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Abstract

This thesis provides a numerical algorithm to solve fluid-structure interaction prob-
lems in the Cartesian grid. Unlike the typical Immersed Interfaced Method (IIM), we
define thin non-stretchable solid interface with the Level Set function. In addition,
we developed a partial differential equation which represents the bending rigidity of
the interface. The interface is assumed very thin and has zero elastic stress when it
is flat. The interface gives singular forces to the incompressible viscous fluid and the
fluid solver handles discontinuities across the interface.

Instead of solving two dynamic systems (i.e., fluid and solid), we solve the fluid
field only and solve a convection equation of interface with the local fluid velocity. This
idea is valid because of viscous fluid (i.e., velocity is continuous across the interface) as
we can see frequently in the IIM. The result shows that elastic interface vibrates and
converges to an equilibrium state. The oscillatory motion of the interface depends on
the viscosity of fluid, Young's modulus and thickness of interface. The results looks
correct physically, and they match with the existing IIM results.

Thesis Supervisor: Mark Drela
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Chapter 1

Introduction

In this thesis, we introduce a numerical method to solve the incompressible Navier-

Stokes equations involving flexible interfaces which are represented by the level set

function. One of the existing approach to solve fluid-structure interaction problems in

the Cartesian grid is the Immersed Interface Method (IIM) in which the material in-

terface is tracked explicitly with a finite number of Lagrangian markers. Even though

this explicitly immersed interface model is easy to impose elastic membranes and the

singular forces are determined directly from the Lagrangian markers, it requires more

complicated interpolation to smear this singular forces or velocities on Cartesian grid.

In order to simplify the numerical algorithm, the level set method is used to represent

the interface in [10].

So far, in contrast, the level set method did barely appear to be proper to represent

the interface such as elastic membranes. Therefore, in terms of fluid interactions, the

level set method has been strictly used for curvature dependent problems such as

soap bubbles or multi-phase simulations. However, in this paper we introduce a new

method to represent the bending elasticity with the level set function so that the level

set method can be coupled with the fluid motions involving deformable interfaces.

In particular, we shall evaluate the flapping dynamic equation and develop the

singular forces. These normal and tangential force densities are considered as jump

conditions which yield discontinuities of fluid variables across the interface. The

difference with the typical IIMs is that we enforce the boundary conditions that the



viscous flow on the interface should move or accelerate with the interface. In other

words, the velocity of the interface must have the same velocity of the interface for

viscous flows. Thus, we can employ the velocity of the fluid to advect the interface,

which does not require any temporal projection. If interfaces move with the local fluid

velocity, two or more interfaces do not overlap each other as long as the flow field is

incompressible even if we apply multiple number of interfaces in one fluid solver.

1.1 Background

In general, the fluid-structure interaction problems strongly relate not only to aero-

dynamic tunings with respect to the acoustic and structural design, but also to

an effective control of large-scale vortical interactions with a flexible body in ocean

engineering[3]. Elucidating a flapping problem has also become popular in sorts of

engineering sense. There are several recent works that imply possible applications of

flapping dynamics such as turbulence reduction (Shen et al.2003), energy generation

(Allen and Smits 2001), and biomechanical propulsions (e.g. fish-like swimming or

fluttering birds), etc.

While flapping phenomena are easily observed in daily life, the history of compu-

tational works on fluid-structure interaction is relatively short compared to problems

without interaction. One of the general problems is a moving membrane excited by a

viscous fluid. In 1972, Charles S. Peskin developed the Immersed Boundary Methods

(IBMs) for the study of blood flow within the human heart [13], which differed sub-

stantially from the common CFD methods back then. The IBMs highly reduce the

time for grid generation and do not require any grid transformation or deformation,

since the boundary conditions can be controlled on Cartesian grids. The IBM yields

a problem of how accurately boundary conditions can be imposed. But recent works

provide sorts of inter/extrapolations methods so as to handle non-smooth or even

discontinuous quantities across immersed boundaries [9]. The IBM sets a number of

control points to represent the interface. The singular forces at the control points are

spread to the Cartesian grid, which acts a forcing term to solve the Navier-Stokes



equations. However, it smears out sharp interface since it uses the discrete delta

function.

On the other hand, the Immersed Interface Method (IIM), which was originally

proposed by LeVeque and Li [8], combines the jump contribution into the finite dif-

ference schemes and can avoid the smearing sharp shape and maintain second order

accuracy. Therefore, applying jump in pressure and in derivatives of both pressure

and velocity allows one to solve the Navier-Stokes equtions with a high accuracy. The

advantage of the IIMs is that we may set multiple membranes without any conflict

between membranes. The main drawback of this method is that a spacial discretiza-

tion of the Navier-Stokes equations and interpolation the fluid and force quantities

onto the Cartesian grid are demanding when we use the Lagrangian marker. In this

paper, we present the level set method coupled with the jump conditions from the

IIM (See the next section).

Apart from the usage of the Cartesian grid system, there are methods that use

the moving grid approach such as a coupled fluid-structure direct simulation (FSDS).

Even though the FSDS, which employs body-fitted grid system, allows one to impose

the boundary conditions easily, it instead requires grid transformation or grid clus-

tering at the body ends at every time step so as to allow a smooth calculation around

a sharp edge[2]. This demends expensive computation cost. In addition, the FSDS

solves two dynamic systems using external forces between fluid and structure which

are regarded as an input for both. In this case, the old solution must be projected

to a newly generated grid to reduce the error. Moreover, it is more difficult to apply

multiple number of membranes with the FSDS since the grid generation must reflect

the information of shape and location of the interfaces.

1.2 Problem Statement

The objective of this research is to obtain viscous, incompressible flow solutions of

fluid-structure interaction problems with an implicit imposition of forces obtained by

the level set function. As in the immersed interface method, we use the Cartesian



grid and jump conditions from the singular force density. The jump in pressure and

in the derivatives of both pressure and velocity contributes to the finite difference

schemes only when the finite difference involves irregular points. This allows the non-

smoothness or discontinuities of the solution of the Navier-Stokes equations. However,

the velocity must be continuous across the interface for viscous flows, i.e.,

[V]r(t) = 0

Hence the velocity of the fluid at the interface surface, which is smooth, is nothing

but the velocity of the interface. Therefore, the location and contour of the interface

can be updated for the new time step by solving the advection equation of the level

set function. This automatically satisfies the no-penetration condition.

In order to obtain the force density and jump conditions, we use the level set

function whose zero level set represent the evolving interface front. Since the level set

field is smooth over the entire domain, we can obtain the curvature of the interface or

higher derivatives of the level set curve by using the surrounding level set values. In

particular, for the bending elasticity of the interface, we introduce an identical partial

differential equation using level set functions in Chapter 3. Once the force density is

known from the level set field, the entire algorithm is similar to the IIM. The Figure

1 shows the overall rough algorithm which is used for this work. The biggest merit of

this approach is that both fluid and structure are moving in the same velocity which

governs the advection equations of the level set function, which makes the problem

implicit. Since this approach imposes that the structure moves along with the local

fluid velocity, we can avoid problems where two or several interfaces intersect or cross

through each other.



Figure 1-1: Overall Algorithm Map



1.3 Outline of This Thesis

This paper is organized as follows. In Chapter 2, we describe the governing equa-

tions of the fluid and structural model, and force density and jump conditions. We

present the Navier-Stokes equations and the flapping equation. And the jump rela-

tions from the singular force are shown. Chapter 3 presents the level set method. We

introduce the identical PDE representation which is equal to the bending elasticity of

the interface. In Chapter 4, we states the numerical techniques. Multi-step method,

generalized finite difference schemes, jump contribution, interpolation and WENO

scheme are shown. Finally, Chapter 5 presents simulation results. Appendix has the

exact expression of the identical PDE for bending elasticity.



Chapter 2

Interactive Dynamic Systems

2.1 Explicit Physical Models

We consider a problem of a thin membrane or flag motion which is excited by an

incompressible viscous flow, or a problem of a fluid motion which is excited by forces

from the interface. Either can be regarded as a fluid-structure interaction in which

forces between two media and velocity of fluid govern the two dynamic system. Before

entering the implicit physical system, the basic dynamic equations are shown in this

section.

2.1.1 Structural Dynamic Model

In this work, the flag can be regarded as a typical cloth which has a low bending rigid-

ity and the fluid-induced tension yields the main portion of the structural restoring

force. The solid body is sufficiently thin so that its immersed volume can be ne-

glected for numerical simulations. The governing equation of the flag motion can be

derived by Hamilton's principle, linearizing around small body thickness and exten-

sional strain. Zhu and Peskin [13] provided the final form of the equation, permitting

arbitrary configuration and orientation of the body, which is described by

82X _ { BX aX)-1/2) 8Xj 4X=pah at2 -_Eh 1+ + EI 94  Fext (2.1)Pshat2 098~ as) asJ



where X = {x(s, t), y(s, t)} is the body position vector in Cartesian coordinate, s

is the Lagrangian coordinate along the material line, p, is the flag (solid) density, h

is the flag thickness, and El is the bending rigidity (E is the Young's modulus). Fext

transfers the net external force.

The boundary conditions at the leading edge are given as

X =0
(2.2)

X8 = 0 or X,, = 0

where the second restriction depends on the choice of whether it is a rotation free.

The natural free-end boundary conditions that satisfy our flapping problem [3] are

given as

-Eh 1 - (!X - ) + EI 0(2
.9s2s J S s ~ 9 ~(2.3)

aS2 = 0

at any free-end.

2.1.2 Fluid Dynamic Model

The continuity equation for viscous incompressible flow is

V -V = 0 (2.4)

and the Navier-Stokes' equations are given as

B9V
p + pV(V. V) = --Vp + pV2V + pg + pf(x, t) (2.5)

at

where

f(x, t) = F(s, t)J(x - X(s, t)) ds

is the force acting on the fluid from the interface. The boundary condition on the

interface is



Vfuigd = Vinterface

and an unbounded domain is applied for the boundaries of solver.

2.2 Implicit Physical Models

In this section, we introduce the implicit analytical algorithm to solve fluid-structure

interaction problems. In typical approach such as FSDS ([2], [3]) , fluid and structural

dynamic equations are solved separately with imposition of forces acting between

two media. It is clear that the idea of this work is the same with the FSDS in

that we evaluate the forces between structure and fluid. However, we solve Navier-

Stokes' equation by evaluating singular force from the structural equation and solve

the convection equation of the interface with fluid velocity. It is the reason of calling

this method 'implicit'. As in the Immersed Interface Method (IIM) [6], we allow the

solutions of the Navier-Stoke's equation to be non-smooth or discontinuous across

the interface by changing the finite difference stencils only adjacent grid points of the

interface.

2.2.1 Construction of Singular Forces

Remember that the Navier-Stokes equations and flapping equation have different

dimensions. The fluid equation has a dimension of [N/m] and structural equation

has a dimension of [N/m 2]. Hence, in order to evaluate the interaction force correctly,

let's rewrite the flapping equation as following:

82X a [( aX X\ -1/2~ axi a4x
ps/ h2 = Eh [j( 1 - -a) ) EI asX + Fext (2.7)

Since acceleration a in the left hand side is defined in Lagrangian manner, if we

rewrite the flapping equation as

(2.6)



a2X Eh (X OX -1/2 OX EIO4X Fext
2 ( ax) ) - + (2.8)

42 h pahs as as )os p ,h 0s8 pah

then right hand side of above equation can be considered as singular forces

acting on the fluid. Note that this equation has a dimension of force per unit mass

[N/kg]. The first two terms are contributed by the internal force of solid and the

third term is related to the direct interaction forces which are pressure difference

across the interface and viscous shear stress. Therefore, we can calculate the force

on the interface surface, acting on the fluid, by evaluating the right hand side of the

following equation.

Eh 0 (OX OX -1/2 OX1 El 04X Fext
F(st) = - - + (2.9)

pshO s Os s Os] psh as4  psh

This should be applied in Equation (2.5). Instead of solving the two dynamic

equation, we can introduce the normal and tangential singular force which acts on

fluid as jump conditions. For viscous flow, the velocity of fluid on boundary must

be same with the velocity of the interface. Therefore, the no-penetration condition

can be guaranteed by using the velocity of fluid for the the interface behavior as

far as the evaluation of singular forces is correct. We will introduce the singular

force evaluation and advection method for the interface in Chapter 3. Once the

singular force is determined, the force can be decomposed into normal and tangential

component, i.e.,

(2.10)
= f .

where f,, fr are the normal and tangential components of singular force, respec-

tively. Additionally, we need to impose the no-slip condition. This can be represented

in terms of tangential singular force:



fT = -v/ r . v (2.11)an

where [-] denotes jump condition. The details about relation between singular

force and no-slip condition is represented in Chapter 4.3 along with the numerical

technique. Thus, the tangential singular force is the sum of Equation (2.10) and

(2.11).

2.2.2 Spatial Jump Conditions

Jump conditions are functions of the singular force density. Let T and n be the unit

tangential and normal vectors, which are defined as ([19], [18])

S= x 2 (0)2

J (as +s (2.12)

(2.13)n = (n2, ny) = (Ty, -r7x)

Jump of a quantity V@ across the interface [V$]r is defined as

[0]r = ()r+ - (r- (2.14)

and the jump conditions in two dimensional space are given in [19].

[V] = 0, = -ReTyrfr,
[x

[P] = fn =9 r n + Lyafa' x J as J as '

[y] = Rer rf,

[P TOfn T Ofs
ayJo 798J a

J2Ds Oxj Os[OyJ1 '(J I) V I (J ) V2

23

(2.15)

(2.16)

(2.17)

r~~ =ax (a, y)=,



Figure 2-1: A domain with a immersed interface.

...................... . ..... .. ... ........ ..........



r2= - Re

rus = Re[Vp]

an2 FaV
+ al ax an+ avl\+as ay 1

= rui(7x - T ) + ru2(2Txr ) + ru3(T)

= rui(r - r ) - ru2(2rxTy) + ru3(Tx)

1

rp =

a2f
as2

L au av' 1rps = 2 ax a9V

a(JTx) [p
as [axP j

af'\ anx ap

-2 ay ax]

9(JTFY)

al

L aYpI)
ay J J

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

= r1(Tr - T) + rp2(2rFry) + rp3(T)

= ri(T - r) - rp 2 (2rxry) + r3(r )

In dimensional Navier-Stokes' equations, Reynolds number is corresponding to

1/v which is the coefficient of the diffusion term. The form of [a - b] appears in rp3.

Note that [a - b] f [a] - [b]. The correct calculation is

(2.27)[a - b] = a- . [b] + b - [a] + [a] - [b] = a+ . [b] + b+ - [a] - [a] . [b]

where a-, b-, a+ and b+ are obtained by interpolation [20].

[a2V~
[aX2

[Y]V

(2.18)

(2.19)

(2.20)

(2.21)

La2p 1
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Chapter 3

Level Set Method and Linear

Bending Elasticity

3.1 Level Set Method

Description of a flag contour with a level set function is an easy way to implement

the immersed interfaced method. Let us define a level set function 4 whose zero level

set with evolving front represents the flag contour ([14], [17]).

4(X(s, t), t) = 0 (3.1)

In our case, the closed curve of the zero level set function splits the x - y plane into

two region, where the level set has positive and negative values outside and inside,

respectively. By the chain rule,

4t + X'(s, t) . V4(X(s, t), t) = 0 (3.2)

By the speed function V, which supplies the speed in the outward normal direction,

this yields an evolution equation

t + IV4=0 (3.3(3.3)



Vn

p- 1 -n 0 - -' S

V. - ------

Figure 3-1: Level Set Representations in 2-dimensional space



where the outward normal unit vector n = V4/IV4| is used [16].

Now consider another global (not necessarily to be zero) level set function 4 such

as

O(X(s, t), t) = s (3.4)

which indicates a coordinate along the material line s. The function V' creates

another level set which perpendicularly cross through the zero level set of 4. Paying

attention to a particular flag point, s, , defining the point as the origin (i.e. so =

s(x = 0) = 0), yields a coordinate system which is satisfied along the interface. Thus,

the (4, @) creates the local coordinate system on the flag surface. Therefore, by the

chain rule in terms of time, the tangential velocity to the zero level set function can

be represented as

Ot + VrIV@| = 0 (3.5)

where r = V@/ IV@| was used. The V) plays a role as the velocity-correction in

case that the material velocity, V, is not perpendicular to the zero level set of 4. Even

though s is a Lagrangian space along with the material curve, s can be described as

a (reverse) function of x, y and t because {x, y} are a function of s and t.

s = s(x, y, t) (3.6)

Now we are ready to represent the elastic stress and acceleration of a flag in x - y

plane by employing # and 4. The details is shown in Chapter 4.

3.2 Description of the Bending Elasticity with the

Level Set Functions

The goal of this section is to describe a new partial differential equation in terms of

4 and 4', which is equivalent to the two dimensional flapping equation ( Eq. (2.1) ).



3.2.1 Formulation of Bending Rigidity

In two dimensional problem, the unit normal and tangential vectors of the zero level

set 0 can be expressed as

n = = (3.7)

r = vqT (3.8)

where the orthogonal vector V4T (i.e. V4V4T = 0) was used. Note that the

description of the tangential unit vector r which is a function of 4 instead of a

function of $. As there are two possible tangential unit vectors which are orthogonal

to the outward normal unit vector, we must choose one of them. In this work, the

following vector was chosen.

T = (3.9)

This a choice in which the curve is parameterized by s so that the interior is on

the left in the direction of increasing s. As a result, it is obvious from the geometric

relation that the aX/as is nothing but the tangential unit vector r. Let us rewrite

the expression such as

aX -4y(x(s, t), y(s, t)i + (x(s, t), y(s, t), t)j (3.10)
(s, t) = (3.10)

s 4(x(s, t), y(s, t),t) + 4i(x(s,t),y(s,t), t)

and take partial derivatives three times in terms of s. Because the general form

of the right-hand-side is a very complicated extension, let's define an operator D....

such that

84X
as4 (s, t) <> D,,,,[4(x, y, t)] =fi(42, 4,, 42, ,y , , (3.11)

where the operator D.... is a function of 4x, 4y, 4x, 42, Iyy, - --, etc.

Calculating D.8.. [4(x, y, t)] requires a huge mathematical extension as well as a sig-



nificantly expensive computation cost. However, we not only can easily convert and

automatically insert the final form into the calculation solver by using Mathematica

software, but the complicated form will also be calculated only in the grids near the

immersed interface, which does not bother calculation time much. See the Appendix

for the final form of D ... [4(x, y, t)].

3.2.2 Formulation of Nonlinear Tension Term

We have left only with the second term of the flapping equation. Recall that

OX -4 (x(s, t), y (s, t), t)i+ 42 (x(s, t), y(s, t), t)j (3.12)
-(s, t) = (.2as 04 (x(s, t), y(s, t), t) + 2(x(s, t),y(s,t),t)

represents the unit vector in tangential direction, and then X, -X, becomes

X 8 -X, = 1 (3.13)

Therefore, we do not have to take care about formulation of non-linear tension

since it vanishes at least under cases where the fluid-structure interaction does not

yield any stretching of interface over the simulation such as fluttering paper.

3.3 Verification of Formulation

In later part of this section, we will investigate whether the identical bending rigidity

DaSS, have successfully formulated with Mathematica. If 4, @ and X are given as a

function of x, y and t, the D8.. [4(x, y, t)] should correspond to the exact bending

rigidity Xs,,,. Therefore, it is important to take proper level set functions which have

an analytical expression of the position vector X with respect to s and t. Some of

the easiest sets are used in the following subsections.

3.3.1 Test Example 1

Consider a circle level set function which grows with time, i.e.



(3.14)

The position vector that makes this level set zero is given by

X(s,t) = {x(s,t), y(s,t)} = {t3/2cos(s/t 3/2), ts/2sin(s/t3 /2)} (3.15)

where s represents the distance along the zero level set, which starts from {t 3/2, 0}

in counterclockwise direction. This level set function is a proper choice because we

have the analytical 0 function which is expressed as

0(x(s, t), y(s, t), t) = t3/2arctan(y/x) (3.16)

The identical partial derivatives can be calculated since 4 and 4 are analytically

known. Note that we should restrict the evaluation range within s E [0, 7r/2) to avoid

singular points where the arctan values can be discontinuous and the numerical values

jump when y/x -* oc. The Lo-norm of the errors between the directly calculated

values and the identical PDEs shown in Appendix certificates an excellent match of

the two approach, as shown in Table 1.

3.3.2 Test Example 2

Consider a non-stretchable level set function such as

#(x(s, t), y(s, t), t) = (x - t2 )2 + (y - t3) 2 - 4 (3.17)

,which is a circle with radius of 2 and propagating along with y = x3/2. The

location vector which makes the level set zero is

{x(s, t), y(s, t)} = {t2 + 2cos(s/2), t3 + 2sin(s/2)} (3.18)

where s is also defined as the distance, starting from {t2 + 2, t3 }to the counter-

clockwise direction along the zero level set. @ is given by s = s(x, y, t), i.e.

4 (X(S, 0), y(S, t), t) = X2 + Y 2 - P3



Table 3.1: Comparison of Direct Derivation and via New PDE

Infinity Norms Test Example 1 Test Example 2

Xsss - D ss Lo (x component) 5.55112E-16 9.71445E-17

Xs -- Dssss||Lo (y component) 5.55112E-16 9.71445E-17

4(x(s, t), y(s, t), t) = 2arctan((y - t 3 )/(x - t 2 )) (3.19)

As in Test Example 1, the identical PDE expression can be verified by plugging the

analytical location vector, restricting the evaluation range to avoid singular points.

The infinity norms of the error of each component are shown in Table 1. This proves

that the identical PDE expressions are valid regardless of the stretchability of an

interface. Note that the non-stretchable assumption is imposed in order to make the

second term of structural equation zero.
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Chapter 4

Numerical Techniques

In this section, sorts of numerical schemes are shown for Navier-Stoke's equations,

approximation of bending elasticity, transport of level set functions, jump conditions

and the Ghost Fluid Method (GFM) for the sake of usage of the finite difference

method. For the simulation, the staggered grid was used, where the evaluation loca-

tions of pressure and velocities are shown in the following figure.

4.1 Discretization of the Incompressible Navier-

Stokes' Equations

The incompressible Navier-Stokes' equations in two space dimensions are given by

[15], which are

1
Ut = -- PX - (U2 )x - (uv), + v(uXX + uYY) (4.1)

P

1
Vt = p - (UV)2 - (v 2 )y + v(vXX + vYY) (4.2)

P

ux + vY = 0 (4.3)

When the solutions u", v" and pf are known at time step n, we obtain the solutions
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at time step n+1 by the following three step method.

Firstly, the nonlinear convection terms are solve by

U - un2u

At - 3) - (unv"), + C (4.4)

V -vn

A-t = -((unV"))- ((v") 2), + C1 (4.5)

where the Cu and Cv are correction term from jump contribution, which is nonzero

only the derivatives include irregular points. Jump contribution will be mentioned in

Section 4.2.

Next, we can solve the viscosity terms implicitly as shown in [15] or explicitly.

The explicit way is

u** - *

At = v(u*, + u*) +CL (4.6)

v** - *V -v*

At =(v*,+v*) + C (4.7)

while the implicit way is

At v(u** + u**,) + u (4.8)

V -v = v(v** + Cv**+ (4.9)
At (X Y ~

Note again that Cu and Cv are jump contributions.

The implicit approach yields a SPD(symmetric positive definite) linear system,

while it does not allow us to include viscous jumps directly. To solve the inverse of

the coefficient matrix of the linear system, we use the sparse Cholesky decomposition.

On the other hand, we can easily apply no-slip boundary condition or stress jump with

the explicit way, while it requires more restricted CFL condition which is proportional

to the space interval squared. Both method will be used in this work following the



objectives of simulation.

Finally, the pressure correction is required to meet the incompressibility. Implicit

pressure gradient is applied to solve

Un+1 **
A_ (pn+ 1 )x + C3 (4.10)

At p

o - o (pn+1), + Clv (4.11)
At p

where the pressure pn+1 is from the conservation restriction, i.e,

-V 2pn+1  PV u+OFCL + C (4.12)PAt V-U+C1+C

4.1.1 Second-Order Finite Difference Approximation

For the spatial discretization, we use standard central finite difference schemes. For

the first derivatives, we use

(ux)i+d= -Ui+1 U,j + O(Ax 2) (4.13)2i Ax

and for the second derivatives we use

(i) = -j - 2u, + ui+1,j + O(Ax 2 ) (4.14)

Same schemes are used for the discretization of v and p as well. These schemes

brings the differentiated values onto the correct locations on staggered grid except

the step to solve non-linear convection term. In order to correct the locations of the

convection term, we can use average between nearby points.



4.1.2 Transition to Upwinding for the Non-linear Convection

Terms

The solution of non-linear convection step is not stable with the central differencing

schemes when we use fast flows or large time step. Therefore, we take a linear

combination between the central differencing and upwinding for the discretization of

convection terms. In order to meet the stability condition of this hyperbolic behavior,

we introduce a smoothing transition factor such as

-y = min(1.2At -max(maxi,jIuij , maxi Ivij ), 1) (4.15)

to apply

* - n nI
z t((h) 2 - I hii~h~f ((jv~h) _ _Ilfh iv) nl + C U

(V ~h -n ~ ~ ~ f 7h ((j~v)2 _ _Ylvlvv)fl + C V

(4.16)

(4.17)

where iih and Vh are the horizontally averaged value, nv and " are the vertically

averaged value, i.e.,

-h Ui+1/2,j Ui-1/ 2 ,j --h Vi,j+1/ 2 + Vi-l,j+1/ 2

Eij = 2 , i-.,j+.L -
- 2 2 2

V = Uil/2,j+1 + Ui-1/2,j Vij+l/ 2 + Vi,,-1/2

222 2

(4.18)

(4.19)

and ish, f)h, V and F3 are defined as

-h _ Ui+1/2,j - i-1/2,j
2

-V Ui- / 2,j+l -
2 = 2

-h _Vi,j+1/ 2 - Vi-l,j+1/2

- - 2

, Vi,j+1/2 - Vij-1/2

2

This is to match the u* and v* locations onto the exact u and v locations in MAC

(4.20)

(4.21)



grid. This transition is the central differencing when y = 0 and the upwinding when

y = 1([15]). The factor of 1.2 in gamma is from the empirical value, which gives a

higher accuracy by tilting towards upwinding ([11]).

4.2 Discontinuities across the Interface

4.2.1 Generalized Central Finite Difference Formulas

In order to handle discontinuities of the solution of the Navier-Stokes' equations, we

modify the standard discretization schemes only on grid points near the interface. As

in the IIM, the generalized finite difference schemes can be employed to include the

discontinuities. We assume that the discontinuity occurs at most once between two

nearby grid points.

The highest order of a finite difference scheme for v(n)x() with a discontinuity point

at x = ( is m - n + 1, where m is the maximum number such that jump conditions

[0) ()] (1 = 0, 1, 2,. ., m) are known (see [20]). Since we know jump conditions up to

second order derivatives, the finite difference schemes which include jump conditions

have second order for first derivatives and first order for second derivatives. Let's

consider a case where the interface cuts the grid line between two grid points at

x = (, xi < ( < xi+1 , xi c Q-, xi+1 E Q+ as shown in Figure 4.2 (a). From Taylor

series expansions, the following schemes hold for at least twice differentiable function

v(X):

v (Xi) = Vi+1 - Vi_1  (h+)m  ) + O(h 2) (4.22)
2h2h mO M! 0&xmJ1

vx(xi+1) = vi+2 - 1 2 =0 (h- ") + O(h2 ) (4.23)
2h 2h m M! " xm ~

VXX (Xi) = vi1- 2vi + vj-1 ___ 1 i i0 h) + 0(h) (4.24)
h2 h2 rn![0xm



vi+2 - 2vj+1 + vi + 1 2 (h-) m -amv(()~vhm(xi+1) -2 ±0(h) (4.25)

where h+ = - ( (> 0), h- = xi- (< 0), and h is spacing interval in x

direction. If x and xz+ 1 lie in Q+ and Q- respectively as shown in Figure 4.2 (b),

the sign of the second term in the right hand side of the above equations must be

modified.

Moreover, we define the h+ and h- using the level set function 4(x)

h+ __ Ii+1lh h- = - l$i|h (4.26)
lIN +l$0+11' INl+ lei+11

and the Equation (4.22)-(4.25) can be compacted independent of the sign as fol-

lowings:

v2(xi) = Vigd + sign(4) IZ2= (h) + O(h2 ) (4.27)

XT21 (-M gm(I)

vX(xi+1) = il - sign(Oi+1) 2 MohM [a$ + O(h2) (4.28)

1 r2=(h+)m gv(
v22(Xi) = V34; + sign(4 ) -h a ] + 0(h) (4.29)

_ 1s1 (h -)0m_ F &mv(+) 1
vXX(Xi+1) = 0,v;.+1 + sign(ji 1 E2  (h-)m  + O(h) (4.30)XX+1)jh2 m=O m! L xm

where the superscript s.c.d in 0'. denotes the standard central difference scheme,

and therefore the second terms in above expressions are the correction terms for

discontinuities [6].
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4.2.2 Jump Contributions

We discretize the Navier-Stokes' equations with standard central difference scheme

except for the irregular grid points. To correct derivatives in irregular points, we

shall add correction terms {Ciu, Cj, CIl i, j = 1, 2, 3} which is nonzero only when

irregular points should be taken care for spatial derivatives. For reduce the amount

of pages, we evaluate only x component, and y component can be derived in the same

way.

e Jump contribution associated with the convection term : Cu and C'

In order to compute the convection term, we calculate the averaged and differ-

enced values as shown in Section 4.1.2. However, U is not just average of two

quantities if the interface cuts the grid line of the two corresponding points. As

seen in Figure 4-3 (a), consider a case where the interface (x = d) lies between

a and b. And suppose that the point b is in Q+. Then the interpolated average

value u(b) is

u+ = a + (4.31)b 2

where the superscript + denotes the value evaluated at Q+ region. Hence uj

is a ghost quantity and its values is determined by Taylor series expansion at

x = d, i.e.,

Ux+ + (-2 (du) + O(h2) (4.32)

Since jump conditions are known up to second derivatives, we can replace the

derivatives in above equation by the jump relations.

u7 = (u- + [Ud]) + h- ((dub) + [ (d]) + (%)2 ((s2uby + [d9u&]) + 0(h 2)

F dub 1 (h-)2  d2

Ua + [U+h- dx 2 [d2b + 0(h2 ) (4.33)

43



Therefore, the average is

U- + u_+

Ub 2

1 + 1 ~h [dub] (h-) 2 -d2 Ub 1
4 dx2 I+(h 2 )

and if point b lies in Q- the interpolated average at x = b is

u++u- 1 1 dub~
2 2 2 dxj

A compact expression for this case is

b = Ua +Uc- + n(q5(Xb)) I -[Ud]
2a+ (

(h-) 2

4

1 _Fdub~l
+ Ih -d

2 [dx]

d2 Ub + O(h 2 )[dX2 I

(h-)2

+4 dx2 ub)

Next, when point d falls between b and c as shown in Figure 4-3 (b), same

analysis gives the following interpolation scheme:

Ub = Ua+Uc + sigr((xb)) (I[Ud]
1
2

dub
dx I ±4

dx2 )
+ O(h 2 )

(4.37)

Therefore, we can evaluate the average of velocity even when the quantities lie

on different region across the interface.

In addition to the average, the interpolation of ii is required as well. Using the

similar way with Taylor series expansion, we can obtain the differenced value

Ub. If point d falls between a and b,

Uc - Ua
Ub - 2

- sign($(xb)) ( [ud]

and if point d falls between b and c,

(4.34)

(4.35)

+O(h 2 )

(4.36)

1 Fdub
2 h dx]

(h-)2

4
d2Ub + 0(h2)

(4.38)



Ur -u (1 ~dub~ (+2-2 2)Ub= c a-sign(4$(xb)) [Ud]+ 'h ] + d 2  + O(h)

(4.39)

Using the accurately averaged and differenced values t and ii, the convection

term can be computed. The jump contributions associated with convection (Ci"

and Cj) are not represented in here.

* Jump contribution associated with the diffusion term : C2 and C'

The jump contribution induced by the diffusion term appears in generalized

central difference scheme. When the interface cuts the grid line at x = (

(xi < ( < xi+1 ), the second derivatives at xi and xi+1 should be modified.

Thus, the correction terms associated with v u* are

(Cg==)ij = sign(#i,)V E2=0 (hm! m  (4.40)
vh2 m ( m! Xm

(Cfxx)i+1,j = sign(di+1,j) P E2 (hx [ (] (4.41)

and if the interface cuts the grid line at y = q (yj < q < yj+1) the correction

terms associated with vu* are

u I"F2 v (h+)m g
(C"")ij = sign(#i,)h2 -o m  m  (4.42)

h2 =m M! a ym

u VE2y (h-)m g
(C2"")i,j+1 = sign(di,j+1)g $ 0(h [n! Bym (4.43)

hence the sum of these are the total correction in terms of x component of

diffusion term.

* Jump in pressure and pressure gradient : Cf
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Figure 4-3: Interpolation to obtain average and differenced values.



Recall that the force density and its derivatives along the interface are related

to the pressure jump and jump in pressure gradient [21]. In the multi-step

method, we solve a Poisson equation to obtain pressure. Once jump condition

is known, jumps in pressure or pressure gradient can be easily applied only by

the Ghost Fluid Method (GFM) and changing the right-hand side of the linear

system ([21]). Using the central differencing scheme, the pressure correction

step in our work

V2 p= V-u (4.44)
A~t

yields a linear system, i.e.,

Ap =f (4.45)

where A E Rnxnv XnYno is the coefficient matrix, p E RxnY Xl is unknown and

u E Rnxn- x is source matrix from the right-hand side of the Poisson equation.

For the simplicity, let's consider one dimension case (p., = f). For example,

assume that the interface exists between a particular j and j + 1 location, and

the jumps in pressure is given as

[p]an = ar (4.46)

And suppose that pj+1 exists in Q+ and pj exists in Q- region and the interface

8Q is defined as a zero level set which values exist on the same location as the

level set. Using the linear interpolation, the jump of pressure on the interface

becomes

[p10n = ar = I + arj+1 I (4.47)
|4r1loi a+1|

Then discretized froms at j and j+1I locations are



pj+1l - P(Ax
PJ±+2 - Pi+i

Ax
P++ I P3-) /Ax =f~

Plugging the jumps into the above equations gives

_ P -1Pj-1
Ax

pj+1 - p3

AxJ

/Ax = fi + arAx 2

/Ax = f,+1 - A

in which we can see that what we have to do is to update right-hand side only.

Now consider a jump of normal derivative of pressure, i.e.,

d = br (4.52)
dx

Using the subcell resolution

0 = -h-/h = q5j (4.53)
1jl + Iej+1I

and denoting the pressure value at interface PI, the jump conditions becomes

Pj+1 - PI

(1 - O)Ax)
_ (PI - PI) = br

\ 0Ax (4.54)

where the first and second terms are the derivatives of left and right side re-

spectively. Thus, pressure at the interface is

P1 = PjiO + pj(1 - 0) - brO(1 - O)Ax (4.55)

and the derivatives on the left and right sides of the interface can be written as

x- /A = (4.48)

(4.49)

P3+1 - P3;Ax

P++2 - $+1

(4.50)

(4.51)



PI - P3 _ P3+1 - P - br (1 - 6)

Pj+1 - PI _ Pj+1 - Pi + brO
(1 - 6)Ax Ax

(4.56)

(4.57)

Therefore, this approximation allows one to update the right hand side of the

linear system, i.e.,

ar± br(1 - 6)
Pxx,j = j (Ax)2 Ax

ar brO
PXX,j+1 f+1 -- )+ Ax

(4.58)

(4.59)

This idea can be extended to multi-dimensional, multi-phase problems [21].

For example, we represent two dimensional calculations. For the given level set

function such as

<(x, y) = (x - 0.5)2 + (y - 0.5)2 - 0.32 (4.60)

whose zero level set is a circle with radius of 0.3, we apply a jump condition

ar = x2 + y + 1 (4.61)

Similarly, with the same level set function and jump condition of

ar = sin(1Ox) + y + 1 (4.62)

are applied. The following figure represents the solutions of pressure field.
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* Correction of Velocity : Qg and Cv

Since the pressure is discontinuous across the interface, the derivative of pressure

in corrector step overshoots. Therefore, we have to eliminate the effect of jump

of pressure so that the fluid flows along independent pressure gradients in each

domain (Q+). We have to add velocity correction term {UCk}, i.e.,

u3+/2 = UE-1/2 - P+ _ l + (C3 (4.63)
p p

where (Cg)j+ 1/2 is defined as

(Cu)j+1/2 = sign(4j)ar/Ax (4.64)

Here, we present several examples of jump of pressure. Firstly, in one dimen-

sional Poisson equation the following figure shows the solution of Equation

(4.45) and the derivatives before and after velocity correction. Dirichlet bound-

ary condition is used for this.

* Jump contribution associated with PV -u* : , C4

In the MAC grid, the values of (p/At)V - u* lies on the center of the cell,

i.e. locations for pressure. Therefore, interpolation of velocity location is not

necessary. Assume that the interface falls between x and xi+1. If the interface

is closer to xi+ 1 than x, the jump contribution of ux is

Q = sign() h[ux]r(h+) + [uxx]r(h+)2  (4.65)

and if the interface is closer to xi then

C = -sign(4i+1) ([ux]r(h-) + [uxx]r(h-)2 (4.66)

where the h+ and h- are defined as
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h+ _ J+i+1|h h- =- ilh (4.67)
loil + |#i+1|' |#il + |4i+1|

In the same way, CL4 can be determined.

4.3 No-Slip Boundary Condition

No-slip boundary condition can be imposed by adding tangential singular force fT
which is related to the normal derivative of the velocity as shown in [18]. Since

the tangential force comes from the viscous shear stress on the interface surface, its

relation can be represented as

u=~-v T. (T. au (4.68)

The right hand side denotes the jump of the tangential component of the normal

derivative of the fluid velocity.

The normal derivative of the velocity can be calculated with one-sided finite dif-

ference scheme shown in Figure 4-7. For example, the normal derivative of u in Q+

region is given as following:

Bu 3uo + 4u0- U2 + O(12) (4.69)
on ),261

where 61 is the distance between two adjacent points on the stencil, and typically

61 > s/Z 2 + Ay2 to make the evaluation points exist in different Cartesian-grid

cells. The velocity u1, u2 are interpolated values from the surrounding velocity field.

For uO, we have to give special treatment to make sure no-slip condition. Since the

interface moves in normal direction when solving #t + u -V# = 0, fluid velocity on

the interface surface must be the same with the interface velocity,

uo = (ur -n)n (4.70)
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Figure 4-7: One-sided extrapolation using one-sided finite difference scheme



4.4 Finite Difference Approximation of Bending

Elasticity

In this section, the capability of benchmark is shown between exact solutions and

finite difference approximations for Dtt[#(x, y, t), @(x, y, t)] and D,,,,[#(x, y, t)]. For

the properly chosen #(X, t) and @(X, t), the exact solution can be obtained by plug-

ging the exact location vector X into the Dtt[#(x, y, t), @(x, y, t)] and D ... [#(x, y, t)]

that are a combination of spatial and temporal derivatives of #(X, t) and 4'(X, t).

Therefore, it is important to select #(X, t) and O(X, t) which have an analytical lo-

cation vector. On the other hand, for the approximations, the standard second-order

central finite difference schemes are used over a structured grid.

4.4.1 Matching of Bending Stress : 4X

Basically, the level set function # must be at least or more than C4 if we want to

estimate the convergence of D,... [#(x, y, t)] which contains fourth spatial derivatives.

Two kinds of level set functions are investigated here; one is a fully C' function such

as

#1(x, y) = f(x - 0.5)2 + (y - 0.5)2 - 0.3, (x, y) C [0, 1] (4.71)

and the other one is C only in one dimension, i.e,

#2 (x, y) = xsin(x) - y, (x, y) E [0, 1] (4.72)

where we dropped time variable for simplicity. The convergence calculations with

different grid size are shown in Figure 4-8 and 4-9. As seen in the figures., the finite

difference approximation for the elastic stress produced successfully for fully and semi

C level set functions. The calculation results for different grid size are included in

Figure 4-8 and 4-9., which represents an excellent convergence into second order.
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4.5 Advection of Level Set Functions

We solve the advection equations of the level set functions to track the moving inter-

face. Recall that the equation we should solve is

4t + FIV#| = 0 (4.73)

The typical first and second order schemes for convex or non-convex speed func-

tions are shown in [16]. However, they are not applicable in this work because we

calculate the bending elasticity with # which contains fourth derivatives. For instance,

consider a second order fourth differencing of the level set 4 at time step n.

(#2$) = _ 4 4 1 _, + 64 -4# + 4i+2,j + O(Ax 2 ) (4.74)

After one iteration, a second order upwind yields

(+ _ 40n + +1 4on~ + #7fl, + O(AzX2) + O(A()75)

- - 4 5-fi + 6+1j - 4qil4±0 (j2) (4.76)
AX4 + (Az2)

Therefore, we need at least fifth order accurate scheme to resolve accurate bending

elasticity. Since Weighted Essentially Non-Oscillatory (WENO) scheme has one order

of improvement in accuracy compared to ENO scheme ([22], [5], [23]) we use WENO

scheme for spatial discretization of level set functions along with the TVD Runge-

Kutta time discretization.

4.5.1 Weighted Essentially Non-Oscillatory (WENO) Scheme

In this subsection, we present fifth order WENO scheme from Liu et al.([22]) to

discretize spatial derivative of level set function. WENO scheme can be obtained

by taking interpolating polynomial which approximates the spatial differentials and

building a convex combination of them. Here the fifth order WENO is represented



([12]).

Let us consider an one dimensional function # whose differencing #2, is what we

want to approximate. Firstly, define a table of differences of {# O} such as

V1 = (#i-2 - #i-3)/AX

V2 = (#i-I - #i-2)/AX

V3 = (/i - #i-1)/AX

V 4 = (0i+1 - #i)/AX

V5 = (#i+2 - #i+1)/AX

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

Next, we define the indicator of the smoothness IS as

13
12
13

IS 2 = (V212

= (v312

1
- 2v 2 + v3)2 + I (vi - 4v 2 + 3V3)2

4

- 2v 3 + v4)2 +

- 2v 4 + V5)2 +

4v 2

(4.82)

(4.83)

(4.84)
1
I (3vi - 4v 4 + v5 ) 2

4

And the weights wj for the convex combination are determined as

Wy = a _
ai + a2 + as

where the aj are decided by the ENO property, i.e,

ai = 0.1(IS1 + E)-2

a 2 = 0.6(IS 2 + C)-2

a3 = 0.3(IS3 + E)-2

where, by the convention, E is added in the denominator to reduce the sensitivity

iS1

IS3

j = 1,2,3 (4.85)

(4.86)

(4.87)

(4.88)

-- V4) 2



in case that the indicator of the smoothness is near zero. We use C = 10-5 in this

work.

Then we obtain the upwind scheme for (#,)j, i.e,

1 7 11 1 5 1 1 5 1

(#X)= w 1  V1- V2+ 6V3 +W2 6V2+ V3+ V4 + W3 V+ V4- V5

(4.89)

For the downwind scheme, we can define the finite differences, Vk, in reverse way

and apply the same idea. In addition to x direction, we can use an analogy for

multi-dimension.

4.5.2 TVD Runge-Kutta Time Discretization

High order time discretizations are introduced by Shu and Osher in [23]. For the usage

of the WENO scheme, here we use fourth order TVD Runge-Kutta time discretization.

For the simplicity of the notation, we define the spatial discretization operator L =

Lj(#") = F|V#| and the time discretization becomes

0()+ L 0

2Ok+ +1 (0) 2 (1)
9 03 + 903+

1 0(1) 102

4

32

32j

(4.90)

(4.91)

(4.92)

(4.93)

(4.94)

+ IL(1)

L (0) - L + L
9 3 L

6~ 6 3

4.5.3 Reinitialization

We shall make a use of WENO scheme for the re-initialization process to solve the

re-initialization equation

#t + sign(o0 )(1V#| - 1) = 0

O(0)

O(2)

On+1

(4.95)



where sign(#,) is the sign of initial 4, initial value in this equation.



Chapter 5

Simulation Results

5.1 2D Balloon Simulation

We investigate balloon simulations to check the capability of normal force jump. The

force difference between inside and outside of a balloon holds the shape of it. The

pressure difference depends on the curvature of the interface and the correlation to

the pressure jump is given as

fn = [p]r OK (5.1)

where a is the surface tension coefficient and K is the signed curvature. The

curvature is given as a function of level set <$ [4]. The initial shape is given as an

ellipse which has larger major axis in x direction. During the iterations, the geometry

of a balloon reaches to an equilibrium state. The following figure shows the results

of velocity vector, pressure and streamline field at different times. We set - = 0.01

and p = 0.002 for this simulation. The interface oscillates to the equilibrium state as

it converges. The figure XX shows the temporal evolution of major radii rx and ry
with p = 0.002 and T = 35.
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5.2 Rotating Cylinder

In this section, we investigate the capacity of viscous stress jump through a simulation

induced a rotating cylinder. A highly viscous fluid is used for the stability at initial

stage. We apply a tangential density force f, = 0.2 and viscosity p = 0.02 without

advection of level set field. The following figures are result when the flow reached to

a steady state. For this, 50x50 grid points axe used.

The convergence study can be obtained by taking an exact solution which is done

in 256 x 256 grid.

Table 5.1: Convergence Study

N -UN - U256  VN-- V256oo |PN - P256oo
32 0.0639 0.0639 0.1602
64 0.0250 0.0250 0.0864
128 0.0077 0.0077 0.0321

0.01 0015 0.02-K Wor 0.025 0.03 0.035

Figure 5-5: Convergence study of solutions
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5.3 Simulation of Closed Curves with Bending Rigid-

ity

In this section, we investigate the motions of interface which has bending stress. As

in the 2D balloon cases, the initial shape is prescribed as an ellipse for which we can

express by level set function, i.e.,

<(x, y) = j(x - xc) 2 + 0.5 x (y - yc) 2 - rc (5.2)

where xc and ye denote the center of principal Cartesian axes, and rc is the radius

of interface. We prescribe a circle and make it an ellipse by the above equation.

As shown in following figure, the initially given interface vibrates and finally reaches

to an equilibrium state. Firstly, we investigate the motions of a closed interface

with different Young's modulus. In these simulations, we employ 64 x 64 grids in

{x, y} E [0, 1] x [0, 1] space, (xe, yc) = (0.5, 0.5), rc = 0.25, and we take three cases

in which E = 1e6, 1e7, and 1e8 for the Young's modulus. The fluid density and

viscosity are set as pf = 1.0, the thickness of interface is h = le - 3 and p = 0.01

which are consistent in all cases.

Equilibrium

----- InitialShape

Figure 5-7: Problem statement of the simulation
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The Figure 5-8 shows the evolution of major radii at each choice of Young's mod-

ulus. As seen in the results, the motions of interface are very different in each case.

For low E, the interface behaves slowly and the viscous damping is dominant in mo-

tion. However, the higher E is the faster motion can be seen, in which the motion of

interface is oscillatory.



5.4 Comparison with a Lagrangian Method

In order to verify whether the numerical result is correct, this section provides a

comparison to a Lagrangian method. As a choice of Lagrangian particle-tracking

methods, we implement the Grid Based Particle Method (GBPM) which is one of the

state-of-the-art Lagrangian formulations for evolving interface or surfaces [7] '. The

GBPM evolves the interface by using the given velocity field on grid points and can

store certain Lagrangian information of the interface at the control points, including

normal, curvature and parametrization, which will be useful in various applications.

The figure (5-9) shows the way of transferring information in the GBPM. The control

points, which are called as foot-points, spread out the information onto the active grid

points, and simultaneously the information (e.g. velocity) moves to the foot-points

by sorts of interpolations.

Using the Lagrangian control points, we evaluate the bending rigidity and calcu-

late singular forces acting on the fluid. For a comparison of the two methods, we can

try the vibrating closed interface simulations again. Starting from an ellipse form,

the interface reaches to an equilibrium state, which is a circle again. The following

Figure (5-10) shows that the evolution of principal radii are excellently matching in

two different methods. For this simulation, 64 x 64-grid are used and the following

parameters were chosen, in which all parameters has SI Units.

pf = 1.0, p = 0.01, p, = 1000, h = 0.001, E = 1e7

In addition to the similar physical behaviors, there is a dramatic difference in com-

putational cost. The following figure (5-11) shows the comparison of computational

time of the two method. The time scale was measured per iteration and normalized

by the smallest time that is observed in the Level Set approach.

The results shows that the computation costs more for the GBPM than the Level

'Dr. Shingyu Leung and the author had done a collaborative work on the coupling of fluid and
GBPM numerical codes. Dr. S. Leung who is a PostDoc at University of California at Irvine visited
to the Dept of Applied Math of MIT as a visiting researcher in Spring 2009. The results shown in
this paper is based on the work with Dr. Shingyu Leung.
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Set formulation. Here, by estimating the portion of computation at each method, we

can investigate what the most demanding part of the computation is. The following

Figure (5-12) shows the averaged ratio of time-for-interpolation to the total compu-

tation time. Here the both time scale was normalized by the Level Set time scale

so that the total computational cost has a value of 1 in the Level Set. As seen in

the figure, the interpolation occupies most of portion in computation. The GBPM

not only takes more computational cost, but the interpolation also has larger portion

among the total computation. This is because that the interpolation requires a large

amount of information, especially about the locations of control points. Also, the

computation time for the interpolation depends on the order of accuracy. Both of

the GBPM and the Level Set employ spiral spatial interpolation. If we reduce it to

linear interpolation, the computation cost will be decreased, but we lose the accuracy.

Therefore, reducing the number of interpolation is necessary to decrease the compu-

tational cost, for which the Level Set gives the minimum number of interpolation

because most linear interpolations happen between two grid point except the spiral

interpolation for the no-slip condition.

5.5 Simulation of Two Interfaces

Another important property of this algorithm is that we do not have any interface-

penetration problem. Because this algorithm solves Navier-Stokes equations only and

uses the fluid velocity for interface evolution, two or more number of interfaces do

not penetrate through each other as long as the incompressibility condition of fluid

is satisfied.

To verify the fact, we provide two-interface simulations. Firstly, in a boxed fluid

domain, we apply constant wall velocities on the top and bottom walls. Here the

wall speed is set as Ut, = -3 [m/s] and Ubottom = 3 [m/s] in p = 1.0 [kg/rm 3] and

y = 0.01 [kg/m-ns]. For the solid properties, we used E = 108 [Pa], p, = 1000 [kg/m 3]

and h = 0.001[m]. Because of the wall motion, the fluid rotates and the pressure in

the middle region becomes lower, and therefore the interfaces would rotates without
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contacting to the walls. The Figure (5-13) and (5-14) show the time evolution of solid

in the viscous rotation flow. The arrow means the velocity vectors, color denotes

pressure and solid lines are interfaces. As you can see in the figures, the interfaces

contact once, rotates a little keeping the contact and finally are separated by the flow

field.

And the Figure (5-15)-(5-16) show the same simulation of a faster moving wall

velocity, Uspeed = 5 [m/s], with same parameters as we did in the above example.

As you can see, since the wall velocities are faster than previous case, the motion of

interfaces becomes more flexible. You can see that the interfaces do not penetrate

through each other even in this case.

The penetration problem is an important topic in computer graphics. In animation

field, people do hair-blowing simulations by solving independent hair-thread dynamics

systems. In this simulation, the numerical code should detect if some hair threads are

not crossing though each other, and whenever we find it we have to impose a special

numerical technique to make them separate. However, by introducing an idea of

using incompressibility of fluid into the motion of hair particles, we can automatically

prevent the penetration between interfaces.
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Figure 5-13: The evolution of two Interfaces with a slow top and bottom wall speed
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Figure 5-14: The evolution of two Interfaces with a slow top and bottom wall speed
(Continued)



((a)) t = 0.1 sec

((c)) t = 0.9 sec ((d)) t = 1.2 sec
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Chapter 6

Summary and Future Works

6.1 Summary

In Chapter 5, we surveyed the accuracy of the implicit algorithm and numerical

efficiency in terms of computational cost. The following facts can be concluded by

this work.

" The Level Set function can represents a real thin solid interface for fluid-

structure interaction. In Chapter 3, the linear bending rigidity has been formu-

lated as a second-order in terms of space interval.

" The implicit representation of the interface can reduce complexity of numerical

code and computational cost. In Chapter 5, we realized that the interpolation

requires demanding computational cost. By reducing the number of interpola-

tion and degree of freedom of the data structure, the computation time for fluid-

structure interaction was decreased in the case of vibrating closed-interface. We

did not have theoretical method to evaluate the quantity of reduction. But the

results implies that the computation time will be highly reduced when the length

of interface is small compared to the outer fluid region. Even if the interface

occupies a small portion of fluid domain, the computation time will be much

smaller than the case that we use moving body-fitted grid.



" By observing the comparison of computational cost between the Level Set ap-

proach and the Lagrangian approach, we realize that the efficiency of numerical

code will increase further in three-dimensional simulations. In three-dimensional

simulations, the Lagrangian control-points will include more complicated data

information. Since the Level Set is a scalar variable, the Level Set representa-

tion of interface would have smaller degree of freedom to represent interfaces

compared to the IIM.

" By solving the fluid equation only and introducing the incompressibility of fluid,

we can prevent the penetration problem between the interfaces. To use local

fluid velocity for the evolution of interfaces guarantees that the penetration

does not happen during the simulation. This implies that we do not any special

contact algorithm for structure. Since this works for two interfaces, the method

would work for more than two interfaces.

6.2 Future Works

This section provides the main required future works for improvements of the FSI

algorithm.

* Firstly, we need to update the reinitialization of the level set because reinitializa-

tion process takes the loss of volume. However, [1] provides a level set evolution

technique without reinitialization procedure by introducing overall energy func-

tion. This work is beyond the reintialization process, but by introducing the

non-reinitialization process we can improve the loss of volume problem.

" The second required improvement is that we have to track the tangential motion

of solid exactly. Here by using the level set function <$ which evolves in normal

direction we introduced the FSI algorithm. However, this is not exact actually.

One possible idea is to use two level sets: one tracks normal motion and the other

tracks the tangential motion of solid. For the flapping motion to be happened

in open curve simulation, we need the stretching term which was neglected in



Section 3.2.2. The stretching term can be expressed by the perpendicular level

set that is introduced in the Equation (3.1). By adding the stretching motion,

the fluid-structure interaction problem with the level set expression becomes

complete.
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Appendix A

Level Set Expression of Bending

Rigidity

In this part, the exact forms of PDE which is identical to the bending elastic stress

of the interface in two dimension. Note that 4i = 8/ i = #i(X, t),

simplicity. By the chain rule, the first component of D.... is

9(cu1Oxy + c124yy)(qi)2
4(02 + 02)5/2

154y(qi) 3

8(02 + 02)5/2
3(qi)(q2) 3(ciiqxy + c124yy)(q 4 ) 90y (qi)(q 4)

2(02 + 42)3/2 2(02 + 02)3/2 4(02 + 02)5/2

q5 Oy(6(cu422x + ci 2 #xy)(q3) + 6(cuqxy + c12#yy)(q2) + 2#2(q6) + 24y(q5))
2(#2 + #2)3/2

(A.1)

and the second component is

9(cu422x + C124Oxy)(qi)2

4(02 + 02)5/2 8(42 + 0 2)5/ 2
3(qi)(q3) 3(ci4xx + c12#xy)(q 4 )

2(#2 + #2)3/2 2(2 + 023/2)

#$O(6(cuOxx + c124xy)(q 3) + 6(cu#2,y + c124yy)(q2) + 2#x(q6) + 24y(q))

2(02 + #2()3/2
(A.2)

i = x, y for

(4+ 20)1/2

(4 + #2 )1/2

94 (9)5(4)
4(0 +042)5/2



, where the coefficients cu, through c 3 2 and qi through q6 are values defined as

followings.

Cii (2 +q 02)1/2
cu =

C12 (q52 +0~2)1/2
cx =

qi = 2#x(cjj#22 + c20xy) + 2#y(c,loy + c120#y)

c2 C=cu#xy + c12cyy 4, (qi)
(42 + #0)1/ 2  2(02 + 02)3/2

C C q4xx + C 2/xy 4O _(_ 1)_

(22 # + #2)1/2 2(42 + #2 )3/2

q2= c21#2y + c22 #yy + c11(cu422,y + c12 42yy) + c12(cu#2yy + c124yyy)

q3 = C21#xx + C22#2, + cu1(c1I1#22 + c12#xx) + C12(C114xxy + c124xyy)

4= 2(cu422x + c 20xy )2 + 2(cui42 + c12#y) 2 + 2#2(q 3) + 2#y(q 2)

C - (Cl1 u y + c12#Oyy))(qi) + 3#y(qi)2
(#2 + #2)3/2 4(#2 + #2)0/ 2

c (ciix 2 2 + c12xy)(qi)
(42+ #2)3/2

4 x +q1)2
4(02 + 02)5/2

q2

(02 + 02)1/2
q3

02+#2)1/2

_ #y (q4 )
2(42 + #2A

2 (q4)

2 (#2 + 4 )3
(A. 13)

q5 = C31xy + c324yy + 2c21(c11#22 + c2xyy) + 2c22(cu#2xyy + c12 0yyy)

+c1(c21xx + C22xyy + cui(cIu#222, + c12#22yy) + C12(ClIxxyy + c20 yy))

+C12(C214xy + c#2y+Cll(ci yy + c2$xyyy) + cl2(cu#2xyyy + c1 2 #yyyy))) (A.14)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

and

_

(



=6 C3l1bxx + C320xy + 2C21(Cl1~xxx + C120xxy) + 2C22(C11l5xxy + C12q0xyy)

±cll(C210xxx + C220xxy + Cll(Clli&xxx + C12q0xxxy) + C12(Clloxxxy + C120xxyy))

+Cl2(C21Jxxy + C22q0xyy + Cl(~lxx + Cl2c/xxyy) + C12(CI xxyy + Cl2q5xyyy))) (A.15)
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