

Charmonia and beauty production measurements with J/ ψ events at LHCb Giovanni Sabatino, on behalf of the LHCb Collaboration

Abstract -We report on the possibilities of measuring charmonia and beauty production with the LHCb experiment. Using reconstructed J/ ψ decays to $\mu^+\mu^-$, both the prompt J/ ψ and the $b \rightarrow J/\psi$ production cross-sections in p-p collisions at LHC energies will be determined in the J/ ψ eta range 2-5. Due to the very large statistics, this analysis will be possible very early after the LHC start. Other charmonia related measurements will also be discussed, such as that of the J/ ψ polarization at production or of the production of some of the new X, Y and Z states.

The LHCb experiment

LHCb is an experiment at the LHC (Large Hadron Collider) dedicated to precise measurements of CP violating and rare decays of b-hadrons. LHCb will operate at a luminosity of $2 \cdot 10^{32}$ cm⁻²s⁻¹ exploiting the high number of *bb* pairs produced by the LHC proton-proton collisions: the expected number of bb pairs produced at the LHCb interaction point is $N_{b\bar{b}} \sim 10^{12}$ /year.

The Detector

>VErtex LOcator to measure vertex positions with a resolution ~ 50-150 μ m. LHCb will measure the *b*-hadron proper time with 40 fs resolution.

A Tracking System, composed of four stations TT-T1-T2-T3 (using silicon microstrips and straw tubes), and the Magnet, that produces an integrated B field of ~ 4 Tm, allow momentum measurement with a resolution $\sigma(p)/p =$ 0.3%-0.5%.

The bb quarks produced at LHC are strongly correlated and both with small polar angle. As a consequence the outgoing *b*-hadrons will be forward(backward) produced: they fly and decay within a cone of small angular aperture.

J/ψ production at LHCb

At LHCb large $J/\psi \rightarrow \mu^+\mu^-$ samples, with a unique coverage in η and p_{τ} , will be collected by muon trigger. These samples will allow to study both the J/ψ prompt and non-prompt production (pp $\rightarrow b$ -hadron(J/ ψ +X)+X'). The charmonium production mechanisms are not yet well understood. Although the prompt cross-sections measured at the Tevatron are predicted by the so-called Non-Relativistic QCD theories, the same fail dramatically in the prediction of the polarization. Other models have been proposed but further measurements and studies are needed to clarify the situation.

J/ψ cross-section measurement

• To separate prompt J/ψ 's from those from b decays means that the measurement of the prompt J/ψ cross-section will also lead to a determination of the b cross section

• Measurement in bin of η and p_{τ}

Color Octet model, 5 pb⁻¹,

 $2 < \eta < 3$:

> Two RICH detectors to identify particles in a wide momentum range: [2, 100] GeV.

Calorimeter System, ECAL and HCAL, used in the L0 trigger and to measure the energy of e^{\pm} , γ , hadrons. A preshower detector is placed just before them.

Muon System used in the L0 trigger and for muon identification, is composed of five stations (M1-M5). It uses MWPC and GEM detectors in the inner part of M1.

The LHCb experiment is installed and will start data taking at the end of 2009.

Measurement of the ratio $\sigma(\psi')/\sigma(J/\psi)$

A large number of ψ' will also be collected at LHCb: ~2-4 % of the J/ ψ 's number. ψ ' can be selected using a similar offline selection as J/ψ , with a ratio $S/B \approx 1-2$. Since the $(M_{\mu} - M_{\mu}) \approx 600$ MeV, from the point of view of the reconstruction and acceptance, their efficiencies are very similar.

J/ψ Selection

- Pair of good quality tracks, identified as muons
- the muon likelihood is obtained combining the likelihood informations from the various PID subdetectors: $DLL_{\mu\pi} > -3$
- $P_{+}^{\mu+} \cdot P_{+}^{\mu-} > 10^{6} (MeV/c)^{2}$ to reduce the combinatorial background
- Fitted common vertex $\chi^2 < 10$, for the quality of the vertex
- Mass window cut around the J/ψ

• pp \rightarrow [$\psi(2S), \chi_{c0,1,2} \rightarrow J/\psi +...$] +X Several sources of J/ψ • $pp \rightarrow J/\psi + X$ ■ pp→b-hadron + X→ J/ψ + X' (~ 8%)

 \rightarrow 380k events in 2 < p_t < 4 GeV

 \rightarrow 40k events with $p_{t} > 10 \text{ GeV}$

• The high number of J/ψ available will reduce the statistic uncertainty

• Need to correct the number of J/ψ by the detector acceptance and efficiency (trigger · reconstruction · offline selection): large use of Monte Carlo to evaluate the total efficiency in each bin

Systematic sources

• Knowledge of the integrated luminosity

lab

+1

-1

- Acceptance and efficiency: modelling in the Monte Carlo
- Uncertainty in *b*-fraction determination: choice of appropriate PDFs to fit t
- Uncertainty in *b*-hadron $\rightarrow J/\psi + X$ branching ratio
- Cross-section measurement needs to account for polarization

$$\frac{\varepsilon}{\varepsilon'} = 1.01 \pm 0.07 (\text{stat})$$

In the measurement of the prompt cross-sections ratio, the main systematic effects cancel out. Important informations on the charmonium production mechanisms can be obtained even with a 10% precision measurement.

Other charmonium measurements

• ~ 30% of J/ ψ come from $\chi_{c1,2} \rightarrow J/\psi \gamma$: an important observable is $\sigma(\chi_{c_2})/\sigma(\chi_{c_1})$ whose value is useful to distinguish between several proposed models (e.g. Color Evaporation Model, NRQCD). Exclusive reconstruction is possible due to low p_{t} detection capabilities of ECAL

To separate prompt J/ψ from those from *b* decays the variable

 $t = \frac{dz}{p_z^{J/\psi}} m_{J/\psi}$

is used, dz being the projection on the beam axis of the flight distance. Such variable is a good approximation of the *b*-hadron proper time

• Studies of exotic XYZ states: the potential and sensitivity of LHCb are being investigated

B⁺ \rightarrow X(3872) (\rightarrow J/ ψ ρ) K⁺. Angular analysis to disentangle $J^{PC} = 1^{++}$ from 2^{-+}

• The aim is to measure the X(3872) J^{PC} quantum numbers. Simulation studies show differences in the expected angular distributions in the hypotheses 1^{++} or 2^{-+}

