YLR274W
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MEUI
PSR2
IZH3
UBR2
SED5
RPL15A
RIC1

PDC1
RPSOB

IES3
ERG3

SHM2
FRS1

SIC1
ALT1

IOC2
KIN2
MDN1
CCW12
MSL5
YPs1
YPS3
ACE2
PDC5
SLSI
ACS2
RPS31
RFX1

SAM]
SKG3

MSS51
EAT2
TUB4
ECM22
YEF3
HAP1

DCS1
CDC46

43-81
20-105
359-408
5135-5154
-56-10, 601-660
499-573
-297-253
204-498
158-202
383-497, 683-777, 1178-1232
576-630, 671-730
66-115
115-159
503-602, 678-972
-325-281
1456-1545
460-519
116-165
113-153
63-147
119-163
2109-2153, 2312-2366, 2387-2441
1988-2028
8386-8465
-44-40
1118-1172
1514-1563, 1709-1758
1464-1523, 1599-1693
1409-1517
380-419
447-551, 587-636, 792-841, 967-1051, 1252-1316
1640-1694
60-109
401-445
410-464
15-59, 1060-1209
2908-3082
391-660
333-342
-33-6
437-481, 522-571
1018-1062
759-818, 1379-1458
1977-2056
1107-1356, 1562-1716
455-498
-330-271
433-471



YLR278C
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YLR285C-A
YLR286C
YLR290C
YLR293C
YLR294C
YLR304C
YLR305C
YLR310C
YLR327C
YLR328W
YLR332W
YLR335W
YLR337C
YLR342W
YLR347C
YLR350W
YLR354C
YLR355C
YLR357W
YLR359W
YLR370C
YLR371W
YLR373C
YLR375W
YLR378C
YLR389C
YLR390W-A
YLR403W
YLR413W
YLR414C
YLR420W
YLR436C

YLR438W
YLR439W
YLR441C
YLR446W
YLR450W
YLR452C
YLR454W
YLR455W
YLR459W
YLR463C
YML006C
YML015C
YML016C
YML026C

CTS1

GSP1

ACO1
STT4

CDC25
TMA10
NMA1
MID2
NUP2
VRP1
FKS1
KAP95
ORM2
TAL1
ILV5
RSC2
ADE13
ARC18
ROM2
VID22
STP3
SEC61
STE23
CCW14
SFP1

URA4
ECM30

CAR2
MRPL4
RPS1A

HMG2
SST2
FMP27

GAB]

GIS4
TAF11

PPZ1
RPS18B

-55-16, 155-197, 1020-1059, 1190-1234, 3105-3149, 3170-3249, 3400-
3444, 3655-3694
-60-16
953-1147
-315-269
572-621
82-131
1400-1449
2170-2218
86-165, 1366-1407
-29-10
157-226
694-793
969-1093, 1559-1633
875-1074
-208-164, 5482-5711
499-543
57-101
119-179, 556-598
1195-1264
1639-1680
1200-1238, 1385-1444
282-323
960-1074
832-876, 947-1006, 1217-1266
817-861
-196-22, 799-958
37-96, 1747-1791
274-578
754-978
283-372, 1273-1417
-43-2
169-218, 901-938

145-189, 865-914, 1275-1319, 1415-1489, 1505-1549, 1996-2044,
3190-3232
-9-40, 191-228
66-185, 211-265
397-486
879-917
1502-1551
1555-1669
2949-2985
1025-1074
877-926
940-981
277-371
819-853
113-437
545-674



YML034C-A
YML035C
YML053C
YML054C
YML056C
YML058W
YML059C
YML073C
YML081W
YML091C
YML092C
YML1 00W
YML103C
YML111W
YML120C
YML123C
YML129C
YMR002W
YMR006C
YMR008C
YMR009W
YMR012W
YMR016C
YMR022W
YMR037C
YMR038C
YMR043W
YMR047C
YMR054W
YMR067C
YMR070W
YMR079W
YMR081C
YMR086W
YMR093W
YMR102C
YMR104C
YMR108W
YMR1 16C
YMR120C
YMR122W-A
YMR124W
YMR129W
YMR136W
YMR140W
YMR142C
YMR145C
YMR146C
YMR162C

AMD1

CYB2
IMD4
SML1
NTE1

RPL6A

RPM2
PRE8
TSL1
NUP188
BUL2
NDI1

PHO84
COX14
MIC1 7

PLB2
PLB1
ADI1

CLU1
SOK2
QRI8
MSN2
CCs1
MCM1
NUP116
STV1
UBX4
MOT3
SEC14
ISF1

UTP15

YPK2
ILV2
ASC1
ADE17

POM152
GAT2

SIP5
RPL13B
NDE1
TIF34
DNF3

-83-39
1353-1397
221-315
1847-1890
139-238
429-473
93-142, 1168-1197, 1738-1777
776-820
1004-1053, 1179-1233, 1264-1318, 1469-1513, 1979-2028
192-311
699-763
564-613, 3009-3083
4-58
11-54
414-458
1710-1761
147-189
110-149
1882-2011
510-564, 1130-1174, 2021-2059
456-525
604-673
1920-2014
207-251
1620-1699
153-202
490-869
172-211, 3202-3244
1117-1156
954-1003
807-921, 987-1076
778-827
573-617, 678-722, 738-782, 852-889, 973-1022
-34-10, 2600-2645
133-177
1176-1220, 1661-1704
412-451
-149-100, 771-890
931-1020
-16-93, 1174-1238
-15-259
934-1078,1119-1173
961-1006
296-405, 446-500, 931-980
979-1021
547-586
1510-1554
288-328, 364-413
868-904
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YMR164C
YMR173W-A
YMR181C
YMR182C
YMR186W
YMR189W
YMR192W
YMR199W
YMR202W
YMR203W
YMR205C
YMR215W
YMR217W
YMR221C
YMR226C
YMR230W
YMR241W
YMR242C
YMR246W
YMR250W
YMR266W
YMR273C
YMR275C
YMR276W
YMR289W
YMR290C
YMR291W
YMR296C
YMR303C
YMR305C
YMR307W
YMR309C
YMR310C
YMR312W
YMR314W
YMR316W
YMR317W
YNLO09W
YNLO16W
YNL020C
YNL025C
YNL027W
YNL042W
YNL044W
YNL045W
YNL047C
YNL054W
YNL055C
YNL066W

MSSJ11

RGM1
HSC82
GCV2
GYL1
CLN1
ERG2
TOM40
PFK2
GAS3
GUA1
FMP42
TMA29
RPS1OB
IHM2
RPL20A
FAA4
GAD1
RSN1
ZDS1
BUL1
DSK2
ABZ2
HAS1

LCB1
ADH2
SCW1 0
GAS]
NIP]

ELP6
PRE5
DIA1

IDP3
PUB1
ARK1
SSN8
CRZ1
BOP3
YP3

SLM2
VAC7
POR1
SUN4

1352-1403, 1729-1773
169-178
-27-42, 58-107, 263-312
405-449, 475-564, 585-664
16-125, 1101-1139, 1366-1415,1701-1740
1787-1831
364-403
1193-1247, 1498-1552
2-56
-8-156
156-365, 401-535
1082-1128, 1152-1196, 1382-1431, 1507-1547
1033-1112
1360-1405
225-269
631-730
-30-14
800-989
-56-7, 2144-2188
1362-1396
966-1020, 1046-1105, 2245-2294
2184-2278, 2724-2763
2166-2205
750-794, 860-903, 935-1009
694-730
1352-1406
1409-1458, 1474-1493
361-440
313-362
159-468
929-1073, 1519-1673
1525-1669, 1715-1809
13-57, 333-377
85-159
436-472
932-968
446-460
1812-1856
0-59, 940-1034
991-1035, 1486-1520
643-682
744-806
-302-258, 683-767
216-259
115-159
347-386
382-436
-33-21, 47-91, 207-291
278-322
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YNL067W RPL9B -3-11
YNL068C FKH2 890-964, 1730-1749
YNL071W LAT1 810-904
YNL074C MLF3 800-899
YNL085W MKT1 -227-188, 1638-1682, 2283-2332
YNL091W NST1 2993-3042, 3608-3652
YNL094W APP1 120-164, 611-654
YNL096C RPS7B 10-59, 835-924
YNL1O1W AVT4 -90-29
YNL103W MET4 930-974, 1220-1284
YNL106C INP52 2998-3041
YNL118C DCP2 979-1023
YNL123W NMA111 2920-2956
YNL124W NAF1 1058-1167, 1328-1437
YNL137C NAM9 1394-1438
YNL138W SR V2 989-1038
YNL142W MEP2 1349-1373
YNL143C 138-177
YNL152W 852-906, 962-991, 1102-1146
YNL153C GIM3 432-481
YNL154C YCK2 1180-1274
YNL158W PGA1 328-375
YNL160W YGP1 225-319, 405-509, 1020-1079
YNL161W CBK1 628-747
YNL167C SKO1 1462-1536
YNL172W APC1 656-692
YNL176C -79-40, 301-465, 521-685, 731-774, 1016-1065, 1271-1320
YNL180C RHO5 897-941
YNL183C NPR1 -89-45, 806-860
YNL186W UBP10 1459-1508
YNL190W -94-45, 116-565
YNL192W CHS1 121-220, 391-460
YNL197C WHI3 -115-73, 713-977
YNL209W SSB2 1210-1359, 1495-1644
YNL219C ALG9 733-777
YNL230C ELA1 936-980
YNL238W KEX2 -22-22
YNL239W IAP3 107-146
YNL241C ZWF1 -137-68
YNL255C GIS2 471-515
YNL271C BNI1 3815-3869
YNL278W CAF120 2766-2805, 2971-3020, 3116-3165
YNL281W HCH1 535-579
YNL283C WSC2 453-677
YNL287W SEC21 424-538
YNL288W CAF40 635-679
YNL297C MON2 1232-1256, 3422-3459
YNL298W CLA4 845-889, 990-1134, 1145-1229, 1240-1424
YNL300W -6-228
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YNL301C RPL18B -12-37
YNL307C MCK1 1275-1319
YNL309W STB1 740-784
YNL311C SKP2 1512-1553
YNL322C KRE1 564-663
YNL327W EGT2 1204-1263, 1294-1593
YNL329C PEX6 386-429
YNRO06W VPS27 1377-1539
YNRO09W NRM1 638-687
YNRO1OW CSE2 -216-182
YNRO13C PHO91 1439-1488, 1734-1788
YNRO14W 181-195, 266-310
YNRO16C ACC -317-268, 2986-3032
YNR021W 743-787
YNR026C SEC12 1053-1107
YNR030W ALG12 985-1028, 1420-1534
YNR031C SSK2 513-527
YNR033W ABZ1 -335-291
YNR035C ARC35 11-55
YNR038W DBP6 1249-1292, 1889-1926
YNR044W AGA1 570-1014, 1825-1919, 1960-2024
YNR047W 532-576, 1327-1411
YNR052C POP2 1027-1101
YNR067C DSE4 829-888, 974-1058
YNR075W COS1o 277-321, 702-721, 732-746
YOL004W SIN3 176-220, 1086-1206, 1401-1439
YOL007C CSI2 225-269
YOLO11W PLB3 2205-2249
YOL019W 1336-1500, 1596-1645
YOL02OW TA T2 82-161
YOLO3OW GAS5 1237-1311
YOL036W 1792-1830
YOLO38W PRE6 1096-1140
YOLO40C RPS15 335-384
YOLO51W GAL11 430-509, 825-959, 1130-1234
YOLO60C MAM3 1503-1642
YOLO72W THP1 348-397
YOL081W IRA2 1270-1559
YOLO86C ADH1 -52-167
YOL087C 1062-1120, 2211-2275
YOL100W PKH2 2870-2992
YOL104C NDJ1 438-474
YOL105C WSC3 456-530
YOL126C MDH2 972-1016
YOL129W VPS68 -18-31
YOL13OW ALR1 7-41
YOL135C MED7 321-365
YOL136C PFK27 948-995
YOL155C HPF1 329-373, 2339-2378, 2409-2443
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YOR002W ALG6 964-1098, 1114-1233
YOR008C SLG1 390-499
YOR014W RTS1 240-479
YOR018W ROD1 1781-1817
YOR023C AHC1 1104-1208
YOR047C STD1 69-113, 174-233
YOR052C 465-524
YOR063W RPL3 518-562
YOR066W 1376-1565
YOR081C TGL5 1463-1512, 1633-1667, 1738-1777
YOR085W OST3 384-718
YOR086C TCB1 841-881
YOR098C NUP1 1956-2101, 2372-2421
YOR107W RGS2 -200-186, 910-954
YOR109W INP53 2940-2989
YOR113W AZF1 1073-1117, 2498-2587
YOR118W 2301-2344
YOR127W RGA1 1385-1429
YOR132W VPS17 254-298
YOR133W EFT1 850-894, 1710-1764, 2095-2224
YOR134W BAG7 943-1008
YOR138C R UP1 1587-1636
YOR14OW SFL1 1395-1479, 1945-1989, 2595-2699
YOR149C SMP3 369-413
YOR153W PDR5 656-700, 1821-1867
YOR156C NFI1 1554-1588
YOR178C GAC1 1578-1587
YOR181W LAS1 7 804-903, 1224-1408, 1524-1623
YOR188W MSB1 2757-2806
YOR197W MCA1 626-675
YOR198C BFR1 -123-29, 167-226
YOR204W DED1 424-468, 2419-2455
YOR207C RET1 2041-2111
YOR208W PTP2 1423-1467
YOR219C STE13 407-476
YOR227W 745-769, 1400-1443
YOR248W -49-170, 351-480
YOR254C SEC63 243-285
YOR26OW GCD1 825-871
YOR267C HRK1 95-529
YOR270C VPH1 1088-1152
YOR271C FSF1 482-526
YOR275C RIM20 869-923
YOR290C SNF2 1062-1111
YOR296W 199-240
YOR303W CPA] -50-59
YOR310C NOP58 60-114
YOR312C RPL20B 848-945
YOR315W SFG1 1174-1263
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YOR321W PMT3 1075-1117
YOR322C LDB19 2261-2305
YOR329C SCD5 2126-2415
YOR333C 456-500
YOR343C 11-55
YOR344C TYE7 1063-1107
YOR347C PYK2 2178-2217
YOR353C SOG2 612-653
YOR354C MSC6 1345-1384
YOR355W GDS1 807-856, 867-916, 987-1101, 1247-1291
YOR359W VTS1 950-1173
YOR363C PIP2 2490-2529
YOR370C MRS6 899-983
YOR372C NDD1 1472-1526
YOR373W NUD1 2095-2133
YOR385W 640-794
YOR394C-A -115-31, 115-164
YPLO11C TAF3 643-687
YPLO14W 642-706, 837-1031
YPLO16W S1] 505-569, 615-699
YPL026C SKS1 -27-8, 1098-1182
YPLO32C SVL3 -91-37, 444-493, 1069-1123, 1244-1318, 1914-1968, 2009-2078, 2109-

2208
YPLO36W PM 2996-3035, 3056-3100
YPLO37C EGD1 -19-30
YPLO49C DIG1 1292-1466
YPL054W LEE1 458-494
YPL057C SUR1 -38-1, 1442-1496
YPL063W TIM50 -64-15, 1546-1590
YPL066W 561-615
YPLO70W MUK1 354-398
YPLO75W GCR1 677-751, 2017-2066
YPL076W GPI2 379-408
YPL079W RPL21B 826-870
YPL085W SEC16 2145-2224, 2830-2893, 6400-6454
YPL089C RLM1 1552-1766
YPL106C SSE1 1240-1374
YPL115C BEM3 -94-46, 651-925, 976-1050, 1231-1390
YPL126W NAN1 1189-1285
YPL128C TBF1 1059-1103
YPL131W RPL5 -30-244
YPL135W ISU1 593-637
YPL141C 1569-1618
YPL149W ATG5 381-421
YPL154C PEP4 269-340
YPL163C SVS1 163-337
YPL164C MLH3 -330-252
YPL166W ATG29 1124-1166
YPL179W PPQ1 375-589
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YPL1 84C
YPL187W
YPL190C
YPL198W
YPL202C
YPL204W
YPL210C
YPL220W
YPL226W
YPL231W
YPL240C
YPL256C
YPL259C
YPL262W
YPRO13C
YPR022C
YPR024W
YPR032W
YPR035W
YPR036W
YPR036W-A
YPR040W
YPR042C
YPR065W
YPR072W
YPR080W
YPR083W
YPR089W
YPR095C
YPR102C
YPR106W
YPR117W
YPR119W
YPR122W
YPR129W
YPR132W
YPR144C
YPR149W
YPR150W
YPR154W
YPR161C
YPR164W
YPR171W
YPR181C
YPR183W
YPR184W

MRN1
MF(ALPHA) 1
NAB3
RPL 7B
AFT2
HRR25
SRP72
RPL1A
NEW1
FAS2
HSP82
CLN2
APM1
FUM1

IME1
SRO7
GLN1
VMA13

TIP41
PUF2
ROX1
NOT5
TEF1
MDM36

Syri
RPL11A
ISR1

CLB2
AXL1
SCD6
RPS23B
NOC4
NCE102

PIN3
SGV1
MMS1
BSP1
SEC23
DPM1
GDB1

173 binding sites map to Ty elements
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-230-206, -55-11
579-623
1132-1186
1374-1418
1006-1052
1325-1374, 1385-1464
571-615, 901-970
-3-41
439-530, 569-668
685-784
1818-1862
1076-1135
747-796
483-527
342-371, 422-466
406-485, 506-560
289-339, 377-433
185-227, 1178-1222
1203-1280
1245-1289
306-355
171-230
1240-1284, 1520-1569
611-685, 946-1050
971-1015, 1221-1255
286-335, 1041-1115
1431-1445
1212-1256
667-711
423-497
641-678
-92-43
1582-1611
385-429, 460-504, 530-539
266-350
858-916
1132-1161
-47-4
-294-250
377-626
1806-1825
1547-1556
898-952, 1204-1241
1370-1514
726-780
-153-113



Chapter 3: High resolution identification of in vivo binding sites
reveals post-transcriptional coordination by Khd1

ABSTRACT

RNA-binding proteins can interact with mRNAs encoding functionally related

proteins to coordinate their expression. Our analysis of the RNA-binding protein Khdl in

Saccharomyces cerevisiae using cross-linking immunoprecipitation (CLIP) identified a

post-transcriptional network that coordinates cellular responses to environmental stress.

We previously showed that Khdl binds FLO11 and ASH1 mRNAs to regulate filamentous

growth, which cells enact under conditions of nitrogen starvation. Here we show that

Khdl binds additional transcripts that encode regulators of FLO11 and filamentation.

Khdl also represses retrotransposition of Tyl elements, another cellular response to low

nitrogen conditions, by repressing translation of Tyl mRNA. Through interactions with its

target transcripts, Khdl coordinates two responses to environmental stress.

INTRODUCTION

Many cellular processes require coordinated expression of multiple genes. The

organization of related genes into polycistronic operons permits translation of multiple

genes from a single mRNA to coordinate gene expression in bacteria. Transcriptional

operons are rare in eukaryotic organisms (BLUMENTHAL 1998), but growing evidence

points to the widespread use of post-transcriptional regulons in eukaryotic systems (KEENE

and LAGER 2005). RNA-binding proteins coordinately affect the localization, stability, and

translation of mRNAs encoding functionally related proteins by recognizing specific

sequences or structures in target transcripts (KEENE 2007). Genes subject to coordinated

post-transcriptional regulation are likely to share related functions (KEENE 2007; KEENE
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and LAGER 2005; KEENE and TENENBAUM 2002). RNA-binding proteins can change their

binding patterns upon cellular differentiation, suggesting they play a role in altering

cellular processes (TENENBAUM et aL. 2000).

Under conditions of nitrogen starvation, diploid Saccharomyces cerevisiae cells

undergo a morphogenetic transition to filamentous growth that requires the coordinated

alteration of multiple cellular processes (GAGIANO et a]. 2002). In rich nitrogen, diploid

cells have an elliptical morphology and undergo bipolar divisions. The filamentous

growth program employs a modified cell cycle to generate elongated cells that undergo

unipolar divisions (GIMENO et a]. 1992; KRON et a]. 1994). This change initiates with the

first cell division (AHN et a]. 1999), and leads to the directional outgrowth of filaments

from the colony, which is thought of as a foraging mechanism (GIMENO et a]. 1992).

Filamentous growth requires expression of FLO]1 (LAMBRECHTS et al. 1996; Lo

and DRANGINIS 1998), which encodes a cell surface protein (Lo and DRANGINIS 1996).

Multiple signaling pathways converge on the FLO1] promoter, which at 3.5kb is unusually

large for a yeast promoter, to control transcription (Figure 1). A mitogen-activated

protein (MAP) kinase pathway and a protein kinase A (PKA) pathway each regulate

transcription through multiple regions of the FLO11 promoter (RuPP et aL 1999).

Activated Kssi, the filamentation MAP kinase, phosphorylates the transcription factors

Tec and Ste12, which bind in tandem to the FLO11 promoter to activate transcription

(MADHANi and FINK 1997). PKA signaling activates the transcription factor Flo8, which

promotes FLO11 transcription (PAN and HEITMAN 1999). In a parallel transcription factor

cascade, Sok2 regulates Phdl and Ashl to activate FLO]1 transcription (PAN et a. 2000).

In addition to activating FLO]1, regulators of filamentous growth control other aspects of

the developmental program (Figure 1). The filamentation MAP kinase pathway
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cell wall

KHD1PUF5 - MAP enin - cell elongation

SOK2 jA unipolar
TOK2 PKAI2 budding

TEC1 STE12

ASH1 PHD1 FLO8

FLO11
Figure 1.-Coordinate regulation of processes required for filamentous growth. Genetic

interactions represented in black control FLO11 transcription. Genetic interactions in red
coordinate FLO11 transcription with other processes required for filamentous growth. Khd1 binds
mRNAs shown in blue.

alters the cell cycle to control cell elongation (AHN et aL. 1999), and PKA signaling

promotes the unipolar budding pattern (PAN and HEITMAN 1999). The RNA-binding

protein Puf5 inhibits the filamentation MAP kinase pathway by repressing translation of

STE7 and TEC1 mRNAs (PRINZ et aL. 2006), and also binds PHD1 mRNA (GERBER et aL.

2004), although the effect of this interaction is not known. Puf5 also plays a role in

maintaining cell wall structure (KAEBERLEIN and GUARENTE 2002), which undergoes

changes during the transition to filamentous growth (CID et aL. 1995). These networks

coordinate the cellular processes that contribute to filamentous growth.

In addition to coordinating components of filamentous growth, the filamentation

MAP kinase pathway coordinates the morphogenetic switch with retrotransposition. In

diploid cells, Tyl retrotransposition, like filamentation, occurs only in low nitrogen. Both

Tec and Ste12, the downstream transcription factors of the filamentation MAP kinase

pathway, are required for Tyl transcription (LALOUX et aL 1990; MORILLON et aL. 2000).

Filamentation allows cells to search out more habitable environments, and transposition
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has the potential to generate mutations that provide advantages in the existing conditions

(MORILLON et al. 2000). Through this regulation, the filamentation MAP kinase pathway

transcriptionally enables two cellular responses to environmental stress. However, post-

transcriptional regulation enables the rapid switch to filamentous growth under

conditions of nitrogen starvation (Chapter 2) and a similar mechanism may regulate

retrotransposition as well.

We report post-transcriptional coordination of retrotransposition and

filamentation by the RNA-binding protein Khdl. Identification of the RNA targets of

Khdl revealed its role in regulating asymmetric expression of FLO11 during filamentous

growth (Chapter 2). Khdl binds ASH] and FLO]] mRNAs to regulate FLO]] expression,

but also binds additional transcripts, a number of which affect processes involved in

filamentous growth. These mRNA targets relate to the previously described role for Khdl

in regulating filamentous growth. We expand this role to include repression of

retrotransposition. Khdl represses retrotransposition by repressing translation of Tyl

RNA, coordinating filamentation and retrotransposition through a common post-

transcriptional regulator. Interactions between Khdl and its RNA targets, including

mRNAs encoding other post-transcriptional regulators, coordinate related processes

within the cell.

MATERIALS AND METHODS

Yeast strains and media

Yeast strains used in this study (Table 1) are derived from Z I278b 10560-2B.

Standard yeast media, yeast transformations and genetic manipulations were performed as

previously described (GUTHRIE and FINK 1991). Yeast strains carrying gene deletions were
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constructed by PCR amplification of kanamycin-resistance gene cassettes from the yeast

deletion library (WINZELER et a]. 1999) and transformation into I1278b.

Plasmid construction

The Khdl overexpression construct was made by amplifying the gene using PCR,

with oligonucleotides that added restriction sites (Not[ at the 5' end, XhoIat the 3' end)

to the final product. Amplified DNA was digested using NotIand XhoI and cloned into

p415TEF (MUMBERG et aL. 1995).

Western Blot Analysis

Protein was prepared using TCA precipitation from 3 mL of strains carrying either

PTEFKHD1 construct or the empty vector grown to OD60 of .9-1.1 and resuspended in

150 mL SDS loading buffer. 10 mL were run on 10% SDS-polyacrylamide gels and

transferred to nitrocellulose filter paper. Blotting was performed against TyA with rabbit

anti-VLP antiserum generously provided by David Garfinkel and HRP-conjugated donkey

anti-rabbit secondary antibody (Amersham NA934V), and against tubulin using rat anti-

tubulin (Accurate Chemicals MCA77G) and HRP-conjugated goat anti-rat antibody

(Jackson ImmunoResearch 112-035-062). Blots were detected using SuperSignal West

Femto Substrate (Thermo Scientific 34095).

Northern Blot Analysis

Tyl mRNA was detected as previously described (DRINNENBERG et aL. 2009).

Frequency of Tylhis3-AI mobility
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Tyl his3-AI mobility was measured as previously described (NYSWANER et a]. 2008).

In brief, -103 cells carrying PTErKHD1 or empty vector were inoculated into 1 mL of SC -

Leu -Ura, grown to saturation, and spread on both SC -Leu -Ura and SC - Leu -Ura -His

plates. The frequency of Tyl his3-AI mobility was calculated by dividing the average

number of Leu+ His+ Ura+ cells per milliliter by the average number of Leu+ Ura+ cells per

milliliter. To adjust for the slow growth caused by Khd1 overexpression, an equal number

of cells were inoculated into 10 mL of media and aliquots from the 1 mL culture were

plated when the 10 mL culture had grown to an OD 600 of 1.

Table 1. Yeast strains and plasmids used in this study

Strain Genotype Source

JW1552 MATa his3::natNT2 ura3-52 leu2::hisG T yl his 3-AI This study

JW1571 MATa his3::natNT2 ura3-52 leu2::hisG Tyl his3-AI khdl::kanMX4 This study

Plasmid Insert Source

pBJC573 Tyl his3-AId1 Nyswaner et al. 2008

p415TEF Mumberg et al. 1995

p415TEF-KHD1 KHD1 This study

RESULTS

Khdl binds related RNA targets in vivo

We identified the transcriptome-wide targets of Khdl using the cross-linking

immunoprecipitation (CLIP) method (Chapter 2) to provide comprehensive

understanding of its role in regulating cellular activities. Khd1 binds 1,114 unique

mRNAs, as well as mRNAs transcribed from approximately 30 homologous Tyl and Ty2

loci. Khdl binds ten mRNAs encoded in the 11287b genome that are not present in the

S288c reference genome. The Z1287b strain was used because, unlike S288c, it is

competent for filamentous growth. Khd1 also binds 47 noncoding RNAs, including rRNA,

tRNAs, snRNAs, snoRNAs, and telomerase RNA. Khdl binds a subset of tRNAs: tK(CUU),
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tR(UCU), tR(CCU), tT(UGU), tH(GUG), tL(CAA), and tW(CCA). Khd1 binds only a

single version of tH(GUG) (1/8 genomic copies), tL(CAA) (1/35) and tW(CCA) (1/13),

but 3 of 12 tT(UGU), 11 of 26 tK(CUU) and 12 of 21 tR(UCU). These tRNAs all appear

to be valid targets of Khdl, since non-specific interactions would produce an even

distribution across all tRNAs. With the exception of Ty elements, Khd1 binds a single site

in most of its target RNAs. Khdl binds Tyl and Ty2 RNAs through sites that are highly

homologous between individual elements within each family, as well as between the two

families, precluding identification of the specific elements it targets.

CLIP identified known binding sites for Khdl. Khdl binds ASH1 mRNA, its best-

studied target transcript, within a 165 nucleotide region in the open reading frame

(Figure 2). These sequences fall within a region of the open reading frame previously

shown to be necessary and sufficient for Khdl recognition of ASH1 mRNA (HASEGAWA et

a]. 2008). Similar to its interaction with ASH] mRNA, Khd1 binds 87% of its target

mRNAs within the open reading frame. We identified Khd1 binding sites within regions

of three other transcripts previously shown to be sufficient for recognition, although Khd1

binds two of these transcripts through additional regions as well (Figure 2). The successful

identification of known in vivo Khdl binding sites supports the biological relevance of the

previously unknown binding sites CLIP identified.

We looked for enrichments within the functional annotations of Khd1 target

mRNAs to provide insight into its biological function. The target list is enriched for

multiple functional annotations, including the cell wall (54 out of 114, p < 3.9e-16),

filamentous growth (46 out of 96, p < 5.0e-14), and mRNA catabolic processes,

deadenylation-dependent decay (16 of 24, 4.4e-6) (BEISSBARTH and SPEED 2004). Ty

elements are the most abundant Khdl target in the data set, but we cannot determine the
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exact number of elements that Khdl binds. Khdl also binds the single copy of tR(CCU),

which regulates the frequency of programmed frameshifting in Ty expression (KAWAKAMI

et a. 1993).

- 6,000 - 15,000

reads reads

ASHI MID2

1,767 bp 1,131 bp

-6,000 - 3,000
reads reads

MTL 1 WSC2

1,656 bp 1,512 bp
Figure 2.-CLIP identifies known Khdl targets. Histograms of sequences from CLIP mapped to

the four Khdl target mRNAs with previously defined binding sites. Black bars represent regions
shown to be sufficient for Khd1 binding (HASEGAWA et a. 2008).

The mRNAs bound by Khdl affect multiple aspects of filamentous growth (Figure

1). Khdl binds FLO11 mRNA, and a number of mRNAs encoding proteins that regulate

FLO11 transcription. These transcripts include mRNAs encoding Phdl and Sok2, which

act in a transcription factor cascade with Ashl, and components of the filamentation MAP

kinase signaling pathway. In addition, Khd1 binds a number of mRNAs that encode

components of the cell wall, and may play a role in its reconfiguration during filamentous

growth. Some of the Khd1 target mRNAs involved in filamentation, such as KSS1 and
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CLB2 mRNA, localize to the bud tip similarly to ASH] mRNA (SHEPARD et aL. 2003).

CLB2 encodes a mitotic cyclin that acts to promote cell elongation during filamentation

in conjunction with the filamentation MAP kinase pathway. cb2A/clb2A mutants filament

in rich nitrogen, and CLB2 overexpression represses filamentous growth (AHN et aL

1999). Khd1 binds CLN1, CLN2, and CLN3 mRNAs, which encode G1 cyclins that play a

role during filamentous growth as well (LOEB et aL. 1999; OEHLEN and CROSS 1998).

Khd1 binds a number of mRNAs encoding other RNA-binding proteins. These

targets are contained in the enriched functional category mRNA catabolic processes,

deadenylation-dependent decay. In addition to binding transcripts encoding these post-

transcriptional regulators, Khd1 binds many of their target mRNAs as well. It binds within

the coding sequences of two transcripts encoding components of the filamentation MAP

kinase pathway, STE7 and TEC1 mRNAs, that Puf5 represses through interactions with

their 3' untranslated regions (PRINZ et aL 2006). Comparison with a study that identified

the genome-wide targets of five Puf proteins using microarray analysis following

immunoprecipitation (GERBER et a]. 2004) shows that Khd1 shares 50 additional targets

with Puf5, including PHD1 mRNA. Khd1 also binds PUF5 mRNA, conferring feed-forward

regulation on their common targets. Khd1 displays this network motif with the RNA-

binding proteins Pufl, Puf2, PuB, and Puf4 as well, binding to both their mRNAs as well

as a subset of their target transcripts (Figure 3). Khdl binds 143 mRNA targets of the Puf

proteins. The overlaps vary, with Khd1 binding over 40% of the targets identified for Pufl

and Puf2, but less than 10% of those for Puf. Khd1 binds mRNAs encoding decapping

and deadenylation enzymes, as well as its own mRNA, adding an autoregulatory feed back

loop to its post-transcriptional network.
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Figure 3.-Khdl confers feed-forward regulation on many mRNAs within the cell. Khdl binds
mRNAs encoding the Puf family of RNA-binding proteins, and a subset of their target mRNAs.
The specific effect of protein binding on the expression of most target mRNAs is not known.

Khdl represses Tyl translation and retrotransposition

Sequences mapping to Ty RNAs are the most abundant category in our CLIP data

set. Because Ty RNA comprises up to 1% of total RNA in yeast (CURCIO et a]. 1990), its

prevalence could be a consequence of non-specific binding. However, the clustering of

sequences into discrete peaks (Fig. 4A) argues that Khdl binds specific sites within Tyl

and Ty2 RNAs in vivo. Regulation of retrotransposition by Khdl would support this

interaction.

We measured mobility of the Tylhis3-Alconstruct (NYSWANER et a]. 2008) to test

regulation of retrotransposition by Khdl. The parent strain containing this construct

cannot grow on media lacking histidine. An artificial intron interrupts the HIS3 coding

sequence in the antisense orientation, and the splicing machinery does not recognize the

intron when HIS3 is transcribed from its own promoter. However, the intron lies in the

sense orientation relative to the Ty element, and if the entire element is transcribed,
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Table 2. Khdl represses Tyl retrotransposition spliced, reverse transcribed, and

Tylhis3-AI mobility reintegrated into the genome, the cell
Strain x 10-5 (SD) Fold change

wild type 8.4 (1.4) 1
khdlA 10 (1.8) 1.2

Prr-KHD1 .64 (.08) 0.08

Values calculated as described in Nyswaner, et. al, 2008. transposition or gene conversion, but
Error represented as standard deviation.

transposition is more frequent.

Mobility of the Tyl his3AI construct in khd1A is not significantly different from

wild type, but Khd1 overexpression reduces its mobility 13-fold (Table 2). To investigate

the mechanism of this repression, we performed Western blotting using antiserum against

Ty virus-like particles (VLPs). TYA encodes the structural component of the VLPs and

corresponds to the retroviral gag gene. The initial translation product is post-

translationally processed by a C-terminal proteolytic cleavage to its mature form by a

product of TYB.

TyA levels upon KHD1 deletion or overexpression mirror the changes in Tylhis3-

AI mobility. TyA levels are unchanged in khd1A, and Khdl overexpression reduces TyA

protein levels 8-fold (Fig. 4B). The levels of both the primary product of translation and

mature TyA decrease upon Khdl overexpression, and the ratio between them does not

change. Northern blotting shows that Tyl RNA levels remain constant in all three strains

(Fig. 4C). Given the CLIP results indicating that Khd1 binds Tyl RNA, these experiments

suggest that Khd1 represses Tyl retrotransposition by repressing translation of Tyl RNA.

Given that Khdl overexpression, but not deletion, decreases TyA levels and

Tylhis3-AImobility, these results do not prove a role for Khd1 in regulating

retrotransposition under physiological conditions. We attempted to use a sensitized assay
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Figure 4.-Khdl binds Tyl RNA to repress translation. (A) Histograms of sequences from CLIP
mapped to a representative Tyl element. (B) Western blot analysis of TyA protein levels. PTEF-
KHDJ is an overexpression construct. (C) Northern blot analysis of Tyl RNA for the strains shown
in (B). Ethidium bromide staining of rRNA demonstrates equal loading. Khd1 overexpression
reduces TyA protein levels without affecting Tyl mRNA levels.

to uncover a physiological role. A previous study reported that immunoprecipitation of

the RNA-binding protein She2 enriches Ty RNA (SHEPARD et al. 2003). She2 binds both

ASH1 mRNA and the localization machinery, leading to the localization of ASH1 mRNA

(BOHL et al. 2000), but an attempt to visulize localized Ty RNA elements using in situ

hybridization was unsuccessful (SHEPARD et al. 2003). Low levels of Ty RNA localization,

134



able to escape visual detection, could potentially be detected functionally using the Tylhis

3-Al allele and mutations that affect localization. However, retrotransposition frequencies

are similar for wild type, she2A, and she2A khd1A (data not shown). The specific role for

Khdl in regulating transposition remains to be determined.

DISCUSSION

Rapid changes in cellular processes require regulation that cannot be

accomplished solely at the transcriptional level (MANSFIELD and KEENE 2009). The

transition from yeast form to filamentous growth, which occurs with the first cell division

under low nitrogen conditions (AHN et aL. 1999), is enabled by regulation of FLO1I at

both the transcriptional and translation level (Chapter 2). The change in growth form

requires the coordinated alteration of multiple cellular processes in addition to FLO11

expression, including the cell cycle, and cell wall maintenance (GANCEDO 2001). Khdl

regulates asymmetric FLO11 expression (Chapter 2), and binds mRNAs encoding cell

cycle regulators and components of the cell wall. Khdl may regulate these processes

during filamentation as well. Studies have shown that RNA-binding proteins can alter the

complement of mRNAs they bind upon differentiation (TENENBAUM et a]. 2000). Khd1

could undergo a similar transition in response to nitrogen starvation to control

filamentous growth.

The effects of Khdl binding need not be the same on expression of all of these

genes. Khdl can differentially affect its target genes (HASEGAWA et aL. 2008), though the

details that determine the specific regulation remain unknown. The binding sites we

identify in MTL1 and MID2 in addition to those previously shown to be sufficient for co-

localization with Khdl may contribute to this differential regulation.
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Khdl binds a number of mRNAs encoding RNA-binding proteins, making it a hub

in the broader post-transcriptional regulatory network in yeast. By controlling expression

of these post-transcriptional regulators, Khdl can impart dynamic regulation on many

transcripts in addition to its direct targets. Many RNA-binding proteins target mRNAs

encoding other RNA-binding proteins, forming interconnected post-transcriptional

regulatory networks (MANSFIELD and KEENE 2009). Studies in mammalian cells identified

such interactions between six RNA-binding proteins, where each bound its own transcript

as well as transcripts encoding other members of the study (PULLMANN et aL 2007). Khdl

has similar properties, binding within its own coding sequence and those of other post-

transcriptional regulators. Khdl also binds some of the same target mRNAs as the RNA-

binding proteins whose mRNAs it targets. In addition, Khd1 binds mRNAs encoding

decapping and deadenylation enzymes, and may regulate the stability of a number of

transcripts, including but not limited to those it binds directly.

Repression of both transposition and filamentous growth by Khd1 is an example of

its ability to coordinate cellular events. We identify Khdl as a repressor of Tyl

transposition, similar to the role we identified for its repression of filamentation (Chapter

2). A previous study found that similar to filamentous growth, Tyl retrotransposition is

induced in diploid cells by nitrogen starvation, and requires the filamentation MAP kinase

pathway for transcription (MORILLON et aL 2000). The study identified a larger increase in

transposition frequency than in Tyl mRNA levels following genetic modulation of

signaling through the filamentation MAP kinase pathway, suggestive of post-

transcriptional regulation. Khdl may contribute to this post-transcriptional regulation.

Khdl overexpression reduces both TyA protein levels and mobility of the Tylhis 3-

AIallele. Although Khdl binds near the site of the programmed frameshift between TYA
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and TYB, and binds the tR(CCU) tRNA whose availability regulates frameshifting

efficiency (KAWAKAMI et aL. 1993), the symmetrical decline in both primary translation

product and mature TyA implicates Khdl in translational repression. Increased

frameshifting resulting from loss of tR(CCU) elevates protease levels derived from TYB to

an extent that quickly processes TyA to its mature form (KAwAKAMI et aL. 1993). The

primary TyA translation product is not detectable by Western blot in a mutant lacking

tR(CCU) (data not shown). The upper band in Figure 4 blots implies that Khdl

overexpression does not affect Tyl transposition by regulating the frameshift.

Our experiments did not reveal any regulation of Tyl retrotransposition by Khd1

under physiological conditions. Although Khdl overexpression has a clear phenotype

related to Tyl, deletion of KHD1 does not affect TyA levels or mobility of the Tyl his 3-Al

allele. One hypothesis is that other mechanisms repress Tyl translation in parallel to

Khd1 to maintain wild type TyA levels and transposition rates in the khd1A background.

Another is that Khdl overexpression produces regulation that does not occur under

physiological conditions. Given that the interaction between Khd1 and Ty mRNA was

identified using Khdl expressed from its endogenous promoter, we believe that the

interaction is physiologically relevant and other factors act in parallel to repress

retrotransposition in the absence of Khdl. The cell must carefully regulate transposition

to avoid deleterious effects, and additional post-transcriptional repressors would ensure

this protection.

Khd1 binds a number of mRNAs in vivo to regulate cellular processes. The

functions of these targets point to post-transcriptional coordination of various aspects of

filamentous growth with Tyl retrotransposition. The integration of multiple post-

transcriptional regulatory networks through Khd1 binding suggests an even broader role
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for Khdl in coordinating cellular activities. Genome-wide approaches have identified

widespread networks of these interactions in other systems, but the extent of their effect

on cellular activity remains an open question. Future studies will be needed to determine

the global effects of regulation by Khdl.
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Chapter 4: Conclusions and Future Directions

CONCLUSIONS

I pursued a role for the RBP Khd1 in S. cerevisiae based on interactions described

in the literature. Once I identified Khdl as a repressor of filamentous growth, my goal was

to identify cellular functions for Khdl by characterizing its in vivo interactions with RNAs.

The application of CLIP and deep sequencing to this pursuit was incredibly successful,

and identified a number of targets for Khdl that relate to its biological function. I

experimentally confirmed a role for Khdl in regulating the two most prevalent target

mRNAs in the CLIP data, but the global details of Khd1 mRNA recognition and

regulation remain unknown. The pioneering studies of RBPs using CLIP and deep

sequencing have shown that RBP binding specificity is not easily described. My work

supports some aspects of our understanding of post-transcriptional regulation by RBPs,

but shows limitations in our understanding of these regulators.

Khdl associates with mRNAs encoding functionally related proteins. The

identification of target transcripts encoding proteins involved in filamentous growth was

of particular interest because the regulation of filamentation by Khd1 initiated the CLIP

study. My work describing Khdl as a repressor of both filamentous growth and

retrotransposition nicely fits the model for coordinated regulation by RBPs, but this study

cannot be used to draw conclusions about the consequences of Khdl binding for other

transcripts. Khdl differentially regulates its target mRNAs that localize to the bud tip

(HASEGAWA et al. 2008), and could have opposing effects on the expression of even

functionally related genes.

I did not anticipate the difficulty we encountered identifying a target motif for

Khdl. I believe the lack of a consensus target sequence or structure represents the biology
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of Khdl rather than experimental limitations. Although studies using microarray analysis

following immunoprecipitation rarely report high percentages of targets that contain a

consensus motif, there are errors inherent in this approach for RNA target identification.

Although I conceptually believed we had a superior approach, there is little precedent for

the use of CLIP with deep sequencing to identify protein-RNA interactions. KH domain

proteins interact with varied sequences in vitro. Published reports tend to focus on the

common features in their experiments to fit a simple model, but the data sets as a whole

do not conform to this assumption. With our transcriptome-wide identification of Khdl

binding sites, we revealed the complex nature of its binding interactions. Other

applications of CLIP in conjunction with deep sequencing also identify many target

mRNAs that lack the consensus binding motif (YEO et aL 2009), which necessitates

modified thinking about protein-RNA interactions.

Orthogonal binding data would prove extremely useful in characterizing RNA-

binding protein specificities. I am convinced that we identified a number of biologically

relevant targets of Khdl. This belief comes from our ability to identify with high precision

known interactions shown to have in vivo relevance, and my work testing two of the new

targets we identify. However, I was unable to identify a complementary assay to test

candidate binding sites in a high throughput manner.

The existing literature is contradictory with respect to the known Khdl target,

ASH1 mRNA. Two non-overlapping regions of ASH1 mRNA, each approximately 250

bases in length, are reported to mediate the interaction with Khdl. One study identifies a

region that is sufficient for Khd1-mediated repression of a luciferase reporter construct -

expression of both endogenous Ashl protein and the reporter increases in khd1A cells

(PAQUIN et aL 2007). Another study identifies a distinct region that is both necessary and
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sufficient for binding to Khdl, and uses a co-localization reporter construct to assay

binding because the authors see no change in Ashl protein levels in khd1A cells

(HASEGAWA et al. 2008). These discrepancies could result from the use of different strain

backgrounds. However, the identification of mutually exclusive binding sites in a highly

conserved transcript is unlikely to reflect the actual biological function of Khdl. In the

strain where I conducted my study, deletion of KHD1 does not affect AshI protein levels.

Khdl overexpression also has no effect on Ashl protein levels in this strain. This contrasts

with the study that used co-localization to monitor Khd1 binding that reports a reduction

in Ashl protein levels upon Khdl overexpression, even though Ash1 protein levels are

unaffected by the KHD1 deletion (HASEGAWA et aL. 2008).

These findings limit options for experimental validation of Khd1 target sites.

Changes in protein levels are a poor assay in a reporter system since Khdl expression

differentially affects its targets (HASEGAWA et aL. 2008). Colocalization of Khdl with

reporter constructs containing its binding sites within target mRNAs may not identify sites

from endogenous transcripts that do not undergo localization. CLIP identified the

regions of two mRNAs, MTL1 and MID2, that were shown to be both necessary and

sufficient for colocalization with Khdl, but also identified much stronger binding

interactions in other regions of the transcripts. A high-throughput assay would allow for

more rapid testing of candidate target sequences or, ideally, screens enabling their

identification. The best option may be yeast-3 hybrid studies, which would enable rapid

testing of potential target sequences (HOOK et aL. 2005). However, this approach

establishes an unnatural context in which to study protein-RNA interactions and may not

accurately represent native activities.
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The most broadly applicable finding from this study may be the high level of

interconnectivity of the post-transcriptional regulatory network. There are many previous

reports of RBPs that bind mRNAs encoding other RBPs (MANSFIELD and KEENE 2009).

The best insight into this phenomenon has come from combining deep sequencing with

CLIP because of the previously discussed capabilities of the technique. The real advantage

of this study is the second-level understanding of the interactions. Khdl binds not only

mRNAs encoding Puf RBPs, but a number of mRNAs bound by the Puf proteins as well.

This understanding is enabled by previous studies of the Puf proteins in yeast (GERBER et

a]. 2004). Interactions between post-transcriptional regulators has emerged as an

important component of cellular activities (MANSFIELD and KEENE 2009). I expect that this

network topology is not unique to Khdl and that future studies will add to our

understanding of these functional relationships.

FUTURE DIRECTIONS

The functional characterization of RBPs through the transcriptome-wide discovery

of their binding targets and the downstream effects of their interactions is an expanding

field with many opportunities for further study. My work revealed new regulatory

functions for Khdl, but I believe the majority of its functions remain unknown. Other

global analyses can reveal additional phenotypes regulated by this RBP through its effects

on other genes. How Khdl participates in the broader post-transcriptional regulatory

network is also an interesting question. Finally, the potential for functional conservation

between possible Khdl orthologs in pathogenic fungi is an area with important medical

implications. My work has elucidated aspects of post-transcriptional regulation by Khd1,

and generated additional avenues for future study.
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The global role Khdl plays in regulating cellular activities remains unknown. I

characterized the effect of Khd1 binding on two of its targets because of their prominence

in the data set and their relationship to interesting phenotypes. Little is known about the

effect of Khd1 binding on its additional targets or its indirect effects through interactions

with mRNAs encoding other biological regulators. Proteins containing KH-domains

regulate mRNAs in numerous ways, and individual proteins can have different effects on

different targets. hnRNP K has been implicated in both translational silencing and

translational activation of its target mRNAs (EvANs et aL. 2003; OSTARECK et aL. 1997). I

have shown a role for Khd1 in translational silencing, but it may have different effects on

the expression of its other targets. Its interactions with transcripts encoding other post-

transcriptional regulators add even more potential functions to its regulatory repertoire. It

would be interesting to apply the recently developed ribosome profiling technique to

characterize the global role Khd1 plays in regulating gene expression. This approach

identifies the positions of cycloheximide-stalled ribosomes using deep sequencing to

quantify ribosome-protected mRNA fragments, providing a method to simultaneously

interrogate the translational state of every transcript in the cell (INGOLIA et a]. 2009).

Sequencing counts are normalized to transcript levels similarly evaluated using deep

sequencing, which would address both changes in mRNA levels and ribosome loads for

genes regulated both directly and indirectly by Khdl. Applying this technique to wild type

cells and those either overexpressing or deleted for KID1 would identify the global

effects of Khdl and point to additional phenotypes it regulates.

Khd1 acts as part of a larger post-transcriptional regulatory network. It associates

with seven mRNAs that are localized through their interaction with the RBP She2

(HASEGAWA et aL 2008). Although microarray technology has been used to identify mRNA
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targets of She2, CLIP identified a number of RNA targets of Khdl that were not identified

by microarray analysis, and some mRNAs localized through their interaction with She2

may have been similarly missed. It would be interesting to apply CLIP to She2 in order to

gain a deeper understanding of its mRNA targets. This approach could expand the list of

localized mRNAs in yeast, and enable the comparison of regulation of targets that are

bound by both proteins to those targeted by one or the other. The transcriptome-wide

identification of additional RBPs that target a subset of the mRNAs bound by Khdl would

continue to expand understanding of the post-transcriptional regulatory network in yeast.

Nothing is known about the mechanisms that regulate Khdl in contexts other than

mRNA localization to the bud tip. Given that so few of its targets appear to be localized in

this manner, it is likely that additional pathways regulate its activities in other contexts. I

generated a construct that fuses the FLO1i repetitive element to URA3, similar to the

GFP reporter I used to test the effect of Khdl binding to the FLO11 repetitive element.

The ability of cells with the URA3 construct to grow under selection and counterselection

against URA3 expression is altered by changes in Khd1 expression. A variety of genetic

selections could identify pathways that regulate the activity of Khdl binding to the FLO11

repetitive element, and possibly other targets as well. This would expand understanding of

the mechanisms that control this important regulator.

Finally, it would be interesting to see how these findings translate to other systems.

Many fungal pathogens undergo dimorphic switches inside their hosts similar to the

transition to pseudohyphal growth regulated by Khdl (Gow et a]. 2002). The pathogenic

fungus Candida albicans can adopt two filamentous growth forms, and mutants that

cannot filament are avirulent in a mouse model (Lo et a]. 1997). This species contains a

putative RBP with homology to Khdl. Given the role Khdl plays in regulating
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pseudohyphal growth in S. cerevisiae, it would be interesting to test the role of this

putative ortholog in C. albicans. The ALS gene family in C. albicans encodes cell surface

proteins similar to Flol 1. The Khdl homolog could potentially bind ALS mRNAs through

their repetitive elements. If this homolg regulates filamentous growth in C. albicans, the

protein would offer a potential drug target in treating the most frequently isolated fungal

pathogen from humans (EDWARDS, 1990).

There are many potential avenues for research based on the studies presented in

this thesis. My work has provided a strong foundation for investigating the role of Khdl in

regulating cellular activities, and points to future directions that could reveal interesting

biological regulatory mechanisms relevant to all eukaryotic systems.
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