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ABSTRACT

The Pre-Triassic rocks of the Middle Haddam and Glastonbury

quadrangles in Connecticut have been studied by the Rb-Sr method of age

determination. The pegmatite, Maromas Granite Gneiss, Glastonbury Gneiss,

Collins Hill Formation, Monson Gneiss, Middletown Formation have all been

studied from this area; and the Ammonoosuc Volcanics of New Hampshire

have been studied to test correlation of the Bronson Hill anticline from

New Hampshire to Southern Connecticut. In addition, granitic dikes

which cut the Monson Gneiss in the Killingworth dome have also been

studied. Minerals from the Strickland and Spinelli Quarries and whole-

rocks from the Hale Quarry were used in the pegmatite study, and whole-

rocks for the remaining formations. The following ages and initial

Sr(87/86) ratios were obtained:

Type Rb-Sr Age Initial Ratio

pegmatite minerals 250 t 10 0.737 t 0.002

Maromas Granite Gneiss 287 - 10 0.714 t 0.002

Glastonbury Gneiss 360 10 0.710 0.002

Granite dikes in Monson 418 10 assumed 0.708

Middletown Formation 450 - 15 0.707 - 0.001

Ammonoosuc Volcanics 146o 15 0.708 t 0.001

Monson Gneiss 550 + 80 0.708 ± 0.001
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In addition, a possible age of 395 - 20 m.y. has been indicated for

the Collins Hill Formation, which is a metasediment and thus the

resultant age is open to question. The initial ratio for the Collins

Hill Formation is 0.719 - 0.002, which confirms theories that it was

derived in large part from detrital constituents; but the age is too

low as it has been correlated to Middle Ordovician (?) strata in

-New Hampshire. The proximity in age between the Ammonoosuc and the

Middletown confirms their correlation, and the low initial ratios sug-

gest confirmation of derivation from basic volcanics. The pegmatites

have not been derived in situ, nor are they directly related genetically

to the Maromas Granite Gneiss despite their closeness in age. The

Maromas Granite Gneiss has an initial ratio of 0.714, which indicates

a crustal pre-history before emplacement, and the 287 t m.y. age suggest

intrusion into the other basement formations in the area. That the

Maromas, Glastonbury, and granitic dikes in the Monson show significantly

different ages suggests at least three periods of emplacement or re-

mobilization of granitic material within the area. The Glastonbury

Gneiss is probably intrusive into the Collins. Hill, but later meta-

morphism(s) has obscured the contact relations.

All isotopic ratios have been determined mass spectrometrically,

but Rb/Sr ratios have been determined by both mass spectrometric isotope

dilution and by X-Ray Spectrographic technigues. The precision and
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accuracy of these techniques are discussed.

A major revision of the stratigraphic column in the Middle Haddam

and Glastonbury quadrangles is proposed, as well as limits on various

parameters for the genesis of pegmatites and mantled gneins domes.

The emphasis of this thesis is on geologic application of the

absolute ages determined; and while the usefulness of the whole-rock

method has been confirmed in this thesis, the necessity of rigid

geologic control is obvious.

Thesis Supervisor:

Title:

P. M. Hurley

Professor of Geology
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Formation Rb-Sr Age (m.y.) Initial Sr(87/86)

Pegmatite s
Maromas Granite Gneiss
Glastonbury Gneiss
Middletown Formation
Ammonoosuc Volcanics
Granite Dikes (in Monson)
Monson Gneiss

250
287
360
450
46o
418
550

10
10

10

+- 15
;15

{ 15
- 80

0.737 +

0.714 t
0.710 +

0.707 -
0.708

0.002
0.002
0.002
0.001
0.001

------ 0------

0.708 - 0.00

The Collins Hill Formation yields a possible age of 395 t 20 m.y., but
the isochron method (Nicolaysen, 1961) is questionable when applied to
such a metasedimentary unit. The pegmatite age is in good agreement
with earlier work, and the proximity in age between the Middletown
Formation and the Ammonoosuc Volcanics confirms their correlation. The
different ages for the Maromas Granite Gneiss, the Glastonbury Gneiss,
and the Granite dikes in the Monson indicate at least three different
episodes of emplacement of granitic material. The high initial ratio
of the Maromas indicates a lengthy crustal pre-history before
emplacement; but, despite the narrow time span between the Maromas
and the pegmatites, the great difference between the initial ratios of
the Maromas and the pegmatites indicates that they are not genetically
related.

The investigation confirms the usefulness of the Rb-Sr whole-rock
method as a geologic tool, and emphasizes the necessity of rigid
geologic control during such an investigation.

- 15 -

Rb-Sr Geochronological Investigations in the Middle Haddam and Glastonbury
Quadrangles, Eastern Connecticut

by

D. G. Brookins and P. M. Hurley

Abstract

The Pre-Triassic rocks of the Middle Haddam and Glastonbury
quadrangles in Eastern Connecticut have been investigated by the Rb-Sr
method of age determination, with the emphasis on application of the
measured ages to aid interpretation of the complex problems of
stratigraphy and correlation within the area. Whole-rock ages have been
determined for the Maromas Granite Gneiss, the Glastonbury Gneiss, and
the Middletown Formation within the area; and for the Ammonoosuc
Volcanics from New Hampshire. Also from within the Connecticut area,
the Collins Hill Formation and the Monson Gneiss have been studied, as
well as granitic dikes which cut the Monson Gneiss. Pegmatite minerals
from the Strickland Qu y ha e also been investigated. Using the decay
constant A = 1.39 x 10 yr , the following ages and initial Sr(87/86)
ratios have been determined:
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Introduction

The Rb-Sr whole-rock method of absolute age determination has

been used to study the Pre-Triassic basement formations of the Middle

Haddam and Glastonbury Quadrangles in Eastern Connecticut with the

emphasis being placed on application to problems of stratigraphy and

correlation. Minerals from the Strickland Quarry Pegmatite and the

Spinelli Prospect Pegmatite have also been studied. The Ammonoosuc

Volcanics of New Hampshire have been investigated to test the proposed

correlation of the Bronson Hill Anticline seguence in New Hampshire to

the equivalent sequence in Connecticut.

. All of the rocks studied are Paleozoic in age, and thus the

approximate age formula discussed by Compston and Jeffery (1961) may

be used, in which the age, t, is given by:

Sr(87/86)now - Sr( 87/86 )iiti

Rb(8/Sr(86) x N

The graphical method using the coordinates proposed by Nicolaysen

(1961) hate been used in this work, and the decay constant

,\ = 1-39 x 10~11 yr~1 proposed by Aldrich and Wetherill (1958)

has also been applied.
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Experimental Procedure

Faure (1961) has described the general analytical procedure in

great detail, and these techniques have been only slightly modified

during the course of this work. All dissolutions were made in clean

Platinum dishes by adding a mixture of hydrofluoric acid and per-

chloric acid. For isotope dilutions, the spike solution was added

prior to the dissolution; and Rb was separated from Sr after the

dissolution as Rubidium perchlorate. For both isotope dilution and

isotope ratio analyses Sr was separated and purified on a cation ex-

change column using vycor distilled 2N HCl as eluant; the position

of the Sr on the column was monitored by a radioactive Sr85 tracer.

The mass spectrometer used for the isotopic analyses was a solid

source, 6" radius, 600 sector, single collector model which has been

described previously by Herzog and Pinson (1956) and Faure (1961).

Rb samples were mounted as nitrates on the filament; and Sr as

either nitrate or oxalate, as both methods give a stable emission.

Some of the (Rb/Sr) ratios were determined by X-Ray Spectrographic

techniques, using fluoride-converted samples and standards to minimize

matrix effects.

Precision and Accuracy

The precision of the isotopic ratios was checked by replicate

analyses of most samples, the majority of which fell within - 0.001 of

the mean. For single analyses, the standard deviation has been shown



by Faure (1961) to be t 0.002; and this value was used in

construction of figures. Absolute accuracy was monitored by

periodically analyzing a standard sample which has been analyzed

by other laboratories. Eimer and Amend SrCO (lot #492327) was used

for this purpose, with an average value for eleven analyses of

Sr(87/86) = 0.7093; and a corrected value of Sr(87/86) = 0.7106. The

corrected value is more accurate and in good agreement with other work

(see Aldrich, 1953, Faure, 1961, and Wbhitney, 1962).

Normalization Correction

It is assumed that the Sr(86/88) ratio is constant in nature;

and, although the exact value of this constant is not known)ltis

commonly given as 0.1194 (after Nier, 1938). The measured Sr(87/86)

ratio is adjusted by an amount proportional to one-half of the

departure of the measured Sr(86/88) ratio from 0.1194. The cause of

this departure from 0.1194 (or any constant value) is not known, but

it is probably not due to fractionation within the mass spectrometer.

General Geology

Rosenfeld and Eaton (in Rodgers and Rosenfeld, 1959) have shown

that the Siluro-Devonian rocks of the Bronson Hill Anticline (see

Billings 1956) of New Hampshire can be traced with certainty into the

area of study, and thus allows some degree of stratigraphic control.

In brief, they have found that the so-called Bolton Schist can be di-

vided into four formations, the upper three of which can definitely

- 18 -
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be correlated with the New Hampshire sequence. Because of similar

positions relative to these rocks, the underlying rocks may then also

be correlated between the two areas. Eaton and Rosenfeld (1960) pro-

pose the following stratigraphic column:

FIGURE A-1

Connecticut
Formation

New Hampshire
Formation

Probable Age
(N.H. rocks)

Camp Jenkins

Mine Brook

Great Hill

- - - - - - - - angu

Collins Hill

- - - - - - - - - -

Glastonbury and Maromas

Middletown

Monson (including Haddam)

Littleton

Fitch

Clough

lar unconformity - - - - - -

Partridge

- unconformity -- - - - - - -

Oliverian (?)
Ammonoosuc

(?)

Early Devonian

Middle Silurian

Early Silurian

M. to L. Ordovician(?)

Pre-M. Ordovician (?)
do.

do.

The Bronson Hill Anticline is a well-defined structural belt

which runs on a nearly N-S trend from Maine to Long Island Sound,

and is basically a complex anticlinorium consisting of elongated

gneiss-cored anticlines in metamorphosed stratified rocks. In the

Middle Haddam and Glastonbury Quadrangles, the Bronson Hill Anticline

is bordered on the west by a border fault dividing the Triassic from
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the Pre-Triassic rocks, and on the east by undifferentiated gneisses

and schists, generally correlated as part of the Merrimac Syncline

(Billings 1956). Some Triassic diabase dikes cut the Pre-Triassic

rocks near the border fault on a parallel trend. In addition, peg-

matites cut all the other Pre-Triassic rocks, but are especially

common in the Collins Hill Formation. The area has been subjected to

several metamorphisms, and relationships between the various

formations are therefore often obscure.

The principal problem in the area is the proper positioning of

the gneiss-cored anticlines relative to the stratified rocks, and to

each1 other. Billings (1956) has suggested that the Oliverian domes

in New Hampshire are intrusive into both the Clough (Silurian) and

the Ammonoosuc (Ordovician?), and has further suggested that the

Oliverian domes are contemporaneous and related in origin based on

mineralogic and textural similarities, equivalence of structural

position, and other evidences (p. 52). Lundgren (1962) has described

the similarities of the Oliverian domes to the Southern Connecticut

domes, and a striking similarity is obvious. Billings (1956) favors

an intrusive history of the Oliverian domes into the other basement

rocks; but Lundgren (1962) and Eaton and Rosenfeld (1960), following

part of the theory of Eskola (1949), do not believe that the doming

was caused by intrusion, but took place much later than the ortho-

gneissic genesis. Eaton and Rosenfeld (1960), Fig. A-1, have
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proposed that the Maromas and Glastonbury are pre-Collins Hill but

post-Middletown, and that the Monson is pre-Middletown. It is clear

that the only certain correlations shown in Fig. A-1 are:

Camp Jenkins-Mine Brook-Great Hill with Littleton-Fitch-Clough,

Collins Hill with Partridge, and Middletown with Ammonoosuc.

Brief Lithologic Description

For description of the Camp Jenkins, Mine Brook, and Great Hill

Formations, the reader is referred to Eaton and Rosenfeld (1960)

because these formations have not been studied during the present

investigation.

The Collins Hill Formation is a rusty-weathering two-mica

schist with subordinate garnet, pyrite, kyanite and/or sillimanite.

Basal members are apparently conglomeratic in part, commonly oc-

curring immediately under an irregular sequence of garnetiferous and

calc-silicate beds. Pegmatites are also very common. The Collins

Hill occupies narrow synclines between the gneiss-cored anticlines

within the area.

The Glastonbury Gneiss can be roughly divided into three main

facies; an Eastern Granitic Facies, composed in main of quartz,

microcline, perthite, and minor biotite (or muscovite near the

contacts with schist), and oligoclase; a Central Facies of a darker,
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augen gneiss with K-feldspar augen in a matrix of biotite, quartz,

minor oligoclase, and locally abundant hornblende and/or epidote;

and a Western Schistose Facies, which is predominantly a

biotite-quartz-microcline schist, with minor oligoclase. The

Central Facies constitutes the bulk of the formation, and may be

divided into a Western Porphyroblastic Facies and an Eastern Flaser

Gneiss Facies with a gradational contact between the two. Herz (1955)

has described the Glastonbury Gneiss in great detail, and Stugard

(1958) has also discussed it. Aplites and mafic schlieren are present

in parts of the Glastonbury, and pegmatites commonly occur near the

aplitic parts.

The Glastonbury occurs as a major anticlinal dome which can be

traced into Massachusetts.

The Maromas Granite Gneiss occurs as a pronounced major semi-

elliptical dome in the Middle Haddam Quadrangle, and also as two

elongated lenses between the Collins Hill and the Middletown

Formations. It also occurs as intimate injections into the

Middletown Formation in other spots. The rock is predominantly a

granitic gneiss showing microcline augen, with some biotite and/or

hornblende, and minor garnet. Stugard (1958) lists some of the

salient structural and mineralogic features of the gneiss.
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The Middletown Gneiss mantles the Monson Gneiss both in the

Killingworth Dome and on the elongated anticlinal structure to the

northeast, but is not in contact with the Monson along the border

fault. The Middletown Formation is a well foliated, medium grained,

gneiss with some schistose members. Hornblende and plagioclase are

the most predominant minerals in the formation, with subordinate

biotite, and quartz is usually present. Cummingtonite, antho-

phyllite, and sometimes garnet are locally abundant. The striking

feature of the Middletown in all occurrences is the preponderance of

amphibole and plagioclase, and in some places biotite and quartz, over

K-feldspar. The plagioclase varies from An to An within the
.Y20 70

formation.

The Ammonoosuc Volcanics are discussed here because they have

been studied to test the proposed Middletown-Ammonoosuc correlation.

The Ammonoosuc Volcanics occur in four distinct belts in New

Hampshire according to Billings (1956)e and only ten to fifteen

per cent of the formation is considered to be of sedimentary origin,

including black slate, gray arenaceous slate, and impure quartzite.

The metavolcanics are represented by chlorite and chlorite-epidote

schists, with or without conglomerate; and by soda rhyolite, with

some volcanic conglomerate. The volcanic nature of the formation

is indisputable, and even the chlorite and chlorite-epidote schists

have the chemical composition of andesites and basalts. Various
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grades of metamorphism, up to staurolite-sillimanite rocks, are

present in the formation.

The Monson Gneiss occupies the principal mass of the

Killingworth Dome and also occurs as an elongated anticlinal

structure which can be traced into Massachusetts. These two oc-

currences are thought to be continuous (see Digman, in Rodgers,

Gates, and Rosenfeld, 1959, p. 50). Mikami and Digman (1957) have

studied the Monson (called Haddam) Gneiss in the Killingworth Dome,

and have called it a tonalite. The rock has a salt and pepper ap-

pearance caused by hornblende and/or biotite speckled in a matrix of

plagioclase and quartz, and garnets and minor opaques are sometimes

present. The biotite is usually chloritized, and epidote is common

in cracks in the plagioclase. Microcline is a rare accessory and

usually, but not always, occurs near granitic dikes and sills which

cut the rore basic gneiss in several places. Mafics never exceed

fifteen per cent in the gneiss, plagioclase varies from fifty to

seventy per cent, and quartz from twenty to thirty-five per cent.

The Killingworth Dome has a central core, and a peripheral zone

which takes in (and may exceed) a so-called mixed zone adjacent to

the mantling Middletown Formation. The fabric changes from grano-

blastic in the outer portions to hypidiomorphic in the core;

plagioclase varies from An(25-03) in the outer zones to An(40-42)

in the central core. Hornblende decreases inwards and biotite

increases. The Monson Gneiss in the elongated anticlinal structure
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is a coarse grained plagioclase-quartz-biotite gneiss with a

pronounced foliation. Stugard (1958, p. 636) has presented modes from

the area.

Pegmatites cut all of the above mentioned formations in the area,

but are particularly common in the Collins Hill Formation, less common

in the Glastonbury and Middletown, still less common in the Monson,

and only one pegmatite has been shown to cut the Maromas. Two dis-

tinct varieties of pegmatites are present, narrow lenses and

stringers of quartzo-feldspathic composition which are conformable to

the regional structure of their host rocks; and large, semi-

elliptical granitic masses which show a roughly parallel orientation

to the regional structure; but which are often locally discordant to,

and cross-cutting to, their host rocks. This latter variety has a

diversified mineralogy and is usually characterized by microcline-

perthite and/or plagioclase, with subordinate quartz, muscovite,

tourmaline, biotite, garnet and rare element bearing phases. Internal

zoning in these larger pegmatites is common, usually in the sequence

from walls inward, by a border zone, wall zone, intermediate zone(s),

and a core. Stugard (1958) estimates that at least sixteen per cent

of the pegmatites are zoned, and even those in which no clear se-

quence of zones is noted exhibit at least a border zone. For this in-

vestigation, minerals from the Strickland and Spinelli Quarries have

been studied; and these quarries are described in Cameron et al.(1954).
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Previous Age Determinations

Previous age determinations in the area have been predominantly

devoted to pegmatite minerals, and thus do not aid the interpretation

of the surrounding basement rocks other than to place a minimum age

on them. Rodgers (1952) has summarized most of the early work (in-

cluding the classic work of Nier, 1939, a, b) and has proposed an

average age of emplacement of 260 ± 50 m.y. for the peggatites. Most

of these ages were determined by the U-Pb and Th-Pb methods, and

Brookins (1963) has summarized some of these earlier U-Pb and Th-Fb

dates plus more recent determinations by Wasserburg et al. (1955)

and Wasserburg and Hayden (1955) with a resultant average of 259 ± 15

m.y. Previous K-Ar and Rb-Sr ages on pegmatite minerals from the

Massachusetts Institute of Technology, and K-Ar ages from other

laboratories have been summarized in the Ninth Annual Progress Report,

U.S. A.E.C., N.Y.0.-3942, 1961. The K-Ar ages average 250 m.y., and

-11 -l
the Rb-Sr ages average 240 m.y. using A = 1.47 x 10 yr . Re-

calculated for y = 1.39 x 10~11 ~1, the Rb-Sr age becomes 250 m.y.

K-Ar ages on micas from the Collins Hill Formation and the Glastonbury

Gneiss give 230 m.y., which may mark the end of metamorphism in the

area.
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Analytical Results

The data are presented in Table A-1, and the isochrons for the

various formations are shown in Figs. A-2 to A-9. The error limits

on the various isochrons have been determined by constructing maxi-

mum and minimum isochrons through the error limits of all the points,

and are not shown here for clarity of presentation.

Samples

R4717 - Collins Hill Formation, Biotite-quartz-(plagioclase) schist.
150 feet from the HW contact of the Strickland Pegmatite.

R47l9 - Biotite-quartz-(plagioclase)-(garnet) schist, 5 inches from
the FW contact of the Strickland Pegmatite.

R4720 - Biotite-muscovite( )-sericite-(garnet) schist, slightly
mylonized. Contact facies, FW side of Strickland Pegmatite.

R4721 - Biotite-quartz-(garnet)-(plagioclase) schist, 15 from FW
contact of Strickland Pegmatite.

R4788 - Biotite-quartz-plagioclase schist, near the Maromas contact.

A4774 - Massive plagioclase, Strickland Quarry Pegmatite.

A4992 - Cleavandite, with minor quartz and light blue tourmaline.
Strickland Quarry Pegmatite.

R4"791 - Maromas Granite Gneiss. Microcline-plagioclase (An-14)-

(biotite) gneiss. West side of Collins Hill.

R5059 - do. Microcline-quartz-plagioclase (An-15)-biotite gneiss,
near main Maromas Dome, donated by Dr. J. W. Peoples of
Wesleyan University.

R5052 - Middletown Formation, amphibolite (hornblende 70 per cent,
quartz 10 per cent, plagioclase (An-33) 20 per cent). West
side of State Highway 17 just south of intersection with
Isinglass Hill Road.
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TABLE A-1

ANALYTICAL DATA

Sample Formation
Symbol

R4717
R4719
R4720b
R4721
R4788
A4774
A4992
R4791a
R4791b
R4791d
R5059a,
R5059b
R4792a
R4792b
R4792c
R337#
R4998
R4999
R5052
R5053a
R5053b
R5053c
R5056b
R5056c
R5058d
R5058e
R5058a
R5058f
R5069
R5070
R5071
R5072

ch
ch
ch
ch
ch
p
p
mr
nr

mr
mr
Mr

gli
gl
gl
gl
gl
gl
mi
mi
mi
mi
mo
mo
mo
mo
g
g
am
am
am
am

(Rb/Sr) Vt

0.57'
0.99'
1.62'
0.51'
0.42'
0.50"

2.10"
2.01'
1.62'
1.35"

12.50'
9.63'
4.55'
5.97"
2.33"
9.51'
0.-45"
0.15"
0.041"
0.82'
0.95'
1.62'
0.17"
0.37'
0.61"
0.01"

17.40'
15.10"
1.80"
0.63"
0.12"
0.03"

1.65
2.87
4.71
1.48
1.22
1.45
6.18
5.84
4.70
3.92

36-70
28.20
13.26
17.4+
6.77

27.85
1.30
0.43
0.12
2-38
2.75
4.67
0.49

1.07
1.77
0.03

51.84
44.77
5.24
1-83
0.35
0.09

(Rb /Sr )t (Sr /Sr 88)

0.1198
0.1204*
0.1199*
0.1192*
0.1189*
0.1212
0.12014
0.1195*
0 .1204*
0.1190*-
0.1198-
o.1188
0.1198
0 .1196**
0.1203*

0 .1197**
0.1196i.
0.1192*
0.1192*
0.1190 -

0.1191*
0.1192*k
0.1182*
0 .1192
0.1187*
0.1197*
0.1185
0.1189
0.1196
0.1190
0.1194

(Sr /Sr )N

0.7291
0.7370*
0.7439*
0.7264*
0.7283*
0.7411
0.8855
0.7370*
0.7334**
0.7299*
o.856o
0.8285
0.7763
0.7995**
0.7460*
0.8478
0.7194**
0. 7109*
0.7070*
0.7230*
0.7254
0.7350*
0.7120*
0.7171*
0.7208
0.7081*
1. 0090*
0.9587
0.7415
0.7217
0.7120
0.7081

Isotope Dilution Determination
X-Ray Spectographic Determination
Mean of Duplicate Analyses
Mean of Triplicate Analyses
Data from NYO-3942, USAEC, 1961
Collins Hill Formation
Pegmatite Minerals
Maromas Granite Gneiss
Glastonbury Gneiss
Middletown Formation
Monson Gneiss
Granite Cutting Monson
Ammonoosuc Volcanics

*

**

ch
p
mr
gl
mi
mo
g
am
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R5053 - Biotite-guartz-microcline-plagioclase-(minor epidote) gneiss,
road cut on Highway 15 near Vernon turnoff.

R5069 - Ammonoosuc Volcanics, donated by Dr. M. P. Billings of
Harvard University. Rhyolite porphyry, Harvard No. L-70.

R5070 - do., Quartz bearing soda rhyolite, H. No. L-H56.

R5071 - do., Biotite gneiss, H. No. L-H48.

R5072 - do., Chlorite-epidote schist, H. No. L-H48.

R4792 - Glastonbury Gneiss, Granite gneiss, from border facies
near contact with Collins Hill, east of Strickland Quarry.

R4998 - do., Chloritized biotite-quartz-plagioclase gneiss, from
outcrop south of Spinelli Prospect showing no microcline in
hand specimene.

R4999 - do., Chloritized biotite-guartz-plagioclase gneiss, from east
of Hale Quarry.

R5056 - Monson Gneiss, plagioclase-quartz-hornblende gneiss, two
miles northwest of Marlborough from road cut on State Highway 2.

R5058 - Monson gneiss, and granitic dikes in Monson Gneiss, all from
localities south of Higganum.
R5058e = plagioclase-quartz-hornblende gneiss
R5058d = plagioclase-quartz-biotite gneiss
R5058a,f = microcline-perthite-biotite granite dike in Monson.

l
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Discussion and Conclusions

The pegmatites show an age of 250 - 10 m.y., which is in

agreement with previous age determinations by other age determination

methods from the area. The pegmatite minerals define an isochron

which indicates an initial Sr(87/86) ratio of 0.737 ± 0.002. Sample

A4992, a late-stage cleavandite, shows anomalous enrichment in Sr-87.

The source of this excess Sr-87 may have been from an early crystal-

lizing Rb-rich phase within the pegmatite system, such as lepidolite.

As both geochronological and geologic evidence show that there have

been no major metamorphic events since the emplacement of the pegma-

titeg, the initial ratio is therefore representative of the source

material from which the pegmatites were derived. Hence the pegma-

titic material must have undergone a previous crustal history before

final emplacement into its present sites. The Collins Hill

Formation, the country rock for the Strickland Quarry Pegmatite,

diows, in Figure A-8, a possible isochron, defined by samples both

near and well removed from the pegmatite contact, which indicates

that the local systems in the country rocks are too restrictive to

have allowed any significant amount of mobile material to have mi-

grated into the present pegmatite site. That the pegmatite has not

been formed by any in situ process is consistent with field relations,

which indicate forceful injection of the pegmatite into the Collins

Hill Formation.
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There is no direct genetic relationship between the Maromas

Granite Gneiss and the pegmatites despite their proximity in age.

The Maromas Granite Gneiss yields an initial Sr(87/
86) ratio of

0.714 1 0.002, which indicates derivation from material which has

spent previous time in a sialic reservoir prior to emplacement; but

it is improbable, assuming the same parent magma for both the Maromas

and the pegmatites, that the parent magma could re-homogenize in a

span of only approximately 30 m.y. to yield an increase in the ini-

tial Sr(87/86) ratio of 0.023. It is easier to envisage a process by

which various alkali-rich portions of country rock at depth have

undergone anatexis, and have been subsequently injected into their

present sites. That the pegmatite mineral isochron, Figure A-9, is

defined by samples from both the Strickland Quarry Pegmatite and the

Spinelli Prospect Pegmatite suggests cogenesis, and possibly the same

parental source, but more statistics are needed on other pegmatites

in the area to test this hypothesis.

The Maromas Granite Gneiss was emplaced 287 - m.y. ago and has

remained a closed system since that time. This age indicates that

the Maromas Granite Gneiss is intrusive into the other basement forma-

tions in the area. The 250 + m.y. pegmatite emplacement age is

generally taken to indicate the end of the Appalachian Orogeny in the
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area, and therefore the lack of strong metamorphic features within

the Maromas Granite Gneiss relative to the other granitic gneisses

(e.g. Glastonbury Gneiss, etc.) and the paucity of pegmatites

within the Maromas Granite Gneiss are explained by its 287 t 10 m.y.

age of emplacement. The contact between the Collins Hill Formation

and the Maromas Granite Gneiss is obscure; but schlieren of the

Collins Hill Schist are found within the Maromas Granite Gneiss

near the contact and aplites related to the Maromas show the same

type of intrusive effects at the Collins Hill contact as do the

aplites related to the pegmatites which cut the Collins Hill. Be-

caube the Collins Hill Formation generally occupies narrow synclines

between gneissic anticlines, and due to the obscurity of the contact

relations between the two, Rodgers and Rosenfeld (1959) have placed

the Maromas Granite Gneiss below the Collins Hill Formation on the

stratigraphic column. G. P. Eaton (iritten communication), however,

believes that the Maromas Granite Gneiss cuts even the Collins Hill

Formation, a view which is substantiated by the Rb-Sr age measure-

ments of this report.

The relation of the Glastonbury Gneiss to the Collins Hill

Formation is more tenuous, but the 360 t 10 m.y. age on the

Glastonbury suggest that it has been intruded into the Collins Hill

Formation. Although the possible isochron in Figure A-8 suggests an
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"age" of 395 f 20 m.y. for the Collins Hill Formation, it must be

remembered that the formation is metasedimentary; and, as mentioed

by Whitney (1962) and Compston and Pidgeon (1962), the apparent age

is probably erroneous. That the possible absolute age is wrong is

suggested by its probable geologic age of Late to Middle

Ordovician (?), because the Silurian-Ordovician boundary is probably

greater than 410 m.y. (M.L. Bottino, personal communication). The

apparent isochron does, however, confirm derivation from material of

a previous history because of the high initial Sr(87/86) ratio of

0.719. The Glastonbury Gneiss, on the other hand, yields an initial

Sr(87/86) ratio of 0.710 + 0.002, which strongly suggests original

derivation from material of some crustal prehistory prior to emplace-

ment; but caution must be used in implying intrusion (because of the

367 10 m.y. age) because the samples were taken from the porphyro-

blastic facies (see Herz, 1955), and may thus not be representative of

the whole formation. The Glastonbury-Collins Hill contact is more

obscure than the Maromas-Collins Hill contact, but this may be due to

the greater exposure to metamorphism(s) of the Glastonbury-Collins

Hill contact because of its greater age. Schlieren of schist in the

Glastonbury near the Collins Hill contact, and the local development of

diopside (indicating intrusion ?) near the contact, and a possible chilled

zone (now covered) have been cited by Stugard (1958) as evidence for

intrusion;



but, as pointed out by Herz (1955), these features can be explained

without recourse to igneous processes. The Great Hill Formation

exhibits a basal conglomerate near the Glastonbury Gneiss and is

probably post-Glastonbury; but as an angular unconformity exists

between the Great Hill and the Collins Hill and the time span re-

presented by the hiatus is not known, the Glastonbury may well be

post-Collins Hill. From the above-mentioned evidence, it is

plausible to suggest intrusion of the Collins Hill Formation by

both the Glastonbury and Maromas Gneisses.

The Middletown Gneiss has been correlated with the

Ammonoosuc Volcanics of New Hampshire, and the 450 - 15 m.y.

Middletown Age and the 460 i 15 Ammonoosuc Age tentatively confirm

this correlation; and suggest a mean age of 455 t 10 m.y. for both

formations. The initial Sr(87/86) ratios of the Middletown Gneiss

and of the Ammonoosuc Volcanics are 0.707 - 0.001 and 0.708 - 0.001,

respectively. These values are equal within the limits of error and

suggest a derivation of at least part of the formations from basic

volcanics. This is consistent with discussion by Mikami and Digman

(1957) for the Middletown Formation, and by Billings (1956) for the

Ammonoosuc Volcanics.

Figure A-6 shows a possible isochron for the Monson Gneiss

based on four low Rb/Sr samples; and despite the large error, the
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550 t 80 m.y. age suggests that the Monson Gneiss is older than the

Middletown Formation. This is consistent with the current field work

of Rosenfeld and Eaton (1959), Lundgren (1962), and Peter Robinson

(personal communication). Figure A-7 shows another isochron which

yields an age of 418 t 15 m.y. but is anchored by the two granitic

dike samples, R5058a and R5058f. Mikami and Digman (1957) have sug-

gested that these dikes may represent late stage differentiation pro-

ducts of the original "tonalitic magma" which was intruded into the

Middletown Formation. Eaton and Rosenfeld (1960) and others have

suggested that the doming is not igneous in origin and that the

mantling strata is younger. This latter interpretation is more

feasible based on both field work and the possible isochron of

Figure A-6; and the granitic dikes must therefore either represent

later intrusions into the Monson or remobilized (and rehomogenized)

granitic facies of the Monson. The first of these two possibilities

is more likely. The contact between the Middletown and the Monson

is obscure, and Lundgren (1962) has proposed a gradational contact

between the two formations; but Eaton and Rosenfeld (1960) have in-

dicated that an unconformity exists. As the Middletown Formation is

probably Early to Middle Ordovician (?), the Monson Gneiss is there-

fore pre-Middle Ordovician, but how far back in geologic time past

the Middle Ordovician is not known. The 418 t 15 m.y. age for the

granitic dikes is significant in that it indicates a distinct period



of emplacement of granitic material not related to the 360 + 10 m.y.

Glastonbury gneiss nor the 287 t 10 m.y. Maromas gneiss. Further work

may possibly correlate the 418 m.y. event to some of the granitic rocks

further south in the section.

Although the area studied is rather restricted in size, the dif-

ference in ages between the Maromas Gneiss, Glastonbury Gneiss,

Granitic Dikes, and the Monson Gneiss indicate that (1) there have

probably been several generations of gneissic material along the en-

tire Bronson Hill Anticline and that the Oliverian domes of New

Hampshire probably represent more than one age of emplacement, (2)

the'initial Sr(87/86) ratios of the different gneiss domes studied in-

dicates different crustal prehistories before emplacement for the

different gneisses, and (3) contact effects have been largely obli-

terated by subsequent metamorphisms.

This study is far from complete but definitely shows the power

of the Rb-Sr whole-rock method in dealing with complex geologic

problems in a regionally metamorphosed area, and also emphasizes the

need for careful geologic control within the area.
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CHAPTER ONE - DESCRIPTIVE GEOLOGY

Introduction

This chapter will attempt to introduce the reader to the main

features of stratigraphy and structure within the area of study, and

to discuss the correlation of the area to other areas.

The work of Rosenfeld and Eaton (1959) has confirmed the

earliest work in the area by Percival (1842), which was largely ig-

nored or forgotten by later workers until Rosenfeld and Eaton (op. cit.).

This has caused a major revision of stratigraphy in the area, and al-

lowed correlation with an area in New Hampshire which is fairly well

understood. Most of the stratified metasediments and metavolcanics

can be readily correlated, but the gneissic rocks are more difficult to

interpret. This chapter will review the main theories of stratigraphy

within the area based on geological evidence alone, and will not in-

clude any previous or current age determinations as these will be

covered later in this thesis.



Geologic map of east-central Connecticut
and central Massachusetts

EYlt .lanation

0 Triassic rocks

Paleozoic metadedimentary
rocks

0

t*,

3.

Feldspathic gneisses

Granitic rocks

Foliation dome
or anticline

Killingworth Bome
Maromas Dome
Glastonbury Dome

Scale in miles

10 0 10

Modified from Lundgren (1962)



- 50 -

Geology

The following descriptive material is modified from recent work

reported in Rodgers and Rosenfeld (1959) and Eaton and Rosenfeld

(1960).

The Pre-Triassic basement formations which occur within the

Middle Haddam and Glastonbury Quadrangles are part of a well-

differentiated structural belt of formations that have been more or

less mapped continuously from the Maine - New Hampshire border west

of the Rangley Lakes southwest and south along the east side of the

Connecticut River to Central Connecticut, and then across the river

southwest to Long Island Sound. This belt is basically a complex

anticlinorium composed of elongate dome-shaped gneiss-cored anti-

clines in metamorphosed stratified rocks. It is referred to as the

Bronson Hill Anticline (Billings, 1956). North - south trends are

common for the anti.clines, and they show an en echelon pattern to

the overall trend of the anticlinorium due to the slight counter-

clockwise rotation of their long axes relative to the regional trend

of the anticlinorium. This en echelon pattern is clear in Southern

Connecticut and in New Hampshire, but less obvious in Northern

Connecticut and Massachusetts. Some of these features are shown in

Figure 1-1.

The Bronson Hill Anticline in Connecticut is bordered on the

east by broad, gentle, largely undifferentiated gneisses and schists
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with some intrusive masses; generally correlated as part of the

Merrimac Syncline (Billings, 1956). The western boundary is marked

by a border fault dividing the Triassic and Pre-Triassic rocks, ex-

cept for occasional Triassic diabasic dikes which cut the basement

rocks parallel to the border fault.

The formations present in the Middle Haddam and Glastonbury

Quadrangles are the Bolton Group, consisting of the Camp Jenkins,

Mine Brook, and Great Hill Formations; the Collins Hill Formation;

the Glastonbury Gneiss; the Maromas Granite Gneiss; the Middletown

Gneiss; and the Monson Gneiss. The distribution of these formations

is shown in Figures 1-2 and 1-3. In addition, pegmatites cut the

above formations but are especially common in the Collins Hill

Formation. The area has been subjected to several metamorphisrs,

and relations between formations are therefore often obscure.

Lithology

Bolton Group

The three formations constituting the Bolton Group, the

Camp Jenkins, Mine Brook, and Great Hill Formations, were formerly

grouped along with the Collins Hill Formation into the now dis-

carded Bolton Schist Formation. The work of Rosenfeld and Eaton

(in Rodgers and Rosenfeld, 1959) has confirmed the original work of
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Figure 1.2 Glastonbury Quadrangle
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Figure 1.3
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Figure 1.4 Haddam quadrangle
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Percival (1842), and has resulted in the current separation of the

Bolton Group from the Collins Hill Formation. The Bolton Group has

not been studied in this work and thus will not be discussed in de-

tail. The work of Rosenfeld and Eaton (op. cit.) has shown that the

Bolton Group is definitely correlative with the Siluro - Devonian

rocks of the Bronson Hill Anticline in New Hampshire. This corre-

lation is as follows:

Connecticut Formation New Hampshire Equivalent Geologic Age

Camp Jenkins Littleton Early Devonian

Mine Brook Fitch Middle Silurian

Great-Hill Clough Early Silurian

The reader is referred to Eaton and Rosenfeld (1960) and to

Billings (1956) for descriptions of these rocks.

Collins Hill Formation

The Collins Hill Formation occurs as narrow, tight-folded

synclines between the gneiss-cored anticlinal domes within the

area. The areal distribution of the Collins Hill Formation in the

Middle Haddam and Glastonbury Quadrangles is shown in Figures 1-2

and 1-3.

The Collins Hill Formation is commonly a rusty-weathering

two-mica schist with subordinate garnet, pyrite, kyanite and/or

sillimanite. In the basal parts apparent conglomeratic gneiss is
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often present, usually immediately under an irregular sequence of

garnetiferous and calc-silicate beds. Staurolite is sometimes

present in the kyanitic zone. Pegmatites are extremely common in

the Collins Hill, and, because of their greater resistance to

weathering, often show obscure contacts with the Collins Hill

Formation.

The Collins Hill Formation is correlated with the Partridge

Formation of New Hampshire of possible Middle Ordovician (?) Age,

and with the Brimfield Schist of Connecticut.

Glastonbury Gneiss

The Glastonbury Gneiss forms a major anticlinal dome in the

Middle Haddam and Glastonbury Quadrangles and continues on an ap-

proximately N 300 E trend as a narrow band into Massachusetts

(called Monson by Emerson, 1917, Cameron et al., 1954, and Foye,

1949). The Glastonbury Gneiss can be roughly divided into three

main facies; an Eastern Granitic Facies, composed in main of

quartz, microcline, perthite, and minor biotite (or muscovite near

the contacts with schist), and oligoclase; a Central Facies of a

darker, augen gneiss with K-feldspar augen in a matrix of biotite,

quartz, minor oligoclase, and locally abundant hornblende and/or

epidote; and a Western Schistose Facies, which is predominantly a

biotite-quartz-microcline schist, with minor oligoclase. The
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Central Facies constitutes the bulk of the Glastonbury Gneiss; and

is subdivided into a Western Porphyroblastic Facies and an Eastern

Flaser Gneiss Facies; the contact between which is gradational.

All of the major facies grade into each other with little abrupt

change in fabric or mineralogy, and the unique feature of all but

the border facies is the presence of biotite occurring in small,

thick patches which are sometimes smeared, but usually in isolated

knots. Quartz is abundant in all the facies, and shows sutured

boundaries in the larger grains. Mafic schlieren and aplites are

common in parts of the Glastonbury, and pegmatites are common;

especially near the aplitic parts.

The Glastonbury Gneiss has not been definitely correlated with

the New Hampshire sequence in the Bronson Hill Anticline, but it

may be similar to the Oliverian-type Domes (?); and the Glastonbury

has not been shown to occur in any of the sections further east in

Connecticut.

Maromas Granite Gneiss

The Maromas Granite Gneiss occurs as a pronounced major semi-

elliptical dome in the Middle Haddam Quadrangle, and also occurs as

two elongated intrusions between the Middletown and Collins Hill

Formations. These are shown in Figure 1-3. In
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addition, the Maromas Granite Gneiss occurs as intimate injections

into the Middletown Formation in much of the area and therefore

postdates it. The main body of gneiss is elongated to the northwest,

with a gentle to moderate (50 to 450 ) dip to the northeast. The rock

is generally massive, but shows a fairly good foliation also striking

to the northwest.

The Maromas Granite Gneiss weathers to a dark- to light- gray

rock, which is usually buff to white and rarely pink on fresh sur-

faces. The rock is granitic in composition, and commonly shows micro-

cline augen. Mafic minerals are represented by biotite and/or

hornblende. Minor accessories include garnet, sphene, rare allanite,

and pyrite. Stugard (1958) lists some of the salient structural and

mineralogical features of the principal Maromas mass, not visited by

this writer, and also includes (p. 632) a tabulation of modes.

The Maromas Granite Gneiss has not been definitely linked

to any other distinct formation in either New Hampshire or in

Connecticut, but it is definitely post-Middletown in the area

concerned.

Middletown Gneiss

The Middletown Gneiss mantles the Monson Gneiss both in the

Killingworth Dome and the elongated anticlinal structure to the north-

east, but is not in contact with the Monson west of the Glastonbur-y

Gneiss Anticline. These relationships are shown in Figures 1-2, 1-3,

and 1-4.
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The Middletown Gneiss is well foliated, medium grained, and

occasionally contains some schistose members. Hornblende and

plagioclase are the most predominant minerals in the gneiss, with

subordinate biotite. Hornblende-rich, gneiss and hornblende-

plagioclase gneiss constitute over two-thirds of the formation, with

biotite gneisses and less commonly salic gneisses following. Mikami

and Digman (1957) make the following broad petrographic divisions

(p. 35): 1) amphibole mafic gneisses, 2) amphibole intermediate

gneiss (intermediate between salic and mafic), 3) salic gneiss and

granulite, and 4) biotite gneiss and schist." Further subdivisions

can be made, but the striking feature of all the Middletown Gneiss oc-

currences is the preponderance of amphibole and plagioclase, and in

some places biotite and quartz, over K-feldspar. The plagioclase

varies in composition between An20 - An. Cummingtonite (called

tremolite-actinolite) and anthophyllite are common in some places,

and garnet is locally common.

The Middletown Gneiss has been correlated with the Ammonoosuc

Volcanics of New Hampshire, of possible Middle to Early Ordovician (?)

Age.

Ammonoosuc Volcanics

The Ammonoosuc Volcanics are described here because they have

been studied to test the Middletown-Ammonoosuc correlation.

Four distinct belts of the Ammonoosuc Volcanics occur in New

Hampshire (see Billings, 1956), and only 10 to 15 per cent of the
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formation is considered to be of sedimentary origin, including black

slate, gray arenaceous slate, and impure quartzite. The metavolcanics

are represented by chlorite and chlorite-epidote schists, with or

without conglomerate; and by soda rhyolites, with some volcanic con-

glomerate. The volcanic nature of the formation is indisputable, and

even the chlorite and chlorite-epidote schists have the chemical compo-

sition of andesites and basalts. Various grades of metamorphism are

present in the four belts, up to staurolite-sillimanite rocks.

Monson Gneiss

For the purpose of this report, the gneiss which constitutes the

prineipal mass of the Killingworth Dome will be referred to as Monson

(formerly called Haddam), as this occurrence has been shown by Digman

(in Rodgers, Gates, and Rosenfeld, 1959, p. 50) to be continuous with

the elongated anticlinal belt of Monson Gneiss which extends to the

type locality at Monson, Massachusetts. The Killingworth Dome has been

thoroughly studied by Mikami and Digman (1957), who called the rock a

tonalite, and it has also been called orthogneiss, leucotonalite, etc.

Megascopically, the rock has a grayish salt and pepper appearance,

caused by hornblende and/or biotite speckled in a plagioclase and

quartz matrix. Garnets and minor opaque minerals may be present; and

rarely zircon and/or sphene. The biotite is commonly chloritized, and

epidote is often developed in cracks in the plagioclase. Microcline is
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a rare accessory, and usually occurs near granitic dikes and sills

which cut the more basic gneiss in many places. Mafics never exceed

fifteen per cent in the gneiss of the Killingworth Dome, plagioclase

ranges from 50 to 70 per cent, and quartz 20 to 35 per cent. Mikami

and Digman (op. cit.) found that the Killingworth Dome has a central

core and a peripheral zone which takes in (and may exceed) a so-called

mixed zone adjacent to the mantling Middletown Gne.iss. The fabric

changes from a granoblastic appearance in the outer zones to a hypidio-

morphic granular fabric in the central core. This change is comp)eely

gradational, and is expressed by the outlines of the quartz and plagio-

clase crystals, as the mafic minerals are sub-oriented throughout the

sequence. The plagioclase varies in composition from An25 to An3 in

the outermost zones, and reaches An0 ~ An42 in the central core

portion. Hornblende decreases inwards toward the core as biotite

becomes more prevalent.

The elongated anticlinal belt of Monson Gneiss which extends

into Massachusetts is a coarse-grained plagioclase-quartz-biotite

gneiss with a pronounced foliation. Stugard (1958, p. 636) presents

modes from the area.

Pegmatites

Pegmatites cut all of the other basement rocks, but are

especially common in the Collins Hill Formation. The schistose
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portions of the Middletown Gneiss and the Glastonbury Gneiss also

contain abundant pegmatites. Fewer pegmatites cut the Monson Gneiss,

and only one pegmatite has been shown to cut the Maromas Granite

Gneiss. The pegmatites are of two distinct varieties: (1) narrow

lenses and stringers conformable to the regional structure of their

host rocks, and (2) large, semi-elliptical granitic masses which ex-

hibit a roughly parallel orientation to the regional structure, but

are locally discordant to and cross-cut their host rocks. This latter

variety has a diversified mineralogy and is usually characterized by

microcline-perthite and/or plagioclase, with subordinate quartz,

muscovite, tourmaline, biotite, garnet, and many rare Li- U-, Ta-,

B-, etc.- bearing phases.

Internal zoning in these larger pegmatites is common. Stugard

(1958) estimates that at least sixteen per cent of the pegmatites in

the area are well zoned; usually in the order, from walls inward, by

a border zone, a wall zone, an intermediate zone, and a core. Some

of these zones within the pegmatite cut other zones and are then de-

signated as fracture fillings or replacement bodies. All of the

large pegmatites of the area show at least a border zone, even when

internal zones are lacking.

Strickland Quarry Pegmatite

Figure 1.5 shows the salient features of the main pegmatite

and the so-called western pegmatite at the Strickland Quarry.
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Figure 1.5 shows that the pegmatite is conformable to the regional

structure, and that the schist is locally deformed to conform to the

pegmatite contours. The Collins Hill Formation is the host rock for

the pegmatite although the Glastonbury Gneiss occurs not far to the

east. Various diamond drill holes (Cameron et al., 1954, p. 334) to

depths of 360 feet show only schist and/or pegmatitic material.

Both the main pegmatite and the western pegmatite show interior

zoning. The pegmatite is composed largely of plagioclase, quartz,

microperthite, graphic granite, and muscovite. Tourmaline, garnet,

biotite, spodumene, beryl, and apatite are minor accessories which are

locally abundant. A great many unusual other minerals have been re-

ported from the quarry, and many of these are summarized in Zodac

(1937).

Five major zones exist; they are, from border inward: border

zone, plagioclase-quartz-muscovite wall zone, perthite-graphic

granite-quartz-plagioclase zone, plagioclase-quartz zone, and a quartz-

plagioclase core. A detailed description of these zones is to be found

in Cameron et al. (1954, p. 335, 336); but a brief description is as

follows:
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1. Border Zone: This zone is 1" to 8" thick and forms a nearly

continuous layer around the entire pegmatite. It consists of a

fine-grained assemblage of quartz, muscovite, and albite (An 5-9)

with some tourmaline and garnet.

2. Wall Zone: This zone is l' to 7' thick, and consists of medium-

to coarse-grained plagioclase-quartz-muscovite with some black

tourmaline and garnet. Massive plagioclase (An 5-9) predominates

over cleavandite (An 1-4). Large books of muscovite are common

in this zone.

3. Intermediate Zone: This zone is l' to 22' thick, and is a coarse

grained assemblage of perthite-graphic granite-quartz-plagioclase

(An 4-8) with some tourmaline and garnet. Perthite is dominant, but

is in part replaced by quartz and cleavandite.

4. Replacement Zone: This zone is up to 45' thick, and is a medium

grained quartz-plagioclase (An 4-8) assemblage. This zone is probably

due to replacement of the Intermediate Zone as evidenced by the

presence of anhedral perthite in Zone 4 and the development of

cleavandite in cracks in perthite in Zone 3, and lack of massive

plagioclase replacing perthite.

5. Quartz-massive Plagioclase Core

Spinelli Prospect Pegmatite

This prospect is shown in Figure 1.7. The wall rock is
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the Glastonbury Gneiss, and the pegmatite cross-cuts the

regional trend of it. Exposures are obscure, but Cameron et al.

(1954) describe the following zones:

1 l. Border Zone; 1-3 inches thick. Fine-grained quartz,
feldspar, and muscovite.

2. Quartz-perthite-plagioclase zone; thickness unknown.
Consists of quartz and perthite, with subordinate
plagioclase and accessory muscovite, garnet, tourmaline,
and samarskite.

3- Quartz core, at least 2 feet thick. The core is exposed
for a length of 25 feet in the floor of the cut in the
north eastern corner of the workings. It consists of
coarsely crystalline quartz."

Hale Quarry Pegmatite

The Hale Quarry has been thoroughly described by Stugard (1938).

It occurs between the Collins Hill Formation and the Glastonbury

Gneiss, and is zoned as follows:

(1) Wall Zone: This zone constitutes over three-fourths of the

pegmatite on the Glastonbury side; and consists of a medium-grained

assemblage of perthite and quartz, with some albite and muscovite.

(2) Border Zone: This zone occurs on the west side adjacent to

the Collins Hill 7brmation and is 0 to 45 feet thick. It has

essentially the same mineralogy of the Wall Zone but also contains

tourmaline and some garnet.
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Stratigraphy of the Bronson Hill Anticline in Connecticut

Introduction

The recent work of Rosenfeld and Eaton (quoted in part in

Rodgers and Rosenfeld, 1959, and part in press) has shown that a

correlation exists between the Bolton Group (Camp Jenkins, Mine

Brook, and Great Hill Formations) of Connecticut and the Siluro-

Devonian Littleton, Fitch, and Clough Formations of the Bronson Hill

Anticline in New Hampshire. Their work on this correlation confirms

the original work of Percival (1842), who differentiated between the

Bolton Group and the underlying Collins Hill Formation although

later workers until recently have listed both as the combined Bolton

Schist. However, despite the evident similarity of the Connecticut

sequence of Camp Jenkins, Mine Brook, and Great Hill Formations to

the New Hampshire sequence of Littleton, Fitch, and Clough Formations;

the correlation of the underlying rocks is somewhat tenuous; and ab-

solute confirmation of the proposed correlations between the Collins

Hill Formation and the Partridge Formation, and between the

Middletown Formation and the Ammonoosuc Volcanics has not been pre-

sented. However, the following general stratigraphic relations are

noted (after Eaton and Rosenfeld, 1960) in Table 1.1.



Connecticut
Formation

New Hampshire
Formation

Probable Age
(Based on New
Hampshire Rocks)

Camp Jenkins Littleton

Mine Brook Fitch

Great Hill Clough

- - - - - - - - - Angular Unconformity - - - - -

Collins Hill Partridge

- - - - - - - - - - - Unconformity - - - - - - -

Glastonbury and Oliverian (?)
Maromas

Middletown

Monson (including
Haddan)

Ammonoosuc

(? )

Early Devonian

Middle Silurian

Early Silurian

Middle to Late
Ordovician (?)

Pre-Middle
Ordovician (?)

Pre-Middle
Ordovician (?)
Pre -Middle
Ordovician ()

The above suggested column is a major revision of many

earlier proposed columns, but confirms in part the earliest work

in the area by Percival (op. cit.).
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TABLE 1.1
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Mantled Gneiss Domes

Three major domes are present in the Middle Haddam and

Glastonbury Quadrangles; the Maromas Dome, the Glastonbury Dome,

and the Killingworth Dome. The Monson Gneiss cores the Killingworth

Dome, and the others are named for their core gneisses. These

Eastern Connecticut domes are remarkably like the Fennoscandian

Domes which have been described by Eskola (1949). Eaton and

Rosenfeld (1960, p. 172) state the following similariies:

" 1) General parallelism of the foliation of the gneisses
with that of the mantling strata. (The foliation of the
mantling schists is in large part bedding-plane foliation.)

2) Relative persistence of the stratigraphic section of the
mantling strata from dome to dome (with due allowance for
the transgression of angular unconformities).

3) The existence of conglomerates (?) calc-silicate rocks, and
amphibolites in the oldest of the mantling rocks.

4) Moderate overturning of the domes.

5) In the Maromas and Glastonbury Domes, the intrusive
relationship of part of the core gneisses with the older
metavolcanic and metasedimentary rocks of the Middletown
Formation. The latter, along with its intruding rocks,
is unconformably overlain by the schistose strata of the
synclines."

These authors state an objection to a purely intrusive origin,

and cite examples that part of the Glastonbury Gneiss and Monson

Gneiss (called Haddam Gneiss) were either metavolcanics or meta-

sediments; yet they do cite evidence of intrusion of both the

Maromas and Glastonbury Gneisses into the Middletown Formation. They

believe the doming to have occurred much later than the orthogneissic

genesis. Eaton and Rosenfeld (ibid., p. 172) also state:
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"Structural features in the mantling strata suggest that during part
of the deformation the gneisses sheared upwards past the flanking
schists."

The implication requires a doming of the core gneisses by vertical

emplacement, presumably resulting from the low density of the gneiss

(Thompson and Rosenfeld, 1951, also describe similar phenomena in

Southern Vermont). The mixed-zone of Monson Gneiss and Middletown

Gneiss which forms the peripheral margin of the Killingworth Dome can

thus be explained by this mechanism. However, Mikami and Digman

(1957) believe this mixed-zone to be due to igneous intrusion (de-

scribed earlier, p. 61).

Eskola (1949) has proposed an origin of mantled gneiss domes

based on study of the Fennoscandian domes, and suggests a re-working

of the contact vicinities such that apparent intrusive relations

might occur, which may be accompanied by a granitization of the core

gneisses. This theory is supported by the work of Eaton and Rosenfeld

(1960) in part, but in general field relations are not clear.

It is interesting to compare the gneissic domes of this part of

the Bronson Hill Anticline to those in the New Hampshire section,

and the similarities of the domes of the two areas have been noted by

Lundgren (1962):
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"Readers familiar with sequence and relationships displayed
around the Oliverian domes in New Hampshire (Chapman, 1942; Billings,
1956) and related domes south along the Bronson Hill Anticline
(Hadley, 1949) will recognize many similarities with the Deep River
domes. A typical Oliverian dome has a core of pink granite gneiss
surrounded by more or less concentric envelopes of quartz diorite
(plagioclase gneiss) and amphibolite (Ammonoosuc Volcanics, Ordovician),
micaceous schists (Partridge formation, Ordovician), quartzite (Clough
formation, Silurian), calc-silicate gneiss (Fitch formation, Silurian),
and staurolitic schists (Littleton formation, Devonian). The granitic
rocks in the cores typically do not cut any of the units above the
Ammonoosuc formation.... "

This comparison with the Deep River Area is possible because of

the correlation of the Plagioclase Gneisses with the Monson and

Middletown Gneisses and the correlation of the Brimfield Schist with

the Collins Hill Formation. The Killingworth Dome has no true granitic

core., but the fabric changes inwards from granoblastic to hypidio-

morphic granular.

Billings (1956) has suggested that the Oliverian domes are

intrusive into both the Ammonoosuc (Ordovician ?) and the Clough

(Silurian), as dikes and sills of some domes intrude the former;

(Billings, 1937, 1941; Hadley, 1942); and the latter is feld-

spathized, presumably from solutions during Oliverian intrusion

(Billings, 1937). Billings (1956) also believes that the Oliverian

domes are contemporaneous and related in origin based on mineralogic

and textural similarities, equivalence of structural position, and

other evidences (p. 52). Also, all of the domes have undergone at
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least one metamorphism.' Billings (ibid. pp. 123-124) summarizes

his arguments as follows:

"The origin of these domes is problematical (Billings, 1945,
pp. 63-65; Eskola, 1949). Many suggestions have been made. One is

that the Oliverian series consists of metamorphosed volcanic rocks

similar or identical with the Ammonoosuc Volcanics. This seems un-

likely because: (1) The Oliverian series and the Ammonoosuc
Volcanics are distinctive units that can be separately mapped in the
field; (2) the Oliverian series, although much of it now has a

granoblastic texture, was at one stage considerably coarser in grain
than the Ammonoosuc Volcanics; (3) although the Ammonoosuc Volcanics
are massive and unbedded in places, bedding can be recognized when

sufficiently large areas are studied; (4) the Oliverian series oc-
curs in much larger units; and (5) intrusive contacts of the
Oliverian series indicate a molten rock."

He then suggests that all known facts related to the Oliverian series

can.'be explained by this intrusive theory, and suggests all of the

domes were tapped from a single, unique magma chamber. This will be

discussed later.

Eskola (1949) has proposed an involved genetic theory favoring

the mantling rocks to be younger, which can be generalized by the

following steps: (1) Intrusion of a plutonic mass and subsequent

eroding, representative of one orogenic period; (2) a period of

sedimentation of the mantling rocks; (3) remobilization of the

pluton during a subsequent orogenic cycle accompanied by new granitic

intrusion and gneissic deformation of the main pluton; causing ita
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migmatization and granitization. Eskola (ibid.) emphasizes the

apparent need of two periods of deformation for this complex pro-

cedure, and points out that this is the case for numerous areas in the

world; and while he does believe that contact effects can be altered

by the later deformation, he also believes the principal dome gneiss

to be of plutonic origin.

Mikami and Digman (1957) favor an intrusive history of the Monson

Gneiss in the Killingworth Dome into the overlying Middletown

Formation, and cite evidence of mineralogical and textural change

towards the center of the dome. The so-called rxed zone they at-

tribute to incomplete assimilation; and they infer that the granitic

dikes and sills cutting the tonalitic Monson may be equivalent to the

Clinton Granite (see Lundgren, 1962 for description), and that it

might represent trapped differentiation products of the tonalitic

mass. They thus propose that the doming was caused by the intrusion;

but they do (pp. 55-56) mention the possibility that if the Monson

Gneiss were originally dacitic volcanics, it could grade upwards into

the metasedimentary and metavolcanic Middletown Formation; and that

the doming occurred in a subsequent metamorphism. This theory does

not, however, explain the aforementioned fabric change in the Monson

nor the granitic dikes; and hence they favor the intrusive theory.

However, Lundgren (1962, p. 17) has also pointed out that:
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".... The complicated internal structure indicated by the
configuration of marker beds in the gneisses of each dome is also
reflected in the distribution of boudinage and small isoclinal
folds in amphibolite and quartzite beds interleaved with granite
gneiss and plagioclase gneiss. The extensive development of
boudinage indicates that all the rocks were plastically deformed
together, presumably during doming."

The need for regional deformation after emplacement results

from the apparent distortion of contact relationships. This would

explain both the pseudo-intrusive migmatized contacts described

by Eskola (1949) and the mixed-zone described by Mikami and

Digman (1957).
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Discussion

The Bolton Group has been correlated along regional strike

with the Siluro-Devonian sequence in New Hampshire; the latter

being a well defined group of three formations. It is permissible,

therefore, to assign an Early Devonian through Early Silurian

Geologic Age to the Bolton Group; but this correlation of these

two groups does not necessarily imply correlation of their respec-

tive underlying formations. The Collins Hill Formation of

Connecticut has been found by Rosenfeld and Eaton (in Rodgers and

Rosenfeld, 1959) to lie unconformably in narrow, tight-folded

synclines between gneissic anticlines; and an angular unconformity

exists between the Collins Hill Formation and the overlying Bolton

Group. As an angular unconformity exists between the Clough and

the Partridge Formations in New Hampshire, the Collins Hill

Formation is therefore assumed to be the Connecticut equivalent of

the Partridge. This allows a geologic age to be tentatively

placed on the Collins Hill Formation because the Partridge Formation

has also been correlated across the Connecticut Valley Synclinorium

with the Cram Hill Formation in Vermont, which in turn has been corre-

lated along strike with the Magog Slate north of Lake Memphramagog,

in which graptolites of possible Middle Ordovician Age occur.
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The original fossils are not available for re-examination, however

(see Billings, 1956). Thus this Middle Ordovician (?) Age is

probably only approximate at best, but sufficient to distinguish

the Collins Hill from the surrounding formations.

It has been proposed by Rosenfeld and Eaton (op. cit.) that

the Collins Hill Formation was deposited on older gneissic

basement rocks, which therefore necessitates the placing of both

the Maromas Granite Gneiss and the Glastonbury Gneiss as Pre-

Collins Hill. This is a revision of previous thought, as Foye

(19.49) and other earlier workers have proposed that both the

Maronas and the Glastonbury were intrusive into the Collins Hill

(called Bolton Schist). Eaton (written communication) has sug-

gested that the Maromas may be intrusive into the Collins Hill,

hence a discussion of the Maromas Granite Gneiss-Collins Hill

Formation contact is in order. The type Maromas Granite Gneiss

shows definite intrusive contacts with the Middletown Gneiss, but

the contact with the Collins Hill Formation is obscure. Further to

the north (see Figure 1-3), however, the Maromas Granite Gneiss also

occurs as two segi-elliptical masses wedged between the Middletown-

Collins Hill contact. Schlieren of Collins Hill schist exist within

the Maromas near the contact, and Maromas - related aplitic apophyses

commonly cut the Collins Hill. In addition, the biotite grains in the
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Collins Hill schists near the Maromas contact show, microscopically,

a lack of regional influence on their orientation; and this random

orientation disappears and a well defined foliation is observed away

from the contact.

The Glastonbury Gneiss also exhibits schlieren of presumed

Collins Hill derived schist in its border facies; but, unlike the

Maromas Granite Gneiss, shows a well developed foliation conformable

to regional structure; and no obvious intrusive features into the

Collins Hill. The Clough Formation, on the other hand, exhibits a

locally conglomeratic zone immediately over the Glastonbury along

their contact. The Glastonbury also shows intrusive contact features

against the Middletown Formation, but the relation of the Maromas to

the Glastonbury is unknown due to lack of mutual contact between

them.

The relationship of the Monson Gneiss to the Middletown Gneiss

is also obscure, and a zone of apparently mixed Monson and

Middletown exists between them. The Middletown does not decrease

regularly in this zone, but is rather sporadic as it wedges out

abruptly; and this zone may represent either discontinuous inter-

layering or possibly incomplete assimilation of the Middletown by

the Monson. The latter hypothesis is somewhat difficult to accept,

however, because of the considerable width of this mixed zone; and

the lack of sialic fragments of the Middletown Formation within in.
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Granitic dikes cut the Monson Gneiss in many places, but their

relationship to the Monson is not clear. Mikami and Digman (1957) have

discussed the Monson (called Haddam) Gneiss in the Killingworth Dome

in great detail, and have favored an igneous origin on the basis of the

arguments that, despite the mosaic and granoblastic texture of the

gneiss, which is generally a product of static metamorphism, it is pos-

sible that early crystallizing mafic phases achieved their orientation

by a fluxion movement during the emplacement of the magma. The grano-

blastic fabric of the guartz and plagioclase could have resulted from

differential flow continuing after the rock was nearly solid; and

thus explain the gradation to the hypidiomorphic core. They do point

out'

(p. 29, 30) that "If the crystalloblastic facies of the Haddam
tonalite were considered alone, there would be no inherent
characteristic to distinguish it from a granulitic gneiss re-
crystallized., say, from dacitic volcanics of other rocks of
appropriate composition. But the distribution of this facies
peripheral to and grading into a central eugranitic facies calls
for an explanation."

In addition, Billings(1937) and Chapman, Billings, and

Chapman (1944) have noted in New Hampshire that for some igneous

cored domes a hypidiomorphic granular to granoblastic outward

sequence exists.

As another offered evidence for intrusion of the Monson Gneiss

into the Middletown Formation, Mikami and Digman (1957) cite the oc-

currence of a tonalite dike near Guilford, correlated by composition
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with the Haddam, clearly intrusive into the Middletown. Also,

slabs of the Middletown Formation within the Monson Gneiss near

the contact are offered as other evidence of intrusion. However,

they do cite the possibility that if the Haddam were originally

composed of dacitic volcanics, then these could grade upwards into

the Middletown which is believed to have originated from both sedi-

ments and basic volcanics. In this case, the doming must have

been a regional event. This theory is inconsistent with the

eugranitic fabric of the central core, however. The amount of

quartz and other evidences (see Stugard, 1958) suggest a metamorphic

origin from sediments and tuffs; or by siliceous contamination of a

metamorphosed intrusive. Stugard (ibid.) also proposed that the

Monson Gneiss is younger than the Collins Hill Formation (called

Bolton schist). Rosenfeld and Eaton (1958) do not believe that the

doming was igneous, and hence favor derivation from metasediments

and metavolcanics. Due to the prevalence of plagioclase, quartz,

hornblende and/or biotite in both the Middletown and Monson, Lundgren

(1962) has grouped them together as Plagioclase Gneisses; which

infers a gradational (or conformable) contact to exist between them.

The relationship of the Collins Hill Formation to the

Middletown Formation is obscure in the immediate contact zone,
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although localized interfingering at the contact has led to theories

of a conformable sequence of Middletown upwards into Collins Hill.

Rosenfeld and Eaton (in Rodgers and Rosenfeld, 1959) have, however,

shown that an unconformity exists between the Middletown Formation

and the Collins Hill Formation, and that the Collins Hill Formation

occupies a narrow syncline flanked by older, anticlinal Middletown

Gneiss in parts. In addition, basal members of the Collins Hill

Formation show a conglomerate in some places along the contact with

the Middletown Formation.

The large, granitic pegmatites in the area were emplaced during

the last major metamorphism of the area, as evidenced by their lack

of regionally-influenced structures in their interior zones. They

have been injected into all the older basement formations, but are

most common in the Collins Hill Formation. Stugard (1958) estimates

that over 300 of 400 pegmatites mapped occur in the Collins Hill

(called Bolton). Pegmatites are also common in the Middletown and

Glastonbury, and less common in the Monson, but only one pegmatite

has been definitely shown to occur in the Maromas. This distribution

of pegmatites within the various formations cannot be used as a

stratigraphic indicator as the factors involved in the genesis of

these pegmatites are unknown. For example, that the Collins Hill

Formation contains most of the pegmatites is not surprising as a
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schistose rock is more likely to be subjected to intrusion than

the more resistant granitic and basic gneisses.

Summary and Conclusions

Contacts between many of the basement formations in the

Connecticut section of the Bronson Hill Anticline are obscure, and

clear effects indicating intrusion or conformability have been erased

by the repeated metamorphisms. Thus apparent intrusive phenomena,

such as schlieren of a proposed host rock within the intrusion, can

also be explained by migmatization and by other metamorphic pro-

cesses. Similarly, these metamorphic events can erase evidence of an

unconformable or conformable sequence, and alter original intrusive

evidences so that they appear otherwise. Prior to the work of

Rosenfeld and Eaton (op. cit.)# the above mentioned factors led to

numerous stratigraphic sequences. These proposed sections are re-

viewed in Rodgers and Rosenfeld (1959).

Due to the correlation of the New Hampshire section of the

Bronson Hill Anticline with the Connecticut section, the Strati-

graphic Column given in Table 1.1 is probably valid for all but the

Maromas Granite Gneiss, the Glastonbury Gneiss, and the Monson Gneiss.

The Maromas and the Glastonbury are post-Middletown, and the
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Glastonbury is pre-Great Hill (?) . The Maromas may be post-Collins

Hill (Eaton, written communication), but the relation of the

Glastonbury Gneiss to the Collins Hill Formation can only be specu-

lated due to obliteration of contact effects between them by

metamorphisms.

Considering all these possibilities, Table 1.2 shows a more

realistic stratigraphic column for the area than Table 1.1, but

the obvious conclusion to be reached from examination of either

column is a need for more exhaustive field and petrographic study

and/or use of a more powerful method of investigation.
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TABLE 1.2

Stratigraphic Unit Possible Geologic Age

Pegmatites

Camp Jenkins Formation

Mine Brook Formation

Great Hill Formation

f? .-. Maromas Gneiss

Collins Hill Formation

Glastonbury Gneiss

Midd4etown Formation

Monson Gneiss

Late Ordovician (?)

Ordovician (?)

Siluro-Devonian



CHAPTER TWO - Theory of Rb-Sr Geochronology

Introduction

87 87Rb decays naturally by beta-minus emission to Sr but the

decay constant for this reaction is not known precisely. Aldrich

-11 -l
et al. (1958) have proposed\= 1-39 x 10 yr based on compaxi-

son of Rb-Sr age in materials for which the age is known by other

absolute techniques. Flynn and Glendenin (1959) and Glendenin (1961)

-11 -l
have found a value of .= .47 x 10 yr by direct counting.

However, there is still some uncertainty in the low energy end of

-11 -
the beta spectrum, so that, unless stated otherwise,A 1.39 x 10 yr

will be used until a firm value is established.

Although all elements are radiogenic, the only Sr isotope which

87 87shows any variation is Sr due to the Rb decay with a measurable

84 86 88
half-life; and Sr , Sr , and Sr are constant in abundance within

87 87limits of current experimental techniques. The Rb -Sr method of

age determination is applicable to many geologic problems where other

40 4o
absolute age techniques have difficulty. For example, the K -Ca

method is often limited in use because of the great abundance of

40 4o 40
common Ca, the K -Ar method is limited because of Ar diffusion

during diagenesis and/or metamorphic events, and the (U238-Pb20)

(u235-Pb2O7)(Th 232Pb 20) methods are limited because (a) U, Pb, Th

are not common rock-forming constituents, and (b) U and Pb often show
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similar geochemical trends in different rock types (e.g. Pb/U ratio

approximately constant). Rb and Sr, however, are strongly dif-

ferentiated from each other during many natural processes, as Rb is

enriched in alkali members of a differentiated series whereas Sr

will be enriched in alkaline members. This geochemical dissimilarity

allows investigation of a great many geologic problems providing an

accurate model is applied. These models will be discussed below.

Commonly Used Formulae for Rb-Sr Age Dating

The basic equation in this case is:

Sr = Rb 87(e - 1) (2.01)

where Sr7 is the number of daughter atoms at time, t, and Rb8 7

the number of parent atoms at time, t, and Ais the decay constant.

In any system containing non-radiogenic Sr, we have:

Sr = Sr + Rb (e Xt 1) (2.02)

which is entirely rigorous. For convenience in measurement,

dividing each term by the abundance of stable Sr yields:

87 86 87 867 A(Sr /Sr ) = (Sr /Sr ) + (Rb7/Sr')(e't-1) (2.03)

but e X t -1 ' t when A t << 1, so Equation (2.03) becomes:
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(Sr 87/Sr 86 (Sr87 /Sr + (Rb 87/Sr )A t (2.04)

Application of Equation (2.04) results in a maximum error in age of

2.1 per cent for t = 3.0 b.y. and 3.4 per cent for t = 1.5 b.y. due

to the logarithmic approximation involved. Compston and Jeffery

(1961) propose use of a function 9 =A t to eliminate this departure

from linearity. To show this, let us re-write Equation (2.04) as:

87 86 87 86
(Sr /Sr' ) - (Sr /Sr ) (205)

(Rb8 /Sr 86 )

and the function 9 is very interesting, because from Equation (2.01)

it is obvious that 9 = Sr /Rb also, which gives a measure of Rb

enrichment or depletion relative to Sr. Nicolaysen (1961) has pro-

posed usage of (Sr 8 /Sr 86 ) as ordinate plotted against (Rb8 /Sr86 )

as abcissa, which defines a straight line known as the isochron,

and all samples of equal age and initial (Sr 87/Sr) ratio will fall

on this isochron. The age represented by the isochron is obtained

by dividing the tangent of the angle betteen the isochron and a line

parallel to the abcissa by \. The method is quick and accurate for

this investigation, and is especially convenient for accurate deter-

mination of the initial (Sr /Sr ) ratio, which is of extreme im-

portance in most cases, The (Rb /Sr ) ratio is an atomic ratio and

not measured directly, but may be calculated from the measured weight
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ratio by the relation:

(Rb /Sr )at. = k(Rb/Sr) .(206)

where k is given by

(At. Wt. Sr) (Rb 87/Rb)at
k = (2.07)

(At. Wt. Rb) (Sr /Sr)t

but only the terms involvingRb are constant for all cases, as the

variation in Sr due to Sr results in different atomic weights

and (Sr /Sr) fractions for the Sr in every sample. Figure 2.01

shows the variation of k as Sr increases in a system. Equation

(2.07) should then be more properly written as:

k (0.003255) (At. Wt. Sr)/(Sr /Sr)t (2.08)

and this Equation (2.04) may then be written for a solution of t as:

(Sr /Sr ) - (Sr /Sr ) (2.09)
(Rb/Sr)t k

Importance of the Initial (Sr87/Sr86 ) Ratio

General

A value of Sr(87/86) initial = 0.71 is commonly used in either

Equations (2.04) or (2.09) when the graphical method is not employed.

For samples with very high Sr(87/86) ratios this value is approxi-

mately valid, but may lead to serious errors for samples in which
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the Sr(87/86) ratio is relatively close to 0.71. For example, let us

consider three samples from the same original reservoir of an equal

Sr(87/86) ratio = R. but with different (Rb/Sr) ratios. Now assume
1 ~wt .

these samples to be removed from this reservoir and allowed to remain

as three isolated systems from to, time of removal from the reservoir

(e.g. = time of homogenization, time of emplacement, time of deposi-

tion, etc.). After t m.y., the span from to to now, the three samples

will define an isochron (using the Nicolaysen, op. cit., coordinates)

as shown in Figure 2.02. Let us now consider the three cases (1)

R i= 0.71, (2) Ri> 0.71, and (3) R. ( 0.71. Case (1) shows that

tA =t t but Case (2) indicates the apparent ages tA tB > t

and Case (3) the apparent ages tA <tB <t C. These relations are shown

in Figures 2.02, 20.3, and 2.04. The point of emphasis in the above

discussion is the importance of the accurate determination of the ini-

tial Sr(87/86) ratio by multiple analyses on the same system rather

than by assuming the value 0.71. This is particularly true in samples

of low Sr(87/86) ratios and low (Rb/Sr)4 ratios but of a relatively

old age (e.g. Cretaceous or older for most cases).
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Figure 2.02
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Initial Sr(87/86) Ratios in Various Reservoirs

The terminology introduced by Hurley et al. (1962) will be used

in this section. This includes the following definitions:

"Basement- The continental crystalline rocks presently accesible
to sampling or to secure inference as to composition, i.e., the
top 5-10 kms. of the continents as a minimum, excluding the sedi-
mentary veneers.

Sial- Material with the average composition of the basement, i.e., with
greater proportions of alkalis, silica, and alumina than basalt or the
mantle.

Subsialic Source Region- The source, at some time or other, of sial by
differentiation with enrichment of the Rb content and of the content
of other alkalies, silica, alumina, etc. Its composition is not di-
rectly observable. Its Sr(87/86) ratio (Rm) can be estimated for
pas't time by measuring the Sr (87/86) ratio in igenous rocks of deep
seated origin of various ages. So far these estimates have indicated
that there is a low degree of variability relative to the Sr(87/86)
variations in the sialic crust (Faure and Hurley, 1962). This source
region is presumably below the M discontinuity, but it could be
either above or below as long as its composition is no less mafic than
basalt.

Primary Age- Time since the material developed a greater Rb/Sr ratio,
and so the beginning of a greater Sr(87/86) ratio, than that in the
source region, by differentiation, metasomatism, or other processes,
i.e., first became part of the sialic crust. Gradual increments of

Rb by repeated reworking are treated as a weighted average over the
time span involved.

Geologic Age- Age of emplacement of material in its present site,
structural form, or degree of metamorphism. For igneous rocks it is
time of intrusion or extrusion; for sediments, time of deposition;
for metamorphic rocks, time of metamorphism or metasomatism. It is
determined by geological relationships or age measurements by the
best of the radioactivity measurements on single minerals."

(I) Rb and Sr in the Subsialic Source Region

Gast (1960) and Faure (1961) have independently arrived at an

initial Sr(87/ 8 6) ratio for the subsialic source material equal to
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0.708, based on the analyses of continental and oceanic basalts;

presumed to have been derived from near the M discontinuity. The

probable limits of this 0.708 value are 0.705 to 0.710 (Faure, 1961).

Hurley et al. (1960) also report initial Sr( 87/86) ratios within these

limits for other igneous rocks of presumed deep-seated origins. The

absolute value of 0.708 is not meant to be interpreted as an infal-

lible number for the subsialic source region, but rather as being

typical of values from this region.

The (Rb/Sr) ratio of the subsialic source region is estimated

as approximately less than 0.1 from the recent data presented in

Faure (1961) and in Hurley et al. (1962). While more analyses are

needed to make a more accurate estimate of this Rb/Sr ratio, the

present data are sufficient to show that the ratio is very low and

thus the Sr(87/86) ratio of this region is not increasing at any

appreciable rate.

(II) Rb and Sr in the Sialic Crust

Gast (1960) has estimated the average Rb/Sr ratio of the sialic

crust to be 0.33, and Faure (1961) has estimated the same ratio to

be 0.25. Both of these estimates are well above the maximum 0.1

ratio taken to be indicative of the near-mantle region.

Faure and Hurley (1963) estimate that the Rb/Sr ratio may be

3- or even 5-fold greater in the crust than in the mantle. The
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source of this enrichment must ultimately lie in the mantle, and

suggests cumulation over long periods of time with subsequent re-

working of material derived from the mantle.

Rocks which have been derived from the sialic crust (e.g.

acid differentiates, sediments, etc.) would normally be expected to

have a higher initial Sr(87/86) ratio than the near-mantle derived

because of the excess of Rb in the system. However, evidence has

been presented for rocks presumably derived from the sialic crust

(e.g. granites, granodiorites, etc.) which show initial Sr(87/86)

ratios close to the basalt range, 0.708 - 0.002. Sedimentary rocks

present more of a problem, but it is probable that the initial

Sr(87/86) ratio at the time of deposition can be closely approxi-

mated by the ratio in sea water due to the incorporation of sea

water Sr into the non-clastic material of the aggregate sediment.

This reguires that the clastic material not have too great a

Sr(87/86) ratio and thus infers lack of a great primary age at the

time of sedimentation. K-bearing phases are generally more re-

sistant to weathering than Ca-bearing phases, and a higher Sr(87/86)

ratio than that in sea water may result. However, it is known that

K is commonly released during the weathering cycle, and this may

* 87
well be the case for Rb and some Sr due to their occupancy in

K-sites in the primary phase. In addition, the contribution of Sr
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in K-bearing phases to the total system is small. By consideration

of the above arguments, Hurley et al. (op. cit.) have suggested a

value for sea water of 0.712, and have also estimated the initial

Sr(87/86) ratio on rocks derived from the sialic basement includes

both re-worked crustal material and material derived from the sub-

sialic source region. Due to uncertainties in the theoretical

treatment, Hurley et al. (op. cit.) state that:

"The reworked sial must be very low in abundance if it is of great

age at the time of incorporation, and conversely, if it is young'at

the time of incorporation it can be a major proportion of the newly

formed basement."

The authors suggest that the second of these staterpents is more

Irobable, and that therefore much of the newly incorporated sialic

material cannot have' gone through an extensive length of time

(e.g. greater than 400-500 m.y. maximum) between original formation

and time of sedimentation.

The Whole-Rock Rb-Sr Method

Two fundamental assumptions are needed for use of the whole-

rock method; they are (1) the megasystem considered (e.g. the en-

tire body of rock or the formation) has remained closed with respect
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to gain or loss of both Rb and Sr since time of formation, and (2)

the megasystem was homogenous with respect to Sr(87/86) at time of

formation. Any whole-rock sample within the megasystem which is

sufficiently large so that it may be considered closed to gain or

loss of Rb and Sr may be referred to as a local (closed) system. The

size required for a whole-rock sample to represent a truly closed

system varies from megasystem to megasystem, and there is no safe

empirical rule to apply in field sampling of such megasystems.

However, based on the work of Phinney (1959) and others, a sample

with smallest mean diameter equal or greater than ten times the

mean, diameter of the largest mineral grain within the sample is

probably a safe working limit for most fine- to medium-grained

samples. The reason for selecting such an apparently large sanple

is due to the possibility of intergranular diffusion even in cases

where no metamorphism has occurred. Thus a Rb-rich grain could

* -87
lose Sr along a grain boundary and then be separated from the

adjoining grain such that neither represents a closed system;

but if the sample selected is sufficiently large there is an egual

probability of Sr gain and loss along the entire boundary of the

local system. Several such local systems (e.g. Figure 2.02) will

define the whole-rock isochron and in turn allow the initial
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Sr(87/86) ratio to be determined by extrapolation.

Theoretical Models

(I) Unmetamorphosed Closed Megasystem and Local Systems

Natural examples of this type are intrusives and volcanics. A

suite of whole-rock samples of different Rb/Sr ratios will define

an isochron as shown in Figure 2.05a, and this isochron will also

be unique for any mineral separate from any whole-rock. Figure

2.05b shows the growth curves (development curves) for the samples

which define the isochron in Figure 2.05a. In Figure 2.05b it is

shown that all curves intersect R at t . This greatly simplified

model dates the time at which the megasystem was homogenous, that

is, the time at which the Sr(87/86) ratio = R in any local system.

This is very easy to envisage in a melt, for example. The value

of the initial Sr(87/86) ratio gives some idea of the material

before it was homogenous.

(II) Singly-Metamorphosed Closed Megasystem

(A) Complete Re-distribution of *Sr8  in a Local System

The whole-rock isochron for such a case is shown in Figure

2.06a and is similar to Figure 2.05a, but the growth curves shown in
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Figure 2.06b for one whole-rock and three of its constituent minerals

is different from Figure 2.05b. This is due to the complete homo-

genization of the Sr(87/86) ratio in the closed local system at the

time of metamorphism, among the various minerals within the local

system. The initial Sr(87/86) ratio defined by the mineral isochron,

Rim, is significantly higher than R . Figure 2.06b shows that the

whole-rock is unaffected by the metamorphism. It is again evident

that, for the minerals a and b in whole-rock A, that use of any

other initial Sr(87/86) ratio than R. will result in two very dif-

ferent ages. For example, if R. is used, then t > tAta; and

* 8
failure to consider redistribution of *Sr and the usage of

"normal" Sr(87/86) = 0.71 leads to anomalous results.

(B) Incomplete Re-distribution of Sr in a Local System

In this case, the whole-rock isochron is again unaffected

and similar to Figures 2.05a and 2.06a, but the minerals from any

local system will probably not define an isochron. Figure 2.07a

shows the apparent mineral isochrons which could be constructed

from any two mineral points which would yield false ages. This

emphasizes the fact that mineral isochrons defined by only two
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points, unless substantiated by K-Ar or other absolute means, may

give a false age of metamorphism; and at least three points may be

necessary to define an isochron for any one local system. If

several such local systems are analyzed, then a test for accuracy for

any one mineral isochron can be made by checking the parallelism with

the other mineral isochrons.

III Polymetamorphosed Closed Megasystems

In this case the whole-rock method still allows determination

of the original time of emplacement as the subsequent metamorphisms

* 87
have caused redistribution of Sr within the local systems only,

and the degree of completion of redistribution of *Sr within any

local system does not affect the closure of the local system. Let

us assume a reservoir of R at t which has undergone three sub-
i o

sequent metamorphisms. Figure 2.08 shows the growth development

curves for the example three minerals, assuming that Case (II-A)

holds for each metamorphic event, although only the conditions for

(II-A) need hold at t . in order than the age of the last meta-

morphism be obtained.
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(IV) Continuously Cooling Megasystem

Consider now an intrusion into an older host rock. Case (I)

is an ideal model for closure of the megasystem after time of em-

placement; but does not consider the possibility that the cooling

* 87
rate can affect the distribution of Sr in any local system. The

possibility exists that the intrusive megasystem may remain at a

high temperature after initial emplacement such that crystallizing

minerals will lose Sr upon generation until the intrusive mega-

system rises and cools. This may be thought of as a continuous

process of diffusion of Sr during the cooling interval such that

apparent anomalous mineral ages result. The true initial Sr(87/86)

ratio is again given by the whole-rock isochron because of the closure

of each local system. However, observation of natural systems shows

that the minerals of the intrusive commonly yield the same age as the

minerals from the host rock despite lack of any metamorphic event.

This implies that the intrusive and the surrounding rock remained at

a significantly high temperature for some time after initial emplace-

ment. Consider now the probable equation for diffusion of *Sr in

a spherical medium:

D/a = D0/a2 exp(-E/RT)
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where a is the radius of the region in which diffusion occurs, and

E is the activation energy. E may vary between 30 to 70 kcal/mole

according to recent experimental work, but there is a break between

* 87 2
loss and retention of daughter Sr in the range of D/a from

10 1 7 to 10~19 which implies a small range of T (e.g. less than

500 C), and Rb-rich minerals would lose Sr 8 7 down to a certain T

(controlled by E) during the cooling process and then retain *Sr 87.

Figure 2.09 shows that by plotting t against 9 ( =Sr 87/Rb8 7) the

apparent discrepancy is normalized. Further application of this

approach implies that the growth curves shown in Figures 2.06b,

2.0'{b, and 2.08 probably also represent continuous changes near

any tm
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V Alkali-metasomatism in an Open Megasystem

The basic laws of geochemistry indicate that any alkali

metasomatism will have the effect of enriching the megasystem in

Rb, and that this enrichment will probably take place in or near

Rb-rich sites relative to Rb-poor (e.g. Ca-rich) sites. In any

natural system, this will have the effect of causing an isochron to

be no longer a straight line, but rather will be concave downward as

(Rb/Sr)t increases due to the added Rb. This is shown in Figure

2.10. A proportionate amount of Rb added to Rb/Sr-varying systems

such that the resultant isochron would be displaced to the right but

still linear is unlikely. That alkali metasomatism could cause an

increase in Rb in Rb-poor samples is not consistent with geochemical

partitioning of the alkali and alkaline-earth elements.

VI Sedimentary Megasystems

The primary problem of sedimentary (and metasedimentary)

systems is the probable lack of homogenization of Sr isotopes at

the time of deposition; because detrital material will have various

Sr(87/86) ratios whereas precipitated material will have the

Sr(87/86) ratio of the sea water of the environment. The Sr(87/86)

ratio of the detrital grains will probably be higher than that of

sea water as K- (and Rb-) bearing phases are more resistant to
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weathering than Ca-bearing phases. Whitney (1962) states (p.42)

"The presence of these two kinds of Sr, in varying proportions, will

cause a difference of the initial Sr(87/86) ratio in samples of the

same age. This makes impossible a direct calculation of an age from

the isochron diagram. The situation is further complicated by the

fact that varying amounts of Rb will be added to the detrital material

by adsorption or fixation." If all the Rb and Sr in a sediment are

authigenic, then a true isochron age will result, but otherwise the

"age" will be too old because of the inherited high Sr(87/86) ratio

of the detrital material. Whitney (1962) and Compston and Pidgeon

(1962) discuss this problem in detail. The K-Ar studies on various

size fractions in shales by Hurley et al. (1962) and Evernden et al.

(1961) indicate that the smallest size fractions are largely authi-

genic, and thus are also probably authigenic with respect to Rb

and Sr.

(VII) Models for the Origin ofPegmatites

(A) Magmatic Injection from an Unexposed Source Material

This model is simple if there is no subsequent metamorphism

fter the time of emplacement. The pegmatite minerals will define

an isochron that may parallel that of the host rock mineral isochron,
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but will not be parallel to the host rock whole-rock isochron.

The initial Sr(87/86) ratio defined by the pegmatite mineral isochron

may or may not be higher than that of the host rock dependent on the

source of the latter. If the pegmatitic material is derived from deep

in the crust (near the subsialic source region) the initial Sr(87/86)

ratio will be low (near 0.710), but if derived from material which

has undergone a significant pre-history in the sialic crust before in-

jection the initial Sr(87/ 86) ratio will be greater than 0.710, and

probably greater than that of even a sedimentary host. Relations for

a hypothetical case are shown in Figure 2.11.

(B) In Situ Diffusional Theory

This theory requires that dl of the pegmatitic material has dif-

fused from the surrounding wall rocks, with material continually

diffusing into the pegmatite as regional forces allow cavities to

occur. Host rock facies nearest the pegmatite should show the

greatest effect of this diffusion unless the megasystem is open,

that is, if an equilibrium distribution of Sr87 is achieved. In

this case, host rock whole-rock and mineral samples, pegmatite

minerals will define a unique isochron with a high initial

Sr(87/ 86) ratio.
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(C) Injection of Re-mobilized Material

This model applies to pegmatites which have been injected

from a homogeneous source material, but does not specify how the

source material developed. Thus both partial fusion of pre-

existing rocks, or accumulation of material by secretion may account

for the source. It also does not specify the mechanism of injection,

but does require that there be no relationship with the enclosing

rocks in the immediate vicinity. The necessarily high initial

Sr(87/86) ratio (e.g. because of a significant pre-history in the.

sialic crust) distinguishes this case from the model of Case (VII-A).

The possibility exists that such a pegmatite may originate by partial

fusion of rock similar to its present host rock, but this would only

affect the R. of the pegmatite and not that of the country rock.
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(VIII) Continually Homogenizing Source

Consider now a magma chamber or some other type of reser-

voir in which material is removed periodically, and that the

source material re-homogenizes after after any such removal of

material. Such a case may be represented, say, from successive

lava flows of different composition from the same vent; or

by successive intrusions from the same parent magma chamber.

Figure 2.12 shows the predicted features for such a case, and

it is noted that the initial Sr(87/86) ratio of each periodic

removal of material from the parent source increases because

of the continual re-homogenization.

Figure 2.12

Sr87

Sr86

tA t tB t 0C
RB
RA RC > RB> RA

Rb87/Sr86 -*
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Relation of the Sialic Crust to the Subsialic Source Region

If most of the sial had been derived from the subsial during one

great episode of differentiation at a very old age of greater than

3000 m.y. ago, then subsequent processes would show no close associa-

tion of primary age and geologic age. For example, a reworked section

would yield a very high initial Sr( 87/86) ratio (e.g. 0.720 to 0-730

or greater if reworked Precambrian material). These possible high

values are inconsistent with measurements on some of the more recently

formed sialic components, which commonly show initial Sr(87/86) ratios

near 0.708. In addition, Hurley et al. (1962) show that a close re-

lationship between primary age and geologic age exists. Figure 2.12 is

a reproduction of their (ibid.) Figure 1, in whick *Sr87/Rb87 is

* 87 87plotted Versus geologic age. Sr /Rb is used as the ordinate

because "this ratio gives a measure of the aggregate history of Rb

enrichment relative to Sr, as it has increased over and above the

Rb/Sr ratio in the subsialic source region." By thus using Rb en-

richment relative to Sr as a tracer, it suggests continual evolution

of sialic basement material from the subsialic source region through-

out geologic time such that Primary Age is ody slightly greater than

Geologic Age. A theory requiring one ancient evolution of sialic

material and subsequent reworkings to give the variance in geologic
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ages observed today should not give the straight line of Figure 2.12,

but rather vertical scatter of points about an approximately

horizontal line with an extremely high Sr 87 8 As this8r /Rb 87ratio.Asti

type of relationship has not definitely been shown, a continual

evolution of sial from subsial is logical, because the slope of

Figure 2.12 is close to the ideal slope (e.g. within six per cent
-11 -1

of A = 1.11-7 x 10 yr , used in the construction). The slight

deviations from this slope do not alter the main conclusion and are

probably due to uncertainties in the distribution of metasediments

in the basement. Lanphere et al. (1962) have presented an example

*87 87in which Sr /Rb is anomalously high relative to a Cretaceous

Metamorphic Age; but as the premetanorphic age is Precambrian, this

evidence is not in conflict with the foregoing statements, and is

as a redistribution of * 87interpreted asardsrbto fSr within an open megasystem.



- 113 -

CHAPTER THREE: Experimental Procedures .and Errors

Field Sampling

Field sampling is probably one of the most important steps in a

successful Rb-Sr analysis, and great care has been taken to insure

that representative samples were obtained. For pegmatitic material,

fresh in place mineral samples were obtained by grab sampling of

carefully selected dump material. Whole-rock samples from the other

basement rocks were taken on trends normal to the regional foliation,

and of sufficient size to insure that a local system could be assumed

(see discussion, page 96, this report). A sample of smallest diameter

at least ten time s greater than that of the largest mineral diameter

was judged to be sufficient. Only fresh material showing no evident

sign of weathering was collected, and thin sections were prepared for

most of the samples to insure that no introduced alteration products

were present.

Sample Preparation

Samples were first run through a coarse jaw crusher, care being

taken to collect all material passing through the crusher. This

coarse material was then crushed and mixed for ten minutes in a pre-

contaminated Pica Blender Mill (Pitchford Scientific Instruments

Corporation) which reduced all of the minerals, including micas, to a

minus 200 mesh size. When more than one cylinder was required for this

grinding, the products were combined and rolled and thoroughly mixed.
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The resultant powder was stored in a clean bottle. The cylinders

were cleaned by a thorough scrubbing followed by a distilled water

rinse and were dried by an acetone rinse.

Rb/Sr Ratio Determination by X-Ray Spectography

(Rb/sr)t ratios have been determined by X-Ray Spectrographic

techniques for some samples; and although this analytical method is

subject to several sources of error, agreement with samples of previous

isotope dilution (Rb/Sr)t ratios indicates the accuracy to be t 5

per cent. One of the main problems in application of this technique is

the elimination of the matrix effect, and Hower et al. (1961) list

seveh'al contributing factors: "(1) Absorption of the incoming

(polychromatic) beam, (2) absorption of the outgoing (monochromatic)

characteristic radiation of the analysis element, and (3) enhancement

of the characteristic radiation of other elements by the characteristic

radiation of other elements in the sample or in each other." The last

of these criteria may be neglected if there is no concentrated amount of

an element with a higher atomic number than that of the analysis ele-

ments present (e.g. Rb and Sr); but this is true only if a truly

homogenuous matrix is analyzed. Shalgosky (1960) recommends grinding

of a sample to minus 200 mesh to eliminate such matrix effects, but this

may be an oversimplification because of the possibility of random dis-

tribution of particles with abnormal concentrations of either Rb or Sr
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or any element which may enhance either. The problem of homogeneity

is best handled by conversion of the analysis powder to another form,

and for Rb and Sr work this is best accomplished by conversion of the

rock powder to a fluoride matrix by slow digestion of the sample in HF.

This insures (a) a greater homogeneity of the sample, and (b) increase

of the intensity of the Rb and Sr due to the elimination of the SiO2

diluent, which is evaporated as SiF4.

The intensity ratio of any two elements, a and b, is then

given by:

I = , K t
r f

where

f = no. atoms of analysis element/total no. atoms

Kt = constant which includes fluorescent yield factors
for specific wavelengths of f' and ft '.

The (f'/ft4 ratio depends on K? matrix variables, and a weight

conversion factor, such that:

(Rb/Sr)w & (Rb/Sr)Int K

There is no warranted experimental proof that K / f (chemical

composition), yet application of a K-value determined by periodic

analysis of a standard during any set of analyses is probably valid

0- .--- -- -.-I - - -- - , -
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providing the matrices of standard and sample are equivalent. The

G-1 Standard (Westerley Granite) was used as standard during this

investigation, but only after it had been converted to a fluoride

matrix.

The machine used was a Norelco vacuum unit with a Mo target tube

run at 50 Kv and 40 mA, with a topaz analyzing crystal and a 0.004

inch entrance collimator. Fixed-count determinations were accomplished

for Rb and Sr and three background positions for each sample. The

background was measured at 41.00 020 384780 29, and 36.58029; and Sr

was measured at 37.66029 and Rb at 39-91 29. The time (in seconds)

was ,recorded at each setting, and counts/second was determined for

all positions. A background correction curve was plotted for

counts/second versus 029, and the background value at 39.91 (Rb) and

at 37.66 (Sr) were subtracted from the recorded values at these

angles. The background working curves were remarkably uniform with

few exceptions, and these exceptions were re-run.

Prior to refined X-Ray Spectographic or Isotope Dilution

Procedures, samples were run on the Norelco spectograph to give an

estimation of the Rb/Sr ratio. This was accomplished by continuous

rapid scanning in the 029 range of 41 to 36. These rapid scans are,
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in general, subject to large error, and are also determined on mineral

or rock powders, and thus cannot be trusted for fine analytical work.

Table 3.1 shows a comparison of (Rb/Sr)4 ratios which have been

determined by both isotope dilution and by fixed-count X-Ray

spectography:

TABLE 3.1

COMPARISON OF (Rb/Sr)t RATIOS BY ISOTOPE DILUTION AND BY X-RAY SPECTO.GRAPHY

(FIXED COUNT)

(Rb/Sr)I.D,

44.6

1.62

0.82

1.61

0.37

17.14

(Rb/Sr) X-Ray

43-4

1.55

0.78

1.64

0.34

16.9

Sample

R4720a

R4791b

R3053a

R3053c

R5o356c

R5058a
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Chemistry

Procedure for Isotope Ratios

Pre-ground and mixed samples for isotopic ratio measurements were

treated as follows: (1) The stored sample was spread on clean paper

and a sample for dissolution taken by either cone and quartering or

by random grab sampling, and the former process was always employed

for samples with a high (e.g.> 5) Rb/Sr ratio. The sample was then

transferred to a Pt dish which had been cleaned by boiling 6N ECl

(discard) in it followed immediately by washing the dish thoroughly

with hot tap water and cleanser, and by successive thorough rinsing

with Vycor Distilled 2N HCl, and demineralized H20. (2) To the con-

tents of the Pt dish, approximately 10 ml 70 per cent pure reagent

HC10 and then 25 ml pure reagent HF were added under a Perchloric

Acid Resistant Chemical Hood. (3) The Pt dish plus contents was

then transferred to a hot plate in the hood with the automatic control

set to effect rapid evaporation without boiling. This evaporation was

completed to near dryness until no obvious perchloric acid fumes were

observed over the Pt dish when there was no evident residue. When

residue persistedthis step, it was repeated. The assurance of com-

plete volatilization of the BF is monitored by this step. (4) After a

short cooling period off the hot plate, an excess of 150 ml demineralized
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H20 was added to the contents of the dish and this was evaporated

slowly until a mush of liquid and alkali perchlorate crystals persisted.

If the preceding step resulted in a dry residue, it became necessary to

add some (a few ml) Vycor Distilled 2N HCl to the dish to insure solu-

tion. (5) The contents of the Pt dish were allowed to cool either in

the Pt dish or in a clean 100 ml pyrex beaker for at least twelve hours.

(6) After cooling, the contents of (5) were then filtered into a clean

100 ml beaker (Filter Paper: Schleicher and Schuell, no. 576, 100

circles/cm). (7) To the filtrate, a few ml of radioactive Sr 85

Tracer was added until the onitoring scintillation counter registered

at least 2-1/2 to 3 times background. The tracer could have been added

earlier to insure a complete filtration (pre-Step (5)), but (a) work of

Powell (1962) and others has shown the Sr to occur in the filtrate, and

(b) the possibility of boiling of Sr -bearing solutions could con-

ceivably contaminate another's work. (8) The filtrate plus tracer

was then diluted to approximately 20 ml with Vycor Distilled 2N HCl

and put through a cation exchange column. The sample was placed on the

column either by careful pipetting onto the resin surface or by slowly

pouring the sample over a glass wool plug above the resin level. It is

imperative that the top of the resin (Dowex 50W-X8, cross linked, 200-

mesh) is not disturbed during this transfer of sample to colun.
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(9) The sample in solution was then allowed to infiltrate the resin

top and then 25 ml of eluant Vycor Distilled 2N HCl was carefully added,

and the walls of the column were carefully washed. This step was re-

peated after the eluant plus remaining sample had entered the resin.

(10) After the sample was definitely below the resin top by 2 or 3

centimeters, Vycor Distilled 2N ICl was added until the sample had

passed through the column. Approximately 500 ml were required to

complete this passage for a typical column, but %.^ 450 ml was required

for new, short columns, and over 600 for old, packed columns. In all

cases, the position of the sample on the column was determined by

monitoring with a scintillation counter. (11) When the sample had

reached within one inch of the bottom of the column, collection of

eluant and/or sample plus eluant was started. To insure clean sepa-

ration of Sr from Ca and Ba, several beakers were used, with approxi-

mately 20 to 50 ml per beaker. However, when the monitoring scintilla-

tion counter was able to more rigidly control this recovery, fewer

beakers were collected. To insure against any possible isotopic

fractionation of the column, beakers were collected immediately before

and after the Sr had passed through the column. This effect is probably

negligible because previous work has shown that addition of these

beakers to any subsequent sample does not alter the other results.
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(12) The beakers were then evaporated to dryness and the Sr was

concentrated into one beaker. (13) After concentration, the beaker

plus sample was diluted with Vycor Distilled 2N HCl and again evapo-

rated to dryness. The sample was either then stored or prepared for

the mass spectrometer. (14) For the latter purpose, the sample was

dissolved with demineralized H20, and then a few small crystals of

ammonium oxalate were added. This induced precipitation of Sr (and Ca)

oxalate. If the precipitate was extremely small, (e.g. less than 2 or

3 grains) it was evaporated to dryness after addition of 1 or 2 ml of

Vycor Distilled HNO 3, and prepared for mass spectrometrical analysis.

If the precipitate was larger, then it was washed several times with

demineralized H20., and the supernatant liquid above the precipitate

was removed with a clean glass capillary tube attached to the base of

a hypodermic syringe. (15) Either the oxalate precipitate or the

nitrate concentrate was then carefully placed in the center of the

filament of the mass spectrometer source. Evaporation was aided by

passing a small current through the filament. (16) After the sample

had been precipitated on the filament, the current was raised momen-

tarily to red heat and then lowered. This step drives off much unde-

sirable excess gas and insures that the sample is firmly placed on the
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filament.

Discussion of the Oxalate and the Nitrate Methods

The oxalate method allows for sufficient washing to remove Rb

which may be present, but the precipitate does not adhere as well to

the filament surface as the direct nitrate precipitate. However, the

nitrate method offers greater possibility for contamination by Rb, and,

unless great care is taken during the precipitation, the sample com-

monly will run to the posts and thus contaminate them. The emission of

Sr from both methods is equivalent and neither method offers any unique

advantage over the other. The oxalate method was employed during this

investigation to reduce chances of contamination and because the fila-

ment is much easier to clean after an oxalate-mounted run than a nitrate-

mounted run. Isotope dilution analyses for Rb were always undertaken by

the nitrate method because the filament was always discarded after each

run and problems of cleaning were not necessary.

Procedure for Isotope Dilution Analyses

In isotope dilution analysis greater care is needed in sample

preparation and weighings because'the solutions must be spiked
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quantitatively.

(1) After the carefully weighed sample is in the Pt dish,

87 86
Rb and/or Sr spike solutions were added to the dish. The amount

of spike added and the concentration of the spike needed were esti-

mated from quick-scan X-Ray Spectographic analysis of the samples.

All spikes were delivered from carefully calibrated pipettes. (2)

After spiking, the chemical procedure was similar to that used for

isotope ratio analysis until (Step 4, page 118) the perchlorate mush

was obtained. Most of the Rb is contained in the alkali perchlorate

crystals, but the Sr remains in solution. Separation of the Sr was

made at this time by decanting off the supernatant liquid containing

the Sr from the mush, and by washing the, remaining mush with either

demineralized water or ethyl acetate and repeating the decantation.

85To confirm separation of Sr during this step, radioactive Sr tracer

was occasionally added during the previous dissolution and was moni-

tored by the scintillation counter. Ethyl acetate and B10 4 form an

explosive combination at any high temperature, and the ethyl acetate

must be slowly evaporated over a low temperature hot plate or og the

steam bath before proceeding further. Demineralized water presents

no such problems, but sodium perchlorate is soluble in H20 and, for
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Na-rich, Rb-poor samples, may result in the Rb being transported with

the Sr during the decantation. However, due to the possibility of

explosions and possible laboratory contamination, the demineralized

water method is to be preferred when possible. (3) The Rb-rich por-

tion was then taken to dryness, fumed, and taken to dryness again after

adding a few ml of Vycor Distilled HNO3. It was then concentrated into

a 10 ml or 50 ml beaker and stored until ready to be placed on the

filament. (4) The Sr-rich portion was taken to dryness and fumed until

no white perchloric acid fumes were noticeable, and was then put into

slution with demineralized water. A few ml of Vycor Distilled 2N HC1

had to be added to complete solution in some cases. (5) The solution

was then allowed to cool, filtered, and radioactive tracer was added to

it. The solution was then placed on the exchange column and procedure

similar to that for isotope ratio analysis then followed.

Exchange Column Cleaning

The exchange columns were cleaned either by washing with 200 ml

of Vycor Distilled 6N HCl followed by 200 ml of Vycor Distilled 2N HCl,

or by washing with approximately 1000 ml of Vycor Distilled 2N HCl.

Both methods are satisfactory, but the latter procedure has the advantage



in that the life of the column is extended as 6N HCl causes the glass

wool plug in the bottom of the column to disintegrate.

Every step in the chemical procedures listed above must be

conscientiously and dilligently applied to prevent contamination of

the sample under preparation for analysis.
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Mass Spectometry

All isotope ratio analyses made during this thesis were run on

the mass spectrometer referred to as Snagtooth to eliminate any

possible inter-machine deviations, although such effects are probably

negligible (see Eighth and Ninth Annual Progress Reports for 1960,

1961, NYO - 3941, 2). Isotope dilution analyses were run on three

mass spectrometers (Snagtooth, Iris, Lulu) as the isotope dilution

runs do not require the same precision of mass ratio measurement.

Snagtooth is a 6", 600sector, solid source, single collector

mass spectrometer constructed at the Massachusetts Institute of

Technology. A model 400 EDA power supply (John Fluke Manufacturing

Company, Inc., Seattle) was used to supply ion accelerating voltages

of approximately 2100 volts. An AC voltage regulator (Model 500S,

Sorenson and Company, Inc., South Norwalk, Connecticut) was used to

stabilize the filament current. The ion beam is scanned by a motor-

driven automatic magnet sweep and amplified by a vibrating reed

electrometer (Model 30, Applied Physics Corporation, Pasadena,

California). Tantalum ribbon (Fansteel Metallurgical Corporation,

North Chicago, Illinois) of 0.001" x 0.003" dimensions was used as

filament material, spot welded to posts in the source.
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Pressures of less than 5 x 10 nm Hg were obtained during

operation by a Hg diffusion pump of 80 liters/see. capacity (H. S.

Martin Company, Evanston, Illinois) using a liquid Nitrogen cold

trap, backed by a mechanical fore-pump (Duo-seal Pumps, Welch

Scientific Company, Chicago). A 25 my full scale, 2 second sweep,

Brown Electronic Strip Chart Recorder (Brown Instrument Company,

Philadelphia) was used to record the amplified ion currents.

Teflon gaskets were used for the vacuum seal in the source, and

an aluminum gasket in the collector. The teflon gasket in the source

is preferable because it (1) gives a good seal, (2) eliminates the

stress on the mass spectrometer tube resulting from strenuous over-

tightening of bolts, (3) can be used for many runs whereas a new Al

gasket must be used for each run, (4) can be loosened or tightened

as necessary to improve the seal, and (5) are easy to machine.

After a vacuum of less than 10 mm Hg was obtained, usually

after 15 to 20 minutes as measured by an ion gauge (Type DPA 38,

Consolidated Electrodynamics Company, Pasadena) , the ion gauge was

degasse 4 for approximately five minutes. Current was then passed

through the filament and increased until a conditioning temperature

had been obtained, care being taken to keep the pressure less than
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2 x 105 mm Hg at all times during the raising of the filament current.

For Sr analyses, the settingswere approximately 45v, 2.0 to 2.3 amps,

and for Rb, 15-20 v, 1 amp. These settings give temperatures well be-

low those necessary for the emission of Sr and Rb, respectively. For

isotope ratio analyses, the sample was conditioned for at least two to

five hours, and occasionally longer, until the pressure was less than

3 x 10-6 mm Hg. Pressure was monitored to insure against arcing or

erratic emission. By the tlme adequate Sr peaks were obtained there

generally was no mass 85 peak observable on the 10 my scale indicating

Rb, but if so, the sample was conditioned further at a higher temperature

that, kept the Sr peaks level or growing slowly while the Rb peaks died.

Even when Rb did not present a problem and a working pressure was ob-

tained quickly, conditioning was still found to be necessary because

it helps stabilize the processes involved in thermionic emission and

thus helps develop a better and longer performance during the run.

After conditioning, the filament current was raised until Sr emission

gave peak heights greater than 2-3 inches for measurement and the run

seemed stable. During this thesis, most runs were made on the 30 my

scale for Sr (87,86) and on the 300 my scale for Sr (88). The 10 my

and 100 mY scales were not used, unless sample depletion made it
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necessary, due to background noise. However, Powell (1962, p. 132)

reports no difference in answer on the Standard SrCO using both scale

pairs during the same run. Some runs were made on the 100-1000 my and

300-3000 my scale pairs, but only when the temperature was in the

normal emitting range (and the intensity of the ion beam in these cases

was probably due to abundance of sample). Working at higher tempera-

tures was avoided when possible because the sample may vaporize so

rapidly that there is no time for a measurement to be made, and the

possibility of emitting Sr and/or Rb from cooler parts of the fila-

ment is increased. During the run, approximately 72 to 90 scans of

the mass 86 through mass 88 range were continuously recorded. This

lengthy duration of emission insures a proper set of statistics for a

precise measurement of an isotope ratio, as drifting or variation in

the ion source and other factors may cause fluctuation in the ion

beam. Occasionally fewer than this amount of statistics were ob-

tained because of sample and/or filament failure, and these runs

were repeated in most cases.

Sr isotope dilution analyses require less conditioning time and

were run at pressures of less than 10' mm Hg. because only mass 86

and mass 88 are recorded, and thus problems of resolution are greatly

reduced and Rb (which may contribute to mass 87) is not a problem. 42
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or more continuous scans were recorded for both Sr and Rb isotope

dilution analyses.

Rb isotope dilution analyses were made at a lower temperature

due to the lower temperature of emission of Rb from the filament.

Operating pressures of less than 10~5 mm Hg were satisfactory for

most runs, but conditioning periods varied from less than thirty

minutes to several hours. In the latter cases, the longer condi-

tioning period was necessary because of erratic emission probably due

to excess diluents in the sample and sample position on the filament.

Different basic source parts (e.g. box, half plates, plates)

were used for isotope dilution analyses and isotope ratio analyses

during most of the investigation. It was formerly thought safe to

keep all parts used for Rb analyses separated from parts used for Sr

analyses, but because of the possibility of contaminating the iso-

tope ratio parts with spike Rb and Sr from the Sr isotope dilution

samples this practice was discontinued.. The filament was discarded

after each Rb analysis, and was cleaned after Sr analyses (isotope

dilution and isotope ratio) by increasing the filament current to

maximum which resulted in rapid burning off of the Sr. The time

for cleaning varies for each sample, and is monitored by scanning the

mass 85 through mass 88 range-' and is considered clean when no peaks
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are observed on the 10 my scale at a temperature greater than that

reached during the run. Mass 85 and mass 87 commonly appear at the

maximum temperature after the Sr has been burned off because of emis-

sion of Rb from cooler parts of the source, but disappear when the

temperature is lowered. In general, five to seven Sr runs can be

made on the same filament before replacing it. New filaments always

show some Rb upon inspection, and may rarely show Sk also. The fila-

ment is cleaned as described earlier.

It was found to be sufficiently precise and considerably

quicker to record peak heights directly from a lined recorder chart

rather than wait until the end of the run and then construct baselines

and measure each peak with an engineering scale. Baseline by the di-

rect recording method was made as follows: The mass 86 and mass 87

peaks were recorded on the same scale, and the zero of this scale

was adjusted to the zero line on the chart. Due to noise and drift,

baseline was checked often to insure that it remained at the zero

chart position, and when a deviation was found, corrections were ap-

plied to each set of six peaks. The mass 88 peak was recorded on a

higher scale and thus the baseline falls below the zero chart reading.

These peaks were, however, also recorded directly and the distance

below the zero chart position to the true baseline was measured with



- 132.-

an engineering scale and added to the recorded peak height. The

baseline for the mass 88 peak is quite stable, and need only be

checked at infrequent intervals during the run.

Errors in the Mass Spectrometry

(1) Ion emission

As Mayne (1960) has pointed out, "there is no convenient method

of directly stabilizing the ion emission, and it is liable to drift".

However, erratic emission may be due to several factors, some of which

are: (a) diluents in the sample which evaporate at different rates

and,alter the ion beam, (b) improper positioning of the sample on

the filament such that the main focus of emission varies, (c) fila-

ment current too high, causing vaporization so rapid that it cannot

be readily measured, (d) reaction between the sample and the filament

surface (may occur especially in old filaments) such that the work

function of the filament changes and thus changes the efficiency of

ionization, (e) filament exhaustion. (a) can be largely prevented

by careful chemical procedures, (b) by checking filament alignment in

the source and by making sure that the sample is placed directly in

the center of the filament, (c) by careful control of current in-

crease and conditioning, (d) and (e) by checking that the amperage
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recorded during the previous cleaning process is sufficiently higher

than that needed during the run. When erratic emission is still ob-

served after these precautions, a statistical approach is necessary

(e.g. 90 or more scans). Possible mass discrimination and fractiona-

tion will be discussed later.

(2) Source Aligunent

The ion source must be properly aligned because the ion beam must

be of donstant intensity and be representative of the sample in the

source region. Errors in alignment usually result from manual care-

lessness in spot-welding the filament to the posts (without checking

alignment) and improper installation of source parts such that slits

are not parallel, etc. When the sample in the source is not aligned

properly the run will tend to be erratic because the signal received

is not complete, and constant re-focusing during the run is often

necessary to obtain even meager statistics.

(3) Peak Shape and Resolution

When the peak measured is flat on top and when resolution between

the peaks is equal to baseline, then the height of the peak shape gives
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a direct measure of isotopic abundance. However, if the peaks are

not flat on top, this indicates that the whole profile of the beam

is not viewed, and the resulting sharp peaks must be integrated

graphically to measure their total intensity. The sharp peaks may

be due to too narrow an exit slit, improper focusing, magnet position,

improper sample and/or source alignment, and other factors.. To insure

that the recorded peak height may be truly indicative of the intensity

of the ion beam for a rounded peak, the automatic magnet sweep may be

turned off and the mass range scanned by changing the accelerating

voltage. If, for a stable emission, the same peak height is reached,

then the automatically scanned peaks are probably accurate. Poor re-

solution between peaks may be caused by several factors, among which

are (a) beam broadening due to molecular collisions of gas molecules,

(b) too wide a spread in the energy of the ion beam recorded for a

single (direction) focusing spectrometer, (c) non-linearity in the

detecting circuit (to be discussed). (a) is controlled by running at

sufficiently low operating pressures, and (b) by careful alignment and

conditioning.

(4) Non-linearities in the Detecting Circuits

It has been observed that the mass range investigated (85-88)

commonly shows some type of systematic drift for an individual scan
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which is random for a large number of scans. Riley (1961) has

considered this problem and checked the circuit thoroughly with the

following observations:

(i)

(ii)

Recorder

V.R.E.

(iii) Input Resistance

linear to o.1%

Linearity for both feedback
line and output voltage
better than 0.1 per cent.

For a well resolved mass 85
ion beam measured at varying
magnitudes, the mean ratio
remained constant to within
0.2~ per cent over the range
0~ 3 to 8xlo-12a. This also

included other effects such
as fractionation.

The emphasis of this thesis has been on application of results

from the mass spectrometer, and not on the mass spectrometry itself.

It is realized that this approach may lead to serious errors, but,

continuing the approach used by Faure (1961), Powell (1962), Whitney

(1962) and other workers in the laboratory, replication was used to

check precision, and a standard (Eimer and Amend lot no. 492327)

SrCQ3 to check the accuracy.



Errors in Measurement

The errors resulting from inaccurate measurements may be either

random or systematic, but are probably random over the length of the

entire run. These errors may result from improper baseline con-

struction (systematic) for those runs not recorded directly during

the run or by baseline drift between zero checks in the direct

reading method, as well as by error in engineering scale or chart

readings. These errors are best compensated for by double-checking

every measurement recorded, especially in the direct reading method.

Precision

The precision (reproducibility) of analyses depends on the

random errors involved during the mass spectrometry, and was moni-

tored by replicate analyses on most samples (see Table 3.1). Faure

(1961) has suggested that the precision of any single Sr(87/86) ratio

is 0.002, and is 0.001 from the mean for replicate analyses.

Absolute Accuracy

The absolute accuracy depends on the total of all the systematic

errors affecting a series of measurements, and was monitored during

this investigation by periodically analyzing a laboratory standard

throughout the course of the work. A SrCO3 Standard (Eimer and Amend

lot # 492327) was used, and although the exact isotopic composition is
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average
sr(86/88)

0.1194
0.1200
0.1192
0.1191
0.1196
0.1218
0.1185
0.1207
0.1195
0.1199
0.1207
0.1199

average
Sr(87/86)

0.7117
0.7089
0.7125
0.7094
0.7113
0.7035
0.7104
0.7069
0.7114
0.7092
0.7074
0.7093

corrected
Sr(87/86)

0.7117
0.7107
0.7116
0.7086
0-7118
0-7106
0.7076
0.7107
0.7117
0.71-07
0-7113
0-7106

2
~/o

0.05
0.09
0.05
0.07
0.10
0.12
0.05
0.09
0-07
0.11
0.09

no.scans

90
90
92
90
72
96
42
84
84
90
84

analyst 3

DGB
WHP
WHP
DGB
DGB
MLB
DGB
MLB
MLB,DGB
DGBMLB
MLB

based on Sr(86/88) = 0.1194

/o = (/ x)16 where x

(see discussion to follow).

= average Sr(87/86), and 9 =

3. DGB = Brookins, MLB = Bottino, WHP = Pinson

The runs on 6/15/62 and 6/18/62 should probably be discarded, because

they were run during a period when Snagtooth was under repair and when

new components were being tested and all other runs during the period

were discarded. The mean values for the remaining runs are:

date
1962

2/11
3/14
3/28
5/8
5/15
6/15
6/1&
8/8
9/12
11/8
6/22
mean=

d 2
nn1)
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not known, it is used as a reference standard against which work of

different laboratories may be compared. Table 3.2 shows the results

of the analyses of this standard during the course of this investi-

gation on Snagtooth.

TABLE 3.2

SrCO. Runs on Snagtooth for the Period 2/11/62 to 11/8/62
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Sr(86/88) = 0.1198, Sr(87/86) = 0.7099, and Sr(87/86) = 0.7110.av a o

Sr (86/88) Correction

The Sr(86/88) ratio in natural systems is assumed to be constant

as cases of natural isotopic fractionation for heavy (e.g. atomic

number greater than 10) isotopes has not yet been demonstrated. Nier

(1938) has suggested that this val-e is 0.1194, and this value is

commonly used by many workers as the standard reference point for

normalization. Nier (ibid.) decided that deviations from this value

were probably due to fractionation, in the mass spectrometric measure-

ments. This wroter has also used 0.1194 as a reference value, but

recent laboratory work indicates a higher value may be more accurate.

The difference in mass between 87 and 86 is one-half that between 86

and 88, hence the average 87/6 ratio is corrected by one-half the

deviation of 86/88 from 0.1194. For example, if

Sr(86/88)a= 0.1190, Sr(87/86) = 0.7100 for a run, then theav av

correction is applied by:

Sr(87//86)0.710007o8
cor (0.1194/0.1192)

As mentioned above, Sr(86/88) = 0.1194 is used for normalization,

but this value is probably wrong.



Sr(86/88) Variations during This Investigation

Figure 3.1 shows the frequency distribution of 64 Sr(86/88)

ratios measured from isotope ratio analyses during the course of the

investigation. The mean of the values is 0.11946, which is close to

the 0.1194 value of Nier (op. cit.). However, the distribution shown

in Figure 3.1 indicates that the true standard value should be taken

as greater than0.1194. The deviations from any standard value of

Sr(86/88) are not due to fractionation in the mass spectrometer be-

cause (a) the ionization is not mass dependent, (b) no runs were re-

corded in which a continual systematic change of Sr(86/88) occurred,

and ,(c) mass discrimination by fringe field effects and electrostatic

repulsions is probably negligible (Riley, 1961). It is possible,

however, that material from cooler parts of the filament may evaporate

while the ionization is occurring, and, as evaporation is a mass-

dependent variable, this could cause a fractionation. This would be

especially true if evaporation continued from the cooler parts of the

filament while new material is diffusing to the site of emission of

ions. This is similar to gas mass spectrometric fractionation (e.g.

fed from a solution reservoir) and should be very evident from the re-

sultant mass spectrometric record, but evidence of solid source frac-

tionation has not been yet proven. It is more reasonable to assume

that Sr(86/88) variations are random and due to non-linearity in the
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Figure 3.1

Frequency Distribution of Sr(86/88)

F 10
Frequency

-1195

Sr(86/88)

T1] FI H
.1200 .1205

Ratios

5 F

.1180 .1185 .1190
H

A 
I

H
.1210

....... ...

---------- ..... .....

F F-II F-7 I



- 141 -

detecting circuit or some other unknown factor.

Discussion of Isotope Dilution Calculaticns

This section will not attempt to deal with the intrinsic theory

of isotope dilution, and the reader is referred to Webster (1960) and

Riley (1961) for detailed descriptions. Faure (1961) has discussed

the techniques in use at the Massachusetts Institute of Technology,

and these are only slightly varied in the discussion to follow.

Formulae

For Rb isotope dilution analyses, the formula is based on the

constant Rb(85/87) ratio = 2.59, which is determined from the physical

atomic weights, such that Rb8 5 = 0.7215, and Rb8  = 0.2785. By care-

ful calibration, the Rb8 -rich spike yields Rb8  = 0.175 and Rb 8 =0.9825.

Thus, if x = the measured Rb(85/87) ratio (see Webster, 1960), then:

0.7215 N + 0.0175 S
0.2705 N + 0.9b25 S

where N designates normal Rb and S spike Rb and:

N 09825) (x - 0.0175
S 0.7215) - (0.2785) (X)

but this equation must be multiplied by a weight factor, which is

egual to: Atomic Weight Normal Rb/Atomic Weight Spike Rb or:

85.557/86.965 = 0.9838. S is given by S = (ml spike) (conc. of

spike in microgms./ml). Thus N may be obtained in p.p.m. As the
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long half life of Rb87 does not affect the abundance of Rb87 to any

appreciable degree, no correction need be applied for normal Rb.

Similarly (see Faure, 1961, p. 157), the formula for a spiked

sample yielding a Sr(86/88) ratio = y is:

0.0986 N + 0.8373 S
0.8256 N + 0.067k S

and the weight factor is 1.0172. However, the above formula is rigid

only for Sr(87/86) = 0.712, but the change in this isotopic ratio does

not appreciably affect the answer for samples with relatively little

Sr (e.g. Sr(87/86) less than 0.800). When Sr is significant, it

is necessary to insert the proper isotopic abundances into the Sr spike

formula. For example, consider sample no. R5058aII, and the analysis

for Sr by isotope dilution. The data are presented in Chapter 5, but

in essence die

Sr(87/86)cormean = 1.0090

Sample weight = 1.2776 gms

Spike added = 1 ml of 21.6 Pg/ml Sr -rich sol'n.

Sr(86 /88 ) measo..D.= 1.749

Using the formula based on normal Sr isotopic composition, a value

of 9.2 p.p.m. was obtained. Now consider the compared compositions for
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normal Sr and Sample No. R5058aII:

Normal Sr

1.0000

0.0825

0.11904

0.0068

1.2087

0.8256

0.0986

0.0958
y 0.

Ratio

88/88

87/88

86/88

84/88

Tot . Sr

8 8 /Srt

8 6 /Srtot

Sample R5058aII

1.0000

=(1.009)(.1194)
= 0.1205
0.1194

o.0068

= 1.2467

= o.8021

0.0958

N + 0.8373 S
N + 0.067k S

and the weight factor is 1.045, and calculation of Sr now yields

9.5 p.p.m. This value is over three per cent greater than the value

determined by use of the normal Sr formula and stresses the importance

of allowance for proper isotopic abundances in the formula for samples

with relatively large amounts of Sr 7 , and though the error may seem.

small, it can change a Rb/Sr ratio by a larger amount.

Spike Release

Figures 3.2a, b show the variation of N/S for measured 85/87 and

86/88 values, and the figures show that the least error will result in

hence:



Figure 3.-a

H

range of
least
error

- - - -I

0.386
minimum value

Rb (/85 
ID

12L

10



Figure 3.2b

10 .

8-

N

4
Range of least
error

2

0
0 .1194, minimum 1 2 3 4

value Sr(86 /88)I.D. o



- 146 -

the blocked off areas. The volume of spike added to each sample is

released with the intent that the resultant ratios will fall in such

an area, and this volume is determined after rough estimation of the

amounts of Rb and Sr in the sample by quick-scan X-Ray Spectography

or emission spectography or other means. The volume of spike released

is extremely critical, and in cases where only one ml of spike was

used the precision was found to be good so that errors in volume are

-probably negligible. All deliveries of spikes were made in calibrated

pipettes.

Sr and Rb Blanks

Checks for analytical contamination are made by analyzing known

amounts of spike which has been subjected to the same chemistry as a

spiked sample. All blanks run in the Massachusetts Institute of

Technology Geochronology Laboratory showed a maximum upper limit of

less than 0.3 ,Lgms. Sr and less than 0.08 /Agms. Rb. These correc-

tion limits are so low that they were not applied to the calculated

results.

Shelf Solutions

Shelf solutions are carefully prepared solutions containing a

known concentration of an element of normal isotopic composition.

Typical Sr and Rb salts are very carefully weighed and thendissolved
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in a known amount of solvent. Corrections for temperature, etc.

are d.illigently applied during these processes. Pinson (in 10th

Annual Progress Report for 1962, NYO-3943) has discussed in great

detail the preparation and isotopic measurements of these shelf solu-

tions, and their subsequent use in spike calibration. All of the

shelf solutions in the laboratory are of different isotopic composition,

and thus emphasize the need to standardize to only one reference

reagent (e.g. Eimer and Amend SrCO3).
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CHAPTER FOUR: Previous Absolute Age Measurements

Introduction

Many very accurate absolute age measurements by U-Pb, Th-Pb,

K-Ar, and Rb-Sr methods have been reported from this area. Most of

these analyses have been reported for pegmatite minerals and thus do

not date the surrounding rocks, but a few absolute ages have been re-

ported for the country rocks. No attempt will be made here to de-

scribe the analytical techniques in the various methods, and the

interested reader is referred to the references cited in this chapter

for discussion of K-Ar, U-Pb, and Th-Pb methods, and elsewhere in

this thesis for discussion of the Rb-Sr method.

U-Pb and Th-Pb Investigations

Until the classic work of Nier (1939 a,b) the only Pb ages in

the area were determined by simple chemical analysis for Pb, U, and

Th; with resultant large errors. Nier (ibid.) allowed for correction

for nonradiogenic lead and used very accurate isotopic analyses, and

obtained a 260 m.y. age for samarskite for the Spinelli Prospect

Pegmatite. This age is used by Holmes (1946) in his discussion of

the Absolute Time Scale. Rodgers (1952) has summarized most of the

early work and has proposed an age of 260 5 30 m.y. for pegmatite

emplacement in the area. The large error results from incorporation
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of many of the early ages which have since been disproven.

Wasserburg et al. (1956) report Pb206 ,U238 and Pb2 07/'J235 ages on

K-feldspar from the Spinelli Quarry of 251 m.y. and 255 m.y., and

total Pb/U ages on muscovite from the Strickland Quarry, Toll Gate

Quarry, and Spinelli Quarry of 267 m.y., 267 m.y., and 254 m.y. These

and other results are tabulated in Table 4.1, and it is interesting to,

note that the Pb ages from the nine analyses listed give an average

age of 259 m.y., which agrees exactly with the age of emplacement

suggested by Rodgers (op. cit.) but with far less error.

TABLE 4.1

RECENT ABSOLUTE AGE DETERMINATIONS BY THE U-Pb AND Th-Pb METHODS

Quarry

Spinelli

do.

do.

do.

Strickland

Toll Gate

Strickland

do.

do.

Mineral

samarskite

K-feldspar

do.

muscovite

do.

do.

uraninite

do.

do.

Method

Pb207/Pb 2
6

P206 U238

Pb207 /3235

Pb207/M206

do.

do.

Pb2o /U23
8

Pb207 235

Pb2o 8 /Th 232

Age

260

251

255

254

267

267

268

266

239

Reference

Holmes (1946)

Wasserburg et al.
(1955)

do.

do.

do.

do.

Wasserburg and
Hayden(1955)

do.

do.
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K-Ar and Rb-Sr Investigations

Tables 4.2 and 4.3 show K-Ar and Rb-Sr ages for the pegmatite

minerals from some of the quarries in the area and from some country

rock minerals. Except where noted, all the data are taken from the

Ninth Annual Progress Report for 1961 (NY-3942, U.S.A.E.C., Contract

AT(30-l)-1381, pp. 234, 243). The initial Sr(87/86) ratios used in

Table 4.3 are subject to large error because of the lack of samples

with low Rb/Sr ratios.

Locality an
Rock Type

TABLE 4.2

RECENT ABSOLUTE AGE DETERMINATIONS BY THE K-Ar METHOD

d Mineral K-Ar Age K-Ar - Other
Laboratories

Strickland
Quarry

Collins Hill,
Formation

Spinelli Quarry

Glastonbury Gneiss

Muscovite

Microcline

Lepidolite

Biotite

Muscovite

Biotite

243 - 10 252 - 8l

245 +

252 - 81

252 ; 8

231 - 9

249 t 81

230 - 9

Wasserburg et al. (1956)

Baadsgaard et al. (1957)

Wetherill et al. (1956)

X K0 -=53x100yr-l

X ~40 -. 55x101yr -1
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TABLE 4.3

RECENT ABSOLUTE AGE DETERMINATIONS BY THE Rb-Sr METHOD

Sample Number,
Mineral + Locality

(Rb/Sr) w (Sr /Sr )
measured

(Sr' /Sr )
initial

Spinelli Pegmatite

M 3370 (muscovite)

F 3371 (microcline) (a)

(b)

Strickland Pegmatite

M 3373 (muscovite)

F 3374 (microcline)

L 3375 (lepidolite)

349.2

33-29

(a) 776.8
(b) 700-3

Glattgnbury Gneiss

B 3372 (biotite)

B 3372 (whole rock)

Collins Hill Formation

B 3376 (biotite)

M 3376 (muscovite)

R 3376 (whole rock)

124.0

9.51
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Figure 41.1b
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Figure 4.10
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mineral isochron (Figure 4.la) is defined by at least four points,

and that the lepidolites do not fall on this isochron may either be

due to experimental error or due to an actual curvature of the iso-

chron as discussed in Chapter Two. The initial Sr(87/86) ratios for

both the Glastonbury Gneiss and the Collins Hill Formation were de-

rived from the isochrons of Figures 4.lb and 4.lc, and these plots

are based on the assumption that some type of rehomogenization oc-

curred about the time of pegmatite emplacement such that the mineral

separates and whole rocks define a unique isochron for each formation.

This will be discussed in later sections of this thesis. For the

data presented in Table 4-3, recalculation of the ages based on

X R87 = 1-39 x 10 11yr 1 yields an average age for the pegmatite

minerals of 251 m.y. and 220 m.y. for the minerals of the Collins

Hill Formation. Both of these recalculated ages are in good agree-

ment with the K-Ar ages given in Table 4.2, and the pegmatite mineral

ages in Table 4.1. The 220 m.y. recalculated age for the Collins Hill

Formation minerals may be too low, because the initial Sr(87/86)

value of 0.735 used may be too high, and a mineral from the same sys-

tem but with a low Rb8 /Sr ratio must be analyzed to resolve this

problem. If a "normal Sr" initial Sr(87/86) ratio of 0.710 is used

to calculate whole-rock ages for the Collins Hill Formation and
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for the Glastonbury Gneiss, the following ages result (again using

87 = 1.39 x 10~11 yr1): Collins Hill Formation - 990 m.y.,
Rb

Glastonbury Formation - 360 m.y. The geologic correlation described

in Chapter One indicates that the Collins Hill Formation is Paleozoic

in age, and the 990 m.y. age listed above is therefore wrong, and in-

dicates that the initial Sr (87/86) ratio is much greater than 0.71.

The Glastonbury age of 360 m.y. for the total rock is in fair agreement

with an earlier published age of 370 m.y. (Stugard, 1958), but the

latter age is considered only fair.

In addition to the data already discussed, Ahrens (1949) reports

a probable age of approximately 270 m.y. for an unspecified pegmatite

near Haddam, Connecticut, but he is careful to point out that no

correction for non-radiogenic Sr was applied, hence the age can be

taken as a maximum at best.

Summary and Tentative Conclusions

The U-Pb and Th-Pb ages for the pegmatite minerals average

259 m.y. The K-Ar ages for the pegmatite minerals average 250 m.y.

If the decay constant, A Rb87 = 1.39 x 1011 yr 1, is assumed as in

other chapters of this thesis, then the Rb-Sr ages for the pegmatite

minerals average 251 m.y. Thus it is probably safe to indicate an age
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of pegmatite emplacement of 255 t 10 m.y. Application of this decay

constant to the minerals of the Collins Hill Formation yields ages of

220 m.y., in good agreement with the K-Ar age of 231 t 9 m.y.

The age of the end of the last major metamorphism in the area is

probably 230 - ?.y., and this age is probably significant despite the

higher 255 - 10 age of the pegmatitic emplacement (commonly thought to

date the end of the metamorphism). However, J. L. Rosenfeld (written

and personal communcation) has informed this writer that quartz

porphyry blocks are found in the Triassic rocks west of the border

fault, and, because of limited distribution, are thought to represent

material from the Pre-Triassic basement rocks to the east which has

been eroded away. Subsequent analyses of this material may indicate

that the 255 t 10 m.y. age on the pegmatites merely indicates time of

last homogenization and that it does not necessarily mark the end of

orogenic events in the area.
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CHAPTER FIVE - Rb-Sr Age Investigations in the Middle Haddam and

Glastonbury Quadrangles, Connecticut

Introduction

This chapter will deal with the Rb-Sr data obtained during the

course of the thesis investigation. The analytical data and iso-

chrons for the Maromas Granite Gneiss, Glastonbury Gneiss, Middletown

Formation, Ammonoosuc Volcanics, Monson Gneiss, Collins Hill

Formation, and pegmatites are presented. Samples are described fully

in Chapter Seven, and only brief descriptions are mentioned in this

chapter.

The limits of error on each isochron presented have been de-

termined by previously constructing maximum and minimum isochrons

87 86
through the error in Sr(87/86) and Rb /Sr about each point, but

are not shown for clarity of presentation. The isochrons shown are

best-fit lines for the points shown.

Presentation of Data

Table 5.1 shows the data from the isotope ratio measurements

determined during this investigation. The average Sr (86/88) and

Sr(87/86) ratios are determined from the mean of averages from every

six scans, and the Sr(87/86) corrected ratio is determined from

normalization of Sr(86/88) = 0.1194. 0 f is the standard deviation
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d2
of the mean, and is'determined by the formula E = , i= (n)

where n = number of sets of six scans and d = - deviation from the

01
mean. The quality of the runs is generally based on /o E, unless ob-

servation during the run indicates it to be very steady and good

0,
despite a high /o E. Replicate analyses have been determined for most

points, and it is noteworthy that fair runs and good runs are

experimentally identical.

Table 3.2 shows the determination of the Rb/Sr ratio, the

mean isotope ratio used to determine k (see Chapter Two for curve),

and the subsequently determined Rb /Sr ratio. The (Rb/Sr)

ratios have been determined both by isotope dilution and by X-Ray

spectography techniques described in Chapter Three. For the former

method, the absolute amounts of Rb and Sr are also presented.



1962 Avezige
Sample Record Date Sr(86/88)

Average
Sr(87/86)

Corrected
Sr(87/86)

---------------- Table 5.la, Maromas Granite Gneiss--------------------------

R479laI2 2531
do. II 2503

R4791bI 2119
do. II 2451
do. III 2764

R479ldI 2637
do. II 2766

R5059aI 2784
R5059bI 2828

7/16
7/9
3/5
6/17

10/2
8/14

10/2
10/10
10/22

0.11958
J.11946
0.11949
0.12192
0.11998
0.11932
0.11866
0.11977
0.11875

0.7363
0.7369
0-7334
0.7269
0.7314
0.7307
0.7316
0..8547
0.8308

0.7369
0.7371
0.7335
0.7336
0.7332
0.7305
0.7293
o.8560
0.8285

0.051
0.097
0.13
0.076
0.096
0.14
0.090
0.053
0.11

good
fair
fair
fair
good
fair
good
good
fair

---------------- Table 5.lb, Glastonbury Gneiss------------------------------

R4792aI 2307 5/1 0.11978 0.7757 0.7763 0.12 fair
R4792b 2492 7/2 0.11915 0.7998 0.7992 0.050 good

do. II 2507 7/9 0.12000 0.7978 0.7998 0.057 good
do. III 2527 7/14 0.11975 0.8009 0.8021 0.059 good

R4 7 9'2cl 2478 6/27 0.11978 0.7448 0.7460 0.041 good
do. II 2517 7/11 0.12088 0.7414 0.7470 0.12 fair

R4998 I-132488 7/2 0.11979 0.7185 0.7197 0.030 good
do. -2 2495 7/5 0.11993 0.7184 0.7199 0.070 fair
dd. II 2636 8/13 0.11948 0.7189 0.7191 0.043 good

R4 999 I 2476 6/26 0.11934 0.7119 0.7117 0.076 good
do. II 2521 7/12 0.11992 0.7086 0.7101 0.12 fair

---------------- Table 5.lc, Middletown Formationv-r-rw,------------------

R5052 I
do. II

R5053aI
do. II

R5053bI
R5053cI

do. II

2627
2631
2658
2754
2678
2655
2749

8/10
8/12
8/21
9/26
8/29
8/20
9/22

0.11942
0.11889
0.11935
0.11907
0.11904
0.11890
0.11925

0.7070
0.7084
0.7230
0. 72§3
0.7265
0.7384
0.7335

0.7071
0.7069
0.7228
0.7233
0.7254
0.7368
0-7333

o.o56
0.12
o.o45
0.047
0.051
0.059
0.041

good
fair
good
good
good
good
good

1. /o = 100 , where , = m, x = mean Sr(87/ 8 6).

2. Roman numeral indicates separate aliguot of sample.

3. Arabic numeral indicates re-run of the same aliquot.

0/0"i lB Quality
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TABLE 5.1

TABULATION OF ISOTOPE RATIO MEASUREME1NTS



TABLE 5.1 (CONTINUED)
1962 Average Average Corrected

Sample Record Date Sr(86/88) Sr(87/86 ) Sr(87/86) /o! Quality

--------------------- Table 5.ld, Ammonoosuc Volcanics-----------------------

R3069 2866 11/7 0.11892 0.7430 0.7415 0.074 good
R5070 2864 11/6 0.11964 0.7210 0.7217 0.100 good
R5071' 2900 11/18 0.11901 0.7132- 0.7120 0.079 good

R5072 2870 11/8 0.11937 0,.7082 0.7081 0.052 good

--------------------- Table 5.le, Monson Gneiss ---------------------------

R5056btI 2716 9/11 0.11888 0.7132 0.7116 0.094 good
do. II 2752 9/25 0.11943 0.7122 0.7123 0.056 good

R5056cI 2694 9/6 0.11850 0.7196 0.7169 0.090 fair
do- II 2731 9/17 0-11796 0.7217 0.7173 0.052 good

R5058aI 2713 9/11 0.11951 1.0093 1.0099 0.067 good
do. II 2750 9/24 0.11987 1.0060 1.0081 0.050 good

R5058dI 2733 9/18 0.11918 0.7215 0.7208 0.12 fair
R5058eI 2780 10/8 0.11862 0.7087 0.7066 0.100 good

do. II 2770 10/3 0.11882 0.7114 0.7096 0.14 fair
R5058fI 2862 11/6 0.11852 0.9623 0.9587 o.086 fair

----------------- Table 5.lf, Pegmatites---------------------------------

R47221 2122 3/6 0.11987 0.7265 0.7280 0.12 'fair

A47741 2167 3/20 0.12124 0-7356 0.7411 0.062 good
A4992I 2311 5/2 0.12044 0.8817 0.8855 0.068 good

R5030I 2557 7/23 0.11954 0.8038 0.8043 0.100 good
R503laI 2611 8/6 0.11950 0.7479 0.7482 0.135 fair

--------------------- Table 5.lg, Collins Hill Formation---------------------

R4717II 2226 4/4 0.11982 0.7279 0.7291 0.061 good
R4718I 2303 4/29 0.11944 0.7461 0,7462 0.050 good
R47191 2216 4/2 0.12087 0.7324 0.7369 0.11 fair

do.II 2514 7/10 0.12005 0.7352 0-7372 0.084 good
R4720bI 2096 2/26 0.11966 ,0.7420 0.7429 0.084 good

do.II 2344 5/14 0.12016 0.7425 0.7449 0.087 good
R4721I 2070 2/18 0.11881 0.7289 0.7271 0.11 fair

do.II a386 5/29 0.11968 0.7251 0.7257 0.14 fair

R4 723I 2146 3/12, 0.12000 0.8268 0.8280 0.11 fair
R3376I 2356 5/21 0.11940 0.7348 0.73148 0.100 good

do.II 2360 5/22 0.11967 0.7351 0.7359 0.025 good

R4788I 2148 3/14 0.11966 0.7279 0.7280 0.084 good
do.II 2389 5/30 0.11805 0.7327 0.7286 0.095 good

4. Includes granite dikes cutting other rocks.
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TABLE 5.2

(Rb/Sr) and (Rb 8 /Sr )a Determinationa

Corrected 
87/r8

Sample Rb p.p.m. Sr p.p.m. (Rb/Sr) Sr(87/86) k (Rb I/Sr )

------------------------- Maromas Granite Gneiss-----------------------------

R4791a 120.2 59.7 2.01 0.7370 2.9030 5.84
R4791b 116 72.1 1.62 0.7334 2.9020 4.70
R4791d - - 1.35 0.7299 2.9010 3.92
R5059a 133.8 10.9 12.59 0.8560 2.936 36.70

do. 132.2 10.4
R5059b 118.0 12.2 9.63 0.8285 2.9285 28.20

do. 12.3

------------------------- Glastonbury Gneiss---------------------------------

R4792a 301.0 64.3 4.55 0.7763 2.9142 13.26
R4792b - - 5.97 0.7995 2.9207 17.44
R4792c - - 2-33 0.7460 2.9058 6.77
R3372* 9.51 0.8478 2.934 27.85
R4998 - - o.45 0.7194 2.8980 1.30
R4999 - - 0.15 0.7109 2.8956 0.43

-------------------------Middletown Formation-------------------------------

R5052 - - 0.04 0.7070 2.8945 0.12
R5053a 122.8 148.9 0.82 0.7230 2.8990 2.38
R5053b 97.7 102.5 0.95 0.7254 2.899 2.75
R50530 211.6 131.6 1.62 0.7350 2.9 4.6

------------------- Ammonoosuc Volcanics---------------------------

R5069 - - 1.80 0.7415 2.9043 5.24
R5070 - - 0.63 0.7217 2.8987 1.83
R5071 - - 0.12 0.7120 2.8960 0.35
R5072 - - 0.03 0.7081 2.8948 0.09

------------------------- Monson Gneiss----------------------------------

R5056b - - 0.17 0.7120 2.8960 0.49
R5056c 27.9 75.0 0.37 0.7171 2.8974 1.07
R5058a 167.4 9.5 17.40 1.0090 2.9795 51.84

do. 173.9 10.1
R5058d - - 0.61 0.7208 2.8984 1.77
R5058e - - 0.01 0.7081 2.8948 0.03
R5058f - - 15.10 0.9587 2.965 44.77
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TABLE 5.2

(Continued)

---------------------------------- Pegnatites-------------------------------

R4722 69.5 326.1 0.21 0.7280 2.9005 0.61
do. 317-7

A4774 - - 0.50 0.7411 2.9042 1.45
A4992 - - 2.10 0.8055 2.945 6.18
R5030 - - 5.76 0.8043 2.9221 16.83
R5031a - - 2.05 0.7482 2.9062 5.96

--------------------------- Collins Hill Formation--------------------------

R4717 71.0 124.5 0.57 0.7291 2.9009 1.65
R4718 214.2 88.5 2.42 0.7h62 2.9056 7.03
R4719 181.4 186.7 0.99 0.7370 2.9030 2.87

do. 179.4
R4720a 567.8 12.4 44.60 1.1580 3.0225 134.80
R4720b 319.1 196.7 1.62 0.7439 2.9050 4.71
R4721 129.4 251.0 0.51 0.7264 2.9000 1.48

do. 254.2
R4723*1456.6 124.5 12.00 0.8280 2.928 35.14
R3376 0.71 0.7352 2.9025 2.06
R4788 52.9 124.6 0.42 0.7283 2.9006 1.22

* data from1 Ninth Ann. Prog. Rpt., 1961

** where absolute amounts of Rb and Sr are not given, the Rb/Sr ratio

has been determined by X-Ray Spectrography.



Maromas Granite Gneiss

Samples R4791a,b, and d were taken from the northernmost

occurrence of the Maromas, an elliptical lens which occurs between

the Collins Hill and Middletown Formations on the west side of

Collins Hill near the Strickland Pegmatite Quarry. The spread of

(Rb/Sr)1 ratios for these samples is too narrow to allow an ac-

curate isochron to be constructed. This is in part due to the large

samples which it was necessary to take because of the fine- to coarse-

grained texture. Samples R5059a,b are from the type locality near

Middletown, and were kindly donated by Dr. J. W. Peoples of Wesleyan

University. Analyses of these two samples, with high (Rb/Sr)4

ratios, has allowed construction of the isochron shown in Figure 5.1.

The absolute age of the Maromas Granite Gneiss is given a

287 t 10 m.y. based on the isochron of Figure 5.1. As the spread of

p/Sr)wt ratios ranges from 1.35 to 12.50, it is suggested that the

Maromas Granite Gneiss has remained a closed megasystem since

287 t 10 m.y. ago. Extrapolation of the isochron below R4791d yields

an initial Sr(87/86) ratio of 0.714 t 0.002, but the error in 0.714

is probably less than 0.002 because of the excellent control on the

isochron by the other points.
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Glastonbury Gneiss

Samples for the Glastonbury Gneiss were all taken from the

porphyroblastic facies of Herz (1955). R4792a,b,c were taken from

the near-contact east of the Strickland Quarry between the Collins

Hill Formation and the Glastonbury Gneiss. R3372 and R4998 were taken

in the vicinity of the Spinelli Prospect, and R4999 was taken east of

the Hale Quarry. This areal distribution of samples covers several

miles and is thus a good sampling of the porphyroblastic facies.

The whole-rock isochron is shown in Figure 5.2, and defines an

age of 360 t 10 m.y. The spread of (Rb/Sr)w ratios is excellent,

varfing from 0.15 to 9.51, for testing the closure of the megasystem.

The initial Sr(87/86) ratio determined from this isochron is 0.710

t 0.001.

Middletown Formation and Ammonoosuc Volcanics

These two formations are discussed together because of their

correlation to each other along the Bronson Hill Anticline from

Connecticut to New Hampshire. The samples are described fully in

Chapter Seven, and the samples for each formation have a vide areal

distribution. The samples of the Ammonoosuc Volcanics were contributed

by Dr. M. P. Billings of Harvard University. Unfortunately, the more
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acid members of both formations are Na-rich rather than K- (and Rb- )

rich; hence the whole-rock isochrons shown in Figures 5.3 and 5.4 are

not defined by a wide range of (Rb/Sr)4 ratios, but the initial

Sr(87/86) ratios for each are well defined because of the low (Rb/Sr)W

ratios. The isochron for the Ammonoosuc Volcanics yields an age of

460 15 m.y., and that for the Middletown Formation yields an age of

450 15 m.y. The (Rb/Sr)wt ratios for the Ammonoosuc samples have

all been determined by X-Ray spectrography; but because this ratio is

low, the - five per cent deviation from each point does not seriously

affect the isochron. The initial Sr(87/86) ratio for the Middletown

Formation is 0.7065 - 0.001, and the initial Sr(87/86) ratio for the

Ammonoosuc Volcanics is 0.708 t 0.001.

Monson Gneiss

Samples R5058a and R5058f represent granitic dikes which cut

the Monson Gneiss in the Killingworth Dome, and the other samples

represent typical plagioclase-mafic gneisses, from both the

Killingworth Dome and the elongated anticlinal belt which continues

into Massachusetts. Two isochrons are shown in Figures 5.5a and 5.5b

because there is some uncertainty regarding the relationship of the

granitic dikes to the remainder of the Monson. The (Rb/Sr)4 ratios
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for the granitic dike samples are very high relative to the plagioclase

gneisses, and thus influence the isochron of Figure 5.5a to a great

degree. Figure 5.5b shows just the plagioclase gneisses plotted alone

and a significantly different isochron results. Figure 5.5a shows

the granitic dike - influenced isochron as yielding an age of 418 -

15 m.y., but Figure 5.5b shows that the plagioclase gneisses yield an

age of 550 80 m.y. In either case, the initial Sr(87/86) ratio is

0.708 + 0.001, because R5058e anchors both isochrons.

Collins Hill Formation

All of the samples of the Collins Hill Formation were taken

normal to the regional strike across the width of the formation in the

vicinity of the Strickland Quarry. Figure 5.6 shows a possible iso-

chron through most of the whole-rock points, but as the formation is

a metasediment, the exact meaning of this apparent age is not clear.

Samples R4718, R4720a, and R4723 have all been contaminated or in-

filtrated by reworked (pegmatitic?) material and define an entirely

different slope shown with the whole-rock curve in Figure 5.7. The

age of the isochron in Figure 5.7 is 210 - 15 m.y., with an initial

ratio of approximately 0.726. The aplite, R4722, which presumably

intrudes R4723 also falls on this plot. The genetic implications will
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be discussed below for both these figures (see Chapter Six).

Pegmatites

Figure 5.8 shows an isochron for the primary minerals of the

Strickland and Spinelli Pegmatites, and is taken from Figure 41. 1

with the exception of A4774, a primary massive plagioclase from the

Strickland Quarry. A secondary cleavandite from the Strickland Quarry,

A4992, does not fall on this isochron, and shows an apparent enrichment

*87
of Sr . Two whole-rock samples from the Hale Quarry, R5030 and

R5031a, also do not fall on the mineral isochron, but lie close enough

to it to be within experimental error. Sample A4774 allows the initial

Sr(87/86) ratio to be placed at 0.735 + 0.002, and the isochron age is

250 t 10 m.y. As mentioned in Chapter Four, the mineral isochron of

Figure 5.8 ( = 4.la) is defined by samples from both the Spinelli and

the Strickland Quarries and thus confirms cogenesis of the two peg-

matites, and that the Hale Quarry samples occur near this isochron sug-

gests that all three pegmatites are cogenetic.

Discussion of the Data and Isochrons

The Maromas Granite Gneiss and the Glastonbury Gneiss show

isochrons (Figures 5.2, 5.1) which suggest closure of both systems

after emplacement (e.g. 287 and 360 m.y.). However, the initial Sr(87/86)
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ratios for the two gneisses are significantly different. The initial

ratio of the Glastonbury Gneiss is 0.710, which is close to that of

basalts and suggests little or no pre-history in a crustal reservoir

before emplacement, but the initial ratio of the Maromas Granite

Gneiss is 0.714, which strongly indicates a lengthy crustal pre-history

before homogenization at 287 m.y. ago. The agreement in age between

the 460 t 15 m.y. Ammonoosuc Volcanics and the 450 t Middletown

Formation confirms their correlation, and their initial ratios of

0.708 and 0.7065 respectively are within experimental error of each

other. This in turn implies that much of the Middletown Formation is

derived from volcanic material, as is the case for the Ammonoosuc

Voleanics.

The Monson Gneiss presents more of a problem, as the relation of

the granitic dikes which cut the basic gneisses that dominate the

Monson is not known. If, as proposed by Mikami and Digman, the

granite dikes are late-stage differentiation products of the cooling

tonalitic magma which now occupies the Killingworth Dome, then the

age of the Monson Gneiss is 418 t 15 m.y. However, if these dikes

are post-Monson, the 418 t 15 is an absolute minimum age for the

Monson, and the isochron defined by just the basic gneisses yields an

age of 550 t 80 m.y. This problem will be discussed in detail in
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Chapter Six.

The pegmatite mineral isochron, Figure 5.8, defines an age of

250 + 10 m.y., which is the same age as that reported by earlier

workers (see Chapter Four). That the two whole-rock samples from the

Hale Quarry fall near, but not on, the mineral isochron are probably

due to either experimental error or lack of closure with respect to

Rb and/or Sr in each sample.

How to interpret the Collins Hill Formation data is not clear,

although it is obvious that some of the whole -rock samples yield

mineral ages near 210 t 15 m.y., and these samples have been subjected

to Infiltration of pegmatitic tourmaline and/or aplite. The re-

mainder of the whole-rock samples, Figure 5.6, show a scatter about a

possible isochron, but the apparent 395 - 15 m.y. age is difficult to

interpret because scatter of points above a hypothetical isochron

based on pure authigenic Sr and Rb is to be expected (see Chapter

Two) and false apparent ages are common. However, the high initial

ratio of this possible isochron does imply significant detrital

Sr in the metasedimentary system.

The above discussion and results will be expanded in the next

chapter, and are presented here merely as a brief review.
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Least Squaxes Treatment of Data

The application of any rigid, statistical formulae to natural

system data is open to criticism because of unknown parameters. For

whole-rock Rb-Sr analyses there is no certainty that the system(s) in

question are (1) closed, and (2) that the weight of each point on a

scattergram can be properly stated due to the uncertainties in the

standard deviation of both the X and Y parameters about each point.

Thus the method of constructing maximum and minimum isochrons through

assumed error limits about each analytical point is probably more

realistic. However, any least squares slope or intercept must fall

within the error limits of the visually-constructed isochron. To

test the data presented in Tables 5.1 and 5.2, least squares ages

and initial Sr(87/86) ratios have been determined for the Maromas,

Glastonbury, Middletown, Ammonoosuc, and Monson formations. Table 5.3a

shows the results of these calculations assuming equal weights for all

the samples of each megasystem, and Table 5.3b shows the calculated

results for those megasystems in which different weights have been

assigned to the various local system analyses. The formulae employed

have been discussed by Youden (1951), and, in brief, state that for

the straight-line equation of the type Y = A + BX:

(ix) (FY) - (Y) kx 2)
(x2- N(SX)
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B = N() -EIEI
N2 2

These formulae allow for both X and Y errors in calculating the

slope and intercept.

TABLE 5.3a

Formation Least Squares Age Least Squares Intercept

Middletown 444 0.7073
Ammonoosuc. 452 0.7090
Monson 530 0.7083
Maromas 281 0.7149
Glastonbury 355 0.7100

TABLE 5.3b

Formation4  Least Squares Age Least Squares Intercept

Middletown1  443 0.7072
Monson2  536 0.7084
Maromas3  279 0.7149

1. Sample R5053b weighted once, all other samples weighted twice.
2. Sample R5056c weighted twice, all other samples weighted once.

3. Samples R4791d, R5059b weighted once, all otherstwice.
4. See Table 5.3a for Ammonoosuc and Glastonbury results, as all

samples for both formations were weighted equally.

Whitney (1962) has used other formulae of Youden (op. cit.) to

determine the standard deviation of both A and B, but the formulae

considered do not allow for any X-parameter error for AA and presume

equal weight of all analytical points for K. For example, if we consider

A as a Rb-free point on an isochron, Faure (1961) has shown that the stan-

dard deviation should be - 0.002, but use of the formulae employed by

Whitney (op. cit.) yield t 0.0015 for the Middletown Formation and- 0.0018

for the Maromas Gneiss .
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CHAPIER SIX: Discussion and Conclusions

Relationships Between the Various Formations

(I) Great Hill Quartzite - Collins Hill Formation

An angular unconformity exists between the Great Hill Quartzite

and the overlying Collins Hill Formation (see Rodgers and Rosenfeld,

1959), and the Great Hill is in part conglomeratic in its basal members.

(II) Great Hill Quartzite - Glastonbury Gneiss

The Great Hill Quartzite is probably younger than the

Glastonbury Gneiss because of a basal conglomerate in the former, and

lack of field evidence to support intrusion of the Glastonbury into

the Great Hill.

(III) Glastonbury Gneiss - Collins Hill Formation

Rodgers and Rosenfeld (1959) mention that the Glastonbury may

be intrusive into the Middletown, but that the Collins Hill Formation

probably lies unconformably over both. However, the Glastonbury -

Collins Hill contact is obscure and difficult to interpret. Westgate

(1902) suggested an intrusive contact based on inclusions of Collins

Hill (called Bolton) schist within the Glastonbury near the Strickland

Quarry, but these exposures were later covered by dump material.

Similarly, the schlieren present in the Glastonbury may also be
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interpreted as incompletely digested remnants of schist, and the

presence of diopside in-the Collins Hill near the Glastonbury contact

may also indicate intrusion. Stugard (1958, p. 629) suggests that

the Collins Hill (called Bolton) and the Middletown (called Mafic

Gneisses) Formations are cut off at depth by the Glastonbury, based

on comparison of dips of foliation.

(IV) Maromas Granite Gneiss - Middletown Formation

The Maromas Granite Gneiss is observed to cut the Middletown

Formation in three major areas (see Figure 1.3), and has been noted

as intimate dikes and sills cutting the Middletown in numerous other

places (Rosenfeld and Eaton, 1958). It is generally accepted that the

Maromas is intrusive into the Middletown, although Westgate (1899)

and Stugard (1958) have suggested the possible derivation of the

Maromas from the Middletown because of their intimate relationship,

and Rosenfeld and Eaton .(op. cit.) have also suggested a hybrid origin

for the Maromas based on similar observations.

(V) Collins Hill Formation - Middletown Formation,

Rice and Gregory (1906/7) proposed that the Middletown Formation

represents a contact zone between the intrusive Monson Gneiss and the

intruded Collins Hill Formation, and Mikami and Digman (1957, p. 117)
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have also suggested a conformable sequence upwards from Middletown into

Collins Hill because of formational parallelism and localized inter-

fingering of the formations along their contact. However, careful

mapping by Rosenfeld and Eaton (in Rodgers and Rosenfeld, 1959) has

shown an unconformity to exist.

(VI) Maromas Granite Gneiss - Collins Hill Formation

The northernmost of the major Maromas lenses occurs on the west

side of Collins Hill near the Strickland Quarry and has been studied

by this writer in some detail, and although the contact relations are

obscure, the following generalizations can be made: (1) there are

schlieren-type inclusions of Collins Hill Schist within the Maromas

Granite Gneiss near the contact; (2) Although there are no distinct

dikes or apophyses of Maromas which cut the Collins Hill, there are

Maromas-derived aplites which appear to cut the Collins Hill; (3)

Near the Maromas contact, the Collins Hill still shows the regional

NW strike, but it is not as well defined as more distant parts removed

from the Maromas contact. Thin section shows that the biotite in the

Collins Hill near the Maromas is randomly oriented, whereas biotite

away from the contact is well-oriented. This lack of orientation of

the biotite near the contact may indicate intrusion, as others have

noted this effect (Hart, 1960).



(VII) Maromas Granite Gneiss - Monson Gneiss

There is no exposure of the Maromas - Monson contact in the area,

and it is probable that the Maromas has transected the Monson at depth.

Future gravity work may substantiate this.

(VIII) Maromas Granite Gneiss - Glastonbury Gneiss

There also are no exposures of the Maromas - Glastonbury contact.

However, due to several similar features (see Chapter One) many workers

in the area have placed these two gneisses in close proximity on the

geologic column (see Foye, 1949, Lundgren, 1962, Eaton and Rosenfeld,

1959). Both of these gneisses are characterized by a large amount of

quartz and by a granitic appearance in large, but other correlative

points are few. Some of the salient features of the Glastonbury are:

(1) Well developed foliation striking NW, plus evidences of earlier

foliations. (2) Herz (1955) was able to map at least four distinct

facies within the Glastonbury, which illustrates its well defined

structure. (3) Abundant pegmatites, commonly of the eross-cutting

variety. However, the Maromas Granite Gneiss exhibits the following

features: (1) A fair foliation striking to the NW, but no positive

evidence of any earlier foliation. (2) Sub-divisions of the Maromas

are vague, probably due to emplacement (suggested earlier) during the

early stages of the last major metamorphism of the area. (3) Paucity
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of pegmatites within the Maromas (Stugard, 1958, lists only one

pegmatite which definitely occurs in the Maromas). (4) Aplites, which

can be traced as grading into the Maromas, show the same intrusive

nature against the Collins Hill Formation as do the aplites associated

with the pegmatites which occur within the Collins Hill, but the

Glastonbury exhibits no such aplites. Thus it may be inferred from

the above arguments alone that the Maromas is of a significantly

later age than the Glastonbury. This is borne out by the current work

(Chapter Five).

(IX) Middletown Formation - Monson Gneiss

The relation of the Middletown Formation to the Monson Gneiss

has been reported in Chapter One. A gradational contact from younger

Middletown to older Monson has been advocated by Lundgren (1962) and

Eaton and Rosenfeld (1960), but Mikami and Digman (1957) have argued

that the Middletown Formation is intruded by the Monson and that the

so-called gradation between the two is actually a mixed zone, possibly

due to incomplete digestion of the Middletown by the tonalitic Monson

magma.
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Conclusions

(I) Maromas Granite Gneiss

The Maromas Granite Gneiss became a separate multiplex chemical

system 287 t 10 m.y. ago, at the probable time of intrusion of the

Maromas into the Collins Hill and Middletown Formations. The scatter

of points about the whole-rock isochron is limited and indicates that

the Maromas was derived from a homogeneous parent source and has re-

mained a closed system after emplacement. The initial Sr(87/86)

ratio is 0.714, which suggests that the intruded material had a high

Rb/Sr pre-history before emplacement; but the nature of this pre-

history is unknown. The time interval between the 287 Maromas age

of emplacement and the 250 age of emplacement of the pegmatites was

sufficient for some regional structures to develop within the Maromas

megasystem. The pegmatites do not represent late-stage differentiation

products of the crystallizing Maromas because the initial Sr(87/86)

ratio of the Maromas is 0.714, which is too low to allow a mineral

isochron with a 0.735 initial ratio to develop in a span of 30 to

40 my.
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(II) Glastonbury Gneiss

The absolute Rb-Sr age of the Glastonbury Gneiss is 360 t

10 m.y., but this age does not resolve the problem of the Collins

Hill - Glastonbury relationship because of the uncertainties in-

volved in the interpretation of the Collins Hill "age". The 360 m.y.

age for the Glastonbury is defined by a six point isochron and in-

dicates closure of at least the porphyroblastic facies since that

time, and that this facies was probably homogeneous. The initial

ratio of the Glastonbury is 0.710, which is close to the subsialic

source region-derived rocks (see Chapter Two); but to therefore as-

sume an intrusive history of the Glastonbury may be erroneous because

careful mapping by Herz (1955) and others suggests derivation in part

from non-intrusive rocks. The absolute age of 360 m.y. does, however,

explain the more advanced degree of foliation within the Glastonbury

relative to the Maromas, and probably lack of any direct genetic re-

lationship to the pegmatites in the area (of a 250 m.y. age). The

difference in the initial Sr(87/86) ratios between the Glastonbury

and the pegmatites (e.g. 0.710 as opposed to 0.737) also disproves

any direct cogenetic relationship.
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(III) Correlation of the Ammonoosuc Volcanics of New Hampshire with

the Middletown Formation of Connecticut

The data presented in Chapter Five show good agreement between

the ages for the Ammonooduc Volcanics and the Middletown Formation

and thus confirms their contemporaneity. Both the Ammonoosuc and

Middletown groups of samples show a narrow spread of Rb/Sr values,

leading to the error limits of - 15 m.y. for both the 450 m.y.

Middletown and the 460 m.y. Ammonoosuc. The Ammonoosuc Volcanics

occur in four distinct belts in New Hampshire and show no clear doming

effects or relationship to any one dome, and thus the suggestion of

Lundgren (1962) that the Middletown may be a facies of the dome-

(or anticline-) forming Monson Gneiss.is inconsistent with regional

evidence. The mean age of 455 t 10 m.y. for both the Middletown-

and the Ammonoosuc is proposed, but the relationship-of this absolute

age to the time scale problem is tenuous because the Geologic Age is

open to some question and the decay constant is in doubt. The ini-

tial Sr(87/86) ratios for the Middletown and Ammonoosuc Formations

are respectively 0.707 t 0.001 and 0.708 - 0.001 and confirm their

derivation (at least in part) from basic volcanics.



(IV) Monson Gneiss

A minimum age of 418 t 15 m.y. may be placed on the Monson Gneiss,

but is largely controlled by samples from a granitic dike which cuts

part of the formation,. and until further evidence either proves or

disproves the cogenesis of these dikes withs the more basic gneisses,

only the above minimum age can be given. If the granitic dikes are

not considered as part of the Monson, an-entirely different age results

as shown in Figure 5.5b of 550 m.y., but with a large t 80 m.y. error.

The large error results from the low (Rb/Sr)4 ratios of the basic

gneisses which allow very different maximum and minimum isochrons to

be drawn through the limits of error about each point. The initial

Sr(87/86) ratio of the Monson Gneiss is 0.708 t 0.001, which again

is close to that suggestive of derivation of parent material from

the subsialic source region. Because of the differing opinions as to

the relation of the above-mentioned granitic dikes (see earlier dis-

cussion) the Monson-Middletown relationship cannot be resolved; but

it is interesting to note that the Monson does not cut the Collins

Hill Formation in the area, which may suggest that the doming in the

area took place after the emplacement and/or deposition of Monson-

Middletown-Collins Hill in normal stratigraphic order. That the
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Collins Hill Formation is younger than the Monson is indisputable

from this argument, and is supported by the fact that the granitic

dikes which cut the Monson do not apparently cut the Collins Hill.

(V) Collins Hill Formation

Samples from the Collins Hill Formation which have not been

contaminated by pegmatitic material define a series of points through

which an apparent isochron can be constructed. Although the age of

this possible isochron is 395 - 15 m.y., this age does not help in-

terpret the relationship of the Collins Hill Formation to the other

basement rocks because of the problems of detrital phases rich in

Sr in the original material at the time of deposition, which would

lead to scatter of points when there is an unegual distribution of

authigenic versus allogenic Sr and Rb in the megasystem among the

various local systems. Therefore the importance of the 395-apparent

age yielding isochron is only two-fold: (1) Samples defining this

possible isochron have been taken at, near, and removed from the

Strickland pegmatites, and thus indicate that local systems are too

restrictive for widespread migration of material to take place, and
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(2) the high initial Sr(87/86) ratio of this apparent isochron of

0.719-+0.002 definitely shows influence of 87 enrichment in the

allogenic components of the original sedimentary material. There has

been some type of exchange system set up between pegmatitic aplites

and their immediate host rocks, as evidenced by the samples R4722, an

aplite, and R4723, Collins Hill Formation plus some aplite. The iso-

chron for the pegmatites in the area is well established as having an

initial Sr(87/86) ratio of 0.737 + 0.002, and the aplite yields

0.7280 + 0.002, but the host rock to the aplite (R4723) yields 0.8280

for a Rb/Sr ratio of 12.0, which falls well below the possible Collins

Hill Isochron. An isochron constructed between R4122 and R4723 yields

an absolute age of approximately 210 m.y., and thus indicates that

there has been a local re-homogenization in restriced contact zones

between the pegmatite and the host rock. As seen in Figure 5.7, two

other samples also fall on this isochron, R4720a and R4718, both of

which have been contaminated by some pegmatitic material. The ex-

change of pegmatitic and host rock material is limited to those local

systems adjacent to the pegmatite, and the only when structural condi-

tions are favorable. The uncontaminated whole-rock samples represent
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the complete stratigraphic section of the Collins Hill Formation

in the vicinity of the Strickland Quarry, but may not be represen-

tative of the Collins Hill over the entirety of the outcroppings.

Mantled Gness Domes

This writer has not engaged in field investigations on the

problem of mantled gneiss domes. However, it is felt that the

Rb-Sr information on the Monson, Glastonbury, and Maromas domes is

of genetic significance and places severe limits on the various

interpretations presented in the literature.

(I) Glastonbury Dome

The 360 i 10 m.y. age for the Glastonbury Gneiss does not

resolve the Glastonbury - Collins Hill problem because of the pre-

viously mentioned uncertainties concerning the apparent 395 - 15 m.y.

age of the Collins Hill, but the Glastonbury whole-rock isochron does

indicate that the porphyroblastic facies of the gneiss to be of an

orthogneissic origin, and a closed system since 360 - 10 m.y. ago.

If the Glastonbury Gneiss is intrusive into the Collins Hill

Formation, then assimilation of the Collins Hill by the Glastonbury
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near their contact has been negligible, as evidenced by the low

initial Sr(87/86) ratio of the Glastonbury (0.710) as opposed to the

high initial ratio (0.719) of the Collins Hill. If assimilation

played any significant role, one would expect the initial ratio of

the Glastonbury to be higher than 0.710 because of inherited excess

* 87Sr from the- Collins Hill schists.
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(II) Maromas Dome

The Maromas Granite Gneiss yields a whole-rock isochron which

defines an age of 287 t 10 m.y., and this age is much less than that

of any of the other domes or pre-pegmatite country rocks in the area.

This -age confirms the fact that it was emplaced during the beginning

of the Appalachian Oregeny, and the poor- to fair-foliation developed

is explained by the length of the orogeny (e.g. pegmatites emplaced

at about 250 m.y., metamorphism of country rocks ended at about 220 -

230 m.y.).

The high initial Sr(87/86) ratio of the Maromas Granite Gneiss

can 6riginate in several different ways as discussed in Chapter Two.

Assimilation of K-rich border facies of host rock is probably not

significant. because the Maromas is not in contact with the same

Collins Hill members in all exposures from which samples have been

taken, and thus the well-defined isochron (Figure 5.1) would not be

expected in this case. It is more logical to assume that the Maromas

represents material derived from a homogenized parent which has under-

gone a previous crustal history. Whether the parent material re-

presents a continually rehomogenizing magma chamber (see Model VIII,

Chapter Two) or another form of remobilized material cannot be

decided from this study, as both cases yield a high initial Sr(87/ 8 6)
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ratio.

It is also suggested that, because the Maromas is the youngest

of these domes, and because it shows the clearest intrusive contacts

into the other country rocks, the repeated regional metamorphisms

(Acadian (?), Appalachian (?)) could have destroyed the contact

features of the Glastonbury and the Monson with their host rocks.

(III) Killingworth Dome

A minimum age of 418 - 15 m.y. can be placed on the Monson Gneiss

from Figures 5.5a and 5.5b, but this age is controlled by the granitic

dikes which cut the formation. There is scant evidence that these

dikes are genetically related to the more basic plagioclase gneisses

and thus the age is probably not valid, and if the dikes are unrelated

to the plagioclase gneisses then a false minimum age is represented by

Figure 5.5a, and the plagioclase gneisses define a possible older iso-

chron of 550 - 80 m.y. (Figure 5.5b). In either case, the Monson Gneiss

is of a significantly different age than the Maromas or the Glastonbury

Gneisses. The relationship of the Monson to the Middletown cannot be

resolved from these ages and the initial Sr(87/86) ratio of 0.708 is

consistent with either hypothesis. However, Peter Robinson, of Harvard

University, (Personal Communication) has shown that the Middletown-

equivalent (Ammonoosuc) overlies the Monson in Massachusetts.



(IV) Tentative Conclusions

The gneissic rocks which now occupy the Maromas, Glastonbury

and Killingworth (Monson) domes are of three significantly different

ages, and thus the proposed similarity in age of the gneissic domes

in the New Hampshire part of the Bronson Hill Anticline (see

Billings, 1956) is probably not warranted. It is possible that the

doming mentioned above represents intrusions of three different

orogenic periods: the Taconic, Acadian, and Appalachian. It is

interesting to note that the data for the three domes fit theoretical

model. VIII (Chapter Two), the case for repeated removal of material

periodically from a continually homogenizing reservoir. Thus

R R R but t > t > tr, but more statistics are needed tog o mo gl Mr

substantiate this hypothesis. There are enough indications, however,

to demonstrate that the Rb-Sr whole-rock method can aid in inter-

preting the geologic relationships and genesis of gneiss domes, and

this is the real value of the investigation.
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Pegmatite Investigations

The geology of the pegmatites studied has been described in

Chapter One, and the age work on these pegmatites in Chapters Four

and Five. This section will attempt to summarize features of these

pegmatites and discuss theories of genesis.

Three different theories for genesis of the pegatites in the

area have been proposed: (l)- magmatic injection from an unexposed

parent source, which has been discussed by Chadwick (1958),

Stugard (1958), Jenks (1935), and Cameron et al. (1949, 1954). (2)

Magmatic injections of late-stage segregations of the Glastonbury

and/or Maromas gneisses, which has been discussed by Westgate (1899)

and Foye (1949). (3) Metamorphic theories, including metasomatism

of the country rocks (Collins, 1954), partial fusion of country rocks

(see general discussion in Turner and Verhoogen, 1960), and

secretional theories- (as in Rosenfeld and Eaton, 1958). These

theories will be discussed below.

(I) Relation of the Strickland Quarry' Pegmatite to the Collins Hill

Formation

Rosenfeld and Eaton (1958) have suggested that the abundance

of pegmatites within the Collins Hill Formation may be due to

lateral secretion of material "sweated out of the Collins Hill

during metamorphism, aided by the fluxing action of CO2 and H20,
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which were undoubtedly drivenoff in large quantities during the

event. The current geochronological investigations are not sufficient

to answer this theory, but some restrictions can be placed on this

source by considering the theoretical models for pegmatite genesis

which have been described in Chapter Two. Case VII-A (magmatic in-

jection from an unexposed source material) can- be discarded because the

initial Sr(87/86) ratio of the pegmatite mineral (and whole-rock .)

isochron is 0.737, Vhich is much greater than that of any known acid

igneous rock (see Hurley et al., 1962). The initial ratio of the

Collins Hill Formation is 0.719, so this is a good case to test the

primary magmatic melt theory, but -it does not apply to the Strickland

Pegmptite. Riley (196), has proposed that possibly'one pegmatite in

the Western Australian Shield may be of a near-mantle derivation be-

cause of a possible low initial ratio, but the isochron is poorly de-

fined and inconclusive to warrant the statement.

Case VII-B (In Situ diffusional theory) may be discarded because

(1) there is every evidence for forceful injection of the pegmatite

into its host rock, (2) the abundance of Sr in the pegmatite isin-

consistent with any diffusional model as Sr should migrate parallel

to Ca and not K and Na, (3) the apparent Collins Hill Isochron,

Figure 5.6, for uncontaminated samples is defined from specimens taken
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both near and removed from the pegmatite, and thus the local systems

are too restrictive to have allowed any widespread migration of

material in situ, and (4) any such model must of necessity be a slow

continuous one, and thus the earliest formed parts of the pegmatite

would be expected to show effects of the regional foliation, but this

is not observed.

Case VII-C (injection of re-mobilized material) is the most

applicable of the theoretical models for the Strickland Quarry

Pegmatite because it suggests injection of a homogeneous pegmatitic

material into its present site as evidenced by lack of influence of

the pegmatite on the Collins Hill (isochron) except in the immediate

contact zone, and because of its very high initial Sr(87/'86) ratio.

87
It is interesting to note that an excess of Sr has been observed in

pegmatites which occur in regionally metamorphosed areas in other

* 87parts of the world. Giletti et al. (1961) have reported excess Sr

from the Knoydart Pegmatite in Scotland, and Riley (1961) has also

found such an excess in the Harts Range and Bindoon pegmatites in the

Western Australian Shield area. From the same area, Compston and

* 87
Martin (in press) have presented evidence of excess Sr in the

Donneybrook pegmatite, which, unlike the others, is a small (less than
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one foot in width) pod-like pegmatite occurring in granite gneiss,

and which they can demonstrate by Rb-Sr work, to have been derived

from the surrounding rocks by some secretional (possibly anatectic)

process. It is difficult to apply their results to a large pegmatite

such as the Strickland, however.

(II) Relation of the Pegmatites of the Area to the Maromas Granite

Gneiss and/or the Glastonbury Gneiss

Because of their close relationship in age (e.g. 250 as opposed

to 287 m.y.) it is tempting to suggest a genetic relationship between

the Maromas Granite Gneiss and the pegmatites of the area. However,

the vast difference in initial Sr(87/86) ratios for the two suggest a

complete lack of direct genetic relationships, as the Maromas yields

0.714 and the pegmatites 0.735. Riley (1961) found that the York

pegmatite was related to its petrographically-indicated parent granite,

and found agreement in initial ratios. Vlasov (1961), Jahns (1955),

and Orville (1961) have discussed such petrographic guides, but they

have not been applied to the Maxomas.

By similar reasoning, the initial ratio of 0.710 for the

Glastonbury and its 360 + 10 m.y. age suggests lack of any genetic

relationship with the pegmatites of the area. The two whole-rock samples
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from the Hale Quarry, R 5030 and R5031a, fall near the mineral isochron,

and their departure from this isochron may be due to either experimental

error or inadequate sampling. A line can be constructed through the two

points which has a steeper slope than the mineral isochron and which

yields an age of approximately 350 - 360 m.y. This age is inconsistent

with field evidence, because there is no evidence of regional foliation

developed on any significant scale in the pegmatite which would be pre-

sent if the above ages were real.

(III) Conclusions for Genesis of Pegmatites in the Area

The probable age of emplacement of the pegmatites is 255 t 10 m.y.

base'd on concordance between U-Pb, Th-Pb, K-Ar and Rb-Sr ages, but this

age probably does not mark the end of the Appalachian Orogeny as mineral

ages for the Collins Hill Formation and Glastonbury Gneiss are lower

(e.g. 220 t 10). Further evidence that the 255 + 10 age merely re-

presents the closure of the pegmatite systems is indicated by the ex-

cess of *Sr in a secondary cleavandite, A4992, in the Strickland

Pegmatite. The Spinelli Prospect Pegmatite and the Strickland Quarry

Pegmatite are cogenetic with the Hale Quarry Pegmatite.

The pegmatites are not genetically related to either the Maromas

or the Glastonbury Gneisses, and the parent material is unknown, al-

though it must represent re-mobilized material.
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Stratigraphy of the Pre-Triassic Rocks of the Middle Haddam and Glastonbury

Quadrangles, Connecticut

Figure 6.1 shows the suggested stratigraphic relations among the

pre-Triassic rocks of the area, and incorporated the uncertainties

concerning the Collins Hill and Monson ages.

FIGURE 6.1

Formation Probable Geologic Age Rb-Sr Age

Pegmatites

Mardmas Granite Gneiss

Bolton Group

Glastonbury Gneiss

Collins Hill Formation

Granite Dikes in Monson

Middletown Gneiss

Monson Gneiss

Mississipian (?)

(?)

Siluro-Devonian

(?)

Middle to Late
Ordovician (2)

(?)

Early to Middle
Ordovician (?)

(?)

255 10

287 -10

(?)

360 - 10

+ *
395 - 15 (?)

418

455

+ 15

- 10

550 t 8o

* absolute age uncertain, see Chapter Five and Chapter Six.

** minimum age, real age may be older.

*** age based on average of 1160 - 15 m.y. Ammonoosuc Volcanics.

and 450 t 15 m.y. Middletown Formation.
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CHAPTER SEVEN: Sample Descriptions

(I) Collins Hill Formation (all samples normal to regional strike,
from near the Strickland Quarry)

R4717 - Biotite-quartz-(plagioclase) schist, taken 150 feet from
the HW contact of the Strickland Pegmatite.

R4718 - Tourmalinized biotite-quartz-garnet schist, taken less than
2 feet from HW contact of pegmatite .

R4719 - Biotite-quartz-(plagioclase)-(garnet) schist, 5 inches from
FW contact of pegmatite.

R4720a.- Biotite-quartz-(pyritiferous) schist; coarse grained contact
facies, FW side.

R4720b - Biotite-quartz-sericitized feldspar-(garnet) schist, slightly

mylonized, cut by quartz veins, contact facies, FW side.

R4721 - Biotite-quartz-(garnet)-plagioclase schist, 15 feet from FW
' contact with pegmatite.

R4722 - Quartz-albite-(muscovite) aplite; in contact with R4723.

R4723 - Biotite-quartz-(garnet) schist, cut by numerous stringers
of R4722. Contact zone.

R4788 - Biotite-quartz-(plagioclase schist, approximately 20 feet
from Maromas contact. -

(II) Pegmatites

A4774 - Massive plagioclase, some quartz, from Strickland Quarry dump.

A4992 - Cleavandite, with minor quartz and light blue tourmaline,
probably from transitional zone, Strickland Quarry dump.
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R5030 - Pegmatite, Hale Quarry. Whole-rock sample showing both
graphic granite and muscovite-bearing aplite.

R5031a - Pegmatite, Hale Quarry. Musvocite bearing aplite.

(III) Maromas Granite Gneiss

R4 791a,b, 

R5059a,b

Microcline-plagioclase (An1) -quartz-biotite gneiss with
minor garnet. From the west side of Collins Hill near
the Strickland Quarry. Samples a,b,c showed varying
amounts of microcline and garnet in hand specimen

Microcline-quartz-plagioclase(An )-biotite) gneiss, from
near the main Maromas Dome, samp+ s donated by
Dr. J. W. Peoples, Wesleyan University.

(IV) Middletown Formation

R5052 - Amphibolite (Hdbe 70 percent, quartz 10 percent,
plag(An ) 20 per cent), from west side of State Highway
17 sout_ of intersection with Isinglass Hill Road.

R5053a,b,c - Biotite-quartz-microcline-plagioclase gneiss (some epidote),
from road cut on State Highway 15 approximately one-half
mile past the turnoff to Vernon. Samples a,b,c represent
the same outcrop, but with different amounts of biotite
and microcline.

(V) Ammonoosuc Volcanics

Rhyolite porphyry, from the Moosilaukee Quadrangle, north
central ninth, 200 feet SW of highway bridge at Salmon
Hole School. Donated by Dr. M. P. Billings of Harvard
University (Harvard No. L-70).

Quartz bearing soda rhyolite, from the Littleton Quadrangle,
south central ninth, one-third mile NW of N. Lisbon School.
Donated by Dr. M. P. Billings, Harvard University,
(Harvard No. L-H56).

R5069

R5070



q

R5071 - Biotite gneiss, from Moosilaukee Quadrangle, south central
ninth, two-thirds of a mile NW of Long Pond. Donated by
Dr. M. P. Billings of Harvard University (Harvard No. L-H48).

R5072 - Chlorite-epidote schist, from Littleton Quadrangle, south
central ninth, site of Slate Ledge School. Donated by
Dr. M. P. Billings of Harvard University, (Harvard No.
L-49o).

(VI) Glastonbury Gneiss

R4792a,b,c - Granite gneiss, from contact zone near Collins Hill contact
east of Strickland Quarry. Sample a,b,c selected only
after quick scan X-Ray spectrographic study.

R4998 - Chloritized biotite-quartz-plagioclase gneiss, taken from
outcrop south of Spinelli Prospect in which no microcline
was visible in hand specimen.

R4999 - Chloritized biotite-guartz-plagioclase gneiss, taken just
east of contact with Hale Quarry Pegmatite.

(VII) Monson Gneiss

R5056,b,c - Plagioclase-quartz-hornblende gneiss, from outcrop on
State Highway 2 approximately 2 miles NW of Marlborough.

R5058 - (Mafic)-plagioclase gneiss and granitic dikes, taken south
of Higganum from various exposures. R5058a,f represent
granitic material, presumed to be related to the more
basic rocks; and R5058d is a biotite-agioclase-quartz
gneiss, and R5058e is a hornblende-plagioclase-guartz
gneiss.
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