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Abstract: Reindeer husbandry is essential for the livelihood and culture of indigenous people in the 

Arctic. Parts of the herding areas are also used as pastures for farm animals, facilitating potential 

transmission of viruses between species. Following the Covid-19 pandemic, viruses circulating in 

the wild are receiving increased attention, since they might pose a potential threat to human health. 

Climate change will influence the prevalence of infectious diseases of both humans and animals. 

The aim of this study was to detect known and previously unknown viruses in Eurasian tundra rein-

deer. In total, 623 nasal and 477 rectal swab samples were collected from reindeer herds in Fen-

noscandia, Iceland, and Eastern Russia during 2016–2019. Next-generation sequencing analysis and 

BLAST-homology searches indicated the presence of viruses of domesticated and wild animals, such 

as bovine viral diarrhea virus, bovine papillomavirus, alcephaline herpesvirus 1 and 2, deer mastade-

novirus B, bovine rotavirus, and roe deer picobirnavirus. Several viral species previously found in 

reindeer and some novel species were detected, although the clinical relevance of these viruses in rein-

deer is largely unknown. These results indicate that it should be possible to find emerging viruses of 

relevance for both human and animal health using reindeer as a sentinel species. 

Keywords: Rangifer tarandus; NGS; virus screening; orthobunyavirus; arenavirus; flavivirus;  

herpesvirus; picornavirus 

 

1. Introduction 

Climate change and anthropogenic activities (e.g., altered land use, agricultural prac-

tices, changes in human populations) are major drivers of the emergence and re-emer-

gence of infectious diseases [1]. Climate change is predicted to have a greater impact in 

Arctic and sub-Arctic regions than in other parts of the world [2,3]. The threat from new 

and/or emerging infectious diseases may play a critical role for the survival of reindeer 

herding now and in the future. Free-ranging reindeer have numerous opportunities to 

exchange microorganisms with wildlife animals, but they also have regular contacts with 

humans. Thus, reindeer may be regarded as a sentinel species for potential pathogen mi-

croorganisms circulating in natural ecosystems, which may be relevant for livestock and 

human health. Better knowledge of circulating viruses is also important to avoid and 
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understand emerging infectious diseases and pandemics, and also a central part of the 

One Health concept concerning zoonotic infectious diseases circulating in the wild. 

Zoonoses are of special importance in the context of climate change. It has been esti-

mated that more than 70% of current human infections are zoonoses [4]. Thus, both animal 

and human health will most likely be affected by changes in the distribution and virulence 

of zoonotic pathogens caused by climate change. It is likely that only a small proportion 

of the viruses circulating in nature have been detected and investigated. Improved 

knowledge within this research area is thus important for public health, as exemplified 

during the outbreak and course of the Covid-19 pandemic. 

Reindeer husbandry is of great importance in northern Fennoscandia (Finland, Nor-

way, Sweden) and in the Russian Federation, both for livelihoods and for cultural values. 

In wintertime, i.e., after slaughter and before calving, there are around 600,000 reindeer in 

Fennoscandia and 2.5 million in the Russian Federation. There are populations of wild 

Eurasian tundra reindeer in Iceland and Norway, and some smaller populations of wild 

forest reindeer (R. t. fennicus) in Finland and western Russia. The wild reindeer population 

in Iceland originates from 35 semi-domesticated reindeer imported from Finnmark, Nor-

way, in 1787 [5]. At present, the Icelandic summer population consists of approximately 

6500 animals, which are kept at low density by controlled hunting. 

Under current reindeer herding regimes, the number of diseases and clinical cases 

detected are restricted under normal conditions. Semi-domesticated reindeer are 

free-ranging for most of the year, utilizing remote forest and mountain pastures, usually 

with little close contact and handling by people. Thus, reduced reproductive success or 

production, disease cases in individual animals and even small disease outbreaks may 

occur unobserved and veterinary attention and clinical investigations are not common, in 

contrast to the situation for livestock. 

For cervids, including semi-domesticated reindeer, the most apparent impact of cli-

mate change may be increased frequency of difficult grazing conditions in wintertime [6]. 

The predicted more frequent rain-on-snow events will create multiple layers of hard ice, 

making lichen and other winter forage unavailable for reindeer, and causing starvation 

and emaciation. Future loss and fragmentation of pastures and habitats due to various 

human activities (e.g., exploitation in the form of increased wind power, forestry, and 

mining) and high predator pressure will make it difficult for animals and reindeer herders 

to mitigate the effects of climate change [7]. 

Infectious diseases directly or indirectly associated with climate change may become 

an increasing threat. When a new infectious disease is introduced to an immunologically 

naïve population, the effects may be serious. In the Fennoscandian countries and the Rus-

sian Federation, herding systems and levels of pastoralism vary, and the occurrence and 

epidemiology of certain diseases can also be expected to vary. When weather extremes 

hinder the ability of reindeer to smell forage under the ice and reach it through digging, 

to avoid starvation reindeer are fed supplementary fodder in the field or as full mainte-

nance in enclosures. This mitigation strategy saves reindeer lives, but also leads to stress, 

increased animal density, challenging hygiene conditions, and sometimes lack of clean 

snow or water for drinking, all of which increase the risk of infectious disease transmis-

sion. Thus, opportunistic infections might become a more frequent threat. Infectious dis-

eases of the mucosa of the eyes and mouth are increasingly being observed [8,9]. Arctic 

wildlife and indigenous peoples’ health are especially at risk due to their dependence on 

subsistence food resources and the fact that climate change will have a greater impact in 

the area [10]. Therefore, a transdisciplinary One Health approach in northern regions is a 

must, i.e., better management of human health, animal health and ecosystem health of this 

and other remote regions, combining traditional and scientific experience and knowledge.  
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Table 1. Virus infections of known or potential clinical relevance identified to circulate in Eurasian tundra reindeer (Ran-

gifer tarandus tarandus). 

Virus Information References 

Flaviviridae 

Serological studies have reported pestivirus antibodies in reindeer from Finland, Norway, Sweden, 

and Iceland, as well as in caribou from Canada. The clinical relevance of pestivirus infections in 

reindeer is unknown. It may, however, be reasonable to assume that also reindeer may be persistently 

infected, with abortion, stillbirth, and the birth of persistently virus shedding offspring (i.e., 

persistently infected animals), as seen for many other host species. West Nile virus has also been 

demonstrated to infect reindeer, causing clinical disease. 

[11–15] 

Herpesviridae 

Alphaherpesviri

nae 

Cervid herpesvirus 2 (CvHV2) is enzootic in the Fennoscandian reindeer populations and antibodies 

against alphaherpesvirus have also been detected in caribou in Alaska (USA) and Canada. CvHV2 

has been shown to act as the primary cause of infectious keratoconjunctivitis in reindeer during 

outbreaks and after experimental ocular inoculation, although many types of bacteria may contribute 

to the disease. CvHV2 may also cause respiratory infections in reindeer, and possibly abortion and 

weak-borne calves. 

[16–22] 

Herpesviridae 

Gammaherpesvi

rinae 

Genus 

Macavirus 

The subfamily Gammaherpesvirinae contains several closely related virus species that are associated 

with malignant catarrhal fever (MCF). Sheep and goats are healthy carriers of ovine herpesvirus 2 and 

caprine herpesvirus 2, respectively, but may transmit the virus to susceptible domestic and wild 

ruminants. One clinical case of MCF in reindeer has been reported. The recorded symptoms were hair 

loss and thickening of the skin, with crusts in the axillary region, distal parts of the feet, and on the 

muzzle. Further, the animal had swollen eyelids, opaque cornea and fibrinopurulent eye discharge. 

[23–25] 

Papillomaviridae 

Papillomaviruses cause mostly benign processes in the skin (papillomas, fibropapillomas or warts) or 

mucous membranes (condylomas) in many animal species, including reindeer. The clinical outcome 

may be serious for the individual. Papilloma viruses are considered species-specific, but several virus 

species may circulate in the same host species. The prevalence of papilloma viruses in reindeer is 

scarce. Generalized papillomatosis has been reported, affecting the skin in coalescing warts all over 

the body. 

[25–27] 

Poxviridae 

Genus 

Parapoxvirus 

Orf virus (ORFV) and pseudocowpoxvirus (PCPV) have small ruminants and cattle as their main 

reservoirs. ORFV cause contagious ecthyma in and around the mouth in sheep and goats, and a 

similar disease has been reported in reindeer in Sweden, Finland, and Norway. Early outbreaks in 

Finland were caused by ORFV, whereas later outbreaks, from 1999–2000, have been associated with 

PCPV, with a milder clinical appearance as compared to ORFV. 

[25,28–31] 

Another example of a new threat is expansion of the geographical distribution of arthro-

pod vectors and host animals, such as roe deer and badgers, due to climate change [32,33]. 

Some virus infections of known or potential clinical relevance are known to circulate 

in reindeer (Table 1). Among other relevant viruses, exposure of reindeer or caribou (wild, 

semi-domesticated, or captive) has been indicated for rabies virus (Canada, Svalbard, Rus-

sia), parainfluenzavirus 3 (PIV3) (Sweden), polyomavirus (Alaska), West Nile virus 

(USA), bluetongue virus (Germany), Schmallenberg virus (Germany), and foot-and-

mouth disease virus (Russia) [25,34–36]. 

Ongoing climate change and other drivers affecting ecosystems may influence the 

type and nature of virus infections directly, or by impacting herding strategies and man-

agement. For most virus infections of relevance for reindeer, the transmission potential 

between wildlife, domesticated animals, and reindeer is not known. The aim of the pre-

sent study was thus to detect potential virus infections circulating in reindeer populations 

in northern Fennoscandia, Iceland, and Eastern Russia (Yakutia). Better knowledge of the 

viruses circulating among reindeer will make it possible to predict health and disease 

challenges in the vulnerable reindeer herding industry, and to track changes due to in-

creased anthropogenic encroachment and climate change over time.  
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2. Materials and Methods  

2.1. Ethical Statement 

In Finland and Sweden, samples were obtained from slaughtered animals. In Nor-

way, sampling was conducted in a general health surveillance of the herds when animals 

were gathered and handled for other herding purposes, and the study was not classified 

as an animal experiment. Animal handling procedures and sample collection were per-

formed in accordance with regulations set by the Russian Authorization Board (FS/U.VN-

03/163733/07.04.2016). In Iceland, opportunistic sampling from dead animals was perform 

during the hunting season, with appropriate permits from the Icelandic authorities. 

2.2. Sample Collection 

In total, 623 nasal and 477 rectal swab samples from Eurasian tundra reindeer (Ran-

gifer t. tarandus) herds in Iceland, Finland, Norway, and Sweden, and the Republic of 

Sakha, Yakutia, Russia, were included in the study (Tables 2 and 3, Figure 1). During the 

first year of sampling in the Nordic countries, eNAT swabs (Copan Italia, Brescia, Italy) 

were used, while for the remaining sampling UTM swabs (Copan Italia, Brescia, Italy) 

were used. The sampling performed in Yakutia was conducted with eNAT swabs (Copan 

Italia, Brescia, Italy) in 2017 and Amies Agar Gel with Charcoal Transport Swabs (JSHD 

Medical, Yancheng, China) in 2019. In Iceland, wild reindeer shot during the regular hunt 

were sampled. The reindeer sampled in the other countries were semi-domesticated. The 

samples from Finland and Sweden were obtained from slaughtered reindeer, whereas the 

samples from Norway were collected from live animals in corrals. Samples from Finland, 

Norway, and Sweden represented three geographical locations (Regions A, B, and C), re-

flecting different pasture and herding conditions. In Russia, sampling was performed dur-

ing slaughter at two sampling locations (Regions A and B) in northern Yakutia (Figure 

1b), while samples were obtained from live animals at one site (Region C) in southern 

Yakutia. Calves (≤1 year old) and adult animals (>1 year old) were both sampled, except 

in Iceland where only two calves were available due to a special permit in 2017. The sam-

ples were collected in two consecutive years at each site, during the period November 

2016 to September 2018, in all countries except Russia, where sampling was performed at 

one site (Ust-Yansky, northern Yakutia) in December 2017 and at two sites (Eveno-

Bytantay, north-central Yakutia, and Aldan, southern Yakutia) in November 2019. All an-

imals sampled at slaughter were examined ante mortem by an official veterinarian and 

classified as healthy. The reindeer sampled in Iceland and Russia were all considered 

healthy by the hunters, slaughterers, or an official veterinarian, and were intended for 

human consumption. 
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Figure 1. (a) In Finland, Norway, and Sweden, samples were collected from three geographical locations, denoted A, B, 

and C, reflecting different pasture and herding conditions. The sampling region in Iceland is also displayed (A). (b) The 

sampling regions in Ust-Yansky, northern Yakutia (A), Eveno-Bytantay, north-central Yakutia (B), and Aldan, southern 

Yakutia (C), Russia. 

Table 2. Details of the 623 nasal swabs obtained from 484 Eurasian tundra reindeer (Rangifer t. tarandus), including calves 

(≤1 year) and adult animals (>1 year), in Finland, Norway, Sweden, Iceland, and Russia. Swabs were taken from three 

geographically separate herds in each country except for Iceland, where the wild reindeer population was sampled.  

Sampling Site 

Sampling 1 Sampling 2 

Time of 

Sampling 

Total no. of 

Reindeer 

No. of 

calves 

No. of 

Adults 

Time of 

Sampling 

Total no. of 

Reindeer 

No. of 

Calves 

No. of 

Adults 

Finland, A December 2016 19 1 10 9 November 2017 22 13 9 

Finland, B January 2017 20 1 14 6 October 2017 20 10 10 

Finland, C February 2017 21 1 10 11 October 2017 20 10 10 

Norway, A November 2016 20 1 10 10 November 2017 20 11 9 

Norway, B January 2017 20 1 10 10 April 2018 21 11 10 

Norway, C January 2017 20 1 10 10 January 2018 20 10 10 

Sweden, A December 2016 20 10 10 December 2017 20 10 10 

Sweden, B November 2016 33 2 14 9 December 2017 20 10 10 

Sweden, C November 2016 19 1 9 10 November 2017 20 10 10 

Iceland August 2017 25 2 23 September 2018 24 0 24 

Russia, A December 2017 20 4 16 n/a n/a n/a n/a 

Russia, B n/a n/a n/a n/a Nov 2019 20 0 20 

Russia, C n/a n/a n/a n/a Nov 2019 20 0 20 

Total  237 103 124  247 95 152 
1 During the first-year sampling in Norway, Sweden (only site C) and Finland, swabs from both left and right nostril were 

collected. 2 Ten of the sampled animals were of unknown age. 
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Table 3. Details of the 477 rectal swabs Eurasian tundra reindeer (Rangifer t. tarandus), including calves (≤1 year) and 

adult animals (>1 year), in Finland, Norway, Sweden, Iceland, and Russia. Sampling was performed during two consecu-

tive years. Swabs were taken from three geographically separate herds in each country except for Iceland, where the wild 

reindeer population was sampled. 

Sampling 

Site 

Sampling 1 Sampling 2 

Time of 

Sampling 

Total no. of 

Reindeer 

No. of 

Calves 

No. of 

Adults 

Time of 

Sampling 

Total no. 

of Rein-

deer 

No. of 

Calves 

No. of 

Adults 

Finland, A December 2016 19 10 9 November 2017 21 13 8 

Finland, B January 2017 21 14 7 October 2017 20 10 10 

Finland, C February 2017 21 10 11 October 2017 20 10 10 

Norway, A November 2016 20 10 10 November 2017 19 11 8 

Norway, B January 2017 20 10 10 April 2018 20 10 10 

Norway, C January 2017 20 10 10 January 2018 19 9 10 

Sweden, A December 2016 20 10 10 December 2017 20 10 10 

Sweden, B November 2016 30 1 13 7 December 2017 20 10 10 

Sweden, C November 2016 20 10 10 November 2017 20 10 10 

Iceland August 2017 25 1 24 September 2018 22 0 22 

Russia, A December 2017 20 4 16 n/a n/a n/a n/a 

Russia, B n/a n/a n/a n/a Nov 2019 20 0 20 

Russia, C n/a n/a n/a n/a Nov 2019 20 0 20 

Total  236 102 124  241 93 148 
1 Ten of the sampled animals were of unknown age. 

2.3. Nucleic Acid Extraction 

Before nucleic acid extraction, 1200 mL of swab collection buffer from each sample 

were initially filtered through a 0.45 µm filter to remove particles of bacterium size and 

larger. However, this filtration step was eventually excluded, since most samples were 

sufficiently clean and did not contain much debris. For swabs in eNAT buffer, five sam-

ples were pooled and 550 µL from the pool were used to extract nucleic acids with a mag-

netic bead-based kit (Viral NA Extraction Kit, Diasorin, Ireland) in an Arrow extraction 

robot (NorDiag, Oslo, Norway). For swabs in UTM buffer, buffer from each sample was 

mixed with 10xTURBO DNase Buffer (Kit TURBO DNase; Invitrogen, Carlsbad, CA, 

USA) to obtain a 1xTURBO DNase Buffer concentration, before pooling five samples per 

pool. Each UTM-buffer pool was treated with 2 U/µL TURBO DNase (Invitrogen, Carls-

bad, CA, USA) to a concentration of 0.2 U/µL and 2.8 µL 40 U/µL of RNase One (Invitro-

gen, Carlsbad, CA, USA) at 37 °C for 30 min, to degrade unprotected nucleic acids. Then 

250 µL was extracted from the pool with a magnetic bead-based kit (Viral NA Extraction 

Kit, Diasorin, Ireland) in an Arrow extraction robot (NorDiag, Oslo, Norway). Extracted 

RNA in the eluted total NA was converted to cDNA using random hexamers or the 

FR20RV-6N primer [37] with the SuperScript IV first-strand synthesis kit (Invitrogen). 

Double-stranded DNA was obtained by incubation of cDNA with Klenow Fragment DNA 

polymerase (New England Biolabs, Ipswich, MA, USA) at 37 °C for 1 h. The Klenow en-

zyme was then inactivated at 75 °C for 10 min. When the tagged primer was used for 

cDNA synthesis, random amplification of the tagged cDNA was performed using the 

FR20RV primer [37] under the following conditions: 10 min at 95 °C, followed by 40 cycles 

of 30 s at 95 °C, 30 s at 58 °C, and 90 s at 72 °C. The reaction was ended with an extra 

elongation step at 72 °C for 10 min. The PCR reaction contained 1x PCR buffer, 2.5 mM 

MgCl2, 2.5 mM dNTPs, 0.4 mM primer, and 1.25 U AmpliTaq Gold DNA polymerase 

(Applied Biosystems, Foster City, CA, USA). Some sample pools were run in triplicate 

with FR20RV primer, and then the products were pooled before purification by QIAquick 

PCR purification kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol 

[38]. The amplified DNA fragments were further treated with EcoRV (New England Bi-

olabs) to remove the amplification primers and purified by QIAquick PCR purification kit 
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(Qiagen, Hilden, Germany). Concentration was measured with a Qubit fluorometer using 

Qubit dsDNA HS (High Sensitivity) Assay Kit (Invitrogen, Carlsbad, CA, USA), and an 

0.2 ng/µL aliquot was prepared for each sample. 

2.4. NGS Library Preparation and Sequencing 

Nextera XT DNA Library Preparation Kit (Illumina Inc., San Diego, CA, USA) was 

used to fragment the input DNA and tag the DNA from each sample with a pair of unique 

index primers by a 12-cycle PCR amplification. The libraries were purified with AMPure 

XP beads (Sigma-Aldrich, Milan, Italy), and Agilent High Sensitivity DNA Kit (Agilent 

Technologies, Waldbronn, Germany) was used to verify the length distribution of the 

fragments and for quantification of the libraries. Finally, an equimolar amount (preferably 

4 nM, but when concentration was not high enough 2 nM was used) of each sample library 

DNA was pooled, denatured, and further diluted to a final concentration of 10 pM. Se-

quencing was performed on a MiSeq desktop sequencer using MiSeq 2 × 300 cycles rea-

gent kit (v. 2) (Illumina, Inc.). Library preparation and sequencing was performed accord-

ing to the manufacturer’s instructions. 

2.5. Bioinformatics 

The sequence reads were homology searched against the NCBI nt database using a 

Decypher server (TimeLogic®, Carlsbad, CA, USA). Before blasting, the sequence reads 

were quality checked and trimmed using HTStream [39]. Over 17 NGS runs the average 

read length after trimming was 216 nt and the average number of reads per run was 

1,939,070. First, the trimmed reads were blasted against the VRL section of the NCBI nt 

database (i.e., the viral sequences) with a cut-off except value (e-value) of 10−5. A VRL blast 

database was created using the BLAST+ command line tools available from NCBI [40]. 

The reads that hit sequences in VRL within the limit of this e-value were collected with an 

in-house Python script and blasted against the whole nt database with the same e-value. 

The reads that again had the best hits (lowest e-value) to viral sequences were collected 

with an in-house Python script. This procedure reduced the computational burden on 

blasting against the large nt database by about 90%, since non-viral reads were filtered 

away against the much smaller VRL section. 

3. Results 

Extracted nucleic acids from 477 rectal swabs pools and 623 nasal swab pools were 

processed for next-generation sequencing (NGS). Most swab sample pools produced 

sequences classified as viruses, but there was a tendency for pools from Finland and 

Russia to contain fewer or no viral sequences. A summary of results for the study regions 

with positive nasal and/or rectal swab pools for viruses from selected viral families can be 

found in Table 4 and Figure 2, while a complete overview of the NGS sequence reads with 

positive pools, read counts, and e-values (min) is provided in the Supplementary Materials. 

In this results section, the main findings for selected viral families are described in more 

detail. Sequence reads referred to as ‘virus sequence reads’ were classified by the BLASTn 

algorithm as most similar to that particular virus sequence in the current version of the nt 

database of NCBI GenBank. These classifications are also referred to as ‘hits’, meaning the 

best sequence hits using the BLASTn algorithm.   
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Table 4. Summary of regions with positive nasal and/or rectal swab pools (X) for viruses from selected viral families. Nasal 

and rectal swabs were collected from three different semi-domesticated reindeer herds in Finland, Norway, and Sweden 

(regions A, B, and C) and from wild reindeer in Iceland (region A) in in two consecutive sampling years (samplings 1 and 

2). Nasal and rectal swabs were collected and pooled from one semi-domesticated reindeer herd in Yakutia, Russia, in 

2016 (region A) and two different herds in 2019 (regions B and C).  

Virus Family 

Sweden Norway Finland Iceland Russia 

Sampling 1 Sampling 2 Sampling 1 Sampling 2 Sampling 1 Sampling 2 Sampling 1 Sampling 2 Sampling 1 Sampling 2 

A B C A B C A B C A B C A B C A B C A A A B C 

Adenoviridae  X       X    X     X      

Arenaviridae X X X X X X X X X X X X X X X X  X X X X X  

Astroviridae   X    X X       X         

Caliciviridae        X                

Flaviviridae X X X X X X X X X  X X X X X  X X X X X X X 

Herpesviridae X  X X X X X X X X X X X X X X X X X X  X  

Papillomaviridae X    X  X X X  X X   X   X X  X   

Paramyxoviridae X X X X  X X X X          X    X 

Parvoviridae X X X X X X    X X X X X X   X  X X  X 

Peribunyaviridae X X X  X X X X X          X X X  X 

Picobirnaviridae      X  X  X X X  X X X X X  X X X X 

Picornaviridae X  X     X X X  X  X       X X X 

Poxviridae X X X X X X X X X   X X X     X X  X  

Small circular DNA 

viruses 
  X X X X X X X X X X  X X  X X X X    

 

Figure 2. Maps showing the regions in Finland (A, B, C), Norway (A, B, C), Sweden (A, B, C), Iceland (A), and Russia (A, 

B, C) in which sequence read hits were detected for viruses from (a) the family Arenaviridae, (b) the family Flaviviridae, (c) 

the family Herpesviridae, (d) the family Peribunyaviridae, (e) the family Picornaviridae, and (f) the family Poxviridae. 

3.1. Arenaviridae 

Overall, the most abundant sequence reads, both in number of pools and in geo-

graphical distribution (Figure 2a), were reads similar to various viruses from the family 

Arenaviridae, i.e., Lassa mammarenavirus (104 pools in the range 2–242), Guanarito mam-

marenavirus (85 pools in the range 2–866) and Luna mammarenavirus (three pools with 

one sequence read each). The range of sequence reads was 1–860 in the different pools. 

Sequence reads classified as Arenaviridae were detected in all countries and sampling years 

except for Finland (Region B) and Russia (Region C) in sampling 2.  
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3.2. Flaviviridae 

Flaviviridae sequence reads were very common and fell in the range 2–47 per pool 

when present. Sequence reads mainly belonged to two species, dengue virus 1 (14 pools 

in the range 2–11) and Iguape virus (at least 49 pools in the range 2–47), and both were 

present in all countries. Bovine viral diarrhea virus (BVDV) hits were also common and 

were found in 23 pools distributed among all countries except Russia (Figure 2b), alt-

hough with very few reads in the range 1–4. Specific hits against BVDV were detected in 

Sweden (six pools), Norway (10 pools), Finland (three pools), and Iceland (four pools). 

The only other flavivirus hits were a single West Nile virus read from Norway (Region A) 

and two classical swine fever virus (CSFV) reads from Russia (Region A). 

3.3. Herpesviridae 

Herpesviridae hits fell into three subfamilies (Alpha-, Beta- and Gammaherpesvirinae). 

Gammaherpesvirinae read counts were the most common, with hits in at least 30 pools dis-

tributed among all countries (Figure 2c) and generally with a high number of reads (range 

1–54,453), especially in nasal swabs from Region C in Norway (sampling 2, minimum total 

read count 186,432 hits). Alphaherpesvirinae reads were detected in at least 39 pools and in 

all countries, although with lower read counts than Gammaherpesvirinae (range 1–7). Be-

taherpesvirinae sequence reads were also detected in a total of 18 pools in all countries, with 

high read counts again in nasal swabs from Region C in Norway (sampling 2; range 2–

276). Most hits were against ruminant herpesviruses (e.g., ovine herpesvirus 2 (16 pools 

in the range 1–54,453), bovine herpesvirus 6 (13 pools in the range 1–36,279), or alcepha-

line herpesvirus 1 (11 pools in the range 2–36,279) and 2 (14 pools in the range 1–36,279), 

including reindeer gammaherpesvirus and cervid herpesvirus 3, with two sequence read 

hits in one pool each.  

3.4. Papillomaviridae 

Papillomavirus hits were detected in all countries, and in both rectal and nasal swab 

pools. Read counts were low both in rectal (range 1–182) and in nasal swab pools (range 

1–89). Interestingly, three hits against the reindeer papillomavirus were detected in one 

nasal swab pool in Iceland and one in Norway. Several hits against other ruminant papil-

lomaviruses (e.g., bovine papillomaviruses or cervus elaphus papillomaviruses) were de-

tected in 26 pools in Sweden, Finland, and Russia. 

3.5. Paramyxoviridae 

Paramyxoviridae reads were found in pools from all countries, but usually with only 

a few reads and often most similar to human respirovirus 1, with two sequence reads 

detected in 10 different pools. Norway was an exception, as two nasal swabs pools con-

tained in total 37 sequence reads most like human respirovirus 3 (15 sequence reads in 

one pool), bovine respirovirus 3 (18 sequence reads in two pools), and caprine respiro-

virus 3 (four sequence reads in two pools). 

3.6. Parvoviridae 

Most hits belonging to the Parvoviridae family were associated with the red-crowned 

crane parvovirus, with read counts in the range 2–109 detected in 48 pools, but several 

pools also contained reads that hit various viruses of the genus Bocaparvovirus. Parvoviridae 

sequence reads were detected in 31 rectal swab pools (read count range 2–109) and in 22 

nasal swab pools (read count range 2–48) in all countries. 

3.7. Peribunyaviridae 

Pools from all countries except Finland contained reads assigned to an Orthobunya-

virus species with read counts detected in 34 pools in the range 2–23 (Figure 2d). In 



Int. J. Environ. Res. Public Health 2021, 18, 6561 10 of 20 
 

 

addition, three Simbu virus reads were found in one pool from Sweden and one from 

Russia, and six Ngari virus reads were found in four pools from Iceland, Norway, and 

Sweden. 

3.8. Picobirnaviridae 

Picobirnavirus hits were widespread in the pools and were found in 72 pools from all 

countries, with read counts in the range 1–31. The most common host species of these hits 

were marmot (eleven pools in the range 1–6), humans and other primates (32 pools in the 

range 1–31), and dromedary (eleven pools in the range 2–6). 

3.9. Picornaviridae 

Picornaviridae sequences were relatively rare and belonged to a diverse set of viruses. 

Sequence reads were detected in rectal swab pools from Norway, Sweden, Finland, and 

Russia (Figure 2e), and were most prominently identified as viruses from the genus 

Kobuvirus (17 pools in the range 2–53). As exceptions, one sequence read for human rhi-

novirus A was detected in one rectal swab pool from Sweden, and one rectal swab pool 

from Finland and one from Russia showed 46 sequence read hits to hepatoviruses (e.g., 

human hepatovirus A or hedgehog and rodent hepatoviruses). The only nasal swab pools 

in which picornavirus sequences were detected were from Region B in Russia, with one 

pool with sequence reads matching bovine rhinitis A (38 reads) and B (nine reads) virus, 

as well as foot-and-mouth disease virus type A (FMDV; six reads), all members of the 

genus Apthovirus. 

3.10. Poxviridae 

Low numbers of sequence reads belonging to the family Poxviridae were found in 11 

rectal swab pools from all countries and in 13 nasal swab pools from all countries except 

Russia (Figure 2f). Most sequence reads matched orf virus (ORFV, genus Parapoxvirus;17 

pools in the range 1–4), but sequence reads matching ruminant poxviruses of other genera 

(e.g., cowpox virus (CPXV), goat poxvirus (GPV), and white-tail deer poxvirus) were also 

detected in six pools with sequence reads in the range 1–4. 

3.11. Small Circular DNA Viruses 

As found in many other studies of fecal microbiome [37,41], many reads from small 

circular DNA viruses were observed in the present study, with most sequences belonging 

to the families Circoviridae (e.g., CRESS virus), Genomoviridae (e.g., Alces alces faeces assoc. 

genomovirus) and Smacoviridae (e.g., ovine faeces assoc. smacovirus 1 and bovine faeces 

assoc. smacovirus) (Supplementary Materials). In particular, small circular DNA viruses 

were especially prevalent in Norwegian rectal swab pools, with read counts detected in 

at least 14 out of 21 pools, but similar read counts were also identified in rectal swab pools 

from Sweden, Finland, and Iceland, and in nasal swab pools from Sweden and Norway. 

The clinical significance of these types of viruses has not yet been established. 

3.12. Other Viruses 

A variety of other viruses were detected in NGS analysis (Supplementary Materials). 

Adenoviridae hits were present in four pools (range 2–129) from Finland, Norway, and 

Sweden, and mostly belonged to ruminant viruses such as bovine adenoviruses (three 

pools with sequence reads in the range 4–129) or deer mastadenovirus B (one pool with 

two sequence reads). Astroviruses are frequently found in stool samples from many mam-

mals, and ruminant astroviruses (e.g., bovine, deer, or yak astroviruses) were detected in 

at least eight rectal swab pools from Finland, Norway, and Sweden (range 1–44). Rumi-

nant calicivirus hits (e.g., bovine calicivirus) were also detected in two pools from Norway 

(range 2–38). Reads for bovine rotavirus A and other reoviruses (e.g., human rotavirus A) 

were detected in seven rectal swab pools from Norway and Sweden, but with low 
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numbers of hits (range 1–12). Interestingly, Reoviridae sequences were also detected in one 

nasal swab pool from Sweden and two from Norway, with two sequence read hits match-

ing bluetongue virus in one of the Norwegian pools. Hits for human polyomavirus 12 and 

other polyomaviruses were only detected in one nasal swab pool from Norway. A variety 

of unclassified viruses, such as statovirus and Hainan astro-like virus 2, were also de-

tected. 

4. Discussion 

Next-generation sequencing screening of viral pathogens in domestic animals and 

wildlife is an important tool to identify exposure to certain pathogens and help under-

stand the etiology of diseases, but also to prevent possible disease outbreaks and identify 

emerging viral diseases in previously unexposed populations. In this study, Eurasian tun-

dra reindeer in Iceland, Fennoscandia, and Yakutia, Russia, were screened for the pres-

ence of viruses. The sample set collected is unique in terms of the number of animals per 

country and the number of countries and sampling sites, representing a wide geograph-

ical coverage and spanning two winter seasons. Semi-domesticated reindeer are only 

available for sampling during the few times they are gathered during the reindeer herding 

year. Thus, these are presumably healthy animals that are gathered for tagging, selection 

of slaughter animals, etc. Sick animals in such herds will either be taken care of (caught, 

treated, or euthanized) or maybe never identified (survive and get healthy again, or die, 

usually never found due to scavengers, sometimes killed by predators). Sampling rein-

deer during regular herding practices is carried out under field conditions, and contami-

nation of the nostrils and rectum of the animals with environmental or human material 

can occur during this procedure. Therefore, some of the viral material identified during 

this study may have been introduced during the animal handling and/or sampling proce-

dure (e.g., human respiroviruses, papillomaviruses or herpesviruses, or red-crane parvo-

virus). Whether the sequence reads represent environmental/human contamination or a 

reindeer-specific virus needs to be elucidated. However, even in the case of contamina-

tion, the presence of this viruses may as well happen without the direct involvement of 

the sampler, due to the direct handling of the animals by reindeer herders during gather-

ing, marking, and slaughtering. Even though sampled animals were considered healthy 

upon examination, a large variety of nucleic acid sequences of viral origin were detected 

in nasal and rectal swab pools from all countries studied. Therefore, it is possible that 

apparently healthy semi-domesticated reindeer may have a role as a pathogen reservoir 

for both domestic animals and wildlife, but also contribute to the transmission by meat 

and milk consumption, contact, and so on, of zoonotic pathogens to humans (e.g., Hepa-

titis E virus or ORFV) [9,42,43]. 

The method employed to detect the presence of viral nucleic acid sequences was to 

compare the sequence reads with the NCBI GenBank nt database (using the BLASTn al-

gorithm) and collect the cases where the sequence reads were most similar to a viral se-

quence deposited in GenBank (‘best hit’), irrespective of the host species of this viral se-

quence. This method enables a first screening of large amounts of data, but has several 

drawbacks. For example, if the virus sequenced is lacking in the database, some other 

distantly or closely related virus will be the best hit, or there will be no hit at all. This 

incompleteness of the database will limit the precision of virus discovery. Other sources 

of false classification are parts of the host genome or microbial nucleic acids that are absent 

from the database. In such cases, these unknown nucleic acid sequences present in the 

sample may end up as viral sequences. In addition, the large nt database is in part uncu-

rated and may contain erroneous sequences, giving rise to false hits. Other issues are con-

tamination of reagents with various genomic material and the difficulty in distinguishing 

between-sample leakage of reads and between-run carry-over contamination that may 

occur on the Illumina MiSeq platform used in the present work. With these limitations in 

mind, we chose to report all virus hits obtained from the sample pools, under the condi-

tion that at least two reads hit the same or taxonomically closely related viruses. Findings 
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that only relate to viral sequences from host species taxonomically very distant from rein-

deer, or otherwise less likely to infect reindeer, should be considered highly uncertain. 

Furthermore, samples were pooled, due to limited available funding, representing dilu-

tion of viruses in each pool. However, all individual samples have been preserved, mak-

ing it possible to explore interesting pools in future studies.  

In the present study, human viruses (e.g., Lassa mammarenavirus, dengue virus) and 

non-reindeer-specific ruminant viruses (e.g., ruminant gammaherpesviruses, bovine pap-

illomavirus) may have been overrepresented in comparison with reindeer-specific vi-

ruses, due to the lack of reindeer-specific viral sequences in the NCBI database. Therefore, 

it can be assumed that several of the hits found belong to specific reindeer viruses or other 

viral species that can infect reindeer. In fact, there is reason to believe that the sequence 

reads hits for Gammaherpesvirinae indicate a host-specific reindeer virus (rangiferine gam-

maherpesvirus 1) previously identified in semi-domesticated and wild reindeer in Nor-

way [44,45]. The same applies for papillomaviruses, which are in general host-specific, 

with one or several papillomavirus species associated with a single host but sharing hom-

ologue sequences in parts of their genome [26]. 

The climate in the Arctic and sub-Arctic region is changing faster than the global 

average [46]. General knowledge on climate change effects and adaptation strategies has 

increased significantly in recent years, but there is still a substantial information gap re-

garding the influence of climate change on infectious diseases. In a One Health perspec-

tive, zoonotic infections are a particular concern, and we need more knowledge of what 

is present in the wild environment. Both animal and human health will most likely be 

affected by changes in the distribution and virulence of zoonotic pathogens caused by 

climate change, but also by other anthropogenic drivers and new animal hosts. Further, a 

population of humans or animals not previously exposed to a particular disease is immu-

nologically naïve, so an outbreak of that disease in a new area (i.e., high-latitude regions) 

will likely have more severe effects. 

The changing climate will give opportunities for climate-sensitive infectious diseases 

to establish or occur sporadically in new areas [47]. Vector-borne diseases are a particular 

concern in this regard. Arthropod vectors (e.g., ticks, mosquitoes, and midges) and reser-

voir animals (e.g., rodents, birds, and wild ungulates) for infectious diseases might both 

extend their distribution northwards as a result of changes in ecosystems associated with 

climate warming [48,49]. The rate of development, persistence, and multiplication of most 

arthropods and microorganisms is directly affected by microclimatic conditions, espe-

cially temperature. Warmer temperatures affecting activity and population dynamics of 

vectors may increase transmission of pathogens and result in spread to new environ-

ments. Warmer temperatures at high latitudes may also result in a longer vegetation pe-

riod, making it easier for arthropod hosts to reproduce and thus develop denser popula-

tions [50]. 

Sequence reads indicating viruses from the family Arenaviridae were detected in rein-

deer from all countries studied. In general, most arenaviruses are only present in the 

southern hemisphere, with lymphocytic choriomeningitis virus being the only one de-

scribed in Europe [51]. No arenavirus has yet been described in any Rangifer species. The 

widespread detection of sequence hits with high read counts against viruses from the 

family Arenaviridae raises the question of whether there is an unknown widespread are-

navirus in reindeer. Alternative explanations are that the hits belong to one or more cir-

culating viruses with similar genome sequences, or that the reads are homologs to the 

reindeer genome itself. Incidental integration of non-retrovirus RNA viruses, such as are-

naviruses, has been described [52], and it is possible that such integration may have hap-

pened in the reindeer genome in the past, with the subsequent detected hits. In either case, 

further investigations to clarify this matter are necessary, since some arenaviruses are 

known to cause severe viral hemorrhagic fevers in humans through contact with infected 

rodents [53], and since the arenaviruses detected may be pathogenic to reindeer. 
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Blast hits for the family Flaviviridae were detected in reindeer from all countries stud-

ied. Most of the sequences matched dengue virus and Iguape virus (genus Flavivirus). 

However, it is highly unlikely that these viruses are circulating in Arctic reindeer popula-

tions. Another member of the genus Flavivirus with positive hits was West Nile virus 

(WNV), with a single sequence read hit from one nasal swab pool in Norway. Different 

wild mammals present in the Arctic are known to be flavivirus hosts [54], but flavivirus 

infections in reindeer have only been described for WNV [12]. Most known flaviviruses 

are arthropod-borne viruses, with mosquitoes and ticks as intermediate hosts. The arthro-

pod-borne nature of WNV and other flaviviruses, and the fact that they can circulate, be 

introduced by, and maintained in migratory birds as reservoirs [55], make flaviviruses a 

risk to the Arctic reindeer population. In recent years, the mosquito Culex modestus Ficalbi 

1889 has been identified as one of the main bridge vectors of WNV between birds and 

mammals, and it appears to have spread in northern and central Europe [56,57]. Climate 

change, diverse feeding habits, and increased vector competence may have made Cx. mod-

estus more robust to high latitudes [58,59]. However, in Sweden, seropositivity for WNV 

has been detected only in nonresident birds, which is not considered indicative of local 

transmission [60]. 

Classical swine fever virus (CSFV, Pestivirus C) is closely related to BVDV and BDV, 

but only pigs and wild boars are considered natural reservoirs of this virus [61]. Experi-

mental infection of several ruminants has been reported, but there is no evidence of natural 

infection of reindeer or other cervids under natural conditions. According to the World Or-

ganisation for Animal Health [62], the Nordic countries are officially CSFV-free, but the sta-

tus in Russia is uncertain, with outbreaks reported in 2014. The two sequence reads against 

CSFV were detected in Russia (Region A), which may indicate circulation of CSFV in that 

area. However, the sequence reads could also belong to a different pestivirus species. 

The remaining hits for Flaviviridae belonged to BVDV (pestivirus A and B; genus Pes-

tivirus). Most cattle farms in the Nordic countries are currently considered BVDV-free, 

especially in the reindeer husbandry areas, after successful BVD eradication programs in 

the 1990s [63]. However, BVDV hits were detected in 23 pools, from Finland (three pools), 

Norway (10 pools), Sweden (six pools), and Iceland (four pools). To date, only one rein-

deer pestivirus has been isolated (pestivirus reindeer-1, V60-Krefeld) and sequenced [64]. 

The lack of genome sequences in the databases hampers identification of reindeer-specific 

pestivirus sequences by NGS. These findings, together with data from a previous serolog-

ical screening [14], hint at the possibility that a reindeer-specific pestivirus, presumably 

closely related to BDV, is circulating among wild and semi-domesticated reindeer popu-

lations and may be responsible for these hits [15]. 

Several herpesviruses are known to infect and cause disease in Eurasian tundra rein-

deer (Table 1). One of the most common reindeer pathogens is the cervid herpesvirus 2 

(CvHV2; subfamily Alphaherpesvirinae, genus Varicellovirus), which is enzootic in semi-do-

mesticated reindeer, with seroprevalences reported to be ~50% [21,65,66]. Surprisingly, no 

hits against CvHV2 were detected in the present study. However, several hits against Al-

phaherpesvirinae were detected in 39 pools in all countries studied, suggesting that CvHV2 

was in fact the virus generating the sequence hits. Once again, underrepresentation of a 

reindeer-specific virus may be the reason for the lack of hits if the sequences belong to 

highly conserved genes among herpesviruses, such as the UL24 gene or the glycoprotein 

B or H genes [67,68]. Sequence read hits for viruses from the subfamily Gammaherpesvirinae 

were common, with sequence reads in a total of 30 pools representing all countries. Most 

of the Gammaherpesvirinae viruses belonged to the malignant catarrhal fever virus group 

(MCFV; genus Macavirus), e.g., ovine herpesvirus 2 or alcephaline herpesvirus 1 and 2, 

and undetermined gammaherpesviruses. Read counts were especially high in Norway, 

with most hits generated from nasal swab pools from Region C in sampling 2. Those pools 

had a maximum sequence read count of 54,453 against ovine herpesvirus 2 (OvHV-2) and 

a minimum amount of 186,450 sequence hits for Gammaherpesvirinae in general. Be-

taherpesviruses are not often considered when discussing semi-domesticated reindeer 
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health. This study detected Betaherpesvirinae sequences in all countries examined, includ-

ing hits for cervid herpesvirus 3, a betaherpesvirus first identified in the eyes of semi-

domesticated reindeer in Norway [27]. 

This study detected blast hits against an orthobunyavirus (family Peribunyaviridae) in 

all countries, with the exception of Finland. Sequence hits were in general low (2–4) except 

for Sweden, which had a maximum sequence read count of 23. Orthobunyaviruses have a 

wide geographic and host range, although individual viruses may be restricted to a small 

number of host species [69]. Adverse veterinary outcomes include fetal abnormalities and 

abortion storms among livestock (e.g., Schmallenberg virus; SBV). SBV, transmitted by bit-

ing midges (Culicoides spp.), first emerged in Europe in 2011 and in Sweden in late 2012. The 

virus then spread rapidly north beyond the Arctic Circle, occurring in high prevalence after 

the vector season in 2012 [70]. However, the virus has not been detected in Swedish domes-

tic animals or circulating among wild cervids since the vector season in 2014 [71]. Even 

though SBV has not been detected in semi-domestic or wild reindeer in their natural range, 

the presence of seropositive reindeer in zoological parks in Germany demonstrates the sus-

ceptibility of reindeer to infection [40]. Northern Fennoscandia has a long vector-free winter 

season compared with ecosystems in central and southern Europe. Virus transmission and 

spread are possible at temperatures around 15 °C [72], and in northern Fennoscandia daily 

mean temperatures at this level are usually limited to May–August [73]. Virus persistence 

depends on the winter survival of adult midges, which must have access to an immunolog-

ically naïve ruminant population. If SBV is introduced to the reindeer population in Sweden 

or in one of the other countries studied, the effects may be serious. However, based on north-

ern latitude climate conditions, it can be assumed that this region has an unfavorable climate 

for overwintering SBV vectors. In addition, midge activity and the reproductive season of 

Swedish wild cervids are seasonal and biological mismatches for the virus, which may ex-

plain why SBV has so far had little impact on Swedish wild ruminant health. These animals 

are thus highly unlikely to be reservoirs of this virus. Thus, the findings in the present study 

indicate that an unknown orthobunyavirus, different to SBV, may be circulating in the rein-

deer populations studied. 

Papillomaviruses are considered species-specific, and to date only rangifer tarandus 

papillomavirus 1 (reindeer papillomavirus) has been isolated from semi-domesticated 

reindeer [26]. However, two other rangifer papillomaviruses have recently been charac-

terized, in Norwegian reindeer [27] and Western Arctic caribou [36]. Papillomavirus se-

quence reads were detected in nasal and rectal swab pools in all countries in the present 

study. However, only one hit against the reindeer papillomavirus was detected, in a nasal 

swab pool from Iceland. 

All sequence reads from the family Paramyxoviridae belonged to the genus Respiro-

virus. Human respirovirus 1 sequence reads were the most common among sequences 

from this genus and were detected mostly in nasal swab pools from all countries, with 15 

sequence reads from human respirovirus 3 also detected in a nasal swab pool from Nor-

way (Region C). Both viruses are considered human parainfluenza viruses, known path-

ogens of the respiratory tract which cause acute respiratory disease [74]. Bovine and 

caprine respirovirus 3 are also parainfluenza viruses which cause disease in ruminants, 

and sequence reads for these viruses were detected in two nasal swab pools from Norway 

(Region C). A previous serological screening for antibodies against bovine parainfluenza 

3 reported 53% seroprevalence in Swedish reindeer [35]. All viruses in the Respirovirus 

genus seem to exhibit considerable genetic and antigenic similarity, and thus the presence 

of a reindeer-specific respirovirus cannot be discarded as a possibility. 

Once again, overrepresentation bias towards other more common papillomaviruses 

or respiroviruses may have influenced the results of the sequence matches, with several 

other ruminant and human viruses in several swab pools instead of reindeer-specific vi-

ruses. On the other hand, one should not discard the possibility of a novel reindeer papil-

lomavirus or respirovirus, or the possibility of human papillomaviruses and 
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respiroviruses being present in the swab pools due to contamination during sampling or 

processing of the swabs. 

While the majority of sequences belonging to the family Parvoviridae matched red-

crowned crane parvovirus, hits against several bocaparvoviruses were also detected. Par-

vovirus infections can be associated with a variety of clinical signs, ranging from asymp-

tomatic infections to severe disease, depending on the species [75]. Evidence of the pres-

ence of a caribou-specific parvovirus has been reported [36]. Whether the sequence reads 

represent environmental contamination or a reindeer-specific parvovirus needs to be fur-

ther investigated. In several other projects, we also observed red-crowned crane parvovi-

rus hits (unpublished data), so the validity of these should be regarded as highly uncertain. 

Picobirnavirus is the only genus in the family Picobirnaviridae. Sequence reads from 

this genus were detected in nasal and rectal swabs from all countries studied. Several spe-

cies of picobirnaviruses have been described as infecting mammals, but they have not 

been clearly linked to disease [76]. Only one species has so far been isolated from rumi-

nants, roe deer picobirnavirus [76], which was detected in two rectal swab pools from 

Russia (Region C). However, most of the sequence read hits in this study were identified 

as marmot, human and other primates, and dromedary picobirnaviruses. 

Most Picornaviridae sequences were detected in rectal swab pools and matched vi-

ruses of the genus Kobuvirus (e.g., Aichivirus A and B, or caprine and bovine kobuvirus). 

Kobuviruses are known to infect the gastrointestinal tract of several mammal species, 

causing gastroenteritis and diarrhea. Only three ruminant Kobuvirus species have so far 

been isolated, bovine (Aichivirus B1 and D), caprine (Aichivirus C2), and ovine 

(Aichivirus B3) kobuviruses [77], but kobuvirus RNA has also been detected in roe deer 

[78]. The widespread distribution of kobuviruses detected in rectal swab pools from rein-

deer in Fennoscandia and Yakutia, Russia, may indicate that at least one virus in this ge-

nus infects these reindeer populations. Additional studies are needed to determine 

whether this virus is a novel kobuvirus and to establish the epidemiological and clinical 

importance of kobuviruses in semi-domesticated and wild Eurasian tundra reindeer. One 

sequence read for human rhinovirus A (genus Enterovirus) and 46 sequences reads for 

hepatovirus A (e.g., human hepatitis A virus and other hepatoviruses) were also detected 

in rectal swab pools. Sequence reads matching viruses from the genus Apthovirus were 

only detected in one nasal swab pool, from Yakutia, Russia (Region C), with 47 sequence 

hits for bovine rhinitis virus A and B and six sequence reads for FMDV, a known and 

important pathogen which causes foot-and-mouth disease (FMD) in cattle and other do-

mestic ruminants. FMD is a notifiable disease and is currently absent from the Nordic 

countries and most of the European Union, which has protocols in place to avoid the 

spread of FMDV. Russia is also mainly considered FMD-free, but outbreaks of FMD have 

recently been reported in far-east Russia [79]. Although FMD has been reported in rein-

deer and other wild and semi-domesticated ungulates, it apparently fails to establish in 

wildlife and it is most likely maintained in livestock, with sporadic spread to wild and 

semi-domestic ungulates [80,81]. 

Poxviridae sequences were detected in rectal swab pools from all countries studied 

here and in nasal swab pools from all countries except Russia. Most sequence reads 

matched ORFV, which is a member of the Parapoxvirus genus causing contagious ecthyma 

in small ruminants, reindeer, and many wildlife species, and a zoonotic infection [25]. 

ORFV-specific genome sequences have been detected by PCR in reindeer with no clinical 

signs of contagious ecthyma, indicating that the virus may circulate among reindeer with-

out presenting as regular disease outbreaks [82]. In our experience, it is very common to 

observe a limited amount of ORFV reads in samples from various ungulates, including 

reindeer, using the NGS technology (unpublished observations). This may, in fact, indi-

cate presence of the virus, since ORFV may have a broad host range among wild ungulates 

[83]. However, since the whole genome sequence of several Parapoxvirus species are avail-

able in GenBank, the matching NGS reads may also reflect similarities between certain 

immunomodulatory components of the virus and the host [84]. One example is the viral 
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interleukin ortholog (vIL-10), which needs to have close similarity to the interleukin-10 of 

the host if the virus is to achieve effective replication [85]. Thus, the finding of poxvirus 

sequences in the present screening needs to be further substantiated on nucleotide se-

quence level. 

New climatic conditions and landscape alterations have also contributed to the pres-

ence and altered distribution of other ungulates (e.g., roe deer or wild boar) [86,87] that 

can act as reservoirs of several viruses (e.g., CSFV, FMDV, ORFV, bluetongue virus, or 

SBV) that may be transmitted to semi-domesticated reindeer in the same areas [88,89]. At 

the same time, the detection of sequence reads belonging to some of those viruses in ap-

parently healthy reindeer may indicate that after transmission to semi-domesticated rein-

deer, this species may have a role as reservoir in the subsequent transmission to other 

domestic and wild animals in the area, but also humans [9,40,41]. However, the possible 

role of semi-domesticated reindeer as a reservoir needs to be further investigated and can-

not be inferred from the current data. 

This screening of Eurasian tundra reindeer for viruses by NGS identified several viral 

families and species that can affect human and animal health in all countries and sampling 

sites studied. However, only a few of these virus families and species are recognized as 

being pathogenic for reindeer. Although the NGS screening method has limitations with 

regard to identifying pathogenicity and a potential causative role for a virus to cause a 

certain disease, it proved useful in suggesting potential pathogens present in Eurasian 

tundra reindeer as the host species. This first screening involved a significant number of 

reindeer samples, representing a broad geographic region and five countries. The results 

obtained should be further analyzed by addressing the gene sequences generated and 

conducting phylogenetic studies. 

5. Conclusions 

This screening of Eurasian tundra reindeer for viruses by NGS identified numerous 

viral families, including several species that can impair the health of reindeer, wildlife, 

livestock, and humans. A One Health perspective on further studies of these risks is vital. 

Climate change and other anthropogenic drivers will expand the future distribution of 

infectious diseases to new areas, ecosystems, and hosts. 

This study showed that a large variety of virus species are circulating in the reindeer 

populations in all five countries studied. Only a few of these virus species are currently 

recognized as being pathogenic for reindeer. Some of the hits identified may belong to 

reindeer-specific pathogens that are underrepresented in GenBank (e.g., CvHV2, reindeer 

gammaherpesvirus, and parvovirus), thus generating ‘best hits’ with similar viruses as-

sociated with other hosts. However, several hits may belong to novel reindeer viruses 

(e.g., kobuvirus, picobirnavirus, arenavirus) with unknown impacts on reindeer popula-

tions. These novel viruses could represent a potential health risk for reindeer, other animal 

species, and humans, so further studies are needed to identify their pathogenic potential. 

Supplementary Materials: The following tables are available online at www.mdpi.com/1660-

4601/18/12/6561/s1. Complete dataset with viral Blastn hits from rectal and nasal swabs collected 
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