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ABSTRACT

Global climate reflects a complex interaction among the continents, the oceans and the atmo-
sphere. Exactly how these interactions occur remains one of the great questions about the Earth
system. To address this issue, a simple box model representing one hemisphere with land, ocean
and atmosphere components is developed and analyzed. The specific question addressed is how
the inclusion of separate temperatures over land and the ocean affects the existence and stability
of meridional ocean flow equilibria. Temperature and salinity differences are the main determi-
nants of the strength and direction of ocean flow. Both heat and moisture fluxes are determined
from the global mean meridional temperature gradient. As temperatures over land are increas-
ingly allowed to deviate from those over the ocean, the gradient over land becomes larger and has
more influence over the mean. The stability of the ocean's poleward flow equilibrium is then
more sensitive to over-estimation of the size of the ocean basin or atmospheric heat and moisture
transports. Its flow is also weaker than before, due to smaller temperature gradient. An equator-
ward flow equilibrium with no oceanic meridional temperature contrast is then possible.
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1 Introduction

1.1 The Thermohaline Circulation

The oceans and atmosphere form a global-scale system that determines climate patterns over large

regions. Broadly, the ocean's role is through the storage and transport of heat. Due to Earth's

shape and orbit, polar and equatorial oceans are heated at different rates. The amount of heat

stored and released by each depends on its density and volume. Density varies with depth,

temperature and salinity, while volume depends on basin size. In effect, low- and high-latitude,

shallow and deep oceans respond differently to changing conditions.

The uneven heating of polar and equatorial basins creates a meridional (north-south) temperature-

driven density gradient. The resulting tendency is characterized by (1) deep equatorward flows of

polar water to warmer, less dense regions and (2) near-surface poleward flows of the warmed

water toward its origin. At the sea surface where the ocean and atmosphere interact, the same

uneven heating leads to net evaporation from low latitudes and precipitation into high latitudes.

The freshwater transport therefore creates a meridional salinity-driven gradient. The resulting

tendency counteracts the temperature-driven state, with (1) deep poleward flows of salty

equatorial water to colder but less dense regions and (2) near-surface equatorward flows of the

fresher polar water toward its origin. The competing effects result in a global thermohaline

circulation (THC).

The continents interact with the ocean-atmosphere system through their own heat and moisture

transport mechanisms. Temperatures over land are governed by radiative heating and the ocean's

influence. Some of the freshwater from the ocean's evaporation-precipitation cycle is captured



and diverted meridionally as well as zonally (east-west) by river flow. Depending on the strength

and direction of these flows, the land's influence may balance or reinforce the THC feedbacks.

Observations show that ocean circulation is in fact initialized by deep cold water formation in the

North Atlantic. From there, water moves toward the equator and into the Pacific and Indian

oceans, where it is warmed, upwells, and returns near the surface (Gordon, 1986). As a result,

heat is transported primarily from warm to cold regions. However, in the South Atlantic, heat is

transported northward toward warm regions. Other equilibrium flow states for vertical and

horizontal transport of water are theoretically possible, and paleoclimatic observations (Boyle,

1990; Broecker et al., 1995) indicate that circulation strength and pattern have varied through

time. Two relevant questions for modelers are then (1) how stable is the current global THC

pattern and (2) what are the feedbacks that lead to one scenario or another?

1.2 Modeling Approaches

Both general circulation models (GCMs) and simple box models (SBMs) have been used to study

the THC. GCMs formulate the equations of motion through finite difference methods while

SBMs use a limited number of parameterized equations. Perhaps because of computational

differences, GCMs are used mostly to reproduce current or past climate; simple models are used

mostly as a heuristic tool to guide later GCM studies.

Oceanic GCMs include temperature and salinity effects, and formulate the equations of motion

through finite difference methods (Bryan, 1986; Marotzke and Willebrand, 1991). Atmospheric

feedbacks are generally not included explicitly, but are implied through the surface boundary

conditions. Coupled GCMs (Manabe and Stouffer, 1988) remedy this by introducing ocean-

atmosphere interaction through the exchange of heat, water and momentum and can include land

components. These models benefit from representative geography and include seasonal variations

in insolation and humidity-dependent cloud cover.

Stommel (1961) identified the competing temperature and salinity fields as the fundamental cause

of multiple equilibria in his model. Twenty-five years later, Bryan (1986) was the first oceanic

GCM with freely evolving surface salinity. Its solutions were also characterized by multiple



equilibria for upwelling and overturning. However, the work did not explore the effects of

asymmetric surface forcing, basin geometry or changing evaporative fluxes. Marotzke and

Willebrand's (1991) model comprised two ocean basins connected by a circumpolar channel.

Circulation was driven by wind forcing, restorative tendencies in sea-surface temperature, and

freshwater fluxes in the surface salinity budget. Using the same set of boundary conditions, four

equilibria were found, where one solution corresponded to today's global circulation pattern.

The simple model approach to the ocean-atmosphere system provides similar system insights and

intuitive analysis while requiring less computational complexity. Marotzke's (1996) four-box

ocean-atmosphere model includes only one hemisphere and averages atmospheric transports, but

results in complex feedback behavior. Like the coupled GCMs, the primary feedback loops are

(1) the ocean's tendency to eliminate gradients through mean flow and mixing, (2) oceanic heat

and salinity transports, and (3) atmospheric heat and moisture transports. Also like the larger

models, temperature- and salinity-dominated steady solutions are possible. But while the

idealized global GCMs produce at most four equilibria, the simple box models configured

globally can result in as many as sixteen (Marotzke and Willebrand, 1991). The difference may

be due to the exclusion of a southern ocean connection between Atlantic and Pacific Oceans, or

parameterizations for atmospheric forcing or surface heat and moisture fluxes.

The parameterization the coupled box models is based in part on having thoroughly mixed ocean

basins and atmosphere boxes (Marotzke and Stone, 1995, Marotzke, 1996). Temperatures above

the ocean are therefore determined by the sea-surface temperature. Temperatures above the land

equal those above the ocean at the same latitude. Therefore, all surface temperatures are pre-

scribed by the ocean, no matter how small (as long as it exists). Configured like this, a model may

not capture the dynamics that we see along coastlines. For example, there are differences in land

and ocean heat storage capacities, varying efficiencies in near-shore eddy exchange, and seasonal

variations in ocean-land temperature gradients. We can ask if this is a reasonable outcome and

what would happen if the uniformity in zonal atmospheric temperatures no longer held.

Marotzke (1996) describes a simple formulation for incorporating separate temperatures over land

into a four-box model. The equations are not solved analytically or numerically for steady-states

and the feedback analysis only considers the case with complete zonal mixing. The question



addressed here is whether allowing finite zonal heat transport efficiency changes the equilibrium

solutions or the feedback stucture or strength. If the change is significant, then the size of the con-

tinents and the atmospheric temperatures above them may have a strong influence on global tem-

peratures and the existing THC regime. If the change is not so significant, the ocean would still

have the strongest influence on global climate and the assumption of atmospheric uniformity

would not be too unrealistic.

1.3 Thesis Organization

Section 2 following the introduction develops the model's framework. The equations for

conservation of heat and moisture are combined with those governing zonal and meridional

fluxes. Assuming a linear atmosphere, analytical solutions are found. Section 3 explores the

equilibrium solutions. Parameters' effects on the geometry of solutions are used as references to

compare with the model under zonally uniform and stratified atmospheres. The feedbacks that

lead to different solutions are presented, followed by a numerical stability analysis of the

temperature-dominated steady-state. Section 4 summarizes results and suggests ways the model

can be further developed. Following the References, two Appendices include (A) derivations of

steady-state equations and (B) program diagrams and code.



2 Model Description

The model's construction is based on Marotzke (1996) sections 2 (Model Formulation) and 4

(Land Effects). The description of equations closely follows the one therein.

W

N 100 N 35 0 N

Figure 1: Vertical view of the box model in the northern hemisphere facing west. The ocean and the atmosphere over
it are in the foreground; the atmosphere over land is in the background. Heat fluxes are represented by light arrows
and moisture fluxes by dark arrows. Northward atmospheric transports are split E over the ocean and (1-E) over land.

2.1 Basic Equations

The system is represented as six boxes: two oceanic and four atmospheric (figure 1). The two

ocean boxes represent high-latitude and low-latitude basins (numbered 1 and 2, respectively) of

750 N



depth D that are completely mixed in both temperature and salinity. At the surface, H1 and H2 are

heat gain into each box; E is net evaporation from low-latitudes and net precipitation into high-

latitudes. q is the flow strength between boxes. It is positive when water moves poleward near the

surface. The four remaining boxes represent the atmosphere above high-latitude and low-latitude

ocean and land. The atmosphere's vertical structure is assumed fixed, so that surface air

temperatures equal the sea-surface temperatures below. At the top, HO, and H02 are heat gain over

the ocean; HL1 and HL2 are heat gain over land. Hd is the meridional energy transport, split EHd

over the ocean and (1 - E)Hd over land. Fw is the meridional moisture transport, also split EFw

over the ocean and (1-E)Fw over land. E used this way defines the ocean area relative to the total

surface area.

A key assumption behind the model is center manifold theory, which states that atmospheric heat

and moisture equilibration timescales (about a month and a week, respectively) are sufficiently

shorter than the ocean's (several hundred years) to be assumed virtually in equilibrium. ' Heat

storage and transport are based on meridional gradients, which are controlled by the ocean. We

therefore begin by defining ocean temperature and salinity gradients:

T T 2 -Ti (1)

S S2 - S 1  (2)

Then the equations for heat and moisture conservation are:

P1 = H 1 -ql T (3)

P2 = H2 -IqIT (4)

$ 1 = -Hs+IqIS (5)

$2 = Hs-IqIS (6)

To convert ocean surface heat gains H1 and H2 into fluxes H1 and H2 , multiply each by the heat

capacity of a unit column of water:

cpOD ~ 2xlO 10 Jm 2K 1 (7)



Flow strength q is a linear function of the meridional density gradient:

q = k(p 1 -P 2 ) = k(cT -S) (8)

where cc and $ are thermal and haline expansion coefficients. The hydraulic constant k represents

the dynamics between density and the flow field. The surface salinity flux Hs is a linear function

of the surface freshwater flux:

Hs = S (9)

where So is a reference salinity.

For the atmosphere, we assume heat and moisture capacities are negligible. By parameterizing

energy gain at the top and horizontal heat and moisture fluxes within, atmosphere-ocean

exchanges are determined as residuals of the steady-state budgets. We can now define the land

temperature gradient as:

TL= TL2 - TL (10)

Radiation terms for the top of the atmosphere are linear functions of the surface temperature

below:

HI = A 1 -BT 1  (1 1a)

H 02 = A 2 -BT 2  (11b)

HL1 = Al- BTL1 (12a)

HL2 = A 2 -BTL 2  (12b)

where A, and A2 are high-latitude (negative) and low-latitude (positive) shortwave radiation for 0

0C surface temperature. BT1 , BT 2 (over the ocean) and BTL1, BTL2 (over land) then represent the

longwave radiation components due to non-zero surface temperatures. Meridional heat and

moisture transports Hd and Fw are evenly distributed around a latitude circle so E occurs over the

ocean and (1-e) over land:



Hd = jn[T]n for n 0 (13)

FW = im[T]m for m 2 0 (14)

where the zonal mean temperature gradient is defined as:

[ T]= E T + (I - E)TL (15)

The powers n and m and coefficients in and im define alternative models that relate the trans-

ports to the temperature gradient. The remainder of the model description will use n = m = 1, so

j = j, and i = ji. Heat transport pairs HoLJ, HOL2 and HLO1, HLO2 respectively cross the

ocean-land and land-ocean boundaries and are periodic (figure 2). Only their zonal differences

are used:

HOL1 - HLO1 = (TI-TL1) (16a)

HOL2 - HLO2 = (T2 - TL2 ) (16b)

where p is the atmospheric zonal heat mixing efficiency. No atmospheric zonal moisture mixing

efficiency is explicitly prescribed. However, zonal heat transport is a factor in determining the

zonal mean temperature gradient, which governs both meridional heat and moisture transports.

Very efficient mixing produces a zonally uniform atmosphere where the temperatures over land

equal those over the ocean at the same latitude and therefore have no distinct role in determining

the meridional temperature gradient. Very inefficient mixing uncouples the temperatures-and

therefore heat and moisture transports-over the land and ocean. Temperatures and gradients

over the land can then independently influence the global mean meridional gradient.



2.2 Surface Meridional Fluxes

Heat Over the Ocean and Land

750 N

HOL1 I L1 HLOI T1 HOL1

(1-E)Hd CHd

350 N

HOL2 TL2 HLO2 T2  HOL2
N 100 N

E Land: (1-E) 
Ocean: E

Figure 2: Overhead view of atmospheric heat transports. Meridional transport is split E over the ocean and (1-C) over
land. Zonal transports have periodic boundaries and only their differences are used.

The atmospheric heat budgets over the ocean are functions of (1) energy gain at the top of the

atmosphere, (2) heat gain at the ocean surface, (3) meridional heat flux between ocean boxes, and

(4) zonal heat flux across the ocean-land boundary:

H 1 - I + Hd - (T - TL1) =E

H02 -R2 - Hd- (T 2 - TL2 ) = 0

The differential surface heat flux, defined as:

HT=H 2 -H1

(17)

(18)

(19)

is then derived from these two equations:

B + 9
HT = (2X +B) E(1-C) 9 (TE - T)

B+ 2X(1 - E)+ (1 E)
(20)



where the atmospheric equilibrium temperature gradient is defined as:

T A2 -A1 (1ETq = 2x+B(21)

This is the steady-state gradient resulting from a balance between atmospheric dynamic and

radiative transports alone. Note that X is defined as j divided by the total box area. The

differential heat flux (eq. 19) can then be rewritten as a Newtonian (power) cooling law for ocean

temperature:

HT = XL(TE -T) (22)

where the Newtonian damping coefficient XL is defined as:

XL = E + B) (23)
EL CPO

and the effective ocean area ratio EL is defined as:

B~~~( - E)l- -
(1E ) (24)

L B +

XL then relates the differential surface heat flux to ocean temperature differences. The prognostic

equation for the meridional temperature difference (combine eqs. 3, 4 and 8 with 19 and 22) is:

T = H7-2|q|T = XL(TE-T)-2k|xT -PSIT (25)

In steady-state:

( T E - T) =2qIT (26)
XL



When there is no flow, TE = T; when the flow is non-zero, TE > T. An ocean that transports heat

therefore reduces the meridional temperature gradient below what atmospheric transports alone

would prescribe. The difference varies inversely with the strength of XL, which is ultimately

dependent on g.

The atmospheric heat budgets over land are functions of (1) energy gain at the top of the atmo-

sphere, (2) meridional heat flux between land boxes, and (3) zonal heat flux across the ocean-land

boundary:

HL1+Hd+ Uj(Ti - TL) = 0 (27)

HL 2 -Hgd+ (T 2 -TL 2) = 0 (28)

The meridional temperature gradient over land is derived from these two equations:

TE(2x+B)+ T ( -2Exj

TL = (29)

2X+B+ F -2EX
(1 -E)

Now in steady-state:

TL = T+ 21q|(2x + B) (30)
2X+B+ -2cX

(1 -E)

When there is no flow, TL = TE = T; when the flow is non-zero, TL's relationship to TE > T varies

with p.



Moisture Over the Ocean and Land

750 N

0 0 ORiver 0
(1-E)Fw EFw

4le 1350 N
kRiver G)

N 100N
Land: (1-E) Ocean: E

-E Ec

Figure 3: Overhead view of surface moisture transports. Poleward meridional transport (in the atmosphere) is split E
over the ocean and (1-E) over land. Zonal and equatorward meridional transports (in river flow over land) are
determined by the catchment area ratio. Smaller c directs more freshwater to low latitudes where it evaporated;
larger Ec directs more freshwater to high latitudes where it precipitated.

The atmospheric moisture budget is composed of net evaporation from the low-latitude ocean box

and net precipitation into the high-latitude ocean and land boxes. Precipitation falls uniformly

around a latitude circle but the portion over land is directed back into the high- and low-latitude

ocean boxes through zonal and meridional river flow. The ratio EW of the ocean area to the precip-

itation catchment area Ec is defined so that when EW = 1, the catchment area equals the ocean area

and freshwater is directed to low latitudes where it evaporated. This counteracts the atmospheric

water transport cycle. When eW = E, the catchment area is the full latitude circle and freshwater is

directed to high latitudes where it precipitated. This case retains the full effect of the atmospheric

transport. When the catchment area is halfway between ocean area and full circle, half of the pre-

cipitation is transported between boxes and half returns to the originating low-latitude basin

(shown in figure 3). Evaporation minus precipitation E is then:

E = FW (31)
Ewarea

Combining this with the previous definitions of surface salinity flux (eq. 9) and atmospheric

moisture transport (eq. 14):



1 So
Hs = -- y[T]

EWD
(32)

Note that y equals i divided by the total box area. Now rewrite the meridional mean temperature

contrast as:

[T] =1T+(1- TE(2x + B)

ECL B +
(33)

and the prognostic equation for meridional salinity difference (combine eqs. 5, 6 and 8 with 32

and 33) is:

$ = 2Hs-2|q|S = 2 0 T ET +(1 -
EW D L

- 2kjaT - SIS

2.3 Equilibrium Solutions

To find the steady solutions, set T = 0 and S = 0 and solve for T (see Appendix A for the

derivations). For q > 0:

(2kPS - XL) + j(2kPS - XL)2

4ka

+ 8kcXLTE 
(35)

-kcScrit / E(X )- kS2
EB + C( )

Ts = p -k3

ka(Scrit - S)

where the critical salinity above which the steady solutions lie is defined as:

Scrit = 1 7 E sokaDWC L 0

(34)

T -

(36)

(37)



For a steady-state to exist between 0 and Scrit, the high-latitude box would have to be warmer than

the low-latitude box in equilibrium; a decidedly unrealistic outcome. The equations are more

readily analyzed in graphical form (figure 4 and table 1).

103aT

0 Scrit 2 4 TE 6

1053 S

Figure 4: T-S phase-space for g= 0; all other parameters at default values. Curves TT and TS respectively
represent T = 0 and S = 0. Along the diagonal aT = $S there is no oceanic flow. To the left, flow is poleward
near the surface; to the right, flow is equatorward near the surface. The diagonal aT = 2 S meets the poleward
flow branch of TT at its minimum. Where temperature and salinity curves intersect, A (stable) and B (unstable)
represent temperature-dominated and C (stable) represents salinity-dominated steady-states.

The diagonal aT = PS represents temperature and salinity balance where there is no flow. To

the left of this line, the flow is dominated by temperature: water moves poleward near the surface

(q > 0) to sink at high latitudes due to its decrease in temperature. To the right, the flow is

dominated by salinity: water moves equatorward near the surface (q < 0) to sink at low latitudes

due to its gain in salinity. T = 0 and S = 0 curves meet at the steady solutions: A (stable) and B

(unstable) have poleward flows and C (stable) has an equatorward flow. The existence and

geometry of these equilibria vary with the choice of parameter values or atmospheric model

(linear or non-linear). We now turn to exploring these equilibria and their stability.



Symbol Value Definition

A1  -39 Wm-2  High-latitude radiative forcing

A2  91 Wm-2  Low-latitude radiative forcing

B 1.7 Wm-2 K-1  Longwave radiation coefficient

X 1.3 Wm-2 K-1  Atm meridional heat transport efficiency

Y 2.8x10- 0 ms-1 K-1  Atm meridional moisture transport efficiency

oo Wm-2 K-1  Atm zonal heat transport efficiency

area 1.25x10 14 m2  Total high-latitude area

e 0.5 Fractional ocean area

EW 0.5 Fractional catchment area

a 1.8 x10~4 K-1  Thermal expansion coefficient

@ 0.8x10-3 psu-1  Haline expansion coefficient

k 2x10~8 s-1 Hydraulic constant

poc 4x106 J- 3K-1  Heat capacity of a unit water column

D 5x10 3 m Ocean depth

Table 1: Parameters and their default values. The default (infinite) value for zonal heat transport efficiency leads the
model to behave as described in Marotzke (1996).



3 Equilibrium Analysis

3.1 Parameter Influence

Multiple equilibria exist because the ocean's overturning q can be positive, negative or zero. To

understand how parameters can lead to different steady-states and their relation to each other, we

trace changes in values through their effect on TT and Ts. Let's initially consider atmospheric

zonal heat transport g to be infinitely efficient. Later we will relax this restriction and compare

the effects of finite p against the other parameter changes. The temperature over land TL therefore

converges to the ocean temperature T. Global surface temperatures and meridional heat and mois-

ture transports are determined only by the ocean. The effective ocean area ratio EL converges to

the ocean area ratio e and the Newtonian damping coefficient ?L becomes:

AL= e 2cp+D) (38)
E CPoD (38

The equation for TT (eq. 35) otherwise remains unchanged. Thus the only link between zonal

mixing efficiency and the equilibrium temperature gradient is through the restoring coefficient.

The ocean area ratio effectively scales the restoring strength between its minimum at C = 1 and its

maximum (infinite strength) at C = 0. With the equivalence of EL and C, the critical salinity Scrit

becomes:

Scrit k o (39)

and the equation for Ts (eq. 36) reduces to:



= - kS (40)
kc(Scrit - S)

Poleward and equatorward flow branches of both equilibrium curves meet at csT = PS, where there

is no flow. At this point on TT, the maximum equilibrium temperature contrast is TE; on Ts, the

minimum temperature contrast is To = 0.

Area Ratios

As the ocean area ratio e 4 0, XL becomes stronger and TT shifts upward to TE, the equilibrium

that ignores the ocean's role in heat transport. A smaller ocean cools more quickly and flow

dynamics have less influence than radiative balance on the steady-state temperature contrast. As

E -* 1, XL becomes weaker and TT shifts downward while remaining anchored at aTE = PS.

Now the ocean covers the planet and has a greater influence on the temperature contrast.

Continue increasing E greater than 1, and TT and Ts will no longer meet to form a temperature-

dominated solution. The result is a single salinity-dominated steady-state that remains relatively

constant even as e becomes quite large, due to the anchoring at TE.

As the ocean area to precipitation catchment area ratio EW E, Scrit increases and Ts shifts

outward from the diagonal aT = PS (the poleward flow branch moves up along 0.5aT = PS; the

equatorward flow branch moves down). The minimum remains aTO = PS. A larger relative

catchment area means equatorward river runoff has greater influence on the salinity contrast. The

flow to low-latitudes offsets net precipitation in high-latitudes, so less water is transported

between ocean boxes. The net impact is a larger meridional salinity gradient. Continue

decreasing EW lower than E and the temperature-dominated solution vanishes. The result is a

single salinity-dominated steady-state. As EW -- 1, Scrit decreases and Ts shifts in toward the

diagonal aT = PS. Now river runoff has less influence on the salinity contrast. With EW

increasingly larger than 1, two steady-states in temperature-salinity balance (no flow) result: one

at aTO = PS which is stable and one at aTE = PS which is unstable.

Bear in mind that varying e while holding EW constant changes the percentage of freshwater flux

carried meridionally by the land. For example, if E and EW are initially non-zero and equal, land



plays no role in moisture transport between ocean boxes. Decreasing E alone introduces a new

feedback as precipitation and river flow now carries water equatorward. To isolate the effects of

changes only in the ocean area ratio, the catchment area should be set so:

EW = (41)
_ E+ R(1 -E)

where R is the desired ratio of meridional to zonal river flow.

Atmospheric Transport Efficiencies

As the meridional heat transport efficiency X decreases, XL becomes weaker while TE increases.

Smaller Hd thus reduces the atmosphere's ability to balance a temperature contrast so T equili-

brates more slowly. As TE is determined by heat transport and radiative terms, a decrease in the

former can be offset by a net increase in the latter. X -+ 0 leads TE to be determined by radiative

balance alone, so:

T-T'R EIx = 0 B (42)

As X increases, XL becomes stronger while TE decreases. The damping shifts TT toward TE, only

now the cause is increased transport efficiency rather than decreased ocean area. With the

decrease in TE, TT shifts downward. Holding the radiative forcing terms constant, increasingly

efficient X will lead to a single salinity-dominated steady-state. Equilibrium T and S will be

smaller than for the other steady-states, due to the atmosphere's ability to balance the temperature

contrast. Recall that both TT and Ts are directly related to TE (eqs. 35 and 36).

As the meridional moisture transport efficiency y decreases, Scrit decreases and Ts shifts inward

toward the diagonal caT = PS. Smaller Fw thus reduces the atmosphere's ability to balance a

salinity contrast so S equilibrates more slowly. The result is familiar because y and EW appear in

the definition of Scrit as a ratio; a decrease in y is mathematically equivalent to an increase in EW

y -+ 0 leads to the two steady-states in temperature-salinity balance: stable at To and unstable at

TE. As y increases, Scrit increases and Ts shifts outward from the diagonal aT = PS. This



increases the atmosphere's role in moisture transport and is analogous to reducing equatorward

river runoff. Increasingly efficient y will lead to the single salinity-dominated steady-state.

103 aT

0 Scrit 2 4 TE 6
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Figure 5: T-S phase space with ~=0 ; all other parameters at default values. The arrows indicate the direction TT,
Ts and Scrit curves move as p is decreased. Only the salinity-dominated steady-state C remains. At C, aTE > $S, an
outcome not possible for the equatorward flow steady-state with infinite p.

Now let's allow finite zonal heat transport g (figure 5). The first-order effect is that land and

ocean temperatures no longer must equal each other. We can think about p's effect on meridional

temperature gradients over land and the ocean by observing TL - T. The difference should be at a

maximum when g = 0, so:

(TL - T)max
2X+B

B + 2X(l - e)ET)
(43)

which is greater than (TE - 7). It follows that TL > TE. Recall that as long as there is a non-zero

ocean flow, TE > T So we now have TL > TE > T. With finite g, as long as an ocean exists and has

non-zero flow, the temperature gradient over land will be larger than would occur with no ocean

(or flow) at all (figure 6).
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Figure 6: (TL - T) versus log (p/X) for several values of e. The default T is 25 *C. For smaller g and larger C, the
divergence between the temperature gradients over land and ocean increases.

The decrease in g also leads to an increase in eL and thus a weaker XL. As before, TT shifts

downward from TE while remaining anchored at aTE = PS. The equatorward flow branch shifts

so that aTE can be greater than PS in equilibrium, a result not possible with infinite zonal mixing.

The equilibrium ocean temperature gradient responds to the decrease in g exactly as to an

increase in e greater than 1. Finite zonal mixing thus provides a physical interpretation of further

increasing the ocean area ratio and allowing weaker restoring. The largest effective ocean area

occurs when =0, so:

Lmax B + 2( - )(44)

and the divergence between EL and e increases as the ocean becomes smaller (figure 7):
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Figure 7: (eL/E) versus log (p/X) for several values of e. The default T is 25 *C. For smaller g and E, the divergence
between actual and effective ocean area ratios increases.

Land temperatures become less responsive to the ocean's temperature gradient as ocean size

decreases. Meridional heat and moisture transports then also become more dependent on land

temperatures. So assuming perfect zonal mixing leads us to over-estimate the ocean area or

meridional heat transport that leads to the single salinity-dominated steady-state.

Turning to salinity, the increase in EL decreases Scrit- Ts flattens horizontally around TE, which is

manifest in an upward shift of the poleward flow branch and a rightward shift of the equatorward

flow branch. Note that the equilibrium salinity gradient no longer must pass through the origin.

The result is that an equatorward flowing steady-state is possible where there is a mean meridional

temperature contrast, but no purely oceanic temperature contrast. The mean contrast then equals

(1-E)TL. The largest salinity gradient in this situation occurs when g = 0. For q > 0:

S (A _ Bg)T((2 X+5B)T=0 %ew L B

and the divergence between this S and 0 increases as E decreases. Qualitatively this affects the

system's behavior only slightly, since the rightward shift in Ts occurs in the triangle below aTE =

PS, a region where no stable equilibria exist. The strongest influence on stability would be the

case where TE were quite small (due to say, large x). This would effectively place the shifted

portion of the curve to the right of aTE = #S, the region where the salinity-dominated steady-state



exists. While this equilibrium will then have a larger salinity contrast than with infinite zonal

mixing, it remains stable. This makes sense, since a larger salinity gradient encourages the

equatorward flow state. As the zonal mixing efficiency decreases, changes in the ocean area ratio

or meridional heat transport increasingly affect equilibrium salinities, where before they only

influenced temperatures. This tighter coupling leads the system to be more sensitive to parameter

variations, an indicator of decreased stability. Assuming perfect zonal mixing thus also leads us

to under-estimate the precipitation catchment area or meridional moisture transport that leads to

the single salinity-dominated steady-state.

Atmospheric Models

The preceding analysis has been based on linear atmospheric transports. Moving to the general

(non-linear) atmospheric models result in different analytical solutions for the steady-states. For

small atmospheric heat and moisture transport anomalies, we can linearize around the equilibrium

mean temperature gradient:

H'd Hd([] []') (T]) = in([T]-[T]')- -[T] (46)

F'W = Fw([T] + [T]') - Fw([T]) = im(T(W - [T]')m - [T] (47)

The mean meridional transports in steady-state are defined to be the same for any n or m, so all

models will have the same surface fluxes and flow field. In this case:

Hd(T)=nx[T]' = nXi-T' (48)
EL

F'w(T)~mii[T]' = my-T' (49)
CL

Thus atmospheric transports vary n and m times the linear values for a particular perturbation of

the meridional mean or ocean (from eq. 33) temperature gradient. Newtonian damping is then:

XL = - (2nx+B)(50)
EL 0



so a smaller n results in weaker restoring. As n decreases, XL decreases and eventually heat

transport becomes fixed for any T. This results in TT moving downward, similar to an increase in

E or decrease in X. Each results in less efficient heat transport. As m decreases, Scrit increases and

eventually moisture transport becomes fixed. This results in Ts moving upward, similar to an

increase in E, or decrease in y. Each of these changes results in less efficient moisture transport.

3.2 Feedback Structure

For any equilibrium flow state, the relative strength of the feedbacks largely determines whether

the system remains stable or makes a transition to another state. To determine the model's

feedbacks, we linearize ocean flow and atmospheric transport equations around the equilibrium

steady-states T = (T + T'), S = (S+S') and q = (-q+q'). Keeping only the first-order terms,

for q >0:

T'= T(T + T') - T(T) = H'T(T') - 2q'7' - 24T' (51)

S' S(T + T') - S(T) = H's(T') - 2q'S - 2S' (52)

where:

q' = k(caT'- PS') (53a)

4 = k(xT- P) (53b)

and:

H'r(T') D -- T' (54)
EL CP0D

H's(T'7) "2m T (55)
EL EWD

Then trace a perturbation in T' through the equations. Balancing (negative) feedback weakens

the behavior caused by a perturbation; reinforcing (positive) feedback strengthens the behavior.

The first four feedbacks this identifies are strictly oceanic. Mean flow (right-hand term in eqs. 51

and 52) reduces variations in T or S and is therefore balancing.
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Figure 8a: Feedback loops for mean flow, the ocean's tendency to reduce variations in temperature and salinity.
They represent the right-hand terms in eqs. 51 and 52. Both are balancing and therefore stabilize the equilibria.

Ocean heat transport (mid term in eq. 51) reduces variations in T given surface heat transport.

Ocean salinity transport (mid term in eq. 52) increases variations in S given surface moisture

transport.

T' q'
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Figure 8b: Feedback loops for ocean heat and salinity transport. They represent the mid terms in eqs. 51 and 52.
Heat transport is balancing and stabilizes the equilibria; salinity transport is reinforcing and destabilizes.

Ignoring all atmospheric effects, it is the ocean salinity transport that leads to more than one

steady-state. The following two feedbacks couple atmospheric transports with the ocean flow.

Atmospheric heat transport reduces variations in T but also reduces the strength of the ocean heat

transport. The loop balances considered strictly in the atmosphere, but reinforces when combined

with ocean flow.

T' H'T

-2q

Figure 8c: Feedback loop for coupled ocean-atmosphere heat transport. Considered strictly in the atmosphere, the
feedback is balancing but when coupled with ocean heat transport feedback (first loop in figure 8b) is reinforcing.
The combined feedback destabilizes the model's equilibria in that it counteracts the stabilizing ocean heat transport.



The dominance of ocean or atmospheric heat transport depends on XL. If damping is strong (large

H'T), atmospheric heat transport counteracts the ocean's temperature balancing effects; if

damping is weak (fixed H'T), atmospheric heat transport is minimal and its destabilizing effect on

the ocean's temperature moderation is weak. Atmospheric moisture transport increases variations

in T or S.

q'.+-2 q'T +Tq T

______H+st S

Figure 8d: Feedback loop for coupled ocean-atmosphere moisture transport. The feedback is always reinforcing and
destabilizes the model's equilibria.

In this case, the efficiency of atmospheric moisture transport does not affect the direct relationship

between T' and S' and the feedback is always reinforcing. Taken together, the last four loops

give a good representation of model dynamics.
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Figure 8e: Feedback structure showing ocean and coupled heat and salinity transports.

3.3 Equilibrium Stability

The parameter variations in the previous discussion can be categorized as equivalent to increasing

meridional atmospheric heat or moisture transports. For heat flux, larger e or smaller X decreases

the temperature equilibration time and emphasizes the vertical structure in T-S phase space. For

moisture flux, smaller EL or larger y decreases the salinity equilibration time and emphasizes the

horizontal structure. As the model is tuned so non-linear atmospheres have the same temperature-



dominated steady-state, varying n and m gives a good representation of alternative transport

strength scenarios. Each can readily be evaluated against various zonal mixing efficiencies to find

g's effect on feedback strengths. However, it is not clear whether the stability characteristics are

the same between different atmospheres. We proceed by considering five models corresponding

to different powers of n and m (table 2).

Model Values Description

a Xo, Yo Radiative balance alone

b X1, Y1 Fully linear atmosphere

c X1, 73  Linear heat, cubic moisture

d X3, Y1 Cubic heat, linear moisture

e X3, 73 Fully cubic atmosphere

Table 2: Atmospheric models.

Section 2 on parameter variation shows that the model is inclined to lose the temperature-

dominated steady-state (A in figure 4) due to changing parameter values or atmospheric transport

laws. It is therefore the state we test for stability. Beginning with a 10,000 year spin-up to

equilibrium (using Xi, yi), AS is removed from the high-latitude box and placed into the low-

latitude box. The measures of stability to consider are:

- The minimum perturbation AScrit that leads to the salinity-dominated
Smaller AScrit indicates a less stable model.

- The transition time to the new state for perturbations greater than AScrit. A
indicates a less stable model.

- The decay time to the original state for perturbations less than AScrit. A
indicates a less stable model.

steady-state.

shorter time

longer time

For three sets of trials, zonal heat transport efficiency is varied relative to meridional transport

efficiency: (1) g = 10X, (2) g = X and (3) g = 0.1X. Within each set, there are two separate trials

that differ only in the value of y in the spin-up. Atmospheric models are listed in order of

decreasing stability represented by AScrit (table 3).



Model (1) p = 1ox (2) = X (3) = O.1X

(n, m) y= 2.8 y= 2.2 y= 2 .8 y= 2.2 y= 2.8 y= 2.2

a (0, 0) 2.20 3.34 1.39 2.27 0 0.99

b (1, 1) 1.47 1.96 0.87 1.61 0 0.66

d (3, 1) 1.27 1.73 0.77 1.47 0 0.61

e (3, 3) 1.10 1.60 [5] 0.61 1.3562 [5] 0 0.52

c (1, 3) 1.09 1.65 [4] 0.55 1.3567 [4] 0 0.46

Table 3: AScrit required for a transition from the temperature-dominated steady-state to salinity-dominated. The

table can be read left-to-right for decreasing . or y (in alternate columns) or top-to-bottom for decreasing AScrit.

Bracketed figures indicate the changed order in stability based on AScrit. Where values are 0, only the salinity-

dominated state remains.

For any model with prescribed zonal heat transport, a larger meridional moisture transport results

in smaller AScrit, an indicator of less stability. Larger transport also implies increased sensitivity

to the value of m in the power law. Increasing y makes the destabilizing atmospheric moisture

transport feedback stronger, which agrees with the earlier conclusion that large enough y leads to

only the salinity-dominated equilibrium. Just this situation results in trial (3) where p = 0. 1X and

y= 2.8. The temperature-dominated state is then very unstable indeed.

Alternatively, for any model with prescribed meridional moisture transport, smaller zonal heat

transport decreases stability. Recall that decreasing g weakens Newtonian damping XL and thus

reduces heat flux HT. The destabilizing (when coupled with ocean circulation) atmospheric heat

transport feedback is then weaker. Considered alone, this should increase model stability. But

decreasing g also decreases Scit and increases HS. The (always) destabilizing atmospheric

moisture transport feedback is then stronger. The competing effects can be thought of as follows.

As HT decreases, the atmospheric heat transport feedback only stabilizes the model to the extent

that it no longer counteracts the balancing ocean heat transport feedback. It thus affects loop

dominance within a certain range specified by the ocean's feedback strength. But as Hs increases,

the atmospheric moisture transport continues to destabilize. Taken together, the salinity transport

feedback becomes more important as g becomes smaller. The full equations for linearized



temperature (combine eqs. 51, 53 and 54) and salinity (combine eqs. 52, 53 and 55) gradient

tendencies illustrate these influences:

P' = -(XL+ 2kaT+24)T'+2kPTS' (56)

$' = 2kc(mScrit - S)T' + 2(k5 -4)S' (57)

By setting T = 0 in equilibrium and solving for T', we get:

. 4k 2CT%(mScrt -5 )
S + 2(kS- S' (58)

XL+2kaT+24

So a change in parameters that decreases heat transport (say, smaller x) or increases moisture

transport (larger y) makes the first (negative) term of S' smaller and therefore destabilizes.

Decreasing p does both by increasing EL and decreasing Scrit (section 3.1).

For all trials, the model with fixed atmospheric heat and moisture transports (a) is the most stable.

Fixing the heat flux means that the reinforcing atmospheric heat transport feedback is no longer

active. Therefore, the balancing ocean heat transport feedback dominates the combined loop.

Fixing the moisture flux means that the reinforcing atmospheric moisture transport feedback is

also no longer active. Only the oceanic feedbacks are left, with salinity transport the remaining

destabilizing factor. If longwave heat loss B is also fixed, all surface fluxes would be prescribed

and the atmosphere and ocean would be uncoupled.

Models with linear moisture transport (b and d) are increasingly less stable. Relative to a fully

linear atmosphere, the cubic heat transport model has a stronger atmospheric heat transport

feedback. This loop destabilizes when coupled with the ocean's heat transport, but only to the

point where it counteracts the ocean's temperature balancing ability. Further increases in

atmospheric heat transport can not further destabilize, and then the fight for dominance is

between mean flow, ocean and atmospheric moisture transports.



Models with cubic moisture transport (c and e) are the least stable of all. Unlike the atmospheric

heat transport feedback, the moisture transport feedback always destabilizes. The order of

stability between the two models is not consistent in all cases though. For the models with linear

moisture transport laws (b and d), increasing atmospheric heat transport destabilizes; but for

models with higher-order moisture transport (c and e), stability varies depending on the strength

of heat and moisture transports. The linearized salinity gradient tendency (eq. 58) suggests why.

As long as mScrit is less than S, the first term of S' remains negative and stabilizes. This is the

case for m s; 1. For m > 2, this is no longer the case. Models with different values for y or g have

different ratios between mScrit and S and therefore may not have the same order of stability. Trial

(2) where g = X and y = 2.2 is very close to the bifurcation and so the model is very sensitive.

The time series for flow strength agrees with these expectations (figures 9 and 10).
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Figure 8: Flow strength for trial (1) g = 10 after a perturbation of 1.65 psu (the AScrit for model c). y = 2.2x10- 10

ms-1 K-1, with all other parameters at default values. Fixed and linear moisture transport models are the most stable.
Cubic moisture transport models show (e) takes less time than (c) to make the transition between states, suggesting it
is less stable.

For sub-critical perturbations in salinity, the three models with fixed or linear moisture transport

return to the temperature-dominated equilibrium in order consistent with the size of AScrit. These

same models with smaller g are given less of an anomaly, but even so, they return to equilibrium

much slower while preserving the order of stability.
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Figure 9: Flow strength for trial (3) p = O.lX after a perturbation of 0.52 psu (the AScrit for model e). y = 2.2x10-10

ms-1 K-1, with all other parameters at default values. Again, fixed and linear moisture transport models are the most
stable. Cubic moisture transport models show (c) takes less time than (e) to make the transition between states,
suggesting it is less stable in this case.

For super-critical perturbations in salinity, the two models with cubic moisture transport make the

transition to the salinity-dominated solution in different order depending on the value of g. In the

case with larger m, the model with fully cubic atmosphere (e) is the most unstable, making the

transition in less time than the model with linear heat transport (c). But decreasing g leads the

two models to change their order of stability. This also is consistent with the results using AScrit

Comparing flow strength between figures 8 and 9 also shows how smaller g leads to a weaker

flow for both equilibria, though more pronounced for the temperature-dominated state. Figure 5,

showing the T-S phase space with finite p explains why. Where q < 0, both equilibrium

temperature and salinity gradients decrease in response to smaller p. The heat and moisture

transport feedbacks are then both weaker. Where q > 0, the equilibrium temperature gradient

decreases but the salinity gradient increases in response to smaller p. In this case, the heat

transport feedback (which drives the flow) is weaker and the moisture transport feedback (which

counteracts the flow) is stronger.



4 Conclusions and Future Work

A simple box model has been developed to explore the influence of limited interaction between

the atmosphere over land and the ocean. The ocean consists of two boxes, with heat and salinity

transported meridionally through density gradient-induced overturning. The atmosphere consists

of four boxes-two over land and two over the ocean-with negligible heat and moisture

capacities. Most behavior can be captured through two (temperature and salinity) prognostic

equations, which both depend sensitively on the ocean area and atmospheric heat and moisture

transport efficiencies.

4.1 Bringing the Pieces Together

We started with an atmosphere thoroughly mixed zonally. Temperatures over the ocean then

equalled the sea-surface temperatures below, and temperatures over the land equalled those over

the ocean at the same latitude. The ocean (as long as it exists) then prescribes all atmospheric

temperatures. We then set out to determine how removing this restriction-by varying zonal heat

transport efficiency-would change model behavior, especially with respect to the equilibria and

feedbacks.

Ocean circulation moderates global temperatures and leads to an equilibrium meridional

temperature gradient smaller than would exist without an ocean (that flows). Finite atmospheric

zonal heat transport leads to an equilibrium temperature gradient over land that is larger than the

gradient over the ocean, and can even be larger than what would exist without an ocean. The

larger gradient over land then exerts more control over the global mean meridional temperature



gradient. Ocean basin size then becomes important, as a relatively large ocean still controls the

mean gradient but a smaller ocean has weaker damping and land temperatures control the mean.

The mean temperature gradient drives atmospheric meridional heat and moisture fluxes. The

larger temperature gradient over land thus leads to larger fluxes, which strengthen the

destabilizing atmospheric heat and moisture transport feedbacks. The result is that the model is

more sensitive to parameters like the ocean area or atmospheric heat and moisture transports. So

assuming infinite zonal transport efficiency causes us to over-estimate the perturbations necessary

for a transition between equilibria. As a result, ocean circulation in temperature- and salinity-

dominated steady-states is then weaker, though the temperature-dominated equilibrium is affected

more strongly. The salinity-dominated state is then a more likely outcome, and an equatorward

flowing solution with no oceanic meridional temperature contrast is possible.

While finite zonal transport efficiency increases feedback strength and model sensitivity, assum-

ing infinite transport (and so a zonally uniform atmosphere) is not unreasonable. Allowing the

atmospheric temperature gradients over the ocean and land to diverge does not substantially

change the equilibrium or feedback structure. Since land temperatures are determined as func-

tions of the meridional temperature gradient (in this formulation), more than the original number

of steady-states or feedback loops could not exist. A useful experiment to eliminate the constraint

on the number of steady-states would be to independently derive temperatures over land. A GCM

approach would allow this as well as indicate whether the increase in temperatures over land due

to finite zonal mixing is a robust result.

Further model exploration should focus on the change in model sensitivity with cubic

atmospheric moisture transport law. An experiment might use two distinct zonal heat transport

efficiencies and vary the moisture transport so that an initial equilibrium were equidistant

(measured by the critical salinity) from the bifurcation point around which sensitivity to a critical

perturbation varies. This would give a more accurate indication of the magnitude of perturbation

required to induce a transition between states, as the starting point would be the same.



4.2 Continuing Development

Due to its conceptual simplicity, the box model lends itself well to projects that add functionality

and analyze the changes in behavior (like allowing separate temperatures over land). Promising

areas for further development might similarly address the model's simplifying assumptions. First

is the ocean's uniform density regardless of depth. The simplest approach that balances the

salinity is to have the mixing flux proportional to the vertical gradient. This produces prognostic

equations for temperature and salinity in shallow and deep layers, thus adding an additional

"thermocline" box to each ocean basin.

Second is the lack of albedo. There are two ways of representing temperature-dependent changes

in reflectivity: cloud and ice cover. For clouds, the simplest approach is to make the radiative

forcing terms at the top of the atmosphere temperature-dependent. The parameterization assumes

a direct relationship between temperature and cloud formation, which is feasible but not ideal.

Alternatively, the radiative terms could be moisture-dependent. This is more appropriate under

general climatic conditions, and can be implemented using the Clausius Clapeyron relation

(already included in the numerical model), which relates atmospheric moisture content and

transport to the global mean temperature.

For ice, a significant level of cover requires that the ice build up over land (for support) rather

than the ocean. As the high-latitude box becomes colder, rain would become snow and a

"glacier" would accrete. The increased reflectivity would decrease temperature, thus adding new

reinforcing feedback to the system. To maintain the atmosphere's temperature dependence on the

sea-surface temperature, longwave radiation could be directly related to ice area coverage. As the

area coverage ratio and adjustment timescales are on the order of the ocean's, an additional

prognostic equation for ice volume at high-latitude would be required. The area would therefore

have to relate directly to volume through some relation. Ice effects become interesting since the

salinity flux equations then depend on ocean and atmospheric transports, the volume of the

"glacier," and its zonal and meridional meltwater runoff. Ice buildup decreases the ocean's

freshwater content, so salinity within the ocean is no longer conserved. As with the current

model, precipitation over the ice (which is on land) can be controlled through the catchment area

ratio EW. However, meltwater flowback would depend on the temperature.
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6 Appendices

A: Derivation of Steady-State Solutions

Following are brief guides through the derivation of equilibrium temperature gradient curves TT

and Ts.

A.1 Temperature

SetT = 0 and solve for T (q > 0):

XL(TE - T) - 2k(aT - PS)T = 0

Combine like terms:

22kctT _-(2k3S - XL)T - ILTE = 0

Apply the quadratic formula:

(25)

T 7=

And for (q < 0):

TT =

(2kPS - XL) + J(2kpS - XL)2 + 8kaXLTE
4ka

(2kS + XL) ± (2kS + XL)2 - 8kaXLTE

4ka

(35)



A.2 Salinity

Set S = 0 and solve for T (q > 0):

ET +(1 - E) -2k(aT - S)S = 0

Combine like terms:

-2kaS T = 2Soy(1
WDEL

T E(2X + B)
E( 
B+ __

E( 1-)

Substitute the definition for Scit and isolate T:

- kS 2

Ts =

And for (q < 0):

(36)
ka(Scrit -S)

-kacScri,(- ( E) TE(2X + B) + kPS2

EB + 9
E(1! - E)J

ka(Scrit + S)

2 S0 ry
EW D E-L

(2 0 

(34)

-2kpS 2



B: Program Code and Model Diagrams

B.1 Analytical Model Code

The analytical model is implemented in MATLAB. It is relatively straightforward; about half the

code is devoted to defining parameters and plotting routines. Parameters are set to default values.

% tsphase.m by David Sirkin, May 01 1998
% creates a T-S phase plot

% initialized parameters

Al=-39; % surf s/w rad forcing
A2=91; % surf s/w rad forcing
B=1.7; % surf 1/w rad coeff

chi=1.3; % atmos merid heat mix eff
mu=1.3e10; % atmos zonal heat mix eff
gam=2.8e-10; % atmos merid moisture mix eff

eps=0.5; % ocean area to total
epw=0.5; % ocean area to catchment

alp=1.8e-4; % thermal expansion coeff
bet=0.8e-3; % haline expansion coeff

k=2e-8; % hydraulic constant
rc=4e6; % unit vol heat capacity
D=5e3; % ocean depth

% derived parameters

epl= (B+2*chi* (1-eps) +mu/ (1-eps)) . / (B+mu/ (eps* (1-eps)));
lml=(2*chi+B)./(epl*rc*D);

So=34;
S=0 :0.1:10;
Sc=(l/epw)*(So/D)*gam*(eps/epl)*(1/(k*alp));

TE=(A2-Al)/(2*chi+B);

% T=0 (TT) and S=0 (TS) curves
% p=poleward flow branch & e=equatorward flow branch

% for T=0 e branch only, a has pos root & b has neg root

TTp =((2*k*bet*S-lml)+sqrt(((2*k*bet*S-lml).^2)...
+8*k*alp*lml*TE))/(4*k*alp);

TTea=((2*k*bet*S+lml)+sqrt(((2*k*bet*S+lml).^2) ...
-8*k*alp*lml*TE))/(4*k*alp);

TTeb=((2*k*bet*S+lml)-sqrt(((2*k*bet*S+lml).^2) ...
-8*k*alp*lml*TE))/(4*k*alp);



TSp=(-k*alp*Sc*((1-eps)/eps)*TE*(2*chi+B)/(B+mu/(eps*(1-eps))) ...
-(k*bet*(S.^'2)))./(k*alp*(Sc-S));

TSe=(-k*alp*Sc*((1-eps)/eps)*TE*(2*chi+B)/(B+mu/(eps*(1-eps))) ...
+(k*bet*(S.A2)))./(k*alp*(Sc+S));

% find critical points to define plotting range for TT

te=sum(alp*TE>bet*S); % alp*TE for p and e branches

im=sum(imag(TTea)>O); % imaginary limit for e branch

ln=length(TTea); % final value for e branch

% don't plot segments of TT where e>alp*TE

if alp*TTea(im+1)>alp*TE, im=te; end

% salinity (x-axis) and temperature (y-axis) vectors for the figure

sv=le3*bet*S;

tv=1e3*alp;

% plot T-S phase

figure

hold on

plot(sv(1:te),tv*TTp(1:te),'r-');

plot(sv(im:te),tv*real(TTea(im:te)),'r-');

plot(sv(im:ln),tv*real(TTeb(im:ln)),'r-');

plot(sv,tv*TSp,'b-',sv,tv*TSe,'b-');

axis([O 8 0 6]);

title('T-S Phase Diagram');

xlabel('10^3betaS'); ylabel('10^3alphaT');

% add landmarks to figure

plot(sv,sv,'k:',sv,2*sv,'k:');
line([0 8],[tv*TE tv*TE],'Color','k','LineStyle','--');

line([tv*TE tv*TE],[0 61,'Color','k','LineStyle','--');

text(tv*TE-0.1,-0.175,'TE'); text(-0.275,tv*TE,'TE');

text(le3*bet*Sc-0.1,-0.175,'Sc');

% add legend of derived values

patch([6 7.75 7.75 6],[0.25 0.25 1 1],'w');
text(6.25,0.65,['epsL = ',num2str(epl,3)]);
text(6.25,0.40,['lamL = ',num2str(lml,3)]);

hold off

% housekeeping

return



B.2 Numerical Model Diagrams and Code

The numerical model is implemented in MATLAB's Simulink environment. Changes in the feed-

back structure or subroutine definition are therefore relatively straightforward. Following are the

main structural and subroutine diagrams; they are accompanied by variable definitions where

required.

Outer loop:



Ocean flow strength:

T-in Alpha + -

S-in 'Beta

Mean meridional temperatures:

2 1 f (U)
TL1 (1-eps )*T1

[T1 Outport

2 f(u)

T1 eps*T1

a 1 f (U)

T2 (1-eps)*T2

I Outport

2 f(u)

TL2 eps*T2

Mean meridional atmospheric heat transport:

[T1]

Hd Outport

[T2]

where Hd=chi n*u[1]^n



Mean meridional atmospheric moisture transport including Clausius Clapeyron effect:

[T2]

where EP=gammajm* (u[1] Am)

Temperatures over land:

/ew*(1-p_cc+p-cc*(273+TMEstd)/(273+u[2]/2)* ...
exp(-5420* (1/ (273+u[2] /2) -1/ (273+ (TMEstd)))))

TL1

1* (1-eps)/mu TL2
Outport

HL2



Surface heat fluxes into the ocean:

1/(rc*D) Outport

TL1

Outport

H02


