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Abstract

The goals of this thesis were: (1) to establish methods for the determination of
nitrogen and carbon isotope ratios in marine particulate and sedimentary
chlorophyll derivatives; (2) to establish chlorophyll 815N and 613C as proxies for
the nitrogen and carbon isotopic composition of marine phytoplankton; and (3)
to use chlorophyll nitrogen isotopic ratios to understand the origin of Late

Quaternary Eastern Mediterranean sapropels.

Techniques are presented for the determination of chlorin nitrogen and carbon

isotopic ratios in marine particles and sediments with a precision greater than

0.15 per mil for both isotopes. The procedure can be performed in about 4 hours
for particulate and 8 hours for sediment samples, and relies on multiple

chromatographic purifications. About 20 g of a moderately organic-rich

sediment are required.

A technique is also presented for the determination of chlorin nitrogen and

carbon isotopic ratios by isotope-ratio monitoring gas chromatography-mass

spectrometry (irmGC-MS) by synthesizing bis-(tert.-butyldimethylsiloxy)Si(IV)
chlorin derivatives. However, yields for the 4-step synthesis were only about 5-
6% and there was a net isotopic depletion of 1.2 (± 0.3) per mil in the derivative,

relative to the starting material.

These techniques are then used to show that the nitrogen isotopic difference

between chlorophyll and whole cells in six species of marine phytoplankton is

5.16 ± 2.40 per mil. For carbon, the isotopic difference between chlorophyll and

whole cells in five species of marine phytoplankton is -0.02 ± 2.12 per mil. A

model of the distribution of 15 N in phytoplankton is constructed and it is

demonstrated that the interspecies variability observed for the nitrogen isotopic

difference between chlorophyll and whole cells can be attributed to differences in
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the partitioning of cellular nitrogen between non-protein biochemicals. In the
field, where mixed assemblages of phytoplankton prevail, the isotopic difference
beween chlorophyll and whole cells is expected to tend toward the average value
of 5.16 per mil.

Finally, the average nitrogen isotopic composition of chlorins from six Late
Quaternary Eastern Mediterranean sapropels (-5.01 ± 0.38 per mil) was found to
be very similar to the 615N of chlorophyll from the modem deep chlorophyll
maximum (-6.38 ± 1.80 per mil) in the Eastern Mediterranean. In addition,

sapropel photoautotrophic material, calculated from the chlorin 815N, had the

same isotopic composition (0.15 per mil) as both bulk sapropel sediments (-0.08 +
0.53 per mil) and deep water nitrate (-0.05 per mil). These data suggest (a) that

bottom waters were anoxic, (b) that organic matter burial efficiency was

enhanced, and (c) that oligotrophic conditions similar to today persisted, in the

Eastern Mediterranean during sapropel deposition. These results contradict
earlier interpretations of Late Quaternary bulk sedimentary 815N in the Eastern

Mediterranean. The latter concluded that the pattern of high 515N values in

intercalated marl oozes and low values in sapropels was the result of decreased

nutrient utilization, and hence, increased primary production, during sapropel

events. The low 815N of deep water nitrate in the Eastern Mediterranean
suggests a significant source of new nitrogen from biological N2-fixation.

It is suggested that attempts to reconstruct the nitrogen isotopic composition of

marine organic matter in the past by measuring the 815N of whole sediments
may be subject to misinterpretation due to the alteration of isotopic ratios during

diagenesis. The partial oxidation of marine organic matter can result in

significant isotopic enrichment of the preserved residual. The magnitude of this

enrichment appears to be large when bottom waters are well-oxygenated, and

small when bottom waters are anoxic. Environments where large temporal

redox changes have occurred are expected to be the most problematic for the

interpretation of bulk sedimentary 815N. In these environments, the diagenetic

signal can be at least as large as the primary isotopic signal being sought. The

Eastern Mediterranean Sea during the Late Quaternary appears to be one such

environment.

Thesis Supervisor: Daniel J. Repeta
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Chapter 1: Introduction

1.1 Goals of the Thesis

The goals of this thesis were: (1) to establish methods for the

determination of nitrogen and carbon isotope ratios in marine particulate and

sedimentary chlorophyll derivatives; (2) to establish chlorophyll 815N and S13C

as proxies for the nitrogen and carbon isotopic composition of marine

phytoplankton; and (3) to use chlorophyll nitrogen and carbon isotopic ratios to

understand the origin of Late Quaternary Eastern Mediterranean sapropels.

1.2 Overview of the Marine Nitrogen Cycle

Nitrogen is a limiting nutrient to primary production in the ocean

(Dugdale and Goering, 1967; McCarthy and Carpenter, 1983; McElroy, 1983).

Phytoplankton productivity is generally high where fixed nitrogen

concentrations are elevated and low where they are diminished. Since primary

productivity is thought to influence climate--through the uptake of atmospheric

carbon dioxide--and the generation of petroleum, it is important to understand

nitrogen cycling in the ocean.

The marine nitrogen cycle is complex and not well understood (Codispoti,

1995). Current estimates suggest that the combined oceanic sinks for nitrogen are

larger than sources by 75% (Codispoti and Christensen, 1985), but uncertainties

of a factor of 2 to 4 exist regarding the magnitude of each term. As summarized
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Figure 1.1: The global nitrogen cycle. Inventories are in units of 1015 g N.
Flows are in units of 1012 g N/year. The asterisk denotes a transport from
depth to the euphotic zone. Figure from Wada and Hattori (1990).
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in figure 1.1, net sources of combined (or fixed) nitrogen to the ocean are (1)

nitrogen fixation, (2) atmospheric deposition and (3) river runoff. Net sinks are

(1) denitrification (in the water column and in sediments), (2) burial in sediments,

and (3) exports of organic nitrogen such as fish catches, guano, and atmospheric

transport (Codispoti and Christensen, 1985; McCarthy and Carpenter, 1983).

Denitrification is the major sink for fixed nitrogen in the sea, while each of the

three source terms is thought to be of a similar magnitude (Codispoti and

Christensen, 1985).

1.3 Nitrogen Isotopic Ratios

Relatively little is known about the biogeochemistry of nitrogen in the

past. One means of studying nitrogen cycling is to measure the natural

abundances of its two stable isotopes, 14N and 15N. The heavier isotope

accounts for 0.37% of all nitrogen (in the solar system). The rates for biological

processes involving nitrogenous species are typically greater for 14N than for

15N as a result of higher vibrational frequency of bonding in the former (Owens,

1987). This results in isotopic depletion in products relative to substrates. For

certain processes, such as denitrification and biological nitrate uptake, this effect

can be large, with observed fractionations up to 40 (Cline and Kaplan, 1975) and

23 per mil (Wada and Hattori, 1978), respectively. As a means of examining

nitrogen biogeochemistry in the modem and historical ocean, this study sets

forth a method for determining the isotopic signature imparted to phytoplankton

as a result of these and other processes.



1.4 Diagenetic Alteration of Nitrogen Isotopic Ratios

One of the major impediments to interpreting sedimentary nitrogen

isotopic records is diagenesis. About 99% of organic matter produced in surface

waters is decomposed before reaching the seafloor, and most of the material

reaching the seafloor is degraded in the upper few centimeters of the sediment

column. It is perhaps not surprising, then, that nitrogen isotopic ratios of algal

material are altered prior to burial in sediments (Francois and Altabet, 1992;

Schafer and Ittekkot, 1993; Wada, et al., 1987). In many instances, the diagenetic

signal is as large or larger than the primary signal being sought.

One way to circumvent the isotopic alteration during diagenesis of bulk

organic material is to make N and C isotopic determinations in fossilized

biochemicals from phytoplankton. In addition, by comparing the isotopic

composition of the bulk phase with that of the biomarker, the magnitude of

diagenetic alteration can be determined. This quantity may contain information

about the paleo-depositional environment. This has been accomplished (see

chapter 5) and it is shown that the Late Quaternary nitrogen isotopic record in

Eastern Mediterranean sediments, previously interpreted in terms of changing

nutrient availability (Calvert, et al., 1992), is an artefact of diagenesis. A close

similarity between algal S15N and that of bulk sediments exists in sapropels, but

the two values differ by more than 5 per mil in modem non-sapropelic

environments. The similarity between algal 815N and that of bulk sediment in

sapropels suggests that bottom waters were anoxic during their deposition, since

oxic diagenesis tends to elevate sedimentary 815N values.



1.5 Chlorophyll: A Universal Algal Biomarker

The biomarker chosen for isotopic analyses in this study was chlorophyll.

Chlorophyll is a ubiquitous photosynthetic pigment found in all

photoautotrophs. Its structure consists of a functionalized cyclic tetrapyrrole

(C35H3505N4) complexed to a magnesium atom, and attached to a phytyl-ester

(C20H38) side-chain (figure 1.2). It is relatively resistant to chemical and

biological decomposition, as evidenced by the existence of ancient chlorophyll

derivatives (i.e., geoporphyrins (Treibs, 1936)) in the geological record.
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Figure 1.2: Structure of chlorophyll a (a), and the Fischer numbering system

for chlorins used in this thesis (b).
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Figure 1.3: Possible transformation pathways for chlorophyll a to DPEP. First
proposed by Treibs (1936). Figure adapted from Keely (1990) by Huseby
(1996).



Before burial in sediments, however, chlorophyll undergoes a sequence of

diagenetic transformations (figure 1.3) (Keely, et al., 1990; Treibs, 1936). For

instance, it rapidly loses the central Mg atom, and virtually all chlorins found in

sediments are demetallated (King, 1993). Additional functional groups are lost

on the diagenetic path to completely defunctionalized alkylporphyrins, such as

deoxophylloerythroetioporphyrin (DPEP) , shown in figure 1.3. However, the

most common chlorins encountered in this study of Recent sediments from the

Mediterranean and Black Seas and the Peru Margin were pheophytin a,

pheophorbide a, pyropheophytin a, pyropheophorbide a, and chlorin steryl esters

(King and Repeta, 1991).

These and other chlorophyll derivatives will be collectively referred to as

chlorins in this thesis. There is a rich nomenclature associated with chlorins and

Table 1.1: Most common chlorin abbreviations used in this text.

1 Not shown in figure 1.3; 2 The 10(S) stereoisomer, called an epimer; 3 Has a

methyl ester in place of the carboxylic acid

Chlorin Abbreviation

Chlorophyll a Chla

Pheophytin a PTNa

Pheophytin a' 1,2 PTNa'

Pyropheophytin a PPTNa

Pheophorbide a PBDa

Pheophorbide a' 1,2 PBDa'

Methyl pheophorbide a 1,3 MPBDa

Methyl pheophorbide a' 1,2 MPBDa'

Pyropheophorbide a PPBDa

Methyl pyropheophorbide a 1 MPPBDa



porphyrins (Scheer, 1991). Much of the (older) literature uses the trivial names of

the Fischer nomenclature, while a growing number of investigators are adopting

the IUPAC-IUB naming system. We have adopted a mixed nomenclature, for

ease of use, that incorporates many of the well-known trivial names from

Fischer's system as well as the Fischer numbering system (figure 1.2). The

chlorin abbreviations used in the text are listed in table 1.1.

1.6 Origin of Eastern Mediterranean Sapropels

Dark, organic-rich mud layers a few millimeters to 30 cm thick, and

having durations of 1-10 kyr, have periodically been deposited in the Eastern

Mediterranean since at least the Miocene (Kidd, et al., 1978; Olausson, 1961).

Their origin remains the subject of widespread debate. These green-brown to

black deposits, called sapropels, have organic carbon contents between 2 and

17%, and are interspersed between grey organic-deficient (~0.2% Corg)

nannofossil and foraminiferal marl oozes (figure 1.4). Most Eastern

Mediterranean sapropels appear to be basin-wide events at water depths below

about 800-1000 m (figure 1.5; Stanley, 1978). The most recent sapropel was

deposited from about 9,000 to 7,000 years before present (Troelstra, et al., 1991).

The two competing hypotheses regarding the origin of sapropels call on

either increased production or increased preservation of organic matter.

Unambiguous evidence supporting one over the other has been elusive since the

two are frequently not independent. However, new evidence from nitrogen

isotopic measurements in chlorins (presented in chapter 5) supports the

formation of sapropels from enhanced preservation of organic matter under

anoxic bottom water.
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Figure 1.5: Overview map of the Eastern Mediterranean Sea and schematics
showing the widespread occurrence of sapropels in that basin. Cores from
sites 964 and 969 were used in this study. Figure from Emeis, et al. (1996).
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1.7 The Black Sea: A Modern Analog for Sapropel Depositional Conditions

The Black Sea is the world's largest anoxic basin. Although the basin is

oligotrophic and primary productivity is modest (100-200 g C/m 2 /yr; Deuser,

1971; Sorokin, 1983), surface sediments contain 3-5% organic carbon (Glenn and

Arthur, 1985). This richness has been attributed to the increased burial efficiency

of organic matter under anoxic bottom water (Canfield, 1989; Demaison and

Moore, 1980). Contrary to traditional characterizations, the basin is not stagnant

(Southam, et al., 1982). Vertical velocities and deep water residence times are on

the order of those in the world ocean. Rather, anoxia results from the excess of

oxygen demand over supply in the deep water (Sarmiento, et al., 1988). This

excess is maintained by the circulation, independent of high export production.

Nitrogen isotopic evidence from chlorins supports a similar origin for

sapropels of the Eastern Mediterranean, and organic-rich sediments of the late

Holocene Black Sea. Additional faunal, isotopic and sedimentologic evidence is

discussed in chapter 5 that further substantiates this analogy.

1.8 Organization of the Thesis

Methods for the purification of particulate and sedimentary chlorins for

carbon and nitrogen isotopic analysis are presented in chapter 2. A chemical

derivatization procedure for the analysis of chlorin 815N and 813C by isotope-

ratio monitoring gas chromaography-mass spectrometry (e.g., irmGC-MS) is

presented in chapter 3. In chapter 4, experimental evidence from six species of

axenic phytoplankton is presented that suggests that chlorophyll is isotopically

depleted by about 5 per mil relative to total cellular nitrogen. Cellular carbon is



shown to be isotopically indistinguishable from chlorophyll carbon. Finally, in

chapter 5, chlorin nitrogen isotopic evidence is presented that suggests Late

Quaternary Eastern Mediterranean sapropels formed as a result of enhanced

preservation of organic matter, much like the organic-rich sediments of the

modern Black Sea.
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Chapter 2: Analytical Methodology I. Purification of Chlorins for Nitrogen

and Carbon Isotopic Analysis

2.1 Abstract

A method is presented for the measurement of chlorin nitrogen and

carbon isotopic ratios in marine particles and sediments that yields products that

are at least 88% pure, with a precision greater than 0.15 per mil for both N and C.

The purification procedure can be performed in about 4 hours for particulate

samples, and 8 hours for sediment samples, when two samples are processed in

tandem.

The procedure for particulate samples includes extraction with solvents,

two phase separations, and reverse- and normal-phase high-performance liquid

chromatographic separations (HPLC). The procedure for sedimentary chlorins

includes extraction by solvent, solid-phase extraction on silica gel, reverse-phase

HPLC, size-exclusion chromatography, and normal-phase HPLC. If only

nitrogen isotopic ratios are sought, the last two steps of the sediment procedure

may be omitted, as well as the last step of the particulate procedure.

Overall chlorin recoveries for particulate samples averaged 88%, while

those for sediment samples averaged 18%. The low recovery from sediments,

relative to particulate samples, is primarily a result of the complex distribution of

chlorins in sediments relative to particles, and the fact that only the one or two

most abundant chlorins from a sample are purified. It is also a result of the

additional steps required to purify sedimentary, relative to particulate, chlorins.

Nevertheless, both chlorin S15N and 813C values can be obtained with 20 g of a

moderately organic-rich (-2% Corg) sediment.



Finally, different chlorins from a surficial Black Sea sediment were found

to have different N and C isotopic ratios. The 615N differences are interpreted in

terms of changes in the seasonal flux of material out of the euphotic zone. The

813C differences are thought to derive from the presence or absence of the

chlorin phytyl side-chain.

2.2 Introduction

There are surprisingly few reports in the literature describing the

purification of chlorophyll-related pigments from natural samples for stable

isotopic analysis (Bidigare, et al., 1991). This, in part, is a result of the difficulty

in purifying these compounds from complex mixtures of organic material.

Chlorin pigments are non-volatile, thermally unstable, light- and oxygen-

sensitive, and chemically-reactive. Facing these problems, we have developed

both an on-line protocol utilizing isotope-ratio-monitoring gas chromatography-

mass spectrometry (irmGC-MS), and an off-line purification using high-

performance liquid chromatography (HPLC) followed by traditional dual-inlet

mass spectrometry. The liquid chromatographic procedures are described in this

chapter, while the gas chromatographic approach is discussed in chapter 3.

The goal of the analytical development was to develop protocols for the

purification of chlorins from marine sedimentary and particulate matter for

nitrogen and carbon stable isotopic analysis. The criteria for doing so were (1) to

maintain isotopic integrity of the chlorins, (2) to minimize sample size

requirements, and (3) to minimize time and labor per analysis.

The only published procedure for the purification of chlorins for N and C

isotopic analysis is a report by Bidigare, et al (1991). However, that method was



developed for chlorophyll a purification from terrestrial higher plants. It relies

on the precipitation of Chla with dioxane (Iriyama, et al., 1974), followed by

preparative reverse-phase high-performance liquid chromatography (Watanabe,

et al., 1984). Since sedimentary chlorins are predominantly demetallated (e.g.,

magnesium-free) and tend to be in a lipid-rich matrix, it was thought that the

dioxane precipitation would be unsuccessful. Indeed, the dioxane precipitation

fails even with Chla when the pigment extract is lipid-rich, as was the case with

certain algal cultures (R. Bidigare, personal communication).

Furthermore, partial chlorophyll demetallation occurred during sample

collection, storage and handling that resulted in substantial nitrogen isotopic

fractionation. For example, in three instances where harvested algal cultures

were stored at -20*C for 9 months, 53-65% of the Chla was converted to

pheophytin a and the demetallated product was found to be enriched in 15N by

2.0 (± 0.4) per mil relative to the intact Chla. Thus, in order to avoid isotopic

alteration resulting from partial demetallation, a procedure was developed for

the rapid and complete demetallation of algal chlorophyll directly following the

pigment extraction.

The methods described in this chapter should be suitable or adaptable to

the entire range of chlorins commonly found in marine particles and sediments.

Discussions with Dr. Ralf Goericke during my first two years in Dr. Repeta's

laboratory were instrumental in the development of these techniques.



2.3 Methods

2.3.1 General Laboratory Procedures

All solvents were HPLC-grade except for those used for GC and GC-MS,

which are GC/GC-MS grade. Unless otherwise noted, all glassware was cleaned

with Micro (Cole-Parmer, Chicago, IL) and rinsed with tap water (3x), distilled

water (3x), MeOH (3x), and acetone (3x). Pasteur pipets, Na2SO4, glass vials,

glass fiber filters, sand, aluminum foil, and glass wool were combusted at 450*C

for >8 hours. Teflon cap liners, cotton, and boiling chips (Hengar Granules,

Hengar Co., Philadelphia, PA) were soxhlet extracted in 7/93 MeOH/MeCl2.

Preparative thin-layer chromatography (TLC) plates were prepared as

follows. Alumina (Alumina G, 20 x 20 cm, 1000 pm phase, Analtech, Inc.,

Newark, DE) plates were activated at 90*C for 45-60 minutes, then eluted with

100% acetone and allowed to air-dry for >2 hours. Silica plates (Silica G, 20 x 20

cm, 1000 gm phase, Analtech, Inc., Newark, DE) were eluted with 100% acetone

and allowed to air-dry for >2 hours before being activated for >4 hours in an

oven at 180*C.

Analytical silica TLC plates (Polygram SIL G/UV254, 4x8 cm, 0.25 mm

layer, Macherey-Nagel GmbH & Co. KG, Duren, Germany) were activated at

110*C for >4 hours. Alumina (Aluminum Oxide IB, 2.5x7.5 cm sheets, J.T. Baker

Inc, Phillipsburg, NJ) and reversed phase (MKC18F, 1" x 3", 200 jm phase,

Whatman International, Ltd., Maidstone, England) TLC plates were used as

received.

Column chromatography packings were prepared as follows. Alumina

(Neutral Alumina AG 7, 100-200 mesh, BioRad, Richmond, CA) was soxhlet-



extracted for 24 hours in 7/93 (v/v) MeOH/MeCl2, then dried in an oven at

180*C for >4 hours. Flash silica (Matrex Silica Si, 60 A Pore Diameter, Amicon

Corp., Danvers, MA) was either soxhlet-extracted for 24 hours in 7/93 (v/v)

MeOH/MeCl2 and activated in an oven at 180*C for >4 hours, or combusted

(and activated) at 450*C for >8 hours.

2.3.2 Handling of Chlorin Pigments

Chlorophyll-related pigments are light and air-sensitive. Therefore,

exposure to both was minimized by a few simple practices. First, all

manipulations of pigments were carried out under low-light conditions. Samples

were stored dry, in the dark, at -20*C under a nitrogen atmosphere. If a sample

was stored dissolved in solvent for more than a few minutes it was kept in the

dark under a nitrogen atmosphere. Exposure to polar solvents, such as

methanol, was minimized to prevent allomerization and epimerization reactions

from occurring (Hynninen, 1979; Otsuki, et al., 1987; Zapata, et al., 1987).

2.3.3 Instrumentation

2.3.3.1 Spectrophotometry

Visible spectra of the pigments were taken on either a Varian Techtron

DMS-200 Spectrophotometer (Varian Techtron Limited, Springvale Road,

Mulgrave, Victoria 3170, Australia) or a Hewlett-Packard HP8452A Diode Array

Spectrophotometer (Rockville, Maryland). The instruments were referenced

against the appropriate solvent contained in a 1-cm quartz cuvette. The



resolution of the HP8452A was 2 run, while that of the Varian was 0.1 nm. A

spike at 656 nm occasionally interfered with the red band absorbance

determination while using the diode array spectrophotometer. This interference

was minimized by acquiring the sample spectrum immediately after taking the

reference spectrum. A discussion of spectrophotometric quantitation

calculations and baseline correction can be found in section 2.3:4.

2.3.3.2 Mass Spectrometry and Gas Chromatography-Mass Spectrometry

All mass spectrometry was performed in Fye Laboratory (WHOI) on a VG

AutoSpecQ connected to an Opus data system on a DEC Alpha workstation. The

instrument can be operated in any of three ionization modes: electron impact

(EI), chemical ionization (CI) or fast-atom bombardment (FAB). All three

ionization modes were employed during this work.

The GC-MS work employed a Hewlett Packard 5890 Series II gas

chromatograph connected to the VG AutoSpecQ. The GC was equipped with a

Hewlett Packard 7673 autoinjector.

For static FAB+-MS, nitrobenzyl alcohol (NBA) was used as a matrix,

source temperature was 250*C, source pressure was 3.5 x 10-4 mb, accelerating

voltage was 8 kV, resolution was set at 2000, scan time at 5.74 s/dec, and delay at

1.00 secs.

For CI-MS runs, CH4 was used as ionization gas, source temperature was

250*C, source pressure was 3.5 x 10-5 mb, filament emission was 1 mA, electron

energy was 35 eV, and the electron multiplier was set at 425.

For GC-CI-MS work, a 12 m SGE HT5 Aluminum Clad column (SGE

Incorporated, Austin, Texas) was used. The column had a 0.1 gm apolar phase



(similar in polarity to DB-5), an i.d. of 0.33 mm and an o.d. of 0.43 mm. A

deactivated silica bridge was used (1 m x 0.15 mm i.d.) to span the distance

between the GC and the source of the mass spectrometer due to the metallic

coating of the column. Automatic pressure programming was employed to

maintain a constant linear flow rate of 26.5 cm/sec of helium carrier gas. Unless

otherwise noted, the temperature program used was 50-80*C at 35 /min, then

80-275*C at 20*/min, then 275-320*C at 60/min, followed by a 30 minute

isothermal step.

2.3.3.3 Nuclear Magnetic Resonance Spectroscopy (NMR)

1H NMR spectra were obtained on a 300 MHz Bruker AC 300

spectrometer (Bruker Instruments, Inc., Manning Park, Billerica, MA) in

conjunction with an Aspect 3000 data system (Spectrospin AG, Industriestrasse

26, CH-8117 Faellanden, Switzerland). The field strength of the superconducting

magnet was 7.1 Tesla.

NMR tubes were thin-walled 5 mm x 9" tubes from Wilmad (cat. # 535-PP-

9, Wilmad Glass Company, Buena, NJ). They were washed with MeOH (3x),

MeCl2 (3x) and acetone (3x), before being dried first under a N2 stream, and then

in an oven at 180*C for >1 hour. NMR pipets were useful for transferring

samples to the tubes (cat. # 803A, Wilmad Glass Co.).

Solvents for NMR spectroscopy were >- 99.5% deuterated (Aldrich

Chemical Company, Milwaukee, WI).



2.3.3.4 High-Performance Liquid Chromatography (HPLC)

High-performance liquid chromatography was performed using either a

Waters 600E Multisolvent Delivery System with a Waters 990 Photodiode Array

Detector and Software (Waters Corporation, Milford, MA), or a pair of Waters

510 Pumps connected to a Hitachi F-1000 Fluorescence detector (Hitachi Ltd.,

Tokyo, Japan) and controlled by a ChemResearch Chromatographic Data

Management/System Controller (v. 2.4) (Isco, Inc., Lincoln, NE). The injector for

both configurations was a Rheodyne 7125 Syringe Loading Sample Injector

(Rheodyne, Inc., Cotati, CA), fitted with either a 200 or 1000 gL sample loop. A

Gilson FC 203 Fraction Collector was used for preparative work (Gilson Medical

Electronics, Middleton, WI).

The standard reverse-phase analytical column and conditions used in this

work to "fingerprint" all sample were as follows. An Adsorbosphere HS C18 3

Micron column with dimensions of 4.6 mm I.D. x 150 mm and 3 pm particle size

(cat # 28787, Alltech Associates, Inc, Deerfield, IL) was connected to the Waters

600E pumps and 900 photodiode array detector. A gradient from 100% A to

100% B in 30 minutes, followed by a 30 minute isocratic elution of solvent B, was

used. Solvent A was 20% 0.5 N ammonium acetate (aq) in MeOH. Solvent B was

20% acetone in MeOH. The flow rate was maintained at 1.5 mL/min.

This gradient was optimized by Dr. Repeta from previously published

methods (Mantoura and Llewellyn, 1983; Wright, et al., 1991; Zapata, et al., 1987)

to resolve the entire suite of pigments found in marine phytoplankton. It was

used in this work because the retention times of most algal pigments eluting

during this gradient are well-known and documented. It is not optimized for the

analysis of sedimentary chlorins, which often include non-polar chlorins, such as



the chlorin steryl esters (King and Repeta, 1991). Those compounds are not

eluted under these conditions.

Aside from the standard analytical reverse-phase conditions described,

the columns and solvent systems varied with the nature of the separation. They

will be described in later sections in association with the application they were

designed for.

2.3.3.5 Elemental Analysis (CHN)

CHN analyses were performed on an EA 1108 elemental analyzer with

Eager 200 data acquisition software (Fisons Instruments, Inc., Beverly, MA). A

Sartorius Micro balance was used for mass determinations (Sartorius AG,

Gottingen, Sweden). Organic samples--i.e., whole or partially purified extracts

and chlorins--were prepared by placing 50-1000 gg of sample, dissolved in < 200

gL acetone or MeCl2, via syringe, into an 8 x 6 mm tin cup (Smooth Wall Tin

Capsules, cat. # D4066, Elemental Microanalysis Ltd, Manchester, MA). The

solvent was then evaporated by heating from above with a 60 W lamp. Smooth

walled Sn cups were used because solvent creeping and leakage occurred with

"pressed" cups. When dry (- 5 minutes), the cups were folded with forceps and

stored in a dessicator until analysis.

Sediment samples, which had to be decarbonated before analysis, were

prepared using a modified "cup and saucer" technique (Cowie and Hedges,

1991). 10-100 mg of dry sediment, or 50-200 mg of wet sediment was placed into

an 8 x 5 mm pressed silver cup (cat # D2009, Elemental Microanalysis Ltd,

Manchester, MA), which was then placed into a silver saucer-an unfolded 8 x 5

mm Ag cup. After drying the sediment in an oven at 50*C for >12 hours, one



drop of 2 N HCl was added to the cup with a pre-combusted (450'C, > 8 hrs)

glass Pasteur pipet. The saucer caught any material that overflowed during the

effervescence. The sample was then dried for > 4 hours before being treated

again with 1 drop of 2 N HCl. This procedure was repeated until effervescence

ceased, at which time the sample was dried at 504C for > 24 hours. The silver

capsules were used for samples that were to be decarbonated because Sn

becomes brittle in HCl. The dry, decarbonated sample was then folded with

forceps (both Ag cups together) and stored in a dessicator until analysis. (The

decarbonated samples were highly hygroscopic, being rich in CaCl2, so exposure

to air was minimized.)

Cowie and Hedges (1991) reported some loss of nitrogen in certain

carbonate-rich sediment samples decarbonated in a similar procedure. The

comparison between total N in decarbonated and non-decarbonated sediments

was not performed in this study. However, of more relevance to this work was

the comparison of 515N values for decarbonated and non-decarbonated

sediments. For carbonate-rich surface sediments from the Black Sea (- 60%

CaCO3 (Ross and Degens, 1974)) there was no isotopic difference between the

treated and untreated sediment samples.

All values were blank-corrected for C and N associated with the sample

cups. This value was normally < 0.1 nmol N, and ranged between 0.2% and 7%

of the sample carbon. In addition, "procedural blanks" were prepared in order to

correct organic samples for C and N associated with the sample dissolution,

transfer and drying. These values were, again, normally < 0.1 nmol N and

ranged between 0.3 and 10% of the sample carbon. Finally, procedural blanks

were prepared in order to correct purified chlorins for C and N associated with

the chromatography. This was accomplished by collecting eluant at the typical

chlorin retention times from HPLC runs of solvent-only injections, and treating



the blanks like other samples during preparation for CHN (or isotope) analysis.

Again, the nitrogen blank was < 0.1 nmol N, but the carbon blank ranged from 13

to 30% of the sample carbon. (This carbon blank had a 813C of -25.1 per mil.)

Samples for irMS were prepared in an identical fashion to those for

elemental analysis.

2.3.3.6 Isotope-Ratio Mass Spectrometry (irMS)

Most isotope values (unless otherwise noted) were obtained at the Stable

Isotope Laboratory at the Marine Biological Laboratory, Woods Hole, MA 02543.

The facility consists of a Heraeus CHN Rapid Elemental Analyzer and a Finnigan

MAT delta S isotope ratio mass spectrometer coupled by an automated

"trapping box" for the sequential cryogenic purification of C02 and N2 (Fry, et

al., 1992). This system allows the determination of both 815N and 613C on the

same sample.

Samples are prepared for irMS analysis in the same manner as described

above for CHN analysis.

Standard delta notation is used for reporting stable isotopic ratios of

nitrogen and carbon. It is defined as

n (n -1)

n Sample
, Xn =1[) 1] x 1000 per mil

n (n-l)

Std.

where nX=15N or 13C. The carbon isotopic standard is Peedee Belemnite (Craig,

1953), a limestone that has been assigned a 813C value of 0.0 per mil. The

isotopic standard for nitrogen is atmospheric N2 (i.e., air; Hoering, 1955), which

has been assigned a 815N value of 0.0 per mil. Therefore, positive delta values



arise when a sample is enriched in the heavy isotope relative to the standard, and

negative delta values occur when a sample is depleted in the heavy isotope

relative to the standard.

Differences of delta values are reported in "delta-del" notation.

Specifically,

5X = nX Bulk nX Biomarker

where nX=15N or 13C. Bulk refers to the unaltered material from which the

biomarker was extracted (i.e., plant, sediment or filtered particulate matter), and

the biomarker is the purified pigment (i.e., chlorophyll a or other chlorin).

2.3.4 Beer's Law and Spectrophotometric Quantifications

The relationship describing the amount of light transmitted by a solution

to the concentration of a light-absorbing solute is the Beer-Lambert Law, or Beer's

Law (Jenkins, et al., 1980):

Log Io/I = A = eb c

where

I= intensity of monochromatic light transmitted through the

test solution

Io = intensity of light transmitted through the reference solution

(e.g., the blank)

A = absorbance (dimensionless)

E = molar absorptivity, or "extinction coefficient" (a constant for

a given solute/solvent system and a given wavelength)

b = light path length (usually in cm; always 1 cm in this thesis)

c = concentration of solute (in mol/L when molar absorptivity

is used).



Beer's Law states that the absorbance of a solution is directly proportional to the

light path length and the concentration of light-absorbing solutes. By

rearranging the terms of Beer's Law and solving for concentration,

c = A/(E b).

Beer's Law in this form allows, for a given wavelength, the determination of a

solute's concentration, assuming the molar extinction coefficient for the solute is

known. Path length (b) is always 1 cm in this study, and the absorbance (A), at a

given wavelength, is read from the spectrophotometer.

It is customary to choose wavelengths where maximum light absorption

occurs (Xmax) in order to attain maximum sensitivity. For the demetallated

chlorins the two most prominent Xmax are 410 nm and 666 rm. In impure

samples the absorption at 666 nm (the red band), rather than at 410 nm (the Soret

band), was used because the ultraviolet end of the spectrum was generally more

affected by contamination than the infrared end (figure 2.1). If the extinction

coefficient for the chlorin at 666 rm was not known, then the absorbance at 666

nm was multiplied by the published (King, 1993; Svec, 1978) S/R (i.e., Soret/red

band) ratio to calculate the theoretical absorbance at 410 nm.

In addition, the shape of the contamination spectrum was approximately

logarithmic, sloping smoothly down from the UV to the IR (figure 2.1.a). The

continuation of this curve was free-drawn under the red band and assumed to be

the actual baseline for quantifications of highly impure samples (King and

Repeta, 1994a). The absorbance thus calculated led to lower limit estimations of

pigment concentration.



(a)

Marked Wavelengths
Reg A: L 370 = 0.82944
Reg A: L 418 = 1.0336
Reg A: L 488 = 0.37888
Reg A: L 598 = 0.13857
Reg A: L 664 = 0.20430

(b)
Marked Wavelengths

Reg A: L 410 = 1.1505
Reg A: L 504 = 0.11012
Reg A: L 532 = 0.06819
Reg A: L 608 = 0.05501
Reg A: L 666 = 0.49458

WI

Figure 2.1: Visible spectra of (a) a whole sediment extract from Unit II of the

Black Sea, and (b) the most abundant chlorin in that extract (e.g., MPPBDa)
after purification according to procedures developed in this study.



2.3.5 Synthesis of Chlorin Standards

The synthesis of chlorin standards from Spirulina relied upon published

(King, 1993) and unpublished (Simpson and Repeta, unpubl.; Repeta, pers.

comm.) procedures optimized in Dr. Repeta's laboratory from standard protocols

(Falk, 1964; Fuhrhop and Smith, 1975; Scheer, 1991; Svec, 1978).

2.3.5.1 Methyl pheophorbide a

Methyl pheophorbide a was synthesized from spirulina chlorophyll a.

Spirulina powder (100 g, Earthrise, Petaluma, CA) was placed in a 1 L flask with

50 mg NaHCO3 (Aldrich, Milwaukee, WI) and a 2" magnetic stirring bar and

extracted with 300 mL degassed MeOH under a nitrogen atmosphere. The

extraction was accomplished by first placing the sealed flask in an ultrasonic bath

(Cavitator 5.5, Mettler Electronics Corp., Anaheim, CA) for 25 minutes, then

stirring at room temperature for 2 hours. The reaction mixture was then filtered

(Whatman GF/F, 47 mm) under vacuum. The spirulina was then re-extracted

twice in an ultrasonic bath for 20 minutes with 300 mL degassed acetone,

filtering after each extraction. The combined extracts were rotary evaporated

(Buchi RE-111, Buchi Laboratoriums-Technik AG, Flawil/Schweiz, Switzerland)

to dryness.

To the dried extract which contained chlorophyll a (Chla) was added 100

mL N2-sparged (2 hours) 3/97 (w/v) H2SO4/MeOH and a magnetic stirring bar.

The demetallation/trans-esterification reaction was stirred in the dark under a

nitrogen atmosphere and allowed to proceed overnight. The reaction mixture

was then diluted with 100 mL MeCl2 and neutralized by washing (2x) with 500



mL saturated NaHCO3 (aq) and (1x) with 500 mL water in a 2 L separatory

funnel. The aqueous phases were back-extracted (3x) with MeCl2 and the

combined organic extracts rotary-evaporated to dryness.

Severe emulsions formed during the water wash and during the back-

extractions. The formation of emulsions apparently is common when handling

"natural porphyrins in organic solvents" (Falk, 1964). Thus, the emulsions were

allowed to settle for many hours, but never completely cleared; some product

was inevitably lost. Analytical silica TLC, spotted with authentic standards and

eluted with 2/98 (v/v) MeOH/MeCl2, demonstrated that methyl pheophorbide

a (MPBDa) (figure 2.2) was the major product, with some pheophytin a present

and at least four more polar chlorins in minor amounts.

Figure 2.2: Synthesis of methyl pheophorbide a from chlorophyll a.

Me Me

Me Et Me Et

/ NN 3% H2SD4 H

N __N
Me Me Me Me

0 COOMe O COOMe
O-Phytyl OMe

Chlorophyll a Methyl Pheophorbide a

The extract was then redissolved in a small volume of MeCl2 and

chromatographed on a 2.5 cm x 15 cm flash SiO2 column with 2/98 (v/v)

MeOH/MeCl2 as eluant. The first band to elute was reddish orange, the second



band was brownish green, the third was brown, and the fourth was yellow.

Analytical SiO2 TLC spotted with chlorin standards and eluted with 2/98

MeOH/MeCl2 demonstrated that band 2 contained all of the chlorins. These

were shown to be predominatly MPBDa with some pheophytin a (PTNa) and

small quantities of more polar chlorins. Band 1 contained predominantly $-

carotene, and bands 3 and 4 contained various carotenoids.

The chlorin-containing fraction was rotary-evaporated to dryness,

redissolved in 25 mL MeCl2 and transferred to a 1 L erlenmeyer flask to which

was added 500 mL hexane. Recrystallization of MPBDa was accomplished by

allowing the flask to stand at room temperature for 4 days, after which time the

supernatant was poured off and the crystals were washed with hexane. The total

yield of methyl pheophorbide a from 100 g of spirulina was 1.9 mmol (1.1 g).

2.3.5.2 Methyl pyropheophorbide a

Pyrolization, or removal of the $-keto ester at C-10 of MPBDa, to form

methyl pyropheophorbide a (MPPBDa) was accomplished by refluxing the

MPBDa under a N2 atmosphere in 20 mL collidine, to which was added 2 drops

H20 (as a proton donor), for 2.5 hours. The collidine was then vacuum-distilled

off, and the MPPBDa residue was redissolved in 125 mL MeCl2. The extract was

then neutralized by washing (1x) with 200 mL 1 N HC, (2x) with 200 mL H20,

and (1x) with 50 mL saturated NaHCO3 (aq) in 100 mL H20. Emulsions were

problematic, especially with the water washes, and were left to settle, in some

instances, for many hours. The neutral organic extract was then dried over

Na2SO4, filtered (47 mm Whatman GF/F), and rotary-evaporated to dryness.



Analytical alumina and silica TLC (eluted with 10/90 acetone/hexane and

2/98 MeOH/MeCl2, respectively) spotted with authentic standards showed

MPPBDa to be the major product, with a small amount of PTNa or PPTNa, but a

significant quantity of green pigment remained at the origin on both plates. It

was hypothesized that this material was comprised of chlorin free-acids derived

from hydrolysis of the methyl ester on the propionic acid side-chain (i.e.,

pheophorbide a (PBDa) and pyropheophorbide a (PPBDa)), either during the

pyrolysis reaction, since water was added, or during the neutralization with 1 N

HCl.

Consequently, methylation of the free acids was attempted by repeating

the transesterification procedure described earlier, only this time with 4/96

(w/v) H2SO4/MeOH. Neutralization of the reaction mixture was accomplished

by diluting the 100 mL acidic methanol with 100 mL MeCl2 and pouring onto 500

mL saturated NaHCO3(aq). One washing neutralized the extract, which was

then washed (1x) with 500 mL water. The aqueous layer was then back-extracted

(3x) with 25 mL MeCl2. Surprisingly, emulsions did not form.

Analytical silica TLC (2/98 MeOH/MeCl2) spotted with authentic

standards showed MPPBDa to be the major product, with no detectable PPTNa

or PTNa, but with substantial green color at the origin. The organic extracts were

then combined, dried over Na2SO4, and rotary-evaporated to dryness. The dried

extract weighed 1.0 g.

The MPPBDa was separated from the polar material by flash silica column

chromatography (5 x 15 cm) and 2/98 tetrahydrofuran (THF)/ MeCl2 as eluant.

Carotenoids eluted first (orange/red color) followed by the chlorins (green).

Some green color also remained on the silica. The green fraction, shown by silica

TLC to contain predominantly MPPBDa with very minor amounts of some more

polar chlorins, was rotary-evaporated to dryness. The total amount of MPPBDa



synthesized was 0.39 mmol (214 mg), giving a yield of 21% for the pyrolysis, and

2.1 mg MPPBDa/g Spirulina.

2.3.5.3 9-Deoxo-methyl-pyropheophorbide a

The synthesis of 9-deoxo-methyl-pyropheophorbide a (9MPPBDa) from

MPPDa is based on previously published ketone reduction procedures using

sodium borohydride in trifluoroacetic acid (Gribble, et al., 1978; Gribble, et al.,

1977; Jeandon, et al., 1993; Smith and Smith, 1990). Sodium borohydride

(NaBH4, 100 mg, Fisher Scientific, Fair Lawn, NJ) was slowly added to 10 mL dry

trifluoroacetic acid (TFA, CF3COOH, Sigma Chemical Co., St. Louis, MO) with

stirring at 0*C under a rapid N2 stream (in order to prevent H2 buildup). The

MPPBDa (212 jimol, 116 mg), dissolved in 10 mL dry TFA, was then added to the

NaBH4/TFA mixture slowly via syringe. The ice bath was then removed and the

reaction was allowed to proceed under a N2 atmosphere for 5 hours.

The progress of the reaction was monitored occasionally by withdrawing

0.5 gL of the reaction mixture by syringe and adding it to MeCl2 in a cuvet to

which was added 1-2 drops of triethylamine (TEA, (CH3CH2)3N, Aldrich,

Milwaukee, WI) (Smith and Smith, 1990) to neutralize the solution. During the

course of the reaction the Soret band migrated from 410 to 404 nm and the red

band migrated from 666 to 648 nm. The reaction was complete when there was

no shoulder evident at 666 nm (figure 2.3).
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Figure 2.3: Progress of ketone reduction reaction. MPPBDa is converted to 9-

deoxo-methyl-pyropheophorbide a by reaction with sodium borohydride in

trifluoroacetic acid. After (a) 1 hour, (b) 2 hours, and (c) 5 hours.

(a) 1 Hour

(c) 5 Hours



The reaction mixture was then poured into a 500 mL separatory funnel

containing 200 mL water. The 9MPPBD was partitioned (3x) into 20 mL MeCl2,

until the MeCl2 layer was colorless. The combined organic layers, which were a

deep purple color, were then neutralized (1x) with 200 mL saturated

NaHCO3(aq), and the aqueous layer was back-extracted (2x) with 10 mL MeCl2,

until it was colorless. The combined organic extracts, which were a deep

emerald green color, were then washed (2x) with 200 mL water, back-extracting

the aqueous layer each time with (2x) 10 mL MeCl2. The combined organic

extracts were dried over Na2SO4 and rotary-evaporated to dryness. The reaction

product weighed 110 mg (206 gmol 9MPPBD) giving a yield for the ketone

reduction of 97%.

2.3.6 The Purification of Particulate Chlorophyll afor Isotopic Analysis

2.3.6.1 Particulate Sample Collection

The procedures for the purification of Chla for stable N and C isotopic

analysis from cultured phytoplankton and marine suspended particulates are

described here. The protocol for purifying sedimentary chlorins for isotopic

analysis can be found in section 2.3.7.

Culture and marine particulate samples were collected by filtration

through a pre-combusted (450*C, > 8 hours) 293 mm Gelman A/E filter. The

culture samples were vacuum-filtered, while the marine particulate samples

were pumped from depth with garden hoses connected to a pneumatic pump

(Lutz Pumps, Inc., Norcross, GA). Filters were immediately stored at -20 to -40*C



(field samples and 3 culture samples), or in liquid nitrogen (remaining culture

samples), until extraction.

2.3.6.2 Particulate Sample Extraction

Just prior to extraction, filters were thawed at room temperature and 2 x 1

cm subsamples were removed for whole-cell 615N and 613C determinations

using a cork-borer. Filters were ultrasonically extracted by probe (3x) in 125 mL

degassed acetone to which had been added approximately 5 g NaHCO3 (for

neutralization of extract to prevent chlorophyll demetallation). The extracts were

filtered through a 47 mm GF/F filter, and the filtrate was sparged with N2

during subsequent extractions. The combined extracts (500 mL) were poured

into a 2 L separatory funnel containing 125 mL water, and the chlorophyll was

partitioned (3x) into 200 mL hexane. The chlorophyll in both the combined

hexane fractions and the aqueous fraction was then quantified

spectrophotometrically. Typically, no chlorophyll a remained in the aqueous

fraction.

The combined hexane fractions (800 mL) were then back-extracted (1x)

with 200 mL 15/85 H20/MeOH to remove carotenoids. The chlorophyll was

then re-quantified in both the hexane and aqueous fractions.

Demetallation of the chlorophyll, to form pheophytin, was accomplished

in a third phase separation by adding 200 mL 10% HC (aq) to the hexane fraction

and shaking for 1 minute. The color of the hexane solution changed from

emerald to pine green. The aqueous fraction was poured off and the hexane

neutralized with 100 mL 2% (w/v) NaHCO3 (aq). The hexane phase was then

dried over Na2SO4, and rotary-evaporated to dryness. A final



spectrophotometric quantification was performed before the dried extract was

stored under nitrogen at -20*C.

2.3.6.3 Particulate Chlorophyll Chromatographic Purification

Further purification of the pheophytin a was achieved using preparative

reversed-phase (C 18) HPLC , followed by isocratic normal-phase (SiO2) HPLC

on an analytical column.

The dried extracts were dissolved in a small (100-500 gL) amount of

MeCl2 before being injected into the HPLC. Injections were between 50 and 200

gL. The preparative C18 column was a Kromasil Kr1OO-5-C18 with dimensions

of 10 mm I.D. x 250 mm, and a particle size of 5 pm (Eka Nobel, Bohus, Sweden).

A Kromasil 10 mm I.D. x 50 mm guard column packed with 5 Rm C18 was

placed in front of the preparative column. Normally, 2 to 5 injections of between

1 and 25 mg of extract (amounting to 0.5 to 4 gmol PTNa) were performed,

depending on the size of a sample.

The solvent gradient for the two-solvent (e.g., MeOH/acetone) system is

shown in table 2.1. The flow rate varied between 6 and 7 mL/min. The

chromatogram was typically monitored at 666 nm. Pheophytin a and a' peaks,

eluting at about 20 and 21 mins, respectively, were detected with a photodiode

array detector or a fluorescence detector, and collected into 18 mL glass vials

with a fraction collector. The chlorins were then rotary-evaporated to dryness

and stored at -200C until the normal-phase chromatography was performed. The

column was cleaned between samples with 90 mL 100% MeCl2 (e.g., 15 minutes

at 6 mL/min).



Table 2.1: Solvent gradient for preparative C18 HPLC. Time is in minutes,
solvent A is methanol, solvent B is acetone, and flow rate is in mL/min.

Time % A % B Flow

0 95 5 6

10 70 30 6

15 65 35 7

30 0 100 6

35 0 100 6

Samples for SiO2 HPLC were redissolved in 100-400 gL 10/90

acetone/hexane before being injected (50 to 200 gL) into the HPLC. This

corresponded to 0.5 to 2 mg PTNa per injection. An Alltech Spherisorb Silica 3

Micron analytical column with a 3 gm particle size and dimensions of 4.6 mm

I.D. x 100 mm (cat # 8556, Alltech Associates, Inc, Deerfield, IL) was used to

purify the pheophytins. Isocratic elution of 4/96 acetone/hexane, at 2 mL/min

resulted in PTNa' and PTNa retention times of about 11 and 13 minutes,

respectively. The chromatogram was usually monitored at 666 nm. The peaks

were collected into 4 mL glass vials with a fraction collecor, then dried under a

N2 stream, and stored at -20'C until isotopic or CHN analysis.

Care was taken to collect the entire chlorin peak during chromatography

in order to prevent isotopic alteration of a sample resulting from across-peak

isotopic variations (Bidigare, et al., 1991).

The column was cleaned between samples with 60 mL 100% acetone (e.g.,

30 minutes at 2 mL/min). Re-equilibration of the column with 4/96

acetone/hexane was accomplished in 30 minutes (at 2 mL/min).

The pheophytin recoveries for the purification were 88% (± 18%), or about

90-95% for each step. No isotopic fractionation was imparted during the



purification (as will be discussed in detail in section 2.4.3). Two samples,

prepared in tandem, can be processed in about 8 hours.

2.3.7 The Purification of Sedimentary Chlorins for Isotopic Analysis

2.3.7.1 Sediment Extraction

Frozen sediments (50-125 g wet wt or 20-50 g dry wt) were thawed at

room temperature, transferred to 800 mL centrifuge tubes, and successively

sonic-extracted (Vibra Cell, 70% duty cycle, output control 8; Sonics and

Materials, Inc., Danbury, CT) with an immersion probe for 9 minutes each in 700

mL 100% MeOH, 50/50 MeOH/MeCl2, 25/75 MeOH/MeCl2, 100% MeCl2. The

centrifuge tube was immersed in an ice water bath during extraction to mitigate

both pigment decomposition and solvent evaporation. After each of the 4

extractions, the samples were immediately centrifuged (Model 2K, Needham

Heights, MA) for 10 minutes at 1200 r.p.m. The supernatants were then

decanted, combined and rotary-evaporated to dryness.

2.3.7.2 Solid-Phase Extraction (SPE)

The dried sediment extracts (typically containing 2 to 7 gmol chlorin) were

then redissolved in 10 mL 7/93 MeOH/MeCl2 and applied, via pipet, onto a 5 x

10 cm flash Si02 column (Matrex Silica Si, 60 A Pore Diameter, Amicon Corp.,

Danvers, MA).



The column was prepared by pouring a slurry of 75 g unactivated silica in

MeCl2 into a 5 x 45.7 cm flash chromatography column (cat. # 5872-20, Ace Glass,

Inc., Vineland, NJ) containing a plug of glass wool and a thin (5 mm) layer of

sand at the bottom. The column was then eluted, under N2 pressure of 2-5 p.s.i.,

with 600-1000 mL 7/93 MeOH/MeCl2. This both packed and washed the silica.

A thin layer (5 mm) of sand was then applied to the top of the silica by slowly

pouring it into 200-400 mL 7/93 MeOH/MeCl2-

The sample was eluted from the column with 600 mL 7/93 MeOH/MeCl2.

The first -100 mL to elute were orange and contained s-carotene and other

carotenoids. The next -200 mL to elute contained most of the common chlorins

found in marine sediments. They ranged in polarity from chlorin steryl esters

(non-polar) to pheophorbide a (chlorin free-acid), yet proceeeded down the

column as one indistinguishable band. This fraction was green/brown or black

in visible light, depending on the size of the sample, but was an intense

pink/orange under UV light. A hand-held UV lamp was useful for monitoring

the chromatography. The chlorin fraction was collected, rotary-evaporated to

dryness, and stored at -20*C.

Typically some pink/orange fluorescence (under UV light) remained at

the origin. From the color of the material in visible and UV light it was probably

chlorin-derived, however recoveries of total chlorin from the column (assuming

an extinction coefficient (E666) of 5 x 104 for the red band (King and Repeta,

1994a) and a molecular weight (MW) of 550 or 850, depending on the sample)

averaged >100%, so it is unlikely that the material remaining on the column

accounted for a significant fraction of the total chlorin. Yields greater than 100%

can arise from the baseline correction of visible spectra of highly impure samples.

(See section 2.3.4 for a discussion of spectrophotometric chlorin quantitation in

impure samples.)



The purity of the chlorin fraction (E666 = 5 x 104 , MW = 550 or 850) after

SPE was 4.0% (± 1.2%) for 7 Mediterranean and 4 Black Sea sediments. This

compares to a purity of < 1% for the whole extract prior to SPE. Most

importantly, though, the procedure removes much of the chromatographic

"baseline" that interferes with chlorin detection at 666 nm (figure 2.4.a). In

addition, SPE desalted the samples of seasalt collected during the solvent

extraction. In so doing, it circumvented the need for cumbersome phase

separations which resulted in severe emulsions and loss of sample.

2.3.7.3 Preparative Reverse-Phase High-Performance Liquid Chromatography (HPLC)

Prior to the preparative C18 chromatography, a "fingerprint"

chromatogram of each sample was taken on analytical C18 HPLC in order to

determine the chlorin distribution. The conditions for the chromatography are

described in section 2.3.3.4.

Then the dried extract was redissolved in 200 to 1000 gL 10/90

MeOH/MeCl2 and injected (50-200 gL at a time) onto a preparative C18 HPLC

column (Kromasil Kr 100-5-C18, 10 mm I.D. x 250 mm, 5 11m particle size; Eka

Nobel, Bohus, Sweden), fitted with a 10 mm I.D. x 50 mm guard column

(Kromasil 5 9m C18 packing), and connected to a Waters 600E pump and 900

photodiode array detector. Up to 30 mg of extract and 5 pmol of chlorin was

injected at a time, but 10 mg extract and/or 2 gmol chlorin gave the best

results. The chromatogram was monitored at 666 nm and prominent chlorin

peaks were collected with a fraction collector into 18 mL glass vials.

The solvent gradient was 75% A to 100% B in 15 minutes, then 8 minutes

of 100% B. Solvent A was 10/90 H20/MeOH. Solvent B was acetone. The flow
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rate was maintained at 6 mL/min. Approximate retention times for common

chlorins are listed in table 2.2.

Table 2.2: Retention times for common sedimentary chlorins on preparative
reverse-phase (C18) HPLC.

Chlorin* tR (mins)

PPBDa 6.5

MPPBDa 9

PTNa 15

PPTNa 17

CSE's 18-20
* Abbreviations are as follows: pyropheophorbide a (PPBDa), methyl

pyropheophorbide a (MPPBDa), pheophytin a (PTNa), pyropheophytin a
(PPTNa), and chlorin steryl esters (CSE's).

Recoveries for the preparative C18 HPLC varied widely with the

distribution of chlorins in and size of a sample, but averaged 24% (± 9%). A

sample containing one or two chlorins typically had a higher recovery than one

containing a dozen chlorophyll degradation products because it was not practical

to collect and purify a dozen chlorins from a single sample. For example, figure

2.4.b shows the distribution of chlorins in a surficial Black Sea sediment extract

after solid-phase extraction. Only the two largest peaks, PTNa and PPTNa (tR =

40.3 and 49.1 mins., respectively), accounting for about 50% of the total chlorin in

the sample, were collected and purified. (The leading half of the PTNa peak is

the unknown chlorin, "Chl686" discussed in section 2.5.3.1.) This alone resulted

in recoveries of no better than 50%.

The purity of chlorins collected, based on gravimetry and

spectrophotometry, ranged from 12 to 78%, and averaged 43% (± 22%).



2.3.7.4 Size Exclusion Chromatograpy (SEC)

Size exclusion (or gel permeation) chromatography was used to remove

impurities having similar polarities to the chlorins. This technique separates

compounds on a styrene-divinyl benzene gel, based on the effective length of

their longest dimension. Previous researchers have successfully used SEC to

separate carotenoids from chlorins (King and Repeta, 1994b; Repeta and

Gagosian, 1984; Repeta and Gagosian, 1987), and to separate metalloporphyrins

from crude oil (Fish and Komlenic, 1984). In this study, a Shodex GPC K-801

column (8 mm I.D. x 300 mm length; Showa Denko K.K., Tokyo, Japan), having

an exclusion limit of 1.5 x 103 Daltons, and fitted with a Shodex K-G guard

column (8 mm I.D. x 100 mm length) was eluted with degassed MeCl2 at 1.0

mL/min. The sample (0.25-4 gmol chlorin, 0.5-3 mg), dissolved in 200 pL MeCl2,

was injected in 20 to 80 gL aliquots, such that 0.5 mg of sample and < 0.5 gmol

chlorin were injected at a time. The chromatogram was monitored at 666 nm,

chlorin peaks were collected with a fraction collector into 4 mL vials, then dried

under an N2 stream and stored at -20*C.

Retention times (equal to retention volumes, for the flow rate of 1.0

mL/min) for some common pigments are given in table 2.3. A size-exclusion

chromatogram of a surface Peru margin sediment extract is shown in figure 2.5.

Good separation between pheophytins and pheophorbides was observed (figure

2.5.b), with carotenoids tending to elute between them (figure 2.5.a). The chlorin

peak preceding the pheophytins are the chlorin steryl esters (CSE's), and the peak

preceding them is high molecular weight chlorin material (King and Repeta,

1994a). In practice, for preparative-scale work, the following retention times

were typical: CSE's, 5.3-5.6 mins.; PTN's and carotenoids, 5.8-7.0 mins.;

pheophorbides, 7.0-8.4 mins.
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Table 2.3: Retention times of reference compounds for size exclusion

chromatography.

Compound tR (mins)

PTNa 6.12

MPBDa 6.53

1-Carotene 6.65

MPPBDa 6.70

The recovery of chlorins from the SEC column averaged 89% (± 12%),

while the average purity of chlorins recovered (based on gravimetry and

spectrophotometry) was 78% (± 13%). The chromatogram in figure 2.4.c gives

some indication of the purity of chlorins--in this case, pheophytins--after SEC.

By comparison with the chromatogram after SPE (just above it) it is clear that

much of the chlorin contamination has been removed.

2.3.7.5 Normal-phase (SiO2) High-performance Liquid Chromatography

The final purification step for sedimentary chlorins was isocratic

preparative normal-phase (SiO2) HPLC. A 10 mm I.D. x 250 mm Kromasil

KR100-5-Sil column was used, containing 5 gm packing, and connected to a 10

mm I.D. x 50 mm Kromasil guard column with the same packing. Typical

injections were 100 gL and contained 1 mg sample and 0.5 gmol chlorin. The

solvent mix varied depending on the chlorin, but was always comprised of

acetone and hexane (table 2.4). The flow rate was maintained at 6 mL/min. The

chromatogram was monitored at 666 nm, and chlorin peaks were collected into

18 mL glass vials, then rotary-evaporated to dryness.



Table 2.4: Solvent mix for isocratic elution of common sedimentary chlorins
on preparative SiO 2 HPLC. Values are ratios of acetone to hexane. Also listed

are the approximate retention times for the chlorins.

Chlorin Acet/Hex tR (mins)

PPTNa 5/95 9.5

PTNa' 5/95 12

PTNa 5/95 13

MPPBDa 20/80 7

PPBDa 30/70 6.5

Recoveries for the SiO2 chromatography averaged 67% ( 7.6%), The

primary reason for the low recoveries was the separation, from the chlorin peak

of interest, of structural isomers and allomers that had coeluted on both C18 and

size exclusion chromatography.

Chlorin purities after SiO2 HPLC averaged 88% based on both gravimetry

and elemental analysis (see discussion in section 2.4.2). Figure 2.4.d shows a

typical SiO2 HPLC chromatogram of a sample containing PPTNa, PTNa', and

PTNa. The purity of the chlorins is attested to by the absence of other visible-

light-absorbing material.

The entire purification procedure can be accomplished in one day if two

samples are processed simultaneously. Chlorin recoveries for the entire

procedure averaged 18%.



2.4 Results

The procedure for N and C isotopic determination in particulate and

sedimentary chlorins was designed for most common chlorophyll degradation

products. In this work it was used successfully to measure 815N and 613C of

particulate Chla and Chla' (i.e., the 10(S)- stereoisomer of chlorophyll a), and

sedimentary PTNa, PTNa', PPTNa, PPBDa, and MPPBDa. Aside from the

requirements of having broad applicability and high recoveries, the technique

had to produce highly pure products and maintain isotopic integrity. This

section describes results of experiments to determine elemental and isotopic

purity of the chlorins thus prepared.

2.4.1 Purity of Particulate Chlorophyll a

The purity of particulate Chla samples was determined by performing

elemental analysis on the products of successive purification steps. Six algal

cultures, grown as described in chapter 4, were used for this experiment. The

cultures and the results of the elemental analyses are listed in table 2.5. The

average chlorin purities are shown graphically in figure 2.6. Since the procedure

required the demetallation of Chla to form PTNa, the purities are for PTNa. The

three steps of the purification were: (1) solvent extraction and phase separations,

(2) reverse-phase (C18) HPLC, and (3) normal-phase (SiO2) HPLC.

Elemental purities were determined based on spectrophotometric

quantification of the PTNa, at 666 nm, using an extinction coefficient of 1.01 x 105

and a Soret/red (S/R) band absorbance ratio of 2.22 (King, 1993). Purities are



lower limits since S/R ratios of purified PTNa in this work were normally

between 2.40 and 2.45.

Table 2.5: Purity of algal pheophytin a following each step of the procedure
for the preparation of particulate chlorins for isotopic analysis. The theoretical
C/N ratio of PTNa is 13.75. Values are in percent.

Culture* 1st N 1st C 2nd N 2nd C 3rd N 3rd C

Purity Purity Purity Purity Purity Purity

TW4 33 11 99 99 99 95

PHA4 62 18 98 83 95 96

PAV4 28 1 71 4 97 95

AMP4 62 7 95 41 97 87

DUN4 55 2 89 14 97 90

TW3 91 63 89 86

EH3 96 19

* Culture abbreviations are as follows: TW=Thalassiosira weissflogii,
PHA=Phaeodactylum tricornutum, PAV=Pavlova lutheri, AMP=amphidinium

carterae, DUN=Dunaliella tertiolecta, EH=Emiliania huxleyi.



Figure 2.6: Purity of algal pheophytin a following each step of the procedure

for the purification of particulate chlorins for isotopic analysis. Figure (a)

shows the average C/N ratio of the products, (b) shows pheophytin a purity

based upon the measured versus theoretcal C/N ratio, and (c) and (d) show

nitrogen and carbon purities of the pheophytin a, respectively. All values are

averages of 6 cultures, and standard deviations (SD) are plotted. See text for

an explanation of the purification steps.
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As is evident from the chart of N purity (figure 2.6.c), the second

chromatography step is not required if only 815N measurements are sought. The

nitrogen purity of the PTNa was 90.4% (± 10.4%) after the C18 HPLC, which

should be sufficient for isotopic analysis. It improved to 95.9% (± 3.4%) after the

SiO2 HPLC step. On the other hand, PTNa carbon was only 50.6% (± 37.8%)



pure after the first chromatography step, but improved to 91.2 % (± 4.3%) purity

after performing SiO2 HPLC.

2.4.2 Purity of Sedimentary Chlorins

The purity of sedimentary chlorins, treated as outlined above, was

determined by performing elemental analyses on the products of successive

purification steps. The sediment sample used for this experiment was surface (0-

10 cm) sediment from the Black Sea (2129 m water depth, Stn. 2, Box Core 2, R/V

Knorr 134-9, May 14-28, 1988). Pyropheophytin a was the most abundant chlorin

in the sample. Figure 2.7 is a chart of the PPTNa purity after each step of the

procedure.

The nitrogen and carbon purities of PPTNa from surficial Black Sea

sediments reached 89% and 88%, respectively, after the 5-step purification

procedure. These values are considered lower limits, as discussed above, since

the S/R ratio used in spectrophotometric quantitations is believed to be 10% too

low. Two other chlorins from the same sediment, PTNa and PTNa', had purities

(based on C/N ratio) of 84% and 87%, respectively. These results compared

favorably with those obtained by gravimetry for three E. Mediterranean and one

Black Sea sapropel sample prepared in the same manner. The average purity of

PPBDa and MPPBDa isolated from those samples was 88%.



Figure 2.7: Purity of a Black Sea surficial sedimentary chlorin
(pyropheophytin a) after successive purification steps. Values are in percent.
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2.4.3 Precision of Chlorin Isotopic Determinations

Previous investigators have suggested that nitrogen isotopic compositions

of chlorophyll a can be altered during reverse-phase chromatography if the entire

chlorin peak is not collected (Bidigare, et al., 1991). The results of at least five

different experiments in which HPLC was used to purify a variety of chlorins

from different natural samples suggest that such alteration did not affect the

results of this work. The precision for isotopic determinations of particulate and

sedimentary chlorins was 0.12 per mil for nitrogen and 0.09 per mil for carbon.



These values are pooled standard deviations of experiments involving repeated

measurements.

2.4.3.1 Precision of Particulate Chla N and C Isotopic Determinations

The most direct test of the reproducibility of chromatographic separations

performed in this study was the repeated purification of Fucus sp. Chla on C18

HPLC. In that experiment, 4 individual aliquots of the whole lipid extract were

chromatographed on an analytical reversed-phase (C18) column, collected, and

submitted for N isotopic analysis. One of the aliquots was large enough to be

split into 3 subsamples for 815N. The average 815N of the 4 aliquots (the 3

subsamples of the large one being averaged) was 4.33 ± 0.10 per mil. The

average 615N of the 3 subsamples of one aliquot was 4.33 ± 0.07 per mil. The

first standard deviation represents the chromatographic precision, while the

second represents the measurement precision of the 15N/ 14N ratio in purified

Chla.

A more comprehensive test of the precision of the particulate Chla isotopic

determination came from 6 sets of duplicate phytoplankton cultures

(representing 6 different species) that were grown and purified at different times

over an 18 month period. These results are discussed in detail in chapter 4. In

brief, the precision of Chla 815N determinations was better than 0.57 per mil.

This value is the pooled standard deviation (see definition in section 2.4.3.3) of

the isotopic difference between the whole cells and the Chla (e.g., AS15Ncell-

Chla). It is used because absolute 615NChla values varied from one experiment

to another. Thus, the measurment includes the additional errors associated with

the bulk PON 815N determination (e.g., 1 SD = 0.23 per mil) and the natural



variability of the cell-chlorophyll isotopic difference. It is therefore an upper

limit on the precision of the Chla 615N determination. The precision for carbon,

based on 5 sets of repeat culture experiments, was 1.25 per mil. This value also

includes the errors associated with the 613CpOC determination (e.g., 1 SD = 0.61

per mil) and the natural variability in AS13Ccell-Chla, and is therefore an upper

limit on the precision of the Chla 613C determination.

2.4.3.2 Precision of Sedimentary Chlorin N and C Isotopic Determination

The precision of the sedimentary chlorin isotopic determinations was

assessed by comparing repeated analyses of sample splits, as well as by

comparing the isotopic composition of structurally related (i.e., epimers,

allomers, ets.) chlorins purified simultaneously.

Fractions of PPTNa and PTNa from surficial Black Sea sediment (the same

sample used in the purity experiment discussed above) were collected off a size

exclusion column and split. Each duplicate was independently

chromatographed on Si02 HPLC. Both PTNa samples had identical S15N and

813C values after the chromatography. Furthermore, one of the PPTNa samples

was then re-chromatographed on C18 HPLC. The isotopic difference between

the two PPTNa samples after the additional chromatography step was 0.05 per

mil for both N and C. Finally, a fraction from the SEC column containing both

PTNa and PTNa' (a C-10 stereoisomer of PTNa) was chromatographed on Si02

HPLC and the purified epimers were found to have 815N values that differed by

0.5 per mil. (As discussed below in section 2.5.2, though, chlorin epimers may

have different N isotopic compositions).



In another experiment, MPPBDa and its allomer (e.g., 10-hydroxy-

MPPBDa, or alMPPBDa) were purified from a surficial (2-10 cm) Peru margin

sediment (250 m water depth, R/V Seward Johnson 92, Stn 36, 11/15/92, core

BC-153, 11003.7'S, 78004.4'W). The procedure differed slightly from that outlined

above, with the two chlorins being fractionated on preparative reverse-phase

TLC, then independently chromatographed on C18 HPLC, SiO2 HPLC, and

again on C18 HPLC. The purified MPPBDa was then split into two for 815N

analysis. The isotopic composition of the purified MPPBDa (splits averaged) and

its allomer differed by 0.25 per mil. The isotopic difference between the two

splits of purified MPPBDa was 0.3 per mil, again suggesting that the

chromatographic purification of chlorins results in little or no N isotopic

alteration.

The final experiment to determine the precision of sedimentary chlorin

isotopic determinations was the comparison of chlorin 815N and 813C values

from splits of an Eastern Mediterranean sapropel. Sapropel S4 (-95 Kyr BP, ODP

Leg 160, Hole 964F, Core 2H/01/40-58) was split into two sections and each was

independently processed according to the procedure described above. The

purified PPBDa from the two sections differed in 815N by 0.1 per mil, while the

813C values differed by 0.3 per mil.

2.4.3.3 Reproducibility of Chlorin Isotopic Determinations

Table 2.6 summarizes the precision data presented in the previous two

sections, excluding those for the replicate culture experiments (since they are not

comparable). The standard deviations of the replicate measurements are listed

for both nitrogen and carbon isotopes (when the latter are available). Also



shown are the chromatographic procedures performed on the replicates in each

experiment. At the bottom of the table the pooled standard deviation for all the

measurements is shown. This quantity is defined as

I(ni - 1) ai2

pooled standard deviation =

X(ni - 1)

Table 2.6: Reproducibility of N and C isotopic determinations on particulate

and sedimentary chlorins. See text for sample descriptions.

Sample 1a- 1 5 N n 1_-813C n Chromatographic Steps

Fucus 0.10 4 C18 HPLC

Black Sea PTNa 0 2 0 2 SiO2 HPLC

Black Sea PPTNa 0.03 2 0.05 2 Si02 HPLC, C18 HPLC

Black Sea PTNaa' 0.25 2 SiO2 HPLC

Peru MPPBDaal 0.13 2 1 C18 TLC, 2xC18, 1xSiO2 HPLC

Med Sea PPBDa 0.05 2 0.15 2 SPE, SEC, C18 & Si02 HPLC

Pooled SD 0.12 1 0.09 1

These data indicate that sedimentary and particulate chlorin 815N and

813C can be determined with a precision of 0.12 and 0.09 per mil, respectively.

There does not appear to be any substantial N or C isotopic alteration of chlorins

during their purification with the methods described in this work.



2.5 Discussion

The procedure outlined above for the measurement of chlorin 515N and

613C in marine particles and sediments has been shown to yield products that

are at least 88% pure, with a precision better than 0.15 per mil for both C and N.

2.5.1 Minimum Purification Required for Isotopic Analysis of Chlorins

It has been suggested (Macko, 1981) that sediment and particulate lipid

extracts may contain primarily chlorin nitrogen, and therefore may be used as

surrogates for chlorophyll 515N analyses. This appears not to be the case for

particles or sediments. For instance, the average Chla nitrogen purity for solvent

extracts of phytoplankton cultures in this work was 56% (± 24%), while that for

carbon was 9.5% (± 7.6%). In a solvent extract of surficial sediments from the

Black Sea the chlorin N purity was 21%, while chlorin C purity was 6%. In

addition, in 7 Eastern Mediterranean sapropel and 4 Black Sea sediment samples,

chlorin purity was 4% (± 1.2%) after solvent and solid-phase extraction, based on

gravimetry. This suggests that chlorin purity in lipid extracts is low.

Since the impurities appeared to have significantly different N and C

isotopic ratios than the chlorins, the extract S15N and 813C values were not

suitable substitutes for the purified pigments. For instance, in surficial Black Sea

sediments, the purified chlorins had S15N values ranging from -3.4 to -4.9 per

mil, while the whole sediment extract had a S15N value of -2.55 per mil (table

2.7). Furthermore, the 513C of the chlorins fell between -24.9 and -25.0, while the

813C of the whole extract was -27.4 per mil (table 2.7).



Table 2.7: Isotopic ratios and elemental purities of Black Sea surficial

sedimentary chlorins after sequential purification steps

Sample 51 5N % N Purity 81 3 C % C Purity

Whole Sediment 1.2 -23.3

Lipid Extract -2.6 21 -27.4 6

SPE Chlorins -3.6 32 -26.7 7

C18 HPLC PPTNa -4.4 33 -26.7 10

C18 HPLC PTNa -4.6 39 -25.7 18

SEC PTNa+PPTNa 60 16

SiO2 Chlorins* -4.5 89 -24.1 88

* 815N value is a weighted average for PPTNa, PTNa, PTNa', and an unknown
chlorin (discussed below). 813C value is a similar weighted average, excluding
PTNa', for which no 613C measurement was available. The N and C purities are
for PPTNa, since no elemental purities (only those based on C/N ratio) were
available for the other chlorins.

So just how much purification is required for N and C isotopic analysis of

chlorins in sediments and particles? As shown in table 2.7, sedimentary chlorin

815N was closely approximated after the third purification (e.g., C18 HPLC).

Following that step, the 815N of Black Sea surface sediment PPTNa and PTNa

fractions (e.g., -4.4 and -4.6 per mil, respectively) were both within 0.12 per mil

(i.e., 1 pooled SD) of the weighted average S15N (4.51 per mil) of fully purified

chlorins. For 813C, though, all 5 steps were required. The 613C of the same C18

HPLC-purified PPTNa and PTNa fractions (e.g., -26.7 and -25.7 per mil,

respectively) was 2.6 and 1.6 per mil depleted in 13C compared to the weighted

average 813C (-24.1 per mil) of fully purified chlorins.



These results indicate that the non-chlorin component of the lipid extract

was depleted in 13C and enriched in 15N compared to the chlorins. With

increasing purity, 615N values decreased while 613C values increased.

The amount of purification required for suitable particulate Chla isotopic

ratios can only be estimated, since isotopic determinations were not made on the

partially purified algal Chla from culture. As discussed in section 2.4.1, the N

purity of Chla from six algal cultures averaged > 90% after the first

chromatography step (e.g., C18 HPLC). Since Chla 815N is about 5 per mil

depleted in 15 N relative to whole cells (see chapter 4), and assuming the < 10% of

non-Chla N remaining has 515N similar to the whole cell, then the partially

purified Chla would be enriched in 15N by < 0.5 per mil, or -10%. In addition,

the average purity of 4 Mediterranean Sea particulate Chla samples after C18

HPLC was 94% (±11%), again suggesting that only the first chromatographic

purification is required for 815N determinations.

For 813 C determinations of particulate Chla it is recommended that both

chromatographic purifications (e.g., C18 and Si02 HPLC) be performed. The

Chla from cultured algae averaged only 51% purity for C after C18 HPLC, and

improved to >90% purity after SiO2 HPLC. Although there was little systematic

difference between Chla and cellular 513C in cultured phytoplankton from this

study (see chapter 4), it is widely accepted that lipids are depleted in 513C

relative to whole algal cells (DeNiro and Epstein, 1977; Galimov and Shirinsky,

1975). This suggests that contaminants in partially purified Chla from particulate

lipid extracts may have significantly different 813C values. Furthermore, the

cultures grown in this study were prepared axenically. In natural systems,

where detritus and non-planktonic carbon can account for significant fractions of

the total C, there may be differences between Chla 813C and POC 813C.



2.5.2 Implications of Different N and C Isotopic Values in Sedimentary Chlorins

The chlorins purified from a surficial Black Sea sediment had different N

and C isotopic ratios (table 2.8). These differences may be attributable to primary

signals imparted to Chla during different seasons, or they may result from

decompositional processes. In either case, they may contain detailed information

about historical productivity in the Black Sea.

2.5.2.1 N Isotopic Differences Between PTNa and PPTNa

One interesting inter-chlorin isotopic difference is the 0.9 per mil 15N

depletion in PPTNa relative to PTNa (table 2.8). It is suggested that this

difference is a primary signal reflecting changes in the seasonal flux of organic

matter out of the euphotic zone.

Table 2.8: N and C isotopic ratios in purified chlorins from surficial Black Sea
sediments.

Chlorin 815N 813C

PPTNa -4.8 -24.9

PTNa -3.9 -25.0

PTNa' -3.4

Chl686 -4.9 -23.1

There are two annual phytoplankton blooms in the Black Sea during

which times most of the material flux to sediments occurs (Hay, et al., 1990). A

large dinoflagellate and diatom bloom occurs in the spring, and a smaller



coccolithophorid-dominated bloom occurs in the fall (Hay, et al., 1990). The

spring bloom at our core location is associated with a maximum in the PPTNa

flux out of the euphotic zone, while the fall bloom is associated with a maximum

in the PTNa flux (King, 1993).

It has been observed that minima in sinking particulate 615N values

coincide with maxima in mass fluxes to sediment traps in both the North Atlantic

(Altabet and Deuser, 1985; Altabet, et al., 1991) and the Arabian Sea (Schafer and

Ittekkot, 1993). In both locations, multi-year sediment trap deployments suggest

that sinking particulate 615N is inversely related to total mass flux.

The difference in Black Sea sedimentary PPTNa and PTNa 615N values

may therefore result from deposition of these components during the spring and

summer blooms, respectively. The larger mass flux associated with the spring

bloom, relative to the fall bloom, may result in lower S15N values of material

deposited at that time, including the PPTNa. Whereas the PTNa, deposited in

the fall, is expected to be comparatively enriched in 15N since the material flux

associated with that bloom is smaller. The potential may therefore exist to

reconstruct seasonal paleo-fluxes (and hence, paleoproductivity) in the Black Sea

based on N isotopic studies of sedimentary chlorins.

2.5.2.2 N Isotopic Difference Between Pheophytin Epimers

A 0.5 per mil depletion in PTNa was observed relative to PTNa' in

surficial Black Sea sediments. This difference in 615N may be significant in light

of the fact that the precision of sedimentary chlorin S15N determinations is

thought to be 0.12 per mil (see section 2.4.3.3). In another instance where the

S15N of the two epimers was measured, PTNa was depleted by 2.0 per mil



relative to the epimer. That sample was a suspended particulate sample from the

deep chlorophyll maximum in the E. Mediterranean Sea (see chapter 5). In the

Black Sea sediment, the epimer accounted for 23% of the combined PTNa+a',

whereas in the Mediterranean Sea particulate sample it accounted for 28% of

total PTNa+a'. However, a strict mass balance is not possible since the amount of

each compound transformed to other chlorins or to colorless products is not

known.

Chlorin epimers can readily arise non-enzymatically (Hynninen, 1979)

during pigment handling and natural decomposition processes (Mantoura and

Llewellyn, 1983). Furthermore, the C-10 stereoisomerization of PTNa and PBDa,

to form 10(S)-pheophytin a' and 10(S)-pheophorbide a', is thought to result in

significant additional steric strain on the chlorin macrocycle due to the cis

arrangement of the C-7 propionic ester group and the carbomethoxy group at

C-10 (Hynninen and Sievers, 1981). The relief of that strain through

conformational changes in the chlorin macrocycle could conceivably result in

nitrogen isotopic fractionation.

2.5.2.3 C Isotopic Differences Between Sedimentary Chlorins

As shown in table 2.8, the unknown chlorin "Chl686" (discussed below in

section 2.5.3) is depleted in 13C by 1.85 per mil relative to PTNa and PPTNa. In

addition, it has about the same 815N as PPTNa. It is therefore suggested that this

compound is a derivative of PPTNa (see above discussion, section 2.5.2.1) that

lacks the phytyl ester side-chain.

The phytyl ester of chlorophyll is a lipid, and as such is expected to be

depleted in 13C relative to protein (DeNiro and Epstein, 1977; Galimov and



Shirinsky, 1975). In fact, it has been demonstrated that phytol is depleted in 13C

by 1.6 to 5.1 per mil (Bogacheva, et al., 1979). If Ch1686 is a "dephytylated"

chlorin then it would be expected to be enriched in 13C relative to intact

pheophytins and chlorophylls.

2.5.3 Novel Sedimentary Pigments

2.5.3.1 Chl686

A chlorin-like compound was observed in sediments from Unit I (surface)

and Unit II (~3-5 kyr) of the Black Sea, surficial sediments from the Peru margin,

and in sapropel S7 (-190 kyr) from the Eastern Mediterranean. This compound,

referred to above as Chl686, was characterized by visible absorption maxima

(and relative extinction coefficients) in MeCl2 at 362 (0.95), 418 (1.0), 508 (0.08),

536 (0.08), 630 (0.15), 686 (0.44) (figure 2.8.a). In acetone the spectrum was similar

but the Soret band was at 412, rather than 418 nm. The compound was alluded

to in an early report addressing pigments in a Black Sea surface sediment (Peake,

et al., 1974), and was attributed to "aberrant types of chlorophyll." Upon

reinspection of chromatograms of Black Sea surface sediments from the thesis of

L. King, it was also observed. Chl686 is of interest here because it appeared to be

the most abundant chlorin in certain samples (i.e., Unit I and II in the Black Sea).

Aside from the unusual visible spectrum, Chl686 has the followng

characteristics: (1) it is relatively non-polar, eluting just before PTNa on C18

HPLC (figure 2.9); (2) it is smaller than other chlorins, eluting after MPBDa on

size-exclusion chromatography (figure 2.5.c), and having mass peaks at 413

(100%), 429 (76%), 465 (21%), and 517 (20%) on CH4 chemical ionization mass
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spectra (figure 2.8.b); (3) it appears, from 1H NMR (Keely, 1989), not to contain

protons at C-7 and C-8 on ring IV, or at C-10 on the isocyclic ring, but to contain

the C-2 vinyl group, the C-4 ethyl group and the C-1 methyl group. The NMR

data might suggest that Chl686 is a porphyrin (Krane, et al., 1983), with an

oxidized ring IV. However porphyrins are normally characterized by S/R ratios

in excess of 5 (Baker and Louda, 1986), and Chl686 has an S/R ratio of 2.2.

It is possible that Chl686 is an artefact introduced during sample

preparation. However, the compound is observed in samples prepared using a

variety of techniques. For instance, Chl686 can be identified in splits of a

surficial (0-30 cm, bulk) Peru margin sediment sample (135 m water depth,

MW87-08, core BC-5, 7/21/87), one oven-dried, then extracted with 25% (w/v)

H2SO4/MeOH; the other extracted wet, in acetone and MeCl2, by ultrasonic

probe. In addition, the compound is observed in surficial Black Sea sediments

ultrasonically extracted wet in acetone, then MeCl2 (this work and King (1993)),

and in those soxhlet-extracted in acetone (Peake, et al., 1974). Furthermore,

Chl686 is observed in three intervals from a Black Sea sapropel (e.g., Unit II), and

in an Eastern Mediterranean sapropel (S7), each of which was soxhlet extracted

in MeOH, then MeCl2. Finally, a chlorin with a virtually identical visible

absorption spectrum, called "Phorbide-686.5," was reported in sediments from a

sub-bottom depth of 31-35 m in the Gulf of California (Baker and Louda, 1982;

Louda and Baker, 1986).

One potential explanation for the origin of this compound is that it is a

dimer or structural isomer of pheophytin a, pheophorbide a or their "1pyro"

derivatives. Upon sitting at -20*C for 20 days in MeCl2 (1.9 RM solution,

assuming E410 = 105), the visible spectrum of the compound reverted to a typical

pheophorbide a/pheophytin a spectrum (figure 2.10). The tranformation product

was characterized by a loss of the absorption maximum at 362 nm, and a blue-



AZr*Fr~5 fter W 43I.-' '4?

4!

~E~EN~TH

1! 4,
Y~VL~

~J0

Figure 2.10: Visible spectrum of Chl686 after standing in methylene chloride
at -20*C for 20 days. Absorbance maxima are at 416, 506, 538, 610, and 670 nm.

+
A

4,

ES142-47 rleCl2, SE Pipie (1.5%), in cetOne

200 3 1 500
UAE!.ElGTih

Figure 2.11: Visible spectrum of purple compound in acetone.
maxima are at 414 and 536 nm.

Absorbance

-.12 

1~~E

7~0

I

I

9 A V El. E INI G T H

C,952 C



shift of the red band from 686 to 670 nm. However, the Soret band at 418 nm and

the minor absorption maxima at 506 and 538 nm remained unchanged (given the

2 nm resolution of the spectrophotometer). Even the absolute absorbances of the

Soret and red bands remained essentially unchanged, retaining the same S/R

ratio of 2.2. It is noteworthy that this conversion did not occur in acetone under

similar experimental conditions, and could not be repeated with a 5.7 gM

(assumes E410 = 105) MeCl2 solution of Chl686 from a Black Sea Unit II sediment

(see chapter 5) left at 4*C for 60 days.

The C/N ratio of Chl686 was 12.4, intermediate between PPTNa (13.25)

and MPPBDa (8.5). However, significant lipid contamination was evident in the

1H NMR spectrum, which would tend to increase the C/N. Therefore, it is likely

that the actual C/N of Chl686 is closer to 8.5. As mentioned above, the 13C-

enrichment of Chl686 relative to pheophytins in the same sample also suggests it

is a pheophorbide (e.g., it lacks the phytyl side-chain). Additional support for

this interpretation comes from the high retention volume (7.29 mL) of the

compound on size exclusion chromatography relative to PTNa (6.19 mL).

Baker and Louda (1982) and Louda and Baker (1986) tentatively identified

the chlorin they called Phorbide-686.5 as a 2-acetyl-2-desvinyl derivative of

pyropheophytin a. They suggested, based on the 35.5 nm hypsochromic shift of

the red band in the sodium borohydride-reduced product of Phorbide-686.5

(Xmax= 3 96, 651.5 nm), that the compound contained two conjugated carbonyl

moieties, one each on rings I and V. In addition, they attributed the split, or

"bifurcated," Soret band to the oxidation of the 2-vinyl group to a 2-acetyl-2-

desvinyl or a 2-formyl-2-desvinyl group, although no structural studies other

than visible spectrophotometry were performed. Our 1H NMR results, however,

suggest that the 2-vinyl moiety was intact in Chl686. '



In the final analysis, the identity of Chl686 remains unkown. It is difficult

to reconcile the small size of the molecule, deduced from size-exclusion

chromatography, with the observations from visible spectrophotometry, HPLC

and 1H NMR studies that Chl686 is likely a derivative of PPBDa. It is

recommended that attempts be made to recrystallize the compound and acquire

clean 1H NMR and mass spectra.

2.5.3.2 The Purple Compound

Another unidentified compound encountered in this study, during work

on Black Sea sediments, was an intense purple-colored pigment. As with Chl686,

such a compound was alluded to in the study by Peake, et al (1974). The "purple

compound" has been the subject of ongoing research in the laboratory of Dr.

Repeta for many years, being found in sediments from the Black Sea, the Peru

Margin and Salt Pond, to name a few. In this work, the purple compound was

encountered in high abundance in Unit II sediments from the Black Sea (see

chapter 5). The visible spectrum (figure 2.11) of the purple compound is

characterized by a broad absorption maximum at 536 nm (this work; Peake, et al.,

1974). It is unknown whether the absorption maxima at 414 and 660 nm are real

or whether they resulted from contamination by PTNa or MPPBDa.

The purple compound was extracted, along with pheophytins and

pheophorbides, from a 42-47 cm section of core BC17, from R/V Knorr cruise

134-08 (see chapter 5) by soxhlet in MeCl2. It was carried through the

purification of MPPBDa up through the size-exclusion chromatography step,

coeluting with MPPBDa on preparative C18 HPLC. During size-exclusion

chromatography though, the purple compound eluted 0.6 mins (or 0.6 mL) prior



to MPPBDa. This difference in retention volume is identical to that for MPPBDa

and PTNa.

The identity of the purple compound remains a mystery. Given its

abundance in this sediment sample, though (89% of the MPPBDa by weight), it

appears to be an abundant pigment (or pigment transformation product) in

certain environments.

2.5.4 Sedimentary Chlorin Yields from Dried and Acidified Sediments

An experiment was performed to determine the effects on sedimentary

chlorin recovery of (1) drying a sample before extraction, and (2) acidifying the

extraction solvent. It has been previously shown that up to 50% more chlorin can

be extracted from Black Sea sediments with acidic methanol than by solvents

(i.e., acetone and MeCl2) alone (King and Repeta, 1994a). These acid-extractable

chlorins were thought to be incorporated into macromolecular material, and

possibly hydrolyzed by the acidic MeOH.

Regardless of the mechanism, this work was aimed at developing

methods for the routine stable isotopic measurements of sedimentary chlorins.

This required that sample sizes be minimized. Maximizing chlorin yields from a

sediment was therefore a priority. In addition, sediments for geochemical

analysis are frequently dried before use. Hence, it sought to determine whether

such sediments would be suitable for chlorin isotopic studies.

Toward these ends, a surficial (0-30 cm, bulk) sediment sample from the

Peru Margin (135 m water depth, R/V Moana Wave cruise # 87-08, Stn. 8, core

BC-5, 7/21/87) was homogenized and split into 6 sections of about 12.5 g (wet

wt) each. Two of the sections were freeze-dried for 71 hours, two were oven-



dried at 60'C for 96 hours, and two were extracted wet. One of each pair was

extracted with 25% (w/v) H2SO4/MeOH (2x). The other was first ultrasonically

extracted with acetone (3x) and MeCl2 (1x), then re-extracted with 25% (w/v)

H2SO4/MeOH.

The acidic methanol extractions were performed while sparging with N2.

The sediments were suspended in 45 mL MeOH for 30 minutes before the acid (3

mL) was added, dropwise, by syringe. The reaction was stirred for one hour at

room temperature. A phase separation was then performed by adding 400 mL

H20 and 80 mL MeCl2 to the combined filtered extracts, and the chlorins were

partitioned into the organic phase. The chlorin fraction was dried over Na2SO4

and rotary-evaporated to dryness.

The results of the experiment are shown graphically in figure 2.12. The

total amount of chlorin (e.g., acid extraction or solvent plus acid extraction)

extracted from each of the 6 splits of sediment, normalized to the starting weight

of sediment, is shown in figure 2.12.a. The wet sediment yields larger quantities

of chlorin than the freeze- or oven-dried sediments, by 26% and 42%,

respectively. In addition, wet and oven-dried sediments that were first extracted

with solvents, then acid, yielded 18% and 22% more chlorin, respectively, than

those directly acid-extracted. Both freeze-dried sediments yielded about the

same amount of chlorin.

Figure 2.12.b, is a bar graph showing the quantities of chlorin (normalized

to the starting weight of sediment) extracted by solvents (black) versus those

extracted by acid (white) for the 3 samples thus consecutively treated. For the

wet sediment, an additional 34% of chlorin was released by the acid, following

solvent extraction. In the freeze- and oven-dried sediments, an additional 96%

and 153% of chlorin, respectively, was extracted by the acid treatment.



The chlorin distribution is markedly altered by acid extraction. Whereas

PPPTNa, PTNa, and PPBDa are the most abundant chlorins in the solvent

extracts of both wet and dry sediments, MPPBDa is the dominant chlorin in all

acid extracts.

Figure 2.12: Results of an experiment to determine the effects of sediment

drying and acidification on the recovery of chlorins. All 6 samples were ~12.5

g (wet wt.) splits of a homogenized Peru margin surficial sediment.
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These results indicate that (1) it is best to leave sediments wet for the

analysis of chlorins, (2) an additional 34% of total chlorin can be recovered by

subjecting a solvent-extracted sediment to acidic methanol, and (3) the direct

acidic-methanol extraction of a wet sediment yields 18% less total chlorin then

the two-step procedure, but is less time-consuming and results in a less complex

chlorin distribution.

It should be noted, though, that any paleoenvironmental information that

can be derived from sedimentary chlorin distributions (King and Repeta, 1994b)

is likely to be lost during acid-extraction, since most common chlorins are

converted to MPBDa and MPPBDa. In addition, these conclusions are based on

results from one surficial sediment. Additional experiments are required on

older sediments and those from other environments before these results can be

generalized.

2.6 Conclusion

Nitrogen and carbon isotopic ratios in most common chlorins can be

determined in marine particulate and sediment samples with a precision better

than 0.15 per mil for both isotopes. The entire procedure can be accomplished in

about 4 hours for particulate samples and 8 hours for sediment samples. The

chlorins thus produced from particulate samples had nitrogen purities of 96%

and carbon purities of 91%. Sedimentary chlorins were recovered with N and C

purities of 89% and 88%, respectively. The chlorin recovery from particulate

samples was 88%, while that for sediment samples was 18%. The low recovery

from sediments, relative to particles, is attributed to the complex distribution of

chlorins in sediments and to the additional purification steps required.



Using these techniques, different chlorins in a surficial Black Sea sediment

had different isotopic ratios. The 615N variation is attributed to coincident

changes in the seasonal flux of material and certain chlorins out of the euphotic

zone. The 613 C differences are likely a result of the presence or absence of the

phytyl side-chain in different chlorins.

Finally, the presence of two unidentified pigments (both alluded to by

Peake, et al., 1974) was discussed. The first, Chl686, was found in sediments

from the Peru margin, Unit I and II in the Black Sea, and sapropel S7 from the

Eastern Mediterranean. It appeared to be the most abundant chlorin in the Black

Sea sediments analyzed in this work. The compound had an unusual visible

spectrum, with a red band at 686 nm and a bifurcated Soret band at 360 and 418

nm. Proton NMR and HPLC studies, in addition to N and C isotopic ratios and

elemental analyses, suggest that Chl686 is similar to PPBDa. However, size-

exclusion chromatography and mass spectrometry suggest the compound is too

small to be a PPBDa derivative.

The other unknown pigment is an intense purple compound found in Unit

II Black Sea sediments. The pigment has an absorption maximum at 536 nm. It

has a polarity similar to MPPBDa, coeluting with that chlorin on reverse-phase

(C18) HPLC, but is similar in size to PTNa, coeluting with that compound on

size-exclusion chromatography. The "purple compound" has been under

investigation for many years in Dr. Repeta's laboratory, having been observed in

sediments from the Black Sea, the Peru margin and Salt Pond. The search for its

identity continues.
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Chapter 3: Analytical Methodology II. Synthesis of Chlorophyll Derivatives
for Gas Chromatography

3.1 Abstract

The analysis of chlorin N and C isotopic ratios by isotope-ratio monitoring

gas chromatography-mass spectrometry (irmGC-MS) has been accomplished by

synthesizing chlorin bis-(tert .-butyldimethylsiloxy)Si(IV) derivatives. These

volatile chlorin silicon complexes are characterized by elution temperatures of

260*C. Because early attempts at direct gas chromatography of chlorins were

unsuccessful, the derivatization was pursued. However, yields for the four-step

procedure were low (5-6%), and there was a net N isotopic depletion of 1.2 per

mil (± 0.3) in the derivative, relative to the starting chlorin. Upon further

investigation of the feasibility of direct GC of chlorins it was found that methyl

pyropheophorbide a, a common sedimentary chlorin, was in fact

chromatographable. With specialized aluminum-clad fused silica capillary

columns thinly coated with chemically-bonded apolar stationary phases, and He

carrier gas flow rates of 3.5 mL/min, the model chlorin eluted from the GC at

385*C. Reducing the ketone at C-9 resulted in improved chromatographic peak

shape and an elution temperature of 380*C. The ketone reduction is a rapid, high

(e.g., 97%) yielding reaction that results in no isotopic fractionation. It is

suggested that future work focus on the direct high-temperature irmGC-MS

analysis of chlorins.

3.2 Introduction

Recent technological developments in analytical chemistry have made it



possible to measure the C, N and 0 isotopic compositions of individual

compounds as they elute from a gas chromatograph (Brand, et al., 1994; Hayes, et

al., 1990). The sensitivity of new mass spectrometers combined with the high

resolution of capillary GC columns now allows the stable isotopic analysis of

nanomolar quantities of individual organic compounds in a complex mixture.

The technique seemed well-suited to a study of sedimentary chlorophyll isotopic

ratios because (1) sedimentary organic matter is a complex mixture, (2) the

concentration of chlorins in sediments is low (typically in the ppm range), (3) the

purification of chlorins from sediments for off-line isotopic analysis is time- and

labor-intensive, and (4) off-line (dual-inlet irMS) analyses typically require

>l mol of both N and C.

However, no published accounts of chlorin gas chromatography exist in

the literature, and our preliminary work suggested that chlorins thermally

decompose before they volatilize and pass through a GC column. This chapter

describes the development of a derivatization procedure for the synthesis of GC-

amenable chlorins. The technique is then used to produce the first irmGC-MS

values for chlorin S15N and 813C.

After a brief discussion in the Background section (3.3) about the synthetic

precursors to volatile chlorin silicon complexes, a detailed description of their

synthesis is presented in the Methods section (3.4). The results from the first-ever

irmGC-MS analyses of derivatized chlorins are contained in the Results section

(3.5), in addition to a study of isotopic fractionation during the derivatization. A

discussion about the synthesis, its drawbacks and recommendations for future

work, can be found in the Discussion section (3.6). That section finishes with the

results of experiments using direct high-temperature gas chromatography, a

promising direction in chlorin irmGC-MS.



3.3 Background

3.3.1 Precursors to Volatile Chlorin Derivatives

A protocol for the analysis of chlorin 615N and 813C by irmGC-MS is

desirable in order to take advantage of the high sensitivity of modem mass

spectrometers, and the high resolution attainable with today's capillary GC

columns. Whereas traditional off-line 815N analyses require >1 Rmole N per

analysis, irmGC-MS can be accomplished with 20 nmoles N (Brand, et al., 1994),

or two orders of magnitude less sample. Furthermore, it was thought that the

increased resolution of gas chromatography over HPLC would allow for fewer

purification steps before isotopic analysis, decreasing labor and the potential for

isotopic fractionation. These advantages seemed significant enough to warrant a

concerted effort toward the development of chlorin derivatives that would be

amenable to gas chromatography. Initial experiments suggested that free-base

chlorins were not GC-amenable, decomposing before eluting from a GC at

temperatures approaching 440*C. Therefore a derivatization protocol was

developed to increase chlorin volatility.

3.3.2 Phthalocyanines

In the early 1960's the groundwork for the synthesis of volatile cyclic

tetrapyrrolic compounds was laid by Kenney and coworkers at Case Institute of

Technology (Joyner, et al., 1960; Joyner and Kenney, 1962; Krueger and Kenney,

1963). Those workers synthesized a variety of silicon phthalocyanines (PcSi)
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with groups oxygen-bridged to the silicon (figure 3.1.a). They found that Si

could be tetravalently bound to the four nitrogen atoms in the center of the

phthalocyanine macrocycle. The four planar Si-N bonds formed were found to

be highly stable, and the strength of the SiO-R bonds in the characteristic

hexagonal geometry of these derivatives is attested to by their inertness to hot

-OSiin-C6M13)b

(b)
S i

M-09 0

, I
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Figure 3.1: Structures of precursors to volatile chlorin silicon complexes. (a) A
Silicon phthalocyanine, (b) a bis(trimethylsiloxy)Si(IV) derivative of
octaethylporphyrin, and (c) a bis(tert.-butyldimethylsiloxy)Si(IV) derivative of
octaethylporphyrin.



concentrated sulfuric acid (Krueger and Kenney, 1963). By altering the nature of

the siloxy side chains it was possible to markedly change the polarity of the

derivatives, with PcSi(OH)2 being soluble in aqueous alcohol and

PcSi(OC18H37) being soluble in benzene. Concurrent with the observed changes

in solubility were changes in volatility, with PcSi(OC2H5) remaining unmelted at

temperatures >360*C in vacuo, and PcSi(OC18H37) melting at 152*C (Krueger

and Kenney, 1963). This ability to enhance the volatility of PcSi derivatives by

increasing the molecular flexibility and decreasing the molecular symmetry of

the derivative led geochemists to exploit this chemistry later in the 1960's for the

structural elucidation of geoporphyrins by GC-MS.

3.3.3 Porphyrins

By the mid 1960's it had been demonstrated that a number of homologous

series of porphyrins existed in certain oils, shales and rocks (Baker, et al., 1967).

The determination of the structure of these components was hampered by the

inability to conduct gas chromatographic and mass spectrometric analyses due to

the low volatility of porphyrins (Boylan and Calvin, 1967). It was therefore

undertaken to synthesize GC-amenable porphyrin silicon derivatives (figure

3.1.b) in much the same manner as was done by Kenney, et al. with the

phthalocyanines (Boylan, et al., 1969; Boylan and Calvin, 1967). This work was

expanded upon in the 1980's by Eglinton and Maxwell's group at the University

of Bristol to yield a vast array of petroporphyrin structural data by analyzing

GC-MS data from petroporphyrin fractions derivatized to their volatile silicon

complexes (Eckardt, et al., 1988; Gill, et al., 1986; Hein, et al., 1985; Marriott, et al.,

1984).



Since the Bristol group was interested primarily in increasing porphyrin

volatility they introduced the use of silylating reagents as a simple rapid way to

add bulky side chains to the oxygen bridges of the porphyrin silicon complex

(PSi). In brief, the hybrid procedure (Marriott, et al., 1984) consists of inserting Si

into the macrocycle with hexachlorodisilane (Si2C16) in toluene to form the

dichloro-Si(IV)-porphyrin complex, followed by hydrolysis of the axial chlorines

in aqueous KOH, and silylation of the axial hydroxy groups with N-methyl-N-

(tert .-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) in pyridine (figure

3.1.c). Yields for this synthesis were reported to be >90% (Hein, et al., 1985).

3.4 Methods

3.4.1 General Laboratory Procedures

The general laboratory procedures for the synthesis, handling,

quantification, and identification of chlorins are described in chapter 2.

Therefore, only those techniques specific to chlorin derivatization for gas

chromatography will be described here.

3.4.1.1 Handling of Moisture-Sensitive Reagents

Many of the syntheses described in this chapter involve the use of

moisture-sensitive reagents. The use of reagents such as hexachlorodisilane

(Si2C16) and N-methyl-N-(tert .-butyldimethylsilyl)trifluoroacetamide



(MTBSTFA), requires that all solvents and glassware be dry, and that all

analytical techniques exclude air and water. Two excellent references for

performing syntheses with moisture-sensitive reagents are the book Organic

Syntheses Via Boranes (Brown, 1975) and the technical report from Aldrich

entitled "Handling Air-Sensitive Reagents" (Lane and Kramer, 1977).

In brief, all syringes and glassware must be dried in an oven for at least 4

hours at 110'C, then allowed to cool in a dessicator or under a N2 stream. Plastic

caps, silicone and teflon septa, and rubber septa are to be dried for >24 hours at

60'C. Syringes must be gas-tight and transfers of the moisture-sensitive reagents,

especially Si2Cl6, must be rapid, especially in humid weather, since reaction with

water vapor is very fast. I found that Hamilton Gas-Tight syringes (1001RN

Syringe, Hamilton Company, Reno, NV) with removable needles worked best. If

the reaction of the reagent with water forms a salt that clogs the needle, the

syringe can be used again by simply replacing the needle. It is also imperative to

have close by a septum-capped vial or flask containing dry toluene under a N2

atmosphere in which to immediately rinse the syringe after transferring the

moisture-sensitive reagent. If not done instantly, the syringe will permanently

clog.

Reaction vials in which moisture-sensitive reactions are performed are

sealed with a screw-cap fitted with a teflon-lined silicone septum (National

Scientific Company, Lawrenceville, GA), then the cap is teflon-taped, and a size

14/20 rubber septum (Aldrich, Milwaukee, WI) is inverted over it and teflon-

taped to further protect against moisture.

When withdrawing a dry solvent from a flask or bottle fitted with a

septum I found it helpful to insert a needle (#22 or smaller diameter) connected

to a N2 line for flushing the headspace while a syringe is inserted and solvent

withdrawn. A plug of N2 should be drawn into the syringe from the headspace



before removal from the septum. A venting needle should also be inserted to

keep the pressure from blowing out the septum.

3.4.1.2 Solvent Drying and Purification

The procedures for purifying and drying solvents and reagents for use in

moisture-sensitive reactions can be found in the invaluable laboratory reference

book, Purification of Laboratory Chemicals (Perrin, et al., 1980). The following

procedures came from that source.

The procedure for drying pyridine is to reflux over KOH pellets (Fisher

Scientific, Fair Lawn, NJ) for 24 hours, fractionally distill the pyridine, and store

over CaH2 in the dark at 4C.

Trifluoroacetic acid (TFA) is dried by refluxing over KMnO4 crystals (J.T.

Baker, Phillipsburg, NJ) for at least 12 hours, followed by fractional distillation,

and a second reflux for 3 hours over P205 (Fluka AG, Buchs, Switzerland),

followed by fractional distillation. The dried TFA is stored under N2 at room

temperature in the dark.

Toluene is dried by refluxing over CaH2 (Aldrich, Milwaukee, WI) for 48

hours, fractionally distilling the dry toluene, and storing over CaH2.

3.4.1.3 Instrumentation

3.4.1.3.1 Gas Chromatography

All gas chromatography was performed on a Hewlett-Packard 5890 Series

II GC, fitted with an HP 7673 GC/SFC automatic injector. The column used was



an SGE HT-5 aluminum-clad 12 m column with a non-polar film thickness of 0.1

gm and an internal diameter of 0.32 mm. On-column injection was used

throughout, as was electronic pressure programming (EPP), to maintain constant

He carrier gas flow rates throughout a temperature program. Data acquisition

was facilitated using Chromperfect 2.0 software (Justice Innovations, Inc.).

3.4.1.3.2 Mass Spectrometry and Gas Chromatography-Mass Spectrometry

All mass spectrometry was performed in Fye Laboratory (WHOI) on a VG

AutoSpecQ connected to an Opus data system on a DEC Alpha workstation. The

instrument can be operated in any of three ionization modes: electron impact

(EI), chemical ionization (CI) or fast-atom bombardment (FAB). All three

ionization modes were employed during this work.

The GC-MS work employed a Hewlett Packard 5890 Series II gas

chromatograph at the front end of the VG AutoSpecQ. The GC was equipped

with a Hewlett Packard 7673 autoinjector.

For static FAB+-MS, nitrobenzyl alcohol (NBA) was used as a matrix,

source temperature was 250*C, source pressure was 3.5 x 10-4 mb, voltage was 8

kV, resolution was set at 2000, time at 5.74 s/dec, and delay at 1.00 secs.

For CI-MS runs, CH4 was used as ionization gas, source temperature was

250'C, source pressure was 3.5 x 10-5 mb, current was 1 mA, electron energy was

35 eV, and the electron multiplier was set at 425.

For GC-CI-MS work, a 12 m SGE HT5 Aluminum Clad column (SGE

Incorporated, Austin, Texas) was used. The column had a 0.1 pm non-polar

phase (similar in polarity to DB-5), an i.d. of 0.33 mm and an o.d. of 0.43 mm. A

deactivated silica bridge was used (1 m x 0.15 mm i.d.) to span the distance



between the GC and the source of the mass spectrometer due to the metallic

coating of the column. Automatic pressure programming with vacuum

compensation was employed to maintain a constant linear flow rate of 26.5

cm/sec helium. Unless otherwise noted, the temperature program was 50-80*C

at 350/min, then 80-275'C at 20*/min, then 275-320*C at 6*/min, followed by a

30 minute isothermal period at the maximum temperature.

3.4.1.3.3 Isotope-Ratio Monitoring Gas Chromatography-Mass Spectrometry

The experimental conditions for the irmGC-MS runs were as follows. The

mass spectrometer was a Finnigan MAT 252, the GC was a Hewlett-Packard 5890

Series II, and the combustion interface was a Standard GC/C II interface (figure

3.2). The column was an SGE HT-5 aluminum-clad 12 m column with an apolar

Figure 3.2: Schematic of the Finnigan irmGC-MS system for 815N, 813C, 8180.



column was an SGE HT-5 aluminum-clad 12 m column with a non-polar film

thickness of 0.1 gm and an internal diameter of 0.32 mm. The temperature

program was 1 min at 40*C, then 35 0/min to 80'C, then 20*/min to 275*C, then

6*/min to 315'C, followed by a 10 min isothermal period at 315'C. On-column

injection and electronic pressure programming were used, such that the pressure

was 10.4 p.s.i. at 40*C.

3.4.1.3.4 Nuclear Magnetic Resonance Spectroscopy (NMR)

1H NMR spectra were obtained on a 300 MHz Bruker AC 300

spectrometer (Bruker Instruments, Inc., Manning Park, Billerica, MA) in

conjunction with an Aspect 3000 data system (Spectrospin AG, Industriestrasse

26, CH-8117 Faellanden, Switzerland). The field strength of the superconducting

magnet was 7.1 Tesla.

NMR tubes were thin-walled 5 mm x 9" tubes from Wilmad (cat. # 535-PP-

9, Wilmad Glass Company, Buena, NJ). They were washed with MeOH (3x),

acetone (3x) and MeCl2 (3x), before being dried first under a N2 stream, and then

in an oven at 180*C for >1 hour. NMR pipets were useful for transferring

samples to the tubes (cat. # 803A, Wilmad Glass Co.).

Solvents for NMR spectroscopy were 99.5% deuterated (Aldrich

Chemical Company, Milwaukee, WI).

3.4.1.3.5 Spectrophotometry

Visible spectra of the pigments were taken on either a Varian Techtron

DMS-200 Spectrophotometer (Varian Techtron Limited, Springvale Road,



Mulgrave, Victoria 3170, Australia) or a Hewlett-Packard HP8452A Diode Array

Spectrophotometer (Rockville, Maryland). The instruments were referenced

against the appropriate solvent contained in a 1-cm quartz cuvette. The

resolution of the HP8452A was 2 nm, while that of the Varian was 0.1 nm. A

spike at 656 nm occasionally interfered with the red band absorbance

determination while using the diode array spectrophotometer. - This interference

was minimized by acquiring the sample spectrum immediately after taking the

reference spectrum. A discussion of spectrophotometric quantitation

calculations and baseline correction can be found in section 2.3.4.

3.4.2 Syntheis of Volatile Chlorin Si(IV) Complexes

3.4.2.1 9-Deoxo-methyl-pyropheophorbide a

The synthesis of 9-deoxo-methyl-pyropheophorbide a (9MPPBDa) from

MPPDa is based on previously published ketone reduction procedures using

sodium borohydride in trifluoroacetic acid (Gribble, et al., 1978; Gribble, et al.,

1977; Jeandon, et al., 1993; Smith and Smith, 1990). Sodium borohydride

(NaBH4, 100 mg, Fisher Scientific, Fair Lawn, NJ) is slowly added to 10 mL dry

trifluoroacetic acid (TFA, CF3COOH, Sigma Chemical Co., St. Louis, MO) with

stirring at 0*C under a rapid N2 stream (in order to prevent H2 buildup). The

MPPBDa (212 gmol, 116 mg), dissolved in 10 mL dry TFA, is then added to the

NaBH4/TFA mixture slowly via syringe. The ice bath is then removed and the

reaction allowed to proceed at room temperature under a N2 atmosphere for 5

hours. The progress of the reaction is monitored occasionally by withdrawing



(a) 1 Hour

(b) 2 Hours

(c) 5 Hours

Figure 3.3: Progress of ketone reduction reaction. MPPBDa is converted to 9-
deoxo-methyl-pyropheophorbide a by reaction with sodium borohydride in
trifluoroacetic acid. Visible asborption spectra after (a) 1 hour, (b) 2 hours, and
(c) 5 hours.



0.5 gL of the reaction mixture by syringe and adding it to MeCl2 in a cuvet to

which is added 1-2 drops of triethylamine (TEA, (CH3CH2)3N, Aldrich,

Milwaukee, WI) (Smith and Smith, 1990) to neutralize the solution. During the

course of the reaction the Soret band migrates from 410 to 404 nm and the red

band migrates from 666 to 648 nm. The extinction coefficient for the Soret band

was reported by Smith and Smith (1990) to be 153,100 (L/mol-cm). The reaction

is complete when there is no shoulder evident at 666 nm (figure 3.3).

The reaction mixture is then poured into a 500 mL separatory funnel

containing 200 mL water. The 9MPPBD is partitioned (3x) into 20 mL MeCl2,

until the MeCl2 layer is colorless. The combined organic layers, which are a deep

purple color, are then neutralized (1x) with 200 mL saturated NaHCO3(aq), and

the aqueous layer is back-extracted (2x) with 10 mL MeCl2, until it is colorless.

The combined organic extracts, which are a deep emerald green color, are then

washed (2x) with 200 mL water, back-extracting the aqueous layer each time

with (2x) 10 mL MeCl2. The combined organic extracts are dried over Na2SO4

and rotary-evaporated to dryness. The reaction product weighed 110 mg (206

gmol 9MPPBD) giving a yield for the ketone reduction of 97%.

3.4.2.2 Chlorin Dichlorosilicon Complexes [PhSiCl2J

3.4.2.2.1 Dichlorosilicon (IV) Methyl Pyropheophorbide a

The first synthesis of a chlorin dichlorosilicon complex was achieved by

dissolving MPPBDa (24.1 smol, 13.2 mg) in dry toluene under a N2 atmosphere

in a 4 mL screw-capped vial fitted with a teflon-lined silicone septum (National
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Figure 3.4: Visible spectra of (a) MPPBDa in acetone, and (b) (MPPBDa)SiCl2
in MeOH. In the dichlorosilicon complex the red band migrated from 666 to
628 nm, the three satellite bands of MPPBDa at 507, 536 and 610 nm
disappeared, and the S/R ratio increased from 2.2 to 5.9.



Scientific Company, Lawrenceville, GA) and adding 500 gL hexachlorodisilane

(Si2Cl6; Aldrich, Milwaukee, WI) via syringe. The reaction was allowed to

proceed for at least 2 hours at 70'C, after which time the vial was opened and

dried under a N2 stream at 70'C. The residue was immediately redissolved in

1.0 mL MeOH. Our experience has been that allowing the dried product to stand

(even under N2) for any length of time results in the formation- of an insoluble

green residue on the walls of the vial (see (9MPPBDa)SiCl2 synthesis for further

discussion of this).

The visible spectrum (figure 3.4) shows a migration of the red band from

666 to 628 nm, and a migration of the Soret band from 410 to 405 nm. The three

primary satellite bands at 507,536, and 610 nm in MPPBDa disappear and the

S/R (e.g., Soret/red band) ratio increases from 2.2 to 5.9. The reaction appears to

go to completion based on the loss of bands at 410 and 666 nm. The average

spectrophotometric yield for this reaction, based on five separate syntheses, was

44 ± 14% (1a, n = 5). It should be noted, though, that the extinction coefficient for

(MPPBDa)SiCl2 is not known. A yield of 88% is possible if the extinction

coefficient for both the starting material (MPPBDa) and the reaction product

((MPPBDa)SiCl2) is the same.

The lower yield assumes an extinction coefficient twice that of the

product, or 226,000 L/mol-cm. This estimation is based on the extinction

coefficients for silicon complexes of etioporphyrin (Boylan and Calvin, 1967) and

octaethylporphyrin (Fuhrhop and Smith, 1975) which are both about 2x greater

than for the corresponding free-base porphyrins. Therefore, extinction

coefficients equal to twice that of the free-base were used for all

spectrophotometric quantitations involving chlorin silicon complexes.



3.4.2.2.2 Dichlorosilicon (IV) 9-deoxo-methyl pyropheophorbide a

The dichlorosilicon complex of 9MPPBDa is prepared in a similar fashion

to (MPPBDa)SiCl2, with some minor modifications. The Si2C16 (120 gL) in this

synthesis was added to the dry toluene (1.0 mL) in a 50 mL pear-shaped flask

fitted with a 14/20 rubber septum (Aldrich, Milwaukee, WI) before the chlorin

(68 gmol, 37 mg) was added (dissolved in 0.75 mL dry toluene). That way, in the

event any water was present, the pigment would be preserved. (A violent

reaction occurred when Si2C16 contacted water; smoke and heat were evolved

and the mixture turned to a frothy brown substance, destroying the pigment in

the process.) The visible spectrum of the product (figure 3.5) has Xmax at 403
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Figure 3.5: Visible spectrum of (9MPPBDa)SiC12 in MeOH. The red band
migrated to 624 nm in the dichlorosilicon complex from 648 nm in the free-
base .



and 624 nm. The Soret absorption remains at the same wavelength as in free-

base 9MPPBDa, but the red band migrates down 24 nm, from 648 nm. The yield

for this reaction was highly variable, ranging from 30 to 85%.

3.4.2.3 Chlorin Dihydroxysilicon Complexes [PhSi(OH)21 -

3.4.2.3.1 Dihydroxysilicon (IV) Methyl Pyropheophorbide a

To dichlorosilicon (IV) methyl pyropheophorbide a (9.5 gmol, 6 mg)

dissolved in 1 mL MeOH is added 30 gL 0.6 mM HCl in MeOH and 0.75 pL H20,

thus bringing the acid content to 18 nmol ( or 17pM) and the water content to 42

gmol (or 0.07%) for the acid catalyzed hydrolysis of the 2 axial chlorines. The

reaction was mixed with a vortex mixer (Deluxe Mixer S8220, American Scientific

Products, McGraw Park, IL) and allowed to stand at 70'C for 1.5 hours, after

which time 2 mL dry pyridine was added. The reaction mixture was then

repeatedly (3x) blown down with a N2 stream, at 70'C, to a volume of -1 mL,

adding 2 mL dry pyridine after each concentration step. The yield for this

reaction was roughly 58%. Uncertainty in the yield arises as a result of some

free-base MPPBDa being evident in the visible spectrum. The free-base chlorin is

only sparingly soluble in MeOH but is quite soluble in pyridine, while the

inverse is true for the dihydroxysilicon chlorins.

The purpose of the repeated concentration was to remove water and

MeOH without drying the PSi(OH)2. Water (b.p. = 100*C), aqueous HCl (20.24%

HCl, b.p. = 110'C) and MeOH (b.p. = 65*C) are more volatile than pyridine (b.p.

= 1114C), so it was thought that the MeOH, water, and acid might be removed
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after repeated concentrations. If the hydrolysis was complete, then there would

have been 1030 gL MeOH, 24 gmol H20, and 18 nmol HCl remaining to

evaporate. Even if small amounts of MeOH and water remained it was thought

the silylation might proceed if a large excess of reagent was used. The silylating

reagent is significantly less moisture-sensitive than the hexachlorodisilane used

earlier. Experience showed that drying this product--hence removing all protic

solvents--resulted in the formation of an insoluble residue and complete loss of

the PSi(OH)2 (see discussion in section 2.6.1).

3.4.2.3.2 Dihydroxysilicon (IV) 9-Deoxo-Methyl Pyropheophorbide a

It is likely that the 17 pM HCl in 99.3% MeOH (aq) used for the hydrolysis

of MPPBDa (above) was insufficient for complete reaction. This conclusion is

based on the significant quantity of unreacted product from the hydrolysis of

(9MPPBDa)SiCl2 when identical reaction conditions were used. Therefore the

(9MPPBDa)SiCl2 was dried under a N2 stream, at 60*C, with frequent washing of

the vial walls with MeOH, and redissolved in 2 mL 0.1 N HC1 in 95% MeOH (aq).

After 10 minutes in an ultrasonic bath, some green residue remained on the vial

walls and some particulate pigmented material was observed in the solution.

The hydrolysis was allowed to proceed for 1 hour at 60*C.

Two simultaneous workups were attempted upon completion of the

reaction in order to determine the optimal procedure. In one, the reaction

mixture was added to 20 mL H20 in a 60 mL separatory funnel and partitioned

into 4 mL toluene. The blue organic layer was decanted and the aqueous layer

was transferred to a 500 mL separatory funnel for repeated partitionings into

MeCl2 (1x) and CHC13 (1x). A final partition into chloroform was performed
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after the addition of 100 mL saturated NaHCO3 (aq). The combined organic

layers were dried over Na2SO4 and rotary-evaporated to dryness. Alumina TLC

in 30/70 acetone/hexane demonstrated the formation of the desired blue

product, along with some free-base 9MPPBD and a significant quantity of green

pigment at the origin. An alternative workup of the hydrolysis product was

pursued in order to avoid the severe emulsions encountered during the phase

extraction.

In the second workup the hydrolysis product was first neutralized by

transferring to a 10 mL pear-shaped flask containing 30 mg NaHCO3, and

allowed to stand at 4*C for 60 hours, before being partitioned into 50 mL

chloroform in a 2 L separatory funnel containing 1 L H20. The aqueous layer

was re-extracted 2 more times with CHCl3, and the combined blue organic layers

were dried over Na2SO4 and rotary-evaporated to dryness. Alumina TLC

(30/70 acetone hexane) demonstrated the formation of the desired product, along

with some free-base and some green material at the origin. In this workup,

emulsions were negligible, probably owing to the neutralization of the acidic

reaction mixture prior to the phase extraction.

The products of both workups were then purified on preparative alumina

TLC plates eluted with 30/70 acetone/hexane. The blue band corresponding to

the dihydroxysilicon 9MPPBDa (RF = 0.43) was scraped and eluted with MeCl2

(3x) and acetone (2x) by filtration through a 47 mm Whatman GF/F filter. The

solution was then dried under a N2 stream at 60*C , and the reaction product

quntified spectrophotometrically. The visible spectrum of (9MPPBDa)Si(OH)2 in

MeCl2 (figure3.6) contains 4 absorbance maxima at 405, 511, 572, and 617 nm.

The Soret/red band ratio was 7.4. The yield for the hydrolysis ranged between

8.6 and 9.3%.
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Figure 3.6: Visible spectrum of (9MPPBDa)Si(OH)2 in MeCl2. Absorbance
maxima are at 405, 511, 572, and 617 nm.
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The existence of the desired product was confirmed (1) by 1H-NMR in

CD2Cl2 in which the highly shielded axial hydroxyl protons appear far upfield:

-2.2 ppm (d, 1 H) and -2.3 ppm (s, 1 H), and (2) by CH4 CI+-MS (M/Z = 594 (M,

40%)) (figure 3.7). In addition to the desired product, a compound 32 mass units

greater was formed (M/Z = 626 (M+32, 100%)). This corresponds to the addition

of methanol, or CH40. A discussion on the origin of this side-product can be

found in section 3.6.4.

3.4.2.4 Chlorin bis(tert.-butyldimethylsiloxy)Si(IV) complexes [PhSi(OTBDMS)21

3.4.2.4.1 bis(tert.-butyldimethylsiloxy)Si(IV) methyl pyropheophorbide a

The (MPPBDa)Si(OH)2 (5.5 pmol, 3.3 mg) dissolved in 2 mL dry pyridine

was transferred to a dry 4 mL vial and sealed under a N2 atmosphere with a

screw-cap fitted with a teflon-lined silicone septum. N-methyl-N-(tert.-

butyldimethylsilyl)trifluoroacetamide (150 gL; MtBSTFA: Regis Chemical, cat #

270241; or Pierce Chemical Co., Rockford, IL, cat # 48925) was added to the

reaction vial via syringe, and the reaction was vortex-mixed and allowed to stand

at 70*C for 17 hours.

Upon completion of the reaction the mixture was dried at 70*C under a N2

stream and redissolved in 500 pL Hexane. Analytical alumina TLC spotted with

the free-base MPPBDa and eluted with 10/90 (v/v) acetone/hexane showed 5

fluorescent products (RF = 0.21, 0.30, 0.39, 0.46, 0.59) less polar than the free-base

(RF = 0.13), as well as a spot corresponding to the free-base and some green

pigment at the origin (presumably unsilylated PhSi(OH)2 and/or unhydrolyzed
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PhSiCl2). These less polar compounds were believed to be various silyl ether

derivatives of disiloxysilicon MPPBDa. It should also be noted that a significant

amount of green pigment remained undissolved on the walls of the vial,

implying incomplete silylation of the dihydroxysilicon complex.

The reaction product was filtered through cotton into a clean vial dried

under a N2 stream and redissolved in 1 mL hexane. This product was then

column chromatographed on neutral alumina and eluted with 20 mL 30/70

(v/v) acetone/hexane. A significant quantity of green pigment remained on the

top of the column which, when eluted with MeOH, was shown by alumina TLC

(20/80 acetone/hexane) to contain some free-base MPPBDa and predominantly

PhSi(OH)2 and/or PhSiCl2, as most of the color remained at the origin where

both the dihydroxy- and the dichloro- silicon chlorin complexes have been

shown to remain on alumina.

The fraction eluted from the column with 30/70 acetone/hexane was

dried under N2 at 70*C, then redissolved in 100 pL hexane, applied to a

preparative alumina TLC plate, allowed to dry for 40 minutes, and eluted with

20/80 (v/v) acetone/hexane. The developed plate contained four bands with RF

values of 0.56, 0.65, 0.70, and 0.79. The most intense band was the least polar

with an RF = 0.79. Each of the 4 bands was scraped from the plate, eluted with

acetone, filtered through a 47 mm Whatman GF/F filter, rotary-evaporated to

dryness and stored in a dry vial for at -20*C under a N2 atmosphere.

Static FAB+ and GC-CI mass spectrometry confirmed the existence of at

least 6 different bis(tert.-butyldimethylsiloxy)Si(IV) derivatives of methyl

pyropheophorbide a. in the 3 least polar bands from the TLC plate. The desired

product, (MPPBDa)Si(OTBDMS)2 had a GC retention time (tR) of 18:36 and M/Z

= 837 (M+1, 40%), 779 (M-57, 37%), 705 (M-131, 100%) (figure 3.8). This

fragmentation pattern is typical of TBDMS derivatives (Gill, et al., 1986; Marriott,
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et al., 1984). A discussion of the other reaction products can be found in section

3.6.4.

Figure 3.8: GC-CI mass spectrum of (MPPBDa)Si(OTBDMS)2 (MIZ = 837

(M+1 40%), 779 (M-57, 37%), 705 (M-131, 100%). The retention time of the

derivative was 18:36 minutes.

The GC column was a 12 m SGE HT5 aluminum clad column with a 0.1

gm apolar phase, an inner diameter of 0.33 mm, and anouter diameter of 0.43

mm. On-column injection was used. The temperature program was: 50*-80*C at

35*/min, then 80*-275'C at 20*/min, then 275*-320*C at 6*/min, followed by a 20
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min isothermal phase at 320'C. The carrier gas was He and auto pressure

programming was used to maintain a constant flow rate of approximately 26.5

cm/sec. A 1 m piece of 0.15 mm ID deactivated silica tubing was used as a

bridge from the Al-clad column to the source.

The 4th band from the TLC plate (RF = 0.56) contained primarily

unreacted MPPBDa (M/Z = 548 (M+, 44%)), and possibly (MPPBDa)Si(OH)2

(M/Z = 608 (M++2, 80%)). Since neither the free base or the PhSi(OH)2 is GC-

amenable, GC-CI-MS runs showed nothing for the polar TLC product.

3.4.2.4.2 bis(tert.-butyldimethylsiloxy)Si(IV) 9-deoxo-methyl pyropheophorbide a

The dried (9MPPBDa)Si(OH)2 (2.7 to 3.4 gmol, 1.6 to 2.0 mg) was

redissolved in dry pyridine in a 4 mL glass vial and fitted with a screw-cap

containing a teflon-lined silicone septum. The headspace was filled with N2, and

100 pL MtBSTFA (+1% t -butyl dimethylchlorosilane, Pierce Chemical Co.,

Rockford, IL) was added via syringe. The reaction was allowed to proceed at

60*C in the dark for 14 hours. The reaction mixture was then dried under a N2

stream at 60*C. Complete redissolution occurred in 1 mL hexane.

The visible spectrum of the product in hexane had Xmax at 403, 508, 568,

and 610 nm (figure 3.9). GC-CI mass spectrometry confirmed that

(9MPPBDa)Si(OTBDMS)2 had been synthesized (figure 3.10) (tR = 16:26; M/Z =

822 (M, 100%), 807 (M-15, 25%), 765 (M-57, 25%), 735 (M-87, 15%), 691 (M-131,

65%)). The observed fragmentation pattern is typical of TBDMS derivatives (Gill,

et al., 1986; Marriott, et al., 1984), and corresponds to loss of -CH3, -C(CH3)3,

-TBDMS, -O(TBDMS), respectively. The GC conditions were the same as those

listed above for (MPPBDa)Si(OTBDMS)2. The yield for the silylation
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Figure 3.9: Visible spectrum of (9MPPBDa)Si(OTBDMS) 2 in hexane.

Absorbance maxima are at 403, 508, 568, and 610 nm.
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Figure 3.10: GC-CI mass spectrum of (9MPPBDa)Si(OTBDMS)2 (M/Z=822 (M,
100%), 807 (M-15, 25%), 765 (M-57, 25%), 735 (M-87, 15%), 691 (M-131, 65%)).
The GC retention time of the derivative was 16:26 minutes.
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ranged between 71 to 86%. The overall yield for the synthesis of

(9MPPBDa)Si(OTBDMS)2 from methyl pyropheophorbide a ranged between 5.4

and 5.8%.

A minor product (10-15%) of the synthesis was sometimes observed on

gas chromatograms 14 seconds before (9MPBDa)Si(TBDMS)2 eluted. This

product was confirmed by GC-CI-MS to be 2 mass units greater than the primary

product (figure 3.11). It is believed to be meso-9-deoxo(MPPBDa)Si(OTBDMS)2,

the result of vinyl reduction at the C-2 position on the chlorin macrocycle.
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Figure 3.11: (a) GC-CI total ion chromatogram of (9MPPBDa)Si(OTBDMS)2

showing the minor product, believed to be (meso-9-deoxo-methyl-

pyropheophorbide a)Si(OTBDMS)2, eluting 14 seconds prior to the desired

product. The mass spectra of the vinyl-reduced product is shown in (b), while

that of the main product is shown in (c).

109



3.4.3 Aromatization and Nickel Insertion Reactions of Chlorins

3.4.3.1 Aromatization of 9-Deoxo Methylpyropheophorbide a

The aromatization, or ring IV oxidation, of 9MPPBDa was achieved by the

reaction of 9MPPBDa with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)

(Kenner, et al., 1973) in MeCl2 (Simpson and Smith, 1988; Smith and Smith, 1990).

To 2.01 smol (1.07 mg) 9MPPBDa, dissolved in 2 mL MeCl2, was added 0.5 mg

(1.09 equivalents, or 2.2 tumol) DDQ dissolved in 0.5 mL benzene (dropwise, via

syringe). The solution went from green to burgundy almost immediately with

gentle swirling at room temperature. The mixture was rotary evaporated to

dryness after 5 minutes. Complete redissolution occurred in 2.0 mL 1:1

acetone:MeCl2. The visible spectrum of the product showed complete loss of the
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red band and was similar to that of alkyl porphyrins (Xmax = 398, 502, 566, 618

nm) (figure 3.12). This suggested the reaction had gone to completion. The

spectrophotometric yield for the reaction was 66%.

3.4.3.2 Insertion of Nickel Into 9-Deoxo- Chlorins

The overnight reaction of 9MPPBDa and aromatized 9MPPBDa with Ni

(II) acetylacetonate (Aldrich) in benzene (Verne-Mismer, 1988) resulted in

quantitative conversion of the free-base chlorins to their Ni (II) derivatives. The

chlorins (c. 1.0 mg) were dissolved in 10 mL benzene in 25 mL round-bottom

flasks, and the vessels were flushed with N2. Then c. 5 mg Ni (II) acetylacetonate

was added, and the reaction was allowed to reflux overnight. The products were

either cleaned up on alumina Sep-Paks or partitioned into MeCl2. The visible

spectra in acetone suggested quantitative conversion of the free-base chlorins to

their Ni(II) derivatives, by the disappearance of the red bands and the

appearance of absorption bands at 396, 552, 610 nm, or 394, 518, 552 nm, for

9MPPBDa and its aromatized derivative, respectively (figure 3.13). The

aromatized structure also displayed a prominent absorption band at 328 nm. For

comparison, the visible spectrum of Ni(II) deuteroporphyrin dimethyl ester

(synthesized as above) had kmax = 388,546 and 510 nm (figure 3.14).

3.5 Results

This section begins with the results of the first-ever irmGC-MS analyses of

derivatized chlorins. The latter part focuses on the results of a study of nitrogen
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Figure 3.13: Visible spectra of (a) Ni(II) 9-deoxo-methyl pyropheophorbide a
in acetone (Xmax=396, 552 and 610 nm), and (b) the Ni(II) derivative of ring-IV
oxidized 9MPPBDa in acetone (Amax=394, 518 and 552 nm).
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isotopic fractionation during the derivatization of chlorins for gas

chromatography and irmGC-MS.

3.5.1 irmGC-MS Analysis of Derivatized Chlorins

Aliquots of derivatized methyl pyropheophorbide a from two separate

derivatizations were submitted to A. Hilkert at Finnigan MAT, in Bremen,

Germany, for 815N and 513C determination via irmGC-MS. The same GC

column and conditions were used as those listed above for the GC-MS work. The

system was a MAT 252 GC system (Brand, et al., 1994) (figure 3.2). Each of the

815N runs used between 2.3 and 2.5 nmol, or 1.9 to 2.1 gg, of derivatized chlorin,

corresponding to 9.3 to 10.0 nmol of nitrogen. The 813C runs were performed

with 1/10th that amount (e.g., 0.23 to 0.25 nmol, or 0.19 to 0.21 pg chlorin; and

10.6 to 11.5 nmol C.) Two representative mass 28 (14N2) and mass 44 (12C1602)

chromatograms are shown in figure 3.15. The isotope results are presented

below in table 3.1. The duplicate derivatizations are termed MPPBDa#1 and

MPPBDa#2 in the table.

The irmGC-MS results compared favorably wih the 815N values obtained

on the same samples with traditional (off-line) dual-inlet irMS. Those values

were 1.2 per mil and 1.8 per mil, respectively, for MPPBDa#1 and MPPBDa#2.

This suggests that the determination of derivatized chlorin S15N values by

irmGC-MS has both an accuracy and a precision of ±0.3 per mil.
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Table 3.1: Chlorin 31 5 N and 81 3 C values from irmGC-MS. Values are in per

mil.

MPPBDa#1 MPPBDa#2

_15N 1.36 1.54

1.17 1.50

1.70 1.10

Average 1.41 1.38

SD 0.27 0.24

813C -30.28 -30.89

-30.76 -31.27

Average -30.52 -31.08

SD 0.24 0.19
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Figure 3.15: Chromatograms from irmGC-MS runs of derivatized 9MPPBDa.
The results for 815N (14N2=mass 28) are shown in (a), while those for 513 C
(12C1 602=mass 44) are shown in (b). The peak splitting in (a) resulted from

overloading the GC column.
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3.5.2 Isotopic Fractionation During Derivatization of Methyl Pyropheophorbide a

Duplicate derivatizations of MPPBDa were performed in order to

determine whether nitrogen isotopic fractionation occurred as a result of the

synthesis. The results of the isotope analyses are presented in table 3.2. They are

shown graphically in figure 3.16.

Table 3.2: Isotopic results for repeat derivatizations of MPPBDa. Yields are in

percent. AS1 5 N values and yields are relative to the immediate precursors.

81 5 N #1 AS 1 5N #1 Yield #1 51 5 N #2 AS 1 5N #2 Yield #2

MPPBDa 2.65 2.65

9MPPBDal 2.65 0 97 2.65 0 97

-SiC12 2  2.57 -0.08 85 2.59 -0.06 80

9MPPBDa 3  3.10 0.45 15 2.90 0.25 20

-Si(OH)2 1.40 -1.17 9.3 2.00 -0.59 8.6

-Si(OTBDMS)2 1.20 -0.2 71 1.80 -0.2 86

Net -1.45 5.4 -0.85 5.8

1 Duplicate 9MPPBDa syntheses not performed. 2 Values calculated from a mass

balance; see text for description. 3 This 9MPPBDa was recovered, unreacted

starting material.

There was a net isotopic depletion in the product of both derivatizations.

The first had a yield of 5.6%, and was depleted in 15N by 1.45 per mil relative to

the starting material. The second derivative was depleted in 15N by 0.85 per mil

relative to the starting material, and its yield was 5.9%. Most (69 to 81%) of the

isotopic alteration occurred during the hydrolysis of the 9MPPBDa

dichlorosilicon complex. There was no isotopic fractionation associated with the

ketone reduction of MPPBDa, a reaction with a 97% yield.
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Figure 3.16: Isotopic fractionation resulting from each step of two chlorin
derivatizations. Values plotted are N isotopic differences between product

and substrate, or AS15Nproduct-substrate.

0.5-

0

Dd15N -0.5 - -- ---
(per mil)

-2
9MPPBDa -Si(CI)2 9MPPBDa -SI(OH)2 -Si(OTBDMS)2 Net

The silicon insertion step appears to have resulted in little isotopic

fractionation. Since this product could not be isolated for isotopic analysis (see

Methods section) a mass balance calculation was performed to determine the

d15N values. The mass balance is based upon the assumptions that (1) all of the

9MPPBDa was either converted to the dichlorosilicon complex or left unreacted

and carried through the hydrolysis step, and (2) all of the 9MPPBDa recovered

after the hydrolysis was unreacted starting material from the Si-insertion step,

not reformed starting material resulting from loss of the central Si. (This is a

reasonable assumption since the Si complexes of alkyl porphyrins are stable even

in 100% H2SO4 (Fuhrhop and Smith, 1975)). Thus, the following mass balance

can be established,

5MPB1YMPB1 = 5SiCl2YSiCl2 + SMPB2YMPB2
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where 8x is the 515N of the product x (in per mil), Yx is the yield of the reaction

resulting in product x, MPB1 is the precursor to the dichlorosilicon complex

(9MPPBDa), and MPB2 is the unreacted 9MPPBDa recovered after the hydrolysis

step. The equation has two unknowns, SSiCl2 and YSiCl2. However, the fraction

of starting material recovered as unreacted 9MPPBDa is known, and the

assumption is being made that all starting material ended up as either

dichlorosilicon complex or unreacted 9MPPBDa. Therefore,

YSiCl2= 1 - YMPB2-

Now the mass balance can be solved for the isotopic composition of

(9MPPBDa)SiCl2 by substituting the second into the first equation, and

substituting the appropriate values from table 3.2, and solving for SSiCl2. Hence,

5SiCl2 = (SMPB1YMPB1 - 5MPB2YMPB2)/(l-YMPB2)

= (2.65 x 1 - 3.1 x 0.154) / (1 - 0.154)

= 2.57 per mil for the first derivatization,

and

5SiCl2= (2.65 x 1 - 2.9 x 0.197) / (1-0.197)

= 2.59 per mil for the second derivatization.

The mass balance calculation therefore indicates that isotopic fractionation of the

chlorin associated with Si-insertion with hexachlorodisilane is on the order of 0.1

per mil.

It is the hydrolysis of the axial chlorines that results in significant isotopic

fractionation of the derivative. The yield for this step was about 9% in both

instances. Incomplete reaction resulting from overly mild hydrolysis conditions
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is the likely cause of the low yields (see section 3.6). It is expected that the

isotopic fractionation associated with this step will diminish if yields can be

increased.

The last step of the derivatization, silylation of the axial hydoxyl groups,

resulted in a 0.2 per mil 15N depletion of the product in both syntheses. The

yields for the reaction were 71 and 86%, respectively.

3.6 Discussion ,

With some modifications to procedures developed for the synthesis of

volatile alkyl porphyrins (Boylan, et al., 1969; Boylan and Calvin, 1967; Eckardt,

et al., 1988; Gill, et al., 1986; Hein, et al., 1985; Marriott, et al., 1984) a synthetic

route to volatile chlorin derivatives has been devised (figure 3.17). Methyl

pyropheophorbide a (MPPBDa), a common chlorophyll a degradation product

found in marine sediments, was used as a model chlorin in this work. The

synthesis of MPPBDa from Chl a is described in chapter 2.

Modifications to the earlier procedures were necessary due to the

additional functional groups on chlorins relative to alkyl porphyrins. For

instance, it was thought that the hydrolysis of the axial chlorines in either 1 N

ethanolic (50/50 H20/EtOH) HCI (Boylan, et al., 1969; Boylan and Calvin, 1967)

or concentrated KOH (aq) (Marriott, et al., 1984) would result in hydrolysis of the

ester on the C-7 propionic side-chain. Therefore dilute (0.1 N) methanolic (5/95

H20/MeOH)HCl was used for the hydrolysis. Furthermore, it was suggested

(R. Ocampo, personal communication) that reduction of the ketone at the C-9

position (on the isocyclic ring) would increase yields of the dihydroxysilicon

chlorins. Solubility issues also arose as a result of the chlorins being more polar

than the alkyl porphyrins derivatized by the Bristol group. So, for instance,
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Figure 3.17: The 4-step synthesis of GC-amenable chlorin derivatives. The

yields for each reaction are shown.

methanol rather than ethanol was used to dissolve the dichlorosilicon chlorins.

Even with these modifications, yields for the synthesis of volatile silicon

chlorin complexes remain low (5-6%). Most of the loss occurs during the

handling of the dichlorosilicon complex and the subsequent hydrolysis step. The

following discussion focuses on the causes of, and potential solutions to, the low

yields for the chlorin derivatization.
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3.6.1 Chlorin C-9 Ketone Reduction

The ketone reduction of MPPBDa to form 9-deoxo-MPPBDa was pursued

as a potential solution to the "polymerization," and resultant loss of product,

observed during the synthesis and handling of (MPPBDa)SiCl2.

It is known that the C-10 is an active site on the chlorin macrocycle

(Hynninen, 1979; Hynninen, et al., 1979) with the C-10 protons being abnormally

acidic. This is due (1) to the activation of this site by the two electron-

withdrawing carbonyl functionalities at C-9 and C-10 and (2) to the resonance

stabilization afforded the benzylic-like anion of a C-10-deprotonized chlorin

(Scheer, 1991). Although somewhat reduced, the acidity of the C-10 protons

persists even after removal of the D-keto ester to make the "pyro" chlorin (Scheer,

1991). Thus the ketone at C-9 can enolize relatively easily. However, at

thermodynamic equilibrium the free enol is expected to be in very low

concentrations (Scheer, 1991). The stability, and hence concentration of the free

enol can, however, be enhanced by formation of a silyl enol ether (Hynninen, et

al., 1979) (figure 3.18).

NH N + - NH N
Pr N F /THF

Figure 3.18: Stabilization of free enol by formation of a silyl enol ether
(Hynninen, 1991).
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It is likely, then, that the C-9 enol was stabilized by the synthesis of a

chlorosilyl enol ethers during the reaction of MPPBDa with Si2C16. The

chlorosilyl moiety of the enol ether would then be available for insertion into the

macrocycle of another chlorin. In this way polymerization could occur (Dr.

Ruben Ocampo, personal communication).

3.6.2 Chlorin Dichlorosilicon Complex

The reaction of chlorins with hexachlorodisilane (Si2C6) to form chlorin

dichlorosilicon complexes is a rapid, high yield reaction. The problem with this

approach for routine use is the extremely high reactivity of the reagent.

Hexachlorodisilane reacts violently with water. Therefore, great care must be

taken to insure all solvents, reactants and glassware are dry. In addition, air

must be excluded from reaction vessels. Furthermore, transfer of the reagent via

syringe was often unsuccessful, especially if the ambient humidity was high.

Finally, the product of the reaction appears to be susceptible to self-

polymerization. This polymerization is largely responsible for the significant loss

of product encountered during chlorin derivatizaion.

The polymerization is likely to occur even in a completely

defunctionalized chlorin. For instance, the dichlorosilicon complex of

octaethylporphyrin--an alkyl porphyrin lacking carbonyl functionalities--

underwent a similar transformation (this work). Furthermore, pthalocyanine

dihydroxy silicon complexes underwent self-polymerizations as well (Joyner and

Kenney, 1962). The latter were thought to be essentially linear polymers in the z-

direction to form a chain of ----O-Si-O-Si-O-.- bonds. This suggests the axial

chlorines in our dichlorosilicon complexes may be easily hydrolyzed, after which
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time they may be available for the hydrolysis of neighboring axial chlorines, thus

producing an insoluble polymer.

As mentioned above, the C-9 enol may also be involved in the

polymerization. In this way the polymerization would be similar to that

observed with hematin, the dihydroxy complex of heme-an iron porphyrin with

carboxylic acid side chains-which forms an insoluble polymer-when it is allowed

to stand in alcohol (Falk, 1964). That the axial chlorines in our syntheses were

hydrolyzed by SiO2 moieties comprising the glass vial walls was considered

unlikely since the same behavior was observed in teflon.

It is therefore recommended that if Si2CI6 is to be used, it be done in an

airtight reactor where transfer of the reagent can be accomplished without

contact with air. The simplest approach would be to perform the reaction in an

N2-filled glove bag. However, there are specialized pieces of equipment

designed for the use of moisture-sensitive reagents (Brown, 1975). Furthermore,

the dichlorosilicon complex should be hydrolyzed immediately since it is

susceptible to rapid self-polymerization.

3.6.3 Hydrolyisis of the Chlorin Dichlorosilicon Complex

Mild (i.e., 17 gM HCl in 99.3% MeOH (aq)) reaction conditions were used

for the hydrolysis of chlorin dichlorosilicon complexes because many naturally

occuring chlorins contain ester functionalities that are susceptible to hydolysis in

aqueous acid. However, it is likely that the reaction conditions used for this

work were too mild for complete reaction. Previous workers have used 1 N HCl

in 50% aqueous ethanol (Boylan and Calvin, 1967) or saturated KOH (aq)

(Marriott, et al., 1984) for the hydrolysis reaction.
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In order to increase the yield of the hydrolysis reaction it is recommended

(1) that more agressive hydrolysis conditions (i.e., 1 N HCl in 75% MeOH (aq)) be

employed, and (2) that high dilutions be used during the phase separation of the

hydrolysis product from the aqueous solution into organic solvents. Increasing

the acidity of the solvent is likely to reduce in partial hydrolysis of the ester

functionalities, but this reaction may be minimized by decreasing the reaction

time to a few minutes. For example, an experiment showed that methyl

pyropheophorbide a was stable in 0.1 N HCl in 95% MeOH (aq), with 0.45%

degrading in 1 hour and 4.8% degrading in 18 hours. The dilution of the reaction

medium (both by increasing the water concentration and making the mixture

more dilute) is suggested in order to decrease the likelihood that chlorin axial

-OH groups will encounter axial chlorines, thus preventing polymerization.

3.6.4 Silylation of the Chlorin Dihydroxysilicon Complex

Mass spectrometry (static FAB+ and GC-CI) confirmed the successful

synthesis of volatile chlorin silicon complexes of methyl pyropheophorbide a.

Purification of the reaction products by alumina TLC led to the three blue bands

(RF = 0.65, 0.70 and 0.79) containing at least 6 different bis(tert.-

butyldimethylsiloxy)Si(IV) derivatives of methyl pyropheophorbide a.

The fourth, and most polar (RF = 0.56), band was shown by FAB+ MS

(figure 3.19) to contain free-base MPPBDa (M/Z = 548 (M+, 44%)), and possibly

some dihydroxysilicon complex ((MPPBDa)Si(OH)2, M/Z = 608 (M++2, 80%)), or

meso-dihydroxysilicon complex (M/Z = 610 (M+, 80%). (The term meso refers to

a reduced vinyl group at C-2.) Since neither the free base or the PhSi(OH)2 is

GC-amenable, neither compound was observed in GC-CI-MS runs.
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Figure 3.19: FAB+ mass spectrum of of the polar band (RF=0.56) from alumina
TLC of the reaction product of the MPPBDa derivatization.
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Figure 3.20: GC-CI+ mass spectrum of (MPPBDa)Si(OTBDMS)2. The
retention time of the derivative was 18:36 minutes.
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Figure 3.21: GC-CI+ mass spectrum of compound eluting 19 seconds after

(MPPBDa)Si(OTBDMS)2. The fragmentation pattern is virtually identical to

that of the desired product (figure 3.20), yet each fragment is 32 mass units

greater (see text for discussion).
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Figure 3.22: Methane CI-mass spectrum of (9MPPBDa)Si(OH)2 (M/Z=594 (M,

40%)) showing the high abundance of the M+32 side-product (M/Z=626, 100%),

corresponding to the addition of CH40.
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The 2 adjacent bands from the TLC plate,with RF = 0.65 and 0.70,

contained two of the same chlorin derivatives, with retention times (tr) of 18:36

and 18:55, respectively. This was 30 and 49 seconds, respectively, into the

isothermal part of the temperature program, and therefore corresponded to an

elution temperature of 320*C. The compound eluting at 18:36 was

(MPPBDa)Si(OTBDMS)2, the desired product (M/Z = 836 (M+1, 43%), 779 (M-57,

35%), 705 (M-131, 100%)) (figure 3.20). The observed fragmentation pattern is

typical for tert.-butyldimethylsiloxy groups (Gill, et al., 1986; Marriott, et al.,

1984), with loss of a -TBDMSO (-131) accounting for the major ion, and the parent

ion and loss of a t-butyl (-57) group having similar intensities.

The compound eluting at 18:55 was 32 mass units greater than the desired

derivative (M/Z = 868 (M+1, 54%), 811 (M-57, 41%), 737 (M-131, 100%)) (figure

3.21) which suggests the addition of methanol (CH30H). High-resolution MS-

MS supports this interpretation. The most likely place for the addition of CH30-

is at the central silicon atom. This may occur during the hydrolysis of the

dichlorosilicon complex in acidic MeOH. The fourth hydrogen would then be a

pyrrolic proton.

If the silicon complexed to only 3 of the 4 pyrrolic nitrogens, possibly as a

result of the puckered geometry of the chlorin macrocycle, then MeOH could

substitute for one or more of the remaining chlorines during the hydrolysis step.

It is thought that metals are incorporated into porphyrins via an SN2-type

displacement, whereby the metal forms an activated complex with the

porphyrin, followed by displacement of the two pyrrolic protons by the metal

(Falk, 1964). This mechanism-rather than a dissociation of the pyrrolic protons

to form the dianion, followed by reaction with the metal-certainly seems more

compatible with the "partial reaction" hypothesis. The proposed scenario
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requires that a silicon complex formed with only 3 of the pyrrole nitrogens be

quite stable.

If MeOH is reacting with the central Si atom, then it might be expected to

see ChSi(OCH3)(OH)2, ChSi(OCH3)2(OH), and even ChSi(OCH3)3 as reaction

products of the hydrolysis. The first two products are, in fact observed, with

ChSi(OCH3)(OH)2 actually being the most abundant product in some instances

(figure 3.22). The silyl methyl triether has not been observed.

In a similar finding, Boylan and Calvin (1967) showed that the C1 ligands

on dichlorosilicon etioporphyrin I could be substituted by alkyl ether groups

when the product of the silicon insertion step was treated with acidic ethanol.

However, there have not been any reports in the literature of Si complexing with

only 3 of the 4 nitrogens in a cyclic tetrapyrrole. Nevertheless, important

differences exist in chlorin geometry relative to alkyl porphyrins.

Porphyrins are planar molecules, while chlorins tend to have a puckered

macrocycle (Hynninen and Sievers, 1981). The 5-membered isocyclic ring exerts

steric strain on the chlorin macrocycle. This strain is relieved by conformational

alterations afforded by the enhanced flexibility resulting from the sp 3

hybridization at C-7 and C-8 in ring IV (Hynninen and Sievers, 1981).

Porphyrins tend to be more planar since they contain an oxidized ring IV and

therefore lack this added flexibility.

Additional stability would be imparted to a methoxy ligand on the central

Si through hydrogen bonding with the proton on the ring II N.

The other potential site for the addition of CH40- on the chlorin

macrocycle is across the vinyl group at the C-2 position. However, this seems

unlikely given the stability of that group in strongly acidic methanol (i.e., 25/75

(w/w) H2SO4/MeOH for up to 3 hours) (Sachs, unpubl.) (King and Repeta,

1994).

128



Even if silyl methyl ethers are being synthesized as a result of incomplete

reaction of the pyrrolic nitrogens with tetravalent Si (from Si2Cl6), they are not

significantly diminishing the volatility of the chlorin derivatives. This is

evidenced by their elution 49 seconds into the isothermal phase of the

temperature program, versus 30 seconds for the desired derivative. Nonetheless,

avoiding this side reaction is desirable since it would simplify the

chromatography.

3.6.5 Direct High-Temp GC of Chlorins

The most promising route to irmGC-MS analysis of chlorins may be direct

high-temperature gas chromatography of partially defunctionalized

chlorophylls. Initial attempts to chromatograph methyl pyropheophorbide a

gave poor results (figure 3.23). The broad hump upon which the chlorin peak

17- I .L L

100 52.0 5 6 ' i CP 10Im

Figure 3.23: Gas chromatogram of methyl pyropheophorbide a. Partial

thermal decomposition of the chlorin occurred prior to its elution at 439*C.
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(elution temperature = 439*C) sits was thought to result from partial thermal

degradation of the chlorin. Therefore, two approaches were taken to improve the

chromatography. The first was to increase the thermal stability of the chlorin.

The second was to increase the volatility of the chlorin (without the multi-step

derivatization described above).

Increased volatility was achieved by reduction of the methyl

pyropheophorbide a ketone at C-9. Increased thermal stability was attempted in

two ways. First, by aromatizing, and second by inserting Ni into the chlorin

macrocycle. The aromatization consisted of D (or IV) ring oxidation. The

reaction of 9MPPBDa with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in

MeCl2 (Smith and Smith, 1990) went to completion at room temperature in

roughly 30 seconds (figure 3.12). The reaction of 9MPPBDa and aromatized

9MPPBDa with Ni (II) acetylacetonate (Aldrich) in benzene at reflux overnight

(Verne-Mismer, 1988) resulted in quantitative conversion of the free-base

chlorins to their Ni (II) derivatives (figure 3.13). Experiments were conducted to

determine whether N or C isotopic fractionation occurred as a result of the

metallation reaction. None was observed with either deuteroporphyrin IX

dimethyl ester or 9MPPBDa.

Using an aluminum-clad capillary GC column (SGE HT-5, 12 m, 0.1 pm

non-polar phase), which can be operated at temperatures up to 480*C, it was

possible to directly chromatograph 9-deoxo-methylpyropheophorbide a (figure

3.24.b). The elution temperature for this compound was 380*C. For the

temperature gradient employed-60*(1)/25/350(0)/10/440*(20)--this

corresponded to a retention time of 15.61 minutes. This was similar to the

retention time of deuteroporphyrin IX dimethyl ester, which eluted at 15.75

minutes, or 381.4*C (figure 3.24.a).
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(a)

(b)

Figure 3.24: Gas chromatograms of (a) deuteroporphyrin IX dimethyl ester,
and (b) 9-deoxo-methyl pyropheophorbide a.

131

DEUTEROPORPHYRIN IX
DIMETHYL ESTER

SGE HT-5, Aluminum Clad, 12 m, 0.1p1m
60*C(1)/25/350*C(0)/10/440*C(20)

15.6 mins = 3800 C

9-DEOXO METHYL
PYROPHEOPHORBIDE a



(a)

(b)

N

(c)

Figure 3.25: Gas chromatograms of (a) methyl pyropheophorbide a, (b) ring
IV-oxidized 9-deoxo-methyl pyropheophorbide a (see section 3.4.3.1), and (c) a
C12-C60 normal alkane standard.
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The earlier, failed attempts at direct chlorin gas chromatography

employed a hydrogen carrier gas at flow rates of 3.0 mL/min (at 110*C). The

successful chromatography occurred when the carrier was switched to helium,

and the flow rate increased to 3.5 mL/min, and held constant with electronic

pressure programming. In addition to the 9-deoxo chlorin, it was possible to

chromatograph intact methyl pyropheophorbide a with these improved

conditions (figure 3.25.a). The retention time was 16.12 minutes, corresonding to

an elution temperature of 385.1*C. This is 0.51 mins and 5.1*C greater that

observed for the reduced ketone derivative. The chromatographic peak shape

was also somewhat diminished relative to the 9-deoxo chlorin.

The gas chromatography of aromatized 9-deoxo chlorin was successful

(figure 3.25.b), but the peak shape was also inferior to that of intact 9MPPBDa.

The retention time of the aromatized structure was 17.25 minutes, corresponding

to an elution temperature of 396.4*C. Furthermore, none of the Ni (II)

derivatives--Ni(II)9MPPBDa, Ni(II)-"aromatized"-9MPPBDa, Ni(II)

deuteroporphyrin IX dimethyl ester--eluted from the chromatograph during the

temperature program employed (i.e., to 440*C, followed by a 20 minute

isothermal period).

In conclusion, the direct gas chromatography of underivatized chlorins is

possible at temperatures below 400*C. The use of a short (12 m) aluminum-clad

column with a thin (0.1 gm) phase, and a high (3.5 mL/min) He flow rate

produces good chromatographic results with methyl pyropheophorbide a and 9-

deoxo-methyl pyropheophorbide a . Since the former is a commonly found

chlorophyll degradation product in marine sediments, it may be possible to

measure chlorin 815N and 813C values directly by irmGC-MS of sedimentary

lipid extracts. It is expected that some resolution will be lost by the use of short

GC columns with thin phases, yet n-C50 and nC-60 are resolved by 2.2 minutes
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using the column and conditions described above (figure 3.25.c). This resolution

may be sufficient toward the high end of the chromatogram where there may be

fewer co-eluting materials. It is not known, though, whether current irmGC-MS

systems will tolerate the higher operating temperatures suggested here.

3.7 Conclusion

Stable N and C isotope ratios in chlorophyll may prove to be powerful

biogeochemical tracers. Their measurement, though, has been hampered by the

inability to purify chlorins to levels suitable for isotopic analysis. In the few

instances where this has been done, the number of measurements was small due

to the complexity of the chemistry. And there are no published analyses of

sedimentary chlorin stable isotopic ratios.

Recent technological advances have now made it possible to measure

isotopic composition of nanomolar quantities of nitrogen and carbon on

individual compounds as they elute from a gas chromatograph. The high

sensitivity of new mass spectrometers combined with the high resolution of

today's capillary GC columns make this a very powerful tool. Therefore, we

sought to measure chlorin S15N and 813C by irmGC-MS.

Since initial attempts at direct gas chromatography of chlorins were

unsuccessful, we developed a procedure for the synthesis of volatile bis-(tert

butyldimethylsiloxy)Si(IV) chlorin derivatives. These derivatives eluted from a

GC at 260*C. However yields for the synthesis were low (5-6%) and a net

nitrogen isotopic depletion of 1.2 per mil was observed in the derivative relative

to the starting chlorin. Therefore, the direct GC approach was revisited.
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It was found that methyl pyropheophorbide a, a common sedimentary

chlorin, passed through a GC at 385 0C. This occurred when a short (12 m), non-

polar thin-phased (0.1 gm) aluminum-clad glass capillary column was used, and

the helium carrier gas flow rate was maintained at a constant 3.5 mL/min. The

chromatographic peak shape improved, and the elution temperature decreased

by 50C when the ketone at C-9 on the chlorin isocyclic ring was removed. The

reduction is rapid and the yield is high (97%), resulting in no N isotopic

alteration.

It is suggested that future work on chlorin irmGC-MS focus on the direct

high-temperature route, rather than on the derivatization. Doing so would avoid

the cumbersome manipulations required when working with extremely reactive

moisture-sensitive reagents. Furthermore, the direct chromatographic approach

should result in less isotopic fractionation since little or no chemical alteration of

the chlorin is required.
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Chapter 4: Nitrogen and Carbon Isotopic Ratios in Chlorophyll

4.1 Abstract

The single published study exploring chlorophyll-whole plant N and C

isotopic relationships suggests that both chlorophyll 813C and 815N are linearly

related to the 513C and 815N, respectively, of the whole plant from which the

chlorophyll was extracted (Bidigare, et al., 1991; Kennicutt II, et al., 1992). That

study included six higher plants. This study was undertaken in order to

establish the chlorophyll-cell N and C isotopic relationships for phytoplankton.

Fourteen axenic batch cultures of phytoplankton, representing 8 species, were

grown under nutrient-replete conditions and the N and C isotopic composition

of the chlorophyll from each was compared to the isotopic composition of the

whole cells. A constant relationship was found for both isotopes. Chlorophyll

nitrogen was depleted in 15 N by 5.0 per mil (SD = 2.1, n = 14), while chlorophyll

carbon was depleted in 13C by 0.1 per mil (SD = 2.9, n = 13) relative to whole

cells. The large standard deviation of the average for N is explained in terms of

inter-species differences in the partitioning of N between non-protein

biochemicals. Repeat culture experiments suggest the precision of the method is

0.57 and 1.25 per mil, respectively, for AS15Ncell-Chla and AS13Ccell-Chla

determinations in cultured marine phytoplankton. When results are averaged by

species, AS15Ncell-Chla = 5.16 ± 2.40 per mil for N; and A813Ccell-Chla = -0.02 ±

2.12 for C.
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4.2 Introduction

Stable N and C isotope ratios in marine particles and sediments have been

used for the past four decades to understand the cycling of the major nutrients

between geologic and biologic pools. The timescales of processes studied range

from 10-2 (e.g, phytoplankton blooms) (Altabet, et al., 1991) to -109 years (e.g.,

organic carbon burial since the Precambrian) (Knoll and Walter, 1992).

Frequently what is sought with these measurements is the N or C isotopic ratio

of primary producers, or phytoplankton--those organisms that exist at the

interface between the geologic and the biologic realms. As a result of

heterotrophy and diagenetic alteration primary isotopic signals can be altered

significantly (DeNiro and Epstein, 1978; DeNiro and Epstein, 1981; Montoya,

1994; Wada, 1980). For this reason biogeochemists interested in nitrogen and

carbon cycling have, over the last 10 years, begun to make isotopic

measurements on biomarkers, or molecular fossils having known origins (Hayes,

et al., 1990; Hayes, et al., 1989; Hayes, et al., 1987).

Sixty years ago Alfred Treibs identified the first biomarker,

deoxophylloerythroetioporphyrin (DPEP), a compound he believed derived from

chlorophyll a (figure 1.3) (Treibs, 1936). More recent work has confirmed his

proposed degradative pathway (Baker and Louda, 1986; Boreham, et al., 1989;

Keely, et al., 1990; Krane, et al., 1983). Chlorophyll is a ubiquitous light-

harvesting pigment found in all algae. Although rapidly degraded during

senescence, light exposure, grazing, and microbial action (Sun, et al., 1991; Sun, et

al., 1993; Welschmeyer and Lorenzen, 1985), the colored chlorophyll degradation

products shown in figure 1.3, (i.e., chlorophyllides, pheophytins, pheophorbides,

and porphyrins) tend to be more resilient than chlorophyll a , and can be

recovered from marine particles and sediments (Louda and Baker, 1986). Their
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ubiquity amongst algae and resistance to decomposition suggest that the chlorins

may be an ideal tracer of algal 515N and 613C in particulate matter and

sediments.

In order to use chlorin 815N and 813C as proxies for algae it must be

established that a predictable relationship between the biomarker isotopic

composition and that of the whole cell exists. This relationship had been

explored by Kennicutt, et al (1992) in six terrestrial plants--ragweed, parsley,

Brussels sprouts, sorghum, Bermuda grass and Johnson grass--and found to be

linear for both nitrogen (515 Nbulk = (1.30)6 1 5 NChl a - 0.40, r 2 = 0.90, n = 6) and

carbon (813 Cbulk= (0.97)5 1 3 CChl a - 1.88, r2 = 0.95, n = 6). In addition, R.

Goericke performed N isotopic measurements on semi-purified chlorophyll a

from 5 species of phytoplankton grown in chemostats (e.g., continuous cultures).

He, too, found a linear relationship between chlorophyll and whole-cell 515N

(815 Nbulk = (1.12)61 5 NChla + 5.12, r2 = 0.70, n =5). However, no 813 C

measurements were performed and information regarding chlorophyll purity

was not available. Our objective, then, was to firmly establish whether a

predictable relationship exists between chlorophyll and whole-cell 815 N and

813C in marine phytoplankton.

Toward this end we grew 14 axenic batch cultures of marine

phytoplankton and measured the N and C isotopic difference between

chlorophyll and whole cells. Results are presented for both carbon and nitrogen

isotopes. The focus of the discussion, though, is nitrogen isotopes, since the

primary goal of this thesis is to introduce chlorophyll 815N as a

paleoenvironmental tracer.
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4.3 Methods

4.3.1 Culturing Procedures

Fourteen individual batch cultures of marine algae were grown on four

occasions over the course of 17 months. Ten of the seed cultures were obtained

directly from the Provasoli-Guillard National Center for Culture of Marine

Phytoplankton (CCMP) at the Bigelow Laboratory for Ocean Sciences, West

Boothbay Harbor, Maine 04575 (table 4.1). Three of the other four seed cultures

were provided by Dr. Joseph Montoya (Harvard University), and the fourth was

provided by Dr. John Waterbury (WHOI). In all cases but one--synechococcus,

for which SN2 medium was used-- f/2 medium (table 4.2) (Guillard, 1975) was

used.

Table 4.1: description of cultures and used in this study.

I V Abbrev. I duN- L:D T can
Species Clone Class Common Name Nam* Origin Date Size Medum N03 c Cle C SW Origin Growth Phase dl5N
Thaltasisosn weiszfiog TW Bacdlanophyceae Diatom ITW1IDr Montoya 6/22-7/5/94 20L f/2 3.6 3.05 12:12 18 Nahant MA 0.55
Ernhania huxley CCMP1516_Prymnesiophyceae Coccoithophond EH1 Dr.nt a 6/22-7/5/94 20 L f/2 3.6 5.8 12:12 18 Nahant MA -2.2
Isochrysts gabana T-tso Haptophyceae Brown Flagellate IG1 Dr. Montoya 16/22-7/5/94 20 L f/2 3.6 9.5 12 12 18 Nahant. MA -5.9

Amphidinium carterne CCMP1314 Dinophyceae Dinotlagellate AMP2 !uP 5/15-5/26/95 20L t/2 2 5. 12.12 It Vineyard Sound, MA Stationary -3.1
Dunaliet role =,ctI CCMP1320 Chlorophycea Green Alga DUN2 I 5/11-S/t7/95 20 L t12 2 6 1112.12 18 Vineyard Sound. MA Exponential -4 1
Pavlova luthen CCMP325 Prymnesophyceae Coccoithophond PAV2 I 5/11-5/17/95 20 L f/2 2 03511212 18 Vineyard Sound, MA Exponnbal 1 65
Phaeodcn thrcomutum CCMP630 Snoianophce Diatom IPHA2 aP 5/11-5/16/95 120 L f/2 2 3,55112:12 18 Vineyard Sound. MA _1 '5
S nehococcus WH7803 Cyanobactenun SYN2 1Dr Waterbuy 5/22-6/6/95 3 LDN2 2 -188 12:12 18 Vineyard Sound. MA/94

Iscts abn CP33Pynsohca atilhe I0I3 lm 17/26-8/8/95 2 X I L f/2 2 0.724.012 4 Vineyard Sound. MA 1.3

Thallamsirauwissilo CCMP1336 CoscinodiscophcaiDiatom TW4 13tP 11/1-11/8/95 12 Xl 15f/2 2 2.75 24:0 Rm T Vineyard Sound, MA Stationay -0.75
Phaeodactylum tncomutum CCMP630 Bacillanophyceae Diatom PHA4 X__P _1/1-11/8/95 3X IL f/2 2 1.7 24:0 RmnT Vineyard Sound, MA nential 0.3

Dunaliella tertiolecta CCMP1320 Chlorophyceae Green Aa IDUN4 P 1 L /2 2 21 240 rd Sound, MA Stato -0.1
Pavlova luthen CCMP1325 Prymnesiophyceae Coccotophond PAV4 11/111 2 X 1.5 /2 2 9324:n nd, MA Staon 7.3

miu cater CMP1314 ')inoohyceae 20 L f5/2 2 0.1 2.12 1e 5 Vineyard Sound, MA Stationary 185
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Table 4.2 Composition of f/2 Medium (Guillard, 1975)

Nutrient Salt Concentration

NaNO3 883 gM

NaH2PO4-H20 36.3 pM

Na2SiO3-9H20 54 pM

Na2-EDTA 11.7 gM

FeC13-6H2O 11.7 gM

CuSO4-5H20 0.04 pM

ZnSO4-7H2O 0.08 pM

CoCl2-6H20 0.05 pM

MnCl2-4H20 0.9 gM

Na2M04-2H20 0.03 pM

Thiamin-HCl 0.1 mg/L

Biotin 0.5 gg/L

Vitamin B12 0.5 gg/L

Care was taken to ensure cultures remained axenic. (Such precautions

were required since the filtered medium at harvest was used for the

determination of algal cell isotopic compositions.) For instance, seed cultures

were axenic; all glassware, tubing, air filters, stoppers, beakers and bungs were

autoclaved before use; seawater for the medium was either 0.2 pm-filtered, or 0.2

gm-filtered then autoclaved; stock solutions of nutrients, vitamins, and trace

metals were autoclaved; culture flasks were inocculated and sampled in a

laminar flow bench; stoppers, screw caps, test tubes, forceps, and pipets were

flamed before and after use. Large (20 L) carboys were stoppered with silicone

rubber stoppers through which glass inlet and vent tubes were inserted.
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Fernbach and erlenmeyer flasks were covered with either a gauze-wrapped

cotton bung or an inverted beaker. Light microscopy (backlit, 400x

magnification) was used occasionally to inspect cultures for the presence of

bacteria (D. Kulis, personal communication), which were not observed.

Five of the 14 cultures were harvested during the stationary phase of

growth, while 3 of the 14 were harvested during the exponential growth phase

(table 4.1). Growth phase was estimated either by in situ fluorescence or

absorption. The latter consisted of measuring the absorption, at 6 wavelengths

in the visible spectrum, of an aliquot of medium. Absorption was assumed to

correspond to cell density, and cultures were harvested when a plot of

absorption versus time attained a zero slope (figure 4.1).

Eight of the 14 cultures were grown on a 12 hr light-12 hr dark cycle at

18*C, while six were grown on a 24 hour light cycle at room temperature (-20-

25*C) (see table).

Culture vessels were either 2.5 L Pyrex low form culture flasks, 2.8 L

Fembach flasks, or 20 L Pyrex carboys. All flasks were leached with 10% HCl for

at least 3 days prior to use, then rinsed (3x) with tap water and (3x) with distilled

water. The seven cultures grown in 20 L carboys were bubbled vigorously with

laboratory air that had been passed sequentially through either (1) activated

charcoal and a 0.2 pm filter, or (2) 1 M H3P04, glass wool, distilled water, and

glass wool. The smaller cultures were agitated by swirling at least twice daily.

For the 20 L cultures, the 15 mL seed cultures received from CCMP (or

other sources) were first transferred to 1 L of f/2 medium and incubated for 1-2

weeks before being added to the carboys. Carboys were allowed to equilibrate

with the bubbling air for at least 24 hours before the 1 L inocculants were added.
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Phaeodactylum incomutum 7
Date 4001 4501 500 550 6001 700 -

11/6/95 15:40 0.573 0.538 0.501 0.4571 0.404 0.355 - - ~ 5
11/6/95 19:20 0.6231 0.59 0.556 0.511 0.4531 0.405 1 - 4 0
11/7/95 10:00 0.64| 0.606 0.574 0.531 0.472 0.422 - 500
11/7/95 15:42 0.665 0.627 0.594 0.554 0.501 0.4511 0.5-
11/8/95 10:57 0.704 0.664 0.631 0.5851 0.522 0.466 - 550
11/8/95 14:08 0.718 0.678 0.646 0.602 0.542 0485

-600
0.3

11/6/95 0-00 11/7/95 0.00 11/8/95 0:00 11/9/95 0:00 ----- 700

Time

0.2
Dunaiiella tetoecta400
Date 400 450 500 5501 600 700

11/6/95 14:45 0.081 0.078| 0.081| 0.09 0.097 0.101 450
11/6/95 19:30 0.09 0.087 0.0921 0.1041 0.112 0.119 .
11/7/95 10:06 0.118 0.116 0.1221 0.138 0.148 0.156 0 So0
11/7/95 15:58 0.124 0.122 0.128 0.144 0.154 0.161 5.150
11/8/95 11:01 0.15 0.15 0.157 0.175' 0.186 0.194 0 550
11/8/95 14-12 0.15 0.149 0.156 0.175 0.186 0.195 600
11/8/95 19:35 0.143 0.142 0.149 0.167 0.179 0.187 0.05

11/6/95 0:00 11/7/95 0:00 11/8/95 0:00 11/9/95 0:00 700
Time

0.4
Amphidinium carterae 0.35 400
Date 400 450 500 550 60 700 4 0.34

11/6/95 15:00 0.046 0.045 0.044 0.045 0.049 0.053 0 25 ---- 450
11/6/95 19:35 0.052 0.052 0.052 0.053 0.059 0.064 a 025
11/7/95 10:10 0.063 0.062 0.061 0.0641 0.069 0.076 0.2 - 500
11/7/95 16:06 0.068 0.066 0.065 0.068 0.074 0.082 . 0.15
11/8/95 11:06 0.112 0.113 0.113 0.117 0.126 0.136 0.1
11/8/95 14:18 0.117 0.118 0.118 0.122 0.131 0.143 0.05
11/8/95 20:15 0.143 0.142 0.141 0.145 0.155 0.167 0 -A--- 600
11/9/95 11:18 0.26 0.248 0.238 0.2351 0.243 0.248 11/5/95 11/7/95 11/9/95 11/11/95
11/9/95 13:48 0.271 0.259 0.249 0.246 0.254 0.259 0:00 0:00 0:00 0:00 700
11/9/95 19:54 0.336 0.325 0.312 0.307 0.312 0.314

11/10/95 14:16 0.388 0.378 0.367 0.362 0.367 0.361 Time

400 ___ _

Thalassiosira weissflOii
Date 400 450 500 550k 600 700 450

11/6/95 15:10 0.121 0.12 0.125 0.131 0.14 0.144 0.145
11/6/95 19:38 0.128 0.126 0.13 0 135 0.145 0.149 500
11/7/95 10:20 0.136 0.133 0.137 0.142 0.152 0.156 . 1
11/7/95 16:18 0.144 0.144 0.147 0.1531 0.164 0.167 550
11/8/95 11:13 0.145 0.141 0.142 0.1471 0.1571 0.16
11/8/95 14:24 0.142 0.138 0.14 0.1441 0.155 0.157 0.115 ,1/ 0600

11/6/95 0:00 11/7/95 0:00 11/8/95 0:00 11/9/95 0:00 700
TimeI

0.25

Pavlova luthen 4a0.

Date 400 450 500 5501 600 700 ,0.
11/6/95 15:15 0.05 0.049 0.05 0.0511 0.049 0.046 1 0.15 0 450
11/6/95 19:43 0.058 0.057 0.059 0.0591 0.056 0.053 1
11/7/95 10:24 0.1 0.097 0.101 0.1 0.094 0.087 0.1 ' 500
11/7/95 16:23 0.123 0.122 0.129 0.13 0.123 0.116 4
11/8/95 11:16 0.195 0.191 0.2 0.202 0.19 0.176 0.05 550
11/8/95 14:27 0.199 0.194 0.204 0.206 0.194 0.179 0 600
11/8/95 20:91 0.219 0.216 0.226 0.229 0.216 0.201 11/6/95 11/7/95 11/8/95 11/9/95 11/10/9511/9/95 11:23 0.216 0.21 0.218 0.221 0.211 0.196 0:00 0:00 0:00 0:00 0:00 - 700

Time

Figure 4.1: Visible absorption spectra of 5 phytoplankton cultures over time.

Absorption was measured at 400, 450, 500, 550, 600, and 700 nm and was

assumed to correspond to cell density.
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4.3.2 Chlorophyll Purification

The procedures for the purification of chlorophyll from cultured

phytoplankton are discussed in detail in chapter 2. Therefore only a brief

account will be given here.

Cultures were harvested by vacuum-filtration through a pre-combusted

(4500C, > 8 hours) 293 mm Gelman A/E filter. In all but 3 cases, filters were

immediately stored in liquid nitrogen until extraction. Otherwise they were

stored at -20*C. Just prior to extraction, filters were thawed at room temperature

and 2x1 cm subsamples were removed for whole-cell 315N and 813C

determinations using a cork-borer. Filters were ultrasonically extracted by probe

(3x) in 125 mL degassed acetone to which had been added approximately 5 g

NaHCO3 (for neutralization of extract to prevent chlorophyll demetallation).

The extracts were filtered through a 47 mm GF/F filter, and the filtrate was

sparged with N2 during subsequent extractions. The combined extracts (500 mL)

were poured into a 2 L separatory funnel containing 125 mL water, and the

chlorophyll was partitioned (3x) into 200 mL hexane. The chlorophyll in both the

combined hexane fractions and the aqueous fraction was then quantified

spectrophotometrically. Typically, no chlorophyll a remained in the aqueous

fraction.

The combined hexane fractions (800 mL) were then back-extracted (1x)

with 200 mL 15/85 H20/MeOH to remove carotenoids. The chlorophyll was

then re-quantified in both the hexane and aqueous fractions.

Demetallation of the chlorophyll to pheophytin was accomplished in a

third phase-separation by adding 200 mL 10% HCl (aq) to the hexane fraction

and shaking for 1 minute. The color of the hexane solution changed from

emerald to pine green. The aqueous fraction was poured off and the hexane
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neutralized with 100 mL 2% (w/v) NaHCO3 (aq). The hexane phase was then

dried over Na2SO4, and rotary-evaporated to dryness. A final

spectrophotometric quantification was performed before the dried extract was

stored under nitrogen at -20*C.

Further purification of the pheophytin a was achieved using preparative

reversed-phase (C 18) HPLC , followed by isocratic normal-phase (SiO2) HPLC

on an analytical column. (For specific columns and conditions, please refer to

chapter 2).

4.3.3 Purity of Chlorophyll Isolated from Phytoplankton

The purity of the chlorophyll isolated from 6 of the 14 cultures was

determined by performing CHN analyses on spectrophotometrically-quantified

aliquots (see chapter 2). Nitrogen purity (i.e., the total nitrogen in the sample

attributable to chlorins) averaged 95.9 ± 3.4%. Carbon purity averaged 91.2 ±

4.3%.

4.3.4 Isotope Analyses

The procedures for the preparation of samples for isotopic determination

are detailed in chapter 3. Therefore, only a brief account will be given here.

Purified chlorophyll was transferred to 8x6 mm smooth wall tin capsules

(Elemental Microanalysis, Manchester, MA, cat # D4066) in a small volume (<200

pL) of acetone and dried under a 60 W light bulb. The Sn cups were then folded

with forceps and stored in a dessicator until isotopic analysis.

149

__ _111HUHN11114 01111 111,111



The filter subsamples for whole-cell isotopic analysis were dried at 60'C,

then placed into 5x9 mm Sn boats (Elemental Microanalysis, Manchester, MA)

which were folded with forceps and stored in a dessicator until isotopic analysis.

All isotope values were obtained at the Stable isotope Laboratory at the

Marine Biological Laboratory, Woods Hole, MA 02543. The facility consists of a

Heraeus CHN Rapid Elemental Analyzer and a Finnigan MAT delta S isotope

ratio mass spectrometer coupled by an automated "trapping box" for the

sequential cryogenic purification of C02 and N2 (Fry, et al., 1992). This system

allows the determination of both 315N and 613C on the same sample.

Standard delta notation is used for reporting stable isotopic ratios of

nitrogen and carbon. It is defined as
n (n-1)

( XI X)Sample
8 Xa [n (n-1) -]x1000%o

( XI X)Sd

where nX=15N or 13C. The carbon isotopic standard is Peedee Belemnite (Craig,

1953), a limestone that has been assigned a 613C value of 0.0 per mil. The

isotopic standard for nitrogen is atmospheric N2 (e.g., air; Hoering, 1955), which

has been assigned a S15N value of 0.0 per mil. Therefore, positive delta values

arise when a sample is enriched in the heavy isotope relative to the standard, and

negative delta values occur when a sample is depleted in the heavy isotope

relative to the standard.

Differences of delta values will be reported in "delta-del" notation.

Specifically,

A3nX =SnX Bulk nX Biomarker

where nX=15N or 13C. Bulk refers to the unaltered material from which the

biomarker was extracted (i.e., plant, sediment or filtered particulate matter), and

the biomarker is the purified pigment (i.e., chlorophyll a or other chlorin).
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4.3.5 Precision of the Analysis

The precision of the entire procedure for determining AnXcell-Chla -

including culturing steps, chlorophyll purification steps and isotope-ratio

determinations of both the particulate and chlorophyll fractions--is 0.57 per mil

for N and 1.25 per mil for C. These values represent the pooled standard

deviations of replicate cultures of six (five for C) algal species (table 4.3). This

quantity is defined as

X(nm- 1)a 72
pooled standard deviation =

E(ni -)

where a is the standard deviation and n is the number of replicates of the ith

algal species. The replicates, always cultured on separate occasions, were

conducted over a 17 month period. The culturing took place in 3 locations: The

Harvard Biological Laboratories (Dr. Joseph Montoya's laboratory), Redfield

Laboratory, WHOI (Dr. Don Anderson's laboratory), and Fye Laboratory, WHOI

(Dr. Daniel Repeta's laboratory). The only factor held constant over the time

period was the composition of the growth medium (table 4.1). No attempt was

made to hold light intensity, temperature, pH, culture density, growth phase at

harvest, culture flask geometry, light-dark cycle, or aeration rate constant from

one experiment to the next. The isotopic composition of the NO3 used for the

first three cultures listed in the table was 3.6 per mil. In the other 11 culture

experiments the nitrate 615N was 2.0 per mil.

The measurement precision for S15N determinations is 0.72 per mil. This

is a pooled standard deviation of 21 replicate analyses of PON and purified

chlorophyll samples (table 4.3). The measurement precision for 813C

determinations is 1.10 per mil, which is a pooled standard deviation of 23 POC

and purified chlorophyll replicates (table 4.3). The replicates are either (1)

subsamples of a glass fiber filter (Gelman A/E or Whatman GF/F) used to
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harvest the cultures, or (2) splits of the purified chlorophyll (after

chromatography). Thus, it represents the combined errors and artefacts

introduced during sample preparation for mass spectrometry--e.g., drying,

placement into and folding of Sn cup, evaporation of solvent, storage, and

internal machine precision.

4.4 Results

4.4.1 Nitrogen Isotopes

When the nitrogen isotopic composition of purified chlorophyll

from 14 cultures representing 5 classes and 8 species of marine algae is compared

to the 615N of the whole cells (e.g., bulk PON) a constant relationship is found.

A linear regression analysis of y on x, or AS15Ncell-Chla on 615Ncell, yields a

slope, m = 0.27 and an intercept, b = 5.34 with a correlation coefficient, r2 = 0.15

(figure 4.2). The y-error bar is the method precision of 0.57 per mil--the pooled

standard deviation of replicate culture experiments on 6 algal species. The x-

error bar is 0.23 per mil, which is the pooled standard deviation of 11 sets of

replicate S15NPON determinations. The slope is not statistically different from

zero (95% confidence interval (CI) for m = -0.10 to 0.63), and the correlation

coefficient is low. If a zero slope is assumed then the chlorophyll-cell N isotopic

relationship for the 14 phytoplankton cultures is AS15Ncell-Chla = 5.04 (± 2.15).

There is no dependence of A615N on 815N. In other words, on average,

chlorophyll a is depleted by 5.04 per mil relative to the whole cell. The large

standard deviation of this average (e.g., 2.15 per mil), as will be discussed below,

appears to result from inter-species differences in the partitioning of N between

non-protein biochemicals; not from variability between replicate culture
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experiments, since the precision of the procedure, based on replicate analyses of

6 algal species, is 0.57 per mil.

15 .

A815Ncell-Chla 5 -- ------- --- - -

-5
-10 -5 0 5

S15Ncell

Figure 4.2: Plot of A815Ncell-Chla vs 615Ncell for the 14 algal cultures grown

in this investigation. The y-error bar, 0.57 per mil, is the method precision for

chlorophyll 515N determinations in cultured phytoplankton. The x-error bar,

0.23 per mil, is the precision of 515NPON determinations in this study.

Table 4.3 shows the results of all known chlorophyll 815N analyses from

plants and cultures to date. The 35 data points consist of (1) 14 marine

phytoplankton and one marine macroalga (Fucus sp. from Vineyard Sound, MA)

from this study, (2) 5 marine phytoplanton from Dr. Ralf Goericke (personal

communication), and (3) 10 terrestrial plants, 5 marine grasses, and one alga from

Drs. R. Bidigare, M. Kennicutt, and S. Macko (Bidigare, et al., 1991; Kennicutt II,

et al., 1992) (R. Bidigare, personal communication). The results of a linear

regression of y on x, or A815N on 815N, for all the data, are m = -0.11 (95% CI=

-0.252 to 0.035), b = 3.74 (2.70 to 4.77), r2 = 0.06 (Figure 4.3.a). Again the slope is

not statistically different than zero and the correlation coefficient is low. The

average A815Ncell-Chla for
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Figure 4.3: Plot of A815Ncell-Chla vs 815Ncell for all known paired

chlorophyll and bulk 815N determinations in (a) plants, (b) marine

phytoplankton, and (c) higher plants.
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all 35 data points is 3.35 (± 2.73).

When just the marine phytoplankton are considered (e.g., data of Sachs

and Goericke) the linear regression analysis of A615N on 615Ncell yields m = 0.28

(-0.02 to 0.57), b = 5.18 (4.29 to 6.07), r2 = 0.17 (Figure 4.3.b). Since the slope is not

significantly different than zero and the correlation coefficient is low, the

assumption of a zero slope allows the average marine phytoplankton AS15Ncell-

Chla to be determined, and this value is 4.90 (± 1.95, n = 19).

When just the higher plant data are considered a linear regression analysis

of A515N on 51 5Ncell for the 16 data points reveals m = 0.27 (-0.01 to 0.54), b

-0.78 (-3.57 to 2.02), r2 = 0.21 (figure 4.3.c). Since the slope is not significantly

different than zero and the correlation coefficient is low, then a zero-slope

assumption yields the relationship AS 15 Ncell-Chla = 1.72 (± 2.47, n = 16).

It should be noted (1) that the data from Bidigare, et al averages isotope

values for chlorophylls a and b , and (2) that the chlorophyll purification

procedure used by Goericke is unpublished and relies solely on phase extractions

without chromatography (R. Goericke, personal communication).

4.4.2 Carbon Isotopes

When the carbon isotopic composition of purified chlorophyll from 13

cultures representing 5 classes and 8 species of marine algae is compared to the

813C of the whole cells (e.g., bulk POC) a constant relationship is found.

Specifically, a linear regression analysis of A613Ccell-Chla on 81 3Ccell yields a

slope, m=-0.12 and an intercept, b=-1.62 with a correlation coefficient, r2 =0.05

(figure 4.4.a). The y-error bar, 1.25 per mil, represent the precision of the

A613Ccell-Chla determination on 5 sets of replicate culture
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Figure 4.4: Plot of AS13Ccell-Chla vs S13Ccell for (a) algal cultures grown in

this study, (b) all plants and algae from this study and the literature, and (c)

only the higher plants from (b). The x- and y-error bars are, respectively, the

precision for POC and chlorophyll 813C determinations in this study.
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experiments, and the x-error bars, 0.61 per mil, represent the precision of the

isotope determination on 11 sets of replicate POC samples. However, the slope is

not statistically different than zero (95% confidence interval (CI) for m = -0.20 to

0.44), and the correlation coefficient is low. If a zero slope is assumed then the

chlorophyll-cell carbon isotopic relationship for the 13 phytoplankton cultures is

A513Ccell-Chla = 0.10 (± 2.86). On average, then, chlorophyll a in the 8 species of

marine phytoplankton studied here has the same carbon isotopic composition as

the whole cell.

Table 4.3 shows the results of all available chlorophyll 813C analyses from

plants and cultures to date. The 24 data points are comprised of (1) 14 marine

phytoplankton from this study, (2) 6 terrestrial plants and one alga from

Kennicutt et al. (Bidigare, et al., 1991; Kennicutt II, et al., 1992), and (3) 3 plants

from Galimov et al (Bogacheva, et al., 1979; Galimov and Shirinsky, 1975). The

results of a linear regression analysis of A613C on 813C for all the data (excluding

AMP4, which is considered an outlier) are m = -0.007 (95% CI = -0.16 to 0.17), b =

-0.29 (-2.85 to 3.43), r2 = 0.0004 (figure 4.4.b). Again the slope is not significantly

different than zero and the correlation coefficient is low. The average AS13Ccell-

Chla for all 23 data points is -0.16 (± 2.58).

When just the higher plant data are considered (e.g., data of Bidigare, et al

(1991) and Kennicutt, et al. (1992)), a linear regression analysis of AS13 C on 513C

for the 6 data points reveals m = 0.10 (-0.16 to 0.36), b = 0.65 (-5.32 to 6.62), r2 =

0.14 (figure 4.4.c). Since the slope is not significantly different than zero and the

correlation coefficient is low, then a zero-slope assumption yields the

relationship AS1 3 Ccell-Chla = -1.66 (± 1.69, n = 6).

It should be noted (1) that the data from Bidigare et al averages isotope

values for chlorophylls a and b, and (2) that the data from Galimov et al does
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not specify which type of chlorophyll was used or what the purity of that

chlorophyll was.

4.5 Discussion

4.5.1 Nitrogen Isotopes

The 14 culture experiments with 8 different species of marine

phytoplankton indicates that chlorophyll 515N is, on average, 5.04 (± 2.15, n = 14)

per mil depleted in 15N relative to total cellular nitrogen. Therefore, chlorophyll

S15N values in marine particulates and sediments can be used to determine algal

515N values in contemporary and historical marine environments by adding 5

per mil. In this way the large and variable isotopic alteration of algal material

during decomposition processes (i.e., senescence, grazing, reminirealization)

(Altabet, 1988; DeNiro and Epstein, 1981; Montoya, 1994; Wada, 1980) can be

circumvented. Moreover, the isotopic difference between bulk material (i.e.,

sediments) and chlorophyll can yield information on the depositional

environment at the time the material was sedimented. (See chapter 5 for a

discussion of these applications.)

Two important questions, then, are (1) why is chlorophyll from marine

algae consistently depleted in 15N relative to the whole cell, and (2) why is there

variability in the magnitude of this depletion? These questions will be addressed

in the following discussion.
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4.5.1.1 Overview of Chlorophyll Biosynthesis

The first committed precursor to chlorophyll in all plants, algae and

cyanobacteria is 5-aminolevulinic acid (ALA) (Beale and Weinstein, 1991). ALA

is synthesized in a three-step process from glutamic acid (GLU), which derives

from x-ketoglutarate (figure 4.5). Two ALA molecules are then condensed to

form the pyrrole monomer porphobilinogen (PBG). A complex condensation

reaction of 4 PBG molecules yields uroporphyrinogen III, the precursor to all

tetrapyrroles (i.e., chlorophylls, hemes and phycobilins) (Zubay, 1983) (figure

4.6). The pathway from glutamate to chlorophyll a is the same in all plants and

algae, down to the individual enzymes required for each step (Beale and

Weinstein, 1991; Leeper, 1991).

4.5.1.2 Isoptopic Fractionation During Chlorophyll Biosynthesis

There are five instances in the synthetic pathway from GLU to Chla where

bonds to nitrogen are formed or broken, and hence, where N isotopic

fractionation might be expected to occur. These are: (1) the transamination of a-

ketoglutaric acid (AKA) to form GLU, (2) the transamination of glutamate-1-

semialdehyde to yield ALA, (3) the condensation of 2 ALA's to form PBG, (4) the

deamination of 4 PBG's to form hydroxymethylbilane, and (5) the insertion of Mg

into protoporphyrin 9 to yield Mg protoporphyrin IX.
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Figure 4.5: The conversion of ammonia into the a-amino group of glutamate.

a-Ketoglutarate is the starting material for this conversion, and hence, for

chlorophyll biosynthesis. Figure from Zubay (1983).
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Figure 4.6: The biosynthetic pathway of chlorophyll and other tetrapyrroles.

Figure from Beale and Weinstein (1991).
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4.5.1.2.1 Transamination

Of these 5 enzyme-catalyzed reactions, the only one that has been studied

for N isotopic fractionation is transamination (Macko, et al., 1986). In that study,

Macko et al (1986) measured the isotopic fractionation associated with the

forward and reverse transformations of GLU and oxalacetic acid (OAA), to a-

ketoglutaric acid (AKA) and aspartic acid (ASP), by the enzyme, porcine-heart

glutamic oxaloacetic transaminase. Significant isotopic fractionation was found

for both the forward and reverse reactions, with the transfer of 14NH2 being

1.0083 and 1.0017 times faster than the transfer of 15NH 2 for the conversion of

GLU to ASP and ASP to GLU, respectively. In other words the ASP from the

transamination of GLU to ASP was found to be depleted in 15N by 8.3 per mil,

while the GLU from the transamination of ASP to GLU was found to be depleted

in 15N by 1.7 per mil.

Since the first two steps in chlorophyll biosynthesis are transamination

reactions, it seems plausible that this is where some of the depletion in

chlorophyll 815N derives. As will be discussed below, it is the second of these

transaminations that seems the most likely source of the 15N depletion, since

GLU is the precursor to all amino acids and most cellular nitrogenous species

(Zubay, 1983), and may accumulate in a pool. This appears to be a prerequisite

for net isotopic fractionation in a biosynthetic product. If the conversion of a

substrate to a product is complete, and the system is closed, then no net isotopic

fractionation will be expressed in the product (Mariotti, et al., 1981).

4.5.1.2.2 ALA Condenstation to PBG

In the condensation reaction of two ALA molecules, catalyzed by the

enzyme S-aminolevulinate dehydrase, to form PBG, the potential exists for
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isotopic fractionation even if 100% of ALA is converted to PBG. This is the case

because there are two identical amino groups at which the reaction can occur. So

that if the ALA dehydration is more rapid for 14NH2 than for 15 NH2, then the

pyrrole formed will be depleted in 15N relative to the 2 ALA's, and the 15N-

enriched terminal amino group will be lost in the subsequent condensation. In

fact, in the similar dehydration of GLU by glutamate dehydrogenase, a kinetic

nitrogen isotope effect of 1.047 was found (Schimerlik, et al., 1975), thus resulting

in an isotopic depletion of 47 per mil in the product relative to the substrate.

Therefore, the dehydration of 2 ALA molecules to form PBG, in addition to the

transamination reaction, seems like a likely step for chlorophyll 15N-depletion to

occur.

4.5.1.2.3 PBG Condensation to Form Hydroxymethylbilane

The next step in chlorophyll biosynthesis, the condensation and

deamination of 4 PBG's, by the enzymes PBG deaminase and uroporphyrinogen

cosynthetase (Leeper, 1991) (figure 4.7), is not expected to result in significant
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Figure 4.7: Condensation of 4 PBG molecules to form hydroxymethylbilane.
Figure from Leeper (1991).
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isotopic fractionation as long as the conversion of PBG to hydroxymethylbilane

goes to completion. It can only be speculated that this is the case. Namely, (1)

that tight feedbacks exist to prevent the accumulation of products not lying at

biosynthetic branch points, and (2) that the energy expenditure for the synthesis

of such products is large enough that their subsequent destruction (and the

further energy expenditure thus required) seems unlikely. Radiolabeled pigment

turnover experiments support these suppositions (Goericke and Welschmeyer,

1992).

However, if PBG is drawn from a pool to make hydroxymethylbilane

there is the possibility of isotopic fractionation during the deamination and

condensation. For instance, one or both of the enzymes involved in the

deamination and condensation may bind to the pyrrolic nitrogen and may

exhibit a kinetic isotope effect. This could result in isotopically-depleted

hydroxymethylbilane relative to PBG.

4.5.1.2.4 Mg Insertion of Protoporphyrin IX to Form Mg-Protoporphyrin IX

The final potential source of N isotopic fractionation during chlorophyll

biosynthesis is during the metallation of protoporphyrin IX (PTP), by the enzyme

Mg chelatase, to form Mg protoporphyrin IX (MPTP). PTP lies at a branch point

in tetrapyrrole synthesis. It is the point at which metallation with either Mg or Fe

occurs to form either the chlorophylls or the hemes and bilins, respectively

(figure 4.6). All plants and algae contain the three common hemes (i.e., heme a,

heme b and heme c) found in animals (Beale and Weinstein, 1991). The hemes

are consituents of respiratory cytochromes and various oxidative enzymes. This

suggests that different feedbacks may operate on the production of PTP for the

heme pathway than for the chlorophyll pathway. In addition, many plants and
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algae contain bilins, either as primary or accessory photosynthetic pigments

(Scheer, 1981). Given PTP's role as the precursor to two, at least partially,

independent branches of tetrapyrrole synthesis in plants and algae, it seems

plausible that isotopic fractionation could occur there if the enzymes responsible

for metal chelation demonstrate a kinetic isotope effect.

There are no known studies on the kinetic isotope effect-of the enzyme

Mg-chelatase. However, in equilibrium metal exchange reactions between Mg-

meso-tetraphenylporphin (MTTP) and free-base meso-tetraphenylporphin (TTP),

Macko (1981) found the free-base to be enriched in 15N by 2.2 (± 0.3) per mil

relative to the metallated product (Macko, 1981). Furthermore, in three

(inadvertant!) chlorophyll demetallation experiments, in which harvested

cultures of three marine algae (Isochrysis galbana, Emiliania huxleyi and

Thalassiosira weissflogii ) were stored at -20*C for 9 months and the Chla allowed

to partially demetallate to pheophytin a , it was found that the demetallated

product was enriched in 15 N by 2.0 (± 0.39) per mil relative to the intact Chla.

These reactions went to 53-65% of completion. (This explains why the standard

deviation of the chlorophyll 615N values for this first set of cultures was so high

(table 4.3)).

It is unknown whether the in vivo demetallation of chlorophyll a is

enzyme-catalyzed (Brown, et al., 1991), or whether it occurs nonenzymatically.

However, in vitro experiments with several species of marine phytoplankton

have demonstarted the existence of a Mg-releasing enzyme (Owens and

Falkowski, 1982). Since the rate for enzyme-catalyzed reactions in biological

systems tends to be faster for the light, relative to the heavy isotope, though, our

results suggest the demetallation reaction occurred non-enzymatically in the

frozen phytoplankton.
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In the final analysis, any nitrogen isotopic fractionation imparted to

chlorophyll during the enzyme-catalyzed insertion of Mg into protoporphyrin IX

will most likely depend upon (1) the kinetic isotope effects associated with both

Mg-chelatase and the enzyme responsible for iron chelation in the synthesis of

hemes and bilins, and (2) the branching ratio of PTP to MPTP and protoheme.

4.5.1.2.5 Fe Insertion to PTP and the Heme/Bilin Branch

The kinetic isotope effect associated with Fe chelation by ferrochelatase in

the synthesis of protoheme for the heme/bilin branch of tetrapyrrole synthesis

could affect the 615N of chlorophyll. As discussed in the preceding section, the

impact of this reaction on chlorophyll 815N will depend on the branching ratio of

PTP to MPTP and protoheme, and on the magnitude of both isotope effects.

4.5.1.2.6 Summation of Chlorophyll Biosynthesis and Isotopic Fractionation Discussion

In conclusion, the 15N depletion in chlorophyll a , relative to whole-cells,

of marine phytoplankton cultured in this study likely results from one or more of

the five enzyme-catalyzed reactions involving bonds to nitrogen. Experimental

evidence exists for substantial (e.g., 8.3 per mil) isotopic depletion in aspartic acid

formed by transamination of glutamic acid (Macko, et al., 1986). Since the

transamination of glutamic acid to form ALA is the first dedicated reaction in

chlorophyll biosynthesis (Beale and Weinstein, 1991), it is likely that this is an

important step in the isotopic depletion of chlorophyll. It is also likely that

additional isotopic depletion is imparted during the dehydrogenation and

condensation of 2 ALA molecules to form PBG. During this step one of two ALA
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nitrogens becomes pyrrolic, and hence destined for chlorophyll (or heme/bilin).

In addition, GLU dehydrogenase has been shown to result in substantial (47 per

mil) isotopic depletion of the product (Schimerlik, et al., 1975).

Having addressed the question of how N isotopic depletion is imparted to

chlorophyll in algae, I will now turn to a discussion of why variability exists in

the magnitude of this isotopic depletion.

4.5.1.3 Variability in Chlorophyll 15N-Depletion Between Algal Species

The uncertainty of an algal 615N value estimated from a measured

chlorophyll 615N value will likely be no better than the standard deviation of

A615Ncell-Chla measurements in cultured phytoplankton. For the 14 cultures

grown in this study, this value is 2.15 per mil. Given that (1) the reproducibility

of the culture experiments (± 0.57 per mil) is so much greater than that implied

by this standard deviation, and (2) the biosynthetic route to chlorophyll is

identical in all plants and algae (Beale and Weinstein, 1991; Leeper, 1991), it

seems likely that there are interspecies differences in the partitioning of N

between non-proteinaceous biochemicals.

This interspecies difference is shown graphically in figure 4.8. The bar

graph shows the AS15Ncell-Chla, grouped by species, for the cultures grown in

this study. Also plotted is the average A615Ncell-Chla for the 8 species (= 5.16 i

2.40 per mil). The error bars are the standard deviations of the individual

replicate experiments, except in the cases of E. huxleyi (EH) and Synechoccus

(SYN), for which no replicates were performed. The error bar used in these cases

is 0.57 per mil, the pooled standard deviation of the 6 replicate experiments.

Clearly there is interspecies variability in AS15Ncell-Chla that cannot be ascribed

to measurement precision.
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Figure 4.8: A plot of the nitrogen isotopic difference between chlorophyll and

whole cells (e.g., AS15Ncell-Chla) for 8 species of marine phytoplankton. See

text for explanation of error bars, and table 4.1 for species abbreviations.

Amino Acids
Nucleic Acids
Chlorophyll
Other

Figure 4.9: The distribution of nitrogen in phytoplankton as a percentage of

total cellular nitrogen. Data from Parsons, et al. (1984).
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4.5.1.3.1 A Model of the Distribution of N Isotopes in Phytoplankton

Most of the cellular nitrogen in marine phytoplankton is amino acid

nitrogen, constituting protein, with smaller amounts being contained in

chlorophyll, nucleic acids, and other minor components such as amino -sugars

and ATP (figure 4.9). Using data from marine phytoplankton summarized in

Parsons et al. (1984), and assuming a Redfield C:N ratio of 6.6, and a

carbon:chlorophyll (w/w) ratio of 30 (Parsons, et al., 1984), the following cellular

weight percentages of N can be calculated: amino acids, 86.8% (± 4.6%); nucleic

acids, 1.5 to 10.5%; and chlorophyll, 1.2%. That leaves 1.5 to 10.5% of cellular

nitrogen remaining in all other minor components such as amino sugars,

AMP/ADP/ATP, histidine, tryptophan, carbamyl phosphate, cytidine

triphosphate, etc. Some diatoms have been found to contain significant

quantities of chitin, a polymer of the amino sugar N -acetyl-D-glucosamine, such

that amino sugar nitrogen may amount to 15-20% of total cellular nitrogen in

some instances (Smucker and Dawson, 1986). The compound from which these

diverse biochemicals derive is glutamic acid (GLU) (Zubay, 1983).

A simple conceptual model is therefore proposed in which isotopic

differences between cellular nitrogenous species stem from a hierarchy in the

transfer of GLU to the biosynthetic pathways of proteins, nucleic acids,

chlorophylls, and amino sugars. This model is based on nitrogen isotopic data,

from numerous sources, of one or more of these components relative to the

whole cell or tissue. Since so few measurements have been made on individual

nitrogen-containing compounds in plants and algae it is necessary to use some

animal data. The isotopic differences for plants may vary substantially. A

summary of these data follows.
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Protein was found to be enriched in 15N by 3.53 (± 0.29) per mil, relative

to whole cells, in 6 species of algae and macroalgae (Macko, et al., 1987). An

earlier study by Gaebler et al. corroborated this finding (Gaebler, et al., 1963).

Chlorophyll was found to be depleted in 15N by 5.16 (± 2.40) per mil in 8 species

of marine phytoplankton (this study). The amino sugar, N-acetylglucosamine,

isolated from chitin, was found to be depleted in 15N by about 9 per mil relative

to whole arthropods (Schimmelman and DeNiro, 1986). Insect chitin was also

found to be depleted in 15N relative to the whole organism (Deniro and Epstein,

1981), as were zooplankton molts (Montoya, et al., 1992); the latter by 3.8 to 4.6

per mil. Chitin (e.g., poly-N -acetyl-D-glucosamine) is found in certain species of

phytoplankton, especially diatoms (Smucker and Dawson, 1986). Finally, nucleic

acids were reported to be depleted in 15N relative to whole algal cells by about 2

per mil (Dr. Luis Cifuentes, personal communication).

From mass balance considerations, it is apparent that non-amino acid

nitrogenous species must, on average, be depleted in 15N. In fact, if the values

for protein 615N are accurate, this depletion must, on average, be 23.4 per mil.

That is,

S15Ncell(%N) = S15Nprotein(%N) + S15Nchlorophyll(%N) + 815Nnucleic acid(%N) +

815Namino sugar(%N) + 15Nother(%N).

Then, by setting the whole-cell isotopic value to zero, and substituting the

appropriate values for protein it is calculated that

0 = (3.5)(0.87) + 815 Nnon-protein(0.13)

S15Nnon-protein = -23.4 per mil.

The 15N-depletion in non-protein nitrogenous species becomes even larger if the

experimentally-determined isotopic values for chlorophyll, nucleic acids and
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Increasing S15 N

Figure 4.10: A conceptual model for the distribution of 1 5 N in phytoplankton.

amino sugars are included:

0=(3.5)(0.87) + (-5)(0.01) + (-10)(0.05) + S15 Nother(O.07)

815Nother = -35.6 per mil.

(Here a value of 5% was chosen for the nucleic acid plus amino sugar

contribution to total cellular N, and the associated average isotopic value was

taken to be -10 per mil). Given this extreme isotopic depletion in the unspecified

nitrogenous component it is likely that either the protein isotopic data or the

average protein nitrogen fraction used here are inaccurate.
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Figure 4.10 is a schematic of the model for 15N distribution in

phytoplankton. It is proposed that the enzyme-catalyzed transaminations of

glutamic acid (denoted by "TA" in the figure)--to form the precursors of nucleic

acids, chlorophylls and amino sugars--are characterized by kinetic isotope effects

that result in isotopic depletions of the reaction products and isotopic

enrichments of the substrate (GLU). This has been demonstrated experimentally

with the in vitro transamination of GLU, by porcine-heart glutamic oxaloacetic

transaminase, to form aspartic acid. That transamination reaction resulted in an

8.3 per mil isotopic depletion of the product (Macko, et al., 1986). It is further

proposed that the branch points for these non-protein biosynthetic pathways

occur prior to that for protein synthesis. In this fashion, a pool of GLU would

become increasingly enriched in 15N as the amino acid is removed, via

transamination, for the synthesis of nucleic acids, amino sugars, chlorophylls,

and other nitrogenous species. This would result in the observed isotopic

enrichment of proteins formed from the residual pool of GLU.

4.5.1.3.2 Interspecies Differences in A315N Based Upon Branching Ratios of Glutamate

The model can account for the observed interspecies variation in the

chlorophyll-whole cell nitrogen isotopic difference. For instance, if the branching

ratios for GLU upstream of the chlorophyll branch vary, even slightly, from

species to species, then the S15N of chlorophyll, relative to the whole cell, can

vary substantially (see model results below). As mentioned above, the

percentage of total nitrogen in marine phytoplankton that is nucleic acid can vary

between 1.5 and 10.5% (Parsons, et al., 1984). Furthermore, the abundance of

amino sugars can account for up to 15-20% of total cellular N in certain species of
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diatoms (Smucker and Dawson, 1986). And the fraction of cellular N contained

in chlorophyll can vary by at least a factor of 4, between 1.4% and 0.35%, for

typical C:Chl ratios between 25 and 100 (Claustre and Marty, 1995; Goericke,

1990; Parsons, et al., 1984).

The model consists of the mass balance equation for cellular 15N (see

above). The 815N values are actually the isotopic differences between the cell

and the biochemical, or A815Ncell-component values. In the model, the

percentages of cellular N that are protein and "other" are held constant at 87%

and 7%, respectively. The latter was arbitrarily chosen as an intermediate value

for nitogenous compounds other than amino acids, nucleic acids, chlorophyll,

and amino sugars. The 615N values of protein, nucleic acids plus amino sugars,

and "other" are also held constant at 3.5, -10, and -35.6 per mil. The 615N value

for "other" was derived from the mass balance when best guesses for all

quantities for which some data is available were made. Those best guesses are:

87%, 5%, 1%, 7%, respectively, for the fraction of cellular N in protein, nucleic

acids plus amino sugars, chlorophyll, and other; and 3.5, -10, -5 per mil,

respectively, for protein, nucleic acids plus amino sugars, and chlorophyll.

As is shown in table 4.4, small variations in the percentage of cellular

nitrogen that is contained in nucleic acids and amino sugars, relative to

chlorophyll can cause large changes in the isotopic difference between

Table 4.4: Cellular 1 5N distribution model output
% Chlorophyll N -

15N-Chlorophyll % Nucl. Acid +
Amino Sugar N

1.4 -6.64 4.6
1 -5.30 5

0.75 -3.73 5.25
0.5 -0.60 5.5

0.35 3.43 5.65
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chlorophyll and the whole cell. For example, holding all other parameters

constant, if nucleic acid plus amino sugar N is 5.25% instead of 5% of total N, and

chlorophyll is 0.75% instead of 1% of total N, then the A 15Ncell-Chla increases

to -3.7 from -5.3 per mil.

The purpose of this exercise is not so much to accurately model cellular

15N distributions as it is a sensitivity analysis to demonstrate how small changes

in the partitioning of cellular N between minor biochemicals can significantly

alter the isotopic difference between chlorophyll and whole cells. Since the

fraction of cellular N contained in nucleic acids, amino sugars and chlorophyll

can vary by factors of at least 4 to 10 between species, it is not surprising that the

N isotopic difference between whole cells and chlorophyll is somewhat variable.

A similar explanation could account for the difference in AS15Ncell-Chla

between higher plants and algae (1.72 ± 2.47 per mil vs. 5.16 ± 2.40 per mil) (table

4.3). In the next section the possibility that growth rate can affect this difference

is explored.

4.5.1.4 Growth Rate and Nitrogen Isotopic Fractionation

Growth rate has been implicated as an important factor in the study of

nitrogen (Wada and Hattori, 1978) and carbon (Goericke, et al., in press; Laws, et

al., 1995) isotopic fractionation in marine phytoplankton. For instance, it has

been found that growth rate markedly affects nitrogen isotopic fractionation

during nitrate assimilation in marine diatoms (Wada and Hattori, 1978) (figure

4.11). In that study larger isotopic fractionations were associated with slower

growth rates . The duplicate cultures from this study of, the diatom
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Figure 4.11: Relationship between nitrogen isotopic fractionation during
nitrate assimlation and growth rate. The fractionation factor, aX, is plotted
versus the growth rate constant, g. Figure from Wada and Hattori (1978).

Phaeodactylum tricornutum , demonstrated different isotopic fractionations

associated with nitrate assimilation (e.g., E = 515NN03- - 515Ncell= 3.6 and 1.8,

respectively) (table 4.1). This suggests that the two cultures were harvested at

different growth rates. Yet the standard deviation of the A81 5Ncell-Chla

determinations was 0.7 per mil. This value was not substantially different from

the precision of the measurement (0.43 per mil). Nevertheless, since growth rate

has such a large effect on overall cellular isotopic fractionation, it may affect the

isotopic difference between chlorophyll and whole cells.

Estimates of growth rate are available for 8 of the 14 cultures grown in this

study (table 4.1). For two of the six species for which replicates were performed

(e.g., Dunaliella tertiolecta and Pavlova lutheri ), duplicate cultures were clearly
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harvested at different growth rates. That is, one culture of Dunaliella and one

culture of Pavlova were harvested during the exponential growth phase, and one

culture of each was harvested during the stationary growth phase. The standard

deviations for the two pairs were 0.50 and 1.05 per mil, respectively, for

Dunaliella tertiolecta and Pavlova lutheri . Moreover, the two Isochrysis galbana

cultures were grown at different temperatures (18 and 24*C), and in different

light:dark cycles (12h:12h vs 24h:Oh), yet the standard deviation of A815 Ncell-

Chla for the replicates was 0.03 per mil.

Furthermore, aeration rate and illumination have been shown to affect

nitrogen isotopic fractionation in marine diatoms via changes in growth rate

(Wada and Hattori, 1978). These factors varied between all replicates, as a result

of changing bubbling rate (when active aeration was used at all-i.e., in the 20 L

cultures), flask size and light intensity. Yet the pooled standard deviation for

replicate cultures was just 0.57 per mil.

Since quantitative measures of growth rate were not available it is not

possible to conclude with certainty that chlorophyll-cell N isotopic differences

were independent of growth rate. Nevertheless, given the range of conditions

under which duplicate cultures were grown, it seems likely that growth rates did

vary, leading to little intra-species A515Ncell-Chla variation. It would be

informative to conduct this experiment in the future with continuous cultures of

phytoplankton grown at different rates to determine with certainty whether this

parameter affects the isotopic difference between chlorophyll and whole cells.

4.5.1.5 Nutrient Source and Chlorophyll-Cell N Isotopic Differences

It is unlikely that the source of nitrogen to an algal cell would affect the

chlorophyll-cell N isotopic difference, unless that source were to change over the
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lifetime of the cell. Ammonium is the form in which nitrogen is incorporated

into all organic matter. Since it is rarely available in nature, though, due to rapid

assimilation or oxidation by nitrifying bacteria, it must be produced in algae by

nitrate and nitrite reductases (Zubay, 1983). The production of NH4+ from the

reduction of nitrate and nitrite within plants occurs "at a rate no greater than that

required for synthesis of nitrogenous compounds during growth" (Zubay, 1983).

So there is a tight coupling between nitrate and nitrite reduction, and ammonium

assimilation, when cells grow. Ammonium does not accumulate. Since isotopic

fractionation tends to be expressed in a product when incomplete reaction of a

substrate occurs (Mariotti, et al., 1981), it seems unlikely that isotopic

fractionation occurs during NH4+ assimilation in phytoplankton.

However, N isotopic fractionation does occur during the enzyme-

mediated reduction of N03- to form NH4+ in phytoplankton (Wada and Hattori,

1978). Wada and Hattori (1978) concluded that the isotopic fractionation

occurred during the breaking of the N-O bond in the formation of nitrite by

nitrate reductase. The second reduction, converting nitrite to ammonium, was

found by those researchers to result in no net isotopic fractionation.

The important point from the standpoint of chlorophyll-cell N isotopic

differences, is that ammonium is the precursor to all nitrogenous biochemicals,

so isotopic fractionation imparted to NH4+ should be transferred to all

nitrogenous compounds produced in the cell. The only way the nitrogen source

could affect that relationship would be if the cell produced different nitrogenous

biochemicals in different nutrient regimes. That is, in fact, a real possibility.

For example, if a cell were to move from the lower euphotic zone, where

C:Chl ratios tend to be low, to the upper euphotic zone, where those ratios tend

to be high (Goericke, 1990), the cell would concurrently be moving from a

relatively NOY-rich, NH4+-poor environment to a relatively NO3-poor, NH4+-
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rich(er) environment. In the latter location, the phytoplankton would tend to

grow with little additional chlorophyll production (Goericke and Welschmeyer,

1992). In other words, in the upper euphotic zone, protein would be added to the

cell that derived from regenerated ammonium outside the cell, with little or no

isotopic fractionation. At depth, however, the source of NH4+ for chlorophyll

biosynthesis would have been enzymatically-reduced nitrate--a process known

to impart isotopic fractionation. If chlorophyll biosynthesis is offset in time (and

space) from the synthesis of other nitrogenous biochemicals, differences in the

chlorophyll-cell isotopic difference could arise, even amongst algae within a

single species.

The cultures grown for this study had a large excess of nitrate (883 pM). It

is not expected that more than 15% of this nitrate was consumed by any culture.

Furthermore, the ammonium concentration was undectectable in the Vineyard

Sound seawater used for 10 of the 14 cultures. It is therefore unlikely that a

switch from one form of nitrogen to another occurred over time in the cultures.

In the field, however--and especially in stratified locations--such a change in

nutrient regime may be relevant.

4.5.2 Carbon Isotopic Differences Between Chlorophyll and Algae

The results of 13 culture experiments with 8 different algal species suggest

that chlorophyll has nearly the same isotopic composition as whole algae, being

enriched by 0.10 ± 2.86 per mil (table 4.3). Thus chlorophyll 813C in particles and

sediments can be used as a surrogate for algal 813C in contemporary and

historical marine environments.

179

Milo



5

Av-erage Ddl3C=-0.02:

3........... .......................8t .... at n ... 2. ....... ......
- n ---- 7-

13

-5
IG TW PHA PAV DLN AMP SYN

Phytoplankton Species

Figure 4.12: The carbon isotopic difference between chlorophyll and whole
cells, A8 1 3 Ccell-Chla, for 7 species of marine phytoplankton. See text for an

explanation of error bars, and table 4.1 for species abbreviations.

As was the case with nitrogen, there appears to be interspecies variation in

A613Ccell-Chla that cannot be attributed to measurement imprecision (figure

4.12). When A513Ccell-Chla values for 7 species were averaged, then the isotopic

difference between whole cells and chlorophyll a was -0.02 + 2.12 per mil. The

error bars in the figure are actual standard deviations of replicate culture

experiments for IG, TW, PHA, PAV, and DUN. Duplicates were not performed

for SYN. Duplicate Amphidinium carterae (AMP) cultures were grown, but AMP4

is considered an outlier (AS13C=10.58), so it is not included in this discussion.

The error bars on AMP and SYN are the pooled standard deviation (=1.25 per

mil) of the 5 replicate experiments. One additional point is that none of the POC

samples were decarbonated before isotopic analysis. This likely resulted in an

overly large AS13Ccell-Chla (= 5.1 per mil) value for Emiliania huxleyi (EH, clone

CCMP 1516), since carbonate has a high 613C relative to organic carbon (Craig,

1953). According to CCMP, the strain of Emiliania huxleyi used in this study
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normally contains carbonate liths. Therefore this species was not included in the

average.

A discussion on the biochemical basis for the observed interspecies

AS13Ccell-Chla variability is beyond the scope of this investigation. The situation

is likely to be complicated, relative to that for nitrogen, by the fact that the C20

isoprenoid side chain (phytol) (Rudiger and Schoch, 1991) and-the C35 cyclic

tetrapyrrole (macrocycle) of chlorophyll (Beale and Weinstein, 1991) derive their

carbon from different biosynthetic pathways. Phytol is a lipid and is thus

expected to be depleted in 13C relative to protein and carbohydrate (DeNiro and

Epstein, 1977; Galimov and Shirinsky, 1975). A carbon isotopic depletion of 1.6

to 5.1 per mil in phytol relative to the macrocycle has, in fact, been demonstrated

(Bogacheva, et al., 1979). Other investigators have noted a 0.01 to 0.73 per mil

carbon isotopic enrichment of the chlorin macrocycle relative to whole plant or

leaf material (Hayes, et al., 1987, and references therein). This isotopic

enrichment should be accounted for when pheophorbides and other de-

phytolated chlorophyll derivatives are isolated from sediments for carbon

isotopic analysis.

4.6 Conclusion

On average, chlorophyll a was 5.16 per mil depleted in 15N relative to

total cellular nitrogen in eight species of cultured marine phytoplankton.

Therefore, chlorophyll 815N can be used as a proxy for algal 815N after the

addition of that quantity. No such correction is required in order to use the

carbon isotopic composition of chlorophyll a as a surrogate for phytoplankton

813C.

181



Interspecies variation in the partitioning of nitrogen between non-protein

biochemicals is a likely cause for variations in the chlorophyll-whole cell 815 N

difference. The magnitude of this interspecies variability was estimated to be

2.40 per mil, the standard deviation of AS15Ncell-Chla for 8 species of

phytoplankton. The carbon isotopic difference between chlorophyll a and total

cellular carbon also varied between phytoplankton species. The magnitude of

this variation was estimated to be 2.12 per mil, the standard deviation of

A613Ccell-Chla for 7 species of phytoplankton.
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Chapter 5: The Origin of Eastern Mediterranean Sapropels

5.1 Abstract

The nitrogen isotopic composition of chlorins from six Late Quaternary

Eastern Mediterranean sapropels (-5.01 ± 0.38 per mil) was similar to the 815N of

chlorophyll a from the modem deep chlorophyll maximum at three Eastern

Mediterranean locations (-6.38 ± 1.80 per mil). In addition, sapropel

photoautotrophic material (calculated from the chlorin 515N) had the same 815N

(0.15 per mil) as bulk sapropel sediments (-0.08 ± 0.53 per mil) and deep water

nitrate (-0.05 per mil) in the modem Eastern Mediterranean, within the error of

the measurements. These data suggest that (1) bottom waters were anoxic, (2)

organic matter burial efficiency was enhanced, and (3) oligotrophic conditions

similar to today persisted in the Eastern Mediterranean during sapropel

deposition.

It is further suggested that Late Quaternary bulk sedimentary 615N

profiles record changes in the magnitude of diagenetic alteration of 15N/ 14 N

ratios in organic matter. Large isotopic elevations of about 5.4 per mil are

observed in organic-poor nannofossil marl oozes, while negligible diagenetic

alteration is observed in organic-rich sapropel sequences. The diagenetic

alteration under normal conditions in the Eastern Mediterranean is attributed to

oxic diagenetic processes.

These results contradict an earlier interpretation (Calvert, et al., 1992) of

Late Quaternary Eastern Mediterranean S15N which concluded that the pattern

of high values in marl oozes and low values in sapropels resulted from decreased
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nutrient utilization (and hence, increased primary production) during sapropel

events.

The modern Black Sea is demonstrated to be an excellent modem analog

for the Eastern Mediterranean during sapropel events. In addition, it is

suggested, based on chlorin 815N, that the Black Sea was anoxic during

deposition of the Holocene sapropel (e.g., Unit II).

5.2 Introduction

The burial of organic matter in marine sediments controls the oxygen

content of the atmosphere (Walker, 1974) and leads to the formation of petroleum

(Tissot and Welte, 1984). Yet our understanding of the controls on organic matter

preservation is limited. The classical model maintains that the establishment of

anoxia in bottom water is a principal control (Canfield, 1989; Correns, 1939;

Demaison and Moore, 1980; Emerson, 1985; Hunt, 1979; Richards and Redfield,

1954; Tissot and Welte, 1984). More recently, this model has been challenged

(Betts and Holland, 1991; Calvert, et al., 1991; Cowie and Hedges, 1992), and the

roles of productivity (Calvert and Pedersen, 1992; Pedersen and Calvert, 1990;

Bertrand and Lallier-Verges, 1993) sedimentation rate (Henrichs and Reeburgh,

1987) and sediment texture (Mayer, 1993), have been championed as primary

controls on organic matter preservation. The major impediment to our

assessment of these controls is their interdependence (Emerson and Hedges,

1988).

One of the more intriguing instances of enhanced organic matter

preservation in marine sediments occurrs in the Mediterranean Sea, where

organic-rich sapropel layers have been periodically deposited since at least the

middle Miocene (Kidd, et al., 1978; Olausson, 1961). These layers, the most
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recent of which was deposited between 9 and 7 kyr BP (Troelstra, et al., 1991),

have organic carbon concentrations between 2 and 17%, and durations of 1-10

kyr (Kidd, et al., 1978). The two competing hypotheses regarding their formation

call on either increased production or increased preservation of organic matter.

Sapropel formation has been linked to the Indian Ocean monsoon

(Rossignol-Strick, 1985; Rossignol-Strick, et al., 1982). During the monsoon,

heavy precipitation in east Africa increases Nile River discharge to the Eastern

Mediterranean. The decreased salinity in surface waters resulting from the

additional freshwater may have caused a density stratification, perhaps

inhibiting deep water ventilation (figure 5.1.c). This would have promoted the

establishment of anoxic bottom water, much as in the modern Black Sea

(Olausson, 1961). Such conditions are frequently cited as being conducive to the

preservation of organic matter and the formation of organic-rich sediments

(Canfield, 1989; Demaison and Moore, 1980).

The oxygen isotopic composition and distribution of planktonic

foraminifera support a freshening of surface waters during sapropel formation

(Cita, et al., 1977; Thunell and Williams, 1983; Thunell, et al., 1977; Vergnaud-

Grazzini, et al., 1977; Williams and Thunell, 1979). Moreover, the lack of benthic

foraminifera (Thunell, et al., 1977) and other benthic fauna (Kidd, et al., 1978) in

most Late Quaternary sapropels indicates that bottom waters were anoxic during

these times. (A small number of benthic foraminifera have been reported on the

extremes of two sapropels (Mullineaux and Lohmann, 1981). It was speculated,

though, that the species encountered are partially pelagic, and therefore able to

float or swim above a narrow oxygen-depleted bottom layer of water at the onset

or termination of a sapropel event.)

An alternative route to organic-rich sediments may be an increase in

biological productivity (Pedersen and Calvert, 1990). This may have resulted, in
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the Eastern Mediterranean, from an increased discharge of nutrient-rich riverine

water (Calvert, 1983; Calvert, et al., 1992; Olausson, 1961; Sutherland, et al., 1984).

In addition, elevated surface water nutrient concentrations may have been

augmented by increased upwelling of nutrient-rich deep water resulting from a

switch from anti-estuarine (e.g., that of today) to estuarine circulation (Calvert, et

al., 1992).

The circulation of the modern Eastern Mediterranean is driven by an

excess of evaporation over precipitation (Bethoux, 1979). Nutrient-depleted

North Atlantic surface waters flow in from the west and sink in the east as their

salinity is increased through intense evaporation. That inflow is balanced by an

outflow of nutrient-enriched subsurface water at the Strait of Sicily (figure 5.1.a).

This circulation pattern results in what has been termed a "nutrient desert"--the

extreme nutrient-impoverishment of Eastern Mediterranean surface and deep

waters. During sapropel deposition, however, it is possible that surface waters

became sufficiently fresh to cause a reversal in this circulation pattern, resulting

in a "nutrient trap" (Sarmiento, et al., 1988a). According to this scenario, low

salinity surface water from increased river discharge would flow west over the

Strait of Sicily (Muerdter, 1984; Stanley, et al., 1975) and be replaced by eastward

flowing nutrient-enriched subsurface water (figure 5.1.b).

Some evidence exists for increased productivity during sapropel

deposition. However, much of the evidence is localized in area and pertains only

to certain sapropels. For instance, high abundances of diatom frustules have

been identified in certain sapropels E(Olausson, 1961; Schrader and Matherne,

1981; Thunell and Williams, 1982; Thunell and Williams, 1983). In addition, the

abundance and distribution of coccolithophorids in a suite of cores from the

eastern basin were suggestive of higher productivity (Castradori, 1993). Other

evidence came from organic carbon concentration
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A Nutrient-desert/antiestuarine circulation

Eastern Mediterranean

C Anoxic system
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Figure 5.1: Schematic diagrams of (a) the circulation in the modem Eastern
Mediterranean, a nutrient desert, (b) an estuarine circulation and nutrient trap
that may have resulted from a freshening of surface waters by increased
monsoon-derived Nile runoff, and (c) an anoxic basin resulting from reduced
ventilation of deep waters caused by a strong salinity gradient. A switch to
estuarine circulation need not result in increased biological production

(Sarmiento, et al., 1988). Figure from Emeis, et al (1996).
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(de Lange and ten Haven, 1983) and accumulation rate (Howell and Thunell,

1992) measurements, as well as theoretical arguments based on the dissolved

oxygen balance in the Eastern Mediterranean (Jenkins and Williams, 1983/84).

Recently, sedimentary nitrogen isotopic evidence has been called upon to

support the increased productivity hypothesis (Calvert, et al., 1992). Low 615 N

values in sapropels and high values in interbedded marl oozes were interpreted

to result from the preferential uptake of 14N by phytoplankton living in nutrient-

enriched surface waters. Other investigators have shown a good inverse

correlation between 615N values in particles (Altabet, et al., 1991; Rau, et al.,

1991; Saino and Hattori, 1985) and sediments (Altabet and Francois, 1994;

Francois and Altabet, 1992), and nutrient availability in surface waters.

This chapter describes the results of nitrogen isotopic measurements in

chlorophyll-related pigments from Late Quaternary sapropels in the Eastern

Mediterranean. Chlorin 615 N is believed to reflect the isotopic composition of

phytoplankton at the time the sapropels were deposited. By comparing these

values to 815N measurements in whole sediments, modern phytoplankton, and

deep-water nitrate it is suggested that, contrary to previous conclusions from

nitrogen isotopic measurements, sapropels result primarily from the increased

preservation of organic matter under anoxic bottom water. An analogy is then

drawn to the modern Black Sea where, presently, organic-rich sediments are

being deposited in an oligotrophic, anoxic basin.

5.3 Methods

The techniques for measuring nitrogen and carbon isotopic ratios in

sedimentary and particulate chlorins are described in chapter 2. The procedures

194



for measuring whole sediment and particulate 515N and 813C are also described

in that chapter.

5.3.1 Sample Collection

All Eastern Mediterranean Sea sediments (except for surface samples)

were collected from the Drilling Vessel JOIDES Resolution, during Ocean Drilling

Program Leg 160, in March and April, 1995. The samples analyzed in this study

came from two locations. Site 964F (36*15.638'N, longitude 17*45.025'E), at a

water depth of 3657 m, was located at the foot of the Calabrian Ridge, about 200

m above and 35 km to the northwest of the Ionian Abyssal Plain (figure 5.2). Site

969C (33 050.323'N, 24*53.005'E), at a water depth of 2196 m, was located about

100 km south of Crete, on the Mediterranean Ridge that separates the Ionian

Basin in the west from the Levantine Basin in the east (figure 5.2). All the

samples for which isotopic determinations were made are listed in table 5.6.

Those samples for which chlorin isotopic measurements were made are listed in

table 5.1. Sediment samples from ODP were stored frozen until analysis.

Suspended particulate, sediment trap and water samples were collected

between May 22nd and June 5th, 1996, aboard R/V Suroit during the Minos

Cruise from Toulon, France to Heraklion, Greece. The type and location of the

samples used in this study are listed in table 5.2. Station locations are shown in

figure 5.3. Suspended particulate samples were collected by drawing water from

the deep chlorophyll maximum (DCM) (a depth of 70-110 m) with a 3/4" garden

hose connected to a pneumatic pump (Lutz Pumps, Inc, Norcross, GA) on deck.

A 53 pam screen was placed acoss the hose intake. The outflow from the pump

was passed through a 293 mm pre-combusted (450 0C, > 8 hours) Gelman A/E

filter. Between 500 and 1500 L seawater was pumped through each filter at a rate
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Figure 5.2: Overview map of the Eastern Mediterranean Sea with schematics
showing the widespread occurrence of sapropels in that basin. Cores from
sites 164 and 169 were used in this study. Figure from Emeis, et al. (1996).
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Table 5.1: Sapropel samples from ODP leg 160 for which chlorin N and C

isotopic determinations were made.

Sample Interval Depth Sapropell Approx.2 Dry Wt.

Hole/Core/Sec (cm) (mbsf)' Age (kyr) (g)3

964F/1H/05 38-48 6.38 S2 55 26.6

964F/1H/05 114-126 7.14 S3 81 42.6

964F/2H/01 40-48 11.02 S4 95 28.3

964F/2H/01 48-58 11.02 S4 98 34.4

969C/1H/01 119-125 5.62 S5 123 55.9

130-136

969C/1H/02 29-35 6.22 S6 175 23.5

969C/1H/02 76-82 6.68 S7 193 44.1

87-93 1 1_1

1 Composite depths and sapropel numbers were from Dr. K. Emeis, chief

scientist of Leg 160 (personal communication). 2 Ages are estimated from Cita, et

al (1977), and Emeis, et al (1996). 3 Dry weights were measured after solvent

extraction.

of about 500 L/hour. The filters were frozen at -40*C immediately following the

filtration.

The sediment trap sample was collected using a 1/8 m2 floating trap

deployed at 200 m. The deployment was for 8 hours, between 0600 and 1400

local time. No poison or preservative was used.

Water samples (table 5.2) were collected from 10 L Niskin bottles arranged

on a rosette. The rosette was equipped with a CTD, as well as an oxygen probe

and a fluorometer. The depth of the DCM was estimated by the fluorescence

maximum. Water samples were either acidified with HCl (1.0 mL 12 N HCl/250

mL seawater), or preserved with HgCl2 (-200 kL saturated HgCl2 (aq)/1500 mL

seawater), and stored at room temperature until analysis.
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Eastern Mediterranean surface sediment samples (table 5.2) were collected

by gravity corer, and immediately stored frozen in the core liner at -40*C.

Sediments remained frozen until analysis.

Figure 5.4: Map of the Black Sea showing sample locations.
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Table 5.3: Description of Black Sea sediment samples used in this sudy.

Core Latitude Longitude Water Interval Strat. Dry Wt.

Depth (cmbsf) Uniti (g)
2

KNR134-09 BC2 42051' N 31057' E 2129 0-10 I 217

KNR134-08 BC17 42058' N 31025' E 2066 36-42 II

KNR134-08 BC17 42058' N 31025' E 2066 42-47 II 31.7

KNR134-08 BC17 42058' N 31025' E 2066 50-56 II

1Stratigraphic unit as defined by Hay, et al. (1991); stratigraphy from Jones and

Gagnon (1994). 
2

Dry weights were from extracted sediment.
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Eastern Mediterranean surface sediment samples (table 5.2) were collected

by gravity corer, and immediately stored frozen in the core liner at -400C.

Sediments remained frozen until analysis.

Figure 5.4: Map of the Black Sea showing sample locations.
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Table 5.3: Description of Black Sea sediment samples used in this sudy.

Core Latitude Longitude Water Interval Strat. Dry Wt.

Depth (cmbsf) Uniti (g)
2

KNR134-09 BC2 42051' N 31057' E 2129 0-10 I 217

KNR134-08 BC17 42058' N 31025' E 2066 36-42 II

KNR134-08 BC17 42058' N 31025' E 2066 42-47 II 31.7

KNR134-08 BC17 42058' N 31025' E 2066 50-56 II

1Stratigraphic unit as defined by Hay, et al. (1991); stratigraphy from Jones and

Gagnon (1994). 2 Dry weights were from extracted sediment.
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Black Sea sediments were collected from the Euxine Abyssal Plain, at a

water depth of about 2100 m, using an Ocean Instruments Mark-Ill box corer

during R/V Knorr cruise 134, in May, 1988. The sample locations are shown in

figure 5.4 and listed in table 5.3.

5.3.2 Nitrogen Isotopic Measurements on Small Samples: Cryofocussing

Since the minimum sample size required to measure nitrogen isotopic

ratios at the Marine Biological Laboratory Isotope Facility was 1 gmol N, samples

smaller than that were measured at the Boston University Stable Isotope Facility

using a cryofocussing technique (Fry, et al., in preparation). Samples were

combusted in an elemental analyzer and cryogenically purified before being

degassed into the mass spectrometer. The manual continuous flow system used

helium as a carrier gas. A precision of 0.38 per mil was achieved with glycine

standards ranging in size from 41 to 6000 nmol N. The average precision for 2

sets of triplicate measurements of sedimentary chlorins was 0.54 per mil, which is

the presumed precision for this study. The nitrogen blank associated with the

measurement averaged 90 nmol N, and this blank had a 815N of -6.15 (± 0.45) per

mil. Cryofocus 815N values were blank-corrected.

All Eastern Mediterranean suspended particulate chlorophyll 815N

measurements were performed using the cryofocussing technique. On a second

occasion, the chlorin S15N values from sapropels S2 and S7, in addition to the

sediment trap sample, were determined by this technique. The latter values were

corrected for a bias of 1.625 (± 0.43) per mil. This bias was determined by

averaging the difference between the S15N values measured by cryofocussing,

and those determined independently at the Marine Biological Laboratory Isotope

Facility on 6 different sedimentary chlorin samples.

200



5.3.3 Preparation of Nitrate Samples for Isotopic Analysis

Nitrate samples were prepared for isotopic analysis by Daniel Sigman at

the Woods Hole Oceanographic Institution (Sigman, et al., submitted). In brief,

400 mL of seawater were incubated for 5 days at 65*C with 1.2 g MgO. This

acted as a buffer and raised the pH of the seawater to 9.7. Samples were then

concentrated to 60 to 80 mL by boiling. Then 36 to 48 mg of Devarda's alloy was

added to each sample. This converted nitrate to ammonia. In addition, a

"diffusion packet" consisting of an acidified glass fiber filter within an envelope

of teflon tape, was added to each sample. Ammonia diffused onto the acidified

filter. The samples were then incubated at 65*C for 4 days, then on a shaker at 60

rpm for 8 days at room temperature, to facilitate the diffusion. The packet was

then removed, dipped into 10% HCl, then distilled water, and dried in a

dessicator containing silica gel and an open vial of H2SO4 (to remove any

ammonia in the air). Filters were removed from the packets and placed into Sn

boats just prior to isotopic analysis.

5.3.4 Precision of Isotopic Measurements

The precision of N and C isotopic determinations in sedimentary and

particulate chlorin samples is discussed in detail in chapter 2. The precision for

isotopic determinations in bulk particulate and sedimentary samples is listed in

table 5.4. The precisions represent the pooled standard deviations of multple sets

of replicate analyses.
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Table 5.4: Precision of nitrogen and carbon isotopic determinations in
different sample types. PSD is the pooled standard deviation of multiple sets

of replicate measurements. Values are in per mil.

1 Values are average standard deviations of replicates.

5.4 Results

5.4.1 Nitrogen and Carbon Isotopes in the Mediterranean Sea

5.4.1.1 Water Column Particulate Samples

The N and C isotopic composition of chlorophyll and bulk suspended

particulates was measured at the deep chlorophyll maximum (DCM) at 4 stations

in the Mediterranean Sea between May 25th and June 4th, 1996 (table 5.5, figure

5.11.a and figure 5.5.6-1.a). Station 3 was in the western basin, while stations 9,

10 and 11 were in the eastern basin (see table 5.2 and figure 5.3 for station

locations and descriptions). Chlorophyll 515N values in suspended particles
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Sample Type PSD - 615N PSD - 813C

Chlorin 0.12 0.09

Particulate 0.26 0.39

Sediment 0.17 0.04

Seawater Nitrate1  0.2

Cryofocusl 0.54 1



from the eastern basin (e.g., Stations 9, 10 and 11) were made by cryofocus irMS.

Therefore, no 813C values were available for those samples.

Table 5.5: Nitrogen and carbon isotopic composition of chlorophyll,

suspended particulate and nitrate samples from the Mediterranean Sea. All

chlorophyll samples are from the deep chlorophyll maximum. Station

locations are shown in figure 5.3.

Station Sample Depth (m) 81 5 N 61 3 C

3 Chlorophyll a 70 -2.2 -26.6

3 POM 70 2.15 -25.75

3 POM 4 0.15 -24.65

9 Chlorophyll a 110 -8.6

9 POM 110 -0.7 -24.4

10 Chlorophyll a 75 -6.5

10 POM 75 -0.7 -24.2

10 Sinking PON 1 200 5.0

11 Chlorophyll a 80 -6.2

11 Chlorophyll a' 80 -4.2

11 POM 80 -0.5 -24.15

11 Nitrate 1000 -0.05

1 A gelatinous plankton specimen (i.e., swimmer) was in this sample, but could

not be removed. Therefore, this value may not be representative of sinking PON.

Chlorophyll 815N values in suspended particles from the DCM fell in a

range between -8.6 and -2.2 per mil. In the eastern basin (e.g., Stations 9, 10 and

11) they averaged -6.38 (± 1.80) per mil. Therefore, applying the relationship

between chlorophyll and whole cell S15N in phytoplankton (determined in

chapter 4), it is calculated that phytoplankton in the eastern basin DCM had an
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average 615N of -1.22 per mil. The origin of a possible east-west gradient in

615NChla is discussed in section 5.5.5. Bulk suspended particulate 815N values

from the DCM fell in a range between -0.7 and 2.15 per mil. In the eastern basin

they averaged -0.63 (± 0.12) per mil.

The one chlorophyll 613C value measured was in the western basin. The

sample from the DCM at Station 3 had a 613C value of -26.6 per mil. Suspended

particulate 813C values from the DCM fell in a range between -25.75 and -24.15.

The average of those values was -24.63 (± 0.76). When only the samples from the

eastern basin were included, the average 813CpOC was -24.25 (± 0.13). Since the

POC sample from which the Stn. 3 chlorophyll was extracted had a 813C of

-25.75 (i.e., 1.5 per mil less than the average 613CpOC in the eastern basin), it

may be possible to estimate the 613C of eastern basin DCM chlorophyll by

adding 1.5 per mil to the measured chlorophyll 813C in the western basin. This

yields an estimate of -25.1 per mil for the average 613CChla at the DCM in the

eastern basin.

The 615N value of two chlorophyll a structural isomers was determined at

Station 11. The 10(S)- stereoisomer of chlorophyll a, chlorophyll a', comprised

28% of the total Chla+a' in that sample. Therefore the weighted average 615 N of

chlorophyll at Station 11 is taken to be -5.64 (= (0.28)x(-4.2)+(0.72)x(-6.2)). The

chlorophyll 815N determinations for Stations 9 and 10 were made on the

combined Chla+a', because samples were small. A discussion about the origin of

this isotopic difference can be found in chapter 2 (section 2.5.2.2).

The average N isotopic difference between PON and chlorophyll in the 4

DCM samples was 5.78 (± 1.54) per mil. This compares favorably with the

A615Ncell-Chla difference of 5.16 (± 2.40) per mil in axenic phytoplankton

cultures (see chapter 4). This suggests that most of the PON sampled was algal,

since higher trophic levels are enriched in 15N (DeNiro and Epstein, 1981; Fry,
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1988). The C isotopic difference between POC and chlorophyll in the one sample

from the western basin was 0.85 per mil. This falls within the range of values

found in cultured phytoplankton, -0.02 (± 2.12) per mil (see chapter 4).

5.4.1.2 Water Samples

The N isotopic composition of deep-water nitrate was measured at Station

11 in the Eastern Mediterranean. The 815N value for nitrate from a depth of 1000

m was -0.05 per mil. The nitrate concentration in that sample was 3.64 pM (Dr.

Patrick Rimbault, personal communication). Profiles of nitrate and phosphate at

station 11 are shown in figure 5.5.

-- 0--- Nitrate (pM)Station 11 X Phosphate (gM)

Depth
(iM)

0

200

400

600

800

1000

1200
0 1 2 3 4 5 6

Nitrate or Phophate (pM)

Figure 5.5: Nitrate and phosphate profiles at Station 11 in the E.

Mediterranean. Data were provided by Dr. Patrick Rimbault.
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5.4.1.3 Sediment Samples

The N and C isotopic composition of chlorins and whole sediments was

measured in two cores from ODP Leg 160 in the Eastern Mediterranean (see map

in figure 5.2). Sediments received from hole 964F (3657 m water depth,

36015.638'N, 17045.025'E), located at the base of the Calabrian Ridge, 35 km

northwest of the Ionian Abyssal Plain, contained 3 sapropels: S2, S3 and S4 (Dr.

K. Emeis, personal communiction). Sediments received from hole 969C (2196 m

water depth, 33'50.323'N, 24*53.005'E), located on the Mediterranean Ridge, 100

km south of Crete, also contained 3 sapropels: S5, S6 and S7 (Dr. K. Emeis,

personal communiction). The stratigraphic position of these sapropels within the

SPECMAP stacked 8180 record (Imbrie, et al., 1984) and the orbital precession

index (Berger and Loutre, 1991) is shown in figure 5.6.
A Sapropel number

1 2345 6789 10 11 12

0.0

0.02

-3-

'0

a.

0.02X
0.~

-0.02

-0.061I0 200 400 600
Age (k.y.)

Figure 5.6: Stratigraphic position of Late Quaternary Eastern Mediterranean
sapropels within (a) the SPECMAP stacked 8180 record of Imbrie, et al (1984),
and (b) the orbital precession index of Berger and Loutre (1991). Sapropels S2
through S7 were included in this study. Figure from Emeis, et al (1996).
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High-resolution (2 cm) sampling of bulk sediment in hole 964F was

performed, and the N and C isotopic results are listed in table 5.6 and shown in

figures 5.11.b and 5.13.b. In addition, table 5.6 lists the bulk sediment isotopic

determinations from hole 969C, and those results are shown in figures 5.11.c and

5.13.c.

The chlorin isotopic results from sapropels are listed in table 5.7 and

shown in figures 5.11 and 5.13. A single chlorophyll degradation product,

pyropheophorbide a , was found to be the most abundant chlorin in all 6

sapropels (figure 5.7) investigated in this study. This identification was based

upon the visible spectrum and coelution with an authentic standard. Also listed

in table 5.7 are the N and C isotopic ratios in the bulk sediment from which the

chlorins were extracted. Those values represent the average sapropel 615N and

513C.

Sapropel 615N values fell in a narrow range between -1.5 and 2.1 per mil,

and averaged -0.08 (± 0.53) per mil. Non-sapropel sediment 515N values were

between 4.2 and 6.8 per mil, and averaged 5.30 (± 0.97) per mil. Therefore, on

average, sapropels are depleted in 15N by 5.38 per mil relative to non-sapropel

sediments. As discussed below, this quantity represents the diagenetic alteration

of nitrogen isotope ratios in marine organic matter in oxic waters.

Chlorin S15N values from sapropels fell in a narrow range between -5.65

and -4.6, and averaged -5.01 (± 0.38) per mil. Therefore, using the chlorophyll-

cell isotopic relationship established in chapter 4, it is calculated that

phytoplankton living during sapropel events had average S15N values of 0.15

per mil. This value is surprisingly close to the modem 315N of phytoplankton in

the eastern basin, -1.2 per mil (see section 5.4.1.1), given that the AS15Ncell-Chla

relationship has a standard deviation of 2.40 per mil.
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Furthermore, on average, chlorins were depleted in 15N by 4.95 per mil

relative to the sapropels from which they were extracted. This difference

Table 5.7: Nitrogen and carbon isotopic ratios in chlorins and sediments from

Eastern Mediterranean sapropels. All values were measured in composite

samples of the entire sapropel. For samples measured in duplicate, the S15N

and 51 3C spread of the measurements is shown.

Sapropel Sample 51 5 N 81 5 N Spread 51 3 C 81 3 C Spread

S2 Chlorin1  -5.26 0.60

S2 Sediment -0.05 0.9 -23.6 1.8

S3 Chlorin -5.65 0.1 -20.5 0

S3 Sediment -0.3 0.2 -22.05 0.1

S4a Chlorin -4.8 -22.1

S4a Sediment 0.75 0.3 -23.8 0

S4b Chlorin -4.9 -22.4

S4b Sediment -0.2 0.2 -23.1 0

S5 Chlorin -4.6 0 -22.9 0

S5 Sediment -0.55 0.1 -23.2 0

S6 Chlorin -5.2 -18.1

S6 Sediment -0.15 1.5 -21.3 0

S7 Chlorin
1  -4.66 0.47

S7 Sediment -0.05 0.1 -24.1 0

AVG Chlorin2 -5.01 0.38

1 Measured in triplicate by cryofocussing, and corrected by -1.625 per mil for a

bias (section 5.3.2). 815N Spread is the standard deviation of the 3

measurements. 2 The average value for all 6 sapropels, S2-S7, and the standard

deviation of that average.
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[666 nivi--------------------------- - -------
No. Retention Height Left Right Area Area Mark

time [AU] time time [AUmmin] [Y]

1 18.25 8.2937 9.95 18.58 8.856338 35.823 I
2 10.78 8.1893 18.58 10.95 8.828729 12.886 I
3 11.15 8.8253 18.95 11.48 8.885451 3.388 I
4 21.48 8.0768 21.25 21.85 8.014837 8.726 I
5 23.15 8.1172 22.75 24.58 8.864388 39.977 I

Figure 5.7: Typical reverse-phase HPLC chromatogram of a sapropel solvent
extract after solid-phase extraction. Visible absorbance detection was at 666
nm. In this sapropel (S5), PPBDa (retention time=10.25 mins) accounted for
35% of the total chlorins in the sample. Tentative identifications of the other
chlorins, their retention times and their relative abundance in the sample are
as follows: mesopyropheophorbide a (10.7 mins, 13%), methyl
pyropheophorbide a (11.15 mins, 3%), pyropheophytin a (21.4 mins, 9%), and
chlorin steryl esters (23-25 mins, 40%).
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compares favorably with the measured AS15Ncell-Chla of 5.16 per mil in axenic

phytoplankton cultures (see chapter 4), and with the AS15 NPON-Chla of 5.78 per

mil at the DCM in the modem E. Mediterranean.

Sapropel 613Corg values fell in a range between -24.1 and -21.3, and

averaged -23.0 (± 1.00) per mil. Chlorin 613C values from sapropels were

between -22.9 and -18.1, and averaged -21.2 (± 1.95) per mil. If the glacial

sapropel S6 (Castradori, 1993) is excluded, then the average chlorin 813C is -21.98

(± 1.04) per mil and the average sapropel 613Corg is -23.3 (± 0.72) per mil.

Therefore, on average, chlorins are enriched in 13C by 1.33 per mil relative to

sapropelic organic matter.

The N and C isotopic composition of a surface (0-15 cm, bulk) sediment

collected at Station 8 on the Minos Cruise (see map in figure 5.3) was measured.

The site (35*43'N, 15*27'E), at a water depth of 410 m, was located on the eastern

flank of the Strait of Sicily. The S15N of that sample was 4.3 per mil (spread of 2

measurements was 0.2), and the 813C was -21.5 per mil. This S15N value was in

the range of those for non-sapropel sediments in the ODP cores (see table 5.6).

5.4.2 Nitrogen and Carbon Isotopes in the Black Sea

The nitrogen and carbon isotopic compositions of chlorins and whole

sediments from a Black Sea surface sediment (Unit I) and an underlying sapropel

(Unit II) were measured (see table 5.3 and figure 5.4 for descriptions and

locations of sites). The results are listed in table 5.8.
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Table 5.8: Nitrogen and Carbon isotopic ratios in sediments and chlorins from
the Black Sea.

Core Interval Strat Unit 1 4 C Age Sample S1 5 N 81 3 C

(cm) (yr BP)
1

BC2 0-10 I 1000 Chlorin -4.51 -24.1

BC2 0-10 I 1000 Sediment 1.3 -23.3

BC17 36-42 II 3768 Sediment 0.6 -24.4

BC17 42-47 II 4515 Chlorin -5.8 -23.2

BC17 42-47 II 4515 Sediment 0.45 -24.1

BC17 50-56 II 5670 Sediment 1.5 -23.1

1 Unit I age is approximated from Jones and Gagnon (1994). Unit II ages are
interpolated from age vs. depth plot (see figure 5.8)

Whole sediment 515N values in Units I and II from the Black Sea fell in a

range between 0.45 and 1.5, averaging 0.96 (± 0.52) per mil. Whole sediment

813C values were between -24.4 and -23.1, averaging -23.73 (± 0.62) per mil.

The average chlorin 615N value in Unit I sediments was -4.51 per mil (see

chapter 2), resulting in a mean phytoplankon 815N of 0.65. Bulk Unit I (0-10 cm)

sediment had a 815N of 1.3 per mil. In the middle of Unit II, chlorin 815N was

-5.8 per mil, resulting in a mean phytoplankton 815N of -0.64. The associated

bulk sediment had 515N equal to 0.45 per mil. Therefore, the average difference

between chlorin and whole sediment S15N in Units I and II of the Black Sea is

6.03 (± 0.31) per mil. This is similar to the difference between Chla and whole

cells in axenic phytoplankton cultures, 5.16 (± 2.40) per mil.

The 14 C ages of Unit II sedimentary organic matter from core BC17 were

determined (Dr. Timothy Eglinton, personal communication). A plot of those

ages versus depth in the core is shown in figure 5.8. The linear relationship
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suggests that the mean sedimentation rate in BC17 during deposition of the

sapropel was 7.4 cm/kyr. This figure is in close agreement with the value of 7.7

cm/kyr determined for a core located 300 km to the east of our site (Calvert, et

al., 1987). Therefore, ages of Unit II samples in this study were interpolated from

the linear relationship. The age of Unit I sediments in core BC2 was estimated

from Jones and Gagnon (1994). Those investigators found similar 14C ages in

multiple core-top (0-10 cm) sediments from water depths > 2000 m (Jones and

Gagnon, 1994).

KNR 134-08 BC17
3 0 _ _. - | ' . .._ . ' ' ' | - ' ' - -

y = 11.276 + 0.0073581x R= 0.99842

35--

Depth 40--
(c m)

45--

50 ' I'
2500 3500 4500 5500

14C Age (yr BP)

Fgure 5.8: Age versus depth relationship for Unit II sediments from the Black

Sea, core KNR 134-08 BC17. Data provided by Dr. Timothy Eglinton.

Nitrogen isotopic ratios in the Black Sea are shown in figure 5.12. The

modem Black Sea isotopic values are averages of published data. Suspended

particulate 815N values averaged 2.77 (± 1.31) per mil in 6 samples from depths

between 5 and 35 m at two central Black Sea locations (R/V Knorr 134-09: Leg 2,

Stn. BS2-2 at 42*50'N, 32*00'E (Fry, et al., 1991); and Leg 3, Stns. BS3-2 at 42*50'N,

32*00'E and BS3-6 at 43*04'N, 34*00'E (Velinsky and Fogel, unpubl.). The deep
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water NH4+ 815N was 1.7 per mil and was invariant from 500 m to the seafloor

(~2200 m) at stations BS3-2 and BS3-6 (Velinsky, et al., 1989).

5.5 Discussion

The single published study of nitrogen isotopes in Late Quaternary

sediments of the Eastern Mediterranean (Calvert, et al., 1992) concluded that

sapropels resulted from increased primary production. Our results suggest a

markedly different interpretation. Based on measurements of chlorophyll 815N

values in sapropels and in the modem Eastern Mediterranean we conclude that

sapropels formed as a result of improved organic matter preservation under

anoxic bottom waters. In addition, it is suggested that Late Quaternary bulk

sediment nitrogen isotopic variations in the Eastern Mediterranean are the result

of diagenesis.

The term "anoxic" is used in this work to describe oxygen concentrations

of less than 0.3 mL/L. The term thus includes, but is not limited to, euxinic

environments which are characterized by the complete lack of oxygen and the

existence of H2S in the water.

5.5.1 Prior Nitrogen Isotope Studies in the Eastern Mediterranean

A profile of sedimentary 815N was published by Calvert et al. (1992) for

an 11.6 m core from the Eastern Mediterranean (MD 84641; 1,375 m water depth;

33002'N, 32038'E) (figure 5.9). That record spanned the last 450 kyr and included

9 sapropels. The results of that study were similar to those in this study.

Namely, 615N values were low (0-2 per mil) in sapropel sequences, and high (5-7

per mil) in non-sapropel sections.
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Figure 5.9: Profiles of (a) organic carbon concentration, (b) sedimentary 815 N,

and (c) 813 C of organic carbon in core MD 84641 from the Eastern

Mediterranean. Figure from Calvert, et al. (1992).

Those investigators concluded (1) that the sedimentary S15N values

reflected those of phytoplankton, (2) that phytoplankton 515N was low during

sapropel events due to the incomplete utilization of dissolved nitrogen, and (3)

that this implied productivity was higher because major nutrients are typically

only underutilized in high productivity regions (i.e., upwelling regions and polar

oceans). Below we present evidence refuting these conclusions.
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5.5.2 N Isotopic Fractionation During Biological Transformations

Most biologically-mediated transformations of nitrogen occur more

rapidly with 14N than with 15N as a result of higher vibrational frequency of

bonding in the former (Owens, 1987). This results in isotopic depletion in

products relative to substrates. Examples of such processes are the uptake of

DIN by phytoplankton (Montoya and McCarthy, 1995; Wada and Hattori, 1978),

and microbial denitrification (Delwiche and Steyn, 1970; Mariotti, et al., 1981;

Miyazaki, et al., 1980). Field measurements in the marine environment of 615N

in products (Richards and Benson, 1961) (Altabet, et al., 1991; Goering, et al.,

1990) and substrates (Cline and Kaplan, 1975; Horrigan, et al., 1990) have borne

out the laboratory findings. Recently, attempts have been made to exploit these

kinetic isotope effects to reconstruct nutrient utilization (Farrell, et al., 1995;

Francois and Altabet, 1992; Francois, et al., 1993; Nakatsuka, et al., 1995) and

denitrification (Altabet, et al., 1995; Ganeshram, et al., 1995) patterns in the past.

5.5.2.1 Nitrogen Isotopes as Tracers of Nutrient Utilization

Field studies have demonstrated an inverse correlation between nitrate

(Goering, et al., 1990; Miyake and Wada, 1967; Saino and Hattori, 1985; Saino and

Hattori, 1987; Wada and Hattori, 1976) and ammonium (Montoya, et al., 1991;

Rau, et al., 1991) concentrations in surface waters and the 815N of suspended and

sinking (Altabet, et al., 1991; Altabet and Francois, 1994; Nakatsuka, et al., 1992)

particles, and surface sediments (Altabet and Francois, 1994). When DIN

concentrations are high, as is the case on the equator and in the Southern Ocean,

south of the polar front, particulate (Altabet and Francois, 1994; Rau, et al., 1991)
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and sedimentary (Altabet and Francois, 1994) 615N is low. In latitudinal

transects from these nutrient-enriched to nutrient-depleted surface waters (i.e.,

north and south of the equator and north of the polar front), the 615N of both

particles and surface sediments increased (figure 5.10).
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Figure 5.10: Nitrogen isotopes in the Equatorial Pacific. An inverse

relationship between nitrate concentration and (a) suspended and sinking

particles, and (b) surface sediments was observed in latitudinal transects

across the equator between 1350 and 1400 West longitude. Figure from Altabet

and Francois (1994).

An extrapolation of these spatial trends to temporal (i.e., downcore)

patterns has been attempted in the Southern Ocean (Francois and Altabet, 1992;

Francois, et al., 1993), the Eastern Equatorial Pacific (Farrell, et al., 1995), the
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Bering Sea (Nakatsuka, et al., 1995), and the Eastern Mediterranean (Calvert, et

al., 1992). In those studies, Late Quaternary changes in sedimentary 815N were

interpreted in terms of changing nutrient utilization by phytoplankton. A

fundamental assumption in each of those studies was that diagenetic alteration

of N isotopic ratios was either insignificant or unchanging in space and time.

Contrary to such assumptions, we suggest sedimentary 615N Variations in

locations such as these can result entirely from diagenetic processes.

5.5.3 Diagenetic Alteration of Nitrogen Isotopic Ratios

Laboratory (Macko and Estep, 1984; Wada, 1980) and field (Benner, et al.,

1991; Zieman, et al., 1984) experiments have demonstrated that 15N/ 14N ratios

can be altered during the decomposition of marine organic matter. In addition,

the 615N of suspended (Fry, et al., 1991; Libes and Deuser, 1988; Saino and

Hattori, 1980) and sinking (Wada, et al., 1987b) particles in the ocean has been

shown to change dramatically with depth (Altabet, 1988; Altabet, 1989; Altabet,

et al., 1991; Saino and Hattori, 1987). Furthermore, the isotopic difference

between surface sediments and material from deep water sediment traps is

frequently large and variable, with sediments being enriched by 2-8 per mil

relative to deep sinking particles (Francois and Altabet, 1992; Schafer and

Ittekkot, 1993; Wada, et al., 1987b; Altabet, personal communication). This

suggests that downcore variations in bulk sediment S15N are subject to

misinterpretation if the magnitude of diagenetic alteration of that quantity is

unknown.

Of primary concern is the magnitude of these observed isotopic

alterations. They are is similar to the kinetic isotope effects (e.g., the signal) of
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the processes being investigated. For instance, the fractionation factor for nitrate

uptake by phytoplankton has been between 5 and 9 per mil in field studies

(Altabet, et al., 1991; Biggs, et al., 1988; Wada, 1980).

5.5.3.1 Eastern Mediterranean Sedimentary 815N: An Artefact of Diagenesis

Our measurements of chlorin 815 N suggest that the pattern of Late

Quaternary sedimentary S15N in the Eastern Mediterranean is the result of

diagenesis. First, bulk sapropel S15N values (-0.08 ± 0.53) are virtually identical

to the calculated S15N of phytoplankton (0.15 per mil) at the time of their

deposition (i.e., 815Nphyt = S15NChla + 5.2 per mil). Today, however, sediments

being deposited (4.30 per mil) are enriched by 5.52 per mil relative to

phytoplankton (-1.22 per mil) in the overlying water. This indicates that

phytoplanktonic material is isotopically altered during decompositional

processes characterizing non-sapropel depositional conditions like today.

During sapropel events, phytoplankton isotopic values are preserved.

Second, chlorophyll 615N values in the Eastern Mediterranean today

(-6.38 i1.80 per mil) are remarkably similar to chlorin 815N values in all six

sapropels (-5.01 + 0.38 per mil) studied (figure 5.11). This indicates that

phytoplankon isotopic values, unlike bulk sediment 815 N values, have remained

essentially constant over the last 200 kyr.

Finally, modern-day suspended particles from the DCM (-0.6310.12 per

mil) and deep water nitrate (-0.05 per mil) both have nitrogen isotopic

compositions similar to bulk 815N values in sapropels (-0.08 + 0.53 per mil). This

indicates that sapropelic organic matter may have been produced in a nutrient

regime similar to today--a stratified, oligotrophic setting.
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Figure 5.11: Nitrogen isotopes in (a) the modem Eastern Mediterranean, and

(b,c) Late Quaternary Eastern Mediterranean sediments. Sapropels S2, S3 and

S4 are contained in hole 964F, while sapropels S5, S6 and S7 are contained in

hole 969C. Modem-day particulate and chlorophyll 515N values are from the

deep chlorophyll maximum and are averages of values from three stations.
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If the 615 N of primary producers has been constant in the Late

Quaternary, then the observed pattern of high 815N in non-sapropel sediments

and low 615N in sapropels resulted from secondary (i.e., non-autotrophic)

processes. Examples of such processes are diagenesis and the marine deposition

of terrestrial nitrogen.

The fraction of terrestrial organic matter in sapropels has been widely

debated, with some studies concluding it is significant (Calvert, 1983; Deroo, et

al., 1978; Shaw and Evans, 1984; Sigl, et al., 1978) and others that it is minor

(Fontugne and Calvert, 1992; Poutanen and Morris, 1985; Smith, et al., 1986; ten

Haven, et al., 1987). Evidence for the existence of a significant terrestrial

component to sapropel organic matter came from elemental ratios (i.e., high

C/N; Calvert, 1983; Sigl, et al., 1978), terrestrial biomarkers (i.e., high n-alkane

carbon numbers and a high odd/even n-alkane predominance; Deroo, et al.,

1978), and bulk characterisitics of the organic matter (i.e., high concentrations of

humic material (Deroo, et al., 1978) and high abundances of pollen and higher

plant debris (Shaw and Evans, 1984; Sigl, et al., 1978)). Evidence against a

significant terrestrial component to sapropel organic matter came from elemental

ratios (i.e., low C/N; Sutherland, et al., 1984), carbon isotopes (i.e., high S13C

values; Fontugne and Calvert, 1992; Sutherland, et al., 1984), marine biomarkers

(i.e., high alkenone abundances (prymnesiophytes) and large amounts of

dinosterol and 4-methyl sterols (dinoflagellates); Smith, et al., 1986; ten Haven, et

al., 1987), and bulk characteristics of the organic matter (i.e., high humic acid to

fulvic acid ratios; Poutanen and Morris, 1985)

Our chlorin nitrogen isotope data argues for a minor terrestrial nitrogen

contribution to sapropels. Chlorins in marine sediments are thought to derive

entirely from marine photoautotrophs (Baker and Louda, 1986). The average

phytoplankton 615 N in sapropels, calculated from the chlorin 815N values, was
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0.15 per mil. This compares to an average 615N for whole sapropel sediments of

-0.08 ± 0.53 per mil. When it is considered that terrestrial nitrogen averages

about 2 per mil (Mariotti, et al., 1984; Owens, 1987; Peters, et al., 1978; Sweeney

and Kaplan, 1980; Sweeney, et al., 1978), it is apparent that nitrogen in sapropels

is predominantly marine in origin.

Since the input of terrestrial nitrogen to sapropels does not appear to be

the cause of their low 615N values, it is likely that diagenesis was responsible for

elevated 615N values in non-sapropel sequences. And, conversely, that minor

diagenetic alteration allowed the preservation of phytoplanktonic 515N during

sapropel deposition.

As mentioned, the 5.5 per mil isotopic enrichment of surface sediments

(4.3 per mil) relative to phytoplankton (-1.2 per mil) in the Eastern Mediterranean

today indicates that oxic diagenetic processes are causing nitrogen isotopic

enrichments in decomposing organic matter. Conversely, the isotopic similarity

between phytoplanktonic (0.15 per mil) and bulk sapropel material (-0.08 per

mil) demonstrates a complete lack of nitrogen isotopic alteration of primary

organic matter during sapropel events, and suggests that oxic diagenesis was not

occurring at those times.

Evidence for a diagenetic origin of elevated 15N/ 14N ratios in non-

sapropel sediments was recently presented by Dr. Gregory Cowie (poster at the

17th International Meeting on Organic Geochemistry, Sptember 4-8, 1995,

Donostia-San Sebastian, Spain). He showed high-resolution measurements of

bulk sedimentary S15N through an oxidized zone at the top of the most recent

Eastern Mediterranean sapropel (e.g., S1). (The phenomenon of post-

depositional sapropel oxidation is thought to be general (Higgs, et al., 1994;

Troelstra, et al., 1991) and can confound attempts to reconstruct primary

geochemical signals (Pruyser, et al., 1991; van Os, et al., 1991)). In the unoxidized
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zone of the sapropel, S15N values were low and similar to those in other sapropel

sediments discussed in this work. In non-sapropel sequences immediately above

and below the sapropel, isotopic values were high, similar to those in other non-

sapropel sediments from the Eastern Mediterranean. In the oxidized portion of

the sapropel, however, 815N values rose as organic carbon concentrations

declined from typical sapropel to typical non-sapropel values.

5.5.3.2 Preservation of Sedimentary 315N Under Anoxic Bottom Water

A substantial amount of evidence has been gathered (most in unpublished

studies) suggesting that much of the diagenetic alteration of 15N/ 14N ratios in

marine organic matter occurs at the sediment-water interface, probably as a

result of the activities of benthic fauna (Dr. Mark Altabet, personal

communication). When bottom waters are anoxic, and benthic animal

communities absent--such as in the Black Sea, the Gulf of California and the

Santa Barbara Basin--surface sediment S15N values are similar to 815N values in

sinking particles collected in deep water sediment traps. However, when bottom

waters are oxygenated, surficial sediments tend to be sigificantly enriched in 15N

relative to deep sinking particles.

The available data demonstrating these trends are shown in table 5.9,

along with approximate bottom water oxygen concentrations. Also shown in the

table are data for surface water suspended particles and phytoplankton, when

available. As is the case for deep sinking particles, 815N values in both

suspended particles and phytoplankton tend to be similar to surface sediments

when bottom waters are anoxic, and depleted in 15N relative to sediments when

bottom waters are oxygenated.
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Table 5.9: The link between bottom water oxygen concentrations and the
diagenetic alteration of 1 5N/ 14 N ratios in marine organic matter. Values are
expressed as the difference between the 61 5N of surface sediments and the
81 5N of either deep water sediment trap material (trap), suspended particles in
overlying surface waters (susp), or phytoplankton (phyt). The phytoplankton
615N value is calculated from the measured chlorophyll 815N value, as
described in chapter 4. Approximate bottom water oxygen concentrations are
shown in mL/L.

Location AS1 5 Nsed-trap A51 5 Nsed-susp A8 1 5Nsed-phyt [02] Ref.

Oxic Bottom Water

Southern Ocean 7.5 4.5 5.2 1,10

E. Mediterranean 5 5.5 4.3 5,9

Equatorial Pacific 4 6 3.6 2,3,10

Arabian Sea 2-4 2 4,12

Anoxic Bottom Water

Gulf of California 1 n.d. 2

Santa Barbara Basin 0.5 0.3 2,13

Peru Margin 2 -0.5 < 0.2 5,7,11

Black Sea -1 -1 -1 0 2,5,6,14

Cariaco Trench -1.5 0 6,15

Framvaren Fjord -1.5 1 0 8,16

Wada, et al. (1987)
M. Altabet, personal comm.
Altabet and Francois (1994)
Schafer and Ittekot (1993)
This study
Fry, et al. (1991)
Libes and Deuser (1988)
D. Velinsky, personal comm.

9. Miller, et al. (1970)
10. Broecker and Peng (1982)
11. Suess, et al. (1988)
12. Shimmield, et al. (1990)
13. Emery (1960)
14. Canfield (1989)
15. Wakeham (1990)
16. Jacobs, et al. (1987)
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Since sapropel 615N values (-0.08 ± 0.53 per mil) were virtually identical

to calculated phytoplankton 615N values (0.15 per mil), it is suggested that

sapropels S2 through S7 were deposited when bottom waters in the Eastern

Mediterranean were anoxic (i.e., < 0.3 mL/L 02). While recognizing that a strict

interpretation of the limited data presented in table 5.9 would allow only the

conclusion that bottom water during sapropel events contained < 2 mL/L 02,

there is a positive correlation between A615N values and decreasing oxygen

concentrations that suggests bottom water [02] will be very low when

phytoplankton 615N values are identical to sediment 615N values. In addition,

the late Quaternary bulk sediment S15 N record published by Calvert, et al. (1992;

figure 5.9) frequently shows a gradual transition into and out of sapropels. If it is

assumed that the onset of anoxia--i.e., sapropel deposition--and the

reintroduction of oxygen in bottom waters is gradual (Mullineaux and Lohmann,

1981), then sediment 615N values would be expected to gradually decrease then

increase at the beginning and end of an event. Additional measurements of

AS15Nsed-Chla in low oxygen (i.e., < 2 mL/L) environments would help to

elucidate the exact relationship between the nitrogen isotopic difference between

phytoplankton and sediments and bottom water [02].

Further evidence that benthic fauna are responsible for the observed

elevation of sedimentary 515N relative to deep sinking particles is the 4.5 per mil

15N enrichment of surface sediments from the Equatorial Pacific, relative to the

floc lying just above those sediments (Dr. Mark Altabet, personal

communication). In that study, the floc had about the same 815N as both the

deep trap material (3700 m) and material from a floating sediment trap at 150 m

(Altabet and Francois, 1994). This suggests that, in the presence of oxygen, much

of the isotopic alteration of sedimenting nitrogen occurs at the sediment-water

interface.
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5.5.3.3 Origin of Diagenetic 15N-Enrichment in Sediments

The process(es) responsible for the observed 15N enrichment in sediments

underlying oygenated bottom water is (are) unknown. There are three

possibilities frequently cited in the literature. The first is preferential removal, by

heterotrophs, of nitrogenous components depleted in 15N (Altabet and

McCarthy, 1985; Libes and Deuser, 1988; Saino and Hattori, 1980). The second is

isotopic fractionation during the incomplete consumption of nitrogenous

components of sedimenting material (Montoya, et al., 1992). And the third is a

trophic effect whereby grazers excrete 15N-depleted dissolved metabolites

(Checkley and Miller, 1989) while producing isotopically-enriched fecal material

(Altabet, 1988; Altabet and Small, 1990; Checkley and Entzeroth, 1985; Montoya,

et al., 1992). It is important to note, though, that since only a small fraction of

organic nitrogen produced in the euphotic zone is buried in sediments, it would

not require a large isotope effect (or fractionation factor) to impart a significant

isotopic signal to residual sedimentary Norg.

5.5.4 The Origin Of Eastern Mediterranean Sapropels

It has been demonstrated that phytoplankton 815N values are about the

same today as they were in all six Late Quaternary sapropels studied. Since the

main factors that have been shown to effect phytoplankton 815N in the marine

environment are nitrogen source (Checkley and Miller, 1989; Saino and Hattori,

1987) and concentration, or more specifically, extent of utilization (Altabet, et al.,

1991; Altabet and Francois, 1994; Saino and Hattori, 1985), it is proposed that

these factors have remained essentially unchanged over the last 200 kyr in the
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Eastern Mediterranean. It is further suggested that sapropels formed primarily

as a result of increased organic carbon accumulation caused by improved

preservation of organic matter under anoxic bottom water.

5.5.4.1 Persistence of Oligotrophic Conditions in the E. Mediterranean During the Past

200 kyr

Today, the Mediterranean Sea is oligotrophic. Concentrations of dissolved

inorganic phosphorous and nitrogen (DIN) are at or near their limits of

detectability for much of the year (Miller, et al., 1970). DIN is completely utilized

by phytoplankton. This explains why the 615N of phytoplankton from the DCM

(-1.22 ± 1.80 per mil)-calculated from the measured chlorophyll S15N--is similar

to the 815N of deep water nitrate (-0.05 per mil). Deep water nitrate is generally

thought to fuel new production in much of the world ocean (Dugdale and

Goering, 1967)(Eppley and Peterson, 1979). With that nitrate being completely

utilized at the base of the euphotic zone (i.e., the top of the nitracline) in the

oligotrophic Eastern Mediterranean, there is little or no net isotopic fractionation,

relative to deep nitrate, expressed in phytoplankton from the DCM.

Since chlorin 815N values in sapropels S2-S7 (-5.01 ± 0.38 per mil) were

about the same as those in the modem Eastern Mediterranean (-6.38 ± 1.80 per

mil) (figure 5.11), it is proposed that nutrient utilization and the isotopic

composition of deep water nitrate have remained nearly constant over time. In

addition, bulk sediment 815N values in all 6 sapropels (S2-S7; -0.08 ± 0.53 per

mil) were virtually identical to the 815N of deep nitrate today (-0.05 per mil),

suggesting that new nitrogen had the same isotopic composition during sapropel

events as it does today. In other words, oligotrophic conditions in which
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nutrients are completely utilized in the euphotic zone have characterized the

Eastern Mediterranean throughout the Late Quaternary.

Other explanations for constant phytoplankton 315N in the Late

Quaternary can be imagined. For instance, nutrient utilization could have

decreased during sapropel events, as Calvert, et al. (1992) suggested, and the

615N of the nitrogen source to phytoplankton could have increased, exactly

offsetting that decrease. However, in the absence of compelling evidence for

such a scenario, a simpler explanation consistent with the 615N data is that

oligotrophic conditions similar to today have persisted in the Eastern

Mediterranean during the Late Quaternary.

5.5.4.2 Higher Carbon Accumulation Through Improved Preservation

If the Eastern Mediterranean was oligotrophic when sapropels S2-S7 were

deposited, what was the mechanism that resulted in such organic-rich

sedimentary deposits? It is proposed that improved preservation of organic

matter under anoxic water bottom water led to increased organic carbon

accumulation and the formation of sapropels.

One popular model of sapropel formation is characterized by a reversal of

the circulation at the Strait of Sicily, such that nutrient-rich deep waters flow into,

instead of out of, the eastern basin (Sarmiento, et al., 1988a). Such a reversal

would likely result from a freshening of surface waters caused by enhanced river

runoff (Rossignol-Strick, 1985; Rossignol-Strick, et al., 1982). A "nutrient trap"

would have resulted from such a circulaton change as inflowing nutrient-rich

deep water was balanced by outflowing nutrient-depleted surface water at the

Strait of Sicily. The eastern basin would then have become anoxic as the ratio of

228



organic matter to oxygen exported from surface to deep layers increased

(Sarmiento, et al., 1988a; Sarmiento, et al., 1988b). Significantly, as noted by

Sarmiento, et al. (1988ab), an increase in this ratio need not result from a change

in biological productivity or new production.

The modem Eastern Mediterranean is characterized as a "nutrient desert."

Westward flowing nutrient-enriched deep waters are lost over the Strait of Sicily,

to be replaced by highly nutrient-depleted surface waters from the Western

Mediterranean. In addition, deep waters of the eastern basin are well-

oxygenated (Miller, et al., 1970) as a result of deep convection that occurs as an

excess of evaporation over precipitation elevates surface salinities (Bethoux,

1979). This oxygenation of the deep eastern basin is countered by relatively little

oxygen demand from decomposing organic matter (Sarmiento, et al., 1988a) since

surface nutrient impoverishment supports low rates of new production

(Claustre, 1994).

If surface waters were sufficiently freshened during sapropel events, such

that deep water formation in the eastern basin ceased, then the oxygen demand,

relative to supply, would have increased in the deep water, even in the absence

of a change in new production (Bethoux, 1993; Sarmiento, et al., 1988a). Indeed,

the modelled response time of deep water anoxia to such a circulation change

was only about 1400 years, irrespective of the biological productivity (Sarmiento,

et al., 1988a). Another modelling study indicated that a salinity decrease in the

Adriatic Basin of a mere 0.2 per mil would be sufficient to cause anoxia in the

deep Eastern Mediterranean in 150 years given current rates of primary

production there (Mangini and Schlosser, 1986). This response time is consistent

with observations of a rapid onset of sapropel events (Cita, et al., 1977; Kidd, et

al., 1978).
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Once anoxic deep waters had been established, organic carbon

accumulation in sediments would have increased as a result of improved

preservation of organic matter (Canfield, 1989; Demaison and Moore, 1980;

Emerson, 1985). A modem analog for this scenario is the Black Sea. That anoxic,

oligotrophic basin is characterized by low primary productivity (100-200 g

C/m 2 /year (Deuser, 1971; Sorokin, 1983); on the order of that in the

Mediterranean Sea (Claustre, 1994)) and by organic-rich sediments (3-5% Corg

(Glenn and Arthur, 1985)). There, the burial efficiency of organic carbon is high

compared to oxygenated environments with similarly low sedimentation rates

(Canfield, 1989). This may result from anaerobic bacteria being incapable of

decomposing the entire range of organic compounds in sedimenting material

(Canfield, 1989). Or it may result from the lack of grazers in anoxic

environments (Demaison and Moore, 1980; Lee, 1992). Benthic animals enhance

Corg remineralization rates by fragmenting and remineralizing POM and by

prolonging the exposure of organic matter to oxidants through bioturbation and

irrigation. Their absence may leave some constituents of sedimentary POM

unavailable to bacteria, and would also allow large amounts of organic carbon to

be sequestered in bacterial biomass.

5.5.4.3 Toward a Unified Picture of Eastern Mediterranean Sapropel Formation

A growing body of evidence now exists suggesting (1) that surface waters

freshened, (2) that the circulation pattern over the Strait of Sicily reversed, (3)

that bottom waters were anoxic, and (4) that oligotrophic conditions persisted

during sapropel formation events in the Eastern Mediterranean. That evidence is

reviewed here.

230



Freshening of surface waters in the Eastern Mediterranean appears to be

climatically linked to monsoonal precipitation in Africa which flows to the basin

via the Nile (Rossignol-Strick, 1985; Rossignol-Strick, et al., 1982). Lower surface

water salinities have been inferred from dramatic 180 depletions in planktonic

foraminifera (Vergnaud-Grazzini, et al., 1977; Williams, et al., 1978) and changes

in faunal abundances (Cita, et al., 1977; Thunell and Williams, 1983; Thunell, et

al., 1977; Williams and Thunell, 1979).

A reversal of the circulation at the Strait of Sicily during sapropel

deposition, resulting from the freshening of eastern basin surface water, has been

inferred from sedimentologic, isotopic and faunal evidence (Huang and Stanley,

1972; Muerdter, 1984; Stanley, 1978; Stanley, et al., 1975). For instance, the low-

salinity assemblage of planktonic foraminifera found in late Quaternary Eastern

Mediterranean sapropels was found in coeval horizons from the western

entrance of the Strait of Sicily where sapropels are not formed (Muerdter, 1984).

This "indicates that low surface salinities extended through the strait, a condition

requiring a surface water flow from east to west, a reversal of the present-day

circulation pattern" (Muerdter, 1984). In addition to the circulation reversal,

sedimentologic evidence suggests that the waters flowing over the Strait

remained well-oxygenated and that circulation has been vigorous throughout the

late Quaternary (Stanley, et al., 1975). For instance, sediments from the three

deep (1300-1700 m) basins within the Strait of Sicily were bioturbated, and hence

oxygenated, during sapropel events at those depths in the Eastern basin. In

addition, early Holocene radiocarbon dates of core-tops at intermediate depths

within the strait indicate non-deposition and/or erosion during the last -10 kyr,

consistent with a strong current regime during a period which includes the

deposition of the most recent sapropel (i.e., 51). "Thus, it appears that vertical

mixing prevailed on an almost continuing basis as a result of water mass
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movement across the Strait of Sicily" during the late Quaternary (Stanley, et al.,

1975).

Deep water anoxia in the eastern basin has been inferred from the absence

of benthic microfossils in sapropel layers (Cita, et al., 1977; Kidd, et al., 1978;

Thunell, et al., 1977) and the presence of iron sulfides and other minerals

typically associated with reducing environments (Calvert, 1983; Sutherland, et

al., 1984). To this evidence is added the chlorophyll nitrogen isotopic data

presented above. The close similarity between phytoplankton and whole

sediment 615N values in sapropels is strongly suggestive of bottom water anoxia.

In addition, the similarity between chlorophyll 615N values in the modern

Eastern Mediterranean and in all six sapropels studied suggests that both

nutrient utilization and new nitrogen source have remained essentially constant

over the last 200 kyr. In other words, oligotrophic conditions similar to today

persisted through the deposition of Late Quaternary sapropels.

This body of evidence supports a sapropel formation scenario whereby

circulation changes induced anoxia which led to enhanced burial efficiency of

organic matter (Sarmiento, et al., 1988a). A modern analog for this depositional

environment is the Black Sea (Olausson, 1961; Sarmiento, et al., 1988a; Southam,

et al., 1982).

5.5.4.4 Comparison of E. Mediterranean Sapropels to the Modern Black Sea

The modern Black Sea is a nutrient trap (Sarmiento, et al., 1988a). Low

salinity surface waters are not dense enough to sink into deep waters made saline

by inflow from the Bosporous. Nutrients added by rivers and the atmosphere

accumulate in the deep water to very high concentrations ([PO43-] ~ 7 gM).

Burial of organic matter (e.g., reduced nutrients) in sediments keeps the system
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in balance (Sarmiento, et al., 1988a). Even though primary production in the

Black Sea is low (100-200 g C/m 2 /yr), and the surface waters oligotrophic, the

export of carbon to deep waters exceeds their import of oxygen (Sarmiento, et al.,

1988b). Thus, anoxia results. Significantly, as noted by Southam, et al. (1982),

the Black Sea is not a stagnant basin. The residence time of deep water is

between 475 and 935 years (Ostlund, 1974), and the vertical velocity in the

interior of the basin is about 0.5 m/yr, values not unlike the world ocean

(Southam, et al., 1982).

The similarities to the Eastern Mediterranean during sapropel deposition

are striking. As discussed above, the Eastern Mediterranean was not stagnant

during anoxic events. Circulation through the Strait of Sicily was vigorous

(Stanley, et al., 1975). In addition, surface waters were relatively fresh and

sediments accumulated vast amounts of organic matter. This appears to have

occurred in conjunction with oligotrophic surface waters.

Nitrogen isotopic evidence from the Black Sea supports this analogy. As

shown in figure 5.12 and table 5.8, the 815N of surface (0-10 cm) sediments in the

Black Sea is 1.3 per mil. This is very close to the 815N of phytoplankton

(calculated from the chlorin 815N) in those sediments, 0.65 per mil. The

similarity is expected since little nitrogen isotopic alteration occurs when bottom

waters are anoxic (see section 5.5.3.2). In addition, the S15N of deep water

ammonium (there is no nitrate since it is completely denitrified in the sulfate

reducing abyss) is 1.7 per mil (Velinsky, et al., 1989). This value is also similar to

the S15N of phytoplanktonic material in sediments and confirms (1) that new

production in the Black Sea is supported by deep water ammonium (Velinsky, et

al., 1991), and (2) that the biological uptake of that ammonium (e.g., nutrient

utilization) is essentially complete (Velinsky, et al., 1991).

233

NIIIIIIIIIIIIIIII 'I III d IN "



(a)

(b)
0

1000

2000

3000

14C 4000
Age

5000

6000

7000

8000

* PON d15N
Black Sea Today + 15N

0

7 -5 -3 -1 1 3
S15N

0 Sed d15N
Black Sea Sediments Chlorin d15N

-7 -5 -3 -1 1 3
815N

Figure 5.12: Nitrogen isotopes in (a) the modem Black Sea, and (b) Unit I and

II sediments. The particulate 815N value is a euphotic zone average from (Fry,
et al., 1991) and Velinsky and Fogel (unpubl.). Ammonium 815N was constant

below 500 m (Velinsky, et al., 1989).

The similarity between the sediment-chlorin 815N difference in Unit I and

Unit II sediments is evidence that bottom waters of the Black Sea were anoxic

during the deposition of the Unit II sapropel. The nitrogen isotopic composition

of algal material in Unit II, as calculated from the measured chlorin 515N, was

-0.64 per mil. This was similar to the 615N of the whole sediment, 0.45 per mil.

This suggests that algal material was not exposed to oxic decomposition
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processes during deposition of the sapropel, since such processes elevate the

815N of residual material by several per mil (see section 5.5.3.2). The existence of

anoxic bottom water in the Black Sea during the deposition of the Holocene

sapropel (Unit II) contradicts the results of Calvert (1990), who concluded, based

on Mn, I and Br distributions, that bottom waters were oxygenated during that

time (Calvert, 1990).

Nitrogen isotopic values of chlorins and sediments in the Black Sea

increased by about 1 per mil between the middle of Unit II and Unit I (figure 5.12

and table 5.8). Over this interval, 813C values of sediments also increased by

about 1 per mil. (A comparison betwen Unit I and Unit II chlorin 813C values is

not possible since the Unit II chlorin was a pheophorbide derivative that lacked

the phytyl ester side-chain which is known to be depleted in 13C relative to the

macrocycle (Bogacheva, et al., 1979).) This suggests that terrestrial organic

matter constituted a larger fraction of sedimentary organic matter in Unit II

(Pelet and Bebyser, 1977; Simoneit, 1977) than in the modem facies. Terrestrial

organic matter is generally depleted in 15N (Sweeney and Kaplan, 1980;

Sweeney, et al., 1978) and 13C (Calvert and Fontugne, 1987) relative to marine

organic matter (Mariotti, et al., 1984; Peters, et al., 1978).

5.5.4.4.1 The Effect of Denitrification and Nitrification on 815N Values in the Black Sea

and in Eastern Mediterranean Sapropels

A large kinetic isotope effect of about 20 to 40 per mil is associated with

microbial denitrification (Cline and Kaplan, 1975; Delwiche and Steyn, 1970;

Mariotti, et al., 1981; Richards and Benson, 1961). This can result in high 815N

values of organic matter in oceanic regimes, such as the eastern tropical Pacific
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Ocean and the western Arabian Sea, characterized by mid-depth oxygen minima

and a vigorous circulation. In such locations the supply of nitrate from depth to

the denitrifying zone (i.e., the OMZ) is greater than the rate of denitrification

(i.e., the loss rate of nitrate). Thus, the partial denitrification results in the

transport of 15N-enriched nitrate to the euphotic layer, a signal that is

incorporated into the food web (Saino and Hattori, 1987) and transferred to the

sediments (Altabet, et al., 1995; Ganeshram, et al., 1995).

Similar isotopic enrichments of organic matter are not observed when the

denitrification rate exceeds the supply rate of nitrate, such as in most marine

sediments and in the water column of the Black Sea. In those locations, nitrate is

completely removed by denitrification, and no net isotopic fractionation is

expressed as a result of that process. Hence, organic matter produced in the

euphotic zone of the Black Sea has an isotopic composition similar to the deep-

water ammonium; the source of new nitrogen to phytoplankton (Velinsky, et al.,

1991).

An important distinction between the modern Black Sea and the Eastern

Mediterranean during sapropel events is the minimum depth of the presumed

anoxic water. Sapropels are generally not found at depths above 800-1,000 m

(Stanley, 1978) in the Eastern Mediterranean, suggesting a deeper anoxic layer

than in the Black Sea today, where the anoxic water impinges upon the euphotic

zone (i.e., 100-150 m water depth). In the Black Sea, ammonium concentrations

increase with depth below the 02/H2S interface as a result of consumption in

the euphotic zone and production during anaerobic fermentation and sulfate

reduction in the euxinic abyss (Velinsky, et al., 1991). Little nitirification-- the

microbially-mediated oxidation of ammonium to nitrite or nitrate--occurs before

the ammonium is completely utilized by photoautotrophs (Velinsky, et al., 1991).

236



In the Eastern Mediterranean during sapropel events the cycling of

nitrogen in the upper kilometer may have been quite different. One possible

scenario would be that denitrification at depths below 800-1,000 m completely

exhausted the nitrate supply to the deep water. In that case, no net isotopic

fractionation from denitrification would be expected. Then, between the

euphotic depth and the top of the anoxic zone, nitrification could have gone to

completion, oxidizing all NH4+ to nitrate. Although nitrification, like

denitrification, is associated with a large kinetic isotope effect of about 20 to 40

per mil (Delwiche and Steyn, 1970; Mariotti, et al., 1981), no net fractionation

would be expected if the process went to completion.

A more complex scenario might occur during the onset of a sapropel

event, when the deep waters are gradually depleted of oxygen (Mullineaux and

Lohmann, 1981), and nitrate is not yet exhausted. An increase in organic matter

815N values would be expected during that time, as the residual, N15-enriched

nitrate is upwelled from depth. This effect may actually be discernible in the

bulk sediment 815N values published by Calvert, at al. (1992; figure 5.9) where

positive spikes of one to several per mil are observed just prior to sapropels S1,

S6, S8, S9. Unfortunately, neither the sampling interval of that record nor the

chlorin 515N record is fine enough to conclude with certainty that denitrification-

derived inceases in organic matter 815N values occurred during the onset of

sapropel events.

5.5.4.5 The Origin of Sedimentary Chlorins

The chlorophyll isotopic data from the modern Mediterranean came from

samples collected at the deep chlorophyll maximum, at the base of the euphotic
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zone. If sedimentary chlorins do not derive from the DCM, and chlorophyll

815N varies with depth in the euphotic layer, then the comparison between

DCM-derived chlorophyll 615N and sedimentary chlorin 615N values would not

be valid. Pigment data from sediment traps is not available yet for the Eastern

Mediterranean. However, there is reason to believe that pigments in

sedimenting particles derive primarily from the DCM.

In the Black Sea, for instance, pigment distributions in sediment trap

samples were almost identical to those in suspended particles at the base of the

euphotic zone (Repeta and Simpson, 1991). In addition, in stratified oligotrophic

systems like the Eastern Mediterranean, small phytoplankton cells (i.e.,

prochlorophytes, cyanobacteria) tend to dominate the upper part of the euphotic

layer (Claustre and Marty, 1995). The microzooplankton grazers of this

community produce small, slowly sinking fecal pellets (SooHoo and Kiefer,

1982). The pigments in these fecal pellets may be susceptible to photooxidation

as a result of their long residence time in the euphotic zone (SooHoo and Kiefer,

1982; Welschmeyer and Lorenzen, 1985). In the DCM, where there is more

nitrate available, algal cells tend to be larger (i.e., diatoms, flagellates; Claustre,

1994; Claustre and Marty, 1995). These larger cells are grazed by

macrozooplankton that produce large, rapidly sinking fecal pellets that dominate

new production and would be more likely to transport chlorins to the seafloor

(Claustre and Marty, 1995; Welschmeyer and Lorenzen, 1985; Dr. Herve Claustre,

personal communication).

5.5.5 Origin of Low Nitrogen Isotopic Ratios in the Eastern Mediterranean

The 815N of deep water (1000 m) nitrate in the Eastern Mediterranean was

-0.05 per mil. This value is substantially lower than the mean global deep ocean
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(>1500 m) value of 5.7 ± 0.7 per mil (Liu and Kaplan, 1989). It also falls well

below the lower limits of 4-6 per mil found in shallower layers (200-1500 m) of

both the Atlantic and Pacific oceans (Liu and Kaplan, 1989). There are two likely

sources for this isotopically depleted nitrate. One is rivers, the other is nitrogen

fixation.

Today, the flux of phosphate to the Eastern Mediterranean comes from the

surface inflow through the Strait of Sicily (62%), rivers (29%), atmospheric

deposition (6.2%), and the Bosporous (2.7%) (Bethoux, 1981; Sarmiento, et al.,

1988a). These inputs are balanced by the deep outflow of water at the Strait of

Sicily (and presumably negligible losses to sediments). Assuming that fluxes of

nitrate are fractionally similar to those of phosphate, then about 40% of nitrate

may derive from atmospheric and riverine input. This is close to the percentage

calculated from a nitrogen budget for the entire Mediterranean Sea (e.g., 41%)

(Bethoux and Copin-Montegut, 1986).

The limited data available suggests that the 615N of riverine DIN is

between 0 and 4 per mil (Mariotti, et al., 1984; Owens, 1987; Wada, et al., 1987a),

while that of rain is between 0 and 1 per mil (Hoering, 1957; Owens, 1987). There

don't appear to be any published measurements of riverine or rain 815N in the

Mediterranean region. If a value of 1.5 per mil is assumed for the riverine- plus

precipitation-derived nitrate, then, from mass balance considerations, the 815N

of nitrate from other sources must be -1 per mil. The most likely source for such

isotopically depleted nitrogen is biological nitrogen fixation.

Currently, the nitrogen budget of the Mediterranean sea is not balanced

(Bethoux, 1981; Bethoux and Copin-Montegut, 1986). The net loss of nitrogen at

the Strait of Gibraltar (19.7 x 1010 mol N/yr) exceeds combined inputs from

rivers (11.3 x 1010 mol N/yr) and the atmosphere (1.3 x 1010 mol N/yr) by 7.1 x

1010 mol N/yr (Bethoux and Copin-Montegut, 1986). This imbalance could be
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maintained by a large contribution to the Mediterrranean Sea nitrogen inventory

from biological N2-fixation (Bethoux and Copin-Montegut, 1986). This source of

nitrogen would also explain the high N/P ratio observed in deep waters (= 21-

23) of the Mediterranean Sea compared to the global ocean, the Atlantic inflow (=

15) and terrestrial discharges (= 11) (Bethoux, et al., 1992), The calculations of

Bethoux, et al. (1986, 1992) suggest that the primary source of nitrate, and as

much as 36% of the nitrogen supply, to the Mediterranean Sea may be from

fixation by seagrasses and the cyanobacterium, Synechococcuss. Cyanobacteria

are characterized by high protein contents, low C/N ratios, and are likely to have

high N/P ratios, therefore accounting for the high N/P ratio of deep waters of

the Mediterranean (Bethoux, et al., 1992).

Biological nitrogen fixation, which converts atmospheric N2 to organic

nitrogen, is generally characterized by a small isotopic fractionation effect, with

the product being depleted in 15N by 0 to 4 per mil relative to the substrate

(815Nair 0) (Delwiche and Steyn, 1970; Hoering and Ford, 1960; Macko, et al.,

1987).

If an average S15N value for organic matter produced by nitrogen fixers is

taken to be -2 per mil, and inflowing surface waters from the North Atlantic are

taken to be 4 per mil, then mass balance considerations require that nitrogen

fixation provide 83% of nitrogen in the Eastern Mediterranean not supplied by

rivers and atmospheric deposition. In other words, nitrogen fixation may supply

on the order of 50% of the nitrogen in the modern Eastern Mediterranean. This is

somewhat larger than the estimate of 36% for the entire Mediterranean basin

suggested by the data of Bethoux and Copin-Montegut (1986).

The eastern basin might be expected to derive a larger fraction of nitrogen

from fixation than the western basin or the Mediterranean Sea as a whole. The

western basin receives 47% of its total phosphate flux from North Atlantic
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surface water (Bethoux, 1981; Sarmiento, et al., 1988a). DIN from this source is

expected to have a 815 N in the 4-6 per mil range (Liu and Kaplan, 1989). If

nitrogen fixation is occurring in the western basin it would presumably act to

decrease the 815N of nitrogen in the surface layer as those waters age and flow

eastward to the Strait of Sicily. The lower 815N of phytoplankton from the

eastern basin, relative to the western basin, supports this scenario (table 5.5).

Phytoplankton in the western basin had a 815N value, calculated from the

chlorophyll 615N, of 2.96 per mil, while those in the eastern basin averaged -1.22

per mil.

Such high rates of nitrogen fixation have not yet been measured in the

Mediterranean Sea. However, in the Caribbean Sea, nitrogen fixation by the

blue-green alga Oscillatoria (Trichodesmium) spp. has been measured to account

for 60% of the chlorophyll a in the upper 50 m, and up to 27% of nitrogen

primary production (Carpenter and Price IV, 1977). In addition, an analysis of

nutrient budgets in the Red Sea has suggested that nitrogen fixation may account

for up to 6% of the total primary production in that basin (Naqvi, et al., 1986).

Furthermore, in nitrogen-limited lakes, N2-fixation has been observed to

contribute up to 38% of the total nitrogen requirements (Capone and Carpenter,

1982). Finally, it has been observed that floating diatom (i.e., Rhizosolenia) mats in

oligotrophic ocean waters can fulfill all of their nitrogen requirements through

N2-fixation by symbiotic bacteria (Martinez, et al., 1983). In some cases this

nitrogen was 14% of the nitrogen primary production in the North Pacific

locations studied. However, nitrogen fixation does not occur in all Rhizosolenia

mats (Villareal, et al., 1993).

At present, it is not known what environmental factors are necessary for

large-scale nitrogen fixation to occur, though it has been suggested that "warm,

nearshore zones of low export productivity" are conducive environments
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(Codispoti, 1989). These regions are often characterized by low turbulence and

enrichments of trace metals, such as iron, from land and sediments.

5.5.6 Carbon Isotopic Ratios in Eastern Mediterranean Sapropels

The carbon isotopic composition of pyropheophorbide a from sapropels

S3-S6 is shown in figure 5.13. Also depicted are the 813C of bulk sediment from

sapropels S2-S7. The top panel (figure 5.13.a) shows the 813C of chlorophyll a

and suspended particles from the modem DCM (the chlorophyll sample was

from the Western Mediterranean), as well as the 813C of surface sediments from

the Eastern Mediterranean. Excluding the glacial sapropel, S6, sapropel 813 C

values averaged -23.3 (± 0.72) per mil, and sapropel chlorins averaged -21.98 (i

1.04) per mil. Therefore, on average, chlorins were enriched in 13 C by 1.33 per

mil, relative to whole sediments.

Although results from axenic phytoplankton cultures suggest chlorophyll

and whole cells have about the same 613C (see chapter 4), the chlorin isolated

from sapropels, pyropheophorbide a, lacks a phytyl-ester side chain. Therefore

PPBDa is expected to be enriched in 13C relative to whole phytoplankton

(Bogacheva, et al., 1979) (see discussion in section 4.5.2), and to bulk sedimentary

organic matter, since little C isotopic alteration is expected during diagenesis

(Dean, et al., 1986; Fontugne and Duplessy, 1986). (In a Black Sea surface

sediment, for instance, a dephytylated chlorin was enriched in 13C by 1.85 per

mil relative to intact pheophytins (see section 2.5.1)).

Sapropels are uniformly depleted in 13C, relative to surface sediments

(excluding S6). This depletion has been attributed to the freshening of surface

waters during sapropel deposition (Fontugne and Calvert, 1992). Freshwater
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Figure 5.13: Carbon isotopes in (a) the modem Mediterranean Sea, and (b,c)

Late Quaternary Eastern Mediterranean sediments. The particulate 813C value

is an average of 3 samples from the Eastern Mediterranean. The chlorophyll

81 3C value is a single measurement from the western basin (see text).
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DIC is depleted in 13C relative to seawater DIC by about 5-10 per mil (Fontugne

and Calvert, 1992). Therefore, the input of freshwater would have lowered the

813C of Eastern Mediterranean DIC.

Particulate samples from the DCM at four stations in the eastern basin

averaged -24.25 (± 0.13) per mil, whereas surface sediments were -21.5 per mil

and sapropels averaged -23.3 (± 0.72) per mil. It is suggested that the isotopic

depletion in particles is a result of low growth rates of phytoplankton at the deep

chlorophyll maximum. Although chlorophyll concentrations are high at the

DCM, phytoplankton growth rates are low (both due to low light intensities)

(Parsons, et al., 1984). Furthermore, isotopic fractionation associated with carbon

fixation by phytoplankton is inversely correlated with growth rate (Laws, et al.,

1995). Suspended particles from the DCM are therefore expected to be depleted

in 13C relative to suspended particles closer to the surface, where growth rates

are higher.

The suspended particulate chlorophyll 813 C value (-26.6 per mil) shown in

figure 5.13.a represents a single sample from the Western Mediterranean. The

isotopic composition of bulk suspended particulate matter associated with that

chlorophyll was -25.75 per mil. These low values, again, are attributed to low

phytoplankton growth rates at the DCM. Suspended particles at the surface (4

m) at the same station had a 813C value of -24.65, suggesting that growth rates

were higher at shallower depths.

5.6 Conclusion

The nitrogen isotopic composition of pyropheophorbide a in six Late

Quaternary sapropels from the Eastern Mediterranean was nearly constant at
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-5.01 (± 0.38) per mil. This value was similar to the 815 N of chlorophyll a from

the present day deep chlorophyll maximum at three stations in the Eastern

Mediterranean, -6.38 (± 1.80) per mil. In addition, the 815N of algal material in

sapropels, calculated from the chlorophyll 515 N, was 0.15 per mil. This was

nearly identical to both the 615 N of bulk sediment from sapropels (-0.08 i 0.53

per mil), and to the 615N of deep water nitrate (-0.05 per mil) in the modern

Eastern Mediterranean. Contrary to previous interpretations of the nitrogen

isotopic record in sediments of the Eastern Mediterranean, these data suggest

that sapropels formed as a result of improved organic matter preservation. The

downcore variation in whole sediment 815N between sapropel and non-sapropel

sequences is largely an artefact of diagenesis.

The similarity between algal 515N values in sapropels S2-S7 and (1) bulk

sapropel 815N, (2) present day phytoplankton, and (3) deep water nitrate

suggests that oligotrophic conditions similar to those of today have persisted in

the Eastern Mediterranean for at least the last 200 kyr. This argues against any

large changes in export production brought on by the decreased utilization

(Calvert, et al., 1992) of an enlarged nutrient pool. Furthermore, these data are

consistent with the existence of anoxic bottom waters in the Eastern

Mediterranean during sapropel events. It is suggested that this condition

fostered improved burial efficiency of organic matter, much like in the modern

Black Sea (Canfield, 1989).

The likely mechanism for the establishment of anoxic bottom water in the

Eastern Mediterranean was a freshening of surface water by monsoonal rains

delivered by the Nile (Rossignol-Strick, 1985; Rossignol-Strick, et al., 1982). This

freshening would have caused a reversal of the normal circulation pattern in the

Eastern Mediterranean such that low-salinity surface waters flowed westward

through the Strait of Sicily, to be replaced by nutrient-rich deep waters flowing
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east. The ensuing nutrient trap would have resulted in bottom water anoxia

since the oxygen demand from exported carbon would not have been

compensated by the downward transport of oxygen (Sarmiento, et al., 1988a).

The deep convection that occurs today as a result of excess evaporation over

precipitation would not have been operable. Significantly, no change in

biological productivity would be required to deplete bottom waters of oxygen on

the observed timescales (Bethoux, 1993; Sarmiento, et al., 1988a).

The available evidence suggests that a modem analog for the Eastern

Mediterranean during sapropel events is the Black Sea. That oligotrophic, anoxic

basin has surface sediments containing 3-5% organic carbon. And, as pointed out

by Southam, et al. (1982), the Black Sea is not stagnant. As in the Eastern

Mediterranean sapropels, the nitrogen isotopic composition of algal material in

Black Sea surface sediments, calculated from the chlorin 815N, is similar to that

of the bulk sediment and to deep water ammonium (there is no nitrate). It is the

enhanced burial efficiency of organic matter under anoxic bottom waters that

results in such organic-rich sediments (Canfield, 1989).

In addition, the chlorin S15N value from the Holocene Black Sea sapropel

(i.e., Unit II), -0.64 per mil, was similar to that of the bulk sediment, 0.45 per mil.

This suggests that bottom waters of the Black Sea were anoxic during deposition

of that sequence, a point that has been challenged by Calvert (1990).

Finally, it is proposed that the anomalously low S15N value of deep water

nitrate in the Eastern Mediterranean, -0.05 per mil, is a consequence of high rates

of nitrogen fixation in that basin. Although nitrogen isotopic data for dissolved

phases in the Mediterranean region are limited, a mass balance calculation

suggests that 50% of Eastern Mediterranean DIN may derive from biological

nitrogen fixation. Such high rates have not yet been measured, although

nitrogen balances for the Mediterranean Sea (Bethoux, et al., 1992; Bethoux and
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Copin-Montegut, 1986) suggested as much as 36% of dissolved nitrogen may

derive from fixation.

This work has demonstrated the utility of a biomarker, such as

chlorophyll, in environmental studies using nitrogen isotopes. Secondary

processes occurring after photoautotrophic uptake and incorporation of nitrogen

can result in isotopic alterations of the same magnitude as the primary signals

often being sought. The measurement of chlorophyll S15N allows the isotopic

composition of primary producers to be determined. In addition, its comparison

with bulk phases allows the quantification of isotopic alteration associated with

secondary processes.
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Chapter 6: Conclusion

6.1 General Conclusions

Nitrogen isotopes are a new tool in paleoceanography. Since nitrogen is

likely to be a limiting nutrient to primary production in the ocean on 103-104

year timescales, and productivity may influence climate (McElroy, 1983), an

understanding of marine nitrogen cycling in the present and historical oceans is

important. The nitrogen isotopic composition of marine organic matter may help

further this understanding.

Attempts to reconstruct the nitrogen isotopic composition of marine

organic matter in the past by measuring the 815N of whole sediments may,

however, be subject to misinterpretation due to the alteration of isotopic ratios

during diagenesis. The partial oxidation of marine organic matter can result in

significant isotopic enrichment of the preserved residual. The magnitude of this

enrichment appears to be large when bottom waters are well-oxygenated, and

small when bottom waters are anoxic. Environments where large temporal

redox changes have occurred are expected to be the most problematic for the

interpretation of bulk sedimentary 815N. In these environments, the diagenetic

signal can be at least as large as the primary isotopic signal being sought. The

Eastern Mediterranean Sea during the Late Quaternary appears to be one such

environment.

The research presented in this thesis was undertaken in order to find a

robust recorder of primary nitrogen isotopic signals in the marine environment.

One not susceptible to varying degrees of diagenetic alteration. It was hoped

that the measurement of nitrogen isotopic ratios in chlorins would allow the
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determination of phytoplankton 615N in modem and historical environments.

Progress has been made toward this goal. More work needs to be done.

Nevertheless, the following conclusions can be made:

(1) Chlorin 615N and 513C can be measured in marine particles and

sediments with a precision greater than 0.15 per mil for both nitrogen and

carbon. The procedure, which can be performed in about 4 hours for particulate

and 8 hours for sediment samples, relies on multiple chromatographic

purifications and can be performed on about 20 g of a moderately organic-rich

sediment.

(2) Chlorin nitrogen and carbon isotopc ratios can be measured by

isotope-ratio monitoring gas chromatography-mass spectrometry (irmGC-MS) by

synthesizing the bis-(tert.-butyldimethylsiloxy)Si(IV) derivatives. However,

yields for the 4-step synthesis were only about 5-6% and there was a net isotopic

depletion of 1.2 (± 0.3) per mil in the derivative, relative to the starting material.

(3) Chlorin 615N can be used as a surrogate for phytoplankton S15 N after

the addition of 5.16 per mil. Chlorin 813C is equivalent to phytoplankton 813 C.

However, there appears to be interspecies variability in both the nitrogen and

carbon isotopic differences between chlorophyll and whole cells in cultured

phytoplankton. Although the pooled standard deviation for repeated culture

experiments was 0.57 and 1.25 per mil, respectivley, for the determination of

A815Ncell-Chla and A813Ccell-Chla, the standard deviation of the average values

in 6 species (5 for carbon) was 2.40 and 2.12 per mil, respectively, for nitrogen

and carbon.

(4) The average nitrogen isotopic composition of chlorins from six Late

Quaternary Eastern Mediterranean sapropels (-5.01 i 0.38 per mil) was very

similar to the 515N of chlorophyll from the modern deep chlorophyll maximum

(-6.38 i 1.80 per mil) in the Eastern Mediterranean. In addition, sapropel
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photoautotrophic material, calculated from the chlorin 815N, had the same

isotopic composition (0.15 per mil) as bulk sapropel sediments (-0.08 ± 0.53 per

mil) and deep water nitrate (-0.05 per mil). These data suggest that (a) bottom

waters were anoxic, (b) organic matter burial efficiency was enhanced, and (c)

oligotrophic conditions similar to today persisted in the Eastern Mediterranean

during sapropel deposition. These results contradict earlier interpretations of

Late Quaternary bulk sedimentary S15N in the Eastern Mediterranean. They

concluded that the pattern of high 815N values in intercalated marl oozes and

low values in sapropels was the result of decreased nutrient utilization, and

hence, increased primary production, during sapropel events.

6.1 Directions for Future Research

The measurement of stable isotopic ratios in biomarkers is a powerful

approach that allows the circumvention of diagenetic signals while providing

targeted information from a paleoenvironment. In conjunction with isotopic

determinations in bulk phases, information about secondary processes can also

be obtained. Chlorins are ideal biomarkers for such studies in the marine

environment because they are produced by all phytoplankton and can be found

in both recent and ancient sediments.

A worthwhile extension of the work presented in this thesis would be the

development of a rapid and reliable technique for measuring chlorin 515N and

813C by irmGC-MS. A promising avenue down which to proceed is the direct

gas chromatography of sedimentary chlorins. The methyl ester of

pyropheophorbide a, a common sedimentary chlorin, was successfully

chromatographed on a high-temperature column, eluting near n-C60 (see section
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3.6.5). If it is possible to operate irmGC-MS systems at temperatures near 4000C,

it may be possible to measure chlorin stable isotopic values directly from

sedimentary lipid extracts. The thin phases (0.1 pm) of high-temperature GC

columns may result in a lower resolution than possible with traditional columns,

but there may be less need for resolution at such high temperatures--e.g., there

may be few interfering compounds with the low volatility of chlorins.

Another issue worth exploring further is the inter-species isotopic

differences between chlorophyll and whole cells for both nitrogen and carbon. If

chlorin isotopic values are to be used as proxies for phytoplankton isotopic

values it is important to know how the two differ. Although the culture studies

described in chapter 4 suggested the inter-species variability in this quantity was

on the order of 2 to 2.5 per mil for both carbon and nitrogen, results from the

field suggest there was much less variation in the chlorophyll-POC nitrogen

isotopic difference. This may result from the fact that the marine environment is

rarely monospecific. In other words, the interspecies variability may not be

expressed because mixtures of the different species should tend toward the

average. Culture studies with mixtures of phytoplankton species may help to

resolve this issue.

The low nitrogen isotopic values in the Eastern Mediterranean are one of

the more intriguing results of this work. The S15N of deep water nitrate was

found to be -0.05 per mil, significantly lower than the global mean value of 5.7

per mil. This suggests that nitrogen fixation is an important source of new

nitrogen to the basin. Yet there are no measurements of such high rates of

nitrogen fixation today. Additional 615N measurements should be made on

dissolved nitrogen species in the eastern and western basins, as well as in water

from the major rivers draining into the Mediterranean Sea, and in precipitation.

The 615 N of DON from these sources, as well as from North Atlantic water
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flowing through the Strait of Gibraltar should also be measured since DON may

be an important source of new nitrogen. The isotopic characterization of these

new nitrogen sources, in conjunction with an accurate nitrogen budget, could

help constrain the size of the fixation source.

Finally, a better understanding of nitrogen isotopic systematics in the

modem-day Eastern Mediterranean would help to interpret the isotopic record

in Late Quaternary sediments. The three eastern basin suspended particulate

samples used for this study were collected during a three-day period in June,

1996, in one sector of the basin. Additional samples from different seasons,

locations and water depths would help to constrain the isotopic composition of

modem-day phytoplankton. The 815 N of chlorins in sinking particles, and of the

particles themselves, would aid in understanding the origin of the diagenetic

alteration of nitrogen isotopic ratios. In addition, it was argued (section 5.5.4.5)

that sedimentary chlorins in stratified systems derive largely from the deep

chlorophyll maximum. This should be tested by comparing the pigment

distribution in sediment traps to that in suspended particles from the DCM.
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