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Abstract

The Compact Muon Solenoid (CMS) experiment features an electromagnetic calorimeter (ECAL)
composed of lead tungstate crystals and a sampling hadronic calorimeter (HCAL) made of brass and
scintillator, along with other detectors. For hadrons, the response of the electromagnetic and hadronic
calorimeters is inherently different. Because sampling calorimeters measure a fraction of the energy
spread over several measuring towers, the energy resolution as well as the linearity are not easily pre-
served, especially at low energies. Several sophisticated algorithms have been developed to optimize
the resolution of the CMS calorimeter system for single particles. One such algorithm, based on the
artificial neural network application to the combined electromagnetic and hadronic calorimeter sys-
tem, was developed and applied to test beam data using particles in the momentum range of 2-300
GeV/c. The method improves the energy measurement and linearity, especially at low energies below
10 GeV/c.
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Figure 1: The central section of the CMS detector (quarter view)

1 Introduction
A neural network-based multivariate algorithm is applied to charged pions with momenta between 2 and 300
GeV/c collected during the 2006 CERN Test Beam. The total energy deposited by secondary particles in the active
material of the calorimeters is proportional to that of the incident particle. In the standard method of calorimeter
calibration, each tower is treated independently and assigned a multiplicative calibration constant that converts the
signal to energy. We report the results of a new calibration method based on neural networks to measure the energy
of charged pions.

2 Experimental Setup
In the Compact Muon Solenoid (CMS) detector there are several distinct calorimeters [1]. Two inner sampling
hadronic calorimeters called HCAL-BARREL (HB) and HCAL-ENDCAP (HE) are located inside the magnet
cryostat and coil (Fig. 1). An HCAL-OUTER (HO) calorimeter is installed outside of the magnet cryostat and the
HCAL-FORWARD (HF) calorimeters are located on the beam lineat either edge of the CMS detector. Two electro-
magnetic calorimeters ECAL-BARREL (EB) and ECAL-ENDCAP (EE) are located inside the hadron calorimeter.
In addition there is the pre-shower layer (PS) in front of EE.

Figure 2 shows the experimental setup and various calorimeters involved in the CMS 2006 Test Beam (TB06). The
H2 test beam has a motion table where detector components canbe mounted. By rotating and tilting the table the
beam can be directed to various parts of the detector. Two HCAL-BARREL wedges, 4.7 m long, subtending40

◦

in azimuth, an ECAL-BARREL (EB) super module, 4m in length and subtending20
◦ in azimuth and an HO layer

placed downstream of HB were mounted on the table. In the H2 test beam, as will be true of the CMS detector,
particles first impinge on EB, then HB, and the remaining energy is measured by HO. The point of rotation and tilt
correspond to the center of the CMS detector.

3 Test Beam 2006 Energy Correction Method
A test beam calibration and energy correction procedure called the TB06 method [2] is used for benchmark com-
parison of resolution and energy response. For hadron beams, such asπ−, the overall calorimeter response is
lower compared to that of electrons and the e/π ratio varies from about a factor of 2 at 3 GeV/c to a factor of about
1.25 at 300 GeV/c. The pion data are corrected by a function, such that the mean value of the calorimeter energy
measurement is equal to the beam momentum for values from 2 to300 GeV/c. This correction is applied to the
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Figure 2: CMS Test Beam facility

sums of energy in EB and HB. Then, a correction that depends onthe relative energy deposition between EB and
HB is applied.

4 Multivariate Method
A Neural Network (ANN) is used to model a particle shower, mapping individual inputs to calorimeter towers and
a single output to known beam momenta. A typical ANN with 1 hidden layer, ANN(1), is shown in Fig. 3. A
linearized version of the ANN without the hidden layer, ANN(0) is also used in this study. The back propagation
technique with early stopping to avoid overtraining is usedto train the networks [3]. In order to guard against bias,
the data are split into disjoint training and testing sets. Moreover, the training and testing errors are monitored
during training to make sure the testing error does not increase, a sign of overtraining. ANN functions that are
used differ slightly (but crucially) from the norm in that the output bias is fixed at zero. Fixing the bias at zero is
a simple way to avoid the solution in which the training merely sets the output bias equal to the target. Typically,
about 1,000 events are sufficient for the training.

5 Energy Response Comparison between TB06 and ANN Methods
Figure 4 shows the comparison in calorimeter response between the TB06 method (left) and the ANN(1) method
(right) for π

− beams with momenta of 3, 9 and 100 GeV/c. The resolution obtained with the ANN(0) and the
TB06 method are very similar (Fig. 5), while the ANN(1) method shows clear improvement. The mean of the
response obtained with the ANN(1) method is closer to the true beam momentum than that obtained with the TB06
method, especially at lower momenta (Fig. 6); that is, the bias of the ANN(1) method is lower.

6 Discussion
The fact that the ANN(1) method produces markedly better results than ANN(0) and TB06 is a clear indication
that the mapping between tower energies and incident momentum in the CMS calorimeters is non-linear and that
these non-linearities need to be accounted for in order to make optimal use of the calorimetric data.

In the CMS experiment, the calorimeters will be used to measure the energy of jets. Since a jet is a collection
of particles, each requiring a non-linear mapping between tower energies and particle energy, it is plausible that
neural networks could be useful in the context also. We are currently exploring their possible utility for improving
jet energy measurements.

3



Figure 3: A typical ANN architecture with 1 input layer, 1 hidden layer and 1 output used in this study

Figure 4: Calorimeter response to variousπ
− beams using the TB06 method (left) and the multivariate method

(right). Errors shown do not include systematics.
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Figure 5: Comparison of calorimeter resolution obtained with the TB06, ANN(1) and linear ANN(0) methods for
beam momenta 2-300 GeV/c.

Figure 6: Comparison of mean energy response for the TB06 andthe ANN(1) methods

5



7 Conclusions
A nonlinear ANN based method leads to sizable improvement inthe calorimeter resolution for single particles.We
find that a linear neural network shows very similar performance to the TB06 method. This is evidence that
non-linearities are crucial and must be accounted for in order to make optimal use of the CMS calorimeters.
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