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Abstract

Despite the increasing presence of RF and analog components in personal wireless elec-
tronics, such as mobile communication devices, the automated design and optimization of
such systems is still an extremely challenging task. This is primarily due to the presence
of both parasitic elements and highly nonlinear elements, which makes simulation compu-
tationally expensive and slow. The ability to generate parameterized reduced order models
of analog systems could serve as a first step toward the automatic and accurate charac-
terization of geometrically complex components and subcircuits, eventually enabling their
synthesis and optimization. This thesis presents techniques for reduced order modeling of
linear and nonlinear systems arising in analog applications. Emphasis is placed on devel-
oping techniques capable of preserving important system properties, such as stability, and
parameter dependence in the reduced models.

The first technique is a projection-based model reduction approach for linear systems
aimed at generating stable and passive models from large linear systems described by indef-
inite, and possibly even mildly unstable, matrices. For such systems, existing techniques
are either prohibitively computationally expensive or incapable of guaranteeing stability
and passivity. By forcing the reduced model to be described by definite matrices, we are
able to derive a pair of stability constraints that are linear in terms of projection matri-
ces. These constraints can be used to formulate a semidefinite optimization problem whose
solution is an optimal stabilizing projection framework.

The second technique is a projection-based model reduction approach for highly non-
linear systems that is based on the trajectory piecewise linear (TPWL) method. Enforcing
stability in nonlinear reduced models is an extremely difficult task that is typically ignored
in most existing techniques. Our approach utilizes a new nonlinear projection in order to
ensure stability in each of the local models used to describe the nonlinear reduced model.
The TPWL approach is also extended to handle parameterized models, and a sensitivity-
based training system is presented that allows us to efficiently select inputs and parameter
values for training.

Lastly, we present a system identification approach to model reduction for both linear
and nonlinear systems. This approach utilizes given time-domain data, such as input/output



samples generated from transient simulation, in order to identify a compact stable model
that best fits the given data. Our procedure is based on minimization of a quantity referred
to as the 'robust equation error', which, provided the model is incrementally stable, serves
as up upper bound for a measure of the accuracy of the identified model termed 'linearized
output error'. Minimization of this bound, subject to an incremental stability constraint,
can be cast as a semidefinite optimization problem.

Thesis Supervisor: Luca Daniel
Title: Associate Professor
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Chapter 1

Introduction

1.1 Modeling and Simulation of Analog and RF Systems

1.1.1 Motivation

With the increasing presence of RF components in personal wireless electronics, such as

cellular phones and GPS navigation hand-helds, the need for fast simulation of such sys-

tems is increasing and will be around for years to come. Additionally, communication

systems are becoming smaller and more sophisticated, often implemented as System-on-

Chips (SoC), requiring increasingly optimized designs for size and efficiency.

Despite their prevalence today, the automated design and optimization of RF and analog

circuits, such as the RF receiver front-end shown in Figure 1-1, is still an extremely chal-

lenging task. This is primarily due to the presence of both parasitic elements, such as RF in-

ductors, which create unwanted electromagnetic coupling within the system, and nonlinear

elements, such as MOSFETs, which are described by highly nonlinear equations contain-

ing hundreds of parameters. A model that can accurately capture all of this behavior may

contain several hundred thousand densely coupled nonlinear equations, making simulation

computationally expensive and slow. The design of such systems is typically performed by

a designer using a combination of intuition resulting from years of experience, and many

hours of SPICE simulations. Although the current models are computationally inefficient

in their present forms, this design task may be facilitated by the automatic extraction of



parameterized macromodels for such systems.

The ability to generate Parameterized Reduced Order Models (PROM) of nonlinear

dynamical systems could serve as a first step toward the automatic and accurate charac-

terization of geometrically complex components and subcircuits, eventually enabling their

synthesis and optimization. The resulting compact models may also be used for higher

level design optimization as well, enabling for instance the synthesis of an RF receiver

chain, shown in Figure 1-1.

u~H ytt)
-- Filter - Amplifier Mixer Filter -+

Oscillator

Figure 1-1: RF receiver chain

1.1.2 Challenges

Historically, the simulation of RF circuits has been an extremely difficult task. This is due

to the presence of both highly nonlinear elements, such as MOSFETs, and parasitic ele-

ments, such as RF inductors. Consider the amplifier model block in Figure 1-1, which may

be realized using the low noise amplifier shown in Figure 1-2, containing both nonlinear

elements and parasitic elements.

Parasitic elements create unwanted electromagnetic coupling between the circuit blocks

and the substrate. At high frequency, such components must be modeled with distributed

elements, typically obtained by discretizing Maxwell's equations over the device geom-

etry, resulting in possibly millions of ordinary differential equations (ODEs). Together,

this makes block-level modeling insufficient to capture the non-negligible inter-block ef-

fects. It is possible to capture all coupling effects by creating a single model for the en-
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Figure 1-2: Schematic of a low-noise amplifier that may be contained in an RF receiver
chain.

tire block chain, but this becomes extremely expensive computationally and results in ex-

tremely large-order systems.

Nonlinear devices are prevalent in analog circuits functioning both as linear elements

and as nonlinear elements. Nonlinear blocks such as mixers are designed to behave in a

strongly nonlinear manner, and thus must be represented with highly nonlinear models.

Other blocks, such as amplifiers, contain nonlinear elements but are designed to behave

in a linear manner. However, these blocks always exhibit nonlinear effects in some range

of operation, and thus despite the desired linear performance it may be necessary to use

nonlinear models to fully capture the behavior of the block. Furthermore, many of these

nonlinear elements are described by extremely complicated device relations. For instance,

the BSIM4 model for a MOSFET contains strong nonlinearities and hundreds of param-

eters, making its evaluation extremely computationally expensive relative to simple linear

devices.



Consider, for example, the pair of interconnected blocks depicted in Figure 1-3, which

may represent part of an RF receiver chain, and can in principle be modeled separately

using the the following state-space models

Cftf-5 + Gfxf = bf u

qa(Xa) + ia(Xa) = ba(w)

W Cf5(Xf,U)

Y = Ca(Xa, W),

where u(t) is the input to the block chain, y(t) is the output, w(t) is the intermediate

signal, and xf (t) and Xa(t) represent the internal state variables for the filter and amplifier

respectively. Such state-space models can be constructed at device-level using modified

nodal-analysis, similar to the manner in which SPICE would create a model for simulation.

u(t) y(t)

Figure 1-3: Two-block analog circuit representing part of an RF receiver chain.

In a realistic situation, however, both blocks will depend on some set of design param-

eters p, representing perhaps both geometric and device parameters, such as W, L, R, C.

Additionally, both blocks may contain parasitic elements that couple the two blocks to one

another and to the substrate. A more accurate depiction of the simple two-block analog

circuit is shown in Figure 1-4, and would be modeled using the following pair of coupled

and parameterized equations

Cf(p)f + Ca(P)a + Gf(p)xf + Ga(P)Xa = bf u

qa(a, Xf, P) + ia(Xa, Xf, P) = ba(W)

w = Cf(Xf, u)

Y = Ca(Xa,W).

System (1.1) may be extremely large, and possibly prohibitively expensive to simulate

numerically for many different parameter values.

(1.1)
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u(t) Filter Amplifier y(t)

Figure 1-4: Detailed depiction of two-block analog circuit with inter-block coupling, cou-
pling to the substrate, and parameter dependence.

1.2 Design Optimization using Reduced Models

1.2.1 Model Reduction

Due to both the enormous number of equations contained in the model and the complex-

ity of the nonlinear equations, it is often necessary to facilitate model simulation through

the use of reduced-complexity models. The goal of model reduction is to capture the "im-

portant" dynamics of a system in a compact model that has reduced complexity, i.e. is

computationally cheap to simulate. Here "important" is defined on a case-by-case basis,

based on the desired region of performance for the model. This includes, for example, a

certain range of input frequencies. From a dynamical system point of view, model reduction

aims to replace the large complex nonlinear system (1.1) with a smaller simplified system

of equations that preserves both the input-output behavior and the parameter dependence

of (1.1)

(2, p) + i (, p) = f, y =a(^, p).

Here we assume the number of state-variables in the reduced state vector ^ is significantly

reduced, and the computation of the nonlinear functions q(s) and i(^) are significantly

reduced. The resulting model should also capture the effects of parasitic coupling present

in the original system, and should preserve important system properties of the original



system such as passivity or stability.

For linear systems, two common practices for constructing reduced-order models are

state-space projection and transfer function fitting. In projection approaches, a low-order

state-space is identified and the linear system is projected into that space, resulting in a

lower-order linear system. The low-order space is typically chosen to preserve or match

certain properties of the original system. For example, moment-matching and frequency-

domain proper orthogonal decomposition (POD) preserve transfer function moments in the

reduced model [32, 102, 70]. Projection methods are convenient for state-space models,

which can be derived from device-level equations.

For nonlinear systems, it is possible to obtain model-complexity reduction through both

function approximation and state-space projection. That is, in addition to reducing the

number of dynamical system equations and state-space variables, one may obtain a com-

plexity reduction by approximating the original nonlinear function with an alternative class

of functions which are computationally cheaper to evaluate. This is particularly true for

today's transistor models, such as the BSIM4 model, whose constitutive relations depend

on hundreds of parameters and thus are extremely computationally expensive to evaluate.

For weakly nonlinear systems, a Volterra-type expansion is common, as the resulting poly-

nomial system can be efficiently reduced with a linear projection [67]. For highly nonlinear

systems it is not possible to accurately capture all of the important nonlinear effects through

a single local model. Techniques such as the Trajectory Piecewise-Linear (TPWL) tech-

nique [79, 25, 96] create Trajectory-Based Models (TBMs) which are constructed to be

accurate in a much larger region of the state-space. This region of space is identified by

training the system with typical inputs of interest. While there has been a large amount

of interest in TBMs recently, the resulting models have yet to gain widespread acceptance

due to their high cost of construction and a lack of theoretical statements concerning the

accuracy of the resulting reduced models.

In all reduction techniques it is crucial that the reduced-complexity models preserve im-

portant system properties such as stability and passivity. It is common practice to sacrifice

accuracy in order to guarantee stability in linear projection methods [42, 62]. While there

has been significant work done in the field of stable model reduction for linear systems,



little work exists on stability-preserving techniques for nonlinear systems.

To be useful for design and optimization the resulting reduced models must be parame-

terized, and in addition to preserving state-space accuracy should also preserve parameter-

space accuracy. That is, the reduced model should accurately predict the behavior of the

system to changing parameter values. There has been a lot of work done on parame-

terized model reduction for linear systems: Some methods are based on statistical per-

formance evaluation [76, 49, 41, 48], while others are based on moment matching tech-

niques [101, 75, 22, 24, 46], Truncated Balance Realization (TBR) techniques [68], or on

quasi-convex optimization techniques [87]. Very few techniques, such as [48], also apply

to non-linear systems.

Finally, in addition to reducing the complexity of simulation, the reduced-complexity

models must also be sufficiently cheap to construct. Linear reduction techniques such as

moment-matching and POD have gained prominence over the more theoretically sound

method of balanced truncation due to the extremely high computational complexity of bal-

anced truncation. The TPWL nonlinear reduction technique is also extremely expensive as

it requires many simulations of the full nonlinear system. This is generally viewed as one

of its largest drawbacks.

1.2.2 Shortcomings of Existing Model Reduction Techniques

Despite the many recent innovations in both linear and nonlinear model reduction, both

still have shortcomings making them impractical for modeling systems containing both

nonlinear elements and parasitic elements. These shortcomings include both theoretical

limitations, such as a lack of stability guarantee for the resulting models, and practical

limitations, such as computationally expensive model construction.

For nonlinear model blocks, existing techniques, such as TPWL method, are not guar-

anteed to preserve system properties such as stability. This is particularly important because

in the TPWL procedure both function approximation and projection may create unstable

models. Additionally, the TPWL method must be modified to handle systems described by

complicated nonlinear descriptor functions. Such systems occur when modeling MOSFETs



with current models such as the BSIM4 model. Nonlinear descriptor functions introduce

questions of both stability and existence of a unique solution.

For linear model blocks, there do not currently exist computationally affordable reduc-

tion techniques for indefinite and unstable systems that are capable of enforcing stability

and passivity. This is an important problem because field-solvers and parasitic extractors

used in VLSI design often extract models that are stable but are described by indefinite

matrices, or are numerically unstable, despite modeling stable and passive systems.

When considering frequency-dependent effects in distributed systems, it is difficult to

efficiently capture coupling between blocks and coupling with the substrate. Reduction

techniques for such systems also encounter problems resulting from unstable extracted

linear models.

Finally, to be useful for design and optimization all reduction methods must preserve

parameter dependence and must be computationally inexpensive to construct. This requires

identification of the important and sensitive regions of both the state space and parameter

space. Creating nonlinear reduced models using the TPWL method is particularly compu-

tationally expensive.

1.2.3 Alternative Applications for Modeling Techniques

Although this work focuses primarily on the modeling of analog systems, the contribu-

tions in this thesis could be beneficial to many electrical engineering applications outside

of analog systems, such as modeling semiconductor devices, electromagnetic scattering,

and control applications. Outside of electrical engineering applications, any multiphysics

system, i.e. systems whose behavior is described by coupled partial differential equations

(PDEs), could benefit from model reduction techniques to handle the resulting prohibitively

complex systems of equations. Many applications in systems biology, such as molecular

dynamics and mass action kinetics, could also benefit from new modeling and simulation

techniques. Some of the techniques in this thesis have been used to model segments of

the cardiovascular circulatory system that are initially described by nonlinear PDEs. These

models can be used to determine blood pressure within various segments of the arterial net-



work, which may be useful, for instance, for determining drug-delivery effectiveness for

medications aimed at fighting hypertension.

1.3 Overview and Contributions of this Thesis

The contributions of this thesis are in the model reduction of linear and nonlinear systems,

with emphasis on preserving system properties such as stability and parameter dependence.

Specifically, there are four main contributions in this thesis

" Projection approach for generating stable reduced models from indefinite and unsta-

ble linear systems;

* Projection approach for generating parameterized reduced models from highly non-

linear systems;

" Projection approach for generating stable reduced models from highly nonlinear sys-

tems;

" System identification approach for generating parameterized and stable reduced mod-

els of linear and nonlinear systems from time-domain data.

The remainder of this thesis is organized as follows: Chapter 2 presents a thorough

overview of the many notions of stability in regards to dynamical systems. Many of the

contributions of this thesis concern preserving stability through model reduction, so the

issue of stability is covered in great detail. Chapter 3 introduces model reduction, and

presents detailed descriptions of many techniques for both linear and nonlinear systems that

will be useful for understanding the contributions later in this thesis. Chapter 4 presents

model reduction techniques for indefinite and unstable linear systems that are aimed at en-

forcing stability and passivity in the reduced models. The majority of these approaches are

projection-based, but a non-projection approach is also formulated. Chapter 5 presents a

parameterized model reduction approach for nonlinear systems. This approach combines a

parameterized moment matching approach for linear systems with the trajectory piecewise

linear approach for highly nonlinear systems. Chapter 6 considers the topic of stable model



reduction for highly nonlinear systems. Results in this chapter include both theorems guar-

anteeing stability in reduced models, and practical algorithms for efficiently computing

stable nonlinear reduced models. Chapter 7 takes an alternative approach to model reduc-

tion and presents a system identification technique for compact modeling. This technique

is capable of preserving both parameter dependence and stability in the reduced models.

Finally, chapter 8 concludes the thesis.



Chapter 2

Background: Dynamical Systems and

Stability

This chapter introduces dynamical systems, as described by differential equations, and

presents an overview of the many notions of stability of dynamical systems, as well as

tools for their analysis.

2.1 State-Space models

2.1.1 Overview

Dynamical systems are useful tool for the time-domain analysis of physical systems, as they

provide a relationship between input signals u(t) to an output signal y(t) for the system. In

state-space models, the evolution of the system is described by a state vector x(t), which

is controlled by input u(t) and from which output y(t) is determined. In the most general

form, a continuous time state-space model can be expressed as

F(z, x, u) = 0, G(x, y) = 0. (2.1)

Here F: R2NN+Nu i-4 Rn is a dynamical update equation, where x E RN is the state vector

of internal variables and u E RNu is a vector of inputs, and G : RN+Ny s+ RNY is a static



= Ax + Bu Linear system
Ei = Ax + Bu Linear descriptor system
i= f(x, u) Nonlinear system
q(x) = f(x, u) Nonlinear descriptor system
F(i, x, u) = 0 Implicit nonlinear system

Table 2.1: Terminology for dynamical system forms commonly used in this work.

output map that maps the state x(t) to an output vector y E RNY.

Fully implicit system such as (2.1) rarely occur in practice, so for now we will consider

the simpler system

i = f (x, U), y = g(x). (2.2)

Table 2.1.1 shows several other common dynamical system structures that we will consider

throughout this work. In order to guarantee that solutions (or as a stronger condition, unique

solutions) exist to system (2.2), it is necessary to restrict the class of functions f. It is well

known that a solution to (2.2) exists if f is continuous, and furthermore a unique solution

exists if f is Lipschitz continuous. Such notions will be useful later on in this thesis, so we

will define them here.

Definition 2.1.1. A function f(x, u) is locally Lipschitz continuous at (0, 0) if there exist

finite positive constants kf, r such that

f(x, u) - f(z, v) II kf [IIx - z|| + ||u - v||] (2.3)

V(x, u), (z, v) E Br and Vt > 0. If Br = RN, then the function is Lipschitz continuous.

The Lipschitz continuity can be interpreted as requiring derivatives of the function to

be bounded.

Observation 2.1.1. A function f(x, u) is locally Lipschitz continuous with Lipschitz con-

stant , in the ball Br if

_f_(x, U) fi (X, u)

a , < a, V(X, U) E Br



for all i, j.

2.1.2 Models arising in applications

Most of the example dynamical systems considered in the thesis are the result modeling

physical systems using conservation laws and constitutive relations. Specifically, the ma-

jority of our circuit examples are constructed using nodal analysis. For example, consider

linear system

Ex = Ax + Bu y = CTx. (2.4)

In nodal analysis, each equation in system (2.4) results from Kirchoff's current law, which

states that the sum of currents entering and leaving any node must equal zero. Addition-

ally, the E matrix contains capacitance and conductance values, the A matrix contains

conductances, and the state variables x correspond to node voltages and possibly inductor

currents. Although it is typically possible to transform systems from descriptor form (2.4)

into standard form for easier analysis, such a transformation is extremely computationally

expensive and thus we wish to develop modeling techniques that are capable of handling

systems in descriptor form.

A nonlinear system modeled using MNA will produce a system of the form

4(x) = f (x, u) y = g(x). (2.5)

Here f(x, u) contains branch currents through resistive devices, and q(x) represents the

charges accumulated in charge-storing devices, such as capacitors and transistors, such that

4(x) is a current. Often times in nonlinear circuits the system inputs are applied linearly to

the system, meaning the state dependence can be separated from the input dependence in

the nonlinear function, i.e. f(x, u) = f(x) + bu.

It is possible to construct physically-based state-space models in many other areas of

engineering using conservation laws and constitutive relations. In some cases, the ODEs

we consider will be the result of discretizing a PDE spatially.



2.2 Dissipative Systems

In this section we introduce the notion of dissipativity, which is a generalization of the

standard idea of stability. We additionally present techniques with which we can analyze

the stability of dynamical systems.

2.2.1 Storage Functions and Supply Rates

In the real world, all physical systems are dissipative in some sense. Dissipativity is gener-

alization of more common system properties such as stability and passivity, and is related

to a system's ability to store and consume energy. For example, an electrical system may

store energy in electromagnetic fields using inductors and capacitors, and may dissipate

energy (in the form of heat) by currents flowing through resistors. Rather than defining

dissipation based on the rate at which a system consumes energy, it is more convenient to

instead consider the rate at which the system stores energy. That is, a nonlinear system

i= f(x, u) y = g(x). (2.6)

is dissipative if it stores energy at a slower rate than energy is supplied to it. The difference

between the supplied energy and the stored energy is the amount of energy dissipated (i.e.

consumed) by the system. As shown below, dissipation can be proven, or verified, through

the use of storage functions and supply rates [103].

Definition 2.2.1. System (2.6) is said to be dissipative with respect to supply rate -if, for

all initial times to and initial conditions x0 = x(to), there exists a non-negative storage

function L(x) : R N-- R+ such that the dissipation constraint

L(x) < L(xo) + o-(x, u)dr (2.7)
Itt

is satisfied for all x(t), u(t) satisfying (2.6)

A storage function is a function whose increments are bounded (i.e. its rate of increase

or decrease is bounded), and the storage function L(x) can intuitively be though of as a



measure of the internal energy of system (2.6) when it is in state x(t). If the system is

initially in the state xO, then L(xo) represents the initial energy of the system. Similarly, we

can interpret o(x, u) as the instantaneous net power (across all input-output ports) supplied

to the system at time t, and the integral of this supplied power over time represents the total

net energy supplied to the system. Using these interpretations, dissipation constraint (2.7)

implies that the energy in the system at time t cannot be greater than the initial energy in

the system plus the energy supplied to the system.

Different notions of dissipativity correspond to different supply rates, and also possibly

different constraints on the positivity of L(x). The two most common notions, passivity

and finite-gain stability, will be addressed in detail in section 2.2.3

Practically, it is often easier to consider the differential version of constraint (2.7)

L(x) < (x,u ). (2.8)at -

Again interpreting L(x) as internal energy and o- as supplied power, we can interpret (2.8)

as a constraint that the energy in the system is decreasing faster than it is being supplied

to the system. In this notation, we use aL(x)/at (or sometimes L(x)) to represent the

derivative of L(x) with respect to time along solutions x(t) to (2.6). That is, L(x) =

VL(x)Tz.

In order to prove dissipation with respect to a given supply rate it is necessary to show

that there exists a non-negative storage function satisfying (2.8) or (2.7). The benefit of

storage functions is that they allow us to analyze the behavior of solutions to x(t) to (2.6)

without having to actually solve (2.6) for x(t). This is possible because dissipation con-

straint (2.8) only requires information about -i, which is explicitly available from (2.6).

For example, suppose we wish to show that in the absence of inputs, i.e. u(t) = 0, solu-

tions always converge to zero, i.e. | x(t) -- 0. To prove this, it is sufficient to show that

d (xTx) < 0 for all t, implying that x| is always decreasing. This can be achieved by

considering the quadratic storage function L(x) = xTx and the supply rate o- = 0. With



these definitions, constraint (2.8) can be expressed as

&L(x) T+ *T

at =- I-xxxfx+~)XO

If this condition is satisfied for all possible x, then then solutions converge to zero and the

system is dissipative with respect to supply rate o = 0, and we do not need to know any

specific information about the solutions to (2.6).

2.2.2 Internal Stability

Internal stability refers to the behavior of solutions to the autonomous system, i.e. the

system with zero input

= f (x, 0), (2.9)

in response to various initial conditions, and is a property of an equilibrium point of the

system.

Definition 2.2.2. The state x = Xeq is said to be an equilibrium point of the autonomous

system (2.9) if

f (Xeq, 0) = 0.

If X = Xeq is the only x such that f(x) = 0, then it is a global equilibrium point.

In many cases throughout this thesis we will assume the equilibrium point is at the

origin: xeq = 0. This can be assumed without loss of generality because the origin can

always be translated to a non-zero equilibrium point using a change of coordinates. In

physical systems it is common to have the origin (x = 0) be an equilibrium, but for many

analog circuits this is not the case. This is due to constant input sources that are treated

not as variable inputs u(t), but as a fixed offset to the system built within the function f,
resulting in a non-zero DC operating point.

As mentioned previously, internal stability concerns the behavior of the system in re-

sponse to various initial conditions. One "weak" notion of stability requires that solutions



cannot stray arbitrarily far from an equilibrium point, and in such case the equilibrium point

is said to be stable in the sense of Lyapunov.

Definition 2.2.3. The equilibrium xeq is said to be stable in the sense of Lyapunov (or

stable i.s.L.) if for any 6 > 0 there exists e > 0 such that ||x(t) - Xeq|| < c for all initial

conditions xO satisfying ||Iox- Xeq| < 6.

In this sense, given an initial condition xO within a ball of radius 6 around an equilibrium

point, i.e. ||XO - Xeq| < 6, the resulting solution x(t) satisfying autonomous system (2.9)

will not stray outside a ball of radius e around the equilibrium point, i.e. ||x(t) - xeq|| < 6,

for all time. It is important to note that stability in the sense of Lyapunov does not require

that solutions converge to the equilibrium point.

If solutions starting 'close' to the equilibrium always eventually converge to the equi-

librium, then the equilibrium point is said to be attractive.

Definition 2.2.4. The equilibrium Xe, is said to be attractive if there exists 6 > 0 such that

lim ||X(to + t)I| = Xeq, Vt, to ;> 0, VXO E B6 (2.10)
t-oo

Here, B6 is a ball of radius 6 centered at Xeq. If B6 = RN, then the equilibrium is said to be

globally attractive.

It is possible for an equilibrium point to be attractive but not stable in the sense of

Lyapunov. This would occur if the solution first strays arbitrarily far from the equilibrium,

but then returns and converges to the equilibrium. To prevent such cases, it is convenient

to also require stability in the sense of Lyapunov. If an equilibrium point is both stable in

the sense of Lyapunov and attractive, then it is said to be asymptotically stable.

Definition 2.2.5. The equilibrium Xe, is said to be asymptotically stable if it is both attrac-

tive and stable in the sense of Lyapunov for all xO E B6. If B6 = RN, then the equilibrium

is said to be globally asymptotically stable.

If, in addition to convergence to an equilibrium point, the solutions converge exponen-

tiallyfast, then the equilibrium point is said to be exponentially stable



Definition 2.2.6. The equilibrium xeq is said to be exponentially stable if there exist con-

stants 6, a, b > 0 such that

||x(to + t) - Xeg|I a||xole-bt, Vt, to > 0, Vxo C B6 (2.11)

If B6 = RN, then the equilibrium is said to be globally exponentially stable.

For time-varying systems all of the previous definitions can be generalized to possess

dependence on an initial time to. Stability properties that hold independent of this initial

time are referred to as uniform stability. For details on stability of time-varying system and

uniform stability, see [81].

Proving Internal Stability

The preceding notions of internal stability can be proven through the use of storage func-

tions, as described previously in Section 2.2.1. For internal stability, a storage function is

often referred to as a Lyapunov function or energy function. In such cases the supply rate

should be independent of the input u, resulting in the dissipation constraint

dL(x) < O(x).
dt -

Different notions of stability are proven using various supply rates U(x) and various con-

straints on the positivity of L(x). The following internal stability analysis via Lyapunov

functions is referred to as Lyapunov's direct method.

Theorem 2.2.1. Internal stability of system (2.9), i.e. the stability of equilibrium point xeq,

is certified by a smoothfunction L(x) satisfying the following

L(x) - 0, dL(x) <0 = stable i.s.L. (2.12)
dt

L(x) , dL(x) -< 0 z asymptotically stable (2.13)
dt

AjxTx > L(x) > A2 x'x, d --A 3 xx exponentially stable (2.14)
dt



Vt > 0, Vx E Bs satisfying (2.9), and A,, A2, A3 > 0 If Xeq -f 0, then the definiteness

constraints on L are relative to Xeq. If Bs = RN, then the stability is global.

The constraints on the storage function and dissipation rate in Theorem 2.2.1 make

sense based on our intuitive understanding of the storage function as a measure of the

system's energy. For Lyapunov stability, solution do not necessarily converge to the equi-

librium, meaning that the rate of decrease in energy can be zero, resulting in the non-strict

inequality for L(x). On the other hand, asymptotic stability requires the solution always

converge to the equilibrium, meaning the energy must always decrease to zero, thus requir-

ing a strict inequality for L(x). Lastly, exponential stability requires solutions to converge

exponentially fast, meaning that the energy must decrease exponentially, thus requiring

a quadratic lower bound on the rate of decrease of the energy, L(x) < -A 3xTx. For

proofs of the preceding theorem, and additional stability results, see, for example, refer-

ences [100, 81].

2.2.3 External Stability

External stability is a property of the input-output system

(x, U),y=g() (2.15)

and refers to the system's ability to amplify input signals u(t) into output signals y(t). In

these cases we are concerned only with the behavior of the output y(t), and not necessarily

all of the internal states x(t). In the following sections we will focus mainly on two types

of external stability: finite-gain stability and passivity.

Finite-Gain Stability

Finite-gain stability, also possibly referred to as bounded-input bounded-output (BIBO)

stability or input-output stability, requires that finite inputs produce finite outputs. Qualita-

tively, the system is said to be finite-gain stable if the system's output y(t) can be bounded

in some measure by a linear function of the system's input u(t) in that same measure.



Definition 2.2.7 ([100]). System (2.15) is said to be small-signal finite-gain Lp stable if

there exist constants r, > 0 and 7, < oc such that

Hyl <_ Yp|U|lp

for all t > to, given initial state x(0) = 0 and input u(t) such that ullo < rp. If r= 00,

then the system is finite-gain LP stable.

In terms of storage functions and supply rates, a system is finite-gain stable if it is

dissipative with respect to the supply rate o = 2UT u - y, resulting in the dissipation

constraint
&L(x) 2T T

at
This constraint makes sense based on our intuitive understanding of the dissipation con-

strait. If the system produces unbounded outputs y(t) from finite inputs u(t), then for any

finite y the right side of the constraint becomes -oo, and thus no storage function L(x)

can satisfy the constraint that the system dissipate energy infinitely fast. Here -Y2 is often

referred to as the L 2 gain of a system. If -y2 < 1, then the system is said to be contractive.

It is often possible to determine a system's external behavior based on its internal be-

havior.

Theorem 2.2.2 ([100]). Suppose x = 0 is an exponentially stable equilibrium of system

(2.15). If f (x, u) is continuously differentiable and f (x, u) is locally Lipschitz continuous

at (0,0), then system (2.15) is small-signal finite-gain Lp stable. If B, = RN, then the

system is finite-gain Lp stable.

It is interesting to note that in general the converse is not true. That is, a system can

be input-output stable without being internally stable. For example, the linear system i

Ax + Bu with order N = 2 described by the matrices A = [-1,0; 1,0], B = [1; 0],

C = [1; 0]. The equilibrium x = 0 is clearly unstable because the matrix A has a positive

eigenvalue (A = 1), but the output y(t) is bounded with finite gain because the equations

are uncoupled and the output does not see the unstable mode.



Passivity

A more subtle, but equally important, property for input-output systems is passivity. A

passive system is one that does not generate energy. Passivity is a particularly important

system property when models are being interconnected with one another in feedback con-

figurations for simulation. The interconnection of individual passive blocks is also guaran-

teed to be passive, but it is not in general true that interconnections of stable systems are

always stable. Additionally, it is possible for a system to be stable but not passive, mean-

ing outputs will be bounded, but they may be inaccurate due to artificial energy generated

within the system and observable in the outputs.

There are many definition of passivity (see [104] for a detailed analysis of the various

notions of passivity), but the most generic is to say that a system is passive if it is dissipative

with respect to the supply rate o- = uTy, resulting in the dissipation constraint

aL(x) ~
at --

For a circuit modeled using nodal analysis, the input and output typically represent current

and voltage, meaning that uTy has the meaning of power supplied to the system. Note that

this definition of passivity requires a system to have an equal number of inputs and outputs.

In some cases later in this thesis to simplify equations we will instead use the supply rate

o = 2uTy to verify passivity.

In the real world, all physical systems should behave in a passive manner. It is common

to refer to some models of physical systems as non-passive, but typically this is only be-

cause there are inputs or sources that are treated as internal parts of the system rather than

sources. For example, amplifiers are often referred to as active devices (i.e. non-passive),

but this assumes that there is some power supply bias to the system that is completely

ignored as an input, thus allowing the system to seemingly amplify signals and generate

energy. If one accounts for all such sources as inputs to the system, then no additional

energy is generated and the system is passive.



2.2.4 Incremental Stability

One stronger notion of stability that can be applied to both internal stability and external

stability, is "incremental stability". Incremental stability examines the behavior of differ-

ences between solutions of a dynamical system. If we define A = z - z, where zt and z

are solutions to f (x, u), incremental stability examines the behavior of the system

A = f(z, u) - f(z, u). (2.16)

That is, we wish to determine whether this new system is stable with respect to A [3].

Definition 2.2.8. System (7.1) is incrementally stable if it is well-posed and, given any

two sets of initial conditions zo and zo, the resulting two solutions to (2.15) in response to

the same input u(t) satisfy

- z(t)| 2 < oc (2.17)
t=to 

(.7

for all initial conditions and inputs.

Incremental stability is a strong notion because it implies all other traditional notions

of stability by simply selecting i = Xeq. For example, internal asymptotic stability (which

requires that all solutions to the autonomous system converge to the equilibrium point) is

implied by incremental stability by selecting z(t < to) = 0 and u = 0. Under these

conditions, (2.46) implies that 2(t) -+ 0 as t -+ oo.

One useful consequence of incremental stability is that it guarantees that perturbations

to solutions decay, which is an extremely important property when considering numerical

simulation of a system. For example, if t(t) and J(t) are two solutions to system (2.15)

resulting from input u(t) but two different initial conditions zo and zo, we would like the

difference between the solutions to decay I Iz(t) - z(t) I -- 0.

Like all previous notions of stability that have been introduced, incremental stability

can also be proven through the use of storage functions. But now the storage functions

must be functions of differences of variables, such as L(t, z) = - z)Tp(zt - z). The



resulting dissipation constraint for incremental stability of system (2.16) is

.C f~T ~f~ u) ; - ~U)) < okt _ si)

Incremental stability can also be interpreted as the result of contraction behavior of the

state-space. This is referred to as convergent dynamics [65] or contraction analysis [52].

Contraction analysis examines the stability of the differential system

A=AA + K =CA + G (2.18)

where

A - , K = f (x, u), C = ,G =(X),

A E R' and N RNY. The system is said to be contracting if the increments A and (

converge to zero exponentially. According to Theorem 3 in [52], if System (2.18) is well-

posed and stable in the differential variable A, i.e. A converges exponentially to zero,

for all x, u, y satisfying i = f(x, u) and y = g(x), then system (2.15) is incrementally

stable. Essentially, this means that if linearizations of the nonlinear system, around all

possible solutions to the nonlinear system, are stable, then the nonlinear system is stable.

The converse, however, is not true in general. That is, linearizations of a stable nonlinear

system can be unstable.

It is often easier to prove stability by examining the differential system (2.18) instead

of the original system (2.15).

2.2.5 Construction of Storage Functions

For physically-inspired models, such as those constructed using nodal analysis, it is often

possible to explicitly construct storage functions based on the physics used to construct the

model. As mentioned in Section 2.2, the storage function can be interpreted as a measure

of the system's internal energy. Thus, for models of physical systems, it is often possible

to explicitly construct a measure of the total system energy as a quadratic function of state



variables.

For example, in an RLC circuit modeled using modified nodal analysis, the dynamic

state variables are the currents through the inductors and the voltages on the capacitors, and

the total energy in the system, E, is represented by the energy stored in the inductors and

the capacitors

E=2 Cv + 2 Lj. (2.19)

Here, Ci and vi represent the capacitances and corresponding voltages, and Lj and ij rep-

resent the inductances and corresponding currents.

Similarly, for a mechanical system whose state-space variables are the positions and

velocities of the system nodes, the total energy in the system can be represented by a sum

of the kinetic and potential energy at each node, represented as

1 1 2
E = iV. + kj (2.20)

where mi are the masses, vi are particle velocities, kj are the spring constants, and xo are

particle displacements.

It is possible in a similar manner to construct quadratic storage functions for many other

types of physically-based systems [103].

2.3 Stability of Linear systems

For linear systems, stability is easy to analyze and the theory is well known. Additionally,

although all previous stability analysis has been in the time, for linear systems many notions

of stability can be analyzed in the frequency domain.

2.3.1 Quadratic supply rates and storage functions

When considering quadratic supply rates (which includes the cases of Lyapunov stability,

passivity, and BIBO stability) it is sufficient to consider quadratic supply rates [103]. For a



linear descriptor system

E& = Ax + Bu(t ) (2.21)

along with quadratic storage function L(x) = xTETPEx and quadratic supply rate o(u, y) =

xTQX + xTRu + uTSu, the dissipation constraint becomes

T ET (PAx + Bu) + (uTBT + xT AT P)Ex <xTQx + xTRu +uTSu. (2.22)

For a given linear model described by {E, A, B, C}, in order to prove dissipativity with

respect to supply rate described by {Q, R, S}, it is necessary to solve (2.22) for a symmetric

positive semidefinite (SPSD) matrix P.

2.3.2 Internal Stability and Lyapunov Matrix Equations

Internal stability can be proven using storage functions and the supply rate o- = xTQx,

resulting in in the dissipation constraint

xT(ET PA + AT PE)x < x"QX, (2.23)

where -Q is a symmetric positive definite (SPD) matrix. Note that we have rewritten the

term 2xTET PAx as xT (ETPA + ATPE)x, which is allowed because this term is a scalar.

Additionally, since constraint (2.23) must be satisfied for all possible x, it is sufficient to

search for a SPD matrix P satisfying the following matrix equation

ET PA + AT PE - Q - 0, (2.24)

which is the well known Lyapunov matrix equation.

This condition is satisfied if the generalized eigenvalues of matrix pair (E, A) all have

strictly negative real part. This is equivalent to saying A = E1 A has eigenvalues with

strictly negative real part, which is the traditional stability notion for linear systems. If we

allow zero eigenvalues of (E, A), this corresponds to a matrix -Q that is SPSD.

Theorem 2.3.1 ( [93]). If System (2.21) is stable, i.e. the matrix pair (E, A) has all eigen-



values with negative real part, thenfor any SPD matrix Q there exists a unique SPD matrix

P which solves (2.24). Conversely, if there exist SPD matrices Q, P satisfying (2.24), then

the matrix pair (E, A) has all eigenvalues with negative real part and the system is stable.

If the matrix E is singular then there may not exist an SPD solution P for some SPD Q,
and if there are solutions they may not be unique.

As another means of understanding internal stability of linear systems, recall that the

solution to an autonomous system of linear ODEs si = Ax is a matrix exponential x(t) =

exp (At)xo, where the matrix exponential satisfies

exp (A) = T exp (A)T 1

where T contains the eigenvectors of A and A is a diagonal matrix containing the asso-

ciated eigenvalues. Thus, if the eigenvalues have negative real part, then solutions to the

system decay exponentially with time. One consequence of this is that for a linear system,

asymptotic stability and exponential stability are equivalent. This result is obvious from

Theorem 2.2.1 because we are considering both a quadratic Lyapunov function L(x) and

supply rate -(x), and therefore the conditions for exponential stability are automatically

satisfied.

2.3.3 Passivity and the Positive-Real Lemma

One of the most important properties for linear systems arising in IC applications is passiv-

ity. Recall from Section 2.2.3 that a system is passive if it is dissipative with respect to the

supply rate o- = uTy, which simplifies dissipation constraint (2.22) to

XT (ETPA + AT PE) x + 2XT ET PBu - 2uTCTX < 0. (2.25)

The task of certifying passivity for a linear system requires finding an SPD matrix P such

that inequality (2.25) is satisfied for all x, u. Since constraint (2.25) is quadratic in the



variable [x; u], it can be expressed as the following quadratic form

-[ -- T F -0-x E TPA+A TPE E TPB-C x
[ 0, (2.26)

LU B TPE -CT 0 u

and thus it is also sufficient to satisfy the following matrix inequality

ETPA+ ATPE ETPB-C
P ~ dC] 0 (2.27)

BT PE - CT 0

Matrix inequality (2.27) can be transformed into an algebraic Riccati inequality (ARI) via

Schur complement

ET PA+ AT PE + (ET PB - C)R-'(BT PE - CT) < 0. (2.28)

Alternatively, constraint (2.25) can be transformed into a pair of matrix constraints.

Since (2.25) is linear in u, in order to be satisfied globally the linear terms in u must all

balance one another, resulting in a pair of linear expressions

ETPA + AT PE < 0 (2.29)

E T PB = C. (2.30)

Thus, the passivity constraint is simply the internal (Lyapunov) stability constraint com-

bined with a relation between the input and output. Intuitively this makes sense because a

passive system is stable with the additional constraint that feedback connections are stable,

implying a relation between input vector B and output vector C.

2.3.4 Finite-Gain Stability and the Bounded-Real Lemma

Finite-gain stability implies that if a system is excited with a bounded input u(t), then

the output y(t) will also be bounded. For a linear system with the finite-gain supply rate



o- = 2 r _u- yty, the dissipation constraint simplifies to

xT (ETPA + AT PE + CCT) x + 2XT ET PBu -_2UTU < 0, (2.31)

which can be expressed as the quadratic form

x ET PA+ TPE+CCT ETP B x H 0. (2.32)
U BTPE -72 L J

As before, we can represent this as a matrix inequality which can then be transformed into

an ARI via Schur complement

ETPA + AT PE + CCT - 2 ET PBBT PE < 0 (2.33)

For a linear system, finite-gain stability is implied by internal stability. However this is

not true in general for nonlinear systems. This result is obvious from equation (2.33), which

can always be made stable by scaling P and -y, provided the term ETPA + ATPE -< 0

(which is implied by internal stability).

2.3.5 Definite Systems

In some cases the stability analysis of a linear system can be simplified if the system ma-

trices have some nice structure, such as sign-definiteness. We refer to a linear system as

definite if the matrices E = ET >- 0 and A -- 0, and additionally the input and output vec-

tors are equal, B = C. Such systems often arise in practice, such as when modeling RLC

networks using nodal analysis. Definite systems are convenient because they are always

guaranteed to be stable and passive.

Stability and passivity of a definite system can be proven with the storage function

L(x) = xTEx, which is a positive definite function because E is a SPD matrix. The

resulting dissipation constraint L(x) < 0 for the autonomous system (input u = 0) becomes

l(x) = XTE± +±TTEx = xT(A + AT)x < 0,



which is satisfied because A -< 0 by definition. Passivity is additionally enforced, as the

dissipation constraint L(x) < 2uTy

L(x) = xT (A + AT)x + 2XTBu - 2 UTCTX (2.34)

= xT(A + A T)x < 0 (2.35)

is satisfied by the initial assumption that B = C. As will be shown later in section 3.4.1,

preserving passivity during model reduction for definite systems is a trivial task.

2.4 Stability of Nonlinear systems

In this section we discuss stability analysis for nonlinear systems

x = f (x, u), y = g(x). (2.36)

For nonlinear systems, the issue of stability is not nearly as simple to analyze as it was for

linear systems.

2.4.1 Difficulties

While it is possible to prove stability of nonlinear systems through the use of storage func-

tions and Lyapunov functions, as was done for linear systems in Section 2.3, there are two

primary difficulties. First, there is no easy "check" for whether a dissipation constraint

is satisfied. For the linear case, the dissipation constraint was always transformed into a

matrix inequality, for which there exist many efficient solution techniques. However, such

tricks are not available for the nonlinear case. Consider, for example, system (2.36) along

with the Lyapunov function L(x) = xTPx, resulting in the dissipation constraint

xTPf(x, 0) + f(x, O)TPx < 0. (2.37)



For an arbitrary nonlinear function f (x, u), it is very difficult to determine whether (2.37)

is satisfied globally for all x. In the linear case P could be found by solving a Lyapunov

matrix equation, however no such solution exists for the nonlinear case.

The second difficulty with storage functions for nonlinear systems is that we do not

know a priori the complexity of a storage function required to certify stability for a given

nonlinear system. In the linear case it was sufficient to consider quadratic storage functions,

but this is not true in general for nonlinear systems. Often times for physically-based

systems (i.e. equations constructed from conservation laws), quadratic storage functions

can be explicitly constructed based on physical laws used to construct the system equations,

as discussed in Section 2.2.5, but in general storage functions for nonlinear systems will be

highly nonlinear. Despite these limitations, storage functions remain one of the few tools

available for analysis of nonlinear systems.

2.4.2 Local Stability Analysis

Although it is difficult to determine global stability for nonlinear systems through dissipa-

tion constraints, as described in Section 2.4.1, analyzing the local behavior of a nonlinear

system turns out to be a relatively easy task. In order to determine the local behavior of a

nonlinear system at an equilibrium point, it is sufficient to consider a local approximation

of the nonlinear system, and analyze the stability of the approximate model. Specifically,

we will consider linearizations of the nonlinear model about an equilibrium point. This is

referred to as Lyapunov's indirect method.

Theorem 2.4.1 (Lyapunov's indirect method). If the linearized system

A A af (X, U)x=Ax A=fxu
Ox X=Xeq,U=O

is asymptotically stable, then xeq is a locally asymptotically stable equilibrium of the sys-

tem (2.36).

Thus, the equilibrium of the nonlinear system is stable if the Jacobian matrix A has

eigenvalues with strictly negative real part. If any eigenvalues of A lie on the imaginary



axis, then one must consider higher order terms to determine local stability of the nonlinear

system. Additionally, linearizations can be used to prove instability. If A has any eigenval-

ues with positive real part, then xeq is an unstable equilibrium for system i = f (x). For

proofs of the preceding theorem, see references [81, 58].

Lyapunov's indirect method provides a convenient approach to stability analysis of

equilibrium points for the nonlinear system, but it only provides information about lo-

cal behavior of the nonlinear system. Unfortunately, there is no simple way to analyze the

global behavior of a nonlinear system without utilizing storage function and dissipation

constraints.

2.4.3 Nonlinear Descriptor Functions

When modeling analog circuits containing nonlinear capacitances, such as those containing

transistors, the resulting dynamical systems will contain a nonlinear descriptor function

q(x)

d
- [q(x)] = f (x, u). (2.38)

dt

If the function q(x) is invertible, then it is possible to obtain a system of the form (2.36)

through a nonlinear change of coordinates. Similarly, it is possible to rewrite the system in

non-descriptor form

(x) = Q(x) -+ =f(x, u)

where Q(x) is the Jacobian of q(x) and f(x, u) = Q(x)-If(x, u).

However, the functions q(x) are often not invertible, making it difficult to make state-

ments about global properties of the system. In many cases the function q(x) is only valid

locally due to the models used to describe the elements in the circuits being modeled. These

cases will be considered in more detail in Chapter 6.



2.5 Discrete-Time Models

Up to this point we have only considered continuous time (CT) systems. However, it is

often convenient to consider instead discrete-time (DT) systems. In this section we briefly

present several stability results for DT systems that are analogous to the previously pre-

sented CT results.

2.5.1 Overview

A generic implicit DT state-space model has the form

F(x[t], x[t - 1], u[t - 1]), = 0 G(x[t], y[t]) = 0. (2.39)

where x[t] is the internal state y[t] E RNY is the output, u[t] E RNu is the input, F c RN is

a dynamical relation between the internal variables and the input, and G E RNY is a static

relationship between the internal variables and the output. However, when we consider DT

systems later in Chapter 7 we will instead consider DT systems with the slightly different

more general (but not technically state-space) form

F(v[t],v[t - 1],...,v[t - m],u[t],...,u[t - k]) = 0 (2.40)

G(y[t],v[t]) = 0.

Here v [t] E RN is a vector of internal variables, but to be precise we will not refer to it as

the state because it does not contain all the information needed to compute the future state,

as is required by state-space models. It is possible to rewrite (2.40) in the form of (2.39) by

defining a state x[t] containing delays of v[t] and the delays of the input u[t], but this will

require transformations to the function F that are not desirable, and thus we shall consider

only system (2.40).

Definition 2.5.1. System (2.40) is well-posed if given any arbitrary variables v1 ,... ,, E

R N and uo, - - -, Uk RNu, there exist unique solutions vo E R N and y N R' to

F(vo,v, ... , m, Uo, ... , uk) = 0 and G(y, vo) = 0.



For the remainder of this thesis we shall use the following compact notation when

describing DT models:

V = [vo, ... , Vm], U = [Uo, ... , Uk], (2.41)

where vo,... , vm and no, . .. , U are arbitrary variables, not necessarily inputs and outputs

satisfying (2.40),

V+ =Vo, ... , om-1],I V- = [vi, . . .,(2.42)

where V+ contains the first m components of V and V_ contains the last m components of

V,

V [t] = [V It],..v[t - m]], Ult] = [u0t],... ,u[t - k]], (2.43)

where v[t] is the internal state of the identified model (7.1) in response to past inputs U[t]

and initial conditions v[t - 1], .... , v[t - m], i.e. F(V[t], U[t]) = 0.

As was the case for CT, in practice we will mostly consider explicit systems of the form

v[t] = f (v[t - 1], ... ,v[t - m], u[t],..., u[t - k]) (2.44)

y[t] = g(v[t]).

In this form, DT systems are extremely convenient from a simulation point of view because

solving for the new state value v[t] requires only evaluating the function f(). For a CT

model when using an implicit time-integration scheme, it is necessary to solve a nonlinear

system of equations at each step, making simulation extremely computationally expensive.

Despite the computational advantage of simulating an explicit system, there is also a

downside to DT systems for simulation. Their discrete nature forces a fixed time-step for

integration, making simulation slow and impractical for capturing effects on a time-scales

much longer than the discrete step size, which is quite common in RF systems being excited

by modulated input signals.



2.5.2 Dissipation and Stability in Discrete Time

All of the previously presented notions of dissipation also apply to DT systems. As was the

case for continuous time systems, dissipativity in the discrete time case can also be proven

through the use of storage functions [103]. The only difference between the CT case and

the DT case is that the dissipation constraint is now used to bound finite increments of the

storage function, as opposed to the infinitesimal increment represented by the derivative for

the CT case.

Definition 2.5.2. System (2.40) is dissipative with respect to the supply rate c-(U, V) if

there exists a storage function L(v) > 0 such that

L(V+) < L(V_) + o(U, V) (2.45)

for all V+, V-, U satisfying (2.40).

The energy interpretation of dissipation is equally valid for DT systems, as (2.45) im-

plies that the energy at the current time step is less than the energy at the previous time

step plus the energy supplied to the system at the current step. Additionally the notions of

internal stability, finite-gain stability, and passivity, along with their corresponding supply

rates, also apply to the DT case.

Incremental Stability

For a DT system, incremental stability is defined as follows.

Definition 2.5.3. System (2.40) is incrementally stable if it is well-posed and, given any

two sets of initial conditions [to - 1],..., [to - m] and b[to - 1],... , [to - m], the

resulting two solutions to (7.1) in response to the same input u satisfy

Z ||[t] - Q[t]| 2 < oo (2.46)
t=to

for all initial conditions and inputs.



It has been shown in [56] that (2.40) (assuming G = y - vo, i.e. an input-output system)

is incrementally stable if the following dissipation constraint is satisfied

(vO - 0 )T (F(V, U) - F(V, U)) - vo- bo12 + L(V_, Y_) - L(V+, Z+) > 0 (2.47)

for all V, U, and all V = [ o, .. ., bm], where L is a non-negative storage function such that

L(V+, V+) = 0. Note that when V, U and V, U satisfy (2.1), dissipation constraint (2.47)

simplifies to constraint (2.45) with o = -|vo - io 1, which in turn implies (2.46).

Contraction analysis for a DT model examines the stability of the differential sys-

tem [52]

F(V, U) + Fv(V, U)A = 0 (2.48)

G(y, vo) + Gv(y, vo)oo + Gy(y, vo) = 0,

where

60 t]

L6mJ [t-m]j

8F 8F ]G aG
avo' a' vm ,v' oy

with 6o c RN and E RNY. The system is said to be contracting if the increments A

and ( converge to zero exponentially. According to Theorem 3 in [52], if System (2.48)

is well-posed and stable in the differential variable A, i.e. A converges exponentially to

zero, for all y, vo, . . . , Vm, and Uo, .. . , nk satisfying F(vo, . .. , om, uo... , Uk) = 0 and

G(y, vo) = 0, then system (2.1) is incrementally stable. It is often easier to prove stability

by examining the differential system (2.48) instead of the original system (2.1).
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Chapter 3

Background: Model Reduction

This chapter introduces existing model reduction techniques for linear and nonlinear sys-

tems. Special emphasis is placed on those techniques capable of preserving parameter

dependence and stability in the reduced models.

3.1 Introduction

3.1.1 Motivation

When analyzing large systems, such as models of RF systems modeled using MNA as

described in Section 2.1.2, numerical simulation and analysis is often prohibitively expen-

sive. A state-space model for a single RF inductor can contain thousands of equations, and

a model for an array of inductors contains hundreds of thousands of equations, making the

system impossible to solve using today's technology. In many other cases the resulting

state-space models are not so large as to completely prohibit simulation, but the models

may need to be simulated many times while varying system inputs and possibly system

parameters. What we mean by 'solve' or 'simulate' in reference to a dynamical system is,

given a dynamical system of equations

dx
dt= f(x,up) (3.1)



along with input waveform u(t) and set of parameter values p, we wish to solve the equa-

tions numerically for the solution x(t) on some time interval t E [0, T]. When considering

nonlinear systems, the size of the system is not the only factor determining computational

complexity. A moderately sized highly nonlinear system can be extremely computationally

expensive to simulate if the nonlinear function f in (3.1) is extremely expensive to evaluate.

In both such cases, the analysis of dynamical systems can benefit greatly from compact

representations of the dynamical systems of interest. The task of replacing a given dynami-

cal model with a dynamical model of reduced complexity is referred to as model reduction.

Since the dynamical models are going to be used for numerical simulation, we generically

define complexity as the computational cost associated with solving a set of equations, such

as (3.1), numerically.

Although a model may be large and complex, often times the important dynamics pri-

marily evolve in a low-dimensional space. This may be due to redundant states in the

model, or 'insignificant' states, such as those that we weakly controllable and weakly ob-

servable. Model reduction aims to eliminate such redundant and insignificant dynamics.

Additionally, in many cases we are only interested in the input-output behavior of the sys-

tem, in which case the exact behavior of every internal state is irrelevant, provided the

reduced model matches the input-output behavior of the original system.

Consider for example Figure 3-1(a), which plots a solution trajectory x (t) to dynamical

system of the form (3.1) for order N = 3. Although the trajectory traces out a curve in

a three-dimensional space, the curve is actually restricted to a two-dimensional subspace.

Figure 3-1(b) shows the same three-dimensional curve in a rotated coordinate system such

that it is obvious that the dynamics are confined to a lower dimensional space. Therefore,

this third order system of equations can be approximated extremely well with a second

order system.

One important question, for which there are many possible solutions, is how to effi-

ciently find this low-dimensional space in which the important dynamics are defined. More

importantly, how does one define 'important dynamics'. These questions will be addressed

in the following sections.
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(a) Curve in a three-dimensional space corre-
spondind to a solution x(t) to a third order system
of equations of the form (3.1).
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(b) The same trajectory plotted in Figure 3-1(a),
but in a rotated coordinate system to illustrate
that the solution actually lies in a two-dimensional
space.

Figure 3-1: Example illustrating how the solution of a dynamical system might lie in a
low-dimensional subspace.

3.1.2 Model Reduction Problem Formulation

In an abstract sense, the model reduction problem can be defined as the following opti-

mization problem: Given an original large model M, find a reduced model M E M, such

that the error between the reduced and the original system ||M - M x are minimized for

a predetermined complexity of reduced model M

minjM - M|Ix subject to
M

(3.2)

complexity(M) < q

M E M

Here M represents the original large model being reduced, and could be, for instance, a

dynamical system i = f(x, u), a collection of trasnfer function samples Hi at frequencies

w;, or perhaps input-output data pairs {u(t), y(t)}. M represents the class of models con-

sidered for the reduced model, and could be, for example, the set of all linear state-space

models of the form x = As + bu, or the set of all quadratic discrete-time state-space mod-

els. The set M may also impose constraints such as stability or passivity on the reduced

models, or possibly some structure constraint such as block-diagonal matrices for linear



systems. The measure of error, ||M - M x, quantifies the accuracy of the reduced model

by comparing some aspect of the reduced model to some aspect of the original system. The

choice for such a metric typically depends on what information about the large system M

is available. For instance, if frequencies response samples of the large model are known,

the error could be defined as the maximum frequency response error between two models,

maxi Hi - H(jwi) over the given samples. Similarly, if input-output pairs {u(t), y(t)}

from the large system are available, then the measure of error could be defined as the max-

imum output error of the reduced model in response to the given inputs, maxi Iyj - 1|,

where Q is the output of reduced model M in response to the given inputs u(t). The com-

plexity q of the reduced model can refer to, for instance, the order of a linear system, or the

number of parameters describing a nonlinear function.

In some cases it is more desirable to define a strict accuracy requirement for the reduced

model and instead minimize the complexity

min complexity(M) subject to (3.3)
M

1M -M|x < e

M (- M.

In this thesis we will specifically consider reducing dynamical systems, and usually

those having the form i = f(x). In practice, when reducing such nonlinear models, it

is extremely difficult to precisely define a measure of accuracy and complexity for the

reduced model. And although we may not be explicitly solving an optimization problem

such as (3.2), the end goal of model reduction remains the same: construct a reduced model

that is accurate in some measure and is of minimal complexity.

3.1.3 Projection Approaches

The most common approach to model reduction, for both linear and nonlinear systems,

is what's referred to as 'projection'. The basic idea is to approximate the solution x in



low-dimensional subspace by parameterizing it in terms of a set of basis functions, V,

and then to solve a reduced system of equations for the corresponding weights Z for the

basis functions. In general, we shall assume that x E RN and i E Rq for q << N, meaning

that V C R Nxq is a 'tall and skinny' matrix. With this approximation, which can be thought

of as a non-invertible change of coordinates, instead of solving for x, we shall be solving

for ^, which represent weights for the basis vectors in V with which we are approximating

the solution.

To illustrate how the columns of the matrix V define a reduced space in which the so-

lution x is well-approximated, consider the example shown in Figure 3-1(a), where it was

previously shown that three-dimensional trajectory can be well-approximated in a two-

dimensional subspace. The vectors V1, V2 shown in Figure 3-1(b) define this reduced sub-

space, and can therefore be used as the columns for the projection matrix, i.e. V = [V1, V2].

006 -

0.04-

0.02 - -

0,

-0.02

-0.04
0.02

0.01

4
24

Figure 3-2: The vectors V1 and V2 span the two-dimension
well-approximated, as clear from Figure 3-1(a).

space in which the solution is

Once the projection matrix V defining the reduced space in known, it is next necessary

to derive a reduced set of equations that can be solved for the reduced variables ^. Given

a system of equations, such as t = f(x), we first apply the projection approximation



x = Vsi, resulting in

V ~ f(V).

This relation is now only an approximate equality because the system of equations depends

on only q variables (the q coefficients for the basis function columns of V), but there are

still N equations, and the under-determined system is unlikely to be solved exactly by any

J. Since only q equations are required to solve for q unknowns (assuming some notion of

linear independence among the equations), and to make the relation exact, we reduce the

number equations using a testing matrix, or left-projection matrix, U E RNxq as follows

UTV& = UTf(V_).

Such a reduction can also be interpreted as forcing the residual ris), defined as the equation

error resulting from the projection approximation

r(s) = - f(Vsi),

to be orthogonal to the space spanned by the columns of U

UTr(s) = 0 -> UTVi = UTf(V2).

It is common practice to select U and V to be bi-orthonormal such that UTV = I, but this

is not required and does not affect the reduced model, as only the spans of the columns of

U and V define the reduced model.

Thus, the task when using projection reduction methods is to find the optimum choices

for V and U. Ideally, we would like to find these projection matrices without having to first

solve the original system of equations.

While the above approach assumes a linear projection, x = ViJ, it is also possible

that the solution lives on a manifold that is not linear, resulting in a nonlinear projection

X = V(.). A nonlinear projection will typically allow for a "smaller" set of unknown

parameters (i.e. smaller reduced order q), but at the cost of increased complexity required



to describe the nonlinear manifold and resulting nonlinear reduced model. Such approaches

have been attempted in the past [34], and we even propose a nonlinear mapping for reducing

the number of equations in Chapter 6 in order to preserve stability, but in general such

nonlinear projections are not common.

3.2 Model Reduction for Linear Systems

In this section we introduce the projection framework for model reduction of linear systems,

along with several common approaches for constructing the projection basis.

3.2.1 Projection Framework for Linear Systems

Consider a linear dynamical system described using the following state-space representa-

tion

E± = Ax + Bu y = CTx. (3.4)

The projection framework described previously in section 3.1.3 calls for approximating the

solution in a low-dimensional space, x = Vz, and reducing the number of equations with

a left-projection matrix U, resulting in the reduced order system

UT EV = UT AV + UT Bu y = CTVi. (3.5)

If we define the matrices t = UTEV E Rqxq A = UTAV E Rqxq, $ = UTB E RqxN,

and O = VTC E RqxNv, then the resulting reduced order model consists of q equations

and q unknowns

y = OT z. (3.6)

A graphical representation of this reduction of order through projection is shown in Fig-

ure 3.2.1.



(a) Visual representation of model order reduction (b) Projection framework reduces the size of

applied to a linear state-space model. individual matrices in the state-space model.

Figure 3-3: Graphical representation of projection framework applied to a linear system.

The complexity of the reduced linear system (3.6) is substantially lower than the com-

plexity of the original large system (3.4) when q << N because the complexity of a linear

system scales with the order of the system. Typically the reduced system will be dense

even if the original large system is sparse, but even in the worst case simulation cost of the

reduced system will be substantially cheaper provided q << N.

In the following subsections we will present several common approaches for selecting

the projection vectors in the matrices V and U.

3.2.2 Frequency Response of Linear Systems

In many cases it is more convenient to describe linear systems in the frequency, or Laplace,

domain. In the Laplace domain linear system (3.4) is expressed as

sEx = Ax + Bu y = CTX, (3.7)

where s is the Laplace variable. The transfer function of a linear system is defined as the

ratio of output to input at a particular frequency s

H(s) - y(s) - CT (sE - A)- B. (3.8)
u(s)

The frequency response is an extremely useful tool for linear system analysis. When ex-

cited with a sinusoidal input, a linear system produces a sinusoidal output of the same



frequency, but with amplitude and phase shifted, as defined by the magnitude and angle

respectively of the transfer function at that frequency. For more information, see refer-

ences [58, 63].

In many model reduction approaches for linear systems, the goal is to construct the

reduced model such that it matches the frequency response of the large system over some

range of frequencies. Some projection approaches attempt to implicitly match such in-

formation in the time-domain, while other transfer function fitting approaches explicitly

attempt to fit a transfer function corresponding to a reduced system, as opposed to con-

structing a reduced state-space model [36, 33, 86].

3.2.3 Moment Matching Approaches

Moment matching can refer to any number of projection techniques wherein the projection

vectors are selected to ensure the transfer function of the reduced model matches some

number of values and derivatives of the transfer function of the large model at a prescribed

set of frequency values.

Initially, such techniques were developed to facilitate the computation of propaga-

tion delays in digital circuits for timing analysis. The asymptotic waveform evaluation

(AWE) approach created a reduced model by explicitly match moments about DC fre-

quency [72, 71, 73]. Since explicit computation of moments is an ill-conditioned problem,

implicit projection techniques using the Arnoldi process (an orthonormalization procedure)

were then developed [84, 83] to make moment matching numerically robust. Later on the

projection approach was extended to enable matching about non-zero frequencies [31, 32],

and also generalized so that input and output moments can be implicitly matched separately

using the left and right projection matrices, using the Lanczos procedure (a method for bi-

orthonormalization) referred to as Pade via Lanczos (PVL) [28, 30, 4]. Recently, there

has been interest in preserving the structure of the original system matrices in the reduced

model through projection [29, 105].

Here we present the basic idea behind matching moments at various frequencies using

projection vectors. Consider a linear system in the frequency domain, as shown in (3.7).



Rearranging to solve for x and then expanding the result in a Taylor series yields the fol-

lowing
00

x = [I - sM]-1 Bu = 7 s"M"bu, (3.9)
n=O

M = (saE - A)- 1E and B = (sE - A)- 1 B. The terms M"B are referred to as the

moments of the expansion. This sequence of vectors is also referred to as the Krylov vectors

of M, B (or possibly shifted Krylov vectors because the expansion is being performed about

frequency sa).

If the projection matrix is chosen such that

{B,MB,M 2 5, ..., M-1B} C range(V), (3.10)

where range(V) ={x E R NIX = V, I E Rq , V E RNxq}, then the resulting reduced

system transfer function

H(s) =OT (st -A)-'B

where f3 = UTB, E = UTEV, A = UTAV, and C = VTC, will match the first q mo-

ments of the Taylor series expansion in the Laplace variable s of the large system transfer

function about s = s, It is possible to combine vectors obtained from different frequency

expansion points to obtain accurate matching at different frequencies.

If, in addition, the columns of U are chosen such that

{C, MC, M 2C, ... , Mq-1C} C range(U), (3.11)

where M = -[(sbE - A)- 1 E]T, then the resulting reduced system transfer function will

also match the first q moments of the Taylor series expansion in the Laplace variable s of

the large system transfer function about s = sb. Together it is possible to implicitly match

a total of 2q moments in the reduced model.

Although moment matching guarantees local accuracy of the reduced model transfer

function, it makes no guarantees about the global accuracy of the reduced model. That is,

there are no constraints on the behavior of the reduced model far away from the expansion



points about which moments are matched.

3.2.4 SVD Approaches

An alternative class of projection based methods are those that construct the important

subspaces V and U using information from time-domain simulation data. That is, rather

than attempting to match the frequency response of the original system, given a collection

of state data X resulting from simulation of the original system, one can find the best q

basis vectors for approximating the data X, and use those basis vectors to define the low

order space, i.e. select them as the columns of V. These "snapshot" methods, such as

Proper Orthogonal Decomposition [7] (also referred to as Principal Component Analysis

(PCA) and Karhumen-Love (KVL) Expansion), provide the optimal qth order basis for

reconstructing the simulated data. The hope is that this will also provide a good set of

basis vectors for constructing other solutions to the system. Specifically, given a set of

data X, where xi E X is a solution x(t, u) at some time point t corresponding to some

input u or a steady state solution for some sinusoidal input at frequency f, the subspace

is constructed from the q largest singular vectors of X. In these cases the left-projection

matrix U is chosen to equal the right-projection matrix V such that the error is orthogonal

to the optimal basis V.

Such techniques have also been applied to frequency domain data. Instead of using

state data in the time-domain, one can solve for vectors in the frequency domain and use

the SVD to find the best low-order approximation to that data [102]. In the EDA community

this is often referred to as Poor Man's TBR [70].

3.2.5 Balanced-Truncation

Balanced truncation, originally developed by the control community [59, 99], is one of the

few projection approaches that possesses global error bounds on the accuracy of the result-

ing reduced model. The basic idea behind balanced truncation, also referred to as truncated

balanced realizations (TBR), is to perform a change of coordinates z = Tx to a coordinate

system where the states zi are ordered from most important to least important, and then



truncate the least important states. A coordinate transform combined with a truncation can

be viewed as a projection.

In TBR, the "important" states are defined as those that are either very controllable

or very observable. Conversely, the states to be truncated are those that are neither con-

trollable nor observable. The controllability and observability of states can be quantified

via the controllability and observability Grammians, respectively. We will not delve into

the specific algorithmic details of TBR here because they are not necessary for this work.

However, it is an important approach that needs to be mentioned because of its global er-

ror bound guarantee and preservation of stability. For details on the TBR algorithm, see

references [21, 97].

Although TBR provides a global error bound (and a guarantee of stability, which will

be discussed more in section 3.4), it is rarely used in EDA for very large scale problems

because the computational complexity is O(N 3 ). Recently, much effort has been focused

on solving efficiently matrix equations using iterative methods to help extend TBR to truly

large sized problems [5, 6].

3.3 Parameterized Model Reduction for Linear Systems

Many times the systems we are trying to model possess dependence on a set of design

parameters p

= f (x, u,p). (3.12)

Here p could represent for instance geometrical parameters, such as wire width or transistor

sizing, or material properties, such as wire conductivity. In these cases it is desirable to

preserve this parameter dependence in the reduced model

= f(,u, p) (3.13)

such that the reduced model is able to accurately predict the system outputs in response to

both changes in the input u and parameters p.



For projection methods, the projection matrix V should be able to capture the system

behavior in response to changes in parameter values as well as changes to inputs. In some

sense, all of the previous reduction techniques are parameterized because they preserve

the dependence of the system in response changes in the input, which can be thought of

as a time-varying parameter. However, we would like to generalize to techniques that are

capable of handling large numbers of parameters and give flexibility to preserve system

behavior in response to parameter values in desired regions of interest.

3.3.1 Parameterized Moment Matching

The moment matching approach from section 3.2.3 was first extended to the case of a

single parameter in [101], and then extended to an arbitrary number of parameters in [22].

Consider a linear system whose dynamical descriptor matrices in the Laplace domain are

functions of the Laplace frequency variable s, and of some other geometrical parameters,

E(s, si, ... , s,)x =- Bu (3.14)

where E E RNxN. Using a polynomial fitting technique and introducing additional param-

eters s, as shown in [22, 24], one can approximate the parameterized system as

[Eo + §1E1 + ... + spEp]z = Bu (3.15)

where Ei E RNxN

System (3.15) can be rearranged and expanded in a Taylor Series to obtain

x = [I - M- ... - pMp]- 1Bu (3.16)

= M ... + spMp)"5Bu (3.17)
n

-kn - .... ,p(M1,.l , M )5U s8 k. .. s kP" (3.18)
n ki kp

where 53= E-_ 1B, Mi = -5_- 15k, and Fi E RNxN. The formulae for F are long

and convoluted. Here we present only the formula for the simplified case P = 2 where the

pattern of the vectors Fi is more perceptible. Detailed recursive formulae for the calculation



of F with arbitrary P can be found in [22]. If P = 2, system (3.15) becomes

[Eo + 1E1 +92E2] = Bu,

and (3.18) becomes

S[F"(M1
n k

M 2)5u] s k,

where b = - 1 B, Mi = -5 1 5E, and

MiF "1(M1, M2)

0

I

+ M2 Fy"-(M,AM2 )

if k 0,1,..., n

if m = 0

otherwise

This recursive formula generates vectors of the form

B, M1 B, M25, M15, (M1 M2 + M2 M1)5, M2, .2 . .

If we now construct the projection matrix V such that

L , M15, M25, M b, (M1 M2 + M2M1)b, . C range(V)

for the P = 2 case, and

{FoB, F1B ...... } range(V) (3.20)

for arbitrary P, then the P-variable Taylor series expansion of the transfer function of

reduced order system

[Eo+ §1E 1 +... pEp]x= Bu

will match exactly the p-variable Taylor series transfer function moments of original system

(3.15), where Ei E Rqxq = VT5,V and E E Rqxri = VTb.

It is noted in [22] that for a large number of parameters P and a modest number of

moments m matched for each parameter, this method may generate systems of substantial

order 0(P m ).

(3.19)

F "(M1, M2) =



3.4 Stable model Reduction for Linear Systems

A difficult, yet crucial, aspect of model reduction is the preservation of stability in the re-

duced model. Most real physical systems behave in a stable manner, and it is therefore

extremely important to preserve such behavior in reduced models. Unfortunately, preserv-

ing stability does not come free, and it is typically obtained either at the cost of accuracy,

or by spending additional computational effort. Preserving stability and passivity is par-

ticularly important for linear systems because it is possible to construct a reduced model

that matches the original model transfer function very accurately in the frequency-domain,

even though the model is in fact unstable or non-passive. Thus, the model will appear to

be accurate, but once it is used for time-domain simulations it would produce unbounded

or unphysical results.

3.4.1 Galerkin Projection for Definite Systems

One benefit of dealing with definite systems, which are systems where E = ET >- 0,

A - 0, and B = C, as defined in section 2.3.5, is that definiteness is preserved under a

congruence transform (also known as a Galerkin projection). Recall from Section 2.3.5

that a definite system is both stable and passive.

A Galerkin projection corresponds to selecting the left-projection matrix U such that

U = V, where V is the right-projection matrix.

Theorem 3.4.1. If linear system

EK = Ax + Bu y = CTX

is definite, i.e. E = E T >_ 0, A -< 0, and B = C, then the reduced model

(VT EV)& = (VT AV)J + VT Bu y = CTVx

where V has full column rank, is also a definite system, and therefore also stable and

passive.



This result is obvious if we recall the definition of a definite matrix. For example,

matrix A is negative semidefinite if xTAx < 0 for all x. Therefore, the reduced matrix A

satisfies

.Tjj- = T(VT AV)| = (.TVT ) A(V 2) = YT Ay < 0

and is thus also negative semidefinite.

One important observation is that Theorem 3.4.1 places no constraints on how the right-

projection matrix V is constructed. The columns can be selected as Krylov vectors, using

POD vectors, or any other technique. Additionally, note that when using a Galerkin pro-

jection one is sacrificing accuracy in order to obtain stability, because the left-projection

matrix U could alternatively be chosen to match additional moments of the large system's

transfer function. In the event that the original system is stable but not definite, then a

Galerkin projection is not guaranteed to preserve stability. The resulting reduced model

might be stable, but it is not guaranteed.

The Galerkin projection has been popular for many years in the EDA community be-

cause most very large linear systems are definite systems. This is a result of using RLC

networks to model parasitic structures.

3.4.2 Solving Matrix Equations

In the more general case where the original large order system is not definite, there are alter-

native approaches for guaranteeing stability and passivity in the reduced model. Balanced

truncation truncation always preserves stability and there are variations that are capable

of preserving also passivity [69]. One less common stability-preserving projection is as

follows.

Theorem 3.4.2 ([55]). Consider a linear descriptor system

E± = Ax + bu (3.21)



where (E, A) is a Hurwitz pair Let P and Q be SPD matrices satisfying

ET PA+AT PE = -Q (3.22)

let V be an orthonormal projection matrix such that x = Vz and z E Rq where q << N.

If U is defined by

UT = (VT ET PEV ) VT ET F,

and A UT AV, then F= UT EV = I and the reduced order system

x = A + B~u (3.23)

is stable.

This approach is appealing becomes it gives us freedom in selecting the right-projection

matrix V. That is, given any right-projection matrix V, there exists a left-projection matrix

U such that the reduced model is stable. However, as with TBR, the approach in Theo-

rem (3.4.2) requires O(Ns) complexity due to solving matrix equation (3.22).

3.5 Model Reduction for Nonlinear Systems

In this section we discuss projection approaches for nonlinear systems. As will be shown,

in the nonlinear case there are additional difficulties that were not present when reducing

linear systems.

3.5.1 Difficulty with Projection

Consider a nonlinear system i = f(x), and apply orthonormal left and right projection

matrices U and V respectively, resulting in the reduced system

S= UT f(Vi)



In general, the complexity of this "reduced" model still depends on N, the order of the

large system. Evaluating the reduced function UTf(Vs) requires projecting the reduced

state ,i back to the full space via Vi, evaluating the original nonlinear functions on the

large vectors f (Vi), and projecting the result back into the reduced space UTf.

This was not a problem for linear systems because when f(x) is a linear function, the

projected terms can be multiplied out ahead of time

UTf(V2) = UTAV = ,

resulting in a term, Ash, that depends only on the reduced order q.

As a result, model reduction of nonlinear systems requires, in addition to a projection

x = V., a low-complexity approximation of the projected nonlinear function UTf (V:).

3.5.2 TPWL for Highly Nonlinear Systems

For highly nonlinear systems, local methods such as polynomial expansion are not suffi-

cient to capture all important nonlinear effects. Instead, we might consider using a series of

local low-complexity approximations, and interpolating between these simple local mod-

els. Consider a nonlinear descriptor system of order N

[q(x)] = f(x) + bu, y = cTx. (3.24)at

We shall approximate the nonlinear functions f (x), q(x) over important regions of the state-

space using a convex combination of locally accurate affine functions

f(x) x Zwi(x) [Aix + ki],

q(x) (wi(x) [Eix + hi],



where

Ai = ki= f(xi) - Aixi
ax x

Ei q(x) hi q(xi) - Eixi
ax x

are linearizations of f(x), and wi(x) are weighting functions such that wi E [0, 1] and

E wi = 1. Two examples of possible weighting functions are ([78, 96])

exp 112

or

w( (e- -3 1 XX 1 )-k

A PWL approximation to system (3.24) takes the form [79]

d wi(x)(Eix+hi)I =( w(x) (Aix + k)+ Bu. (3.25)

The PWL approximation (3.25) is still a large model (order N), so we now introduce

a linear projection x = Vs, where - C Rq and q << N, such that each linear system

is projected into the subspace spanned by the columns of V, creating the piecewise-linear

reduced order model [79]

dr

in which we have defined E = VTEV, Ai = VT AiV, k V = VTkh= VT hi, B = VT B,

and ^ = VTc. Here we have reduced the model complexity by both approximating the

nonlinear functions f(x), q(x), and by reducing the number of state variables.

We now have a procedure for generating PWL reduced order models for highly non-

linear systems, but in order to obtain an accurate model, the local linearizations must to



selected in an intelligent manner. We cannot afford to sample uniformly the entire state-

space, so we instead only create local models at "important" regions of the space. Since we

are interested in capturing the input-output behavior of the original nonlinear model, we de-

fine important regions as those that are visited by the state x(t) of system (3.24) in response

to typical inputs of interest u(t). Thus, given a set of "training inputs" u(t), system (3.24)

is simulated to obtain a set of "training trajectories" x(t), and then the local models are

created by linearizing the nonlinear system at points along the training trajectories. See

reference [77] for more details on TPWL models.

3.5.3 Projection vectors for Nonlinear Systems

As was the case for linear projection methods, there are many possible methods for con-

structing the projection matrices U and V when reducing nonlinear systems. However,

unlike in the linear case, there are few accuracy guarantees imposed on the reduced model

by these choices. For instance, there is no simple notion of a transfer function for a nonlin-

ear system, so we cannot use moment matching approaches to generate vectors.

The most common approach is to use the SVD techniques based off of time-domain

data. Some works have also used linear techniques to generate vectors from lineariza-

tions of the nonlinear system. For instance, Krylov vectors from the individual linearized

systems [79, 78] have been used for TPWL model reduction, as have TBR vectors from

linearized models [98].

Some nonlinear balancing techniques have been proposed in [82], but at the moment

there exists no efficient methods for computing the necessary transformations.

3.6 System Identification

In this section we introduce system identification techniques as an alternative approach to

model reduction.



3.6.1 An Alternative Approach to Model Reduction

The previously described model reduction techniques all involve "reducing" the large non-

linear systems, produced by circuit schematics or parasitic extractors, by explicitly project-

ing the original large system of equations. However, one shortcoming of such techniques

is the extreme difficulty in preserving stability in the reduced model. Additionally, such

model reduction approaches are quite restrictive because they require explicit knowledge

of the nonlinear functions f(x) and q(x) describing the original large system of equations.

This requires knowing not only the schematic of the circuit, which is typically readily avail-

able, but also the exceedingly complicated transistor models. Transistor models typically

consist of a collection of empirical formulas with hundreds of special cases, and hundreds

of fitted parameters, which are not as easily available. Furthermore, nonlinear models pro-

duced by existing projection reduction techniques (such as piecewise linear methods) are

often not easily realizable using existing commercial circuit simulators due to complicated

nonlinearities in the model, and would require internal modifications that, although simple,

cannot be implemented by the end user of such simulators without access to the source

code.

An alternative approach to achieve the same final goal, i.e. the automatic generation of

accurate compact models, without "reducing" a given large system, but rather using a sys-

tem identification approach to model reduction. The term system identification (SYSID)

refers to the task of finding a stable dynamical model of low complexity that delivers the

best match for a collection of dynamical input-output (or input-state-output) data. In classi-

cal control applications, the data is usually available in the form of actual physical measure-

ments, and SYSID provides adequate models for systems for which no reliable first prin-

ciples equations are available, either due to parameter uncertainty or system complexity.

In integrated circuit applications, SYSID is the only viable option in generating compact

models of circuits blocks when only input-output physical measurements are available. In

addition, although it is true that in many cases circuit schematics of the original system

are actually available, SYSID often still remains the most practical solution to compact

modeling.



Within the control community, SYSID for linear-time-invariant (LTI) system is well

understood and mature [50]. One can argue that also some of the approaches developed

by the Electronic Design Automation community for LTI model order reduction could be

interpreted as SYSID approaches, such as those based on transfer function fitting via least

squares or optimization techniques [8, 37, 20, 88].

Conversely, SYSID for nonlinear systems is still a problem that needs to be addressed

on a case by case basis [38, 51]. Among the most general and used approaches in be-

havioral modeling one finds the Volterra series method [18, 54, 90]. In some more spe-

cific approaches one assumes an internal structure (e.g. a Wiener [9, 39], or Wiener-

Hammerstein [50, 38, 94, 43] or Wiener-Hammerstein with feedback structure [89]), and

proceeds in identifying the coefficients for such structures [85, 74]. This forms the basis

of the block diagram oriented system identification schemes such as [106]. As a general

observation, a significant difficulty in implementing any kind of SYSID based approach

is caused by lack of efficient SYSID tools for generic nonlinear systems. Typically one

is required to solve, for instance, very expensive non-convex quadratic programming opti-

mization problems.

3.6.2 Robust Nonlinear Identification

In standard system identification (SYSID) techniques for both discrete and continuous time

systems, data is exclusively available in the form of a finite length vector of input-state-

output (i[t], i3[t], Q[t]), or just input-output, sampled pairs. Such data can be generated

either by physical measurements of a fabricated integrated circuit, or by simulation of an

available circuit schematic. The objective of a SYSID algorithm is to generate automati-

cally from training data, a dynamical system description, such as the following implicit DT

model

F(v[t], ... , v[t - m], v[t - 1],.. , u[t - k}) = 0, G(y[t], v[t]) = 0, (3.26)

such that the predicted output of the identified model minimizes the "output error", and it

is "easy" to compute each new output sample when given previously computed past values



of the input and output samples.

Definition 3.6.1. Given a sequence of inputs ii[O],...,ii[T], the corresponding states

' [0],... , I[T], and outputs Q [0], ... ,[T], the output error of an identified model is de-

fined as

E(F, G, X) = y[t] - [t]|2 , (3.27)
t

where y[t] are solutions to the identified model in response to training data inputs and

initial conditions i [t - 1],... , iY[t - m], and X represents the training data set containing

all given i[t], i[t], Q[t] pairs.

In general, minimization of the true output error is computationally extremely difficult

as it is a highly non-convex problem. Most approaches suggested by the classical literature

in system identification [50] instead attempt to minimize the overall "equation error".

Definition 3.6.2. The equation error is defined as the sum of squared mismatches ob-

tained from evaluating the identified model (3.26) on all of the training data samples

(G It],I )[t],QIt]) 6- X

E(F, G, X) = ( F(Y[t], 0[t])|2 + G( [t], i[t])j2  (3.28)
t

It is, however, misleading to assume that a small equation error always leads to a small

output error. It is possible to identify unstable models whose system equations are satisfied

accurately by the given data, resulting in small equation error, but produce unstable outputs

during simulation, resulting in large output error.

It has been shown in [56] that if system (3.26) is incrementally stable (i.e. satis-

fies (2.47)), then the equation error for the resulting system provides an upper bound for

the model output error over the training data set. Minimization of this upper bound subject

to incremental stability constraint can be cast as a semidefinite program, however, this ap-

proach typically produces overly conservative upper bounds for the output error due to the

strong constraints imposed by (2.47).
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Chapter 4

Stable Model Reduction for Indefinite

Linear Systems

4.1 Introduction

In Section 3.4, several stability-preserving model reduction approaches for linear systems

were discussed. However, all of these methods are either restrictive, by imposing strong

constraints on the matrices of the large system being reduced, or are too computation-

ally expensive to handle very large systems. Many stable systems are not described by

semi-definite matrices. Such matrices frequently arise when modeling nonlinear systems

or when considering linearizations of nonlinear systems, such as small-signal analog circuit

models created by linearizing around the DC operating point. There exist a small number

of methods, such as balanced truncation, that preserve stability [60] and passivity [66] for

asymmetric and indefinite systems, but these techniques are computationally extremely ex-

pensive.

Additionally, models of stable passive systems extracted by field solvers may often be

unstable due to error arising from discretization and from ignoring higher-order physical ef-

fects. These errors become a serious problem when attempting to connect unstable system

blocks into a larger stable system, or when modeling distributed systems with frequency-

dependent matrices, which requires interpolation between matrices [23]. To our knowl-

0Some of the material in this chapter has been previously published in [16].



edge, no projection method is able to reliably create accurate stable reduced models from

originally unstable systems.

In this chapter we address the issue of efficient stable reduction of indefinite stable sys-

tems and mildly unstable systems. Specifically, we present a new approach for computing

projection matrices that are guaranteed to preserve stability (and passivity). The projection

matrices are typically chosen such that the right projection matrix guarantees accuracy (e.g.

matching moments), and the left-projection matrix guarantees stability. This is achieved by

deriving a set of linear constraints based on the idea of Lyapunov functions, resulting in a

linear matrix inequality (LMI) whose solution is a stability-preserving projection matrix.

Particular attention was devoted to formulating the LMI problem such that it is independent

of the size of the original system, and only depends on the order of the reduced model.

This chapter is organized as follows: In section 4.2, we explain how existing stability-

preserving projection techniques can be interpreted as a preservation of dissipation. In

Section 4.3 we derive a set of linear stability constraints for the reduced model in terms

of projection matrices, allowing for stability to be enforced, rather than preserved, during

projection. In Section 4.4 we formulate optimization problems aimed at finding the optimal

set of projection matrices that enforce both accuracy and stability. Section 4.5 presents sev-

eral non-projection approaches that can enforce stability using using the previously derived

stability constraints. Finally, Section 4.6 tests the proposed stabilizing methods on sev-

eral examples and compares their speed and accuracy to traditional methods. Background

information on stability-preserving model reduction can be found in Section 3.4.

4.2 Preserving Dissipation Through Projection

This section explains how stability-preserving reduction techniques can be viewed as a

preservation of storage functions and dissipation constraints. This allows us to interpret

all stability-preserving techniques as a generalization of the Galerkin projection in a dif-

ferent coordinate system. These ideas are based on a generalization of results presented in

section 3.4.2 and [55].



4.2.1 Restricting Storage Functions to a Subspace

Consider a linear system

Ei = Ax + Bu, y = CTx (4.1)

that is known to be dissipative with respect to a quadratic supply rate o-(x, u) with quadratic

storage function L(x)

L(x) = XT E T PEx

U(x, u) = xTQX + xTRu + uTSu,

(4.2)

(4.3)

meaning the following dissipation constraint is satisfied

2xT ETP (Ax + Bu) < o-(x, u). (4.4)

Recall that (4.4) is obtained by forcing L(x) < u(x, u) for all x, u. Since dissipation

constraint (4.4) must hold for all solutions x to system (4.1), then it must hold for all

solutions restricted to the subspace spanned by a matrix V E R1Nq, i.e. Rxxx = V,

L (V 2) = 2x VT ET P (AV i + Bu) < a-(V., u). (4.5)

If we define the following reduced order matrices

= VT ET PAV

then constraint (4.5) can be rewritten as

L(V 2) = 2 T (A- + Ru) < a-(V:, u).

B = VT ET PB, (4.6)

(4.7)



Additionally, we may define the matrices Q and R such that

U(Vj, u) = _TVTQV. + UTRu + jTVTSU (4.8)

With the above defined matrices it is possible to construct a reduced model that is

dissipative with respect to supply rate o(V., u) with storage function L(Vz).

Theorem 4.2.1. If System (4.1) is dissipative with respect to quadratic supply rate (4.3)

with quadratic storage function (4.2), then the reduced model

(4.9)

with the defined matrices

A= VT ETPAV B = VTETPB

0 =VTC

where E is any SPD matrix, is dissipative with respect to supply rate

UQ ) = '_± f?U + UTSU,

with the defined matrices

Q=VTQV R=VTS

with storage function L(i) = sT X.

Proof We wish to show that L(Xi) is a storage function and that the dissipation constraint

holds with supply rate &(, u). First, by definition E is SPD, and therefore L(i) >- 0.



Second, by (4.7) and (4.8) we find that

L>&)= 2 'T(A + Ru) = L(V z)

&(2, u) = T QS + , R + uT $u = a (V 2, u).

Thus, the dissipation constraint holds

L(.) = L(Vz) < u(Vilu) = &(.i2, u)

and the system is dissipative. 1:1

Here we have used the known storage function and dissipation of the original system to

define the reduced matrices such that the reduced model dissipation is that of the original

system restricted to the subspace spanned by V. Based on the supply rate chosen, it it may

be possible to reduce the constraints on some of the system matrices. For example, when

considering internal stability (o(x, u) = xTQx and u = 0), there are no constraints on the

reduced matrices B and C. Figure 4-1 illustrates this idea of restricting a storage function

to a subspace. In this example L(x) >- 0 is a quadratic function, and it is obvious that

L(Vs) is also a PSD quadratic function.

Although Theorem 4.2.1 guarantees a dissipative model, it provides no explicit guar-

antees that reduced model (4.9) will be an accurate model of original system (4.1). Since

the model is dissipative for any SPD matrix E, we may use this degree of freedom to en-

force additional accuracy in the model. In the following section we present one possible

approach for selecting E.

4.2.2 Projection Interpretation

In the previous section it was shown that the reduced system (4.9) is stable for any SPD

matrix E when A = VT ETPAV and E3 = VTETB. Here we consider one possible such

choice: = VT ETPEV. With this choice, the reduced system matrices become

= VT ET PEV, A = VT ET PAV, B = VT ET B, O = VTC, (4.10)
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Figure 4-1: Example of restricting a storage function to a subspace. From this picture it is
obvious that L(vs) >- 0 when L(x) >- 0.

allowing the reduced system to be written as

(VTETP)EVx = (VTETP)AVs + (VTETP)Bu, (4.11)

which can also be obtained by projection of the original system (4.1) with projection ma-

trices U and V, where U = PEV.

Theorem 4.2.2. If System (4.1) is dissipative with respect to quadratic supply rate (4.3)

with quadratic storage function (4.2), then the reduced model

y = 0 (4.12)

with the defined matrices

A= UT AV,E= UT EV, B = UT B,) O = V TC, (4.13)



where U = PEV, is dissipative with respect to supply rate

U(, u) =T + UT Ru + .TSU, (4.14)

with the defined matrices

Q=VTQV $=VTS, (4.15)

with storage function L(is) = sT :.

Proof By the choice of U, note that E = VTETPEV is a SPD matrix. Therefore, we

may apply Theorem 4.2.1, which proves dissipativity of the reduced model. D

We wish to point out here that although Theorem 4.2.2 is simply a reproduction of

Theorem 3.4.2 generalized to arbitrary quadratic supply rates, the important contribution of

this section is the interpretation of the proposed projection using preservation of dissipation.

This interpretation is key to results presented in the following sections, and also several later

results in Chapter 6.

When selecting E = VTETPEV, we are enforcing accuracy in the reduced model

through the projection framework. The projection guarantees that the residual of solutions

approximated in the space spanned by V are orthogonal to the space spanned by U, i.e.

UT(EV AV - Bu) = 0. (4.16)

Additionally, accuracy may also be enforced by the choice of V, through, for instance, mo-

ment matching in the frequency domain, or any other linear projection technique described

in Section 3.2.



Generalization of Galerkin Projection

To obtain insight into why the aforementioned projection framework preserves stability,

consider the linear system

= Ax + u,

= ET PE, = ET PA,

y = CTx,

b = ET PB, y = CTX

which is obtained by premultiplying System (4.1) by the matrix ETP. This new linear

system is a definite system because F = FT >- 0 and A + AT -< 0, thus allowing a

congruence transform to preserve stability

VT ( ET PE)Vs = VT( T PA)Vs + VT ( ET PB)u. (4.17)

The resulting reduced model is the same model obtained from the proposed projection

applied to the original system. From this point of view, the projection U = PEV can

be interpreted as first transforming the linear system to a coordinate system where it is

described by definite system matrices, and then applying a congruence transform.

4.2.3 Extension to Nonlinear Systems

Preservation of dissipation through projection can also be applied to nonlinear systems. For

example, if the nonlinear system i- = f(x) is dissipative with respect to supply rate a = 0

for storage function L(x) = xTX, i.e. dissipation constraint

XT f(x) + f (x)T X < 0

holds for all solutions x, then the restriction of this dissipation constraint to x =Vs,

.TVTf(V.) + f(Vs)TVX 0,



certifies dissipation of the reduced system I' = VTf(V:s) with storage function =()

In general, it is more difficult to find storage functions for nonlinear systems, and diffi-

cult to "check" whether dissipation constraints are satisfied globally. However in the cases

where a storage function is known, the previously described approach can be used to guar-

antee stability of a nonlinear reduced model.

4.3 Introducing Dissipation Through Projection

4.3.1 Difficulties with Dissipation Preservation

The previous section presented a projection approach for creating stable reduced models

from stable large models that is independent of the structure of the large matrices, i.e. does

not require a definite original large system. However, there is one main problem with such

dissipation-preservation approach.

The projection approach described in Section 4.2 assumes explicit knowledge of a stor-

age function matrix P for the large system. In some cases this matrix is known or can be

constructed, as described in Section 2.2.5, but in general this is not the case. Often times a

given linear system results from an unknown formulation, making it impossible to construct

P based on physical intuition from the problem. Even if the formulation is known and P

can be explicitly constructed, it is possible that numerical errors in the system description

prevent the assumed P from actually being a storage function matrix for that particular sys-

tem. In these cases it is possible to solve a Lyapunov matrix equation to find P, however

this requires Na complexity, and if one is going to spend that much computation, then it

might be better to use for instance balanced truncation instead.

The biggest problem, however, is that it is even possible that the given linear model of

a stable passive system is in fact not stable or passive. This could be a result of numerical

errors during the formulation of the large system resulting from discretization error in the

field solver, when using for instance boundary element methods or finite element method

formulations. In most cases it is not even possible to know whether or not the large system

is stable, since checking stability of a linear system is typically N 3 complexity. If the large



linear system is ill-conditioned it is possible some eigenvalues have very small positive

real parts. Even though effects resulting from such eigenvalues should be negligible, when

simulated in time-domain long enough the results will become unstable.

As an alternative approach, it may be beneficial, or even necessary, to enforce stability

or passivity in the reduced model through projection, rather than attempting to preserve it.

4.3.2 Stability and Passivity Constraints

Although the following approach can be extended to arbitrary notions of dissipation result-

ing from quadratic supply rates, for the remainder of this chapter we will consider only

asymptotic stability and passivity, as these are the most important properties from a time-

domain modeling point of view.

Given a linear descriptor System (4.1) and a pair of projection matrices U and V, we

wish to find conditions under which the reduced order model

UT EVi = UT AV + UT Bu, y = CTV. (4.18)

is stable. In this work we are primarily interested in the selection of the left-projection ma-

trix U. That is, given a right-projection matrix V (generated by any well known technique

in VLSI model order reduction such as moment matching, POD or Poor-Man's TBR), we

will propose a routine for automatically generating left-projection matrices U which pre-

serve stability.

From Section 2.3, we know the reduced system will be stable if there exists an SPD

matrix P such that

+ $ = -Q2 - 0, (4.19)

for some SPD matrix Q2. Recall that this equation is the result of the condition L(s.) -< 0,

corresponding to the Lyapunov function L(^) = ETP4s. That is, given reduced model

matrices E, A, B, C, if there exists an SPD solution P to condition (4.19), then L(X) is

a Lyapunov function for System (4.18), and thus System (4.18) is asymptotically stable.



Condition (4.19), however, is not desirable from a computational point of view, because it

is quadratic in U

VT ETUPUT AV + VT ATUPUT EV = -Q2 -4 0, (4.20)

making it an extremely difficult system of equations to solve.

As was discussed in Section 4.2.2, it is always possible to transform a stable linear sys-

tem into a definite system. Considering directly only definite reduced models, the stability

conditions for system 4.18 simplify to

0 A+AT 0. (4.21)

In terms of projection matrices, these new constraints are linear in both U and V

UT EV Qi >- 0 (4.22)

UT AV +VT ATU= -Q2 - 0.

Prop. 4.3.1 (Equality of Stability Constraints). The stability conditions (4.20) and (4.22)

are equivalent, provided the reduced matrix UT EV has full rank.

Proof Assume U, P, Q2 solve (4.20). We may then choose U = UUTEV as a solution

to (4.22) for Q2, and we find that Q1 = VTETUPUTEV, which is SPD because it is a

congruence transform of an SPD matrix P with a full rank matrix operator UT EV. On the

other hand, assume U, Q1, Q2 solves (4.22). We may then choose U = U as a solution to

(4.20) for Q2 and for P = (&TEV)-1 = Q--, which is an SPD matrix because Qi is an

SPD matrix. Thus, the two sets of constraints are equivalent. D

As a result of this equivalence between stability conditions from here on we shall con-

sider only the set of linear constraints

UTEV >- 0 (4.23)

UT AV + VT ATU __ 0. (4.24)



Any U satisfying these constraints will create a stable reduced model. In addition, note

that there is no requirement that E be invertible, so we may handle the case of singular E

matrix, provided UTEV is non-singular.

It is important to note here that if for numerical reasons we need to further enforce

orthogonality between U and EV, then given a U which solves (4.23) and (4.24), we may

always redefine U = U(VTET U)- 1 to ensure that UTEV = I, where I is an identity

matrix. This redefinition does not affect the stability or accuracy of the reduced model

because it does not change the column span of U. Such a redefinition can be thought of as

multiplying both sides of the reduced model by E-1 , which we know is invertible because

we have forced it to be an SPD matrix (Q1). Additionally, we point out that instead of fixing

the right-projection matrix U and finding a stabilizing left-projection V, it is also possible

to do the opposite and fix the left-projection U while finding a stabilizing right-projection

V.

In this section and for the remainder of the paper we consider the asymptotic stability

constraint that Q2 is an SPD matrix. It is also of course possible to consider the looser

constraint that Q2 is an SPSD matrix without changing any of the results presented here.

Passivity Enforcement

If, in addition to stability, we wish to enforce passivity, we add the third constraint that

B = C, since we are forcing the reduced system to be definite. Since B # C in general

even if B = C, because B = UT B while O = VTC, we must enforce this as an additional

constraint

UT EV >- 0 (4.25)

UT AV + VT AT U -< 0 (4.26)

UT B = VTC. (4.27)

Thus, passivity is preserved by adding one additional linear constraint. In the remainder

of this chapter, in order to keep the explanation simple, we will refer only to stability and

consider only the first two linear constraints; however, it is always possible and a trivial



extension to add the third linear constraint to ensure passivity when needed.

4.3.3 Existence of Stabilizing Projections

In the previous section we derived a set of linear constraints for a stabilizing projection

matrix U. In this section we examine the conditions guaranteeing that solutions to the

system of constraints exist.

First, note that it is possible to transform the matrix equations into a single linear sys-

tem. We may rewrite equation (4.24) as a single matrix linear in U and concatenate the

result with equation (4.23) to obtain

MTU = BT, M = [Ve, Va], B = [Q1, - Q2]. (4.28)

where Ve = EV and V is a rearrangement (4.24) such that UTVa UTAV +VTATU.

Since U E RNxq and M E R Nx2q, this is an underdetermined system of equations with

q2 equations and Nq unknowns. If the columns of the constraint matrix M are linearly in-

dependent, then there exist an infinite number of stabilizing solutions for any SPD matrices

Q1, Q2. Note that there is no dependence on the eigenvalues of (E, A). In fact, there exist

stabilizing solutions even if the original large-order system is unstable. Thus, not only

can we preserve stability, but we also have the option of enforcing stability when needed.

If the constraint matrix M in (4.28) has linearly dependent columns and the original

system is stable, then there exist stabilizing solutions only for certain SPD matrices Q1, Q2.

Prop. 4.3.2 (Existence of Stabilizing Projection). If (E, A) is an asymptotically stable pair

then for any orthogonal right-projection matrix V and any SPD matrix Q2, there exists at

least one SPD matrix Q1 such that the linear constraints (4.23) and (4.24) are consistent

(i.e. a solution exists).

Proof By assumption, (E, A) is an asymptotically stable pair, and therefore given any

SPD matrix Q there exists an SPD matrix P such that

ETPA + AT PE = -Q. (4.29)



Furthermore, given any right-projection matrix V, it is also true that

VT ET PAV + VT AT PEV = -VTQV, (4.30)

and that VTQV is also SPD because congruence transforms preserve definiteness. Thus,

we select U = PEV and Q2 = VTOV to satisfy constraint (4.24), and find that UTEV =

VTETPEV >- 0 satisfies constraint (4.23). Lastly, we need to show that there exists such

a Q for any Q2. Since Q2 is SPD, we may factor it such that qTq = Q2, where q E Rqxq.

Now define qT = [X, K(V)] where A(V) is the null space of VT, and X E R Nxq is the

solution to XTV = q (which exists because it is an underdetermined system of equations

and V has linearly independent columns by assumption). Finally, define Q = resulting

in Q2 =VTQV.

A second important observation is that not only are there an infinite number of sta-

bilizing solutions U to the underdetermined System (4.28), but there are also an infinite

number of subspaces spanned by the set of stabilizing solutions U. That is, if we define

T = range(U) to be the space spanned by the columns of U, then there exist an infinite

number of stabilizing spaces T. This is an important distinction to make, as there exist

many different representations for a single subspace which will produce reduced models

all identical up to an invertible change of coordinates. Furthermore, the feasible set is a

convex cone. Let Ua, Ub E U, i.e.

UTEV = Q1a > 0, UTAV + VTATUa = Q2a 4 0

U EV = Q1b >- 0, U AV + TATUb = Q2b 4 0,

then U = aUa +/ 3 Ub e U for all a,3 > 0

UTEV = (aUa + 1Ub)T EV = aUTEV + /UJ'EV = aQia + 3 Qlb > 0,



and

UT AV + VT AU = (aUa + 3U)T AV + VT AT(aUa + I3Ub)

= a(UaAV + VT AT Ua) + 3(UbTAV + VT AT Ub)

= aQ 2a + I3 Q2b -< 0.

If the constraint matrix M has linearly dependent columns and the original system

(E, A) is not stable, then there may or may not exist a stabilizing projection. It is possible to

construct systems where there does not exist a stabilizing projection, e.g. select E = A = I

as identity matrices. However, if the number of unstable modes is smaller than the order

of the reduced model, then there always exists a stabilizing projection pair U, V that is

equivalent to truncating the unstable modes.

We would like to point out here that creating stable reduced models of unstable orig-

inal systems may in general result in inaccurate reduced systems. Ideally the large-order

extracted systems would be stable and the projection framework would simply preserve

stability, but unfortunately this is not the case in the vast majority (if not complete totality)

of field solvers and parasitic extractors used in current VLSI design flows to extract the

original large order systems. We have found that in most cases the numerically unstable

modes in such extracted linear systems correspond to very small eigenvalues and are typi-

cally not excited by inputs of interest. Explicitly truncating, or stabilizing, these unstable

modes in the large-order system would therefore likely yield accurate stable models. How-

ever, this operation is computationally infeasible since it would require the preliminary

eigendecomposition of the original large order system. Nevertheless, unstable modes must

be eliminated, because a poorly-chosen projection could amplify the unstable modes and

cause major instabilities in the reduced model. The approach presented in this paper may

be used to eliminate such parasitic-extraction-generated artificial numerical instabilities,

avoiding the expensive eigendecomposition of the original large-order system.

The unstable systems we are trying to address here are the ones generated by parasitic

extractors discretizing PDEs, hence they typically contain a very small number of numeri-

cally generated positive eigenvalues. For those systems we are often able to find stabilizing



projections for unstable models.

4.3.4 Analytic Solutions for Independent Constraints

In the case of linearly indepedent constraints, as described in section 4.3.3, it is possible to

explicitly solve the stability constraints

UT EV = Q1 > 0 UT AV +VT ATU = -Q 2 -< 0

for a stabilizing left-projection matrix U. It is possible to solve this system directly using

Kronecker identities to transform the matrix equation into one large linear system, but this

would be very expensive with a computational cost on the order of (Nq)3 , where N and

q are the sizes of the large-order and reduced-order systems respectively. Our goal is to

eliminate dependence of the complexity on N.

As stated previously, we can transform the matrix equation into a linear system. Con-

sider factoring the matrix V into two matrices Qa and Ra such that V = QaRa, where

Qa E RNxq and Ra E Rx. One approach is to use a modified Graham Schmidt or-

thogonalization for Qa. This is cheap computationally because only the first q orthogonal

columns are needed. For the sake of consistency we may do the same for the other con-

straint, factoring Ve into Qe and Re. We now define a new pair of variables Y = UTQa

and Ye = UTQe. The result is the linear system

[Qe Qa]T U = [Ye a T  (4.31)

where Ye, Ya E Rq are the solutions to the order q matrix equations

R'Ye = Q1, R'Ya+YafRa = -Q2,

which can be solved in at worst O(q 3 ) operations. Note that since Ve and Va are linearly in-

dependent, then Qe and Qa are linearly independent, [Qe Qa]T has 2q linearly independent

columns, and thus there always exists a solution to linear system (4.31). This procedure

is summarized in Algorithm 1, and the resulting underdetermined system can be solved



Algorithm 1 Linear Constraint Transformation
1: Given matrices Q1, Q2 >- 0, and E, A, V
2: Define Ve = EV, V = AV, and then factor into matrices Qe, Qa E RNxq Re, Ra E

Rqxq such that

Ve = QeRe Va = QaRa

3: Solve order q matrix equations separately for Ye and Ya

Y Re = Q1 YaRa +RY -Q 2

4: Solve underdetermined linear system for U

[Qe Qa]T U = [Ye Ya]

efficiently using any standard technique.

4.4 Optimal Projection

In the previous section we have shown that given any right projection matrix V, there

exist left-projection matrices U that enforce stability and passivity in the reduced model.

However, we have not yet addressed the issue of additionally enforcing accuracy through

the choice of U. For the dissipation-preserving projection U = PEV from section 4.2.1,

there exist many possible choices for P resulting in stable models, and it is difficult to

know a priori which will yield the most accurate reduced model over the range of interest.

When enforcing dissipation through projection as discussed in section 4.2.2, it was shown

in section 4.3.3 that there exist many stabilizing U matrices. For example, Figure 4-2 plots

the quality factor of an RF inductor model (solid line) along with several sixth-order stable

reduced models (dashed lines) all constructed with the same right-projection matrix V and

different left-projection matrices U. All models match the transfer function at the places

where V enforces moments matching, at 1GHz and 10GHz, but some models are more

accurate than others at frequency points in between. In this section we present several

methods for selecting U such that both stability and accuracy are enforced in the reduced

model.
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Figure 4-2: Six different sixth-order reduced models (dashed lines) created with the same
right-projection matrix V matching moments at 0.1, 1, 10 GHz and four different left-
projection matrices U. The solid line indicates the response of the original transmission
line model. The curves represent quality factors of an RF inductor model.

4.4.1 Optimal Stabilizing Projection

Given the large number of stabilizing left projection matrices U, as shown for example

in Figure 4-2, it might be beneficial to spend more computation in an attempt to increase

the reduced model accuracy by searching for a stable and accurate projection. Utilizing

the linear stability constraints derived in Section 4.3.2, we can formulate the following

optimization problem

minf (U) subject to
U

UT EV >- 0

UTAV + VT AT U _ 0.

Here f (U) is some objective function chosen to enforce accuracy through the left-projection

matrix U.

Let U represent the space of all stabilizing projection matrices U, and assume we are

given a normalized left-projection matrix Uo that does not preserve stability. One choice
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for objective function f(U) is to try to minimize the "distance" between the given left-

projection matrix Uo, constructed to enforce accuracy, and some stabilizing solution U C U.

To this end, we will define U = U0 + U6 as a stabilizing solution, and shall solve only for

the perturbation term U6

min ||U6||s subject to (4.32)
U

UEV + AQ1 >- 0

UrTAV + VT ATU 6 + AQ 2 -< 0,

where AQ1 = UOTEV and AQ 2 = UOTAV + VTAT U0 . What we are essentially doing

here is searching for a minimal perturbation to the matrix U0, which was constructed for

accuracy, such that the resulting matrix U = Uo + U6 is accurate and guarantees stability.

In this setup our measure of optimality || -|s should quantify the distance between the

subspaces spanned by U and U0 . There are many possible norms one can use here to

measure this distance, and we present two such options in the following sections.

4.4.2 Minimal Perturbation for Stabilizing Projection

Given a matrix U0 that was constructed to ensure accuracy, we wish to find a stabilizing

projection U that is "close" to U0 in some sense. One possible choice for measuring this

distance between projection matrices is to use the familiar and computationally affordable

L 2 norm

min|JU - Uo||1 subject to (4.33)
U

UIEV+ AQ 1 >- 0

UrTAV + VT AT U6 + AQ2 - 0.

This measure is not necessarily ideal because while it measures the distance between the

matrices U and U0, it does not exactly measure the distance between the subspaces spanned

by these matrices. It is possible that I U - Uo I could be large while I U- UOI| could be small
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when U and U have the same column span. However, one advantage of minimizing the L 2

norm is that optimization problem (4.33) is convex, and furthermore can be formulated as

a semidefinite program allowing it to be solved efficiently using known techniques.

As stated, optimization problem (4.33) is still computationally N-dependent because U6

has size N x q. Since the system is underdetermined, we may fix N - 2q variables and solve

instead a size 2q square system. Define V = EV and V = AV and consider partitioning

U6, V, and Ve such that Uq, Vaq, and Veq are the first 2q rows of each respectively. Now the

size N x q system

VT 
Uq

[e V2 ] [bU] = Q1
is equivalent to the size 2q x 2q system

eqUq+ (V2U 2) >_ 0,

where U2 is a predetermined size (N - 2q) x q matrix. We may partition the remaining

constraint in a similar manner, resulting in a pair of square size 2q constraints and a new

optimization problem where we have defined AQ1 = VJ'Uo + Vi'U2 and AQ2 = V UO +

UOTVa + (VaTU 2 + Uf Va2). In most cases, since we want U6 to be small, we will select

U2 = 0. This new problem has O(q 2 ) constraints and unknowns, resulting in a cost of

O(q4 ). A feasible solution to the original problem can then be chosen as U = [UT Uf]T.

Thus we may now compute the stabilizing solution by solving an order-q LMI that has no

dependence on N, the order of the original system.

There remains one important detail not to be overlooked. We are assuming that the new

order 2q system has a solution, but this is not necessarily true for all Vaq, Veq. For example,

it is possible to choose 2q rows from V and Ve such that Vaq and Ve, are all zeroes, resulting

in no solution. However, by simply selecting the 2q rows such that there are no zero rows

in either truncated matrix, we have not found this to be a problem in practice. It is also

possible to increase the number of rows in Uq to some number p such that 2q < p < N if

a stabilizing solution is not found when considering only 2q rows. A sample procedure is
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Algorithm 2 Stabilizing Projection via Row Perturbation
1: Given E, A, V, U0, define

Ve=EV, Va=AV,

AQ1 = VTU, AQ 2 = VaTUO + UOgVa

2: Select p nonzero rows from Ve and V and denote them Vep and Vap respectively
3: Solve the optimization problem for U3

min ||U6|| subject to
U1

U6TVep + AQ1 > 0

UrVap+VU + AQ 2 -< 0.

4: Define U = U0 + AU, where AU is zeroes except for the p rows corresponding to the
rows of U6

presented in Algorithm 2.

4.4.3 Moment-Preserving Perturbation for Stabilizing Projection

One problem with the previous approach, i.e. minimizing the L2 norm |U I , is that if the

columns of U were chosen to match moments, then perturbing each column a small amount

will ruin all moment matching ability of U despite only making small perturbations. On

the other hand, making one large perturbation to a single column of U will only affect the

matching of one moment, even though the total perturbation to the matrix is large in the L2

sense. Therefore, it may be beneficial instead to consider perturbing columns sequentially

in order to find a stabilizing U while preserving as much moment-matching as possible.

Let U be a given nominal projection matrix that does not enforce stability, meaning that

the stability constraints

UTEV >- 0, UTAV + VT ATU -_ 0

are not satisfied. Now consider Uk E RNxq as a matrix with all zeros except the kth column,

such that U + Uk perturbs the kth column of U. We wish to find the minimal perturbation

Uk such that the stability constraints are satisfied. Since it is possible that no perturbation
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Uk will stabilize the reduced model (since we are only perturbing one column), to make the

optimization problem feasible we instead attempt to satisfy the constraints

(U +Uk)T EV +7 >- 0, (U +Uk)T AV +VT AT(U +Uk) --7 2 < 0

while minimizing both the norm of Uk and the quantities '71, 72

min ||Uk1 -2- 71 + 72 subject to
UkY1,y2

(U + Uk)TVe+Qi+71 _ 0

(U +Uk)TVa +V(U +U)+ Q2 -7 2 -< 0.

If there exists a Uk stabilizing the system, then the constraints will be satisfied with -71, 72

negative. If there exists no such Uk, then yi, -72 will have to be positive in order for the

constraints to be satisfied. In this case, we then attempt to perturb another column (change

the value of k), and solve again. This procedure can be iterated over the various columns of

U, with the matrix U being updated by the perturbations Uk at each step, until a U is found

that stabilizing the reduced model, meaning that Y1, 72 will be negative. This procedure is

described in Algorithm 3.

If this procedure terminates after k steps, then the remaining q - k columns of U will

match exactly q - k moments as they were originally constructed to do. As in section 4.4.2,

it is possible to perturb only some of the entries in the column Uk in order to make the

problem computationally cheaper.

4.4.4 Stabilizing Second Stage Reduction

When handing extremely large systems of equations, it is common practice to use Krylov

methods as a first stage of reduction, and then use balanced truncation as a second stage.

However, if the first stage reduction procedure produces an unstable model, then balanced

truncation is not applicable. In this case the stabilizing techniques proposed in the previ-

ous sections may be the only possible method for obtaining accurate and stable low-order

models.
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Algorithm 3 Stabilizing Projection via Column Perturbation
1: Given E, A, V, U0, define Ve = EV, Va = AV

Ve=EV, Va=AV,

2: Set U = Uo, k = 1
3: while 1, y2 > 0 do
4: Update Q1, Q2

Q1 <- VU Q 2 *VTU+UTVa

5: Solve for Uk, an N x q matrix with all zeroes except for the kth column

min |IUk 2 + 71 +72 subject to
Uk,Y1,72

U TVe+Qi+ Y >-O

UlTVa +Vf Uk + Q 2 - 7 2 -< 0.

6: Add Uk to the kth column of U
7: move to next column: k = k + 1
8: end while
9: U now satisfies stability constraints and creates a stable reduced model

4.5 Optimal Non-Projection Approaches

As mentioned in Section 4.2.2, if we define A and B as in (4.6), then the reduced model (4.9)

is stable for any SPD E. One possible alternative to using the projection approach described

in Section 4.3 to define E is to identify it through solving optimization problem.

In an optimization formulation, rather than forcing orthogonality of the residual with

respect to the space spanned by U, as a projection does, we can instead select E to minimize

the 'error' of the reduced model on a given set of data subject to the constraint that E = ET
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is SPD. For example, we may define E as the solution to the problem

min f (E, A, B, C) subject to, (4.34)
E

E >- 0

A= VT ET P AV

= VT ET PB

O=VTC

where f is an objective function that measures error of the reduced model. One possible

choice for f is the following

f (E) It xi E - -, bUil2 l (4.35)

where si = VT xi are a projection of solutions x to the original system (4.1) in response

to input ui. For this particular choice of f, the goal of the optimization procedure is to

minimize the equation mismatch over the given training data samples (ii, ui). With proper

selection of f, such as in (4.35), optimization problem (4.36) is convex and can be effi-

ciently solved using existing techniques. Additionally, given that we know one feasible

solution from Section 4.2.2 (i.e E = VTETPEV), the procedure is guaranteed to identify

a model no worse than the model obtained via the projection approach in terms of the error

metric defined by f.

Furthermore, if we are going to optimize projection matrices, and to avoid the previ-

ously described issues associated with requiring explicit knowledge of the storage function

matrix P, we can completely ignore projection and optimize directly all projection matri-

ces.

min f(E,A,B,C), subject to (4.36)
E,A,B,C

E >- 0

A+AT -_< 0
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It is important to note that since there is no projection, even if the matrix V was con-

structed to match moments, it is not guaranteed that the transfer function of the reduced

system will match these moments. However, the optimization procedure provides a differ-

ent measure of accuracy for the reduced model, and this can be sufficient to obtain high

accuracy in transfer function matching as well. An alternative approach for generating

stable reduced models by minimizing equation error is presented in Chapter 7.

4.6 Results

4.6.1 Implementation

The proposed methods were tested on several linear system examples. All of the following

results were generated using Algorithm 2. The optimization problems were solved using

the open source solver SeDuMi [91], and were formulated using either YALMIP [45] or

POT [57], all of which are freely available. In all of these examples we have chosen Uo

V, where V was constructed to match input moments.

As a last note, we have found that due to the extreme ill-conditioning of the constraint

system, one must normalize the constraints such that Ve and V are of the same order.

This is equivalent to simply scaling the right hand side matrices Q1, Q2. This operation is

allowed because the matrices would still be SPD.

4.6.2 Inductor Model

The first examples considered are two-turn RF inductor models. The inductor models were

created using a public domain electro-magneto-quasi-static (EMQS) mixed-potential inte-

gral equation solver [61, 1]. All of the selected extracted large order models are numerically

unstable, despite modeling passive physical systems.

As a result of instability, the traditional Galerkin projection U = V is not guaranteed

to create a stable model. Results from several different inductor models and stable reduced

models generated using Algorithm 2 are plotted in Figure 4-3. All reduced models have

order q = 8, and were each constructed in under 2 seconds. The original large order
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systems all have order N = 647 and are all unstable.
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Figure 4-3: Quality factor of two-turn inductor models corresponding to various wire width
and wire separation parameter values. The original models (blue solid lines) are unstable
and all have order N = 647, while the reduced models (red plusses) are stable and all have
order q = 8.

For these inductor models we cannot compare the computational time required to com-

pute the stabilizing projection to other similar methods, because to our knowledge no other

available method is guaranteed to create a stabilizing left-projection matrix U for unstable

systems when given a right-projection matrix V. However, it is possible to first stabilize

the large-order model, e.g. truncate the unstable modes in the large model via eigende-

composition, and then compute a stabilizing left-projection matrix corresponding to the

given right-projection matrix V. Doing so by solving a Lyapunov equation for the large

model was 10 times slower than our proposed method for this example, and this does not

include the time required to stabilize the large-order model via eigendecomposition. When

factoring in the cost of the eigendecomposition, our proposed method is 15 times faster.

4.6.3 Power Grid

The second example is a 3 x 3 power grid in free space. The grid consists of copper wires

with width 2tm and thickness 2pLm, and resulted in an order N = 1566 unstable model,
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created using the same EMQS solver. Using Algorithm 2 we were able to create an order

q = 10 stable reduced model by constructing V to match moments and selecting Uo = V.

For this example the Galerkin projection U = V resulted in an unstable model. Figure 4-4

plots the real part of the impedance of the original system, the stabilized reduced model,

and an unstable reduced model created using a Galerkin projection.
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Figure 4-4: Real part of the impedance for a 3 x 3 power grid. The original model (solid
blue line) is unstable and has order N = 1566. An unstable reduced model created through
Galerkin projection (green crosses) of order q = 10 is comparable in accuracy to a stable
reduced model (red circles) of order q = 10 created by our proposed method.

As a reminder we would like to point out that although the frequency-domain results

of the unstable reduced models in Figure 4-4 look nice, it is possible that certain inputs,

or simply numerical noise in the simulator, could excite the unstable modes in the model

resulting in unphysical behavior. For instance a non-zero initial condition could cause the

solution to explode, which cannot happen for a passive system such as a power grid.

4.6.4 Linearized Systems

The final example considered is a nonlinear Microelectromechanical System (MEMS)

switch [27]. The need to efficiently construct stabilizing projections for indefinite lin-

earized models arises in small-signal analysis of analog circuits, and when using nonlinear
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projection functions to create stable nonlinear reduced models of nonlinear systems [15].

The nonlinear model is obtained from the discretization of a pair of nonlinear PDEs, and

the linear model is obtained by linearizing at the equilibrium state. For this system the

matrices are neither symmetric nor definite. The original model has order N 1680, and

we were able to create an accurate stable reduced model with order q = 12.

x 10-3

3-

2-

1-

-2

-3-

-4-

-5-

103 104 105 106
Frequency (Hz)

Figure 4-5: Real and imaginary transfer function parts of a linearized model of a nonlinear
MEMS device. The original stable model (solid blue line) has order N = 1680, while
the reduced stable model (red crosses) has order q = 12. A Galerkin projection on this
indefinite system does not preserve stability.

For this example a Galerkin projection does not preserve stability, and constructing a

stability-preserving projection by solving a Lyapunov equation for the full system was 10

times slower than our proposed algorithm.
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Chapter 5

Parameterizing Trajectory Piecewise

Linear Models

5.1 Introduction

In order to be useful for design optimization, a reduced model must be parameterized in

some set of design parameters to allow for design changes. Given a large system depending

on some parameters p, we wish to create a reduced model that preserves the dependence

on the set of parameters

X=f ( U, u, p) -up).

While there exist several parameterized model reduction approaches for linear systems,

none are capable of handling nonlinear systems.

In this chapter we present a parameterized model reduction approach for highly non-

linear systems. This approach is based on the trajectory piecewise linear (TPWL) model

reduction method combined with a parameterized moment matching approach. To recap

briefly, the TPWL approach, described in detail in Section 3.5.2, approximates a nonlinear

0The material in this chapter has been previously published in [13, 14].
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system with a collection of local linear models that are used for interpolation

f(x) - ( wi(x)Aix + ki

In addition, we propose an adaptive training scheme which selects parameter-space points

for training by using available trajectory information to approximate the system sensitivity

to the parameters. Requiring fewer training trajectories reduces the model generation cost

and potentially eliminates redundant linear models.

This chapter is organized as follows: Section 5.2 presents the parameterized TPWL

approach along with an algorithm for its implementation. Techniques are presented for

selecting linearization points for local models and vectors for the projection matrix. In

Section 5.3, three parameterized nonlinear system examples chosen to test the proposed

method are described in detail. Results from these examples along with algorithm analysis

and parameter-space accuracy analysis are presented in Section 5.4.

5.2 Parameterized Model Order Reduction for Nonlinear

Systems

5.2.1 PROM Description Derivation

Given a system possessing nonlinear dependence on both the state x(t) and some set of

parameters pi

((t),pp2, -,P,) + B(pi,..C.,p,)u(t),T (5.1)

where x E RN, f E RN B E RNxNu and C E RNxNy, our goal is to obtain a nonlinear

parameterized reduced model
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where i is of low complexity, and the reduced model accurately predicts the behavior

of (5.1) in response to changes in inputs and parameters.

The first step in obtaining such a reduced model is to separate the parameter dependence

from the state dependence in the nonlinear function. Using, for instance, a polynomial

fitting scheme or a Taylor series approximation in the parameters, we can approximate the

nonlinear functions as follows

P-1

f (X, Pi, ... ,P') ~ gj (pi, . ., )fy (W (5.2)
j=0

P-1

B(pi, .. . , p)u(t) ~ gj (pi, .. . ,p,)Bju(t),
j=0

where gj (pi, . . . , p,,) are scalar functions of the parameters, fj (x) are vector-valued func-

tions of the state, and B3 are constant input matrices. For example, a first order Taylor

series expansion on f(x, p) would yield

af(x, p)

Dfpx pfo(z) =f(z,po) -Zpo -P

By introducing a new set of parameters Pi = gj (pi, . . . , p,) it is finally possible to make

the system affine in the new parameters

dx P-1

dt = Z'Pj [fj(x) + Bju(t)] (5.3)
j=0

while retaining the nonlinear dependence on the original parameters. In order to keep the

equations concise we choose fo(x) and B0 to be the terms with no parameter dependence

and thus define Po = 1.

It is desirable to write the system as (5.3) because such form permits approximating

each nonlinear function fj (x) as an affine function of the state without affecting the param-
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eter dependence of the system:

Pi f (x) ~i [fi(xi) + a(x - xi) =j [Aigjx + kij|

_ f___x) Ofj(x)A = (x) kij = f (xi) - xi,ax Xi 8x Xi

where AJ E RNxN and ki, E RN

This allows, as in the standard TPWL approach [78], approximation of the nonlinear

functions f3 (x) as a collection of local linearizations around different points xi in the state

space:
dx 1 P-1

dt ZEwi(x, X)j [Ai x + ki + Bu] (5.4)
i=0 j=0

where wi (x, X) are weighting functions which vary dynamically with the state.

Now that the system matrices Aij have no implicit parameter dependence, standard

projection techniques can be applied to each of the linear systems in (5.4). For example,

using a projection matrix V E RNxq , system (5.4) is reduced to

d -1 P-1[A (5.5)
dt Y ( m(2,X )k s&+Iij + f (5.5

i=0 j=0

where & E Rq, Ai E Rqxq = VTAijV, kij E Rq = VTki, Aj E RqxNu = VTBj,

E RqxNy = VTC, x = V., and X E Rqxn = [VTx0, ..., VTx._1], resulting in a

reduced order model possessing a nonlinear parameter dependence similar to that of the

original model.

In order to complete the procedure, two algorithms remain to be specified: how to

choose linearization points xi, and how to construct projection matrix V. These two meth-

ods will be discussed in detail in the following sections, and then combined to create the

proposed Nonlinear Parameterized Model Order Reduction (NLPMOR) algorithm.
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5.2.2 Selecting Linearization Points

In standard TPWL [19, 79, 78, 25, 26] linearization points are chosen along state trajecto-

ries generated by typical training inputs. Using a similar idea, additional trajectories can

be created by training with system (5.3) at a set of points in the parameter space {pj}. This

additional training produces linear models in new state-space regions where variations in

the parameter are likely to drive the state. As with training inputs, if we know a range of

practical parameter values over which the system will be evaluated, we can restrict param-

eter training points to that set. Additionally, if we have information about the sensitivity of

the system to each parameter, training should be performed in regions where the system is

most sensitive to the parameter. Section 5.2.4 presents a method for approximating these

sensitivities and using this information to select training points.

Computing the exact training trajectories requires simulation of the full nonlinear sys-

tem, which may be prohibitively expensive. Alternatively, one could use 'approximate

training trajectories'. In this case, rather than simulating the full nonlinear system, we sim-

ulate a linearzied model. It is assumed that this linearized model is accurate as long as

the current simulated state stays in some neighborhood of the linearization state. Once the

current simulated state leaves such neighborhood, a new linearized model is created at the

current state, and the procedure continues on in this manner.

The additional trajectories created by parameter-space training increase the cost of con-

structing the model, but do not significantly affect the cost of simulating the ROM. Since

the weighting functions in (5.5) are typically nonzero for just a few models at any particular

time, only the closest models are considered for weighting, and a larger set of models does

not significantly affect simulation time [95]. Thus, by holding the order of the reduced

system fixed and adding additional models from new trajectories, the interpolation of the

nonlinearity fj (x) in (5.3) can be improved without significantly increasing the simulation

time.
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5.2.3 Constructing the Projection Matrix

As in PMOR for linear systems [101, 22, 24], the columns of the projection matrix V

can be chosen to span the subspace generated by the vectors from a multivariable Taylor

series expansion about each parameter pj in (5.4). This is similar to the scheme used in

section 3.3.1, except in this case the model is nonlinear. Therefore, the projection vectors

are constructed using the vectors produced by a multivariable Taylor series expansion (with

respect to the frequency and all of the parameters) of the transfer functions of each of the r,

linearized models created during training. Constructing V in this manner ensures that the

PROM will match moments of the transfer functions of each of the linearized systems with

respect to both frequency and parameter values.

To briefly recap moment-matching, the input moments of the linear system Ei' = Ax +

Bu are defined as the vectors

B, MB, M 2B, M 35, .... (5.6)

where M = A- 1E and B = A- 1 B. Similarly, the parameterized moment-matching input

vectors for the parameterized linear system Ei = Aox + pAix + Bu are defined as

B, M1B, M2B, (M1 M2 + M2M 1)B, .... (5.7)

where Mi = Al 1E, M2 = A- 1A2, and B = Al 1B. See section 3.2.3 and section 3.3.1

respectively for more details.

It is important to note here that it would be possible to generate parameterized pro-

jection vectors using other projection-based PMOR methods (for example [35, 75, 46,

47, 68]). However, moment matching is suitable for this method because it is relatively

cheap to compute a few moments from each linearization while it is being generated, and

the parameterized moments allow us to fit the transfer functions more carefully around the

frequencies and parameter values at which the training trajectories were created.

The training procedure produces r, linear models which capture the nonlinear effects

of the original system. In addition to creating Krylov vectors from these r, models, it may
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be beneficial to also create Krylov vectors at additional points along the training trajec-

tories. This does not significantly increase the computational cost because when solving

the nonlinear system with an implicit time integration scheme (e.g. Newton's method with

Backward Euler) we produce anyway linearizations at every time step, hence the additional

cost is merely a few system solves per additional Krylov vector.

One additional difference between the linear case in 5.6 and the nonlinear case is the

constant vector k in (5.4) - an artifact of the state linearizations. This term can be treated

as a second input vector b2 with constant input u2(t) = 1. Thus (5.4) becomes

dx K-1 P-1

= Y S wi(x, X)j3 [Agjx(t) + b2iju2(t) + Bju(t)].
i=0 j=0

To account for this term, several Krylov vectors should also be generated as in section 3.3.1

for each linear model with k in place of B.

Matching moments about multiple expansion points for every linear model may quickly

increase the number of columns in the projection matrix. As V becomes large, simulation

of the reduced order model will become costly. One way to keep the size of the reduced

system small is to perform a singular value decomposition (SVD) on the projection ma-

trix [59, 102, 68]. The SVD is relatively inexpensive because the projection matrix is very

tall, but also relatively "skinny". After SVD, only vectors corresponding to the largest q

singular values are selected as columns for the new projection matrix V, resulting in a

reduced system of small order q.

5.2.4 Selecting Parameter-Space Training Points

One possible method for selecting parameter values for training in the parameter-space

is to predict whether or not a change in parameter value will cause the state to visit re-

gions of the state-space that are not supported by the current projection operation sub-

space. Let us define x(t, Pa, wa) E RN for t e [0, T] as a trajectory which solves (5.3)

at Pa = [pa, ia, .... , Pp_1l]T driven by a sinusoidal input at frequency Wa, and V as the

subspace spanned by the columns of projection matrix V, which was constructed such that
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x(t, Pa, wa) E V. If it can be shown that x(t, Pb, Wa) E V for some b = pa + AP with-

out computing x(t, Pb, Wa), then there is no need to train at Pb to generate more projection

vectors.

The solution X(t, pb, Wa) can be approximated with a first order Taylor series expansion

in P as

(5.8)X(t, Pb, wa) ~ X(t, Pa, Wa) + ~ AP.opp

where AP = [Apo, ... , P]T E R, and E RNxP. If E V, then x(t, Pb, Wa) E V

because V is a linear subspace, so linear combinations of elements in V are also in V.

To compute L, let us first denote z = X(tkpa,Wa) for 1 < k < T as a sample

of trajectory x(t, Pa, Wa) at tk, and then define 2 E RNr _ ]T as a stack of

the T trajectory samples into one long vector. Since x solves (5.3), this new variable t

approximately solves the system

P-1

j=O

where D E RNTxNr is a finite difference time-derivative operator, fj : R Nr s RN __

[ff(x),..., ff (X)]T, and Bj E RNT = [(Bu(t 1))T,..., (Bu(tT))T]T. Differentiating

this system with respect to each of the parameters yields

P-1
f G) + Ep Oj at

3=0 xa

where E RNrxNr, x RNrxP and f c RNr xP is

f(t)= [o ()+B 0),..., ( fp-

This can be rearranged into the linear system

(5.9)
P-1

j=of-
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whose solution is a narrow matrix such that

Ox Ox

Ox Ox
WOt=tr p- t

System (5.9) is large, but 2 is very sparse and f is narrow and sparse. AssemblingOx

the system requires no extra work because both the Jacobians and the function evaluations

in (5.9) were already computed at every time step during the training process.

If L is well approximated by vectors in V, then its largest singular vectors, defined toaj3

be !, are orthogonal to the nullspace of VT, defined as Jf(VT). That is,

A(V T ) < e

where E is a small tolerance.

Note that even if solution ! is in V, it may still be beneficial to add new linearization
Op

points from the trajectory x(t, Pb, Wa). If each linearized model is assumed to be accurate

in some 6 - ball around its linearization point, then no models are needed if

||X(t, Pa,Wa) - X(t, A,Wa)I < 6

for all t. From (5.8), this is equivalent to

8x(t) 6

op ||ApI

for all t.

Thus one could perform the above checks while the trajectory at Pa is being created and

would know by the end of the trajectory whether or not it is necessary to train at a nearby

parameter-space point Pb.
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Training at Training at
Single Point in Multiple Points in

Parameter Space Parameter Space
Exact

Trajectories Tes Tem
Approximate
Trajectories Tas Tam

Table 5.1: The 4 options for selecting linearization points from training trajectories

5.2.5 Proposed NLPMOR Algorithm

An algorithm for NLPMOR is constructed by defining both a linearization scheme (i.e. a

method to choose linearization points for linear models) and a projection scheme (i.e. a

method to construct the projection matrix V). By combining the parameterization options

in sections 5.2.2 and 5.2.3, we obtain four different schemes for training, presented in

Table 5.1, and four different schemes for constructing V, presented in Table 5.2. A generic

NLPMOR algorithm which incorporates each of these options is presented in Algorithm 4.

In order to select a linearization scheme, two decisions need to be made: whether to

exactly compute the trajectories or to merely approximate the trajectories, and whether or

not to train in the parameter space. If exact trajectories are used, the nonlinear system

and the current linear model are solved to obtain Xt and xi, the states of the nonlinear

system and linearized model respectively at time t. Letting A = I|t - xi l be the distance

between the solution of the nonlinear system and the solution of the linearized system, a

new model is created whenever A > 6, where 6 is some preset tolerance. A linearization

of the original nonlinear system consists of a pair {Atj, ktj} as in (5.4). If approximate

training trajectories are used, rather than comparing the linear system solution x to the

nonlinear system solution, we compare x to the previous linearization points XL,. By

setting A = min |I xi - XLj |, linearizations are created when the state xi strays too far

from the closest of all the precalculated linearization points XL,, i.e. A > 6.

In order to select a projection scheme we need to decide which linear models the Krylov

vectors are generated from, and which Taylor expansion is used to compute the vectors.

When the system is trained with exact trajectories, linear models are available at every time

step and it is cheap to create several Krylov vectors at each step (achieved in Algorithm 4
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Krylov Krylov Vectors
Vectors From Only From

All States Linearized Systems
MOR V

Moment Matching in V Vma Vmi
PMOR V

Moment Matching in V Va V 1

Table 5.2: The 4 options for constructing the projection matrix

by setting KrAll = 1). If approximate trajectories are used for training, or if the cost of

creating Krylov vectors at every time step is prohibitive, then Krylov vectors are computed

only from the linear models (obtained in Algorithm 4 by setting KrAll = 0).

Finally, Krylov vectors could be created either with a single variable Taylor series ex-

pansion about the Laplace variable s, referred to in Algorithm 4 as MORV, or with a

multivariable Taylor series expansion about s and all of the parameters, referred to in Al-

gorithm 4 as PMORV.

The notation in Tables 5.1 and 5.2 will be used in this paper to identify different kinds

of model reduction algorithms. For instance, when we write a TemVr PROM we mean that

the reduced model is created by training with exact trajectories at multiple points in the

parameter space, and is reduced with a PMOR projection matrix with vectors taken only

from the linear models created. As another example of our notation, when in Section 5.4

we compare TxVm and T_,Vpx models we mean that we intend to examine only the effects

of MOR moment matching versus PMOR moment matching.

5.2.6 Algorithm Costs

Since computing each Krylov vector requires one system solve, the cost of constructing the

projection matrix can be measured in number of system solves. Such costs are summarized

in Table 5.3. For a projection matrix created by generating m MORV Krylov vectors from

the K linear models, the cost of constructing the projection matrix is 0(rm). If instead,

PMORV vectors are chosen and the system has P parameters, then the cost of constructing

V becomes O(KPm). When Krylov vectors are generated from every trajectory step, the

costs becomes 0(Tm) and O(TPm) respectively, where T is the total number of time steps
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Krylov Krylov Vectors
Vectors From Only From

All States Linearized Systems
MOR V

Moment Matching in V 0(Tm) 0(rm)
PMOR V

Moment Matching in V O(TPm ) O(_Pm_)

Table 5.3: Costs of constructing the projection matrix using the 4 available options, mea-
sured in system solves per trajectory

Training at Training at
Single Point in Multiple Points in

Parameter Space Parameter Space
Exact

Trajectories 0(-yT) 0(yTr')
Approximate
Trajectories O(T) O(Trp)

Table 5.4: Costs of training the system using the 4 available options, measured in system
solves per input

in a trajectory.

The exact training trajectories are created by solving the large nonlinear system at each

time step. If each trajectory contains T points and each nonlinear solve requires 7 Newton

iterations, a single trajectory will cost O(-yT) system solves. For the approximate trajectory

algorithms, the cost of a single trajectory is reduced to O(T) solves, as shown in Table 5.4.

Finally, for a system with P parameters and r training values for each parameter, a single

input will generate rp different training trajectories.

5.3 Examples

Three example systems were chosen to help illustrate the advantages of NLPMOR. All

three examples are physical systems which contain strong nonlinearities that are distributed

throughout the devices, and possess dependence on several geometrical parameters. For

each example a derivation of the original system model is presented, followed by results

from our different algorithms.
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5.3.1 Diode Transmission Line

The first example considered is a diode transmission line, which was used in the original

TPWL papers [78, 98]. This allows for some relative accuracy comparisons between our

new method and a well established result in literature. The transmission line, shown in

Figure 5-1, is a nonlinear analog circuit containing a chain of strongly nonlinear diodes,

resistors and capacitors.

(v) d('!) id (7) d (7)

r r r r

i(t) r C CC C

Figure 5-1: A nonlinear transmission line circuit containing diodes [78, 98].

We choose the nodal voltages as the system state and derived the system equations

using Kirchoff's current law and nodal analysis. An equation for interior node j has the

form

dx xj-1 - 2xj + xj+1 + Id[eN -ii - e V "(xi ] (5.10)
dt r

leading to a state space system of the form

E I = QTQX - IdQT d(x,VT) + bu(t). (5.11)
dt r

Here Q cz R'N is the adjacency matrix for the resistor and diode network. Matrix E E

RNxN is the capacitance matrix. Vector d(x, VT) = -QT#(X, VT) where #(x, VT) : R x
RJNhNisIts /hTx
R - N- R t row is #j (x, VT) = e ,x - 1 where qj is the jth column of Q. Vector

b E RN relates the state equations to the input which is an ideal current source u(t) = i(t).

All resistors have value 1Q and all capacitors are 1OpF. The constitutive relation for the
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diodes is #(v) = Id(evT -1), where VT is the threshold voltage, and v is the voltage across

the device. Values of Id 0. nA and vt = 25mV were used as nominal values. Three

parameters were considered for the diode transmission line: the resistor values r, the diode

threshold voltage VT, and the diode saturation current Id. The situation is simplified if the

parameters are defined as PG = i, Pv = I, and pI = Id. Since (5.11) possesses nonlinear
r VT

dependence on pv, the system must first be expanded in powers of pv. We chose to use a

second order expansion about the nominal value pv = n 40V-1

dxE d PGGx + pIdo(x) + ppvd1(x) + pIp2d 2(x) + bu (t), (5.12)
dt

where

G =-Q T Q

T1 Od~x, vTO, 192d(x, vTo,do(x) = QT d(x, vT) - v + a21[VTp0  0~ )2
VTO T O (-) -

) T d(x,vTO) 1 a2d(x,vTO)di(x) = QT 1(L T 9 1 )2

d2 (x) = Q11 2d(xVTO)d2 (X _QT2 (( 1)2
VTO

Note that the system is still nonlinear in the state. To test our reduction algorithms, we

created a reduced model parameterized in PG- Figure 5-2 compares the simulation output

of the full nonlinear system with that of the PROM over a large range of parameter values

which vary from the nominal value by as much as -30% and + 150%.

5.3.2 Micromachined Switch

The second example is a micromachined switch [78, 98]. The switch consists of a polysil-

icon fixed-fixed beam suspended over a polysilicon pad on a silicon substrate as shown in

Fig. 5-3. When a voltage is applied between the beam and the substrate, the electrostatic

force generated pulls the beam down towards the pad. If the force is large enough, the beam

will come into contact with the pad closing the circuit. In addition to being used as a switch,
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Figure 5-2: A model created for the diode transmission line with original size N = 200, pa-
rameterized inPG = by training at PGO = {0.75pGo, PGO, 2pGo} with pGO = 1. The PROM
has size q = 10 and was simulated at a range of PG values in the interval [0.7pGo, 2.5pGol,
resulting in a speedup of about 10 x.

this device can be used as a pressure sensor due to its extreme sensitivity to surrounding

atmospheric conditions. The unknowns of interest in this system are the deflection of the

beam, z(x, t), and the air pressure between the beam and substrate, P(x, y, t). The system

of equations is assembled by discretizing the coupled 1D Euler's Beam Equation (5.13)

and the 2D Reynold's squeeze film damping equation (5.14), taken from [78]. A finite dif-

ference scheme was used for the discretization, using m points for the length and n points

for the width, and since the length of the beam is much greater than the width, the vertical

deflection is assumed to be uniform across the width and only pressure was discretized in

the width

oh 4 -Sohw 0  = Fetec + (P- Pa jdy -pohwDZt (5.13)
0 h 05 P .5

V- ((1+T6K) z PVP) = 12pZ. (5.14)

at
Here, Feiec =-- is the electrostatic force across the plates resulting from the applied

voltage v, while v2 is the input to the system. The beam is 2.2psm above the substrate (z0 =
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y(t) - center point

0.5 um of poly Si deflection

0.5 urn SiN 2.3 um gap
filled with air

Figure 5-3: The MEM switch is a polysilicon beam fixed at both ends and suspended over
a semiconducting pad and substrate [78, 98].

2.2tm), 610pm in length, and has a width of 40[tm. The other constants are permittivity

of free space co = 8.854 x 106f, permeability y = 1.82 x 1- , moment of inertia

Io = 1/12, Young's modulus E = 149GPa, Knudsen number K = -i-, A = 0.064, stresszo

coefficient So = -3.7, and density po = 23002. The above equations can be separated

into three partial differential equations

Oz 83 z 1
at 0t 3 3Z2

( 4z 83z 2 2 360 2+ 3z 2  a2 z
ot4 ata 3z 3  2poh pohw oX 2

+ 3Z2 (P - Pa)dy - EIh3w 4

pohw _ Jo o _

-= -- + _V 1+6-zspat ats 3z3  12pz z

We choose the state-space variables to be X1 E Rm = z, X2 E Rm - 9, and 3 E Rmn

P, and the parameters to be Young's modulus PE = E and stress coefficient ps = S.

Rearranging the discretized system equations to obtain linearity in each parameter results

in the system

Ox 1
= fi,o(Xi, 2)

at = f 2,o(Xi, X2 , X3) + psf 2,1(Xi, x 2 ) + PEf2,2(X1) + bU(t)
Ba
a Xt f3,0 ( ,zi 2,i 3 ,at
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where the total system has order N = m(n + 2), fi,o E R", f2,o, f2,1, f2,2 E Rm, and

f3,o E Rn. A detailed description of these functions can be found in [77]. The beam is

fixed at both ends and initially in equilibrium, so the applied boundary conditions are

z(x, 0) = zo, P(X, y, 0) = Pa, z(0, t) = z(l, t) = Zo.

Other constraints enforced are

8P(0, y, t) _8P(l, y, t)_
x - Y 0, P(X, 0,t = P(X, W, t) = Pa

where the initial height and pressure are zo = 2.3pm and Pa = 1.103 x 105Pa. Typical

inputs for this system are sinusoids, u(t) = (V cos(Wt)) 2 , with w = Lo-MHz and v = 7,

or a step input, u(t) = v2 for t > 0 with v = 7. The system output is the deflection of the

beam center point.

For this example a reduced model parameterized in PE and Ps was created by training

with sinusoidal inputs. The model was then simulated at nine different sets of parameter

values on an evenly spaced grid with each parameter varying up to ±40% from the nominal

values. The outputs from the simulation along with the output of the full nonlinear system

are shown in Figure 5-4.

5.3.3 Pulse-Narrowing Transmission Line

The final example considered is a nonlinear transmission line used for signal shaping. One

example of such a line, shown in Figure 5-5, contains distributed nonlinear capacitors.

The resulting wave equation for this transmission line contains a nonlinear term which

sharpens the peaks in a wave travelling down the line. Hence these devices may be useful

in pulse narrowing applications. A thorough analysis of this line can be found in [2].

The nonlinearity arises from the voltage dependence of the capacitors, Cn = C(V) ~

Co(1 - bcV). Setting the system state to the node voltages and branch currents, system

equations can be derived using Kirchoff's current law and nodal analysis. The input is an

ideal voltage source u(t) = V(t), and the output is the voltage at some node m along the
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Figure 5-4: Output of a micromachined switch model, parameterized in PE and Ps,
simulated at nine different sets of parameter values on an evenly spaced grid where
PE E [0.6pEo, 14pEO] and Ps E [0. 6pso, 1.4pso]. The solid lines represent the original
model with order N = 144, the crosses represent the reduced model of order q = 20,
the resulting speedup in simulation was about 15 x, and the nominal parameter values are
[PEO,PSO] = [1.49 x 105 -3.7].

line, y(t) = Vm(t). Using this formulation, the system equations for an interior node n

would be of the form

dV

Cn(V) cit = In_1 - Indt

Ln "~ = Vn - Vn+1dt

leading to the state space model

[][ J fv(xz ) 0=x + [ u(t)
1 8f(x, z)
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Figure 5-5: A pulse narrowing transmission line circuit containing nonlinear capacitors [2].

where the n'h equations of fv and f, are

fvn(x, z) = zn_1 - Zn (5.15)1 - beXz

fIn(x, z) = n- zn+1. (5.16)

Here b is the vector of voltage source inputs. Typical capacitor and inductor values are 100

picoFarads and 100 picoHenries respectively. Parameters of interest for the pulse narrowing

transmission line are the inductor values, the capacitor values, and bc, a parameter which

adjusts the nonlinearity of the line. These three parameters all affect the shaping of the

wave as it travels down the line. For this example, PROMs were created by training with

a sinusoidal input with u(t) = v sin(wt) at frequency 5GHz. PMOR moment matching

generated moments about parameter expansion points equal to the parameter values used

in training. To test this example, we parameterized the system in Pc = and PL =

resulting in a system of the form

=PL + ut) + PC-
z fr (z, z) b1 0

Figure 5-6 compares the output of the full system and a PROM for the pulse-narrowing

transmission line simulated at five different parameter values varying as much as -90%
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and +100%.
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Figure 5-6: Output from a model of the pulse narrowing transmission line simulated at five
different values of PL = on the interval [0.1 PLO I 2pLO], where PLO = 10". The model was
reduced from large order N = 200 to reduced order q = 50 which resulted in a speedup of
~ 5x.

5.4 Comparison of Algorithms

In this section we examine the accuracy of models created with the different linearization

and projection schemes from Tables 5.1 and 5.2. Specifically considered is how the differ-

ent linearization and projection options affect the accuracy of the PROM in the parameter

space. We also wish to determine whether or not the parameter-space accuracy of the

PROM is limited by the original linearization of the nonlinear system with respect to the

parameters.

5.4.1 Training in the Parameter Space

The effects of training at different points in the parameter space (described in section 5.2.2)

can be seen by comparing TxmVxx models with T28 V, models. As explained at the end
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of Section 5.2.5 we use the notations from Tables 5.1 and 5.2 to identify different kinds of

models. Trajectories created with different parameter values will likely evolve in different

regions of the state space, thus resulting in different collections of linear models. The first

0.16- ---- Tem -

0.14- -" Tes -

0.12- -
80

0.1 - -
2
LU 0.08-
E
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X
CZ

0.04-

0.02-
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1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

x10
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Figure 5-7: TemVpl and TVi models of the micromachined switch example parameterized
in PE and simulated over a range of parameter values. Each model was reduced from large
order N = 150 to reduced order q = 30.

test compares TemVi and TeVi models of the micromachined switch. Considering PE

as the parameter, one model was created by training at PE = PEO = 149GPa, and the

other by training at PE = [0.95pEo, 1.05pEo]. The projection matrices for both models

were created by matching parameter moments at E0 and frequency moments at the input

frequency f = 1GHz. The models were simulated at a set of parameter values in the range

[0. 9 PEO, 1-1pEO]. Figure 5-7 compares the maximum percent error for each model, defined

as

max x 100 (5.17)
t ly(t)|I

A similar comparison is made in Figure 5-8 with TesVmni and TemnVmni models of the

diode transmission line parameterized in pr. In this figure, the error plotted is the norm of

e(t), where

e(t) = y - yaig t) (5.18)

These models were constructed by training at p, = po, =- 0. 1nA for Te, and p, =
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[0.5p10 , 1.3p 0 ] for Tem.
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Figure 5-8: Norm of the error, as defined in (5.18), over time for a TVmi model trained
at p, = 10- 10A, and a TemVm model trained at [0. 5pio, 1.3pI]. The system was reduced
from original order N = 100 to reduced order q = 50.

Both Figures 5-7 and 5-8 show that the greatest accuracy occurs close to the training

parameter value for the model created by training at a single point. However both figures

also show that the model created by training at multiple parameter-space points is more

accurate in a larger region around the training values.

5.4.2 Parameterizing the Projection Matrix

The benefits of parameterizing the projection matrix via PMOR moment matching, as in

section 5.2.3, can be examined by comparing TxVm models with T, V_ models.

Figure 5-9 compares the total simulation error at different parameter values for TVm

and TesV models of the diode transmission line parameterized in pl. As with parameter-

space training, this figure suggests that a Vml model is more accurate close to the nominal

parameter value, and a Vl model is less accurate at the nominal value, but more accurate

over a larger range of parameter values.
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Figure 5-9: Norm of the error, as defined in (5.18), for two reduced order models of the
diode transmission line parameterized in p, and simulated at a range of parameter values
using sinusoidal inputs. The models are TesVmi and TesVpi models and were reduced from
large order N = 100 to reduced order q = 40.

5.4.3 Krylov Vectors from Extra Models

To determine whether or not the linear models created during training produce Krylov

vectors which span a near-optimal reduced space, we compare T,,V21 models with T2V,p

models. Both PROMs contain the same number of linear models, r, and have the same

reduced order, q. Figure 5-10 compares the output from these two models. The results,

however, are system-dependent.

We also considered the diode transmission line parameterized in PR, and in this case

there is no discernable advantage to a Vx, model. In general we suspect that a Va model

will not be less accurate than a V2; model. Before the SVD in step 32 of Algorithm 1, the

Va projection matrix contains all of the columns in the V', projection matrix. Therefore,

from a practical point of view, after SVD the Va projection matrix will correspond to

a subspace at least approximately as good as the projection matrix from the V21 model.

However, theoretically it is important to note here that using a projection matrix constructed

using an SVD in this manner can no longer guarantee an absolutely exact match of transfer

function moments between the original linearized models and the reduced models.
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Figure 5-10: Two models of the pulse narrowing transmission line parameterized in PL-
The circles use vectors from every point of the trajectories while the crosses use vectors
only from the k = 181 linear models. In both cases an SVD was used on V and both
models were projected from large order N=200 down to the same reduced order q = 50.

5.4.4 Approximate Training Trajectories

Generating exact training trajectories can be often very expensive. Alternatively, one

could instead use approximate training trajectories. In this section we compare the two

approaches examining TaxV22 models and TexV,_ models.

Using the micromachined switch example parameterized in PE, a TVml model and a

TaVmi model were created. The two models were then simulated at three different parame-

ter values close to the training values. Figure 5-11 compares the percent error of the PROM

output for the two models.

Although the model created with exact trajectories is more accurate, both models still

produce outputs with a maximum error smaller than 0.5%.
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Figure 5-11: Percent error in the output of reduced models of micromachined switch. The
solid curves correspond to models constructed with approximate training trajectories (Tx
models) and the dashed curves correspond to models constructed with exact training trajec-
tories (Tex models). Both models were then simulated at three different parameter values.

5.4.5 Effects of Linearizing in Parameters

Lastly, we consider the effects of linearizing the original nonlinear system (5.1) with respect

to the parameters (5.3). An important question to ask is whether the dominant factor in

determining the accuracy of the PROM is a result of projecting the system into a low-order

subspace, or a result of this linearization in the parameters.

To investigate this we considered the diode transmission line with parameter pv. Since

the original system was nonlinear in pv, (5.11) was expanded to second order about some

nominal value pv to obtain system (5.12) which is linear in powers of pv but still nonlin-

ear in the state x. A model was created using sinusoids as training inputs and a nominal

parameter value pvo = 40 for expansion and training. Figure 5-12 compares the output

error at different parameter values between the original system (5.1), the model expanded

in powers of the parameters (5.3), and the PROM (5.5). In this case we define the error

em(p) as
maxt ly(t) - yo(t)|\em(p) = (mx otj )x 100 (5.19)

maxt lyo(t)l

where y (t) is the output of one system at parameter value p and yo (t) is the output of the
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other system at parameter value p.
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Figure 5-12: Output error, as defined in (5.19), between three different diode line models
parameterized in pv and simulated over a range of parameter values. The pluses correspond
to error between system (5.5) and system (5.1), the circles correspond to error between
system (5.1) and system (5.3), and the crosses correspond to error between system (5.5)
and system (5.3).

It can be seen that for this particular case the PROM error is not significantly worse than

the error from the large nonlinear system which was expanded in powers of the parameters

(5.3). This indicates that both aspects of the reduction process, i.e. finding a good subspace

and selecting linearization points, worked well for this example. However, the accuracy

of both models compared to original system (5.1) declines rapidly as the parameter value

moves beyond i10%. For this example we can conclude that if an accuracy over a larger

range of parameter values is needed, a higher order expansion in the parameter would be

required.

5.4.6 Sensitivity to Parameters

To determine how accurately the parameter dependence of the original system is captured

in the PROM, we can compare output sensitivity to changes in the parameters for both

the original system and the PROMs. Figure 5-13 compares these sensitivities for several

136



parameters for each of the three example systems. We define the sensitivity 6y(p) as

maxt I y(t) - yo(t)| X
-Y (P) = m axt lyo(t)|

(5.20)

where y(t) is the system output at parameter value p and yo(t) is the system output at

nominal parameter value po.

0
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40-
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100
20 - O PG
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-40 -30 -20 -10 0 10 20 30 40 50
Percent change in p from p0

Figure 5-13: Output sensitivity of models to parameter changes, as defined in (5.19). The
solid lines represent the original systems and the symbols represent the associated PROMs.
Several parameters were considered for each example system, with the circles correspond-
ing to the pulse-narrowing transmission line, the stars corresponding to the MEMs switch,
and the diamonds corresponding to the diode line.

The figure shows that the PROMs do in fact capture the parameter dependence of the

original system over a significant range of parameter values. The exact range of values

depends on the system and parameter considered, as the system sensitivity is different for

each parameter.

To validate our parameter-selecting training scheme in Section 5.2.4 we approximate

the gradient of the state with respect to the parameters, 9, and examine whether or not it

lies in the subspace spanned by the columns of the projection matrix V. By the fundamental

theorem of linear algebra, this can be determined by checking if L is orthogonal to the left
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0.5po po 1.5po
PG 0.55 0.58 0.56
pv 0.31 0.06 0.46
p, 0.031 0.027 0.025
PE 0.17 0.18 0.070
ps 0.17 0.23 0.18
PL 0.81 0.86 0.90
pc 0.66 0.52 0.47

Table 5.5: Equation (5.21) computed on three different trajectories, corresponding to
0.5po, po, 1. 5po, for each parameter in our three examples

nullspace of V, which we define as

T

ep(p) - X AF(VT) (5.21)
ap)

Here y is the largest three singular vectors of L as computed in (5.9). Both the singular

vectors and J(VT) are normalized, hence ep(p) e [0, 1], with ep(p) = 0 meaning 2 is

exactly in the subspace spanned by the columns of V, and ep(p) = 1 meaning ! is exactly

orthogonal to the subspace spanned by the columns of V. We have computed this quantity

at three different parameter values for each parameter in each system, and compare the

results in Table 5.5.

The results of this test indicate that in some cases, such as for parameters PE and ps

in the MEMs switch, we do not need to train at additional parameter values to capture the

parameter dependence of the original system. It also shows that in other cases, such as for

parameters PL and pc in the pulse-narrowing transmission line, increasing the range of the

parameter values will take the trajectory to a significantly different subspace, and the re-

duced model would need to be updated by training that system at the additional parameter

values. In general, these results match what we experienced in the training process, as we

found the pulse-narrowing transmission line to be the most difficult system to model, and

the MEMs switch to be the easiest. As a matter of fact, we can observe a correlation be-

tween the results in Table 5.5 and the sensitivities shown in Figure 5-13. Both tests indicate

the pulse-narrowing transmission line is the most sensitive to changes in the parameters,
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and that the MEMs switch is least sensitive to parameter changes.
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Algorithm 4 NLPMOR
1: for each Training Input Signal do
2: for each Training Point in the Parameter-Space do
3: Linearize nonlinear system at initial state XLo
4: while t < tfinal do
5: Simulate linearized model to compute its next state xi
6: Set KrLin = 0
7: if Exact Training Trajectories then
8: Simulate nonlinear system to compute its next state xt

9: Compute A = ||xt - xiII

10: Set x,, = xt

11: else if Approximate Training Trajectories then
12: Compute A = ming IIXLj - Xi
13: Set x = xi
14: end if
15: if A > 6 then
16: Linearize nonlinear system at current state X
17: j +- j + 1
18: XL, = Xn

19: KrLin = 1
20: end if
21: if (KrAll || KrLin) then
22: if MORV then
23: Use equation (5.6) to compute Vnew
24: else if PMORV then
25: Use equation (5.7) to compute Vnew
26: end if
27: V = [V Vnew]

28: end if
29: end while
30: end for
31: end for
32: Construct a new projection matrix V using only the dominant singular vectors of V
33: Project systems using V
34: Select weighting functions w(x, X)
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Chapter 6

Stabilizing Trajectory Piecewise Linear

Models

6.1 Introduction

One major reason nonlinear reduced models, such as piecewise linear (PWL) models, have

failed to gain widespread acceptance and use is due to the lack of rigorous statements

concerning their properties. One such property is stability. Without a guarantee of stability

for PWL models, the models cannot be fully trusted for time-domain simulation, as the

simulation results may grow unbounded. While there are many results for stable model

reduction of linear systems, as described in detail in section 3.4, there exist few results for

nonlinear systems.

To briefly recap, the trajectory piecewise linear (TPWL) method approximates nonlin-

ear descriptor systems using a series of local linear approximations

qx = f(x) -[zwi(x)(Eix + hi) = ( wi(x)[Aix +ki.

The resulting local linear models are then projected into a carefully chosen subspace, re-

0The material in this chapter has been previously published in [15, 17].
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sulting in the nonlinear reduced model

d
~- [z~(z)(~zh)] = YEwi I-) [Ai +ki]±u

It is important to notice here that the TPWL procedure may potentially produce unstable

reduced models from originally stable systems. Such instabilities may arise in three places:

" Jacobian matrix pairs (Ei, Ai) of stable nonlinear systems are not guaranteed to be

Hurwitz;

" the pair (VTEiV, VTAiV) is not guaranteed to be Hurwitz even if (Ei, Ai) is Hur-

witz;

" convex combinations of Hurwitz matrix pairs () wiEi, E wiAi) are not guaranteed

to be Hurwitz.

In this chapter we present several approaches for efficiently creating stable reduced

order PWL models from various classes of nonlinear systems. Stabilization of such reduced

models is obtained both through reformulation of the system equations, and through the

use of a nonlinear projection function. Additionally, several methods are presented for

efficiently computing the nonlinear projection functions.

This chapter is organized as follows: In Section 6.2 we briefly review several important

results concerning the stability of dynamical systems that will be used in this chapter. In

Section 6.3 we consider first the case of stabilizing reduced models created from systems

with linear descriptor functions, q(x) = Ex. In section 6.4 we propose a new model for-

mulation allowing us to extend our stability results to some nonlinear descriptor functions

q(x). In Section 6.5 we consider all other systems for which we cannot guarantee global

stability or which are originally unstable. In these cases we propose a nonlinear projection

that is guaranteed to preserve stability for every stable local linear model resulting in a guar-

antee of local stability. Section 6.6 presents algorithms to compute efficiently the resulting

nonlinear reduced models, with an emphasis on constructing the nonlinear left-projection

functions. Finally, Section 6.7 presents results from the proposed algorithms applied to

several examples of nonlinear systems including analog circuits and a MEMS device.
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6.2 Review of Stability Theory

In this section we briefly review several definitions and results concerning the stability of

dynamical systems that will be used throughout this chapter. For a more detailed analysis

of stability, see Chapter 2.

The equilibrium point of a nonlinear dynamical system

Ec = f (x, u), y = Tx, (6.1)

is said to be exponentially stable if all solutions to the autonomous system (i.e. input u =

0) converge to the equilibrium state Xeq exponentially fast, regardless of initial condition.

Without a loss of generality we may transform the coordinate system such that Xeq = 0.

Internal stability can be proven through Lyapunov functions.

Theorem 6.2.1 ([100]). The equilibrium point xeq 0 of system (6.1) is exponentially

stable if there exist constants A1, A2, A3 > 0 and a continuously differentiable Lyapunov

function L(x) such that

AixTx < L(x) < A2 xTX (6.2)

aL(x) < -Asz Tz (6.3)at

Vt > 0, Vx E Br. If B, = RN, then the equilibrium point is globally exponentially stable.

External stability concerns the system's ability to amplify signals from input u to output

y. System (6.1) is said to be small-signal finite-gain Lp stable if there exist constants

r, > 0 and 7, < oc such that

for all t > to, given initial state x(0) = 0 and input u(t) such that |lulo < rp. If rp - oc,

then the system is simply said to be finite-gain L, stable. External stability follows from

internal stability provided the nonlinear functions describing the system are sufficiently

well behaved.
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Theorem 6.2.2 ([100]). Suppose x = 0 is an exponentially stable equilibrium of system

(6.1). If f (x, u) is continuously differentiable and f (x, u) is locally Lipschitz continuous at

(0, 0), then system (6.1) is small-signal finite-gain Lp stable. If B, = RN, then the system

is finite-gain L, stable.

For the remainder of this chapter we will consider small-signal finite-gain L 2 stability

and refer to it simply as input-output stability.

A linear system

Ex = Ax + bu(t)

the system is said to be stable if the generalized eigenvalues of the pair (E, A) have negative

real part. Equivalently, we say the pair (E, A) is Hurwitz, or stable.

6.3 Stability of Piecewise-Linear Systems with Constant

Descriptor Matrix

In general, PWL models created from stable nonlinear systems are not stable. This is

because linearizations of an arbitrary stable nonlinear system are not necessarily stable,

and interpolating between arbitrary stable linear models will not necessarily produce a

stable model. However, there exist many nonlinear systems for which we can guarantee

both that linearizations will always be stable, and that convex combinations of the resulting

stable linear systems will also be stable. In this section we examine nonlinear systems

that provably generate structured and stable linearizations, and can be formulated, either

directly or through a change of coordinates as described in Subsection 2.4.3, to possess a

constant descriptor matrix. In these cases we obtain finite-gain stability guarantees for the

large-order PWL models as well as a stability-preserving linear projection framework.
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6.3.1 Relaxing the Model

To begin, we introduce a new notation to concisely represent the PWL model. Define the

matrix-valued functions

AP(x) = ( wi(x) A E,(x) = ( wi(x) Ei

and the vector-valued functions

kp(x) = Zwi(x)ki hp(x) = (wi(x)hi

such that the large-order piecewise-linear approximation becomes

' [fEp(x)x + h(x)] = Ap(x)x + kp(x) + bu

CTx

(6.4)

Here Ep(x) and Ap(x) are nonlinear matrix-valued functions that interpolate between the

local matrices.

In addition, note that the PWL model (6.4) can be rewritten in a more general form as

d [ Ep(x)x + hp(x )] = Ap(x )x + Bp(x, u)
dt

y = cT x, (6.5)

where

Bp(x, u) = bu1 + kp(x)u 2 (6.6)

is a state-dependent input matrix. In this formulation we are treating the constant offset

vectors resulting from the linearizations as additional input vectors with the new input

U2 (t). System (6.4) is obtained by selecting u2 = 1 for all t > 0. Thus, systems of the

form (6.4) are a subset of systems of the form (6.5), and any stability results that apply to

the latter will also apply to the former.
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6.3.2 Stability from Structured Matrices

We first consider systems described by models containing a constant descriptor matrix

E, = A,(x)x + Bp(x, u) y = cTx. (6.7)

Internal stability can be proven through the existence of Lyapunov functions satisfying

constraints (6.2) and (6.3), as described in section 6.2. Finding Lyapunov functions for

arbitrary nonlinear systems is difficult. However, often a PWL system's Jacobian matrices

Ai will all share some nice structure because they are all linearizations of the same nonlin-

ear function, and in those cases it may be possible to find a Lyapunov function that proves

internal stability of the autonomous PWL system

Ei = A, (x)x (6.8)

A -(x) = E wi(x)Aj.

For example, a Lyapunov function that proves stability for each individual linear system,

and thus also for an interpolation of the systems, would suffice, and is specified by the

following proposition.

Prop. 6.3.1 (Exponential Stability). If wi(x) : RN " [0, 1] are continuously differentiable

functions such that >j wi = 1, and there exists an SPD matrix P >- 0 such that the matrices

Q - (E T PAj + AT PE) (6.9)

are SPD for all i, then L(x) = xTET PEx is a Lyapunov function for System (6.8), and

System (6.8) has a globally exponentially stable equilibrium at the origin.

Proof Consider the candidate Lyapunov function L = xTETPEx. Since E is non-

singular and P is SPD, then ETPE is also SPD because it is a congruence transform of an

SPD matrix, and condition (6.2) is satisfied

xTx (min (F T PE)) < L(x) < xTx (0-ax (F T PE)) .
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Similarly, condition (6.3) is satisfied

L(x) = 2xT ET PE = xT (ET PAp(x) + Ap(x)T PE) x

=(wi(x)xT (ETPA +A TPE) x

= W(X)XTQX < _XTX minfumi(Qj)}I.

Thus L(x) is a Lyapunov function, and by Theorem 6.2.1 the system is globally exponen-

tially stable. E

It is now possible, using the results from Proposition 6.3.1, to prove input-output sta-

bility for System (6.7).

Prop. 6.3.2 (1/0 Stability). If System (6.8) is globally exponentially stable with Lyapunov

function L(x) = xT ET PEx for some SPD matrix P (e.g. the assumptions of Proposi-

tion 6.3.1 hold), wi(x) : RN -* [0, 1] are continuously differentiable functions such that

i wi = 1, then System (6.7) is input-output stable, and therefore the PWL system

Ei = A,(x)x + k,(x) + bu, y = cTx (6.10)

is input-output stable.

Proof This can be proven using Theorem 6.2.2. By assumption, the autonomous system

is globally exponentially stable. Also by assumption, wi(x) are all continuously differen-

tiable, and therefore f(x, u) is also continuously differentiable. To prove Lipschitz conti-

nuity we examine the partial derivatives of f(x, u) = Ap(x)x + B,(x, u)

&9Xk [wMx +

+Z wi(x) k]
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=b 9fj = wi(x)ki.

Here az is the element of Ai in the jth row and kth column. By assumption, &fj/&ui is

bounded because it is constant, and &fj/&u2 is bounded for all x because wi is bounded.

Similarly, since wi(x) are Lipschitz, the derivatives wi/B&Xk are bounded. Thus, the Ja-

cobian is locally bounded for all x, u, the functions are Lipschitz continuous by Observa-

tion 2.1.1, and the system is input-output stable by Theorem 6.2.2. l

In order to obtain global finite-gain stability we must add the additional constraint that

(&wi(x)/&x)x is bounded for all x. This constraint is not restrictive, as it merely requires

that the weights converge to some uniform value when the state becomes sufficiently large,

rather than oscillate back and forth indefinitely. Practically, the PWL model is comprised

of a finite number of linearizations that are locally accurate, so for x sufficiently far away

from all local models the interpolation is no longer accurate regardless of the weighting

functions, and thus the constraint will not affect the accuracy.

Examples of systems for which stability may be guaranteed through Propositions 6.3.1

and 6.3.2 are those that produce negative-definite Jacobian matrices. These include analog

circuits comprised of monotonic elements such as inductors, capacitors, linear and nonlin-

ear resistors, and diodes. One such example is presented in Section 6.7.1.

Note that the finite-gain stability results are based solely on the existence of the quadratic

Lyapunov function, and do not explicitly require any special structure in the matrices Ai.

Structured matrices, such as negative-definite matrices, are a sufficient condition for the

existence of such a Lyapunov function, but are not a necessary condition.

6.3.3 Stability-Preserving Projection

In the previous section we presented conditions under which large-order PWL systems

are both internally stable and finite-gain stable. In this section we present a projection

framework that preserves these two stability properties in the reduced model.

Consider the PWL model System (6.7), and approximate the solution x in a low-
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dimensional subspace as x = V.i, such that

E V X = Ap (V. 2)V. 2 + Bp (V.J2, u). (6.11 )

A left-projection matrix U is next chosen to reduce the number of equations, resulting in

the reduced-order model

UT EV i = UTAP(Vii)V _ + UTBP(V, U), y = cTV.i2. (6.12)

By proper selection of the matrix U, it is possible to preserve internal stability in the

reduced-order system EI = Agi).
Ap(X) = Ei wi tz,)UT AiV (6.13)

=UT EV.

Prop. 6.3.3 (Preservation of Lyapunov Functions). If L(x) = xTETPEx is a Lyapunov

function for System (6.8) (e.g. the assumptions of Proposition 6.3.1 hold), then given any

right-projection matrix V, if we define a left-projection matrix UT = VT ETP, then L(.i)

. Tt' is a Lyapunov function for System (6.13), where = UT EV.

Proof To begin, note that the proposed Lyapunov function L(s) satisfies

Z(Q) = .TVTET PEV = L(V 2)

L(.si) = 2 =x 2 . A(

= 227VT E T PA(V: ). = L(V s).

By assumption, L(x), and therefore L(V±), satisfies (6.2) and (6.3). Thus L(s) satisfies

conditions (6.2) and (6.3) and is a Lyapunov function for System (6.13). E

This result can also be seen as a direct application of Theorem 4.2.1 (which proves

stability preservation through preservation of storage functions) to a nonlinear system, as
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proposed in Section 4.2.3.

Given the existence of a quadratic Lyapunov function for the reduced model, it is now

possible to apply the results of Section 6.3.2 to obtain guarantees for the various notions of

stability for the reduced model.

Corollary 6.3.1. If L = xT E T PEx is a Lyapunov function for system (6.8), V is a right-

projection matrix, and wi(x) : RN [ [0, 1] are continuously differentiable functions such

that Zi wi = 1, then if we define the left-projection matrix U = VT ETP, the reduced-

order PWL model (6.13) is globally exponentially stable and system (6.12) is input-output

stable.

Proof By Proposition 6.3.3, L(s) = JVTEPEV. is a Lyapunov function for Sys-

tem (6.13), and therefore the reduced model is globally exponentially stable. Exponen-

tial stability combined with Proposition 6.3.2 yields finite-gain stability for the reduced

model. E

6.4 Stability of Piecewise-Linear Systems with Nonlinear

Descriptor Functions

6.4.1 Difficulties with Nonlinear Descriptor Functions

In the previous section we considered only systems described by models possessing a con-

stant descriptor matrix E. In this section we extend the results to the case where the de-

scriptor function q(x) is nonlinear.

It is more difficult to prove stability for systems with nonlinear descriptor functions

because the quadratic Lyapunov function approach from Section 6.3.2 does not directly

apply. Additionally, even if the large-order PWL system is stable, we cannot directly apply

the approach of Section 6.3.3 to preserve stability in the reduced model.

For example, consider the PWL model with nonlinear descriptor function whose state

is approximated in the reduced space as x = Vs

d
d[tE(V )V ± h,(V i)] = A,(V2)V& + B,(Vs,u). (6.14)
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Attempting to preserve stability by preserving Lyapunov functions as done in Section 6.3.3,

i.e. to ensure that LQs) L(Vs), requires the selection of a nonlinear left-projection

matrix

U(._)T = VTE E(V._) p. (6.15)

Applying a nonlinear left-projection U(i,) to (6.14) results in

U (.)T+ [ E,(V.)V. + h(V)] =
dt

U(.)T A,(Vi)V_ + U(.)TBP (V 2, u), (6.16)

which is not a reduced-order system in the typical sense. The expression on the left cannot

be explicitly multiplied out because the time-dependence in U(s) prevents it from passing

directly through the time-derivative operators. As a result, systems of the form (6.16)

require O(N) computations to evaluate and are not desirable for the purpose of simulation.

6.4.2 Alternative Formulations

To avoid the projection problems resulting from nonlinear descriptor functions, we will

rewrite the system in a manner that separates nonlinearities from the time-derivative opera-

tor. First assume there is no explicit time-dependence in q(). This allows for the nonlinear

descriptor system

d- [q(z)] = f(x)
dt

to be rewritten as

Q WzJi= f(x)
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where Q(x) = x is a nonlinear matrix-valued function. Additionally, the system can be

rewritten as

i = Q(x)-f(x) = g(x). (6.17)

Note that no approximations have been made so far.

A linearization of System (6.17) at state x yields the local linear model

Aix + ki (6.18)

with system matrices

Ai = Q(xi)- J(xi) - Q(x)-1 _ Q(z)-f (xi)09z (6.19)

ki = Q(xi)-f(xi) - Aizi

where J(x) = Of /x. If the function q(x) is known explicitly, then Q(x) and OQ/&x can

also be computed, resulting in an accurate constant-descriptor PWL model

i= A,(x)x

Ap(x) = Eiw(x)Ai
(6.20)

where Ai are defined in (6.19), and each linear model is accurate to first-order in f(x) and

to first-order in Q(x).

However, the function q(x) is not always available analytically. Often, only samples

of q(x) and Q(x) are available. In this case it is possible to ignore the derivative of Q(x),

simplifying the linearizations to

Ai = Q(i)-'J(zi), ki = Q(xi)-f(xi) - Aizi. (6.21)

The resulting PWL system has the form of System (6.20), where the system matrices Ai

are defined in (6.21), and each linear model is accurate to first-order in f(x) and zeroth-
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order in Q(x). A piecewise-constant approximation of Q(x) is not a poor approximation,

because in general the function q(x) must be well-behaved simply to ensure that a unique

solution to the nonlinear system exists. In addition, if Q(x) changes sharply, the accuracy

of the approximation can always be increased by increasing the number of linearization

points.

6.4.3 Stable PWL Systems from Nonlinear Descriptor Functions

For System (6.20), regardless of whether using system matrices (6.19) or (6.21), we can

directly apply Proposition 6.3.1 to obtain an exponential stability guarantee because of the

constant descriptor matrix E = I. However, we must consider one additional factor before

applying Proposition 6.3.2 to obtain a finite-gain stability guarantee. As a result of the

reformulation of the equations, the system now possesses additional state-dependence in

the input function B,(x, u),

J = Ap(x)x + Bp(x,u)

A(x) = Zj wi(x) Ai (6.22)

Bp(x, u) = Zj wi(x) [buii + kiu 2 ],

where, for example, bi = Q 1 b. All of the other assumptions of Proposition 6.3.2 hold, so

it merely needs to be shown that the input function Bp(x, u) is still Lipschitz continuous.

Prop. 6.4.1 (1/0 Stability). If System (6.20) is globally exponentially stable with Lyapunov

function L(x) = xTPx for some SPD matrix P (e.g. the assumptions of Proposition 6.3.1

hold), and wi(x) : RN - [0, 1] are continuously differentiable functions such that

Ei mi = 1, then System (6.22) is input-output stable.

Proof Following the proof of Proposition 6.3.2, we simply need to show that B,(x, u) is

Lipschitz continuous. The partial derivatives are

_B [wi8w(x) (b u+ku2 )l
&Xk aXk
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8B Zwxb, 8B~
= wi (x) bi, ' = wi(x)ki,

which are all locally bounded by assumption. Thus, by Theorem 6.2.2, System (6.22) is

input-output stable. D

Additionally, given a right-projection matrix V, the left-projection matrix U can be

chosen such that the reduced model resulting from application of U and V to System (6.22)

is input-output stable.

Corollary 6.4.1. If L - xTPx is a Lyapunov function for system (6.20), V is a right-

projection matrix, and w (x) : RN [0, 1] are continuously differentiable functions such

that K wi = 1, then if we define the left-projection matrix U = VTP, the reduced-order

PWL model

EX= Ap(-)i + Bp(2,u)

=p2 wi(.)UT AzV (6.23)
B =_ w,( )UT [biu 1 + kiu 2]

=UTV.

is input-output stable.

Proof Proposition 6.3.3 guarantees that L(') = TVTPVs is a Lyapunov function for

the reduced model, and Proposition 6.4.1 applied to System (6.23) guarantees input-output

stability. D

Note that the reduced model terms such as UTQ;-JV can be efficiently computed by

first solving the linear system Q7'M = U for the matrix M E RNxq, and subsequently

evaluating (UTQ- 1)JiV = MTJiV.

For systems with complicated and unstructured descriptor functions, it becomes diffi-

cult to prove stability with quadratic Lyapunov functions. These issues will be addressed

in the following section.
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6.5 Unstructured and Unstable PWL Systems

All of the results presented up to this point have relied on the assumption that the large-

order PWL system is stable and that there exists a quadratic Lyapunov function. However,

in general it may not be easy, or even possible, to find a quadratic Lyapunov function for a

stable PWL system. Additionally, a stable nonlinear system may produce an unstable PWL

model. In these cases we will try both to "eliminate" as much instability as possible from

the large-order PWL system through equation reformulation, and to utilize a projection that

preserves or regenerates stability in as many of the linear models as possible.

6.5.1 Stability Through Reformulation

Although the reformulation in the previous section permits the application of the results

from Section 6.3, it is possible that an alternative reformulation may be more useful in some

situations. Consider the case where Q(x) is approximated by a zeroth-order expansion, and

interpolate the descriptor matrices on the left side of the equation directly. The resulting

system

E,(x)k = Ap(x)x
Ap (x) = Zi w(x)Ai Ai = J(xi) (6.24)

E,(x) = EZ wi(x)Ei Ei = Q(xi)

has a nonlinear descriptor matrix, is comprised of local linear models that are accurate to

zeroth-order in Q (x) and first-order in f (x), and can be efficiently reduced with a nonlinear

projection operator.

One possible benefit of this formulation is that the system matrices Ei and Ai in Sys-

tem (6.24) are much more likely to have a nice structure, such as symmetry or definiteness,

than the system matrices (6.19) and (6.21). In general, structured system matrices make it

easier to find Lyapunov functions as described in the previous section. One circuit exam-

ple for which reformulation of the equations improves stability of PWL approximations is

presented in Section 6.7.2.
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6.5.2 Stability From Projection

Finally, we consider the case where the PWL system is not stable, and some of the linear

models (Ei, Ai) are unstable. Given the large-order PWL system and reduced-state ap-

proximation x = V., we may reduce the number of equations with a weighted piecewise-

constant left-projection function

(6.25)U(i) = E k()U
k=1

where tk(is) E [0,1], Ek Ik(x) = 1, and Uk E RNxq Consider System (6.24) evaluated

at x = VJ and left-multiplied by U(J)T, leading to

(k(x)Uk ( Wi()EiVX E= k(x) Uk' ( wi () [Ai V]+ B ( u
k i k

which can be rearranged as

z ( k()Wi ()Uk EiVX = ( ( yk(X) wi )UkAiV^ +( yk5()UkBk U
k i k i k

To simplify the notation, we define

bki Uj[bi, ki],

ki= U[EiV,

Ak= UTAiV,

$,(,u ) = ytk(x)wi(x)kiU
i k

p(X) = 5 1 (: p )Wiz t)ki
i k

)= : 1 yk()w() Aki
i k

resulting in the final reduced nonlinear descriptor system

E(X)& ̂= A ±(X) + Bp(s) u. (6.26)

We wish to select the matrices Uk such that the reduced models (Ekk, Ak) are stable

for all k. Two possible available methods for computing such Uk are to select Uk = PEkV,
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where P solves

ETPA+ATPE - 0

(see Section 3.4 for details), or as the solution to an optimization problem

min |Uk - Uolls
Uk

(6.27)

UI EkV >- 0

UkTAkV + VT ATUk 0

(see Section 4.4 for details). These two approaches were first presented in [55] and [16]

respectively. For example, if we define the matrices

(VTEkPkEkV) VTETPk

UT VT (VTEkV) -k

if k E li

if k fI

l[ = {k C {1. ... ,7 r} (Ek, Ak)is Hurwitz} ,

and Pk solves

E% PkAk + ATP kEk = -Qk < 0 (6.30)

for (Ek, Ak), then Ekk = UTEkV = I and Akk is Hurwitz for all k.

To completely specify the reduced order system (6.26), we must specify a set of left-

projection weights pk(s). One possible choice of [Ak() that simplifies the model is

yk (X{

0

if k = argmini i -

else,
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resulting in reduced model terms

E ̂ )= ZWi(JO)Eii, A Zwi (i )Aii

Bp( u) = Ewi ()Bz~u.

Note that by our choice of Uk we also obtain E,(4) = I.

While we cannot guarantee global stability of the resulting reduced model through the

existence of a Lyapunov function, our projection guarantees that stability will be preserved

for all stable local linear models, and additionally that the equilibrium point of the reduced

model will be at least locally stable because there will always be a stable local model

at the equilibrium point. In our experience, reduced models created with the proposed

stabilizing projection have always produced stable outputs in response to typical inputs of

interest, even though the models are not provably globally stable. Several examples using

this stabilizing projection scheme will be presented in Sections 6.7.3 and 6.7.4.

6.6 Implementation

For nonlinear systems producing unstructured and unstable Jacobian matrices, the stabiliz-

ing nonlinear left-projection technique presented in Section 6.5.2 must be used to create

stable reduced models. Constructing the nonlinear projection can be extremely computa-

tionally expensive, as it requires computing a stabilizing left-projection matrix for every

local linear model. The left projection matrices defined in (6.28) are particularly expen-

sive as they require solving Lyapunov matrix equations for each linear system. Although

there exist methods (such as [5, 6]) for solving Lyapunov equations that perform better

than O(Ns), this matrix equation solution is the dominant computational cost in creating

the reduced models using (6.28). In this section we present one approach to reduce the

computational costs of solving Lyapunov equations for the linearized systems, as well as

present our full model reduction algorithm.
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6.6.1 Reusability of Lyapunov Equation Solutions

We first consider the nonlinear left-projection function U(5i), as defined in (6.25), with Uk

as defined in (6.28). Constructing U(2) is expensive because we assume that there does not

exist one matrix P >- 0 that satisfies (6.30) for all k, and thus we have to solve Lyapunov

matrix equations for every local linear model. However, there may be a matrix P >- 0 that

satisfies (6.30) for some set of k. That is, given a solution Pk to (6.30) for a single k, there

may exist j # k such that

EfPkA + APkE3 -4 0.

In this case we may "reuse" the Lyapunov matrix equation solution to also prove sta-

bility for linear model j. Additionally, we may also reuse the matrix Pk for construct-

ing the stability-preserving local left-projection matrix Uj for linear model j, such that

U =PkEjV(V T EPkEjV)- preserves stability for linear system (Ej, A3 ). Since all

local models are linearizations of the same physical system, it is likely that some matrix

equation solutions Pk may be reused to satisfy other matrix equations.

Figure 6-1(a) plots the reusability of Lyapunov equation solutions for linearizations of

a system, discussed in detail in Section 6.7.4, described by a model of the form

Q(x)i = f (x) + b(x)u. (6.31)

A dark dot in location (j, k) on Figure 6-1(a) signifies that the matrix Pk (which was con-

structed to satisfy EkPkAk + A[PkEk -< 0) satisfies ETPkAj + ATPkEj -< 0. Note that

the plot is not symmetric because Ai # A[ in this example.

From the near-periodic structure of this plot, it appears there is a correlation between

reusability of Lyapunov equation solutions and state-space location of the linearization

points from which the linear models are created. Figure 6-1(b) displays the proximity of

linearization points in the state space. In this plot, a dark dot in location (j, k) indicates

that the distance between linearization points xo and Xk is less than some small tolerance:

||Xj - XkJI < 6.

159



(a) Reusability of Lyapunov solutions - All
pairs {Pk, (Ej, Aj)} that satisfy EjfPkAj +

AfTPkE -< 0. The system matrices (Ei, Aj)
were obtained by training system (6.38) with
three different sinusoidal inputs.
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(b) All linearization point pairs (xj, Xk) that sat-
isfy | - k|I| < c. The linearization points were
obtained by training system (6.38) with three dif-
ferent sinusoidal inputs.

Figure 6-1: Comparison of reusability of Lyapunov matrix equation solutions with prox-
imity of linearization points.

The correlation between the patterns in Figures 6-1(a) and 6-1(b) can be explained by

considering the perturbed linear system

(Ek+ AE)i = (Ak+ AA)x.

This system is stable if there exist SPD matrices Pk, Qk such that

EI PkAk + ATPkEk = -Qk - Q (6.32)

where

Q =(AETPAA + AATPAE) + (AETPA + ATPAE)

+ (ETPAA + AATPE).

Assume there exist SPD matrices Pk, Qk that satisfy (6.32) for AE = 0 and AA = 0.

Next, define AE = E - Ek and AA = A3 - Ak such that the perturbed system is actually

linear system j. If oma(Q) < o-mi(Q), then we may take Pj = Pk and Qj = Qk - Q
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to satisfy the Lyapunov equation for linear system (Ej, A3 ). Thus for AE and AA small

enough, the Lyapunov solutions are reusable. Note that Q -+ 0 as AE - 0 and AA -* 0.

From their definitions,

A3 - _ - f(xy) _ Df(xk)A A = A- - Ak = a X) 0f(k
ax ax

Eq(xj) _ aq(xk)AE = Ej - Ek = ,x ODx Dx

and by the smoothness of f(x) and q(x), we find that the perturbations go to zero as xj -+

Xk, and thus the Lyapunov equation solutions will be reusable for models arising from

sufficiently close linearization points. If linearization points are too close and the models

are too similar, then the model is redundant and not needed in the PWL approximation.

However, in our experience, even after removing all redundant models we have found that

it is often still possible to reduce the number of required Lyapunov equation solves by at

least 50% by reusing Lyapunov matrix equation solutions.

An algorithm to exploit this fact might first search through existing solutions to Lya-

punov equations corresponding to nearby linearized models, and then test those existing

solutions on the given model before solving a new Lyapunov equation for the given model.

Although this procedure will require fewer Lyapunov equations solutions, it is still expen-

sive because it requires matrix-matrix products and eigen-decompositions for matrices in

RNxN. However, since it is only required that Qjk = VTETPkAV + VTATPkEjV E

Rqxq be a symmetric negative-definite matrix, it is possible instead to check if this smaller

term is negative-definite. The eigen-decomposition is now performed on a size q x q ma-

trix instead of a size N x N matrix, and the cost of matrix-matrix products is reduced from

O(N 3 ) to O(N 2 q). An example of this procedure is presented in Algorithm 5, where the

parameter r defines the maximum number of existing solutions Pk that will be tested (in

our experiments T = 25 has produced good results).
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Algorithm 5 Reusability of Matrix Equation Solutions
1: Given a linear model pair (Ej, Aj) and linearization point xo, a set P = {Pk} of

SPD matrices Pk, a set of linearization points X {Xk}, and an orthonormal right-
projection matrix V

2: Compute Vaj E RNxq Vej E RNxq

Va = A3 V, Vej EV (6.33)

3: form= 1 : Tdo
4: Find Xk = argmini lx - xi| where xi E X

5: Compute Qk= VT PkVaj +Va JPkVej

6: if Amax(Qjk) -< 0 then

7: Define Uj = PkVej(VTPkVej)- 1

8: break for
9: else

10: Remove Xk from X and try again
11: end if
12: end for
13: if no reusable solution found then
14: Solve for P: ETPA. + ATPE = -I3 3 3 3 3
15: Define Uj = PVej(VT P.Ve) -)
16: Add P to P: P = {P, P}
17: end if

6.6.2 Algorithm

In this section we present a routine to create stable PWL reduced models from originally

stable nonlinear systems by using the nonlinear projection methodology described in Sec-

tion 6.5.2. Our procedure, summarized in Algorithm 6, is described as follows.

Given a stable nonlinear descriptor system

d
- [q(x)] = f(x) + bu, (6.34)
dt

a training procedure is used to obtain r, linear models. Information from the trajectories

and linear models is then used to construct an orthonormal projection matrix V, using, for

example, Krylov vectors. Details on methods for training and constructing V can be found

in [78, 98, 95, 14]. At this point, stabilizing left-projection matrices Umn are computed

for each Hurwitz matrix pair (Em, Am). Such Umn can be computed using the technique

162



Algorithm 6 STPWL: Stabilizing Trajectory Piecewise Linear
1: Train System (6.34) to obtain i linear model pairs (Ei, Ai) with corresponding lin-

earization points xi
2: Construct orthonormal right-projection matrix V
3: Set P= {}
4: forj= 1 : K do
5: Compute stabilizing Uj for model (Ej, Aj) using, for instance, Algorithm 5 or opti-

mization problem (6.27)
6: if no solution found then
7: Unstable model: Define Uj = V(VTETV)- 1

8: end if
9: Project system j with UJ

A= UTA-V, k= Uk, b = Uf b

10: Project linearization points dj = VTXj
11: end for
12: Obtain ROM of the form

x wj= )A: + B( )u
j=1

described in Algorithm 5, or by solving (6.27). In the case of unstable linear models we

cannot guarantee stability in the corresponding local reduced model through projection, so

we define the projection matrix as Umn = V(VTEV)- to ensure that UTEmV = I. The

resulting local left-projection matrices Urn are used to project the local models (Em, Am).

The final result is a collection of stable linear models that are the basis of a reduced-order

PWL model.

The storage cost and simulation cost of the final reduced model is the same as that of a

model created with the traditional projection approach, i.e. U = V. All of the additional

computational costs occur offline as part of model generation. Additionally, using sta-

bilizing left-projection matrices obtained from optimization problem (6.27) can be much

cheaper computationally than the alternative proposed approach. For example, when re-

ducing a linear system of size N = 1500 to reduced order q = 15, we have found that

solving (6.27) is more than 10 times faster than solving the corresponding Lyapunov ma-

trix equation.
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6.7 Examples

In this section we will examine several nonlinear systems whose PWL approximations

exhibit the properties considered in Sections 6.3, 6.4, and 6.5, and present results from the

proposed reduction algorithms applied to such systems. All of the model generation and

simulation results for both the large and reduced systems were performed in Matlab on a

desktop computer with a 3.33GHz Intel dual core processor and 4GB of RAM. Additional

simulation speedups of the PWL reduced models could be obtained by using previously

reported techniques in [95], such as fast nearest-neighbor searches, without altering any

of the stability results obtained from projection. Additionally, solving Lyapunov equations

for constructing the left-projection matrices can be performed much faster using recent

algorithms for solving matrix equations [5, 6] instead of Matlab solvers.

6.7.1 Example of Systems with Constant Descriptor Matrix

We first consider nonlinear systems described by models with constant descriptor matrices

and structured Jacobian matrices such that the system satisfies the assumptions of Propo-

sition 6.3.1 in Section 6.3.2. One such example is a system whose Jacobian matrices Ai

are negative-definite, and whose descriptor matrix E is an SPD matrix. In this case se-

lect P = E-1 , which is also SPD, leading to the Lyapunov function L(x) = xTEx and

left-projection matrix U = V. Such systems with structured Jacobian matrices are encoun-

tered, for instance, when using PWL approximations on nonlinear circuits comprised of

monotonic nonlinear elements such as nonlinear resistors and diodes.

Figure 6-2: Nonlinear analog circuit containing monotonic devices.

164



For example, consider the following nonlinear analog circuit, shown in Figure 6-2 and

first considered in [98], satisfying the previous criteria (note that this example is slightly

different than the diode line example considered in section 5.3.1 because it contains in-

ductors). The circuit contains the monotonic elements resistors, capacitors, inductors, and

diodes. The current conservation law applied to this circuit produces the conservation equa-

tions

Cn Vn = - In+1 + Io (ea(Vn_1-V) 1)
dt

-
1o (ea(Vn-Vn±) - 1)

dI
Ln "~ =Vn_1 - Vn - InRn

dt

at each node, leading to the state space model

Ei = Gx + f(x) + bu (6.35)

where E is a constant SPD matrix, G is a constant stable (but not symmetric) matrix, and

f is a nonlinearity whose Jacobians are always negative-definite. For this system, we find

that Ai + A[ is always negative-definite, and thus L(x) = xTEx is a Lyapunov function

for the PWL system. Thus, Proposition 6.3.1 guarantees internal stability.

Additionally, Proposition 6.3.2 in Section 6.3.2 guarantees input-output stability for

the large-order PWL model, and Proposition 6.3.3 together with Corollary 6.3.1 from Sec-

tion 6.3.3 guarantee that the reduced model created with the left-projection matrix U = V

will also be input-output stable for any right-projection matrix V. Figure 6-3 plots sev-

eral outputs of a stable reduced model of the nonlinear transmission line created with the

projection U = V where V was constructed to match moments. The original system has

order N = 500 and was trained with sinusoidal inputs of varying amplitude and frequency

around 1GHz. The resulting reduced model has order q = 15 and consists of approximately

2, 000 local linear models, resulting in a simulation speedup factor of about 15.

165



a), 0.3
CO
0 2

-0.1

-0.2 '

0 1 2 3 4 5 6 7 8
Time (sec) x 10-1 0

Figure 6-3: Comparison of outputs from a 15th order stable reduced model (crosses) and
a 500th order stable full model (solid line) resulting from a multi-tone input to the RLCD
line shown in Figure 6-2.

6.7.2 Reformulation for Systems with Nonlinear Descriptor Functions

In section 6.5.1 we considered reformulating nonlinear descriptor systems such that the

resulting Jacobian matrices, while less accurate, were more likely to be structured and

stable. To illustrate this point, we consider the nonlinear transmission line used for signal

shaping described in Section 5.3.3.

The nonlinearity arises from the voltage dependence of the capacitors, which is approx-

imated as C, = C(V) ~ CO(1 - bcVs). Setting the system state to the node voltages and

inductor currents, system equations can be derived using Kirchoff's current law and nodal

analysis. The input is an ideal voltage source u(t) = V (t), and the output is the voltage at

some node m along the line, y(t) = Vm(t). Using this formulation, the system equations

for an interior node n using the traditional constant-descriptor formulation would be of the
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form

dVn In - In+1. d In Vn_1 - Vn
dt Cn (V) ' dt L

resulting in a model of the form

x = f (x) + b(x)u. (6.36)

If, on the other hand, one were to allow the system to possess a nonlinear descriptor

matrix

dV dl
Cn(V) " = In - In+1, Ld Vn-1 - Vn,dt dt

the state space model becomes

Q(x)± = Ax + bu Y= CTX. (6.37)

Although the nonlinear descriptor formulation (6.37) will produce less accurate local

models, the PWL interpolation of the collection of models is still sufficiently accurate.

Figure 6-4 compares the highly nonlinear outputs of a large-order PWL model (with order

N = 200) created from system (6.37) and the original nonlinear system in response to a

sinusoidal input. In this example the PWL system was created by training with sinusoidal

inputs and consists of approximately 3, 000 local models.

Now consider PWL approximations to these two nonlinear systems, each of which is

comprised of linear models created at the same set of linearization points. These two sets

of linear models will be different. Table 6.1 compares the number of unstable linear models

generated by linearizations of the two nonlinear systems, as well as the number of unstable

reduced-order linear models created by a Galerkin projection framework (U = V) when

projected down to reduced order q = 40.

For this example the piecewise-constant descriptor formulation (6.37) produces fewer

unstable large-order linear models and zero unstable reduced-order linear models, while the
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Figure 6-4: Comparison of full nonlinear system output (solid line) with output of refor-
mulated nonlinear descriptor-form large-order PWL model (crosses) for System (6.37).

Table 6.1: Number of unstable linear models generated
points

Large PWL
Reduced PWL

Non-descriptor form
Equation (6.36)

2927
1882

from 3001 unique linearization

Descriptor form
Equation (6.37)

1391
0

more accurate constant-descriptor formulation (6.36) produces many unstable linear mod-

els for both large order and reduced order. This result is due to the improved structure of

the Jacobian matrices resulting from a reformulation of the system equations into nonlinear

descriptor form. Thus, the reformulation allows us to create stable reduced local models

without employing the more expensive nonlinear stabilizing projection. In this case the

stable reduced-model provided a speedup of about 4 times over the original large system.
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6.7.3 Unstructured Analog Circuit

To illustrate the nonlinear left-projection technique proposed in Section 6.5.2 for unstable

and unstructured large-order PWL models, and Algorithm 5 for reusing matrix equation

solutions, we consider a distributed amplifier circuit shown in Figure 6-5. It is not un-

common for analog circuits, such as this one, to produce PWL models that do not contain

symmetric or sign-definite system matrices, making it difficult to guarantee stability for

the PWL system through the use of a quadratic Lyapunov function. For this example the

transconductances in the small-signal transistor models do not appear symmetrically in the

linearized system matrices Ai, making it necessary to utilize the nonlinear left-projection

function U(±), defined in (6.25), to preserve stability.

R
\~f L 2 L4 FL,:/2 /42 ~ 2 vd

Figure 6-5: Distributed amplifier circuit

A collection of about 10, 000 linear models of original order N = 106 were created by

training the system with multi-tone inputs of the form

u(t) = ai sin (27rfit) + a2 sin (2wrf 2t)

while varying the amplitudes a1 , a2 and the frequencies fi, f2, which were near 1GHz. To

examine the stability of the local linear models, the maximum real part of the eigenvalues

for each large-order linear model are plotted in Figure 6-6 as the solid line. In this figure, a

point with a positive value corresponds to an unstable linear model. Out of a total of almost

10, 000 linear models, only 368 are unstable.

From these large linear systems, two different sets of reduced models (with reduced
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order q = 10) were created: the first using a constant left-projection matrix U = V, and the

second using the nonlinear left-projection function described in (6.28). Algorithm 5 was

used to reduce the number of matrix equation solves required to construct the stabilizing

projection matrix. The maximum real part of the resulting local reduced models are also

plotted in Figure 6-6 compares the stability of the two resulting sets of reduced-order linear

model pairs by plotting the sorted maximum real part of the eigenvalues for each linear

model. The dashed line corresponds to the reduced models created with the constant left-

projection matrix (U = V). Note that for this model about two-thirds of the 10, 000 reduced

linear models are unstable. The reduced models created with the proposed nonlinear left-

projection are represented by the dotted line. Although it is not easy to see in the figure,

for this reduced model there are precisely 368 unstable models, which correspond exactly

to the original 368 unstable large-order linear models.
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Figure 6-6: Maximum real part of the eigenvalues of the linear models for the large system
(solid line), containing only 368 unstable linear models, the reduced models created with
the proposed stabilizing nonlinear left-projection function (dotted line), also resulting in
368 unstable models, and the reduced system created with the traditional constant left-
projection matrix (dashed line), resulting in over 6, 000 unstable local models.

The stabilizing projection matrices were computed using the procedure described in

Algorithm 5, which solved approximately 4, 000 matrix equations to generate the approxi-

mately 10, 000 local projection matrices, all of which took less than 5 minutes.
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6.7.4 Unstructured Microelectromechanical System

To illustrate the full stabilizing nonlinear model reduction algorithm from Section 6.6.2, we

consider a nonlinear descriptor system that produces unstructured Jacobian pairs (Ei, Ai)

that are not all stabilizable by a constant left-projection. This example is a micromachined

switch MEMS device, first described in Section 5.3.2.

After discretizing the device into m sections lengthwise and n sections widthwise, this

model can be written in the form

Q(x)i= f (x) + b(x)u, (6.38)

where the state variable x E R"n+2" is chosen to contain the vertical positions of the beam,

the pressure beneath the beam, and a quantity related to the rate of change in pressure, all

on the discretized grid. A detailed description of these functions can be found in [77].

To test Algorithm 6 from Section 6.6.2, the nonlinear descriptor system (6.38) was

trained with a series inputs of the form

u(t) = (a1 sin (27rfit) + a 2 sin (27rf 2t))2  (6.39)

with frequencies near 30MHz to obtain a set of rK linear models, and then a right projection

matrix V was constructed with a moment matching approach. From this point, two sepa-

rate reduced models were created - one using the traditional TPWL projection technique

with a constant left-projection matrix (U = V), referred to as the TPWL-ROM, and one

generated using Algorithm 6. The original large-order system has order N = 360, while

both reduced models have order q = 20 and are comprised of approximately 1100 local

models created from the same set of linearization points. For this example the stabilizing

projection matrices were created using Algorithm 5, which solved 375 matrix equations for

the approximately 1100 local models. The entire reduction process was completed in under

15 minutes.

Figure 6-7 plots the maximum real part of the eigenvalues of the linear models for

each large-order linearized model and the two reduced models. Despite most of the large
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Figure 6-7: Maximum real part of the eigenvalues for individual linear models comprising
the large-order PWL model (solid line) and two reduced-order PWL models. The crosses
correspond to the reduced models created with the proposed projection method in (6.28),
while the circles correspond to reduced models created with the traditional constant left-
projection matrix.

matrix pairs (Em, Am) being stable (represented by the solid line), Figure 6-7 shows that

in every case the reduced models created with the constant left-projection matrix (circles)

are unstable. The models created from the nonlinear left-projection (crosses), however,

preserve stability in the local models in all cases where the original models were stable.

The two reduced order models were then simulated with a set of inputs of the form (6.39)

with different frequency and amplitude from the training inputs from which the linearized

models were created. Figure 6-8 plots the output of the full nonlinear system and the two

reduced models for several different inputs. The output of the PWL-ROM created with

the traditional constant left-projection matrix (dotted line with circles) grows unboundedly

because the reduced model is unstable, while the PWL-ROM created with Algorithm 6

(crosses) is both accurate and stable. Additionally, the stable ROM simulated approxi-

mately 25 times faster than the full nonlinear model.
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Figure 6-8: Output responses of the full nonlinear system and two reduced models to three
different inputs. The full nonlinear system (solid line) and the PWL reduced model created
by Algorithm 6 (crosses matching the solid line underneath) are both stable, while the PWL
model created using the traditional constant left-projection matrix (dotted line with circles)
is unstable.
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Chapter 7

A System Identification Approach to

Stable Model Reduction

7.1 Introduction

One problem with the previously presented projection approaches in Chapters 4, 5, and 6

is that they rely on reducing a large system of equations, and therefore require precise

knowledge about the system being modeled. This requires knowing not only the schematic

of the circuit, which is typically readily available, but also the exceedingly complicated

transistor models. Transistor models typically consist of a collection of empirical formulas

with hundreds of special cases, and hundreds of fitted parameters, which are not as easily

available.

System identification (SYSID) provides an alternative approach to model reduction.

Such techniques are capable of generating compact models using only input-output (or

possibly input-output-state) data, thus eliminating the need for a large dynamical system of

equations to be reduced. Data samples for identification can be generated for instance from

simulation of a circuit schematic using a commercial simulator, or from measurements

performed on a fabricated device.

In this chapter we propose a new alternative SYSID method for compact modeling

of nonlinear circuit blocks and MEM components. Our approach is based on optimizing

system coefficients to match given data while simultaneously enforcing stability. What
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distinguishes our SYSID method from existing "reduction" approaches is the ability to

explicitly preserve the properties of nonlinear systems, such as stability, while controlling

model accuracy. The efficiency issues encountered by past SYSID techniques are addressed

in our approach by adopting recently developed semidefinite programming techniques for

nonlinear system analysis [56]. Additionally, we have provided Matlab code implementing

our approach [12] to aid the reader in implementing our technique.

The remained of this chapter is organized as follows. In Section 7.2 we review robust

nonlinear identification using SYSID. In Section 7.3 we develop the theoretical framework

for our proposed SYSID approach to compact modeling of nonlinear systems and formu-

late the identification problem as a semidefinite program. In Section 7.4 we present one

approach to solve efficiently the previously derived optimization problem by selecting a

polynomial basis and rational model formulation, resulting in a Sum of Squares (SOS)

problem. In Section 7.6 we present two approaches for reducing the complexity of the

optimization problem and the complexity of the resulting model through the use of state

projection and reduced basis identification. Finally, in Section 7.7 we show the effec-

tiveness of the proposed approach in modeling practical circuit blocks, such as low noise

amplifiers, power amplifiers, and MEM devices. The proposed approach is also compared

to several existing SYSID techniques.

7.2 Review of Robust Nonlinear Identification

In order to capture both the nonlinear effects and memory effects in our models, we con-

sider implicit sampled dynamical systems of the form

F(v[t],... , v[t - m], u[t],..., u[t - k]) = 0 (7.1)

G(y[t],v[t]) = 0

where v [t] E RN is a vector of internal variables at time t, u[t] E RN- is a vector of inputs,

y [t] c RN is a vector of outputs, F E RN is a dynamical relation between the internal

state and the input, and G E RN is a static relationship between the internal state and the
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output. We additionally require that the functions F and G are such that the corresponding

System (7.1) is well-posed. In the event that state data v[t] is not available, we may iden-

tify input-output models by selecting v[t] = y[t] and defining G(y, v) = y[t] - v[t]. For

example, the explicit input-output system

y[t] = (ay[t - 1] + 3y[t - 1]2 + u[t - 1])3

can be rewritten as an implicit model with internal states in the form of (7.1) as

F = v[t] - av[t - 1] - 3v[t - 1]2 - u[t - 1] = 0

G = y[t] - V[t]= 0.

The following development is focused primarily on the generation of compact sampled

discrete time (DT) models, and is then extended to the continuous time (CT) case in Sec-

tion 7.3.3. For the remainder of this chapter we shall use the following compact notation:

V = [Vo, ... ., om], U = [no, ... ,i nk], (7.2)

where vo,... , Vm and uo, .., are arbitrary variables (not necessarily inputs and outputs

satisfying (7.1)),

V+ =[Vo,...,om_1], V_ = [vI, ... , om], (7.3)

where V+ contains the first m components of V and V_ contains the last m components of

V,)

V[t] = [vlt],...,V[t - m]], (7.4)
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where v[t] is the internal state of the identified model (7.1) in response to past inputs U[t]

and initial conditions v[t - 1],... , v[t - m], i.e. F(V[t], U[t]) = 0, and

V It] = [6[ t], . .,[t - m]], U It] = [6[ t], . .,[t - k]], (7.5)

where b[t] are training data state samples in response to training inputs it[t]. Similarly, y

shall represent an arbitrary variable, y[t] is the solution to G(y[t], v[t]) = 0, and Q[t] is a

given training data output sample.

Ideally, SYSID aims to minimize the output error between a given set of training data

X = {U, V, Q} and the identified model.

Definition 7.2.1. Given a sequence of inputs t[0], ... ,iiT], the corresponding states

f[0],... , IT], and outputs Q[0], ... ,[T], the output error of an identified model is de-

fined as

E(F, G, X) = [ Iy[t] - Q[t1, (7.6)
t

where y[t] are solutions to the identified model in response to training data inputs and

initial conditions b [t - 1), ... , 3 [t - m], and X represents the training data set containing

all given ii[t], i [t], 9 [t] pairs.

In general, minimization of the true output error is computationally extremely difficult

as it is a highly non-convex problem. Most approaches suggested by the classical literature

in system identification [50] instead attempt to minimize the overall "equation error".

Definition 7.2.2. The equation error is defined as the sum of squared mismatches obtained

from evaluating the identified model (7.1) on all of the training data samples (fi[t], i[t], 9[t]) E

x

E(F, G, X) = j F(f[t], U[t])| 2 + IG(p[t], b[t])| 2  (7.7)
t

It is, however, misleading to assume that a small equation error always leads to a small

output error. It is possible to identify unstable models whose system equations are satisfied

178



accurately by the given data, resulting in small equation error, but produce unstable outputs

during simulation, resulting in large output error.

Definition 7.2.3. System (7.1) is incrementally stable if it is well-posed and, given any

two sets of initial conditions V [to - 1], ... , v[to - m] and i [to - 1], ... ,[ [to - m], the

resulting two solutions to (7.1) in response to the same input u satisfy

E 119[t] - Q[t]|| 2 < oo (7.8)
t=to

for all initial conditions and inputs.

As was the case for continuous time systems, dissipativity in the discrete time case

can also be proven through the use of storage functions [103]. System (7.1) is said to

be dissipative with respect to the supply rate o(u, v, y) if there exists a storage function

L(v) > 0 such that

L(V+) < L(V_) + o-(U, V, y) (7.9)

for all V, U, y satisfying (7.1). It has been shown in [56] that (7.1) (assuming G = y - vo,

i.e. an input-output system) is incrementally stable if the following dissipation constraint

is satisfied

(Vo - 0 )T (F(V, U) - F(V, U)) - VO- b0|2 + L(V_,Y_) - L(V+, Z+) > 0 (7.10)

for all V, U, and all V = [i0, ... , im], where L is a non-negative storage function such that

L(V+, V+) = 0. Note that when V, U and V, U satisfy (7.1), dissipation constraint (7.10)

simplifies to constraint (7.9) with o = -|vo - 0|, which in turn implies (7.8).

7.3 SYSID Formulation

In this section we present the theoretical development for our modeling framework.

179



7.3.1 Incremental Stability and Robustness

Minimization of the exact output error by enforcing dissipation constraint (7.10), as de-

scribed in section 7.2, is a computationally difficult problem and typically yields overly

conservative upper bounds. Therefore we we consider instead a reasonable alternative

measure of output error, referred to as the "linearized output error". First, we define lin-

earizations of (7.1) around y, V, U as

F(V, U, A)

G(y, vo, o,)

where

JO

Jm

= F(V, U) + F,(V, U)A = 0

= G(y, vo) + G,(y, vo)6o + GY (y, vO)( = 0,

[ [t]

6[t -m]J

G G
avo'

(7.11)

GaG
y - ay'

with 6o E RN and c RNY

Definition 7.3.1. The linearized output error of identified model (7.1) is defined as

S(FG,X) =( [t]|2
t

where [t] are solutions to

F(V[t], U[t], A[t]) = 0, (7.12)

in response to the zero initial condition 6[t - 1], ... , 6[t - m] = 0 when evaluated on the

training data.

In the case of linear systems, the true output error is exactly equal to the linearized
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output error.

In order to prove incremental stability of system (7.1), it is sufficient to show that lin-

earizations of (7.1), as defined in (7.11), around all possible U, V, y satisfying (7.1) are

stable, as was proposed in [52]. This can be proven with the following dissipation inequal-

ity

h(V+, A+) <; h(V_l, A_) -- |(|2 2 + 2 0F (V, U)A

+ 2(T(Gv(yvo)6o + Gy(y,vo)(), Vy, V, U, A, , (7.13)

where h is a storage function, defined as

h(V+, A+) = A+H(V+)A+ (7.14)

h(V_, A_) = AT H(V_)A-_

and e > 0. Since (7.11) is linear in A, it is sufficient to consider storage functions that are

quadratic in A [52]. Note that for U, V, y, A, satisfying (7.1) and (7.11), constraint (7.13)

simplifies to (7.9) with supply rate o = -|2 _ CA 2 . Inequality (7.13) can be thought of

as a linearized version of inequality (7.10), and is less restrictive because although a stable

system satisfying (7.10) also satisfies (7.13), there are many stable systems satisfying (7.13)

that do not satisfy (7.10).

Definition 7.3.2. The robust equation error, ?, of System (7.1) over training data set X is

defined as

i(F, G, H, X) = Er([t], [t],U[t])
t

where

r(y, V, U) =

max{h(V+, A+) - h(V_, A_) - 2 0F'(V, U, A) - 2 (TG(y, vo, 60, () + I2}. (7.15)
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The robust equation error serves as an upper bound for the linearized output error.

Theorem 7.3.1. If there exists a positive semidefinite function H : R' F- R"'x, positive

scalars E, 61,62 > 0 such that ElI < H < 621 and (7.13) is satisfied for all 9, V,U e X,

and for all possible A, , then System (7.1) is locally incrementally stable and the linearized

output error on the training set is bounded from above by the robust equation error

S(FG,X) < ?(FG, H, X).

If in addition, H is continuously differentiable and (7.13) is satisfied for all y, V, U, then

System (7.1) is also globally incrementally stable.

Proof Incremental stability is implied by (7.13) using a standard proof following the prin-

ciples of [52]. It follows from (7.15) that

|(| 2 < r(y, V, U) + 26'F'(V, U, A)

+ 2 (TG(y, v0, 6o, () + h(V, A-) - h(V+, A+) (7.16)

is satisfied for all y, V, U, A, . To obtain the linearized output error, we sum (7.16) over all

training data samples Q [t], V [t], U [t] and incremental variables A [t], ([t] satisfying (7.12),

resulting in

S(X, F, G) = l[t]2 (7.17)
t

< [[r([t], V[t], U[t]) + h(?-[t], At]) - h( +[t], A+[t])]
t

< Z r(Qt],[t],G[t]) = f(F, G, H,X).
t

Here we have also used the fact that

T

E [h(V_[t]) - h(V+[t])] = -h(+[T]) < 0
t=o

by definition of h and by the zero initial condition of A. Note that finiteness of is guar-
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anteed by (7.13).

In summary, for a given model F, G, if there exists a storage function h as defined

in (7.14) that satisfies (7.13), then system (7.1) is incrementally stable. Furthermore, for

such F, G, h, the robust equation error serves as an upper bound for the linearized output

error over the training data set, as shown in (7.17).

7.3.2 Identification Procedure

The proposed system identification algorithm is based on minimization (with respect to F,

G, H, and r) of the linearized output error upper bound, r, over the training data set X

subject to a dissipation constraint

min rt subject to (7.18)
r,F,G,H Y

t

rt + 260 Ft (A) + 2 T ot(60, ) - |2

+ ht_ 1(A-) - ht(A+) > 0, V t, A, (.

where we define rt = r( [t], V[t], U[t]), F (A) = F(V[t], U[t], A), Gt = G([t], i[t], 6o, (),

ht_1(A-_) = h(V_, A_), and ht (A+) = h(V_, A_). In this formulation we simultaneously

enforce accuracy by minimizing the linearized output error upper bound at the training data

samples, and also enforce local incremental stability at each training sample through the

constraint.

By construction, the robustness constraint is jointly convex with respect to the unknown

functions F, G, H, r, and is a quadratic form in the incremental variables A, . If the un-

known functions are chosen among linear combinations of a finite set of basis functions

<D

F =a Jfo(V, U), G =Z aj (y, vo) (7.19)
jENf jENg

H= Za (V), r= Z (y, V, U),
jENh jENr
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where #F IG H r E <b, then aF, aG, aH, ar become the free variables and the opti-

mization problem becomes a semidefinite program (SDP). Additional details on semidefi-

nite programming are given in Section 7.6.

In order to obtain global incremental stability, it is necessary to additionally enforce

constraint (7.13) globally for all y, V, U and to ensure that the storage function H is smooth

with respect to all arguments. In this case, the complexity of the optimization problem

depends heavily on the choice of basis functions # for the unknown functions F, G, H, r.

The basis must be chosen carefully to ensure that the inequalities in problem (7.18) can be

easily verified numerically, and that feasible solutions exist. In Section 7.4 we describe one

possible choice for the basis functions <D that results in an optimization problem that can

be efficiently solved.

7.3.3 Extension to Continuous Time Models

In this paper we focus mainly on generating DT models for many typical circuit blocks in

the signaling path that are also usable in high level system simulation and design, using for

instance Cadence AMS or Verilog A. In addition, it is possible to extend the previously de-

veloped dissipation-based identification approach to generate CT systems for greater com-

patibility with lower level circuit simulators. In this case there are however additional

constraints on the choice of F to ensure that the system is uniquely solvable. For instance,

F should not possess nonlinear dependence on derivatives of the input, otherwise the sys-

tem may not be well-posed. Additionally, there are strong constraints on the relationship

between the function F and the storage function H in order to guarantee existence of solu-

tions to the optimization problem. To avoid excessive technicalities, we consider here only

CT systems described in state-space form

F (i(t), v(t), u(t)) = 0 (7.20)

G (y(t), v(t)) = 0.
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along with constant PSD storage function matrices H(v) = H. As in the DT case, we

define a robust dissipation inequality

ha) < 26 FV(v, u)A + 2 (TG,(y, v)( + 2(TG,(y, v)6 - |2 _ 612, (7.21)
at

where h(A) = AT HA, such that System (7.20) is incrementally stable and the linearized

output error is bounded from above by the robust equation error if there exists a storage

function matrix H such that (7.21) holds for all y, v, u, A, . Constraint (7.21) can then

be used to formulate an optimization problem similar to (7.18). Results for CT modeling

using this approach are presented in Section 7.7.2.

7.3.4 Identification of MIMO Models

The previously derived identification procedure is capable of identifying models with mul-

tiple inputs, multiple states, and multiple outputs. Multi-port models can also be used to

capture loading effects. If one of the ports is connected to a load, then varying the load

will produce different input-output data for that port, which can then be used for training

the model in order to capture loading effects. Our resulting multi-port model can then be

described for instance in Verilog-A and connected with other circuit blocks inside a com-

mercial simulator. Increasing the number of inputs and outputs increases the complexity

of the optimization problem by adding more unknown parameters, and when increasing

the number of states in the model (or the number of outputs in the case of an input-output

model), it may also be necessary to increase the complexity of the storage function to en-

sure that the system is dissipative with respect to all states. In Section 7.7 we present

results for systems with multiple inputs (section 7.7.5), multiple states (section 7.7.2), and

multiple outputs (section 7.7.4).

7.3.5 Extension to Parameterized Models

Our approach can easily be extended to identify models parameterized by, for instance,

device parameters or geometrical parameters. This is achieved by selecting the basis func-
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tions for F, G, H, r to possess dependence on design parameters Z, e.g. #/F _ F(V, U, Z),

where Z = [zi, .. . , zp] is a vector of parameters. Conceptually this is equivalent to treat-

ing the parameters as constant inputs with no memory. Results using this parametrization

approach are presented in Section 7.7.3.

7.4 Identification of Rational Models in a Polynomial Ba-

sis

In this section we present one possible choice of basis functions for representing the nonlin-

ear functions in optimization problem (7.18), and we also discuss the existence of solutions

to the optimization problem.

7.4.1 Polynomial Basis

The complexity of optimization problem (7.18) with global stability constraint (7.13) de-

pends on the choice of basis functions for the nonlinear function, robustness measure, and

storage function. One possible choice resulting in a convenient formulation is a polynomial

basis.

If we constrain F, G, H, r to be polynomial functions of the internal variables and in-

puts, i.e. define # from Section 7.3.2 as

p(y[t], V[t], U[t]) = J1 v[t - T]iU[t - Tj]Pjy[t]Pk, (7.22)
i,j,k

then we can formulate optimization problem (7.18) as a sum-of-squares (SOS) problem.

Proving global positivity of a multivariate polynomial is in general a hard problem (i.e.

computationally challenging), however SOS provides an efficient convex relaxation for

such problem. Guaranteeing global positivity in the stability constraints is transformed to

the task of solving for a positive semi-definite (PSD) symmetric matrix S = ST such that
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optimization problem (7.18) along with constraint (7.13) is expressed as

min r subject to (7.23)
r,F,G,HE t

rt + 23 0Ft(A) + 2(Tot(6o,) -|| 2 + ht-(A_) - ht(A+) > 0, Vt, A,(

h(V_, A_) - h(V+, A+) + 260 F,(V, U)A + 2(T G,(y, vo) 6o

+ 2 (TGY(y, vo)g - ||2 qTS, V y, V, U, A, ,

S = ST > 0.

Note that the second constraint must be satisfied for all possible y, V, U, while the first

constraint only must be satisfied for the training samples [t], V [t], U [t]. Here IF is a vector

of basis functions @ such that all basis functions # can be represented by the product IFWTSJ.

That is, for every #i there exist 0j and /k such that 4 oc @'4 k. Conceptually, the vector IF

must contain the monomial terms present in the 'square root' of the dissipation constraint,

and for nonlinear systems these entries can be automatically selected from the Newton

Polytope of the robustness constraint. See [64, 92, 80] for details on SOS programming

and the Newton Polytope, and see [57] or [12] for our software implementation.

It is important to note that although we are using a polynomial basis, we are not iden-

tifying polynomial models. Specifically, the implicit representation of the nonlinear sys-

tem (7.1) allows us to identify, for instance, rational models as described in the following

section. In this way we can represent highly nonlinear models in a much more compact

form than is possible using traditional polynomial models such as Volterra expansions.

7.4.2 Rational Model Description

In general, the identified implicit nonlinear model (7.1) can be extremely expensive to

simulate. To ensure that the resulting DT model can be simulated in an efficient manner,

we consider only models that are linear in the unknowns v[t]. For example, consider the

187



model

F(V[t], U[t]) = Q(V_[t], U[t])v[t] - p(V_[It], U[t]) = 0

G(y[t],v[t]) gq(v[t])y[t] - g,(v[t]) = 0, (7.24)

where Q E RNxN is a matrix of nonlinear functions, p 6 R N is a vector of nonlinear

functions, and V_ [t] = [v[t - 1], ... , v [t - m]]. Although F is defined implicitly, the system

is linear in the unknowns, making the simulation of this discrete time system equivalent to

linear system solves when all previous values of the state, v[t - 1], ... , v[t - m], and input,

u ... , u[t - k], are known

v [t] = Q(VI[t ], U [t]- 1p(VIt] , U [t]). (7.25)

The presence of the nonlinear matrix function Q(V_, U) is extremely important, as it allows

the model to capture nonlinear effects that are significantly stronger than those that would

be captured by considering the case where Q = I, without significantly increasing the

complexity of the optimization problem and of simulation.

7.4.3 Existence of Solutions

Given a nonlinear function F, the existence of solutions to (7.28) depends on the ability of

the storage function h to certify stability for that particular nonlinear function. As a result,

the basis functions describing H are dependent upon the basis functions describing F.

For models without feedback, such as the Volterra model

Yt = p(ut, Ut_1, ... , Utjkq), (7.26)

a storage function is not required to prove stability, and solutions always exist. One impli-

cation of this is that Volterra models are a strict subset of the stable models identifiable by

our approach.

When feedback is present in the model, for certain functions F, storage functions are
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available to prove stability. For example, for a linear system, it is always possible to certify

stability with a constant matrix H. As a result, if the polynomial basis contains linear terms,

then there always exists a solution to (7.28) described by a linear function F and constant

matrix H. Additionally, since the storage function and stability of the resulting model do

not depend strictly on the inputs u to the system, a constant matrix H can certify stability

for a system that is linear in v and highly nonlinear in u.

It is also possible to guarantee that solutions of (7.28) that are nonlinear in v do exist.

Let us define f = f(V, U) to be an unknown nonlinear function, and d = d(V, U) > 0 to

be a strictly positive scalar polynomial function such that F = L. Note that any solution

of F(V, U) = 0 also satisfies f(V, U) = 0. If we then set f = d(V, U)fL(V, U) where

fL(V, U) is a function linear in v, then F = fL is linear and thus can be certified stable

by a quadratic storage function, and therefore f(V, U) = d(V, U)fL(V, U) defines a stable

nonlinear model. Further, because the set of multivariate polynomials that are sums-of-

squares in a strict sense is open, any nonlinear function f (V, U) containing polynomial

terms of order less than or equal to those in the product d(V, U)fL(V, U) can be certified

stable by a constant storage function matrix H. Note that with this definition of F, F

in (7.28) becomes

_ f a f ad
F P + av av A,

d d2

and if the constraints in (7.28) is multiplied through by d2 , the resulting problem is still an

SOS problem.

7.5 Efficient Identification through Reduction of States and

Basis

In this section we present several techniques for reducing the complexity of the optimiza-

tion problem by fitting to a reduced set of states and identifying with a reduced set of basis

vectors.
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7.5.1 Complexity Analysis

The computational complexity of solving SOS problem (7.28) depends on the number of

unknown decision parameters describing the nonlinear functions F, G, H, r. The number

of decision parameters in F is roughly N (Nk+Nm+p-1), where N is the size of the vector

of unknowns v[t], m is the number of delays for each element of v[t], N, is the number of

inputs, k is the number of delays for each input, and p is the maximum polynomial order in

F. For models with a high polynomial degree p, large number of states N, or large number

of delays, this problem quickly becomes intractable.

Once the model has been identified, the cost of simulation becomes the cost of simu-

lating an Nth order polynomial dynamical system. For a DT model or a CT model being

solved with an explicit integration scheme, simulation requires evaluating the pth order

polynomial functions p and Q and then solving a Nth order linear system for every time

step. When integrating a CT system with an implicit scheme, using for instance Newton's

method, simulation will require several function evaluations and system solves at each step.

For both the identification and simulation of the model, the computational cost depends

heavily on the number of states in the model and the degree of the polynomials. However,

the above complexity analysis assumes that all states are equally important for identification

and that all possible combinations of polynomial products of basis vectors are present in

the model, and this is not true in general. Thus, two possible methods for reducing the

complexity of solving the optimization problem and simulating the resulting model, while

still allowing us to fit highly nonlinear functions, are to fit to a reduced set of states, and to

fit using a reduced set of basis vectors.

7.5.2 Identification of States through Projection

In the event where data is available for a large number of internal states (i.e. N is large), it

is possible to identify a low-order space in which the system states are well-approximated,

and fit by projection to a set of reduced vectors, [t] c R , where N < N.

For example, given a collection of training samples, X = [i[t 1], J[t 2 ],.. ., i[tT]] E

RNxT, it is possible to identify a low-order basis 0 c RNxN such that X ~ OX, where
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X = 8'X is a projection of the training data onto the reduced space. The projection

matrix E can be computed using any standard projection technique, such as POD [53, 102]

using training data X. The system identification is then performed using the reduced-order

training data set X, resulting in a model with N states.

This approach is similar to traditional model reduction techniques utilizing projection

in the sense that we approximate the solution in a low-dimensional space spanned by .

However, the key difference of our approach is that instead of constructing the reduced

model by projecting the system equations explicitly, we instead identify the reduced equa-

tions through an optimization procedure in order to minimize the reduced model output

error over a given set of training data. Numerical results obtained from this projection

approach are presented in Section 7.7.2.

7.5.3 Identification of Polynomial Basis through Fitting

In addition to the number of state variables, the cost of identifying and simulating the

models also depends on the number of delays (memory) of the system. To decrease this

cost without reducing the polynomial order of the desired function, it is useful to consider

only important polynomial basis terms for identification. Let <b[o,n] denote a nominal set of

basis functions comprised of variables u, v with up to n delays. Important basis terms #

may be selected as linear combinations of the nominal basis components:

= q~jE 4 [~n].(7.27)

The coefficients #j,i can be identified by fitting a linear model with memory n to the training

data with basis <.

For example, suppose the nominal basis functions are selected to be input samples, i.e.

<b[o,k] = [u[t], .. ., u[t - k]]. The training data (Q [t], ii [t]) can be used to identify a linear

model with memory k and output w [t] y [t]

k
w[t] = E bju[t - j].

j=O
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This identified linear model now defines a linear transformation of the nominal basis vec-

tors to the reduced basis vector if we define #j, = bj for the new basis vector set <bk =

[w[t], . . . , w[t - k]] for some k < k. This new basis vector can then be used for identifi-

cation of a nonlinear model with low memory. Conceptually, this is equivalent to treating

w[t] as an additional input to a new nonlinear model

Q(V_[t],W [t],U[t])v[t] =p(V_[t],W[t],U[t])

as depicted in Figure 7-1.

Figure 7-1: Block diagram illustrating one approach
selection technique.

to implementing the reduced basis

Since the identification of linear systems is cheap, even when m and k are large, this

approach can be very useful for reducing the complexity of the final nonlinear model by au-

tomatically selecting important combinations of basis vectors. Numerical examples using

this reduced basis identification approach are presented in Section 7.7.5.
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7.6 Implementation

The optimization problem (7.18) derived in Section 7.3.2, along with global stability con-

straint (7.13), can be expressed generically as the following

min rt subject to (7.28)
r,F,G,H

t

rt + 2 0 't(A) + 2 T t(, () -- |2 + ht_ 1 (A_) - ht(A+) > 0, V t, A, (7.28a)

h(V_, A_) - h(V+, A+) + 26 0F (V, U)A - |(|2

+ 2(TGv(y, vo)6o + 2TG (y, vo) ;> 0, V y, V, U, A, . (7.28b)

In this section we describe how to formulate (7.28) as a semidefinite program (SDP) when

using a polynomial basis, and how to solve the resulting SDP using freely available soft-

ware.

7.6.1 Implementation as a Semidefinite Program

The benefit of formulating (7.28) as an SDP is that it can be solved efficiently using readily

available software routines. Roughly speaking, a semidefinite program is one whose ob-

jective function is linear, and whose constraints can be expressed as requiring matrices to

be positive semidefinite (PSD).

By construction, constraint (7.28a) is a quadratic form in the variable ( [1, A T, T]T,

and can therefore be expressed as

r(y, V, U) + 26TP(V, U, A) + 2 (TO(y, v, o, ) - 2

+ h(V_, A_) - h(V+, A+) = (TM(U, V, y)( (7.29)

for some symmetric matrix M. Thus, global positivity of (7.29) is satisfied if the matrix

M is PSD. In (7.28) we are not requiring M(U, V, y) to be PSD for all U, V, y, but rather

only when evaluated at the given training data samples. That is, Mt = M(U[t], V[t], Q[t])
is PSD for all t.
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Algorithm 7 Implementation as SDP using POT
1: Given symbolic functions F, G, H, r defined as in (7.19) and training data set X
2: Initialize optimization problem pr

pr=ms sprog

3: Assign free variables
pr.free={aF G H R

4: for t=1:T do
5: Compute Mt = M(U[t], V/[t], Q[t]) as defined in (7.29)
6: Assign local robustness constraint (7.28a)

pr . PSD=Mt

7: end for
8: Assign global stability constraint (7.28b)

pr. SOS= (7.28b)
9: Call solver to minimize Et rt subject to given constraints

pr . min=Et rt

10: Output is coefficients {aF aG aH aR}

On the other hand, the global stability constraint (7.28b) must be satisfied globally

for all U, V, y. This can be achieved by the SOS relaxation described in Section 7.4.1,

which transforms constraint (7.28b) into a single semidefinite matrix constraint. While

it is easy to construct the M(U, V, y) matrix explicitly, and possible to construct S from

Section 7.4.1 by hand, these tasks can be performed automatically by the freely available

software POT [57], when given symbolic constraints in the form of (7.28a) and (7.28b).

In Algorithm 7 we outline how optimization problem (7.28) can be defined and solved

in Matlab using the freely available software POT [57] and SeDuMi [91]. POT is a 'parser',

which takes as input a high-level symbolic description of the optimization problem and re-

formulates it in such a manner that it can be solved by an optimization 'solver' (in this

case, SeDuMi). For additional details and a sample implementation of this approach,

see [57, 12].

7.6.2 The Complete Algorithm

Our entire identification process is summarized in Algorithm 8. The first step in identi-

fying a model in the form of (7.24) is to select the number of states (N), the number of

state delays (m), the number of input delays (k), the maximum polynomial degree for Q
(pQ), the maximum polynomial degree for p (pp), and the maximum polynomial degree for

194



storage function matrix H (PH). These parameters generally depend on the behavior of the

system being modeled, and can be selected either by intuition (based on the system's ex-

pected behavior) or through experiment. One approach that we have found to be effective

is described below in Section 7.3.5. For CT models, it is often possible to obtain derivatives

of states and outputs for step 7 directly from the simulator, as they are typically required

internally for simulation. For systems with a large delay between input and output, the

reduced basis technique described in Section 7.5.3 should be used at step 10 to reduce the

required number of basis functions. Typically we have found that selecting <D as containing

the past 15 - 20 input samples can produce good results for such systems. The basis set <D

for the final model can then be selected at step 11 as a small number of delayed samples

of the true input u and the delayed input w, as well as delays of the state and output. Fi-

nally, when considering only local stability for the identified model, it is only necessary to

enforce first (7.28a) constraint in optimization problem (7.28).

7.6.3 Selecting the Model Parameters

For a given set of parameters N, m, k, pg, pp, PH, as defined in 7.6.2, let T = {N, m, k, pQ, p,}

denote the set of all possible models with these parameters, and let K denote the set of all

storage functions of maximum polynomial degree PH. The goal of the identification pro-

cedure is to find a stable model in T that accurately fits the training data x and is certified

stable by a storage function in X.

It is difficult to accurately determine T and H a priori, but we have found the following

procedure to be quite effective. First, we select a set T and attempt to fit a model with no

stability constraints. This can be achieved, for instance, by using a least-squares solve to

minimize equation error (which is computationally cheap). Varying T through experiment,

it is possible to identify a model that accurately fits x.

Next, it is necessary to determine whether there exists a stable model in T that is cer-

tifiable by K. To determine this, we select PH and solve (7.28) using Algorithm 8 while

first enforcing only local stability constraint (7.28a) in Algorithm 7. If no accurate locally

stable model is found, then PH should be increased. If, for large PH, no accurate stable
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Algorithm 8 SOS Identification of Robust Compact Models

1: Generate training data sample set X = U [t], V [t], [t] } from simulation or measure-
ment of the original system

2: Select the model parameters m, k, N, p corresponding to output order, input order,
number of states, and maximum polynomial degree respectively

3: if State data is available and N is large then
4: Use SVD to identify low-order basis for states, E E RNxN, N < N, as described in

Section 7.5.2
5: Project data samples: i[t] <-- 8Tf[t]
6: end if
7: Compute delays (for DT) or derivatives (for CT) from data X based on m, k
8: Select nominal set of basis functions 1 [0,k]
9: if Large delay between input and output then

10: Identify linear model defining coefficients #5,. of new basis functions # defined
in (7.27), as described in Section 7.5.3

11: @ <- [ 4[ok]l fork < k.

12: else
13: (D <-- [o,k]
14: end if
15: Use Algorithm 7 to solve SOS problem (7.28) for coefficients ai
16: Define F, G, H, r, as in (7.19), resulting in the model

Q(V_[It], U[t])v [t] = p(V_[t], U[t]), gq(v[t])y[t] = g,(v[t])

certified stable by Theorem 7.3.1 for matrix function H, and with Et rt serving as a
measure of the model's accuracy on the training data.

model is found, then T should be increased (i.e. increase any of N, m, k, p).

Once an accurate locally stable model is found, then (7.28) should be solved using

Algorithm 8, this time also enforcing global stability constraint (7.28b). If no accurate

globally stable model is found, then pH and T should be increased, as described above. If

stability constraint (7.28b) is not enforced, then the robust equation error is not guaranteed

to be an upper bound for the linearized output error, meaning that simulation of the resulting

model, even over the training data set, could lead to inaccurate results.

7.6.4 Constructing Basis Functions

For a given set of parameters N, m, k, pQ, pp, pH, the basis functions for F, G and H can

be constructed as defined in (7.22), where pi + pj + Pk < p, Ti < m, and ry < k. In
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general, pQ should be an even integer to ensure that matrix function Q is always invertible.

For the robustness measure r, we typically use a piecewise-constant function, resulting in

one unknown parameter for each training data point.

7.7 Examples

7.7.1 Testing Procedure

In this section we present numerical results for several examples of nonlinear systems mod-

eled using our proposed approach. The identified models include a CT model, a DT pa-

rameterized model, and a DT SIMO model. For each example, training data was generated

from simulations of the full system in response to a series of periodic inputs, using Spectre

circuit simulator for the circuit examples and a MATLAB simulator for the MEMS exam-

ple. The training inputs must be carefully chosen in order to excite all possible behavior of

interest in the system, while avoiding driving the system to regions of the space that will

not be excited by typical inputs of interest. Attempting to model dynamics not encountered

by testing inputs could greatly increase the complexity of the identified model. In order to

maximize robustness while minimizing complexity, in our experience, the best approach

is to train with inputs having the same form (e.g. sum of sinusoids) as the inputs to be

used for testing. In this case the amplitudes, frequencies, and phases of the training inputs

may be varied over a wide range containing all possible values to be used for testing. For

all examples the models are identified in a polynomial basis with a rational description, as

described in Section 7.4.

All of the model generation and simulation times reported were obtained using a desk-

top PC with a dual core 3.33GHz processor and 4GB of RAM. The SOS problem (7.28)

was solved using the Polynomial Optimization Toolbox [57], which uses SeDuMi [91].

7.7.2 MEM Device

In our first example we identify a CT model of a MEMS device (described in Section 5.3.2

to show that our preliminary CT approach from Section 7.3.3 and projection approach from
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Section 7.5.2 are feasible.

For this example the training data was generated from inputs of the form

u(t) = [A1 sin(wit) + A 2 sin(w2t) + A3 sin(w3 t)]2 , (7.30)

where Ai vary between 4 Volts and 7 Volts, and fi = - vary between 1.5kHz and 240kHz.

From this data, we identified a 4th order nonlinear CT model suitable for usage in any ODE

integrator and in particular a low level circuit simulator

Q2 (V, u)' = p7 (V, u), y = CTv

where v E R4, Q2 c R4x4 is a matrix of second order polynomials, p7 c R 4 is a vec-

tor of seventh order polynomials, and C C R4 is a constant vector, all identified using

the projection technique described in Section 7.5.2 and the reduced basis technique from

section 7.5.3, resulting in only 52 parameters in the reduced model. For this model the

identification procedure took less than two minutes.

The identified model was tested on an input of the form (7.30) with A, and fi different

from the training set, and the resulting output is compared to the output of the full nonlinear

system in Figure 7-2.

To make the comparison fair, both full and reduced models were simulated using the

same MATLAB built in ODE solver. Simulation of the full 400th order nonlinear system

for this example required approximately 400 seconds to integrate for 5, 000 time points,

while the reduced model was simulated in response to the same input for the same number

of time steps in just 10 seconds, resulting in a speedup of about 40 times.

7.7.3 Operational Amplifier

In our second example we identify a parameterized model, using the approach described

in Section 7.3.5, for a two-stage operational amplifier. The opamp, shown in Fig. 7-3,

is designed with a 90nm predictive model and nominal reference current as 10AA. It has

a open-loop DC gain of 260 and unity-gain bandwidth 125MHz. For the parameterized
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Figure 7-2: Output of order 400 original system (solid line) and our order 4 model (stars)
tested on a periodic input of amplitude and frequency different from the training inputs.

model, the reference current is considered as a circuit parameter and varies from 7puA to

19tA.

Training data was generated using inputs of the form

5

u(t) = inp-inn = 1 Ai sin(27rfit + #j),

where Ai are chosen randomly, but large enough to saturate the opamp, fi are randomly

sampled between DC to unity-gain frequency, and #i are randomly sampled in [00, 360].

The resulting model was a parameterized input-output model of the form

y[t] = p(y[t - 1], u[t], u[t - 1], z)

q(y[t - ],u[t], U[t - ]) '
(7.32)

where p is cubic in u, y and quadratic in z, q is a fourth order polynomial of u, y, and the

model contains 97 terms.

The identified model was tested on 140 randomly generated inputs of the form (7.31)
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Figure 7-3: Schematic of operational amplifier.

with parameter values randomly selected between 7tA and 19puA. Figure 7-4 plots the

model output and output error, defined as

e[t] - x 100 (7.33)
maxt lY7

for one of these testing signals, while Figure 7-5 plots the maximum error over the entire

signal for each testing set, defined as

em = max e[t] (7.34)

where y[t] is the output of our model at time t, Q[t] is the output of Spectre at time t, and Y

is the full waveform of Spectre outputs over one period.

7.7.4 Low Noise Amplifier

In our third example we identify a SIMO model of a single ended Low Noise Amplifier

(LNA) designed in 0.5pm CMOS technology [44], shown in Figure 7-6. The designed

LNA has a gain of approximately 13dB centered around 1.5GHz.

For this example we wish to capture the nonlinear behavior of both the amplifier output
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Figure 7-4: Time-domain output and error, as defined in (7.33), for our identified model in
response to a random input of the form (7.31) and random parameter value between 7pA
and 19pA.

V,, and the supply current in response to a modulated input signal with an added jamming

signal. The overall input to the system is

VIN = Aj cos(27rft) + Acos(27rnfot) cos(27rft), (7.35)
n=0,1,3,5

with carrier frequency fc = 1.5GHz, sideband frequency fo = 5MHz, and jamming fre-

quency fj = 1GHz. The system was trained by varying the amplitude A between 15mV

and 85mV, and the jamming amplitude between OmV and 250mV.

The identified model in this example is a DT multiple-input multiple-output model,

usable for instance by a Verilog-A or higher level simulator, described by the rational model

Q2 (y[t - 1], U[t])y[t] = P3(y[t - 1], U[t]) (7.36)

where U[t] = [u[t], u[t - 1], u[t - 2]], Q2 E R2x2 is a matrix of second order polynomials,

P3 E R2x1 is a vector of third order polynomials, y E R2 x1, and u E R2
x

1. The rational
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Figure 7-5: Maximum output error, as defined in (7.34), of our model tested on 140 random
input signals (7.31) and parameter values ranging from 7puA to 19piA.

nonlinearity is sufficient to capture the highly nonlinear behavior resulting from the large

jamming signal, and the total number of parameters describing the identified model is 102.

The entire identification procedure took less than two minutes, and the resulting model can

be simulated in Matlab for 15, 000 time steps in under three seconds.

To test the model, it was simulated over a full period with six pairs of amplitudes, A and

Ay, differing from the training data amplitudes, producing outputs with approximately 4%

maximum error from the outputs of the original circuit. Figure 7-7 compares the two time

domain outputs, over a small portion of the period, of the model identified by our procedure

(dots) with the outputs of the full original circuit (solid lines) over a small time interval in

response to an input with A = 50mV and A3 = 150mV, while Figure 7-8 compares the

output percent error over the full period, as defined in (7.33)

7.7.5 Distributed Power Amplifier

The final example considered is a distributed power amplifier designed in 90nm CMOS

technology, with a distributed architecture and transformer based power combiner as pro-

posed in [40]. The amplifier delivers 24dBm power with a gain of 6dB at 5.8GHz. A
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Figure 7-6: Schematic of Low Noise Amplifier (LNA) [44].

simplified schematic of the amplifier is shown in Figure 7-9. Transistors are biased to

operate in differential Class-B configuration to improve efficiency, however at the cost of

linearity. Nonlinearities also arise because of parasitic inductance introduced by supply

and ground bond wires.

Power combining is achieved by using 1 : 1 transformers, as shown in Figure 7-9.

Losses in primary and secondary inductors are modeled by using quality factor of 12.5

and coupling coefficient of 0.7, based on which optimum values of inductances were se-

lected as Lp=Ls= 157nH [40]. Similarly, the following parameters were selected based

on optimized performance of the amplifier at 5.8GHz [40]: Vdd= 1.OV, W/L of transis-

tors = 1.2mm/90nm, CIN = 2.6pF, COUT= 610fF, RL = 50Q, LVdd = LGND = lnH,

CB = 20pF, Rg = 18Q.

For this example, training data samples were generated in response to periodic inputs

of the form

VIN = VDC + A cos(27Tnfot) cos(27fct), (7.37)
n=0,1,3,5

with carrier frequency fc = 5.8GHz, fo E {25, 50}MHz, and amplitude A E {30, 90}mV.

The simulation was performed with Spectre, whose model for the power amplifier con-
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Figure 7-7: Time domain outputs, over a small portion of the period, of the original LNA
circuit (solid line) and the compact model identified by our procedure (dots) in response to
an input signal different from the training signals.

tained 284 equations, 95 internal variables, and 8 transistors modeled with 90nm predictive

technology models.

The specific parameter pairs (A, fo) used for training and testing are shown in Figure 7-

11, where a plus indicates a training input and a dot indicates a testing input not used for

training.

The identification procedure, using the reduced basis technique from section 7.5.3,

identified a DT input-output model

y[t] =
P3 (y[t - 1], u[t], u[t - 1], w[t], w[t - 1])

q4 (u[t], u[t - 1], w[t], w[t - 1])
(7.38)

where

w[t] = Zbju[t - j]
j=0

is a linear transformation of the input u[t] with coefficients bj determined by first fitting a
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Figure 7-8: Output errors, as defined in (7.33), of our compact model over the full period
of the signal from Figure 7-7.

linear system as described in Section 7.5.3. Here p3 indicates a third order polynomial, q4

represents a fourth order polynomial, and the total number of parameters in the model is

106. The entire identification procedure took approximately 12 minutes.

The identified model was able to reproduce the training data with less than 4% max-

imum error in the time-domain, and was able to be simulated for 10, 000 time steps in

under 2 seconds. When tested with non-training inputs of the form (7.37) with parameters

A E {10, 30, 60, 90}mV and fo E {10, 25, 40, 50}MHz, our model reproduces the outputs

of the original circuit with an average error of less than 1% for each testing input. Fig-

ure 7-12 compares the output of the identified model with the output of the original power

amplifier circuit in response to a testing input with A = 60mV and fo = 10MHz, both

differing from the training data set. For clarity, the top plot in Figure 7-12 shows a small

portion of the output signals, while the bottom plot shows the model output error, as defined

in (7.33), over a full period of the signal. To verify that the model is capturing nonlinear

effects, Figure 7-13 compares the magnitude of the Fourier coefficients of an FFT of the

output signal in Figure 7-12.
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Figure 7-9: Transformer-based power amplifier with distributed architecture [40].
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Figure 7-10: Input spectrum for distributed amplifier.

To show that our model, trained only with amplitude-modulated sinusoids, is capable

of capturing the circuit behavior in response to also different classes of inputs, Figure 7-14

plots the constellation diagram for the output from our model in response to a 16-QAM

input signal, which is a non-smooth input.

A Volterra model with approximately the same number of parameters identified with

our procedure for this example produced over three times the average error on the training

data set compared to model (7.38). With our current testing setup, it was not possible to

obtain a pure Volterra model that is as accurate as model (7.36) due to memory constraints

in our computer (4GB). This is a result of the large number of parameters that would be

required in the Volterra model of high order and with many delays.

In addition to matching input-output behavior, it is important that our identified models

can also accurately predict the performance curves of the circuits being modeled. The top

plot in Figure 7-15 plots output power versus input power (compression curve) at 5.8GHz

for the original circuit (solid line) and our identified model (circles), while the bottom plot

show the drain efficiency (defined as the ratio of output RF power to input DC power)
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Figure 7-11: Grid of amplitude, A, and modulating frequency, fo, values defining in-
puts (7.37) used for training (pluses) and validating (dots) the power amplifier compact
model.

versus output power for the original circuit (solid line) and our identified model (circles),

also at 5.8GHz. This model was identified by training with sinusoids at 5.8GHz with

amplitudes A E [100, 400, 800, 1200]mV, and was tested at 12 amplitudes evenly spaced

between 1O0mV and 1200mV. We want to emphasize that these performance curves were

obtained from simulation of our identified dynamical models, and not by simply fitting

performance curves.

7.7.6 Comparison to Existing SYSID Techniques

Finally, we compare our proposed approach to several existing SYSID techniques from

literature. Traditional identification techniques suffer from several shortcomings. Some

techniques, such as the Hammerstein-Wiener (H-W) model [50] (a cascade connection of

an LTI system between two memoryless nonlinearities), forces a specific block-structure

on the model which restricts the types of systems that can be accurately modeled. Volterra

models, such as 7.26, do not force a specific block structure, but require many parameters to

represent complex systems due to a lack of feedback and polynomial nonlinearities. More

general nonlinear models, such as nonlinear autoregressive model with exogenous inputs
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Figure 7-12: (a): Time domain output of the original circuit (solid line) and the compact
model identified by our procedure (dots) in response to a testing input with amplitude and
frequency different from the training inputs. (b): Output error et, as defined in (7.33), of
our model over the full signal from (a)

(NLARX) [50], have the more general structure

y~t] = f (ylt - 1], . .. , y[t - m], U[t], ... ,u[t -k]),

which is similar to the DT models identified by our proposed procedure, and do incorporate

feedback, but they typically do not explicitly enforce stability during identification. For

both the H-W and NLARX models, the nonlinearities are typically identified as a linear

combination of nonlinear basis functions.

The same training data sets from section 7.7.5 were used to identify models of the dis-

tributed power amplifier in the form of a H-W model and a NLARX model. These models

were generated using the MATLAB system identification toolbox, which uses techniques

described in [50]. In general, both types of models were found to be less accurate than our

proposed approach, with the H-W models producing average errors between 5% and 10%,

and the NLARX models producing average errors between 3% and 5%, compared to aver-
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Figure 7-13: Magnitude of the frequency domain coefficients of an FFT of the time domain
output of the original circuit (solid line) and our compact model (circles) in response to a
testing input with frequency and amplitude different from the training inputs.

age errors of 1% from model (7.38) identified by our technique. Additionally, the NLARX

models were often unstable, and as a result, the testing inputs often produced unbounded

outputs. Figure 7-16 plots the output response of our compact model (circles), a H-W

model (pluses), and a NLARX model (stars), all generated from the four training inputs

from Section 7.7.5, compared to the output of the original circuit (solid line) in response

to one testing input with frequency and amplitude different from the training data. For this

example all three identified models contain approximately the same number of parameters,

and the nonlinearities in both the HW and NLARX models were described by sigmoidnet

functions.
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Figure 7-15: (top): Compression curve, plotting input power versus output power, at
5.8GHz for the original circuit (solid line) and our compact model (circles). (bottom):
Drain efficiency versus output power at 5.8GHz for the original circuit (solid line) and our
compact model (circles).
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Figure 7-16: Outputs of our compact model (circles), a Hammerstein-Wiener (H-W) model
(pluses), and a NLARX model (stars) all generated from the four training inputs used in
Section 7.7.5, compared to the output of the original circuit (solid line) in response to a
training input with fo = 10MHz and A = 60mV.
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Chapter 8

Conclusion

The ability to automatically generate compact models of analog system blocks could greatly

facilitate the design and optimization of such systems. Due to the presence of nonlinear

and parasitic components the numerical analysis of complex analog and RF circuits is of-

ten prohibitively expensive. In this thesis we have presented several new model reduction

techniques for linear and nonlinear systems. Our approaches have specifically focused on

preserving stability and passivity in the reduced models. Stability and passivity are crucial

features of a model if it is to be used for time-domain simulation, otherwise the resulting

simulations could produce unrealistic results. Additionally, we have focused on preserving

parameter dependence of the original system so that the reduced models can be used for

design optimization.

For linear systems, we have presented projection techniques for creating stable and

passive reduced models from originally indefinite and unstable large models, which is not

possible using existing techniques. For highly nonlinear systems we have presented projec-

tion approaches capable of preserving parameter dependence in the reduced model and also

techniques for efficiently stabilizing the nonlinear reduced models. Instability in reduced

models is an unavoidable problem for most other nonlinear reduction techniques. Lastly,

since traditional projection reduction techniques are in some cases prohibitive due to their

requirement of precise knowledge of the large dynamical system equations, we presented

a system identification approach, for both linear and nonlinear systems, capable of gener-

ating parameterized and stable compact models based only on time-domain data from the
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original system.

As a next step towards automatic design optimization, the model reduction techniques

developed in this thesis can be used to generate parameterized models of entire systems,

such as an RF receiver chain. The resulting parameterized compact model can be efficiently

used in an optimization routine in order to obtain optimized system-level designs.
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Appendix A

Modeling and Simulation Tools

This appendix outlines briefly some of the modeling and simulation tools developed dur-

ing the course of this thesis work. These tools include a basic circuit simulator used for

generating dynamical system equations, an implementation of our SYSID approach from

Chapter 7, and Matlab code for modeling the MEMS device nonlinear system example.

A.1 SMORES: A Matlab tool for Simulation and Model

Order Reduction of Electrical Systems

SMORES (Simulation and Model Order Reduction for Electrical Systems) is a Matlab-

based circuit simulator integrated with model reduction, which is freely available online

at [11]. By giving users access to the dynamical system equations describing the circuits

being simulated, we hope this software will also facilitate the development of new model

reduction techniques and provide some standard benchmark examples to allow easier com-

parison between methods. We wish to emphasize that there are no novel contributions to

numerical simulation in this tool and it is not intended to be a commercial caliber simulator,

but rather an open source prototyping tool to enable the testing and development of new

modeling and simulation techniques.

SMORES takes as input a spice-like netlist describing the circuit, such as the exam-

ple shown in Table A. 1, which specifies transient simulation of a simple inverter circuit.
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SMORES can perform several types of analysis (e.g. transient or steady-state) as well as

*opamp.ckt
.t 0 4e-5 5e-8

.n 20 le-8 le-8 0

Vsl 2 9 2.5e5 0 0 5e-3
Vs2 9 10 3.75e5 0 0 5e-3
Vs3 10 1 8.75e5 0 0 5e-3
Vdc 1 0 250e-3
Vdd 3 0 1
CO 5 4 100e-15
10 6 0 10e-6
P12 5 2 7 3 1 712e-9 128e-9 0 0 le-4
P11 8 1 7 3 1 712e-9 128e-9 0 0 le-4
P22 4 6 3 3 1 460e-9 180e-9 0 0 le-4
P14 7 6 3 3 1 460e-9 180e-9 0 0 le-4
P20 6 6 3 3 1 460e-9 180e-9 0 0 le-4
N21 4 5 0 0 1 3.495e-6 100e-9 0 0 le-4
N10 5 8 0 0 1 781e-9 125e-9 0 0 le-4
N9 8 8 0 0 1 781e-9 125e-9 0 0 le-4

Table A. 1: Sample netlist for an opamp.

several types of model order reduction. For example, invoking SMORES on the netlist in

Table A. 1, which specifies transient analysis for an opamp, will solve for the node voltages

in the circuit, shown in Figure A-1. Additionally, SMORES allows the user to access the

dynamical system equations describing the circuit. In this simulator, equation formulation

is based on nodal analysis and uses a stamping procedure to translate device-level netlist

descriptions of a circuit into a dynamical system of the form

8q(x) axa +C + f(x) + 9x = Buj + Bu. (A.1)at at

Here x contains the node voltages and inductor currents, q contains charges from nonlinear

elements, C contains linear capacitors and inductors, f contains currents from nonlinear

elements, g contains linear resistors and adjacency matrix for inductors, Bi is the input

matrix for current sources, B, is the input matrix for voltage sources, ui is a vector of

current inputs, and u, is a vector of voltage inputs. We have specifically separated out the

linear elements in the matrices C and g to make numerical simulation more efficient. A
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Figure A-1: Transient simulation response of opamp circuit described by netlist in Ta-
ble A. 1.

detailed list of available device models, analysis types, and netlist syntax can be found in

the software documentation [11]. It is also possible for users to define new device models

to be used by the simulator.

To facilitate testing new model reduction techniques, our simulator is capable of return-

ing to the user linearizations of the nonlinear system at points along the solution trajectory,

and Krylov vectors generated at specified frequency expansion points for each linear model.

A linearization of nonlinear system (A. 1) at state Xk has the form

Ek. = Akx + Kk + Bu + BU,,

where the Jacobian matrices Ek and Ak are defined as

aq af
Ek = +C, Ak= -, K=gx-f(x ).

8x Xk 9x x-

With these capabilities our software may serve as a useful prototyping tool for testing

nonlinear model reduction techniques, and also provides easy access to nonlinear system

examples that may be used as benchmarks for comparisons between model reduction meth-

ods.
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A.2 STINS: A Matlab tool for Stable Identification of Non-

linear systems via Semidefinite programming

STINS (Stable Identification of Nonlinear systems via Semidefinite programming) is a

Matlab implementation of our SYSID approach from chapter 7 for identifying stable discrete-

time input-output models, and is freely available online at [12]. In STINS, a user provides

as input to the software training data input-output signal pairs and a set of parameters de-

scribing a rational model to be identified, and the software returns a set of coefficients

defining a stable model described by the previously defined parameters.

For example, consider the two pairs of input-output signals shown in Figure A-2. Using

Input Training Data Output Training Data
3 0.5

2 -0

-0.5

0 CL0.

0 -1 .-

-1

-2 -1.5

-3 -2
0 200 400 600 0 200 400 600

Discrete time index Discrete time index

Figure A-2: Sample input and output pairs used as training data for model identification.

these signals as training data and selecting model parameters describing a model of the form

Yt _ P3(Yt-1, ut-i), A.2)
q2(yt-1, ut-1),

where P3 (') indicates a third order polynomial and q2 (.) indicates a second order polyno-

mial, STINS solves for the coefficients describing the functions P3(-) and q2 (.) such that

system (A.2) is stable and optimally fits the given training data. STINS also allows for effi-

cient simulation of the identified model (A.2) in response to testing input signals differing

from the training data. One such result is shown in Figure A-3.

A detailed explanation and derivation of the algorithm in STINS is found in Chapter 7,
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Figure A-3: Output of model identified using training data in Figure A-2 in response to an
input differing from the training data.

and detailed documentation for using the software can be found online at [12].

A.3 Matlab Code for Micromachined Switch MEMS Ex-

ample

Lastly, we have made freely available the Matlab functions necessary for modeling the

nonlinear MEMS device example considered throughout this thesis (see e.g. section 5.3.2).

The dynamical system describing the MEMS device's behavior has the form

J= f (x) + Bu,

where a detailed description of how the function f(x) is constructed was previously pre-

sented in [77]. In order to simulate this dynamical system numerically it is necessary to be

able to evaluate the vector field function f(x) and the Jacobian matrix J(x) = af /x at any

given state vector x. To this end, we have provided a function BeamFunc .m that evalu-

ates the function f (x), a function Mems Ja c . m that evaluates the Jacobian J(x), a function

Mems Const sAndOpe rat or s .m that defines a set of parameters describing the geome-

try and physical properties of the MEMS device, and also a short script Mems T e s t .m that

illustrates how to invoke the previous three functions [10]. With these Matlab functions

219

Testing Input Output for Testing Data



the nonlinear dynamical system describing the MEMS device can be simulated using any

standard ODE solver.
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