
THE SEISMIC ATTENUATION STRUCTURE OF THE EAST PACIFIC RISE

by

WILLIAM SAM DOUGLAS WILCOCK

B.A., University of Cambridge (1985)

M.Sc., Imperial College, University of London (1986)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETI'S INSTITUTE OF TECHNOLOGY
and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

June, 1992

© William S. D. Wilcock, 1992

The author heareby grants to MIT and WHOI permission to reproduce and distribute
copies of this thesis document in whole or in part.

Signature of Author
Joint Program in Oceanography

Massachusetts Institute of Technology /
Woods Hole Oceanographic Institution

.- t, ,ebruary, 1992

Certified by

Certified by

Accepted by

Sean C. Solomon, Thesis Co-Supervisor

.M. Purdy, 'hesis Co-Supervisor

Chair, Joint
M. K. McNutt

Committee for Marine Geology and Geophysics

M"0l WT-P!,ayVN
mrRFR1
ITLmRAj~





THE SEISMIC ATTENUATION STRUCTURE OF THE EAST PACIFIC RISE

by

William Sam Douglas Wilcock

submitted to the Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology

and
the Department of Geology and Geophysics,

Woods Hole Oceanographic Institution
on February 27, 1992, in partial fulfillment of the requirements for the degree of Doctor

of Philosophy

ABSTRACT

Studies of seismic propagation through oceanic crust have contributed enormously to
our understanding of the generation and evolution of oceanic crust. However, such work
has largely been confined to the seismic velocity structure. In this thesis we present
results from a study of seismic attenuation using a data set collected for three-dimensional
tomographic imaging of a fast-spreading ridge. The experiment location at 9030'N on the
East Pacific Rise is the site of a strong mid-crustal seismic reflector which has been
inferred to be the roof of a small axial magma chamber at about 1.6 km depth.

A spectral method is used to estimate t*, a measure of the integrated attenuation along
a wave path. Such a method assumes that the dominant frequency-dependent component
of propagation is intrinsic attenuation. A logarithmic parameterization is then used to
invert t* measurements for Q-I structure assuming that the velocity structure is given from
earlier studies. To evaluate the method of Q tomography a full-waveform finite-
difference technique which does not include attenuation is used to calculate solutions for
seismic propagation through a two-dimensional velocity model. The results show a
complex pattern of seismic propagation in the vicinity of the axial magma chamber. The
first arrival always passes above the magma chamber. However, for paths of significant
length that cross the rise axis the amplitude of this arrival is very small, and the first phase
with significant amplitude is a diffraction below the magma chamber. High-amplitude
Moho turning and PP arrivals may also be important secondary arrivals. Synthetic
inversions show the importance of selecting time windows for power spectral estimation
which are dominated by a single phase and of using wave paths which closely
corresponds to that of the selected phase.

A comparison of the finite difference solutions and the predictions of the a two-
dimensional, exact ray-tracing algorithm with record sections obtained during the
tomography experiment significantly improves our understanding of seismic propagation
across the East Pacific Rise. The results enable an objective choice of the position and
length of the time window for t* estimation. Moreover, additional constraints are
incorporated into an approximate three-dimensional ray-tracing algorithm used in the
inversion so that the wave paths more closely correspond to those of the desired phase.
The full data set to be inverted comprises about 3500 t* estimates and includes crustal
paths which do not cross the rise axis, diffractions above and below the axial magma



chamber, and Moho-turning phases. Wave paths for the Moho-turning phases cross the
rise axis at a wide range of lower crustal depths.

The Q-1 models resulting from two-dimensional and three-dimensional tomographic
inversions show that the attenuation of seismic waves on the East Pacific Rise is
dominated by two regions of low Q; one in the upper 1 km of crust, and one at depths
greater than about 2 km below the rise axis. While the data do not resolve the details of
vertical variations in near-surface Q-1, the results show a substantial variation in shallow
attenuation within 0.05 My of the rise axis. On-axis, Q values averaged over the upper 1
km are about 100, while off-axis the average value rapidly decreases to about 30.
Measurements of the seismic velocity suggest that the thickness of the surficial high-
porosity extrusive layer increases substantially off-axis. If such thickening is entirely
responsible for the observed change in near-surface attenuation then Q within the
extrusive layer must be much less than 20. Alternatively, in situ changes in porosity may
also contribute to the observed increase in attenuation. Since significant tectonic activity
is apparently restricted to locations well off-axis we suggest that such variations in
porosity may result from hydrothermal activity. Regions of hydrothermal downwelling
located off-axis will be subject to cooling and thermally-induced cracking while upwelling
regions on-axis may be accompanied by rapid infilling of existing pores by hydrothermal
deposits.

Estimates of t* for all phases propagating below the magma chamber are markedly
higher than those for other phases, resulting in Q-I models which include a region of low
Q extending from 2 to 7 km depth below the rise axis. The lowest Q values resolved are
about 25-30 both immediately below the magma chamber and within the lower crust.
While there is some evidence for a small decrease in attenuation with depth in the lower
crust, axial Q values at depths ranging from less than 2.5 to 6 km are relatively constant,
always lying below 50. Laboratory measurements at seismic frequencies suggest that Q
values of 25-50 require only very small fractions of partial melt. The attenuation
observations thus place constraints on the dimensions of the axial magma chamber and
strongly suggest that the thickness of the region containing more than a few percent of
partial melt is no more than 1 km.
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Professor of Geophysics, MIT

Dr. G. M. Purdy
Senior Scientist, WHOI
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CHAFFER 1

PRINCIPLES OF ATTENUATION TOMOGRAPHY

INTRODUCTION

Because seismic wave propagation is affected by the composition, temperature,
and porosity of the medium, and by the presence of partial melt, measurements of the

seismic properties of oceanic lithosphere have played an important role in developing
and refining our understanding of processes by which oceanic crust and upper mantle

are generated and evolve. To this end, numerous measurements have been made of

seismic velocities. In contrast, while workers have occasionally noted the effects of
seismic attenuation on wave amplitudes [e.g., Orcutt et al., 1976; Reid et al., 1977;
Spudich and Orcutt, 1980a; Vera et al., 1990], comparatively few studies have been

devoted to measuring the attenuative properties of young oceanic crust [Lewis and

Jung, 1989; Jacobson and Lewis, 1990; Wepfer and Christensen, 1990, 1991]. In

January 1988 a tomographic experiment (Figure 1.1) was conducted at 9*30'N on the

East Pacific Rise (EPR). A three-dimensional delay time tomographic image of the

P-wave velocity structure (Figure 1.2) was obtained by Toomey et al. [1990a]. This

model is complemented by a two-dimensional structure (Figure 1.3) derived by
interpolating between the results of several expanding spread profiles [Vera et al.,

1990]. Near the seafloor, the models are characterized by increased velocities along

the rise axis. In contrast, at 2 km depth beneath the rise axis, the inferred location of

a small axial magma body [Herron et al., 1978, 1980; Hale et al., 1982; Detrick et al.,
1987; Mutter et al.; 1988; Kent et al., 1990; Vera et al., 1990], anomalously low

velocities are observed. Significant along-axis variations in the magnitude of the low

velocity anomaly in the delay time tomographic model are interpreted in terms of a

thermally segmented rise axis [Toomey et al., 1990a]. This thesis is concerned with

the measurement of seismic attenuation using the tomographic data set. The

primary objective is to obtain and interpret a model of crustal P-wave anelasticity

that is comparable in scale and resolution to the P-wave velocity models [Vera et al.,

1990; Toomey et al., 1990a].

The remainder of Chapter 1 is divided into six sections which provide the

background to the techniques used in this thesis. The first is a brief overview of the

definition of Q and its importance in seismology. The second reviews the theory and

111911 , , ,,



assumptions of the spectral method of attenuation tomography. The third describes

the configuration of the EPR tomography experiment. The next two sections discuss

the methods by which spectral measurements are used to obtain estimates of t*, an

integrated measure of attenuation along a wave path. The final section discusses

how estimates of t* are inverted to obtain spatial models of crustal anelasticity

parameterized in terms of the reciprocal of the quality factor Q.
The following three chapters discuss specific aspects of this study. Chapter 2

deals with the study of three rise-parallel seismic refraction lines located along the

rise axis and 20 km to the east and west. Chapter 3 discusses the use of a full-

waveform finite-difference method, applied to a two-dimensional velocity model of

the EPR, to evaluate the attenuation tomography method. Chapter 4 describes

attempts to invert the full t* data set to obtain two and three-dimensional images of

crustal attenuation. The final chapter, Chapter 5 attempts to interpret the results of

this study and discusses how they contribute to our understanding of the generation

and early evolution of oceanic crust along the EPR.

SEISMIC ATTENUATION

The dissipation of energy (by internal heating) within an anelastic material

under periodic stress is described in terms of the quality factor Q. Q is a measure of

the fractional energy lost per cycle and is most unambiguously defined [O'Connell

and Budiansky, 1978]:

4xV(f)Q(f)=
A $ (1.1)

where f is the frequency, V is the average stored energy per cycle, A$ is the energy

dissipated per cycle. For a material that can be modelled as a network of linear

springs and dashpots this definition is equal to the ratio of the magnitude of the real

and complex components of the appropriate modulus [O'Connell and Budiansky,

1978]. If Q>>1, equation (1.1) leads straightforwardly to an expression for the

amplitude decay due to anelasticity [Aki and Richards, 1981] in a homogeneous

medium

A(t) -x'f t]
A(0) . Q (1.2)

where A is the amplitude of a harmonic wave at time t. Attenuation is of importance

to seismologists not only because of its effect upon seismic amplitudes but also



because causality requires that it be accompanied by dispersion [e.g., Futterman,
1962; Azimi et al., 1968; Liu et al., 1976].

Seismic observations of Q range from below 10-3 Hz to over 102 Hz while

laboratory measurements are often obtained at substantially higher frequencies. The

degree of attenuation of P and S waves is frequently observed to be strongly

correlated, with levels of S wave attenuation markedly higher. Assuming that all

dissipation occurs in shear rather than compression results in a ratio Qp/QS=2.25 for

a Poisson solid [Anderson, 1967], a result in good agreement with many

observations [e.g., Cormier, 1982]. Early workers concluded that Q was

substantially independent of frequency [Knopoff, 1964, Anderson, 1967]. However,

when observations are made over a large bandwidth there is strong evidence for a

frequency dependent Q at certain frequencies both within the mantle [e.g.,

Gutenberg, 1958; Kurita, 1968; Archambeau et al., 1969; Solomon, 1972; Sipkin and

Jordan, 1979] and the lithosphere [Frantti, 1965; Aki and Chouet, 1975; Aki, 1980;
Jacobson, 1987]. The mantle observations can be fit with an absorption band model

[Lundquist and Cormier, 1980; Anderson and Given 1982], which specifies a depth-

dependent frequency interval within which Q is only weakly dependent upon

frequency (Q~ f 0.15) but outside which Q rapidly increases. The lithospheric data

are more difficult to model because of the inability to distinguish intrinsic attenuation

from the effects of scattering [e.g., Cormier, 1980] which may be important at

shallow depths [e.g., Toksiz et al., 1988]. However, when studies are confined to

narrow frequency bands it is still usual to assume a constant Q.
Many mechanisms may contribute to attenuation [Jackson and Anderson, 1970],

and not all processes are well understood. At seismic frequencies dissipation may

occur at grain boundaries, at lattice defects, along microcracks, and through fluid

flow. Many mechanisms satisfy the properties of a standard linear solid and are

characterized by a relaxation time which determines the frequency of maximum Q-1,
below and above which Q-1 decreases linearly with the frequency and the reciprocal

of the frequency, respectively [Zener, 1948; Jackson and Anderson, 1970]. A broad

band of near constant Q can result from the combined effects of a number of different

mechanisms with different relaxation times [Liu et al., 1976] or from a single

mechanism with a distribution of relaxation times [Kanamori and Anderson, 1977].

Regional attenuation studies in both continental regions [e.g., Asada and

Takano, 1963; Sutton et al., 1967; Sacks, 1969; Molnar and Oliver, 1969; Solomon

and Toksiz, 1970] and along mid-ocean ridges [Molnar and Oliver, 1969; Solomon

......... MONNOWMNIININWil" I.,



1973; Sheehan and Solomon, 1991] suggest that volcanic regions are characterized
by high levels of attenuation. High-temperature laboratory experiments at both
atmospheric [Woirgard and Gueguen, 1978; Berckhemer et al., 1979, 1982; Sacks and
Murase, 1983; Kampfmann and Berckhemer, 1985] and elevated pressures [Sato et
al., 1988, 1989; Jackson et al., 1992] confirm that such observations are a
manifestation of elevated temperatures and possibly partial melt. A large number of
local studies of attenuation have also been conducted in volcanically and
hydrothermally active areas. Many of the early studies [e.g., Matumoto, 1971;
Einarsson, 1978; Latter, 1981; Ryall and Ryall, 1981; Sanders, 1984; Kobayashi et al.,
1986; Sanders et al., 1988] employed qualitative estimates of attenuation to locate
highly attenuating regions. More recently workers have employed tomographic
techniques [Young and Ward, 1980; Hashida and Shimazaki, 1987; Evans and Zucca,
1988; Hashida et al., 1988; Ho-Liu et al., 1988, 1990; Clawson et al., 1989;
Scherbaum and Wyss, 1990] to image low-Q volumes. However, there is a marked
absence of such studies near mid-ocean ridges.

Indeed, while there have been several studies of attenuation in deep sea
sediments [e.g., Hamilton, 1976, Mitchell and Focke, 1980; Stoll and Houtz, 1983;
Jacobson et al., 1981, 1984; Jacobson, 1987], observations of attenuation near mid-
ocean ridges have been limited. From a comparison of the amplitudes of
microearthquakes recorded on ocean-bottom instruments, Reid et al. [1977] inferred
the presence of a narrow zone of high attenuation coincident with the ridge crest at
21*N on the East Pacific Rise. Direct measurements of Q in the upper 600 m of 0.4
My old crust near the Juan de Fuca Ridge [Jacobson and Lewis, 1990] show values
of 20-50, in good agreement with ultrasonic laboratory measurements of Q in oceanic
basalts [Wepfer and Christensen, 1990]. A model of oceanic Q structure based on
laboratory measurements of ophiolite samples at 1 MHz [Wepfer and Christensen,
1991] includes Q values of about 50 near the surface and in the gabbros which form
the lower crust. Reflectivity models of wave amplitudes on expanding spread
profiles at 9*30'N on the EPR [Vera et al., 1990] include Q values beneath 100 near
the seafloor and in the vicinity of a 1.6-km-deep magma lens under the rise axis.

A SPECTRAL METHOD FOR ATTENUATION TOMOGRAPHY

There are a number of different methods to measure the attenuation of seismic
body waves [e.g., Cormier, 1980; Tonn, 1989]. The methods can be divided into two
categories depending upon whether the measurements are obtained in the time or



frequency domain. Most time domain methods suffer from the disadvantage that the

velocity structure must be accurately known. Simple measurements of peak or

averaged amplitude require an accurate correction for wave divergence. More

sophisticated waveform modeling techniques require, in addition, reliable

calculations of synthetic waveforms. The rise time technique [Gladwin and Stacey,

1974] does not require a good knowledge of the seismic velocity structure, but it may

be difficult to implement when waveforms are emergent or have complex shapes or

when the signal to noise ratio is low. In contrast, the spectral method does not

require a knowledge of the velocity structure, and while certain assumptions are

made about the nature of seismic propagation, it can be applied to emergent

waveforms with fairly low signal to noise ratios. For this reason we use a spectral

technique.
In the time domain a seismic record x(t) can be described by a convolution

x(t) = s(t) * c(t) * i(t) (1.3)

where s is the source signature, c is the crustal transfer function, and i the

instrument response. Thus, in the frequency domain the power spectrum of the

crustal transfer function C can be obtained from the recorded power spectrum P by

dividing out the source signature S and the instrument response I

P(f)
C(f) = ~f

S (f) I(f) (1.4)

In many studies either the source signature or instrument response is not sufficiently

well known to apply equation (1.4), and a spectral ratio technique [e.g., Teng, 1968]

must be employed to obtain estimates of differential attenuation. However, for this

study this is not the case and absolute estimates of attenuation are obtainable.

Spectral estimates of attenuation rely on two assumptions. First, it is assumed

that by judicious choice of the time interval used for spectral measurements the

crustal transfer function can be estimated for a single phase. Second it is assumed

that the dominant frequency-dependent component of the crustal transfer function is

attenuation, so that for a phase that propagates along a path s, C can be described

by

C(f, s) = G(s) exp[-27nft*(s)] (1.5)

where G is a frequency-independent term to account for divergence, the exponential

term is the attenuation derived from equation (1.2), and t* is defined as an integral of

slowness and Q-1 along the wave path



t* =fA-

(1.6)
An estimate of t* can be obtained by fitting a straight line to a plot of ln(C) against
frequency

d ln[C(f)] = -2n t*
d f (1.7)

In practice, non attenuative components of seismic propagation, including scattering,
short-path multiples, and focusing, may result in a frequency dependent G. Thus t*

estimates obtained by this method will be measurements of apparent rather than

intrinsic attenuation [e.g., Cormier, 1980]. If the velocity structure and wave paths
are known, equation (1.6) can be used as a basis for a linear inversion to obtain a
Q-1 model from t* measurements.

TOMOGRAPHY EXPERIMENT

The three-dimensional tomography experiment [Toomey et al., 1990a] was

conducted between 90 and 10*N on the EPR in January 1988. The configuration of

the experiment (Figure 1.1) was designed on the basis of synthetic modelling
[Toomey, 1987] to determine the P-wave velocity structure within a 16 x 16 km area
of crust centered upon the rise axis. A total of 15 ocean bottom instruments,
comprising 8 Woods Hole Oceanographic Institution (WHOI) analogue ocean

bottom hydrophones (AOBHs) [Koelsch and Purdy, 1979], 5 WHOI digital ocean

bottom hydrophones (DOBHs) [Koelsch et al., 1982], and 2 Massachusetts
Institute of Technology (MIT) ocean bottom seismometers (OBSs) [Mattaboni and
Solomon, 1977; Duschenes et al., 1981; Trihu, 1982], were deployed in a regular
pattern at distances of 0, 9, and 20 km to the east and west of the rise axis. A total
of 480 controlled explosive shots were fired in a regular pattern using Global
Positioning System navigation. The majority were located within the central 18 x 16
km area of the experiment with a nominal shot spacing of 0.5 or 1 km. In addition

three 45-50-km-long rise-parallel shot lines with a 1-km shot spacing were obtained
on the rise axis and at 20 km to either side of the rise axis. With the exception of a
few tests and misfires, all the shots were of uniform size (54.5 kg) and construction

and were composed of either C4 or HBX explosives. A fixed shot depth was
maintained by floating the charges.

Considerable effort was devoted to determining the instrument responses;
details are presented in Appendix A. Figure 1.4 shows the response of the three



instruments used in the experiment. Both the DOBH and OBS are digital

instruments for which a theoretical response can be calculated. The DOBH has a

good response over a broad frequency band (5-80 Hz). In contrast the bandwidth of

the OBS is less (3-30 Hz), which limits the accuracy of attenuation estimates.

Moreover, OBS 1 was clearly poorly coupled to the seafloor during the experiment,

making accurate spectral estimates impossible [e.g., Sutton et al., 1981]. The

response of the AOBHs had to be measured and shows significant variations

between instruments, with the effective bandwidth varying from 5-35 Hz to 5-60 Hz.

Since the calibrations were obtained more than one year after the deployment, it by

no means certain that the measured responses were those during the experiment.

At ranges less than 10-15 km the analogue tape drives saturate, and accurate

spectral measurements are not possible. AOBH 8 malfunctioned during the

experiment and did not record waveforms suitable for spectral analysis.

The source signature for this experiment was measured in a separate source

monitoring experiment. A DOBH with 40 dB of attenuation added to the preamplifier

(Appendix A) was moored 1000 m above the seafloor in 2850 m of water, and four

charges, two composed of C4 and two of HBX, were detonated directly above the

instrument. The recorded pressure signal (Figure 1.5a) is dominated by the primary

explosion and the first bubble pulse and their sea-surface reflections. The nominal

shot depth was 69 m for C4 and 75 m for HBX shots. However, the timing of the

surface reflections suggests that the actual values are 20% higher. This discrepancy

probably results from a systematic error throughout the experiment in measuring the

cord used to suspend the charges from the float. A puzzling feature of all four source

monitoring shots is that the amplitude of the primary explosion is 10-15 % lower than

its surface reflection. Within a homogeneous water column the effects of spherical

spreading should produce an amplitude that is about 10 % higher. Moreover the

decrease in seismic velocities with depth within the thermocline [Carter, 1980]

should decrease the reflected amplitudes further. The only feasible explanation

seems to be source directivity. Because this is observed for all test shots and all

shots were constructed in an identical manner, this effect was presumably present

throughout the tomography experiment.

Figure 1.5b shows the recorded pressure signal after applying attenuation using

a Azimi's attenuation formula [Azimi et al., 1968; Aki and Richards, 1980] assuming

t*=0.04, a value similar to the mean t* observed during the experiment. As well as

decreasing the relative high frequency content of the waveform, attenuation reduces



the relative amplitude of the primary pulse and offsets the highest amplitudes to
later times. The highest amplitudes occur about 0.2 s and 0.4 s after the onset of the
waveform. t* estimates obtained from time windows long enough to include the high
amplitude portions of the attenuated waveform are likely to be more robust.

Since the bubble pulse time varies slightly between shots and the timing of the
surface reflection depends on the take off angle, an attempt was made to deconvolve
the instrument response from the source signature. Figures 1.4c and d show a
source signature model obtained by a constrained frequency domain deconvolution.
The time series for the initial explosion is indistinguishable from the impulse
response of the DOBH and can be represented by a delta function for the frequency
band 5-80 Hz. To model the observed decrease in spectral power with frequency,
both the surface reflection of the primary explosion and the first bubble pulse must
have a resolvable width. A symmetric bubble pulse with an exponential rise and fall
time constant of -0.005 s [Heimberger, 1968] fits the data reasonably well. A
comparison of the recorded power spectrum corrected for the instrument response
and the power spectrum of the deconvolved source signature shows excellent
agreement between the location of notches at all but the highest frequencies. The
overall decay in power is not fully modelled, though the fit is quite good between 10
and 50 Hz. This discrepancy may be due to a slight underestimation of the first
bubble pulse time constant, the failure to include the effects of higher order bubble
pulses, or the complexity of underwater explosions [e.g., Holt, 1977].

POWER SPECTRUM ESTIMATION

There is a considerable body of work devoted to the problem of estimating the
power spectra of short time series, the majority of which is located in the electrical
engineering literature and is concerned primarily with stationary processes. In this
section we will discuss how such methods can be applied to the estimation of power
spectra for seismic waveforms.

The direct spectral estimate of the power spectrum P of the function x(t) over a
time interval 0 to T is defined as

T 2

P(f) = x(t) w(t) exp(i2xft) dt (1.8)

where w(t) is the data window or taper and is normalized according to



T

l w2(t) dt = 1 
(1.9)

It can be shown [e.g., Thomson, 1977] that the expected value of P is a convolution

of the true power spectrum P with the power spectrum of the windowing function W

<P(f)> = P(f) * W(f) (1.10)

Since the window length is finite, W cannot be a delta function and the estimate is

necessarily biased. Examples of two simple windowing functions and their power

spectra are shown in Figure 1.6. If w is chosen to be constant (a rectangular or

boxcar window), P is the periodogram. In this case the halfwidth of the central lobe

of the power spectrum, which determines the spectral resolution, has the minimum

achievable value of 1/T. However, the side lobes of the window power spectrum

have large amplitudes. In the event that the data do not smoothly approach zero at

the window limits, spectral leakage will severely contaminate the spectral estimates

and produce large biases. To overcome this problem it is generally necessary to use

a tapered window. The cosine squared (Hanning) window (Figure 1.6) is commonly

used in seismology but is only one of a large number of tapered windowing functions

[Harris, 1978]. Tapered windows result in a decrease in the amplitude of side lobes

at the expense of a broader central lobe. Thus the bias from spectral leakage is

reduced at the expense of spectral resolution. The optimal choice of windowing

function depends on the nature of the signal to be analyzed. If it is necessary to

resolve features that are closely spaced in the frequency domain then a narrow

central lobe is required, whereas if the spectrum is smooth and includes large power

variations then side lobe suppression will be more important.

Since attenuation increases exponentially with frequency, strongly attenuated

seismic waveforms might be expected to show large variations in spectral power

over a significant frequency band. Moreover, considering solely the effects of

attenuation, the spectral power will decrease smoothly with frequency. For these

reasons a windowing function exhibiting high side-lobe suppression is preferable for

attenuation studies. However, there are two drawbacks to using such windows.

First, the low window amplitudes at the start and end of the window discard a

significant amount of statistical information on the spectral content of the time series

and increase the variance of spectral estimates. Second, since seismic waveforms

are non-stationary, the unequal weighting within the window may bias the results in



a manner that is sensitive to the precise position of the window with respect to the
waveform.

This problem may be overcome partially using the method of overlapping
windows [Welch, 1967]. A series of equal-length data segments are chosen, each of
which overlaps adjacent segments by a significant amount (typically 50%). Spectral
estimates are obtained from each segment after the application of a suitable
windowing function, and the normalized sum of these measurements is chosen as
the final estimate. By more evenly weighting the time series such methods can
produce a significant variance reduction over single-window estimates which have
been smoothed by means of a running average to yield the same frequency sampling
interval. However, sub-dividing short time series may produce an unsatisfactorily
large frequency sampling interval. Moreover, while the weighting of the time series
is more even, it is far from uniform, and biases may still remain.

A better method, and the one that is used in this study, is the multiple-window
spectral analysis (MWSA) technique [Thomson, 1982; Park et al., 1987a, b; Zhu et

al., 1989]. The method is based upon the desire to seek windows which minimize
spectral leakage by maximizing the fractional energy X within an estimation
bandwidth of halfwidth Af.

Af

X(N, Af)= ~

J N/2T
-N/2T (1.11)

where N is the number of samples in the time series. Equation (1.11) may be
written in a discrete form [Thomson, 1982; Park et al., 1987a]

X(N,Af) = wT A W
wT w (1.12)

where w is the windowing function, wT denotes the transpose of w, and A is defined
by

AM = sin [2(k-l)nTAf]
k (k-1) (1.13)

It is straightforward to show [Thomson, 1982; Park et al., 1987a] that the stationary
points of the functional are solutions of the eigenvalue problem

A w -X(N, Af) w = 0 (1.14)



The set of ordered eigenvalues 1 > > > L2 > --- > XN-2 > XN-1 > 0 have

eigenvectors W(k)(N, Af) which are termed discrete prolate spheroidal sequences, or
prolate eigentapers. The prolate eigentaper with the quantity M=N T Af is termed
an Mn prolate taper. Low-order tapers for the 2n and 47c prolate sequences and

their power spectra are shown in Figure 1.7. The lowest order taper [Thomson,

19771 is similar in shape to other conventional tapers. However, the higher order
tapers are oscillatory and exhibit k zero crossings where k is the order of the taper.
The first 2M-1 tapers have eigenvalues that are close to unity (Table 1.1) and hence
are suitable for spectral analysis.

To obtain the multiple-window spectral estimate the discrete Fourier transform
of the data is calculated after windowing with each of the first 2M- I tapers

N-1

Xk(t) = I w (k) x, exp (i2nft)
t=O (1.15)

An estimate of the spectrum is given by

M 1|X= I (M X
k=O M k (1.16)

Figure 1.8 shows the effective window amplitude of such estimates; the amplitude

can be seen to be fairly uniform away from the window limits. However, a better

estimate may be obtained using an adaptive method [Thomson, 1982]. Such a

method recognizes that if the spectrum is highly colored, spectral leakage will be a

serious problem at frequencies with low spectral power. Since the leakage

characteristics are much better for the lowest order windows, they should be

weighted more highly at such frequencies. By making the approximation that IWI is

constant outside the estimation bandwidth, the spectral estimate with the minimum
variance can be approximated

M-1
1 dk(t) Xk() 12

p(f) k=0
M-1

k=0 (1.17)

where dk(f) are frequency dependent weights given by

'b& P(f)
dk() = PM N-i

Xk P(O + (1-k) P(O X2
1=1 (1.18)
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Since dk depend upon the the spectral power ratio, which is unknown, an iterative
procedure is employed to obtain the spectral estimate. P in equation (1.18) is
replaced by P, and the initial value P = IX0(f)12 is used. Such a method converges in
a few iterations for all time series considered in this study.

SOURCE-RECEIVER CORRECTIONS AND T* ESTIMATES

Once an estimate of the power spectrum is obtained a correction for the source
signature and instrument response must be made as outlined in equation (1.4).
However, since MWSA estimates have low frequency resolution, careful
consideration must be paid as to how best to calculate this correction. If it is
assumed that spectral leakage is negligible, the expected value of an MWSA
spectral estimate can be approximated using equation (1.10)

i+M-1

<Pi> = I Pi V
j = i-M+1 (1.19)

where V is the effective central lobe power distribution
2M-1

I Id(fi) W(fij)|2

V =) k=O
2M-1

I dk(fi) |2
k=0 (1.20)

For all estimates V will lie between that of the lowest order prolate taper (Figure
1.7) and that resulting from evenly weighting the first M-1 tapers (Figure 1.8b). The
expected value of an estimate of the power spectrum of the crustal transfer function
obtained directly from equation (1.4) is thus

i+M-1

<C> ==
iS IJ (1.21)

Such an estimate will generally be biased if one or more of S, C, or I are not constant
within the estimation bandwidth which runs from fi-M+1 to fi+M-1. If the product of

the source signature and instrument response power spectra are first convolved with
the effective MWSA window power spectrum (equation 1.20), then <C> may be
approximated



i+M-1

I Si Cj ij V
C> =

i+M-1x Sj Ij V
j = i-M+1 (1.22)

The estimate will be unbiased if C is constant within the estimation bandwidth, but
for an attenuated phase this clearly will not be the case. If both S and I are constant

within the estimation bandwidth and C is described correctly by equation (1.5), the

systematic bias in <C> will be a constant factor and the estimate of t* obtained from

the spectral slope according to equation (1.7) will be unaffected. However, when S
and I are not constant within the estimation bandwidth, the estimate will generally

be biased.
Inspection of Figures 3 and 4 shows that S and I are never constant within any

significant bandwidth. The instrument response may be fairly constant within a

passband but decreases rapidly outside, particularly at low frequencies. The source

signature shows rapid variations at all frequencies. The expected value of a t*

estimate <t*> can be calculated for a given t*, M, and frequency interval from

equations (1.5) and (1.13) together with the correct source signature and instrument

responses. Figure 1.9 shows an example of such a calculation for t* estimates made

for AOBH 1 over the frequency interval 10-40 Hz using 2n and 4R prolate MWSA.

For a data window much shorter than 0.3 s, the 4n prolate MWSA estimates

(Figure 1.9b) are significantly biased towards low values, while for longer windows

there is a slight bias toward higher values. Such biases result primarily from the

rapid changes in instrument response at low frequencies and may be reduced if the

lower frequency bound is increased. However, for highly attenuated waves for which

the available bandwidth for t* estimates is small, such an increase may significantly

increase the uncertainty of spectral slope estimates.

Biases may also be reduced for a given time interval by decreasing M. Figure

1.9a shows that for 2n prolate MWSA, large biases are limited to window lengths

less than 0.15 s. However, decreasing M increases the variance of the spectral

estimates and hence t* values, an effect whose importance must be assessed using

real data. Moreover, decreasing M may also increase source biases. The source

signature (Figure 1.5) displays a series of power spectral notches the location of

which will be significantly affected by small errors in the shot depth, take off angle,

and bubble pulse time. Low-resolution spectral estimates reduce the importance of

such uncertainties since the spectrum is smoothed and the notches are not resolved.



If the spectral resolution is too high, misplaced notches in the source signature may

result in an inaccurate source correction, introducing a potentially large error to t*
estimates. Such an effect is investigated in Figure 1.9 by using an incorrect source

term in the denominator of equation (1.22). While the resulting errors are clearly

larger for the 2n prolate window, they are surprisingly small and do not exceed 5%
for this example.

In this work the source-receiver correction is calculated for the kt receiver and
the lth shot according to

'(MWSA)

Yi (1.23)
where Y is the source-receiver correction and is calculated for the kth receiver and

the lth shot according to

j=iM-1 (k0) R(0)

j=i-M+1 I(0) .0)

where I(k) is the response of the kth instrument, 1(0) is the response of the DOBH

used in the source monitoring experiment, R(0) is the power spectrum of the

recording obtained during the source monitoring experiment (Figure 1.5a), D(0) is
the power spectrum of the deconvolved model of the source monitoring source
signature (Figure 1.5b), and D0) is the model of the lth shot incorporating estimates
of the shot depth, take-off angle, and bubble pulse period. While the estimate of D(l)
may have considerable uncertainties, it can be shown that provided the frequency
interval is not much less than 20 Hz the term D(l)/D(0) has a negligible effect on

estimates of t*.

Estimates of t* are obtained according to equation (1.7) using a least squares
straight line fit to a plot of the natural logarithm of crustal transfer power spectrum
against frequency. The minimum frequency considered is normally 10 Hz. The
maximum frequency is determined by either the upper limit of the instrument

response or the frequency at which the power spectrum of a noise sample obtained

immediately prior to the waveform is comparable to that of the waveform. An
estimate of the uncertainty in t* values can also be obtained from a least squares fit

provided that an uncertainty can be ascribed to ln(C) values. One approach is to
obtain such estimates from the noise sample. However, such a method results in
unrealistically small estimates of the t* uncertainty since it assumes that C is
perfectly described by equation (1.7) except for the presence of noise. A more
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realistic estimate of the ln(C) uncertainty may be obtained from the misfit of the
straight line fit

2  N in(Ci) - ln(CS) ]2

Gin(c)= N-2 g(M, N)
i=1 N(1.25)

where N is the number of spectral values, CLS is the spectrum predicted by the least
squares fit, and g is a factor to account for the smoothing effects of the spectral
estimator. If it is assumed that all the misfit results from random variations in
spectral amplitudes then approximating the effective central lobe power distribution
of the MWSA estimate by a boxcar and considering the covariance of adjacent
spectral estimates yields an approximate value of g

M-1
NM 2 - 2 i (M-i)

g(M, N) = =
NM (1.26)

which can be approximated g - 2M- 1 when N is large. However, in practice much of

the misfit may arise from spectral uncertainties that are correlated within the
estimation bandwidth. In this case equation (1.26) yields too large a value of g and

therefore overly pessimistic uncertainties in t*.

In this work we use t* uncertainties obtained from equations (1.25) and (1.26),
except that for waveforms for which the least squares fit yields a value of ain(c)
smaller than the average for a particular instrument, an average value for all

waveforms recorded by the instrument is used. Such uncertainties are best thought

of as relative rather than absolute and can be scaled on the basis of the fit of Q-1

models to obtain an estimate of the absolute, non-systematic uncertainties in t*.

A METHOD OF Q TOMOGRAPHY

Equation (1.6) may be written in a discrete form
N

t* = Y V(xk)-l Q(xk)~' SSk
k=1 (1.27)

where the wave path has been split into N segments of length SSk with center

coordinates xk. As is the case for the velocity models [Toomey et al., 1990a], Q-1 is

parameterized using a nodal representation [Thurber, 1983]. Q-1 values are defined

on a Cartesian grid which may be irregular and may be sheared vertically to conform

with the seafloor. A smoothly varying model is obtained by linearly interpolating Q-1

values between nodal values at the corners of a grid cell. If the velocity model and
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wave paths derived by delay time tomography or some other means are assumed to
be correct, then equation (1.27) yields a linear relationship between a vector t of t*
values and a vector q of nodal Q-1 values

t = G q (1.28)
where Gij is the contribution of the jth Q-1 node to the ith t* value. There are several
methods for directly inverting equation (1.26) to obtain q [e.g., Tarantola, 1987;
Menke, 1989]. Unfortunately, the most straightforward applications of such methods
do not include the physically required constraint that Q-1 values be positive. Such
constraints may be added to a least squares solution [e.g., Lawson and Hanson,

1974; Menke, 1989], but the algorithm is inefficient when the number of model
parameters becomes large. Iterative solutions obtained by the back projection
tomography technique [Ho-Liu et al., 1988, 1990] will always yield positive Q-1
values provided all t* estimates are positive. However, back projection tomography
does not provide formal error estimates and resolution, though it may be combined
with a generalized inverse method to obtain such estimates [Ho-Liu et al., 1989;
Trampert et al., 1990].

In this study positivity is achieved at the expense of linearity by parameterizing
the model in terms of ln(Q-1). Equation (1.28) may be linearized about a model q

t = G q + A Br (1.29)

where 5r is the perturbation to the ln(Q-1) model r, and A is related to G according
to

Aij= qj Gij (1.30)

Such a parameterization has the advantage that it naturally downweights nodes that
achieve a high Q value, a reflection of the small contribution such nodes make to t*
values. Since, the relationship is no longer linear an iterative solution must be
obtained. A least squares approach would seek to minimize the squared data misfit

x2 which is expressed
X2=(t-Gq-Ar) R1(t-Gq-ASr) (1.31)

where Rtt is the data covariance matrix. For uncorrelated t* estimates Rtt is
related to the uncertainty a in t* by

(Rtt);j = Sij al (1.32)

In practice the problem is unlikely to be fully determined, and a direct
minimization of equation (1.31) will lead to an unstable solution. It is therefore



necessary to include a priori constraints in the solution in the form of additional

terms in the minimization. In this study two such constraints are included. The first

assumes some prior knowledge of the model [Tarantola and Valette, 1982a, b;
Tarantola, 1987] expressed in terms of an initial ln(Q-1) model r(0) and a model

covariance Rrr. A solution is sought that minimizes the deviation from the a priori

model

v2=(r(O)-r-8r)T R1(r(O)-r-Sr) (1.33)

The second is a smoothing constraint [Tikhonov and Arsenin, 1977] which seeks to

minimize the perturbations relative to the a priori model and which can be expressed

12=( r(O) - r - 8r )T AT A (r() - r - Sr) (1.34)

where A is the the model roughness expressed in terms of first differences between

adjacent node pairs. For a one-dimensional model with a uniform unit node

separation A is simply
-1 1 0

-1 1

-1 1
- 0 -1 1 .. (1.35)

In the case that q(O) is chosen to be constant this smoothing constraint is the

smoothest model approach [Tikonov and Arsenin, 1977; Constable et al., 1987]. A
similar smoothing constraint may be included in the a priori model constraint by

introducing positive off-axis elements into the model covariance matrix [Tarantola

and Valette, 1982a] whose magnitude decreases with the node-pair separation

according to some functional relationship (a gaussian function is commonly used).

However, once off diagonal elements are introduced into Rrr, the inverse is no longer

trivial to calculate, and so for computational reasons the two constraints are

separated.
The full solution is therefore expressed as a combined minimization of

X2 + av 2 + b1 2  (1.36)

where a and b are weights (which may be zero) ascribed to the smoothing

constraints. An iterative solution is given by [e.g., Tarantola, 1987]

rk+1 = rk + Sr (1.37)

Sr= a R- + b AT A + AT) R- Aty)

x [(aR- + bATA)(r(o)-r(k))+ AT Ri(t-Gq(k))]



Provided the a priori constraints are adequately weighted and Iq(O)1 is not much less
than lq(**) the scheme is stable and converges upon a solution within a few
iterations.

It is important to estimate the uncertainty associated with solutions, a problem
that is complicated by the presence of a priori information. If a smoothest model
approach is used (i.e., a=0), then the solution may be combined with the Backus and
Gilbert [1968] approach to obtain estimates of resolution and uncertainty [Rodi,
1989; Yonovsha and Ditmar, 1990]. However, when an a priori model is assumed it

is necessary to compare the a posteriori covariance Cqq, with the effective a priori
covariance Cqq [Tarantola, 1987]. A linear approximation to the a posteriori

covariance is defined [Tarantola, 1987] by

C + b AT A + Aoo R- A(*) (1.38)
while the effective a priori covariance, which includes the smoothing constraint, is

Cr =[aR- + bAT Al-i (1.39)

If a node is well constrained by the data then the diagonal element of Cf.
corresponding to that node will be much smaller than the equivalent element in Cr.
Alternatively if diagonal elements have similar values, the data have contributed
little information to constraining the model at the node. When equating the absolute
value of the diagonal elements of Crr, to model uncertainties it is important to
remember that the estimates of t* are best thought of as relative rather than

absolute. If the normalized squared data misfit X2, which is given by
- x2

N (1.40)

where N is the number of t* observations, differs greatly from unity then the model
variances should be scaled by a similar factor. Indeed the fact that the absolute data
uncertainties are not known precludes an approach that seeks to find the smoothest
model that reduces X2 to unity [Constable et al., 1987].

When considering the variance of the solution it is also necessary to consider
how well the model is resolved. This information is contained in the off-diagonal
elements of the a posteriori covariance matrix and is probably best examined using
the resolution matrix, which is defined [Tarantola, 1987]

R = I - C (1.41)

The rows of the resolution matrix can be thought of as a linear filter that shows how
the estimate of a model parameter is really a weighted sum of model parameters. If



a row of R is close to a delta function then the model parameter is well resolved,

whereas if there are large off-diagonal elements for adjacent nodes the solution is

spatially smoothed. Since it is impractical to examine R in detail for all model

parameters it is frequently convenient to summarize each row in terms of an element

of the spread function S [Backus and Gilbert, 1968] which in this study we define
m

S7 = I|xj - xi 2 Rij

j=1 (1.42)

where xk is the location of the kth of m model nodes. A small value of Si indicates

that a model parameter is spatially well resolved. A fundamental feature to all

inversion techniques is the trade off between the model variance and resolution [e.g.,

Backus and Gilbert, 1968, 1970; Tarantola, 1987]. An improved spatial resolution

results in an increase in model variance, and vice-versa. Moreover, the choice of the

solution which optimally balances the model resolution and variance is necessarily a

subjective one.

When considering the uncertainties associated with a Q-1 model obtained by the

techniques described in this chapter it is important to remember that the formal

uncertainties are based on the assumption that the forward solution (equations 1.27

- 1.29) is known exactly. The uncertainties arising from assumptions behind the

technique will not be included in the formal model uncertainties and must be

investigated separately.



Table 1.1. Fractional leakage of prolate eigentapers for a 256-point time series.

Mnt Prolate

M=4 M=2

0.9999999997

0.9999999725

0.9999987966

0.9999676885

0.9994117491

0.9925173871

0.9367030504

0.6988882538

0.2993280554

0.0641890774

0.9999428126

0.9975632086

0.9594018056

0.7217684703

0.2746520408

0.0430015741

0.0034756339

0.0001867680

0.0000074487

0.0000002316

X2

X3

X4

X5

X6

X7

X8

x9



FIGURE CAPTIONS

Figure 1.1.

Figure 1.2.

Figure 1.3.

Figure 1.4.

Figure 1.5.

Configuration of the East Pacific Rise tomography experiment. Ocean

bottom receivers are shown as solid symbols and comprise 8 analog

ocean bottom hydrophones (triangles), 5 digital ocean bottom
hydrophones (squares), and 2 digital ocean bottom seismometers
(circles). Explosive sources are shown as small open circles.
Bathymetric contours are spaced at 100 m and are obtained from the
Sea Beam data collected during the experiment [Wilcock et al., 1992].

Horizontal cross-sections showing the horizontal perturbations from

the average one-dimensional model (0.25 km/s contour interval, bold

contours at 0.5-km/s intervals) through a three-dimensional P-wave

velocity structure obtained from an inversion of travel times obtained
during the tomography experiment [Toomey et al., 1990a]. Sections

are shown at (a) the seafloor and (b) 2 km depth and show the

perturbations from the average vertical structure.

Velocity model derived from an interpretation of expanding spread

profile and common depth point reflection data obtained at the same
location as the tomography experiment [from Vera et al., 1990].

Normalized instrument power responses for (a) AOBHs 1 (solid) and

2 (dashed), (b) DOBH 14, and (c) OBS 1.

(a) Mid-water DOBH recording of the source signature obtained

during the source monitoring experiment. (b) The recorded source

signature after applying attenuation using Azimi's attenuation formula

[Azimi et al., 1968; Aki and Richards, 1980] assuming t*=0.04. (c) A
model of the source signature obtained from a constrained frequency-

domain deconvolution of the DOBH instrument response. (d) The

normalized power spectra of the recorded source signature corrected

for instrument response (solid line) and the source signature model

(dash).



Figure 1.6.

Figure 1.7.

Figure 1.8.

Figure 1.9.

(a) Time series and (b) power spectra for a rectangular (boxcar)
window (solid) and a cosine squared (Hanning) window (dashed).

Lowest order eigentapers and their power spectra for (a) 21r prolate
and (b) 41r prolate spheroidal sequences.

(a) Effective squared window amplitudes and (b) power spectra for
the 21 prolate (dashed) and 47 prolate (solid) multiple-window
spectral estimate obtained using equation (1.16).

Expected t* estimates (solid lines) obtained over a frequency interval
of 10-40 Hz plotted against window length using (a) 27 prolate and
(b) 4K prolate multiple-window spectral analysis. The crustal transfer
function is calculated according to equation (1.5), the source signature
used is that of Figure 1.4, and the instrument response is that of
AOBH 1 (Figure 1.3a). Expected t* values are calculated according
to equation (1.7) using a least-squares fit to the crustal transfer
function obtained from equation (1.22). The effect of using an incorrect
source signature (the source depth is 6 m shallower and the bubble
pulse period 14 msec smaller) in the correction term is also shown
(asterisks).
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CHAPTER 2

A COMPARISON OF THE ATTENUATION STRUCTURE OF 0.35 AND 0.00-MY-OLD

CRUST

INTRODUCTION

This chapter is concerned with the analysis of three 45-to-50-km-long refraction

profiles which form a subset of the tomography experiment (Figure 2.1). The

profiles, which are orientated parallel to the EPR and are located on the rise axis and

20 km to either side, provide a good data set to evaluate the spectral method for

estimation of t* and to illustrate the inversion techniques used to obtain Q-1 models.

The one-dimensional models of Q-1 obtained in this chapter can be used to constrain

inversions of the whole data set presented in Chapter 4. Moreover, since previous

measurements of attenuation in young oceanic crust have been limited to one

experiment that was confined to the upper 650 m of 0.4-My-old crust [Jacobson and

Lewis, 1990], the results contribute to an understanding of the structure and

evolution of young oceanic crust which is discussed in Chapter 5.

OFF-AXIS PROFILES

The two off-axis profiles (Figures 2.1) are located 20 km to the east and west of

the rise axis and have almost identical configurations. Each line comprised four

OBHs deployed at 10 km intervals and about 45 explosive shots spaced at 1 km

intervals. For both lines the inner receivers are AOBHs while the outer receivers

are DOBHs. Since the AOBHs saturate at all but the largest ranges, the

attenuation studies are confined to the DOBHs, though arrival times obtained from

the AOBH records are used to constrain the velocity structure.

Velocity Structure

A full study of the velocity structure along the two profiles would require a

detailed analysis of travel times and amplitudes for both the explosive shots and the

airgun data that were also collected along each line. However, while a velocity

model and ray paths are required for attenuation tomography, the resolution of the Q
1 models presented in this chapter is not such as to warrant a detailed knowledge of

the fine-scale velocity structure. In particular, the inability to obtain spectral t*

NINNINDIIIiii'' I I I "., i I I Ill dillolilmililwilllili Ill III



measurements from surface shots at ranges less than about 4 km due to the
presence of the water wave minimizes the necessity for an accurate determination of
the shallow velocity structure. For this reason, this study is limited to forward
modelling the principal features of the explosive-shot travel time data, the 1-km
spacing of which does not permit good resolution of the shallow structure.

The P-wave arrival time data were obtained using an automated picking routine
that uses waveform alignment and a simulated annealing formalism [Allen, 1982;
Rothman, 1986; Toomey et al., 1990a]. The location of receivers and shots together
with the shot origin times were estimated for the tomography experiment using a
formal inversion of the water-wave arrival times and navigation data [Creager and
Dorman, 1982; Toomey et al., 1990a]. Such a procedure generally yields origin times
and shot and receiver locations that are accurate to within ±0.004 ms and ±15 m
respectively. However, the shots at the margins of the experiment, including shots
at the ends of the refraction lines, are not recorded by enough receivers at sufficiently
small ranges to permit good locations based on arrival time data alone since there is
a strong trade off between range and origin time. Moreover, since the ship was
steaming slowly (4 knots) during shooting and the charges were in the water about
4 minutes prior to detonation, shipboard estimates of origin time are not sufficiently
accurate to constrain the inversion. Therefore, determining accurate locations and
origin times for such shots is critically dependent on navigational constraints. The
western profile was obtained during a period of high quality GPS satellite coverage
and is accurately navigated [Wilcock et al., 1992]. In contrast, there are few
navigational constraints on the eastern profile and the range and travel time data
obtained for the profile are consequently of lower quality.
Western Profile

After the application of a water path correction [Purdy, 1982], the travel time
data to the north and south of each receiver were forward modelled to obtain a series
of simple velocity-depth profiles. The starting model for these calculations was
based on the off-axis velocity model of Vera et al. [1990]. Figure 2.2 shows the
results obtained from shots to the south of DOBH 10 (profile 10S) and to the north
of DOBH 12 (profile 12N). The two velocity models are markedly different. Layer
2B (Vp=5-5.5 km/s) [Houtz and Ewing, 1976] is not resolved by profile 10S, which
indicates velocities approaching 6 km/s at 0.5 km depth. In contrast, profile 12N
incorporates a 400 m thick layer with velocities of about 5.4 km/s, and the velocity
does not reach 6 km/s until a depth of 1.2 km. In addition, lower crustal (layer 3)



arrivals have a higher phase velocity for profile 12 N (7.15 km/s) than for profile 10 S

(7.0 km/s).
To obtain a two dimensional velocity model the data for all four instruments

were forward modelled by ray tracing through a layered two-dimensional velocity

structure which includes the bathymetry along the profile [Luetgert, 1988]. The

initial one-dimensional model is an average of the models obtained for individual

profiles, except that the upper 0.5 km, a portion of the structure which is not resolved

by the data, is modelled by a constant gradient. Rather than exhaustively

investigating a large range of possible velocity structures, an attempt was made to

model the travel time data by perturbing the velocity at the base of the second

crustal layer (layer 2B) and by changing the layer thicknesses. The resulting model

is shown in Figure 2.3, while the fit to the travel time data is shown in Figure 2.4.

The primary feature of the model is a south-to-north thinning of the upper crust

by 0.25-0.5 km coupled with an increase in velocities at the base of the second model

layer (layer 2B). This feature successfully models the difference in the apparent

phase velocities between northward and southward propagating lower crustal

arrivals (Figure 2.2) without any modification of lower crust velocities. There is

some indication that the trend in upper crustal thickness may not persist to the outer

limits of the profile, particularly to the north, but since the shot parameters for the

outer shots have higher uncertainties, the model is not well resolved in these

regions.

Eastern Profile

Figure 2.5 shows the results of forward modelling travel times for shots to the

south of DOBH 13 and to the north of DOBH 14. While the travel time data are of

lower quality than that for the western line, there is no indication of lateral

heterogeneity on the scale observed for the western profile. Indeed the data are

compatible with the laterally invariant velocity model obtained by forward modelling

expanded spread profile (ESP) data 10 km to the east of the rise axis [Vera et al.,

1990].

t* Estimation

Because of the relative uniformity of the crustal structure, the off-axis data

provide a good opportunity to evaluate the MWSA t* estimation technique described

in the last chapter. Figures 2.6 and 2.7 show an example of the application of this

technique to a single waveform using two different data window lengths and both 2n
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prolate and 41c prolate windows. Figure 2.6 shows estimates obtained from the first
0.6 s of the waveform and clearly illustrates the advantage obtained from the
additional smoothing of the 47r prolate MWSA estimate. The 27C prolate spectral
estimate is characterized by rapid variations in power over the signal band. As a
result, the choice of the upper frequency bound for spectral slope estimation is
strongly dependent upon the minimum acceptable signal to noise ratio. Moreover,
the source-receiver correction contains several pronounced notches which greatly
decrease the stability of the correction. The 27r prolate spectral estimate of t* for
this example varies by almost a factor of 2 depending upon the upper frequency
bound chosen for slope estimation. In contrast both the spectral estimate and
source-receiver correction for the 4n MWSA estimate are relatively smooth. The
upper frequency bound for slope estimation can be chosen unambiguously and has
little effect on t* values.

In Figure 2.7 the window length is reduced to include only the first 0.3 s of the
waveform. The decreased spectral resolution of the shorter window results in
smoother spectra for both the 2n and 4n prolate tapers. Both of the power spectra
show a leveling off at low frequencies, a feature that is particularly apparent for the
4n prolate estimate. Since the half-width of the estimation band is 10 Hz for the 4n
prolate and 5 Hz for the 2n prolate estimate, this feature apparently results from the
inclusion of frequencies lying outside the instrument passband. However, even after
applying the source-receiver correction the feature is still apparent. Using a spectral
ratio method, a technique which need not be sensitive to the spectral estimation
method, Lewis and Jung [1988] observe a decrease in spectral amplitudes at
frequencies below 10 Hz which they attribute to the reflectivity of the upper crust.
Since the MWSA technique does not have good spectral resolution and the
instrument responses decrease rapidly below 5 Hz, we cannot directly confirm this
observation, but we note that it may contribute to the levelling off of power spectra
at low frequencies.

Figure 2.8 shows t* estimates for the DOBHs, derived from 0.3 s of the
waveform using both 2n and 41c prolate MWSA. In most instances the two
estimates are in close agreement and show little or no systematic offset. In the
cases where the discrepancies between the two estimates are large, it is invariably
the result of a significant difference between the upper frequency bounds used for
spectral slope estimation. Since the variation between adjacent t* estimates is



larger for the 2n prolate MWSA estimates, the additional smoothing of the 471

prolate MWSA is desirable as it appears not to introduce additional bias.
Figure 2.9 compares 4n prolate MWSA t* estimates obtained from 0.3- and 0.6-

s data windows. The variation between adjacent values is noticeably larger for the

0.3-s estimates, a reflection of the greater uncertainties accompanying spectral

estimates obtained from the shorter window. At small ranges the two estimates are

generally in good agreement while at larger ranges the 0.3-s estimates are

commonly larger, particularly for DOBH 10. There are two effects that might cause

differences between spectral estimates, neither of which completely explains the

observed discrepancy. First, the longer window is likely to include a larger

proportion of secondary arrivals. These may include reverberations within layer 2A,
PP and higher order phases which include one or more downward reflection from the

seafloor, and at larger ranges mantle phases. The high levels of attenuation

observed in the shallow crust [Jacobson and Lewis, 1990] should result in an

increase in apparent t* values when secondary phases which propagate longer

distances at shallower depths are included in the spectral window. However, since

t* values decrease with spectral window length it is reasonable to conclude that

such phases do not affect estimates significantly. Figure 2.10 shows record sections

for the two DOBHs on the western profile. The maximum source-receiver

separation for is about 37 km, a range that is too short to observe primary mantle

arrivals [e.g. Spudich and Orcutt, 1980b]. However, PmP (mantle reflections)

arrivals with amplitudes that are strongly dependent on the range are observed at

ranges greater than about 20-25 km in typical oceanic crust [e.g. Spudich and Orcutt,

1980b] and may contribute to the discrepancy.

A second source of the differences in t* values may arise from the source
component of the source-receiver correction. When t* is estimated from a window

which is as long as the whole source signature, as is essentially the case for the 0.6-
s estimates, then the application of the source-receiver correction is relatively

straightforward. However, if the window is shorter than the source signature then

the correction is considerably more problematic. First, the source signature recorded

during the source monitoring experiment must be truncated using a taper, a

procedure that may in itself introduce a bias to spectral estimates. Second, it is by

no means clear at what point to apply the taper. For a 0.3-s data window the surface

reflection of the first bubble pulse lies close to the window limit. However, because

attenuation and convolution with the instrument response significantly broaden a
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pulse (Figure 1.5b) and data in the last 10% of the window are downweighted
(Figure 1.8), this feature will not contribute significantly to the spectral estimate.
Indeed, for the same reasons the first bubble pulse, which occurs at about 0.2 s, may
not be fully weighted in a 0.3-s spectral estimate. If a source-receiver correction
derived from the whole source signature is always used, the power spectrum
obtained from a shorter window should be richer in high frequencies and hence yield
lower t* estimates. In this study we truncate the source signature to account for
shorter windows and apply a cosine squared taper over the last 0.1 s. Any
remaining bias in t* estimates after such a procedure is difficult to estimate but
should not be range dependent.

Q-1 Inversions
In the following Q-1 inversions we chose to use the estimates obtained from 0.3

s of the waveform to ensure that the effects of secondary arrivals are minimized.
Figure 2.11 shows the t* estimates together with the estimates of relative
uncertainty obtained following the method outlined in Chapter 1. A striking feature
of the data is that to first order t* values are independent of range, which suggests
qualitatively that attenuation is concentrated in the upper crust. Moreover, it
explains why waveform modelling techniques are frequently successful in matching
the relative amplitudes of seismic waveforms with little regard for the effects of
attenuation.

Q-1 inversions require knowledge of the velocity structure and ray paths. For
the western profile the two-dimensional velocity structure obtained from travel time
modelling (Figure 2.3) is used, while for the eastern profile a one-dimensional model
obtained by averaging the models for individual instruments (Figure 2.4) is
assumed. The ray paths for the western profile [Luetgert, 1988] are shown in Figure
2.12. The largest depth sampled by the rays is about 3.5 km. Since t* estimates are
not available at ranges much less than 4 km, very few ray paths turn in the
uppermost crust and Q-1 inversions are consequently unlikely to have good
resolution at depths less than 1 km.

A useful approach to inverting the t* data is to obtain a vertical Q-1 model for
each instrument [Constable et al., 1987]. Each model is parameterized by values at
nodes spaced at 0.25-km depth intervals, and a solution is sought that
simultaneously minimizes the misfit to the data and the roughness of the model
(equation 1.36 with a=0). Figure 2.13 shows the results for different choices of



smoothing weight. The effect of using a large smoothing weight is to produce an

almost constant Q-1 model which fits the data poorly. As the smoothing is

decreased, the model progressively becomes more complex. Initially, there is a rapid

decrease in the data misfit, but as the degree of smoothing is decreased further the

improvement in fit becomes progressively smaller despite marked increases in the

roughness of the model. Constable et al. [1987] suggest choosing a smoothing

weight that yields a normalized squared data misfit (equation 1.40) equal to one.

However, since the absolute data uncertainties are unknown the choice of the

optimal smoothing weight is necessarily subjective. Indeed, the estimates of

uncertainty are probably too large, since solutions for two of the four instruments

have normalized squared data misfits which are much less than one. In Figure 2.14,

the formal uncertainty and spread are plotted as functions of depth for several

choices of smoothing weight for DOBH 10. The trade off between resolution and

model variance is immediately apparent. The smoothest model (b=100) has a small

uncertainty but the resolution is very poor. In contrast the roughest model (b=0.1)

has good resolution at shallow depths, but the uncertainties are extremely large and

are clearly compatible with a much smoother model. The intermediate solutions

(b=10 and 1) probably represent better choices of smoothing weights. Below 1 km

depth, the spread (equation 1.42) progressively increases with depth, indicating a

decrease in resolution. This results in part from the logarithmic parameterization

and is a reflection of the increase in Q values with depth and the smaller contribution

of the lower part of the model to t*. The solutions obtained for all instruments show

a strikingly similar progressive increase of Q with depth. Q values of 30-50 are

observed within the upper 1 km, while at the base of the model Q ranges from 500 to

over 1000.
Inspection of the smoothest model results suggests that the data might be

alternatively fit using a simple two layer model. In Figure 2.15 the results of such

inversions are shown as a function of upper layer thickness. Plots of misfit versus

depth show that all four solutions are characterized by two minima which correspond

to upper layer thicknesses of 0.5 and 1-1.5 km. For upper layers thicker than 1.5

km, the two-layer model fits the data poorly. A simple F-test, which is based on the

assumption that the two-layer model configuration is correct, shows that at the 95%

confidence levels it is impossible to discriminate between solutions with upper layer

thicknesses of less than 0.5 km and of 1-1.5 km . However, models with an upper

layer thickness less than 0.5 km require that Q in the upper layer be less than 10-15,



a value that is markedly lower than previous measurements on the Juan de Fuca
Ridge [Jacobson and Lewis, 1990]. The double minimum observed in the misfit

suggests that a three-layer model might produce a better fit to the data, but in view
of the limited number of shallow ray paths and the uncertainties in the velocity

model, we do not present such solutions. It should be noted that the smoothest

model solutions which show a progressive decrease in Q with depth fit the data

better though this may be a result of a larger number of independent model

parameters.

A comparison of the predictions of the one-dimensional models with the t*
observations (Figure 2.16) shows that there are systematic misfits. One possibility
is that these misfits result from lateral inhomogeneities in the Q structure. Indeed

the results of Jacobson and Lewis [1990] show significant changes in upper crustal

Q over distances of the order of 1 km, a distance that corresponds to the separation

of adjacent t* observations in this experiment. To investigate whether upper crustal

heterogeneities in Q might account for the misfit to the data, inversions were

performed for both the western and eastern lines. Below 0.625 km depth, the Q
structure was held constant at values determined by a smoothest model inversion

(b=10) of the combined data for the two DOBHs on each line, while in the upper

0.625 km Q-1 was parameterized by nodal values with a 1 km spacing. The results

for the eastern profile (Figure 2.17) show that fluctuations in upper crustal Q can

significantly improve the fit to the data. The solutions show a general decrease in

upper crustal attenuation of about 20% from N to S (the western profile shows the

opposite). Moreover, the solutions with smaller smoothing weights achieve

significant additional misfit reduction by introducing short-wavelength variations in

upper crustal Q. The solution with b=1.0, a smoothing weight below which there is

little additional variance reduction, achieves a 50 % variance reduction over the one-
dimensional model and includes an upper crustal Q which locally fluctuates by a
factor of about 2, in excellent agreement with variations observed by Jacobson and

Lewis [1990]. The range of upper crustal Q (17-88) is greater than range (20-50)
observed by Jacobson and Lewis [1990], however, suggesting that the smoothing

weight may be slightly too small.

AXIAL PROFILE

The 50-km-long axial profile (Figure 2.1) combines selected shots from the

central region of densely spaced shots with shot lines extending to the north and



south. Along most of its length, the line closely follows the crest of the rise axis,

though at the southern end shots are offset appreciably to the east. Three

instruments, two AOBHs and one OBS, were deployed on the rise axis. The central

instrument, AOBH 3, suffered from stick-slip tape motion (Appendix A) while

recording shots from the northern portion of the profile which prohibits accurate

spectral estimates of t*. Moreover, at ranges greater than 15 km, records for shots

to the south of AOBH 3 cannot be considered representative of axial structure, since

the shots are displaced to the east of the rise axis, while the magma chamber is

offset to the west in this region [Mutter et al., 1988]. This study is therefore limited

to the instruments AOBH 5 and OBS 1.
Unfortunately the frequency responses of the AOBH and OBS (Figure 1.4) are

not as broadband as the DOBH. In addition, the measured AOBH response has a

high level of uncertainty, and AOBH 5 saturates at ranges below 10-15 km

(Appendix A), while the OBS response may be affected by poor coupling to the

seafloor. Therefore, the t* measurements obtained for the axial profile will have

larger uncertainties than those for the off-axis profiles.

Velocity Structure

The velocity structure along the rise axis has been studied in detail by Vera et

al. [1990] using ESP data centered at 9*34'N, a location that coincides very closely

to the center of the tomography experiment. The velocity model obtained is shown in

Figure 2.18. The most prominent feature is a thin low velocity lens with Vp=3.0
km/s and a 1.6-km-thick lid. The lens, which is interpreted as a magma body, is

underlain by generally low velocities (5.5 km/s) which extend to the base of the

crust. The model also includes Q values of 80-100 above the magma chamber.
Examination of the most prominent Moho arrival in the explosive portion of the ESP
data [Vera et al., 1990, Figure 12] shows that the phase velocity is lower than that

predicted by the model. The data would be better modelled by lowering the

velocities at the base of the Moho transition zone to about 7.25 km/s.

Figure 2.19 shows ray paths and travel times [Luetgert, 1988] predicted by a

slightly modified version of the the model of Vera et al. [1990] which includes lower

mantle velocities (Figure 2.18). Ray theoretical direct arrivals propagating above

the magma chamber are limited to ranges less than 9 km. At larger ranges shallow

crustal ray paths are modelled by PP, PPP and PPPP phases which include one or

more downward reflections from the seafloor, although non-ray-theoretical phases



may arrive earlier. At ranges greater than 16 km a Moho-turning arrival is observed;

between 16 and 20 km this arrival is characterized by a high-amplitude turning phase
from the Moho transition zone.

Figure 2.20 shows record sections for AOBH 5 and OBS 1 which lend support to
the general features of the velocity model. The times of the first arrival are
overestimated by the ray-theoretical PP and PPP phases. Variations in amplitudes
of the first arriving phase on AOBH 5 may be explained by triplications in the PP and

PPP phases that are offset slightly to higher ranges. The observed arrival times of

the Moho phase is in excellent agreement with the model predictions. For AOBH 5
the Moho arrival has high amplitudes between 16 and 28 km, while the Moho arrival
recorded by OBS 1 is of lower quality since at larger ranges the peak-to-peak
amplitudes are only a few digital units. A higher amplitude phase, delayed 0.75 s

with respect to the Moho arrival and with a similar phase velocity, is also observed

on OBS 1. Since this phase is also very prominent on the horizontal channels it may

be a P to S conversion.

t* Estimation

The waveforms of the Moho arrivals have a monochromatic appearance that

suggests a high degree of attenuation. Indeed, the amplitudes, while larger than

those of the first arrival at similar ranges, are small considering the high velocity
gradients within the Moho transition zone. t* estimates were obtained for both the

shallow crustal and the Moho phases using 47c prolate MWSA. A 0.6-s data
window was used for the shallow crustal waveforms, though this was shortened for
some of the AOBH 5 records to exclude saturated portions of the waveform. To
increase the frequency band for t* estimation for the highly attenuated Moho phase,
the minimum frequency was lowered to 5 Hz and data windows of 1.0 s and 0.75 s
were used for AOBH 5 and OBS 1, respectively. Examples of t* estimates for the
Moho phase are shown in Figure 2.21. It is immediately apparent that such

estimates must be accompanied by a considerable level of uncertainty. The recorded
power spectra have a step-like appearance which is a result of the high level of
attenuation coupled with a notch in the source signature just above 10 Hz. While
the source-receiver correction results in a relatively good straight line fit for these
examples, the t* estimate can be very sensitive to the frequency limits chosen, and
the degree of uncertainty is large because of the limited frequency interval available
for slope estimation. It is plausible that t* estimates obtained over such small
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frequency intervals may be biased due to frequency dependent focusing within the

Moho transition zone. To investigate this phenomenum a number of reflectivity

models [Fuchs and Mailler, 1971] were calculated for simple velocity profiles

incorporating a variety of gradients within the Moho transition zone. While the

results cannot be used to quantify the effects of frequency-dependent focusing, since

the velocity structure at the Moho is not known, they suggest that the biases are

probably only a small fraction of the large t* values measured for this phase.

The t* estimates are shown in Figure 2.22. Shallow crustal phases show

relatively low levels of attenuation that increase approximately linearly with range.

The Moho phases have very high t* values that are about twice those of the crustal

phase at the same range. The t* estimates for AOBH 5 are significantly lower than

for OBS 1. In the case of the shallow crustal phases this is probably primarily a

result of uncertainties in the slope of the AOBH instrument response at high

frequencies (Figure 1.4 and Appendix A), an effect that produces in a fixed offset to

t* estimates obtained over a given frequency interval. For the Moho t* estimates,

the discrepancy may also result from systematic biases in the source-receiver

correction, a resonance in the OBS response, the low digital amplitude of the OBS

recording, or spectral leakage in the AOBH, a phenomenon resulting from a distorted

recording of a monochromatic waveform that includes significant power at the

frequencies of higher order harmonics (Appendix A).

Q-1 Inversion
Since the wave paths are not very well known for either the upper crustal or

Moho arrivals, the t* data are inverted using a simple two-layer model with the

boundary at 1.6 km depth, the roof of the magma chamber. The results of inversions

of t* from AOBH 5 and OBS 1 are shown in Figure 2.23, while the fit to the data is

shown in Figure 2.22. Values for Q in the lower layer are 60± 10 and 40± 10 for

AOBH 5 and OBS 1, respectively. Since the fit to t* values for the Moho phase is

no better than the assumed errors, these uncertainties are probably realistic though

they may not include the effect of all biases. The Q value for the upper layer

recorded by OBS 1, 90± 10, is in excellent agreement with the value proposed by

Vera et al. [1990]. This value is probably more reliable than the value of 200 ± 40 for

AOBH 5 because of the possible offset in t* values for this instrument. Indeed,

applying the instrument t* correction derived for AOBH 5 during the inversion of the
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whole data set (Chapter 4) yields an upper layer Q value close to the value obtained

for OBS 1.

SUMMARY
In this chapter we have applied the spectral technique outlined in Chapter 1 to

derive one-dimensional models of Q-1 from refraction profiles located 20 km off-axis

and on the rise axis. Off-axis t* values are relatively invariant with range, an

observation which requires that most of the attenuation be concentrated in the upper

1-1.5 km. The t* values require an average Q of 30 in the upper 1 km, in contrast

with values in the range 500-1000 at mid-crustal depths. Our results show no

evidence for high levels of attenuation in the gabbros which form layer 3, a feature

which is included in an ultrasonic model of oceanic Q structure derived from ophiolite

samples [Wepfer and Christensen, 1991]. The structure on the rise axis is markedly

different. Near-surface levels of attenuation are markedly lower with average Q
values over the upper 1.6 km determined from OBS 1 of about 100. A Moho-turning

phase yields very high t* values and suggests that average crustal Q values

beneath the roof of the axial magma chamber at 1.6 km depth are about 40-60.



FIGURE CAPTIONS

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5.

Figure 2.6.

Simplified Sea Beam bathymetric map (100-m contour interval, bold

contours at 200-m intervals) showing the configuration of the three

refraction profiles. Solid symbols show the locations of analogue

ocean bottom hydrophones (triangles), digital ocean bottom

hydrophones (squares), and an ocean bottom seismometer (circle),

while explosive shots are shown as open circles.

Results of modeling travel times for the western refraction profile for

shots (a) to the south of DOBH 10 and (b) to the north of DOBH 12.

Observed travel times are shown as asterisks, while the predictions

of the model are shown as a solid line. The increased scatter in travel

time residuals observed at large ranges results from greater

uncertainties in both the shot parameters and the water path

correction as well as from crustal heterogeneities.

Two-dimensional velocity model for the western refraction profile

obtained by forward modelling of travel times. The contour interval is

0.25 km/s with solid contours every 1 km/s. The velocity model is

parameterized at nodes (shown as pluses) which mark the boundaries

between model layers [Luetgert, 1988]. The origin of the model

coincides with location of the most northerly shot (Figure 2.1). The

bathymetry along the profile has been removed from the model.

Travel time predictions (solid) and observations (asterisks) plotted

against source-receiver range for the two-dimensional velocity model

for the western profile that is shown in Figure 2.3.

Results of modeling travel times from the eastern profile for

DOBH 13 and (b) DOBH 14. The scatter in the travel time

noticeably larger than for the western profile (Figure 2.2).

(a)

data is

(a) Example of 271 prolate MWSA t* estimation using a 0.7-s-long

window which includes the first 0.6 s of a waveform recorded by



Figure 2.7.

Figure 2.8.

Figure 2.9.

Figure 2.10.

Figure 2.11.

DOBH 10. (i) The waveform and the time windows used to obtain
spectral estimates for the waveform (dashed) and a noise sample
(dotted). (ii) The power spectrum obtained for the waveform (solid)
and the noise sample (dashed). A vertical dashed line delineates the
frequency interval used for t* estimation. (iii) The source-receiver

correction calculated according to equation (1.24) (solid). The source-

receiver correction obtained without smoothing is also shown for
comparison (dotted). (iv) The source and receiver-corrected power

spectrum (solid) and the least squares straight line fit used to obtain

the t* estimate (dashed).

(b) As for (a) except 4n prolate MWSA is used.

As for Figure 6 except the MWSA t* estimates are obtained from 0.4-
s-long time windows which include the first 0.3 s of the wavefrom.

A comparison of DOBH t* estimates obtained from the first 0.3 s of
the waveform using both 2n prolate (circles and dashed line) and 4X
prolate (crosses and solid line) MWSA. The origin of the plots

corresponds to the most northerly shot of each profile. The receiver

location is shown by a dotted line.

As for Figure 2.8 but showing t* estimates obtained using 47t prolate
MWSA for 0.3 s (crosses and solid line) and 0.6 s (circles and dashed
line) of the waveform.

Record sections recorded by (a) DOBH 10 and (b) DOBH 12 for the
western refraction profile; amplitudes are scaled linearly with range for

display purposes. The apparently lesser high-frequency content of the

records from DOBH 10 is a result of the greater low-frequency

response of this instrument (Appendix A).

DOBH t* estimates and relative uncertainties obtained using 471
prolate MWSA of 0.3 s of the waveform.



Figure 2.12

Figure 2.13.

Figure 2.14.

Figure 2.15.

Figure 2.16.

Figure 2.17.

Ray paths for DOBH 10 and 12 obtained using the two-dimensional
velocity model shown in Figure 2.2 [Luetgert, 1988]. The ray paths
have been corrected for bathymetry along the profile.

Results of smoothest model inversions of data for each DOBH for
one-dimensional vertical Q-1. The left hand plots show the normalized
squared data misfit (equation 1.40) as a function of the smoothing
weight. The right hand plots show Q-1 profiles obtained for five
choices of smoothing weight, b=10 4 (dashed), 1000 (dotted), 100
(solid), 10 (dot-dashed), and 1 (dashed).

Linearized formal uncertainty and spread for the smoothest model
inversion of data for DOBH 13 using smoothing weights of (a) b=100,
(b) b=10, (c) b=1, and (d) b=0. 1. The left hand plots show the Q-1
profile (solid) together with the formal uncertainty (dashed). The
right hand plots show the spread (equation 1.42), which is a measure

of the formal spatial resolution. The spread has been normalized to
give a value of unity for a 1-km-wide boxcar.

Results of two-layer Q-1 inversions for each DOBH. The left hand
plots show the normalized squared data misfit (equation 1.40) as a
function of upper layer thickness. A dashed line shows 95%

confidence levels predicted by an F-test using the minimum misfit.

The left hand plot shows the upper layer (solid) and lower layer

(dashed) Q-1 values predicted by the model together with the formal
uncertainties (dotted).

Comparison of t* observations for the eastern line with the predictions
of a two models: a smoothest model (b=10) solution for a laterally

invariant Q-1 structure (open circles) and an inversion solution that

includes lateral inhomogeneity in the upper crust (asterisks) (Figure

2.17, b=0.1).

Results of an inversion for lateral variations in Q-1 in the upper 0.625
km for the eastern refraction profile. (a) Starting Q-1 model obtained



Figure 2.18

Figure 2.19

Figure 2.20

Figure 2.21

Figure 2.22

Figure 2.23

from a smoothest model (b=10) inversion for vertical Q-1 structure of
t* estimates for DOBH 10 and 12. (b) A plot of the normalized
squared data misfit against smoothing weight for the inversion for

upper crustal Q-1. (c) The upper crustal Q-1 model plotted for four

different choices of smoothing weight, b=100 (solid), 10 (dashed), 1
(dot-dashed) and 0.1 (solid).

The axial P-wave velocity model obtained by Vera et al. [1990] (solid)

and the modified version used to calculate ray paths and travel times

(dashed).

(a) Ray paths and (b) travel times for the slightly modified version of

the velocity model of Vera et al. [1990] (Figure 2.18). Direct phases

are shown as solid lines, PP phases as dashed lines, and PPP and

PPPP phases as dotted lines.

Record sections for (a) AOBH 5 and (b) the vertical channel of OBS

1; amplitudes are scaled linearly with range for display purposes. The
predicted arrival time of the Moho-turning phase is shown by a solid
line.

Examples of t* estimates for the Moho-turning phase for (a) AOBH 5
and (b) OBS 1. The plot descriptions are the same as for Figure 2.6.

t* estimates and relative uncertainties obtained for the shallow
crustal (solid) and Moho (dashed) waveforms. The predictions of the
two layer models shown in Figure 2.23 are shown as asterisks.

Two-layer Q-1 models obtained from the axial t* data (solid) and the

formal uncertainties (dashed) for (a) AOBH 5 and (b) OBS 1.
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CHAPTER 3

A FINITE-DIFFERENCE EVALUATION OF THE SPECTRAL METHOD OF

ATTENUATION TOMOGRAPHY

INTRODUCTION

The majority of attenuation studies which have employed tomographic

techniques on local scales have been located in continental regions [Young and Ward,

1980; Hashida and Shimazaki, 1987; Evans and Zucca, 1988; Hashida et al., 1988;

Ho-Liu et al., 1988; Clawson et al., 1989]. While velocity heterogeneities

undoubtedly exist in such regions, the velocity structure in these studies has

generally been successfully approximated by simple, laterally-invariant models in

which velocity progressively increases with depth. In comparison to continental

regions, the upper 10 km of oceanic lithosphere is characterized by high velocity

gradients both in the upper crust and at the Moho. In addition, the velocity structure

at 9*30'N on the EPR includes high gradients and pronounced lateral

inhomogeneities in the vicinity of the axial magma chamber [Vera et al., 1990;

Toomey et al., 1990a]. These characteristics raise three serious issues concerning

the validity of spectral t* estimates and the reliability of tomographic Q-1 models

derived in this study.

First, errors in the assumed velocity structure will affect the inversions for Q-1
both directly, by biasing equation (1.6), and through the resulting errors in wave

paths. For data sets that are compatible with a laterally invariant velocity structure,

detailed velocity models may be obtained by forward modelling both travel times and

amplitudes. However, because of the infeasibility of forward modelling data for

complex, laterally varying velocity structures, velocity models for two- and three-

dimensional seismic data sets collected at mid-ocean ridges are generally obtained

using delay-time tomographic techniques [Burnett et al., 1989; White and Clowes,

1990; Toomey et al., 1990a; Caress et al., 1992]. Such models have both limited

resolution and tend to underestimate the magnitude of anomalies. Moreover, even if

the true velocity structure were known, estimating accurate wave paths in the

presence of a low-velocity anomaly is a difficult problem since ray-theoretical paths
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do not always exist [Caress et al., 1992] and an approximate ray-tracing technique

must be used.

Second, the window used for spectral estimates may include two or more

phases which propagate along significantly different paths. Such multi-pathing

invalidates the linear relationship between t* and Q-1 (equation 1.6). If the true t*
differs significantly between multiple paths, Q-1 models obtained assuming a single

path may provide very distorted images of the true structure, especially if the wave

paths do not correspond to those of the highest amplitude arrivals.

Third, the diffraction and focusing of seismic waves in regions containing high

velocity gradients may result in a significant non-attenuative, frequency-dependent

component of propagation. As a result, the spectral t* estimates will be measure of

apparent rather than intrinsic attenuation [e.g., Cormier, 1982], and the resulting Q-1

models may be biased. In particular, frequency-dependent scattering in the vicinity

of the axial magma chamber may significantly affect Q-1 estimates in this region.

Previous studies [Burnett et al., 1988; Swift et al., 1990] have demonstrated

the feasibility of applying numerical techniques to model seismic propagation across

mid-ocean ridges. In this chapter we apply a two-dimensional full-waveform finite-

difference technique to address the reliability of the Q tomography method. We

employ a velocity structure based on the cross-sectional model proposed by Vera et

al. [1990] for the EPR at 9430'N (Figure 1.3). Solutions obtained for several source

locations are used to construct a synthetic data set. An inversion of the travel time

data [Thurber, 1983] reproduces the potential errors in the velocity model. The

approximate wave paths obtained during the delay-time inversion are compared with

estimates of the wave paths derived from the finite-difference solutions. Intrinsic t*

values, which may include the contributions of multiple arrivals, are calculated for a

plausible Q-1 model. Inversions of these synthetic data for Q-1 are used to assess

the potential biasing effects arising from errors in the velocity structure and from

multi-pathing. Spectral analysis of the finite-difference waveforms, which do not

include the effects of intrinsic attenuation, provides a basis for assessing the

contribution of deterministic scattering to t* estimates and to the resulting Q-1
models.

FINITE-DIFFERENCE MODEL CONFIGURATIONS

The finite-difference algorithm used in this study is based on the scheme of

Virieux [1986] and is described in detail by Dougherty and Stephen [1988] and



Stephen [1990]. The method utilizes second-order differences on a staggered grid

and is stable at liquid-solid interfaces without the incorporation of explicit boundary

conditions [Virieux, 1986; Stephen, 1988]. The finite-difference grid (Figure 3.1)

comprises a heterogeneous zone sandwiched between thin homogeneous water and

solid layers. A source located 2.81 km above the seafloor is introduced as a

boundary condition along the top of the grid, 150-600 m above the water-solid

interface. The upper, lower, and right-hand boundary regions are absorbing layers

[Levander, 1985; Cerjan et al., 1985; Stephen, 1990] which prevent reflections of

seismic energy from the edges of the model, while the left-hand boundary may

include either an absorbing region or alternatively an axis of symmetry if the source

is located at the left-hand edge of the grid.

In order to facilitate spectral analysis of the finite-difference waveforms, a

source function with a large bandwidth is required. However, accurate finite-

difference calculations require a minimum of about ten grid points per wavelength

[e.g., Alford et al., 1974; Virieux, 1986]. This criterion, together with the small time

steps required for stability [Alford et al., 1974; Virieux, 1986], places strong

computational limitations on the maximum frequency of the source. In this study

solutions are obtained with a grid spacing that is equal in horizontal and vertical

directions, and which has values of 15 , 7.5, and 3.75 m, depending upon the physical

dimensions of the model. The time steps used for the three grid spacings are 1.5 ,

0.75, and 0.375 ms respectively. The source time series (Figure 3.2), which is

identical for all models, is constructed by successively applying low and high pass

Butterworth filters to a delta function, a procedure that results in a power spectrum

that is optimally flat within the passband. For solutions with 15-m, 7.5-m, and 3.75-

m grids, the half power source bandwidths are 2-12.5 Hz, 4-25 Hz, and 8-50 Hz,

respectively. At the upper half-power source frequency there are 8 grid points per

wavelength within the thin water layer and over 10 grid points per wavelength for

both P and S waves within the crust. Since the grid spacing is close to or even

below the generally accepted minimum value, considerable effort was devoted to

confirming the spectral accuracy of the finite-difference P waveforms, the results of

which are presented in Appendix B.

The P-wave velocity model used in this study (Figure 3.3) is based on that

obtained by Vera et al. [1990] at 9030'N. Vera's model, which is symmetric about

the rise axis, was obtained by interpolating between several one-dimensional

velocity models obtained from expanding-spread-profile data at 0, 2, 3 and 10 km
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distance from the rise axis, taking into account the constraints imposed by reflection
profiles. While parts of the model are necessarily subjective, it is preferred for this
study over the delay time tomographic velocity model [Toomey et al., 1990a], since
it includes many fine-scale features of the velocity structure and the absolute
velocities are better constrained. The model also includes S-wave velocities and
densities that are required for the finite-difference algorithm. The principal feature of

the P-wave velocity structure is a thin, 200-m-thick, 2-km-wide magma lens with Vp
= 3 km/s, at a depth of 1.6 km beneath the rise axis. Beneath the magma lens a
broad low-velocity region extends to the base of the crust, while the roof of the
magma chamber is characterized by very high velocity gradients which grade into a
region of heightened shallow crustal velocities on the rise axis.

The model of Vera et al. [1990] has been modified in a number of ways to meet
the requirements of the finite-difference technique. Seafloor topography has been
removed from the model since a very fine grid spacing would be required to model its
effects accurately [Dougherty and Stephen, 1991]. In order to avoid very low but
non-zero S wave velocities, the thin, 50-200 m thick surface low-velocity layer (layer
2A) is removed and replaced by a constant gradient from a P wave velocity of 4 km/s
at the seafloor to 5.4 km/s at the base of layer 2B. To satisfy the stability criterion
imposed by the time increment, all velocities exceeding 7 km/s are reduced to 7 km/s.

At depths of 5 to 6 km, a linear vertical velocity gradient is assumed between the

model value at 5 km depth and a constant value of 7 km/s at 6 km depth. Thus, the

Moho velocity gradient is absent away from the rise axis while beneath the rise axis
it is about 1 km shallower and the velocity increase is reduced in magnitude over
that proposed by Vera et al. [1990].

A Vs/Vp ratio of 0.54 (equivalent to a Poisson's ratio of 0.29) is assumed
throughout most of the model. In the upper kilometer Vs/Vp ranges between 0.5 and
0.54 and is calculated according to:

VS / Vp = 0.54 - 0.0287 (5.4 - Vp) Vp < 5.4 km/s

VS / Vp = 0.54 Vp 5.4 km/s (3.1)
Within the magma body VS = 0 km/s while in the surrounding region Vs/Vp increases
with decreasing Vp:

Vs / Vp = 0.54 + 0.0422 (6.0 - Vp) Vp < 6.0 km/s

Vp 6.0 km/s (3.2)VS / Vp = 0.54



While such an increase is primarily incorporated to maintain a minimum value of VS =

2 km/s it is compatible with the results of Vera et al. [1990] and experimental
measurements [Murase and McBirney, 1973].

Following Vera et al. [1990], the density (in g/cm 3) throughout most of the

model is calculated according to

p = 0.165 Vp + 1.852 (3.3)
However, this relationship predicts unrealistically high densities in the uppermost

crust and produces numerical instabilities at the seafloor in the finite-difference

algorithm. Therefore, the density relationship of Nafe and Drake [1957]

p = 0.379 VP + 0.252 (3.4)

is used at the seafloor and a linear gradient links the two relationships over the
upper 0.5 km. In the vicinity of the magma chamber equation (3.3) yields densities
that are too low, and so the minimum density in this region is limited to 2.6 g/cm 3.

FINITE-DIFFERENCE SOLUTIONS

Finite-difference solutions were calculated for sources at distances x of 0, -2, -4,
-6, -8, and -20 km from the rise axis. Solutions for the 0, 2, 4, 6, and 8-km sources

were obtained using both 7.5-m and 3.75-m grid spacings. The 7.5-m-grid solutions

extend 8 km to either side of the rise axis, while solutions using the smaller grid

spacing are confined to shorter ranges at which the P-wave phases of interest

propagate well within the upper 2.5 km. A 15-m grid was used for the 20-km source

solution for which the velocity model extended from x=-20 km to x=10 km. This

solution does not have sufficient high frequency content for short-window spectral t*
analysis and was obtained primarily to reproduce the geometry of the outer shot
lines (Figure 1.1) for the synthetic inversions.

Figure 3.4 shows record sections for the 8-km and 20-km sources, both of which

include several compressional phases within 0.5 s of the first arrival. The first

arrival always propagates within the upper crust and passes over the roof of the

magma chamber. At ranges that do not greatly exceed that of the rise axis the first

energy is a ray-theoretical arrival with a small triplication at 7-9 km range. At

greater ranges this phase is diffracted over the roof of the magma chamber and is

characterized by very low amplitudes, particularly for the 20-km source. Indeed in

Figure 3.4 this phase is not discernible at the largest ranges.



The record sections also contain high amplitude PP phases whose paths include
a downward reflection from the seafloor as well as higher order phases with more
than one such reflection. In the case of the 8-km source a single branch of the PP
travel-time curve extends to over 14 km range. Additional PP arrivals with smaller
ray parameters also exist at ranges of 11-12 km and 14-16 km, resulting in a marked
increase in amplitudes. In the case of the 20-km source the PP phase is not observed
at ranges much greater than 20 km because of the effects of the axial low velocity
zone. A strong triplication at 12-15 km range results in very high PP amplitudes as
well as high amplitude PPP and PPPP phases at correspondingly greater ranges.
However, the amplitude of downward seafloor reflections in the finite-difference
solutions will be appreciably higher than might be expected in a physically realistic
model due to the high seafloor crustal velocities. The amplitude of the seafloor
reflection depends strongly on the seismic properties at the seafloor, the ray
parameter, and the presence of additional near-surface discontinuities. In particular,
the amplitude is very sensitive to the S-wave velocity, which is poorly known. For
P- and S-wave velocities at the seafloor of 2.2 km/s and 0.95 km/s, values similar to
those obtained by Vera et al. [1990], and a density given by equation (3.4), the true
amplitudes of the downward-reflected plane P waves are reduced by a factor of 0.4-
0.7 [Ergin, 1952]. In addition, there will be an further decrease in amplitudes on
reflection due to seafloor roughness. The high levels of attenuation in the upper 1 km
(Chapter 2) will also generally reduce the amplitude of PP phases relative to direct
phases that propagate at larger depths. However, in the case of the 8-km source,
the high amplitude PP phase at 14-16 km range includes a surface reflection near the
rise axis, a region that is characterized by relatively low levels of surface
attenuation. Since, the rise axis is also characterized by high levels of attenuation at
larger depths this arrival may be important at such ranges.

A diffracted arrival from beneath the magma chamber is also observed (Figure
3.4), which at ranges much greater than that of the rise axis is the first phase with
significant amplitude. The propagation of this phase is fairly complex. The high
velocity gradients above and below the magma body act as a waveguide that
propagates energy in a broad region centered below the magma body. Upon
emerging from beneath the magma body the phase is strongly diffracted, producing
back-scattered arrivals of appreciable amplitude.

At the largest ranges, a very high amplitude Moho-turning phase is apparent in
both sections. Because the Moho transition zone has been elevated 1 km under the



rise axis and is not present off-axis, this arrival will be misplaced. In the case of the

8-km source such an arrival would be offset to larger ranges in a more realistic

model. A Moho arrival might be expected at such ranges for the 20-km source, but

the relative arrival time may be incorrect. The high amplitudes are a consequence of

the large velocity increase at the Moho beneath the rise axis, a feature that is also

present in the model of Vera et al. [1990].

DELAY-TIME TOMOGRAPHY AND WAVE PATHS

Since attenuation tomography is dependent upon the assumed velocity

structure, the first step in analysis of the finite-difference solutions is to obtain a

velocity structure with errors that are comparable to those in the delay time

tomographic model obtained at 9*30' N [Toomey et al., 1990a]. To achieve this end

travel times obtained from the finite-difference solutions were inverted for a velocity

model. A geometry that closely mimics that of a cross-section through the

tomography experiment is obtained by combining travel times for sources at x = 0,

±8, and ±20 km and receivers at 0.5-km intervals between x = -8 and 8 km, though

the source and receiver positions are reversed.

The very low amplitudes of the diffracted first arrivals observed in Figure 3.4

raise the important question as to whether such arrivals would be observable in the

presence of ambient noise. Figure 3.5 compares typical noise levels observed during

the tomography experiment with the amplitude of the first arrival for both the 8-km

and 20-km sources. The finite-difference arrivals have been adjusted to account for

the difference between two and three-dimensional divergence and to include the

effects of attenuation. In the case of the 20-km source the amplitude of the first

arrival is well below noise levels, strongly suggesting that this phase will not be

observable at such ranges. In the case of the 8-km source the signal amplitude

drops slightly below noise levels at the largest ranges. Inspection of the waveforms

recorded by receivers at 9 km range from the rise axis supports this observation. A

low-amplitude first arrival is generally observed for interior shots located across the

rise axis, though at the largest ranges the automatic picking routine [Toomey et al.,

1990a; Allen, 1982; Rothman, 1986] does not always pick this phase. The presence

of a first-arriving phase with amplitudes below the detection threshold illustrates a

potential pitfall of using minimum time algorithms [Vidale, 1988, 1990; Moser, 1991]

to calculate travel times and wave paths.



In this study, travel times are obtained by picking the first zero in the third

derivative of the first cycle whose amplitude exceeds the minimum background noise
amplitude shown in Figure 3.5. Following Toomey et al. [1990a] the velocity model

is parameterized on a 1-km grid, and the delay times are inverted using the algorithm

of Thurber [1983]. The delay-time inversion is able to resolve both the high-velocity
anomaly at 0-1 km depth and the low-velocity anomaly at 2 km depth. However,

there is a strong trade off between the magnitudes of these two anomalies, which

are strongly dependent upon the starting model. A one-dimensional starting model

yields a large high-velocity anomaly, while starting models which include a portion of

the two-dimensional structure have larger low-velocity anomalies. The final travel

time residual is almost identical for a wide range of starting models. Clearly, the

inclusion of travel times for short rise-parallel paths on the rise axis would

significantly improve the resolution of the final model since the velocities in the high-

velocity anomaly would be independently constrained. Since such paths are included

in the three-dimensional delay-time inversions [Toomey et al., 1990a], we chose a

solution (Figure 3.6) that closely reproduces the magnitude of the low-velocity

anomaly resolved by the tomography experiment. The inversion underestimates the

magnitude of the low-velocity anomaly and includes a number of artifacts off-axis.

In Figure 3.7 ray paths obtained from the delay-time inversion algorithm are

compared with those estimated from the finite-difference solutions. The delay time

tomographic algorithm [Thurber, 1983] calculates paths using a pseudo-bending

technique which attempts to iteritive distort a minimum time path of constant

curvature into a ray-theoretical path. The finite-difference wave paths are obtained

by combining an exact ray-tracing algorithm with visual identification of wavefronts

in the finite-difference snapshots. In the case of the diffraction from beneath the

magma chamber it is difficult to estimate objectively the depth of propagation

beneath the magma body. Propagation occurs in a fairly broad zone extending from

the roof of the magma chamber at about 1.5 km depth to over 2.5 km depth. While a

number of fairly complex and unstable ray theoretical solutions exist in this region, a

simple path was chosen through this region with a depth beneath the rise axis of

between 2 and 2.5 km.

At shorter ranges the shapes of the ray paths are in good agreement. However,

at the largest ranges, Thurber's algorithm fails to find the minimum time path and

places the ray beneath the magma chamber. To some extent this failure is fortuitous

since it occurs at ranges where where the amplitude of the first arrival is very small.



However, the range at which the transition between the two paths occurs is very

sensitive to poorly resolved details of the velocity structure and generally coincides

neither with the range at which the first arrival becomes unpickable nor the range at

which the amplitude of the deeper diffraction exceeds that of the first arrival.

Therefore, some paths will be grossly in error for both velocity and Q-1 inversions.

Away from the rise axis, approximate ray paths generally bottom at slightly

smaller depths at short ranges and significantly greater depths at large ranges.

Beneath the rise axis there are no approximate paths between about 1.5 and 2.5 km

depth, a region that coincides with the center of the low velocity anomaly. The finite-

difference paths show a similar though less extensive gap, though as noted earlier

the diffraction from below the magma chamber propagates in part within this region.

SYNTHETIC INVERSIONS FOR Q-1

To assess the potential effects of errors in the velocity structure and multi-

pathing, a series of synthetic inversions were conducted using intrinsic t* values

derived from a plausible Q-1 model (Figure 3.8). The Q-I model is based on the

velocity model and is compatible with the constraints on the axial and off-axis Q-1

structure derived in Chapter 2. For the inversions Q-1 is parameterized on a 0.5-km

grid, and a smoothest model inversion is performed in which the smoothing operator

is a simple first-order difference between all adjacent nodes. Rather than present

solutions for a variety of smoothing weights, results are compared for a single

constant smoothing weight chosen subjectively by comparing solutions with the true

model.

Velocity Model Errors

Given the path and velocity structure, synthetic t* values can be calculated from

the Q-1 model using equation (1.6). In Figure 3.9 t* values obtained assuming the

finite-difference velocity model (Figure 3.3) and the finite-difference wave path

corresponding to the maximum amplitude direct crustal arrival (Figure 3.7) are

shown. Values were calculated for sources at x = ±20, ±8 and 0 km, receivers at 0.5

km intervals between x =- 8 and 8 km, and a minimum source-receiver separation of

3.5 km. The principal feature of these data is a sudden increase in t* values for the

off-axis sources at the range where paths switch from passing above to below the

magma chamber. Figure 3.10 shows the results of inverting these data assuming



alternatively the correct velocity structure and wave paths and the results of delay
time tomography.

Not surprisingly, the solution obtained using the correct velocity structure and
wave paths is a fairly good representation of the true Q-1 model and matches the t*
data (Figure 3.9) very well. The primary effect of smoothing is to increase slightly

the thickness of the surface low-Q zone and the width of the axial low-Q region and

to increase the minimum Q values in these regions. The lowest axial Q values are

at 2 km depth while the axial structure between 1 and 2 km depth is not well-

resolved because of the lack of ray paths in this region.
The solution derived from the delay time tomographic velocity model differs

significantly from the first solution. While the principal features of the model are still

resolved the lowest axial Q values are located at a depth of 1.5 km rather than 2.0

km, and the magnitude of the anomaly is smaller. Off-axis the near-surface Q
structure shows much larger lateral variations and includes very low Q values 2 km

off-axis. These differences are a direct consequence of the misplacement of ray

paths beneath the rise axis. In particular t* values obtained from ray paths that

diffract below the magma chamber are incorrectly ascribed to shallower ray paths at

smaller ranges, while at longer ranges the ray paths turn at too large a depth. As a

result the the lowest axial Q values are not fully resolved, and some of the anomaly

is incorporated into the shallow structure. Inspection of the t* predictions (Figure

3.9) shows that the model fails to match fully the sudden increase in t* values
observed for off-axis sources.

Multi-Pathing
An intrinsic t* value for a time window which includes more than one phase may

be estimated using a straight line fit to a power spectrum C calculated according to
N

C(f) = 2 a7 exp (-ft*i)
i=1 (3.5)

where N is the number of phases, and ai and t*i are the amplitude and intrinsic t*
value (equation 1.6) of individual phases. Such a calculation makes the simplifying

assumption that the full spectral content of a phase is concentrated at the arrival

time and will therefore tend to overestimate the effect of later arrivals whose onsets

just fall within the window. In Figure 3.11 such multiple-phase t* values are shown
for arrivals within the first 0.3 s and 0.6 s of the waveform. The amplitudes used in
the calculation are the peak-to-peak amplitudes observed in the record sections. PP



amplitude are corrected for a seafloor reflection assuming Vp = 2.2 km/s, Vs = 0.95

km/s, and p = 1.2 g/cm 3 in the uppermost crust. The Moho phase is not included in

the calculations for the 8-km source since in a realistic model it would be offset to

larger ranges.
While there are noticeable differences, both sets of t* values are generally

similar. Inspection of the the amplitude and timing of phases (Figure 3.4) and of the

the relative squared amplitude of phases contributing to the t* values for a 0.6-s-

window suggests that this similarity is somewhat coincidental. At larger ranges the

0.6-s-window t* value for the 8-km and 20-km sources are dominated by PP and

Moho arrivals, respectively, while the 0.3-s-window values at the same ranges

results almost entirely from energy diffracted below the magma chamber. However,

since the single path t* values are similar for these phases, the multi-path t* values

are little changed. Indeed the inversion of the two data sets (Figure 3.12) yields

very similar models. While the similarity of the 0.3- and 0.6-s-window multi-path t*

values is a consequence of the choice of Q-1 model, the results do suggest that the

effects of multi-pathing may be fairly subtle. However, if the results of inversions for

an unknown Q-1 structure are to be considered robust, it is clearly necessary to

exclude high-amplitude arrivals whose propagation path does not correspond to that

of the wave paths used in the inversion.

High Surface Smoothing Weights

Figure 3.13a shows the results of inverting the 0.3-s-window multi-path t*

values assuming the delay time tomography results. In marked contrast to previous

solutions the lowest axial Q values at about 2 km depth are barely resolved. Much

of the variation in t* values resulting from the 2-km-deep axial low-Q zone is

modelled by variations in the uppermost crustal structure off-axis. Figure 3.13b

shows the results of an identical inversion except that the smoothing weight in the

upper 1 km has been quadrupled. The resulting model resolves an region of axial

low-Q values that extends from 1.5 km to over 2.5 km depth. The effect of increasing

the near-surface smoothing weight is to limit the lateral variations in the shallow Q-1
structure off-axis, while the relatively high near-surface Q values on-axis are still

resolved. As a result the inversion is forced to include an axial low-Q zone though

the magnitude of the anomaly is too small and the dimensions reflect the depth

distribution of approximate ray paths.



THE EFFECT OF DETERMINISTIC SCATTERING

The finite-difference method has been used by several workers to study the

effects of stochastic perturbations to simple velocity models [Frankel and Clayton,
1984, 1986; McLaughlin et al., 1986; McLaughlin and Anderson, 1987; Dougherty and

Stephen, 1988; Charette, 1991; Toks6z et al., 1991]. Such studies show that

stochastic scattering can appreciably alter the spectral content of the first arrival

[Frankel and Clayton, 1986; Charette, 1991]. The highest apparent Q-1 values occur

for the frequencies given by ka - 1-2 where k is the wave number and a the
correlation length of the velocity perturbations. At lower frequencies (ka << 1) Q-1
-c k2 while at higher frequencies the rate of decrease in Q-1 is strongly dependent

upon the assumed relationship between velocity perturbations and density

perturbations [Charette, 1991]. Self-similar models which are characterized by a
range of correlation lengths can result in approximately constant apparent Q-1 over a

broad frequency band [Frankel and Clayton, 1986]. For velocity perturbation with a

standard deviation of 10%, Frankel and Clayton [1986] observe maximum apparent
Q-1 values of about 0.01, while Charette [1991] obtains higher values.

While stochastic scattering may well be important in oceanic crust, particularly

at shallow depths [Dougherty and Stephen, 1988], its effect is hard to quantify

without a better knowledge of the stochastic properties of the oceanic crust. In this

section we use spectral analysis to evaluate the effect of deterministic scattering.
Lewis and Jung [1988] show that the reflectivity of high gradients in the upper crust
modify the spectral content of waveforms significantly at frequencies below 10 Hz.
A similar effect resulting from the very high velocity gradients observed around the
magma chamber might alter the spectra of waveforms. The dimensions of the
magma lens yield ka = 1-2 at frequencies ranging from about 1 to 20 Hz. Spectral t*
estimates for such waveforms are frequently obtained over a fairly narrow frequency
band (10-30 Hz) and may thus be strongly influenced by scattering.

Figure 3.14 shows apparent t* values derived from the finite-difference solutions
using an 0.3-s-long time window and 47c prolate MWSA. A comparison of finite-
difference t* values obtained for one-dimensional on- and off-axis structures with
those obtained by the reflectivity method [Fuchs and Maller, 1971] suggest that the
results are probably reliable at all but the shortest ranges (Appendix 2). The results

show apparent t* values that oscillate rapidly with range and that generally lie

between ±0.01. The largest variations are observed at longer ranges, suggesting
that deterministic scattering around the magma chamber may influence t* values.



The t* values obtained cannot be directly equated to those obtained from the

tomography experiment, for two reasons. First, the true velocity model in the

vicinity of the magma chamber will probably differ significantly from that used for the

finite-difference solutions. There are few constraints on the detailed structure

beneath the magma body [Vera et al., 1990] or on the thickness of the magma lens

[Vera et al., 1990; Kent et al., 1990], while the modelling of diffraction hyperbolae

suggest the width of the magma lens may be only 0.8-1.2 km rather than 2 km [Kent

et al., 1990]. In addition, the delay-time tomography resolves significant asymmetry

and along-axis variations in axial structure [Toomey et al., 1990a]. Second, the

source-receiver position are reversed between the finite-difference solutions and the

experiment, so only a handful of measurements have similar configurations. In

Figure 3.15 six finite-difference t* estimates are compared with similarly configured

t* estimates obtained for DOBH 15 (see Chapter 4). The results suggest that while

deterministic scattering may significantly affect t* it does not dominate the observed

trends in t*.

Figure 3.16 shows the results of inverting the contributions to t* values from

scattering Q for apparent Q- 1 structure using the velocity model and wave paths from

delay time tomography. While such an inversion is able to achieve a 60% variance

reduction over a model with Q-1=0 using very small smoothing weights, the variance

reduction for smoother solutions is much smaller. Solutions which show variations

on a similar scale to those in Q-1 model are characterized by absolute Q-1 values

that are less than 0.01 throughout the model.

To investigate the effect of deterministic scattering on an inversion for intrinsic

Q-1, inversions were performed using both forward-modelled intrinsic t* values and

the sum of intrinsic t* and the t* estimates from deterministic scattering (Figure

3.17). Since the inversions are confined to sources and receivers at distances 2 8

km from the rise axis it is necessary to use the finite-difference wave paths to

include enough paths below the magma chamber to resolve adequately the axial low-

Q region. Including the contribution to t* from scattering decreases the variance

reduction of the best fitting constant-Q model from over 99% to 80%, since the

contribution of scattering to t* is not fully consistent with a smooth Q-1 model.

Moreover the final model is characterized by significant lateral variations in the near-

surface Q structure off-axis and an intensification of the 2-km-deep low-Q anomaly.

This latter effect suggests that deterministic scattering may contribute to low

apparent Q values imaged in the vicinity of a low-velocity magma chamber. Whether



this will be the case for the source-receiver configuration used in the tomography

experiment is not clear. To answer this question fully will require a better
knowledge of the velocity structure and three-dimensional models of wave
propagation.

SUMMARY

In this chapter we have used a full-waveform finite-difference technique to
evaluate the spectral method of Q tomography. Solutions for seismic propagation

through a two-dimensional model similar to that proposed by Vera et al. [1990] for

the East Pacific Rise at 9430'N show that propagation near an axial magma chamber
is complex and that a number of phases may arrive within 0.5 s of the onset of the
waveform. The first arriving phase always propagates above the magma chamber.
However, for paths of significant length that across the rise axis the amplitude of the
first arrival is very small, and a diffraction below the magma chamber is the first
phase with significant amplitude. A PP phase and a high amplitude Moho-turning
phase may be important secondary arrivals.

Synthetic inversions show the importance of using wave paths appropriate to
the phase that dominates t* estimates. Care must be taken in selecting the
positions and lengths of the time windows used for spectral t* estimates in order to
exclude high-amplitude arrivals whose paths do not correspond to that of the desired
arrival. Deterministic scattering from the large velocity gradients in the vicinity of
the axial magma chamber may contribute to t* estimates. While such affects can
produce noticeable changes in Q-1 models, including an intensification of the axial
low-Q anomaly, the results suggest that intrinsic attenuation will dominate
scattering attenuation. In the following chapter the results of the finite-difference
studies are used to constrain the position of approximate wave paths and to select
objectively the time windows used for spectral estimation.



FIGURE CAPTIONS

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Configuration of the finite-difference grid. A heterogeneous region is

sandwiched between homogeneous water and solid layers. The grid

spacing is equal in the vertical and horizontal directions and the

source is introduced as a boundary condition along the top of the grid.

The grid is enclosed by 120-point-wide absorbing regions which are

not shown, though the left-hand boundary may alternatively be an axis

of symmetry. The maximum dimensions of the models and the grid

indices are shown for both the 7.5-m and 3.75-m grids (values for the

smaller grid spacing are enclosed in parentheses).

(a) Source pressure time series used in the finite-difference solutions

with a 7.5-m grid. The source is constructed by digitally filtering a

spike with a 4-pole high-pass Butterworth filter with a 4-Hz cuttoff

and a 8-pole low-pass Butterworth filter with a 25-Hz cutoff. (b) The

power spectrum of the source shown in (a). The time series for the

3.75 m and 15 m grid solutions are identical but the sample intervals

are proportional to the grid spacing.

Contours of gridded P-wave velocity for the model used in this study

(0.5-km/s contour interval), which is based on the model of Vera et al.

[1990]. At all but the shallowest depths the gridded model was

obtained by interpolating between contours using a minimum

curvature algorithm [Briggs, 1974; Swain, 1976]. Such a procedure

produces a predominantly smoothly varying velocity model, although

in some regions there is a small residual roughness whose amplitude

does not exceed 0.025 km/s and which produces the jagged contours

visible in areas with small velocity gradients. At ranges greater than

8 km from the rise axis the model is laterally invariant.

Record section for the sources at (a) x=-8 km and (b) x=-20 km

showing predicted arrival times for a number.of P-wave phases.

Predicted times are calculated from estimates of the wave paths

obtained by combining an exact ray-tracing algorithm with the visual



Figure 3.5.

Figure 3.6.

Figure 3.7.

identification of wavefronts in the finite-difference snapshots. For
display purposes the seismic records are scaled by the square root of
the range to account for cylindrical divergence. The direct S-wave
arrival is just visible in (a) at x = -l km and at a reduced time of 3.2 s
and shows appreciable dispersion (Appendix B).

Peak-to-peak amplitudes of the first arriving phase for the model with
the sources at (a) x =- 8 km and (b) x = -20 km. Amplitudes have
been adjusted to include the effects of attenuation assuming t*=0.045
s and for the difference between two- and three-dimensional
divergence. The range of typical background noise amplitudes
observed during the tomography experiment is also shown (dashed
lines). Amplitudes are normalized to that of the water wave at 1 km
range.

A delay-time tomographic velocity model obtained by inverting travel
times obtained from the finite-difference solutions (see text). Both
(a) the absolute velocities (0.5-km/s contour interval) and (b) the
perturbations from the average one-dimensional model (0.25-km/s
contour interval) are shown. The velocity structure is parameterized
using 1-km-spaced nodes. This solution was obtained using a starting
model that contains 50% of the smoothed two-dimensional structure
contained in the true velocity model (Figure 3.3).

Comparison of approximate wave paths obtained from the travel time
inversion (solid lines) and from the finite-difference solutions (dashed
and dotted lines) for sources at (a) x =- 20 km (b) x =- 8 km and (c) x

= 0 km. The delay-time tomography wave paths are calculated using a
pseudo-bending technique which iteritively distorts a minimum time
path of fixed curvature. The finite-difference wave paths are obtained
by combining an exact ray-tracing algorithm with the visual
identification of wavefronts in the finite-difference snapshots. The
path of the highest amplitude direct crustal arrival is shown as a
dashed line while the lower amplitude arrival is shown as a dotted
line. As noted in the text, propagation beneath the magma chamber is



Figure 3.8.

Figure 3.9.

Figure 3.10.

Figure 3.11.

fairly complex and occurs over a fairly large range of depths. The

paths in this region represent a visual estimate of the mid-depth of

propagation

Q-1 model used for the finite-difference inversions (0.005 contour

interval, solid contours at 0.01 intervals). Away from the rise axis a

simple model is assumed which linearly interpolates between values

of 0.04, 0.012, 0.002, and 0.002 at depths of 0, 1, 2, and 6 km depth.

Perturbations to this model are derived from the lateral variations in

the velocity structure. The resulting Q-1 model is smoothed using the

weighted average within a 1-km square.

Synthetic t* values (asterisks) obtained for the Q-1 model shown in

Figure 3.8 assuming a single finite-difference wave path corresponding

to the highest-amplitude direct crustal arrival. Predicted t* values are

shown both for an inversion which uses the correct wave paths and

velocity model (pluses) and one which uses the delay time

tomography results (circles).

Q-1 models obtained from inversions of the t* data shown in Figure

3.9 using (a) the correct velocity structure and wave paths and (b) the

delay time tomography results. t* values are used for sources at x =

0, ±8, and ±20 km, receivers at 0.5 km intervals between x = -8 and 8

km, and a minimum source-receiver separation of 3.5 km. The Q-1

models are parameterized on a 0.5-km grid.

(a) Multi-path t* values for a source at x = -20 km. (i) t* values are

shown for phases arriving within an 0.3-s window (pluses) and an 0.6-

s window (circles). (ii) The relative squared amplitudes (a2 in

equation 3.5) or power of the different phases used to calculate t*

values for the 0.6-s-long window. Weights are shown for ray-

theoretical direct arrivals and diffractions above the magma chamber

(asterisks), PP arrivals (circles), diffractions beneath the magma

chamber (pluses), and a Moho-turning phase (crosses). (b) As for
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Figure 3.12.

Figure 3.13.

Figure 3.14.

Figure 3.15.

(a) except the source is at x = -8 km and the Moho arrival is excluded
from the calculations.

Results of inverting synthetic multi-path t* values obtained from (a)

0.3-s-long windows and (b) 0.6-s-long windows. The data are

inverted assuming the correct velocity structure and the finite-

difference wave paths corresponding to the maximum amplitude direct

crustal arrival.

(a) Results of inverting synthetic multi-path t* values obtained from a
0.3-s-long window using the velocity structure and wave paths
obtained from the delay time tomographic inversion. A constant

smoothing weight is used throughout the model. (b) As for (a) except

the smoothing weight is quadrupled in the upper 1 km.

Spectral t* estimates for sources at (a) x = -8 km, (b) x = -6 km, (c) x

= -4 km, (d) x =-2 km, and (e) x = 0 km. Estimates are obtained from

the finite-difference solutions using 4n prolate MWSA and a 0.4-s-

long window that includes 0.3 s of the waveform. A least squares line

is fitted to the natural logarithm of the source-corrected spectrum over

the frequency interval defined by the half power bandwidth of the
source. Values are presented for both the 4-25 Hz (crosses) and the
8-50 Hz (circles) sources. The source loacation is shown by a dashed
line.

A comparison of variations in observed t* values estimated from the
real data (pluses) with the finite-difference t* values (circles). t*
values obtained for the tomography experiment are shown for
approximately rise-perpendicular paths recorded by DOBH 15, located

9 km off-axis. A constant value of 0.02 has been added to the finite-
difference t* values, which are shown for a receiver located 8 km off-

axis. In both cases t* values have been estimated from 0.3 s of the

waveform using 4n prolate MWSA.
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Figure 3.16.

Figure 3.17

Results of inverting the contribution to t* from scattering as predicted

by the finite difference models (Figure 3.14) for apparent Q-1 structure

using the delay time tomographic velocity model and wave paths. To

avoid negative Q-1 in the inversion, t* values resulting from a constant

Q-1 of 0.02 is added to all data prior to the inversion and then

subtracted from the model before displaying the results. t* estimates

are used for sources at x = 0, ±2, ±4, ±6, and ±8 km, receivers at 0.5

km intervals between x = -8 and 8 km, and a minimum source-receiver

separation of 3.5 km. Where available, t* estimates are from the

frequency interval 8-50 Hz, while elsewhere they are for the frequency

interval 4-25 Hz (Figure 3.14). (a) A plot of variance versus

smoothing weight for the inversion. (b)-(d) The apparent Q-1 models

obtained for smoothing weights b=0.001 (contour interval reduced to

0.001), b=0.0l (contour interval reduced to 0.0025), and b=0. 1,

respectively.

(a) Results of inverting forward-modelled intrinsic t* values for the

same source-receiver configuration as used in Figure 3.16. The wave

paths and velocity model assumed correspond to those of the highest

amplitude direct crustal path. (b) As for (a) except the t*

contributions from deterministic scattering (Figure 3.14) are added to

the intrinsic t* values.
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CHAPTER 4

TWO AND THREE-DIMENSIONAL INVERSIONS FOR THE Q-1 STRUCTURE OF THE

EAST PACIFIC RISE

INTRODUCTION
In this chapter we present the results of attempts to invert the full tomography

data set for the compressional wave Q-1 structure across the the EPR at 9*30'N. In

the last chapter we demonstrated the importance of ensuring that t* estimates are

obtained from a time window dominated by a single phase and of correctly

determining the appropriate wave paths. Therefore, the first half of this chapter is

devoted to a systematic description of the early-arriving compressional phases

observed on seismic records and an evaluation of the quality of t* estimates and

approximate wave paths. In the second half of this chapter, the inversion techniques

described in Chapter 1 are used to obtain a series of Q-1 models. The primary

features of the models are shown to be qualitatively apparent from inspection of the

t* and wave path data.

VELOCITY MODELS

As discussed in previous chapters, the method of Q-1 tomography requires a

good knowledge of the velocity structure. While the t* estimates are assumed to be

independent of velocity, both the selection of the time window for t* estimation and

the choice of wave paths are dependent upon a good understanding of seismic

propagation, which in turn requires a well-constrained velocity model. Two models

of the cross-axis P-wave velocity structure have been obtained at 9*30'N on the EPR

[Vera et al., 1990; Toomey et al., 1990a], but for the purpose of Q-1 tomography both

have marked deficiencies. The three-dimensional delay time tomographic model

[Toomey et al., 1990a] (Figure 1.2) was obtained using arrival times for about 4500

P-wave paths. However, since the longest paths of the tomography experiment

were excluded from the inversion, the model does not image the velocity structure at

depths greater than about 3 km. While delay time tomographic techniques can

successfully resolve the the location and relative magnitude of velocity anomalies,

absolute velocity variations are not always well determined. Moreover, the
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resolution of delay time tomographic models is limited. The EPR velocity model is
parameterized at nodes on a regular grid with a 1 km nodal separation in the vertical
direction and perpendicular to the rise axis and a 2 km separation parallel to the rise
axis. Such a grid is inadequate to parameterize fully many features of the velocity
structure in oceanic crust.

Vera et al. [1990] present a two-dimensional model of velocities across the rise
axis (Figures 1.3) which includes many fine-scale details and better estimates of the
absolute velocities. However, since the model is obtained by interpolating between
one-dimensional velocity profiles obtained from ESP data, parts of the model are
subjective while other features have subsequently been shown to be inaccurate. The
width of the magma lens is probably overestimated [Kent et al., 1990] while the
precise thickness is not known [Vera et al., 1990; Kent et al., 1990]. The structure of
the low-velocity zone which extends to the base of the crust beneath the magma
body is poorly constrained [Vera et al., 1990], while we suggest that the model
overestimates mantle velocities beneath the Moho transition zone at the rise axis
(Chapter 2). Moreover, the delay time tomographic inversion apparently resolves
significant along-axis variations in the magnitude of the axial low-velocity anomaly
[Toomey et al., 1990a]. Inspection of delay times for long range arrivals suggests
that significant along-axis variations are also present in the lower crustal and
uppermost mantle velocity structure [Toomey et al., 1990b].

Even assuming adequate knowledge of the velocity structure, obtaining accurate
three-dimensional wave paths for P-wave phases is problematic. In Chapter 3 the
finite-difference technique was used to model wave propagation through a two-
dimensional model similar to that of Vera et al. [1990]. The results provide
important guidance on the length of the time window for t* estimates and on the
choice of wave paths. However, even with the aid of finite-difference 'snapshots',
estimating wave paths for non ray-theoretical phases is difficult. The energy
diffracted from below the magma chamber appears to propagate over a large range of
depths beneath the rise axis, and the selection of a single wave path is subjective.
Unfortunately, for computational reasons the finite-difference technique cannot be
applied to a three-dimensional model of the axial velocity structure, and therefore our
understanding of seismic propagation along paths forming high angles with the rise
axis is more limited. To obtain a full set of three-dimensional wave paths the
approximate ray-tracing algorithm of Thurber [1983] is used. This ray tracer
searches for a minimum time path of constant curvature and then seeks to deform
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this into an approximately ray theoretical path using an iterative scheme. In Chapter

3 we demonstrated that the algorithm consistently approximates neither the

shortest time path nor the path of the first arrival with significant amplitude.

However, in the following sections we show how an understanding of seismic

propagation across the rise axis can be used to limit the extent of the search for a
minimum time travel path in the approximate ray-tracing algorithm, so that the final

path much better approximates that of the phase which dominates t* estimates.

RECEIVERS 20 KM OFF-AXIS
Four AOBHs and 4 DOBHs were deployed at a distance of 20 km from the rise

axis (Figure 1.1). In Chapter 2 high quality waveforms recorded by the DOBHs for

rise-parallel paths were used to obtain one-dimensional models of the off-axis Q
structure. In comparison with the DOBHs the response of the AOBHs has large

uncertainties and a smaller bandwidth and the instrument is frequently saturated by
crustal phases at shorter ranges. Unfortunately, the experiment geometry is such

that the AOBHs which were deployed near the center of the outer refraction lines

record waveforms for a large number of source-receiver paths orientated

approximately perpendicular to the rise axis, while nearly all the paths for the

DOBHs, which were located near the ends of the outer refraction lines, make an

angle of at least 20* with the spreading direction. Therefore, the higher quality

waveforms are obtained for paths along which the seismic propagation is not as well

understood.

Record Sections and Wave Paths

Figure 4.1 shows record sections orientated perpendicular to the rise axis for
two of the outer AOBHs. Although the source and receiver locations are reversed,

there is a marked similarity between these sections and the finite-difference solution

obtained for the 20 km source (Figure 3.4b). Arrival times predicted by an exact ray

tracing algorithm using the velocity structure of Vera et al. [1990] and assuming a

horizontal seafloor are also shown. In Chapter 3 such arrival times were shown to

be in good agreement with full-waveform finite-difference solutions (Figure 3.4).

However, in this case systematic offsets may result from errors in the large-scale

features of the velocity model, from local variations in shallow structure immediately

beneath receivers, and from the failure to include the effects of bathymetry in the

predicted times. The direct comparison of synthetic times with the data is further

101011"A'
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complicated by the fairly large and somewhat irregular spacing of seismic records,
and by the characteristics of the attenuated source-signature (Figure 1.5b), which is
over 0.4 s long and which displays peak amplitudes 0.2 s and 0.4 s after the onset of
the waveform.

In both sections the predicted travel times for the first arrival at ranges shorter
than about 23 km are consistently about 0.05-0.1 s too small, although both the
predicted and the observed reduced travel times decrease for sources on the rise
axis (±20 km range) due to the higher near-surface velocities on axis. At longer

ranges the finite-difference results (Chapter 3) suggest that the amplitude of a

minimum time arrival that diffracts above the magma chamber may be too small to
observe. Indeed, at such ranges the times of the automatic picks [Toomey et al.,

1990a] seem to be consistent with a diffraction from beneath the magma chamber.
However, in contrast to the first arrival at shorter ranges, the predicted travel time is
larger than observed. Such a discrepancy may result from the velocity model of Vera
et al. [1990] incorporating velocities that are too low in the region directly beneath
the magma body. Alternatively, the picked first arrival at such ranges may in some
cases not be a diffraction from beneath the magma chamber since an early arriving
PP phase may propagate above the magma chamber.

At ranges larger than about 23 km the most pronounced feature of the record
sections is a high-amplitude secondary arrival which is identified as a Moho-turning
phase and whose predicted arrival time is about 0.2 s delayed with respect to the

diffraction below the magma chamber. The high amplitude of this arrival, which is
qualitatively consistent with results of finite-difference modelling (Figure 3.4a),
results from the large velocity increase at the Moho near the rise axis. At the
longest ranges the ray tracing solutions suggest that this arrival may be preceded by
a mantle arrival with a much smaller amplitude. Since the seismic records are
complex at longer ranges and the velocity structure beneath the axial magma
chamber is poorly constrained, it is not possible to exclude the possibility that
energy turning at depths intermediate between the region directly beneath the
magma chamber and the Moho transition zone may also contribute to the seismic
records. However, since the Moho arrivals have such large amplitudes it seems
fairly clear that they will dominate the spectral content of time windows that extend
much more than about 0.2 s beyond the picked first arrivals.

In Figure 4.2a-c examples of wave paths determined for rise-perpendicular paths
to OBH 1 are compared. Figure 4.2a shows ray-theoretical paths for the velocity

t _ I - . I



127

model of Vera et al. [1990]; these paths correspond to the predicted travel times

shown in Figure 4.1. Figure 4.2b shows the approximate paths [Thurber, 1983]
obtained from the delay time tomographic inversion [Toomey et al., 1990a]. The two

sets of paths differ significantly. As was the case for the inversion of finite-

difference travel times presented in Chapter 3, the approximate ray paths are placed

above the magma chamber at ranges exceeding those at which such arrivals have

significant amplitudes. Moreover, the turning depth of these phases is generally

larger than those of the ray-theoretical paths, a result primarily of the coarse

parameterization of the delay time tomographic model. At longer ranges the

approximate paths propagate beneath the axial magma chamber, but turn at a range

of depths intermediate between that of energy diffracted beneath the magma

chamber and the Moho-turning phase.

In Figure 4.2c constrained approximate paths obtained from the delay time

tomographic model are shown. Such paths are obtained by adjusting the velocity at

strategic nodes to very low non-zero values to exclude paths that do not conform to

that of the desired phase and by restricting the range of constant curvature paths

used in the initial search for a minimum time path in the algorithm of Thurber [1983].

Such paths can be seen to be a much better approximation to the ray-theoretical

paths shown in Figure 4.2a. The shorter range paths and the paths located above

the magma chamber are obtained by placing low velocities beneath the rise axis at

depths 23 km and by limiting the initial paths to depths no greater than 3 km.

Conversely, the diffractions below the magma chamber are calculated by placing very

low velocities at axial nodes with 0 and 1 km depths and by requiring initial paths

with a turning depth of 2.5 km. The Moho-turning arrivals are approximated by

choosing an initial path that lies in a vertical plane and has a turning depth of 7 km,

and by placing near-zero velocities at axial nodes with depths 2 km.

Since the approximate ray tracing algorithm assumes initial paths of constant

curvature and the velocity model is necessarily smoothed by the 1 km nodal

separation, the algorithm does not generally successfully approximate paths in

regions where ray-theoretical paths have a high curvature. The deepest portions of

the Moho-turning phase do not reproduce the high curvature of the ray theoretical

paths even though the nodal velocity model in this region is derived directly from the

two-dimensional model [Vera et al., 1990]. However, since the velocity structure is

not well known in this region both sets of paths may be poor approximations to the

true paths. In the case of shots close to the rise axis, the location of the high

lhh " ii J 1611111MOIN W111to i i i I I,
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curvature portions of the paths which pass beneath the magma chamber is
determined by the location of nodes with near-zero velocities. Therefore, while such
paths may approximate the ray-theoretical paths obtained from the symmetric two-
dimensional model of Vera et al. [1990] they are unlikely to show the effects of
along-axis variability and cross-axis asymmetry resolved by the delay time
tomographic inversion [Toomey et al., 1990a].

Figure 4.3 shows two record sections for profiles to the outer DOBHs which are
orientated at about 50* to the rise axis. The principal features are very similar to the
axis-perpendicular sections of Figure 4.1. At shorter ranges the first arrival has a
phase velocity close to 7 km/s, while at longer ranges the record sections are
dominated by a high-amplitude Moho-turning phase. The Moho arrival for the

western receiver (DOBH 12) has markedly higher amplitudes than for the eastern
receiver (DOBH 14), a characteristic that is also apparent in Figure 4.1. Both the
delay time tomography [Toomey et al., 1990a] and multichannel reflection profiles
[Mutter et al., 1988] suggest that the magma chamber is offset to the west of the
rise axis in the southern portion of the experiment area. While upper crustal
asymmetry may affect the amplitude of the Moho-turning phase to some extent, the
large difference in amplitudes between east- and west- propagating arrivals strongly
suggests that the structure at the Moho is also asymmetric across the rise axis.
While such asymmetry may involve changes in the location of the Moho transition
zone, there seems a strong possibility that the largest velocity gradients within the
Moho transition zone are also offset to the west of the rise axis. However, careful
modelling would be required to to obtain a full understanding of the Moho velocity
structure in this region.

In comparison with Figure 4.1 the waveforms at longer ranges are markedly
simpler and seem qualitatively consistent with a single Moho arrival. The diffraction
from beneath the magma chamber may be masked by the Moho phase since
extrapolating the predicted travel times of Figure 4.1 suggests that the arrival times
of the two phases may be fairly similar. Indeed, the apparently high phase velocities
required by the three largest range picks on DOBH 12 may be an indication that the
first arrival is a mantle phase. However, in the absence of quantitative predictions
obtained from a well-constrained velocity model, it is not possible to specify with
certainty the nature of the picked first arrival, although the Moho phase will probably
dominate the spectral content of all but the shortest time window. Constrained
approximate wave paths appropriate to the oblique record section for DOBH 12



129

(Figure 4.3a) are shown in Figure 4.2d after projection onto a vertical plane

orientated perpendicular to the rise axis. The paths are constrained using the

criteria described earlier and have characteristics that are very similar to the rise-

perpendicular paths.

Figure 4.4 shows a rise-parallel record section for the longest-range axis-

crossing shots recorded by DOBH 12 and 14. The source-receiver separation varies

between about 55 km at the north of the sections to 40 km near the south. The first-

arriving mantle phase is followed by a complex, higher amplitude crustal phase at a

delay of about 0.2 s, an observation in good agreement with the predictions obtained

from the velocity model of Vera et al. [1990]. The amplitude of the crustal phase

varies considerably with path azimuth and is always high for approximately rise-

perpendicular paths, suggesting that such arrivals may be triplicated. Indeed, the

length of the rise-perpendicular paths is close to the typical range of the high-

amplitude Moho triplication observed in older oceanic crust. However, the Moho-

turning arrivals predicted by the model of Vera et al. [1990] are confined to

considerably shorter ranges, and the ray-theoretical path for this phase (Figure 4.2a)

is a low-amplitude crustal phase that turns at about 5 km depth, well above the

Moho transition zone. Therefore, the precise propagation depth of this phase

beneath the rise axis is poorly constrained. However, since the shorter-range

Moho-turning paths apparently turn several kilometers from the rise axis and

propagate across the rise axis at mid to lower crustal depths, the longer-range

arrivals almost certainly propagate below this phase beneath the rise axis. This is

manifested in the choice of a 7 km turning depth for this phase in the calculations of

the constrained approximate ray paths (Figure 4.2c).

t* Estimates
It is qualitatively apparent from Figures 4.1 and 4.3 that the waveforms for

paths that propagate more than a few kilometers across the rise axis are

characterized by a marked decrease in high frequency content. Figure 4.5 shows

examples of source- and receiver-corrected power spectra and t* estimates for

DOBH 12 obtained from a window that includes 0.6 s of the waveform immediately

following the automatic pick of the first arrival. At larger ranges, the upper frequency

limit of the estimate, which is determined by the signal-to-noise ratio, is markedly

lower and the t* estimates are nearly twice those at shorter ranges. In Figure 4.6,

t* estimates obtained from 0.3 s and 0.6 s of data for centrally located shots recorded

1.
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by DOBH 14 are plotted at the shot locations. For both choices of window length
there is a marked increase in t* values at ranges corresponding to those at which the
amplitude of the phase that propagates above the magma chamber becomes
insignificant. In the case of the 0.6-s estimate this change is particularly abrupt.

A careful comparison of t* values at shorter ranges shows that the 0.6-s
estimates generally show smaller variations between adjacent t* values. This
characteristic was also observed for the outer refraction lines (Chapter 2) and is a
result of the larger uncertainties associated with spectral estimates obtained from
shorter time windows. Since the 0.6-s estimates show no large systematic offset
from the 0.3-s estimates for any instrument we choose to use the 0.6-s estimates for
waveforms whenever estimates from the longer window are not compromised by
high-amplitude secondary arrivals. In Figure 4.7, t* estimates for such waveforms
are presented for several instruments located 20 km off axis.

At longer ranges the 0.3-s and 0.6-s t* estimates for the same shot (Figure 4.6)
frequently differ considerably. While such differences may in part be due to the
increased uncertainties resulting from the decreased frequency interval available for
spectral estimates, they presumably also result from the greater contribution of
secondary arrivals to the power spectra obtained from the longer window. Indeed
this effect is immediately apparent from an inspection of the two waveforms at 27
and 29 km range in Figure 4.5. The power spectra of the 0.6-s estimates are
dominated by high amplitudes in the second half of the window that would be
excluded from an 0.3-s estimate. Moreover, since the automatic picks which
determine the position of the data window are not always consistent (e.g., Figure
4.2), such an effect may also contribute to variations between t* values for adjacent
shots that are calculated using the same window length.

The t* values obtained from the earliest portion of the waveform suggest that
both the diffraction below the magma chamber and the Moho-turning phase are
characterized by high levels of attenuation. However, t* estimates with significant
contributions from more than one phase are of little use in a quantitative inversion
based on the linear relationship of equation (1.6). Not only do such values invalidate
the assumption of a single wave path, but the combined t* value depends on both the
attenuated amplitude of each phase and the individual t* values. Therefore, even if
weighted multi-paths are included in the inversion, the problem becomes very non-
linear. The analysis of the record sections presented in the last section suggests
that to obtain t* estimates for the diffraction below the magma chamber requires a
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window no longer than about 0.2 s for rise-perpendicular paths and an even shorter

window for oblique paths. Moreover, since the velocity structure is not very well

known and the earliest portion of the attenuated source signature has relatively low

amplitudes (Figure 1.5b), it is difficult to maximize the length of a window which

includes the diffracted phase while simultaneously ensuring that the Moho-turning

phase is entirely excluded from the window. Unfortunately, t* estimates obtained

from windows shorter than 0.3 s are unsatisfactory. Not only are spectral estimates

obtained from very short windows subject to large uncertainties, but in Chapter 1 it
was shown that the resulting t* estimates may be severely biased toward lower

values (Figure 1.9).
Therefore, our approach is to seek t* estimates for 0.6-s-long windows aligned

with a conservatively early estimate of the onset time of the Moho-turning phase.

Examples of t* values for this phase are shown in Figure 4.8. The estimates are

generally considerably higher than those obtained for shorter range paths (Figure

4.7). If a time window is dominated by a single high-amplitude phase then the t*

estimate obtained from the window will closely approximate that of this phase

provided lower amplitude phases within the window do not have significantly lower

levels of attenuation. If low-amplitude, low-t* phases are included they may

contribute significantly to the power spectrum at higher frequencies, thus biasing t*
values to lower values. The 0.6-s window used to estimate t* for the Moho-turning

phase will in all cases contain at least a portion of the diffraction from beneath the

magma chamber. However, in the next section it will be shown that the diffracted

phase has t* values that are comparable to those of the Moho phase and so is

unlikely to bias t* estimates significantly. At shorter ranges, phases propagating

above the magma chamber may have significant amplitudes and since such paths are
apparently associated with lower t*, a bias may result. Indeed, some of the shorter

range t* estimates in Figure 4.8 do have significantly smaller values than the

estimates at longer ranges.
Inspection of Figure 4.8 shows that, even after ignoring low values at shorter

ranges, t* estimates for individual instruments do show significant variations and

that these variations often appear related to the shot distance from the rise axis.

These variations may be related to the axial attenuation structure since the depth of

wave paths beneath the rise axis (Figure 4.2) apparently changes significantly with

the source-receiver separation. In addition, frequency-dependent focusing may

contribute to the observed variations. However it is difficult to demonstrate
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convincingly that the observed variations are not primarily due to the effects of
secondary phases. For this reason and because of the large uncertainties
accompanying the estimates of the wave paths, the fine structure of the lower crustal
Q-1 structure beneath the rise-axis is unlikely to be fully resolved by inversions of
these data.

Figure 4.9 shows all the t* estimates for two instruments together with
uncertainties and the maximum frequency used to obtain the estimates. In both
cases the uncertainties associated with the Moho phase are significantly greater
than those for the shorter range crustal phase. While this is in part a reflection of
the smaller frequency interval available to estimate t* values, such an effect does
not account entirely for the difference. The straight line fit to the natural logarithm of
the power spectrum (equation 1.7) is markedly poorer for the Moho-turning phase, a
further indication that the t* estimates may be affected by other phases.

In Figure 4.10, we present t* estimates for paths that propagate between the
two outer refraction lines. Since, the first arriving mantle phase is followed by a
much higher amplitude crustal phase at 5 0.2 s delay, a reliable t* estimate cannot
be obtained for the former phase. Therefore t* estimates presented are for a 0.6-s
window aligned with the onset of the higher amplitude phase. Since this arrival is
apparently triplicated for rise-perpendicular paths but not for longer-range oblique
paths, the path of the dominant arrival may well vary. Moreover the t* estimates
may include significant contributions from more than one path, particularly in the case

of rise-perpendicular paths where the waveforms appear complex (Figure 4.4).
While the t* estimates for these arrivals are noticeably larger than those for short
range upper crustal paths, they appear to be significantly smaller than those for the
Moho-turning phase (Figure 4.11). Since these arrivals probably cross the rise axis
at larger depths than shorter range Moho-turning phases, this difference may reflect
vertical variations in the Q-1 structure within the lower crust and uppermost mantle.

RECEIVERS 9 KM OFF-AXIS
Four receivers, comprising an OBS, two AOBHs, and a DOBH, were deployed

near the corners of the central area of dense shooting, at a distance of 9 km from the
rise axis (Figure 1.1). Unfortunately, OBS 3 was poorly coupled and the resulting
seismograms are dominated by an azimuthally dependent resonance which prohibits
spectral t* estimates.
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Record Sections and Wave Paths

Figure 4.12 shows rise-perpendicular record sections for AOBH 4 and DOBH 15

together with ray-theoretical arrival times obtained from the velocity model of Vera

et al. [1990]. The record section shows many similarities with the finite difference

solution for a source at 8 km range (Figure 3.4a). At all but the largest ranges the

picked first arrival propagates above the magma chamber. However, at ranges

greater than about 12 km the amplitude of this phase is small and its identification is

strongly dependent upon the signal-to-noise ratio, an observation in excellent

agreement with finite-difference solution obtained for an 8-km source (Figure 3.5).

In the case of AOBH 4 the predicted travel times of this phase are almost 0.1 s too

small.

For paths that cross the rise axis, both the finite-difference solutions (Figure

3.4a) and the exact ray tracing algorithm predict a number of secondary arrivals

within the first 0.5 s of the waveform. Unfortunately because of the large and

irregular trace separations, the complexity of the source signature, and the possible

systematic errors in predicted times, this portion of the record sections is difficult to

interpret unambiguously. In the case of DOBH 15 the predicted time of the

diffraction below the magma chamber coincides with the onset of higher amplitudes.

Comparison of the waveforms with the attenuated source signature (Figure 1.5b)

suggest that at the largest ranges this phase may account for the high amplitude

portion of the waveform. A diffracted arrival can also be identified on AOBH 4, but

as is the case for the first arrival the predicted time is about 0.1 s too small. Unlike

DOBH 15, the amplitudes of the records suggest the presence of an additional high

amplitude phase with a larger travel time.

After correcting amplitudes for realistic crustal velocities at the seafloor, the

finite-difference solutions (Figures 3.4a and 3.11 b) suggest that a PP phase with a

downward reflection from the seafloor near the rise axis may be an important arrival.

Indeed the relative amplitude of such an arrival may be enhanced by the high near-

surface Q observed on the rise axis (Chapter 2). The high amplitude of the PP phase

is, however, dependent upon the presence of a small upper crustal triplication which

for the off-axis velocity structure of Vera et al. [1990] is located at about 7-8 km

range. In addition the low velocities within and below the axial magma body inhibit

propagation across the rise axis of PP phases whose bounce points are not

immediately above the magma chamber. The distance of the receivers from the rise

axis (9 km) is slightly greater than the range of the shallow crustal triplication (7

NOW
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km) obtained from the two-dimensional velocity model of Vera et al. [1990], and as a
result ray-theoretical PP arrivals of significant amplitude are not predicted at ranges
greater than about 12 km. Indeed no PP arrival is apparent at large ranges on
DOBH 15. However, in the case of AOBH 4 a high amplitude phase is observed at
14-16 km range whose arrival time is consistent with the predicted arrival time of a
very low-amplitude ray-theoretical PP phase after accounting for the relative delay
observed for other phases. As noted above, the results of travel time tomography
[Toomey et al., 1990a] and of mutli-channel seismic observations [Mutter et al.,
1988] suggest that the axial magma chamber is offset to the west in the southern
portion of the experiment. Such asymmetry may enhance the propagation of the PP
phase by reducing the distance from AOBH 4 to the magma chamber to a value
similar to the range of the shallow crustal triplication, thus facilitating the
propagation of a high amplitude PP phase at 14-16 km range.

Alternatively the high amplitude arrival observed on AOBH 4 might be a Moho-
turning phase. The velocity model of Vera et al. [1990] predicts the presence of ray-
theoretical Moho arrivals at ranges greater than 14 km. However, the existence of
Moho arrivals at such short ranges is dependent upon the velocity within the
uppermost mantle near the the rise axis. The model of Vera et al. [1990] includes
values close to 8 km/s which in Chapter 2 we suggest may be significantly too high.
Reducing uppermost mantle velocities to 7.25 km/s, the value suggested in Chapter
2, increases the minimum range of ray-theoretical Moho arrivals to about 20 km. For
computational reasons the finite-difference results (Chapter 3) include maximum
velocities of only 7 km/s and elevate the Moho 1 km beneath the rise axis, and
therefore cannot be compared directly with the experimental data. However, the
finite-difference solutions do include Moho arrivals with significant amplitude at
ranges that are significantly shorter than predicted by ray theory. Thus, the high
amplitude arrival observed on AOBH 4 might be a Moho arrival though if this phase
is present on DOBH 15, the amplitude must be markedly lower. Indeed, this
discrepancy is consistent with the higher amplitude Moho arrivals observed on
western receivers at 20 km range from the rise axis, which where interpreted in
terms of an asymmetric Moho velocity structure.

Figure 4.13 shows record sections for the same instruments as Figure 4.12 but
orientated at about 500 to the rise axis. At ranges much greater than the rise axis
the seismic records appear to be dominated by a single phase with relatively high
amplitudes. Such an arrival is most straightforwardly interpreted as a diffraction
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from beneath the magma chamber. However, since the maximum ranges are

significantly greater in the oblique section, this arrival might also be a Moho-turning

phase. The two dashed lines show estimates of the minimum and maximum arrival

times for the Moho phase. For the minimum time a velocity structure is obtained by

projecting the velocity model of Vera et al. [1990] parallel to the rise axis onto the

plane of the record section. For the maximum time the velocity structure of Vera et

al. [1990] is rotated about the rise axis into the plane of the obliquely orientated

section. The results suggest that the highest amplitude portion of the waveform has

too small a travel time to be a Moho arrival. This conclusion seems to be supported

by the observation that the amplitude of the arrival is much smaller than the

amplitude of the Moho arrival recorded by the receivers 20 km off-axis (Figures 4.1

and 4.3). However, the apparent absence of a Moho phase with significant

amplitudes on this section is slightly puzzling. Clearly, the explanation requires a

better knowledge of the velocity structure and the ability to model seismic arrival

times and amplitudes in a three-dimensional medium.

Figure 4.14 shows exact and approximate direct crustal ray paths for AOBH 4.

As is the case for the receivers 20 km off-axis, the approximate ray paths obtained

from the delay time tomographic inversion (Figure 4.14b) do not always match the

ray-theoretical path of the first arrival with significant amplitude (Figure 4.14a).

However, the constrained approximate paths (Figure 4.14c) which are obtained

using the criteria outlined in the last section, match the ray-theoretical paths fairly

well and can be obtained for paths orientated obliquely to the rise axis (Figure

4.14d).

t* Estimates
The analysis of the record sections suggests that t* estimates for the 9-km

receivers may be obtained for both the direct upper crustal arrivals at shorter ranges

(Figure 4.15) and the diffraction beneath the magma chamber at longer ranges

(Figure 4.16). However, for diffractions below the magma chamber an 0.6-s-long

data window is clearly too long to ensure that later arrivals are excluded from t*

estimates. Therefore t* estimates for this phase are obtained from an 0.3-s-long

window, the shortest window for which t* biases arising from 4n-prolate MWSA

(Figure 1.9) are acceptable. The window is aligned with a manual pick of the

diffracted phase, and estimates are confined to ranges at which the amplitude of the

first arrival propagating above the magma chamber is negligible. Using an 0.3-s-long
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window to obtain t* estimates for the arrival that propagates above the magma
chamber would extend the maximum range of such estimates by 1-2 km by excluding
the diffraction from beneath the magma chamber from the later part of the window.
However, we chose to use an 0.6-s-long window since the uncertainty of the
resulting t* estimates is smaller. Figure 4.17 shows all t* estimates together with
uncertainties and the maximum frequency used for AOBH 6. As was the case for
the receivers 20 km off-axis, the higher uncertainties of the t* estimates for the
diffractions beneath the magma chamber results from a combination of the decreased
frequency interval available for t* estimates and a generally poorer straight line fit to
the logarithm of the power spectrum. In this case the poorer fit is at least in part a
reflection of the higher uncertainties accompanying spectral estimates from the 0.3-s-
long window.

Estimates of t* for a Moho-turning phase that propagates across the rise axis
from shots on the outer refraction lines may also be obtained for these instruments.
Figure 4.18 show examples of such measurements for AOBH 4 and DOBH 15. The
t* values for this phase, whose paths (dot-dashed line in Figure 4.2a, c) cross the
rise axis at substantially greater depths than the diffraction beneath the magma
chamber, are generally lower than the t* values for the diffraction below the magma
chamber, indicating that Q values may be lower immediately beneath the axial
magma chamber than in the lowermost crust and upper mantle beneath the rise axis.

RECEIVERS ON THE RISE AXIS
Two AOBHs and an OBS were deployed on the rise axis. In Chapter 2 t*

estimates for rise-parallel paths were used to resolve relatively high Q in the
uppermost crust and very low Q values within and beneath the axial magma
chamber. In Figure 4.19, t* estimates and uncertainties obtained from an 0.6-s-long
window immediately following the automatic pick are presented for AOBH 5 and
OBS 1. In both cases t* estimates are markedly lower than those obtained for
deeper rise-crossing paths to other instruments, a reflection of the absence of t*
estimates for paths passing through the low-velocity region within and beneath the
axial magma lens. t* values for the OBS have appreciably higher uncertainties, a
reflection of the narrower bandwidth of these instruments. The highest t* values for
AOBH 5 are located slightly to the west of the rise axis at the northern limit of the
central region of dense shooting. Such t* values are probably representative of
paths that have been confined to depths shallower than the depth of the axial magma
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chamber, which is also offset slightly to the west in the southern half of the

experiment region [Mutter et al., 1988; Toomey et al., 1990a]. Because of the

difficulty of approximating paths for phases that propagate at low angles to the rise

axis, we generally exclude t* estimates for shots within 2 km of the rise axis,

although the t* values for the rise-parallel paths which were presented in Chapter 2

are included in an inversion of all the data.

Figure 4.20 compares examples of rise perpendicular ray paths for AOBH 5.

Since no paths cross the rise axis no constraints are necessary to obtain

approximate paths that match the ray-theoretical paths, though the approximate

paths do have appreciably greater turning depths than the ray-theoretical paths,

which as noted earlier is a consequence of the coarse parameterization of the delay

time tomographic model.

BIASES To AOBH t* DATA

Table 4.1 lists average t* values recorded by each instrument for different

categories of wave paths. It is immediately apparent both from Table 4.1 and from

inspection of the plots of t* values that the estimates for the AOBHs are generally

markedly lower than those obtained for the DOBHs. The small systematic

differences observed between values for the outer DOBHs (e.g., DOBHs 10 and 13

in Figures 4.7 and 4.8) may be accounted for by slight variations in the distribution of

source-receiver paths, by variations in local Q structure beneath each instrument,

and by small variations in instrument response, as well as by three-dimensional

variations in the Q-1 structure. However, such explanations cannot account for the

large systematic offset of AOBH t* values. The discrepancy must almost certainly

be the result of a systematic error in correcting power spectra for instrument

responses. Moreover, since the theoretical response derived for the DOBHs agrees

very well with the results of on-bottom calibration tests, the error must be attributed

to the AOBHs. There are three effects that might significantly affect response of the

AOBHs.
First, in Appendix A we show that AOBH t* estimates may be biased by an

effect that we term spectral leakage. The direct recording system of the AOBHs

introduces signal distortion and signal generated noise which result in recorded

power spectra that have a significant non-monochromatic component when the input

signal is a sine wave (Figures A6 and A7). Extrapolating such results to predict the

recorded spectra of seismic waveforms suggests that such a process can
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significantly bias t* estimates for highly attenuated waveforms toward lower values
(Figure A8). In such cases, the input signal is dominated by low frequencies, and
the spectral power at higher frequencies may be determined by spectral leakage. If
t* estimates are limited to a bandwidth that includes uncorrected spectral powers no
larger than 1/1000 the maximum recorded power, a criterion that is satisfied by the t*
estimates presented for the AOBHs, the tests suggest that t* values will be limited
to a maximum value of about 0.06 s. Such an effect might account for the offset to
lower estimates of t* for more highly attenuated waveforms (path types 3-5 in Table
4.1). However, the results also suggest that t* values below about 0.04 s will be
unaffected. Thus, spectral leakage cannot explain the offset of lower t* values for
paths that do not cross the rise axis or which pass above the axial magma chamber
(path types 1 and 2 in Table 4.1).

Second, the t* estimates may be affected by saturation of the direct recording
system in AOBHs. In Appendix A the effects of saturating the AOBH are
discussed in detail for both sine and square wave inputs. In both cases saturation
occurs fairly abruptly. Below a certain input amplitude threshold the response of the
instrument is approximately linear, while above the threshold the recorded
amplitudes rapidly achieve a fixed value that is independent of the input amplitude.
In the case of the response tests the maximum recorded amplitude is about 25 times
the calibration pulse amplitude or 200 gbar (peak to peak) (Figure A5). Figure 4.21
shows examples of the maximum recorded amplitude of the first 0.6-s of the
waveform plotted against range for similarly configured AOBHs and DOBHs. The
effects of saturation are immediately apparent. At ranges below about 10 km the
AOBH amplitudes achieve a fixed value while the DOBH amplitudes increase
rapidly with decreasing range and achieve values which lie well above the plot
bounds. However, for an unknown reason the maximum recorded amplitudes for
each AOBH are consistently 2-3 times higher than the tests predict.

To account for the effects of saturation, AOBH waveforms are excluded which
achieve a maximum amplitude more than about two-thirds the maximum recorded
amplitude for each instrument (Figure 4.21). This threshold, which is chosen
assuming that the shape of the saturation curve measured for the AOBH is correct,
must be accompanied by some doubt because of the discrepancy between the
measured and the observed saturation amplitudes. The effect of saturation upon the
power spectra for both sine wave (Figure A4) and square wave (Figure All) inputs
is to decrease the relative amplitudes of high frequencies, an effect that would tend
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to increase t* estimates and which is opposite to the observed offset of t* values.

However, the magnitude of the t* bias that might result from saturation is small

(<0.005 s for AOBH 1), and since saturation can also increase the levels of spectral

leakage (Figure A7) the overall effect of saturation on t* values for highly

attenuated waveforms is unclear. A careful inspection of t* estimates obtained for

all the AOBHs shows that t* values for waveforms which approach the saturation

threshold are not significantly different from t* values for similarly configured

waveforms which fall well below the threshold. Therefore, we are confident that our

saturation threshold is adequate and that saturation does not cause the offset of

AOBH t* values.

Third, the measured AOBH responses might be wrong. The responses were

measured over one year after the tomography experiment and several of the

instruments were deployed elsewhere during the intervening period. The difference

between the measured responses for AOBH 1 and AOBH 7 (Figure 1.4) is

equivalent to a t* difference of 0.012 s over the frequency interval 10-40 Hz. If such

differences result from some aspect of the pre-deployment instrument preparation

they might account for the offset of t* values. However, a careful evaluation of all

the steps involved in the instrument preparation (Appendix A) suggests that while

changes in the response of an instrument might be expected between deployments,

the magnitudes of such changes are relatively small. Inspection of the

measurements of the amplitude response made routinely prior to deployments

confirms that the variations in the measured response cannot account for the offset of

t* values.

Therefore, we are led to conclude that the response of the AOBHs is

significantly different during deployments than in the laboratory, showing a markedly

better high frequency response on the seafloor. Indeed, a change in the response

also seems necessary to explain the increased saturation threshold amplitude

observed during the experiment. While the cause of such changes is unknown it is

almost certainly related to the direct recording mechanism. Since the manufacturers

specifications for 1/4" inch tape used in the AOBHs do not extend below 10*C, the

change is response may well be a result of the low temperatures at the seafloor.
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INVERSIONS FOR Q-1

Station Corrections
Inversions of seismic travel time data are frequently accompanied by the

application of fixed station corrections to account for local structure beneath seismic
receivers. Indeed, if the scale of the local structure beneath receivers is much
smaller than the typical separation of instruments or if the receivers are not located

within the study region, the failure to apply station corrections may introduce

substantial artifacts into velocity models obtained. The observed offset of the

AOBH t* data clearly necessitate a similar station correction for t*. Indeed as noted

in the last section t* values for DOBHs show smaller systematic differences which

presumably also warrant the application of a station correction.

However, it is not clear whether the optimal station correction is a fixed

correction at each instrument. Local variations in upper crustal Q structure

[Jacobson and Lewis, 1990] (Chapter 2) may well occur on a small enough scale to

warrant azimuthally dependent station corrections. However, for most receivers in

this study such corrections are probably not warranted because of the limited

azimuthal distribution of source-receiver paths. Moreover, since paths crossing the

rise axis are generally characterized by high t* values, it would be difficult to

estimate azimuthally dependent corrections without incorporating signal arising from

lateral variations in the attenuation structure. The other primary component of the

station corrections accounts for errors in the instrument response. In the case of the

AOBHs this component will dominate the effects of local structure. Assuming that

the instrument correction is made according to equation (1.4) and that t* estimates

are obtained from a least squares straight line fit to the logarithm of the power

spectra, errors in the instrument response will result in a fixed t* error for estimates

obtained over a specific frequency interval. However, the t* error may be dependent

upon the choice of frequency limits. Unfortunately, since highly attenuated

waveforms are characterized by adequate signal-to-noise ratios over small

bandwidths, the spectral t* estimates are strongly correlated with the reciprocal of
the maximum frequency used to obtain the estimate (Figures 4.9 and 4.17). In

consequence it is not possible to determine a station correction which is dependent

upon the upper frequency limit without including signal arising from the attenuation

structure.

For these reasons fixed station corrections are used in the inversions presented

in this chapter. The simplest method to obtain station corrections is to include them
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as a free parameter in all inversions. However, corrections are strongly weighted in

the inversion since they contribute to each t* estimate and it is difficult to constrain
the values to fall within reasonable limits. To overcome this problem the sum of the
corrections for the DOBHs is constrained to be zero. Thus the absolute values of
the Q-1 models are referenced to t* estimates obtained for instruments for which the
biases are likely to be small. It is clear from a cursory inspection of the data and
from the results presented in Chapter 2 that a model which is laterally invariant
across the rise axis will not fit the t* data. However, it is not immediately apparent

that the data require any significant asymmetry or along-axis variations. To

minimize the possibility of such variations being introduced as artifacts of the station

corrections, the corrections are always derived assuming a two-dimensional axis-

symmetric model and are then held fixed at such values for inversions which permit

asymmetry and along-axis variations. In the case of smoothest model inversions the

optimal station corrections may not be independent of the smoothing weight.

However, in the case of the inversions presented here, once the smoothing weight

falls below a value which permits significant deviations from the a priori model, the

station corrections derived for axis-symmetric two-dimensional models are virtually

independent of the smoothing weight. Therefore, a single set of fixed station

corrections can be obtained for each inversion. Station corrections are presented in

Table 4.2 for several subsets of the t* data. The values are generally very similar

between inversions, and the variations that do exist can be shown to have no

significant effect upon the solutions.

A Two-Dimensional Inversion for a Symmetric Q-1 Structure
The first inversion we present is a simple smoothest model inversion for an

axis-symmetric two-dimensional structure. The one-dimensional starting model

(Figure 4.22) is based upon the inversions of the off-axis refraction line data

(Chapter 2). At distances greater than 8 km from the rise axis the Q-1 structure is

held fixed to starting model while for distances less than 8 km, the model is

parameterized on a 0.5-km grid that is sheared vertically to conform with the

seafloor. Uniform smoothing is applied throughout the model to minimize the first

derivative of deviations from the starting model (equation 1.34). All the t*

estimates presented in this chapter are included in the inversion (provided the ray

paths pass within 8 km of the rise axis) as are the axial t* estimates presented in

Chapter 2. The total data set comprises about 3500 values. The wave paths used in
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this and other inversions are the constrained approximate paths (Figures 4.2c, d,
4.14c, d, and 4.20b) obtained from the delay time tomographic model of Toomey et al.
[1990a]. Wave paths for the axial t* estimates of Chapter 2 are derived assuming
initial constant curvature paths that lie within a vertical plane and which have turning
depths of 1.5 km and 7 km for the upper crustal and Moho-turning phases,
respectively. Figure 4.23 shows the distribution of wave paths used in the
inversion.

Figure 4.24 shows the normalized squared data misfit (equation 1.40) as a
function of smoothing weight, while Figure 4.25 shows the resulting model for seven
choices of smoothing weight. The variance reduction is over 50 % and is about 70 %
when only paths crossing the rise axis are considered. All the solutions show a
pronounced decrease in Q-1 values within the upper crust close to the rise axis.
Such a result is consistent with the one-dimensional axial Q-1 model derived in
Chapter 2, the quantitative modelling of ESP seismic amplitudes [Vera et al., 1990],
and a qualitative comparison of amplitudes recorded during on-bottom refraction
experiments [Christeson et al., 1991a, b]. However, in this particular inversion such
a feature might be an artifact of the station corrections. None of the axial
instruments is a DOBH for which station t* correction can be assumed to be small,
and thus the inversion results may be affected by a the trade-off between near-
surface axial Q-1 values and the station correction for axial receivers.

As the smoothing weight is decreased the inversion resolves a region of low Q
values which in this symmetric inversion is centered below the rise axis. Initially
this body appears at fairly large depths though as the smoothing weight decreases
the minimum depth of the anomaly progressively decreases to about 2 km which is
the minimum axial depth of wave paths assumed for the diffractions below the
magma chamber (Figure 4.23). The initial appearance of the anomaly at larger
depths can be explained by the combination of two factors. First, the number of
Moho-turning paths significantly exceeds the number of paths for diffractions
beneath the magma chamber. Since the Moho-turning paths cross the rise axis at
larger depths the low Q anomaly at such depths is more strongly required by the
data. Second, the minimization of the model roughness (equation 1.34) is better
satisfied by maintaining a large separation between the negative axial near-surface
Q-1 anomaly and the positive anomaly beneath. Therefore, the inversions with larger
smoothing weight place the positive anomaly at greater depths.

The solution with the second smallest smoothing weight (Figure 4.25f) includes
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a number of fine scale structures in the lower part of the model. While such features

are probably not fully resolved because of the uncertainty accompanying deeper

wave paths, their existence can be explained in terms of the distribution of ray paths

used in the inversion (Figure 4.23). At 2-3 km depth below the rise axis a low-Q

region with Q-1 > 0.03 is required to model the t* values for the diffractions below

the magma chamber. The Moho-turning phase for off-axis instruments also requires

a deeper region of substantially increased Q-1 values. However since the t*

estimates for the Moho-turning phase recorded on the axial instruments require an

average Q-1 beneath the rise axis of about ~0.02 (Chapter 2), the maximum value of

Q-1 directly beneath the rise axis is limited. The relatively low t* values for the

longest paths which propagate between the two outer refraction lines result in

relatively low Q-1 values at 7 km depth below the rise axis. Moreover, these paths

coincide closely with the deepest part of the paths for the Moho-turning phase

(Figures 4.2c, d, and 4.23), preventing very high Q-1 values at large depths off-axis.

As a result the anomaly required to match t* estimates for the off-axis Moho-turning

phase is placed 2 km off the rise axis at about 5 km depth, a location that does not

coincide with the wave paths for other phases. The solution with the smallest

smoothing weight (Figure 4.25g) is characterized by very rapid variations in lower

crustal Q-1 values and is clearly undersmoothed.

Figure 4.26 shows the formal linearized uncertainty factors (equation 1.38) for

three of the solutions shown in Figure 4.25. The presence of a large number of ray

paths in the upper crust is reflected by the relatively low uncertainties in such

regions, while the largest uncertainties are associated with the deepest parts of the

model off-axis where there is a sparse distribution of wave paths. The effect of

decreasing the smoothing weight is to increase the uncertainty of Q-1 estimates.

However, the formal uncertainties for the second roughest model (Figure 4.26c) are

still small enough to suggest that many of the features within the deeper parts of

model are resolved. However, the detailed structure in the lower part of the model

depends on the relative location of ray paths, and the uncertainties that accompany

the location of the paths are not included in the formal uncertainties.

Figure 4.27 shows the square root of the spread fuction (equation 1.42)

calculated for the three solutions. This quantity, calculated from the resolution

matrix is a measure of the spatial resolution of individual model parameters. Indeed

the formal uncertainties presented in Figure 4.26 are of little meaning without some

estimate of the area over which such estimates are obtained. The very low
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uncertainties of the smoothest models are generally associated with large spread
values since such estimates are spatial averages over a large area. The low spread
values observed for near-surface nodes indicates that this region of the model is well
resolved, but the absolute values should be treated with caution for two reasons.
First, in a continuous model a spread of zero indicates that the model value at a
point is perfectly resolved. However, in a discrete model a spread which approaches
zero indicates only that the model parameter is formally resolved on a scale similar
to the grid spacing. Second, the values may be significantly affected by the non-
linear parameterization. A t* value is much more sensitive to a small change in
ln(Q-1) in high-Q- 1 regions than in low Q-1 regions along the wave path. Therefore,
surface nodes which have high Q-1 values both in the a priori model and in all the
solutions will be strongly weighted in the logarithmically parameterized matrix of
partial derivatives (A in equation 1.29). As a result the linearized estimates of
resolution suggest that high-Q- 1 regions including the uppermost crust are better
resolved than would be the case for a linear parameterization in which t* values
would be equally sensitive to changes in the Q-1 structure at all locations along the
ray path.

Indeed, for the same reason estimates of uncertainty and resolution for localized
low-Q regions in models with low smoothing weights should be treated with caution.
One common effect of progressively reducing the smoothing weight in the Q-1
inversions is that Q-1 values at individual nodes progressively grow to very large
values which, because of the logarithmic parameterization, may have linearized
uncertainties significantly smaller than the actual value. While such an effect will
eventually produce models that are clearly unrealistic (e.g., Figure 4.25g), the effects
at slightly higher levels of smoothing might be more subtle. Thus, even if the deeper
wave paths in the inversion can be considered correct many of the localized lower
crustal high Q-1 features that are apparently resolved in Figure 4.25f might in fact
have significantly larger uncertainties in a solution which uses a linear
parameterization.

Inversions for Upper Crustal Structure
The second roughest inversion presented in the last section (Figure 4.25f)

apparently resolves a low Q body centered at 2.5 km depth beneath the rise axis, a
feature that can be attributed to the diffractions beneath the magma chamber.
However, since some of the paths for the Moho-turning phase cross the rise axis at
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depths only slightly greater than 3 km (Figures 4.14c, d, and 4.23), it is not clear

what affect t* estimates for these paths have on the model in this region. Moreover,
since we argue in the last section that fine-scale features in the lower-crustal low-Q

anomaly may be artifacts resulting from the relative distribution of poorly known

wave paths, it is difficult to argue convincingly that shallowest portion of the low-Q

anomaly is well resolved. Therefore, in this section we present inversions for a data

set that excludes all phases turning at depths significantly greater than 3 km.

Figure 4.28 shows the results of inverting this subset of the data using a

parameterization identical to that used for the solution presented in the last section

except that the smoothing weight in the upper 1 km is quadruple that at larger

depths. The solutions for three choices of smoothing parameters (Figures 4.28c-e)

resolve high Q-1 values beneath the rise axis at depths greater than 2 km. Indeed

the minimum depth of this feature is controlled by the minimum depths of the paths

ascribed to the diffractions beneath the magma chamber. However, the finite-

difference solutions obtained in Chapter 3 suggest that this diffraction propagates

over a fairly broad range of depths within and below the axial magma body and may

not be well approximated by a single path. Therefore, the details of this high Q-1

anomaly such as those which are apparent in Figure 4.28e are certainly not well

resolved.
To search for along-axis variations in the Q structure within this portion of the

model the solution presented in Figure 4.28d was used as the starting model for a

three-dimensional inversion. To minimize the number of free parameters the

horizontal spacing of nodes across the rise axis (the x direction) was increased to 1

km at distances greater than 2 km from the rise axis while the separation of nodes

parallel to the rise axis (the y direction) was 2 km. To stabilize the solutions further

and to prevent unwarranted deviations from the starting structure the starting model

was assigned a logarithmic uncertainty of 0.5 (equivalent to an uncertainty factor of

1.6) and the smoothing weight was doubled parallel to the rise axis. Figure 4.29

shows two sections through a solution which achieves a 15% variance reduction over

the starting model. Both the horizontal section at 2.5 km depth (Figure 4.29a) and

the vertical section which runs along the rise axis (Figure 4.29b) show an apparent

increase in the magnitude of the low-Q anomaly in the northern half of the model.

Figure 4.30a shows the maximum Q-1 value obtained within the axial anomaly

at different locations along the rise axis. While a northward increase in values is

apparent, the formal uncertainties are large and are compatible with a constant
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value. However, Q-1 values averaged within 2- and 4-km-wide regions that are
centered about the rise axis and which extend over a 2-3 km depth range show a
similar trend, and the formal uncertainties suggest that the northward increase in Q-1
values is resolved. However, the most convincing evidence for along-axis variations
comes from inspection of the t* data. t* values of the diffracted phase obtained at
the three OBHs located 9 km off-axis (Figure 4.16 and 4.17) are markedly higher for
northern shots.

The structure of the upper crustal axial low Q anomaly does not correlate very
well with the low velocity volume imaged using delay time tomography (Figure 1.2)
[Toomey et al., 1990a]. The lowest velocities in the delay time tomographic model
are offset to the west of the rise axis in the southern half of the model. However, the
Q-1 inversions are unlikely to resolve such asymmetry. Paths for the diffraction
below the magma chamber are constrained to depths greater than 2 km by placing
near zero velocities at axial nodes with depths of 0 and 1 km. Since these nodes
largely determine the location of wave paths near the rise axis, the paths for east-
and west-propagating phases in this region are to first order mirror images of each
other and asymmetry in the velocity model is not reflected in the paths.

A more important difference between the velocity and Q-1 models is that the
along-axis variations in the magnitude of the anomaly are not well correlated. The
largest negative velocity perturbations in the delay time model (Figure 1.2b and
Figure 4.30c) are observed 2 km to the south of the experiment center in a region
where the Q- 1 anomaly has relatively small values. However, the anomaly does
show a secondary maximum near the northern limit of the model. There are several
explanations of the apparent differences between the velocity and Q-1 models. First,
the models are measures of different quantities, and while a positive correlation
between Q and velocity might be expected due to thermal effects it is not clear how
good the correlation should be. Second, the travel time delay and t* values are
dependent upon spatial integrals of functionals of seismic parameters but the spatial
weighting within the two integrals is not the same. As noted earlier, inspection of
the finite-difference models suggests that the propagation of the diffracted phase
beneath the magma chamber is complex, and the energy arriving within the first few
tenths of a second after the onset of the waveform may not be well approximated by
a single path. In contrast algorithms that calculate travel times and ray paths using
minimum time criteria [Vidale 1988, 1990; Moser, 1991; Toomey et al., 1991] can
successfully approximate the arrival time of non-ray-theoretical arrivals from a single
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path. Delay time tomographic models can image low-velocity bodies even though no

first arrivals propagate through such regions because of the effect such bodies have

in perturbing ray paths. Clearly t* estimates are sensitive only to regions through

which the waves propagate. Third, in Chapter 3 we showed that t* estimates may be

sensitive to the effects of scattering. While scattering is unlikely to account for the

bulk of the Q-1 anomaly it might contribute significantly to the highest Q-1 values

observed (Figure 3.17). Along-axis variations in scattering resulting from changes

in the velocity structure might introduce trends in the apparent Q-1 structure that are

unrelated to intrinsic attenuation.

A fourth possibility is that the lowest velocities in the delay time tomographic

models are not well resolved. The finite-difference solutions show that many of the

approximate ray paths used in the inversion are misplaced with respect to the axial

magma chamber. Moreover because the amplitude of the diffraction above the

magma chamber is very low the identification of this phase is strongly dependent

upon the signal-to-noise ratio. Consider solely picks obtained for the instruments 9

km off-axis. It is conceivable that a centrally located region of anomalously low axial

velocities might be an artifact of inconsistencies in the automatic picks. The

amplitude of the diffraction above the magma chamber is strongly dependent upon

the distance the phase propagates after crossing the rise axis (Figure 3.5). Thus, in

the case of rise-perpendicular paths (Figure 4.12) the diffractions above the magma

chamber may be consistently picked for shots at greater perpendicular distances

from the rise axis than in the case of oblique paths (Figure 4.13). Since the

perpendicular paths from the 9-km receivers cross the rise axis near the limits of the

central region of the experiment while many of the oblique paths cross the rise axis

near the center of the experiment the model may be biased. The approximately

relative delay of the diffraction below the magma chamber with respect to the

diffractions above is of the order of 0.1s, a value that may be large enough to account

for the lower velocities seen in the center of the experiment. However, no such bias

should exist for the receivers 20 km off axis which also contribute to the velocity

model in this region. Moreover, picks for arrivals identified as diffractions were

excluded from the delay time tomographic inversions. Therefore, it is not clear

whether inconsistencies in the picks significantly affect the along-axis structure.

In Figure 4.30d we present spatial averages of the low-velocity anomaly

obtained over the same regions used to obtain the spatial averages of Q-1 shown in

Figure 4.30b. These averages do not show the same trends as the maximum
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negative velocity perturbations. Indeed, the average obtained over a 4-km-wide area
correlates very well with the Q-1 model showing a general increase in magnitude in
the northern half of the experiment.

Inversions for Shallow Structure
Previous inversions consistently resolve a region of relatively high near-surface

Q centered on the rise axis. However, it was noted above that this might be an
artifact of the station corrections for the axial instruments. To investigate this
possibility we performed two sets of inversions using t* data sets comprised solely
of paths that do not pass below the axial magma chamber. The first data set
includes such t* values for all instruments while the second set excludes values for
axial instruments. In both cases the data were inverted for axis-symmetric
variations in Q-1 in the upper 1 km across the rise axis assuming a laterally invariant
model at greater depths. The results (Figure 4.31) are almost identical and show
conclusively that the values of high near-surface axial Q are not an artifact of the
axial station corrections.

Inspection of t* values for shots located near the rise axis shows that while
such values are noticeably lower for some instruments (e.g., DOBH 14 in Figure 4.6,
AOBH 1 and DOBH 10 in Figure 4.7, and DOBH 15 in Figure 4.15), in other cases
axial values show no systematic difference from values for similar paths located well
off axis (e.g., DOBH 13 and AOBH 7 in Figure 4.7, AOBH 4 in Figure 4.15, AOBH 6
in Figure 4.16). Indeed, a large component of the decreased axial Q-1 values results
not from changes in the t* values themselves but from the characteristics of the

paths. Paths which propagate above the magma chamber include longer segments
within the upper 1-1.5 km near the rise axis (Figures 4.2 and 4.14).

The width of the near-surface axial high-Q zone is not very well resolved. In the
inversions presented in this Chapter the anomalous region extends 2-3 km off-axis.
Since the smoothing constraints act to broaden the anomaly this value should be
considered a maximum. The data are also compatible with a much narrower high-Q
zone with proportionately lower Q-1 values. Indeed the only constraint on the
minimum width of the high-Q region comes from the total magnitude of the anomaly.
Halving the width of the anomalous region in Figure 4.31 would require Q-1 values
close to zero and therefore a half width of 1-1.5 km probably represents a lower limit
to the width of the anomaly.

Another feature of the inversions which is evident in Figure 4.31b as well as in
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other inversions (Figures 4.25 and 4.28) is that Q-1 values for surface nodes well

away from the rise axis attain values that are slightly higher than the a priori model

which is based on the structure 20 km off-axis. Such a result suggests that as the

upper crust moves off axis, near surface Q values must initially decrease rapidly and

may at larger distances show a slight increase with distance. Similar trends have

been suggested for the evolution of upper crustal velocities [McClain et al., 1985;
Burnett et al., 1989; Caress et al., 1992]. The most straightforward method to

determine whether such a characteristic is required by the data is to examine the t*
values. In Figure 4.32 t* values obtained for the outer DOBHs using 4n-prolate

MWSA and an 0.6-s-long window are plotted against range both for the shots on the

outer refraction lines (Chapter 2) and for shots located at distances of 3-6 km and 6-
9 km off-axis and on the same side of the axis as the instrument. The differences are

small, but in all cases the average t* value for the outer refraction lines are 5-15 %

smaller than average values for shots located 3-9 km off-axis. While this

observation lends support to models which show a small decrease in near-surface Q
between distances of about 10 and 20 km off axis, two alternative explanations can

account for this observation. First, the increase in Q with distance from the rise axis

need not be placed in the uppermost crust and may equally well be located at 2-3 km

depth, the predominant depth at which these arrivals propagate. Second, the data

may be equally well explained by a small component (<10%) of anisotropy in near-

surface Q, with lower Q values for propagation perpendicular to the rise axis.

Unfortunately, the azimuthal distribution of paths is not adequate to distinguish

between the anisotropic model and laterally varying models.

Figure 4.33 shows the results of inverting the off-axis and shallow rise-crossing

estimates of t* for a two-dimensional model of surface attenuation using a uniform

smoothing weight in the x and y directions. The variance reduction achieved by such

an inversion (Figure 32a) is 25% with respect to a laterally invariant Q model but is

only about 10% when compared with the axis-symmetric models of Q structure.

Indeed, while the primary feature of the model is still a general decrease in Q-1
values near the rise axis, a large number of other poorly resolved complexities are

also present in the solutions with smaller smoothing weights (Figures 4.33c and d).

The spacing of shots is almost certainly too small to resolve adequately along-axis

variations in near-surface Q. Many features in the t* data such as the general north-

to-south increase in t* values for DOBH 12 (Figure 4.9b) affect the solutions but are

not consistent with observations obtained from other instruments and thus
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presumably originate from regions not included in the inversions.

An Inversion of t* Values for Paths Between the Two Outer Refraction Lines
Since many of the paths between the two outer refraction lines cross the rise

axis outside the central area of the experiment we choose to invert these data
separately for a simple Q-1 model. Away from the rise axis the model is held fixed to
the laterally invariant model of Figure 4.22, while Q-1 values within an 8-km-wide
region centered on the rise axis are allowed to vary parallel to the rise axis. The
width of this region is chosen arbitrarily to be the maximum width of the low-Q
anomaly in the two-dimensional inversion of all the data (Figure 4.25). The
inversion (Figure 4.34) achieves a 40% variance reduction over the best fitting model
without along-axis variations. Since the width of the axial low-Q body is not well
known the absolute Q-1 values may be incorrectly scaled. In contrast to the earlier
inversion for upper crustal structure which shows increased levels of axial
attenuation towards the north, the primary feature resolved by the inversion is an
apparent doubling of Q- 1 values in the southern half of the experimental region.
Most of the change occurs more than 5 km to the south of the experiment center; the
highest model values are determined entirely in this region by t* measurements for
the two most southerly DOBHs (DOBH 12 and 14). A comparison of the data and
the model predictions for these two instruments (Figure 4.35) shows that the
increase in Q-1 values is primarily a result of trying to fit the data for DOBH 14.
Since t* values may also be influenced by local structure near the receiver, any result
that relies upon data from a single instrument should be treated with caution.
However, this result is consistent with the travel times for these paths which for all
instruments consistently show increased delay times toward the south of the
experiment [Toomey et al., 1990b].

An Inversion of the Moho-Turning Phase
The precise location of wave paths for the Moho-turning phase that propagate

across the rise axis are not well known and any model obtained from such paths is
likely to have limited resolution. Therefore, we chose to invert paths for this phase
using a data set that includes paths that do not cross the rise axis or that cross the
rise axis above the magma chamber but excludes all other phases that propagate
below the axial magma chamber (Figure 4.36a). The lower crustal structure will
thus depend entirely on the t* estimates for the Moho-turning path and will not
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include features that result from other phases (e.g., Figure 4.25f).

The starting model used for a three-dimensional inversion of the data set is

shown in Figure 4.36b. The model is obtained from a two-dimensional axis-

symmetric inversion of this data set with the added constraint that below 4 km depth

the model is vertically invariant. For the three-dimensional inversion, the model is

parameterized with 1-km grid spacings in the vertical direction and perpendicular to

the rise axis and with a 2-km spacing parallel to the rise axis. The smoothing weight

is quadrupled in the upper 1 km and doubled parallel to the rise axis. To further limit

unwarranted deviations from the starting model a logarithmic uncertainty of 0.5

(equivalent to an factor of 1.6) is assigned to the a priori model value at each node.

Figure 4.37 shows sections through a solution which achieves a variance reduction

of about 20 %. The vertical sections (Figure 4.37a-c) all show a region of very low Q
centered at 4 km depth below the rise axis. The magnitude of highest Q-1 values are

almost certainly not resolved and may well be a result of a combination of the a priori

model chosen, relative locations of ray paths, and biases in the t* estimates.

Both the vertical sections and a horizontal section through the model (Figure

4.37c) show a relatively small variation along axis in the magnitude of the low-Q

anomaly. Figure 4.38 shows the along-axis variations of the minimum Q-1 values,

which have large uncertainties, and of the average Q-1 values, which have

uncertainties small enough to suggest that along-axis variation might be resolved.

Average Q-1 values near the center of the experiment are relatively small and

increase near the edges of the model particularly toward the south. While average

Q-1 values show a maximum along-axis variation of less than 20%, inspection of the

t* data (Figures 4.8 and 4.9) suggests that this feature is resolved. Many of the

instruments show markedly lower t* values for paths that cross the rise axis near

the center of the experiment (e.g., DOBH 10 and DOBH 13 in Figure 4.8 and AOBH

2 in Figure 4.9) and higher t* values near both the southern (AOBH 7 and DOBH 10

in Figure 4.8 and AOBH 2 in Figure 4.9) and northern (e.g. DOBH 13 in Figure 4.8)

limits of the central region.

In Figure 4.38c average Q-1 values over an area that extends 4 km to either side

of the rise axis are compared for this inversion and the inversions of the paths

between the two outer refraction lines (Figure 4.34). The two models show similar

trends although the Q-1 values for the shorter range Moho-turning phase are a factor

of about two higher. This difference presumably reflects a decrease in axial Q-1

values with depth since the longer range phase almost certainly traverses the rise
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axis at a larger depth.

SUMMARY

In this Chapter we have presented a series of inversions for Q-1 based upon the

full t* data set which comprises over 3500 measurements. By comparing seismic

record sections with the finite difference solutions presented in Chapter 3 and with

the travel times predicted by an exact two-dimensional ray-tracing algorithm, we are
able to select objectively the positions and lengths of time windows used for spectral

calculations, so that t* estimates are predominantly the result of a single phase. By
limiting the position of initial trial paths and by preventing paths from entering

certain regions of the model, the three-dimensional approximate ray tracing algorithm

of Thurber [1983] is constrained to calculate paths from the delay-time tomographic

velocity model [Toomey et al., 1990a] that are reasonable approximations to the true

paths of the correct phases. The data set includes t* estimates for direct crustal

phases, diffractions from above and below the magma chamber, and Moho-turning

phases.
The starting model for the inversions is the one-dimensional off-axis structure

presented in the Chapter 2. A two-dimensional, axis-symmetric model obtained by a

smoothest model inversion is able to fit the data quite well, although we note that

the symmetric nature of the wave paths may mask cross-axis asymmetry such as
that resolved in the delay time tomographic models [Toomey et al., 1990a]. Within

the upper 1 km the inversions resolve an axial high-Q anomaly which is constrained

to extend no more than 2-4 km off axis and in which Q values averaged over the
upper 1 km decrease from about 30 off-axis to > 50 on axis. High Q values are also
resolved beneath the axial magma chamber. The diffractions beneath the magma
chamber also resolve a 2-4 km-wide region of low Q, with the lowest well-resolved
Q values about 30. The principal depth of propagation of this phase beneath the
magma chamber is poorly known, but inspection of the finite difference solutions

suggests that it probably samples the axial Q structure no more than 1 km below the
roof of the magma chamber. The detailed structure in the lower crust is not well
resolved. However, the models suggest that the width of the anomaly increases in
this region and that the minimum Q values are similar to those determined at
shallower depths.

Although two-dimensional models fit the data fairly well, three-dimensional
inversions do resolve significant along-axis variations in the axial low-Q anomaly.
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The diffractions below the magma chamber show a northward increase in near-axial

attenuation of -25 %. This along-axis variation does not correlate with trends in the
maximum low-velocity anomaly imaged by travel time tomography [Toomey et al.,

1990a]. However, when the velocity anomaly is averaged over 4 km width between

2 and 3 km depth the trends in both models are fairly similar. The lower crustal Q
structure is fairly invariant along axis, but the magnitude of the anomaly shows a

small minimum near the center of the experiment and, in contrast to observations at

shallower depths, the highest values are observed toward the south of the

experiment. Indeed, inversions of the longest-range paths which turn in the Moho
velocity gradient beneath the rise axis also show a large increase in attenuation

values to the south, most of which occurs outside the central portion of the

experiment. While such an increase should be considered poorly resolved since it is

primarily the result of t* values from one instrument, it does correlate with a north-

to-south increase in delay times observed for the same phase [Toomey et al.,

1990b].



Table 4.1. Summary of the t* data.

Path Type

1 2 3 4 5

Distance
Instrument Off-Axis, N t* At* N t*At* N t* At* N t*At* N t*At*

km ms ms ms ms ms ms ms ms ms ms

Al 20 151 18 -4 14 20 0 111 46 -3 40 32 -6
A2 90 17 -4 4 15 -5 107 40 -10 30 29 -9
A7 155 11 -10 18 16 -4 113 43 -6 44 34 -4
D10 201 24 +3 34 24 +4 88 44 -5 37 34 -4
D12 201 26 +5 37 23 +3 101 54 +4 39 43 +5
D13 205 30 +8 34 24 +4 109 61+12 42 47 +9
D14 208 23 +2 34 17 -3 97 57 +7 44 46 +9

A4 9 124 24 -1 21 38 +2 73 47 -3 33 37 -1
A6 102 26 0 20 40 +5 84 46 -3 37 38 0

Di15 182 27 +1 43 29 -7 88 54 +5 42 39 +1

A3 0 34 18 -1 81 18 -1
A5 145 15 -5 87 15 -4 6 72 -14
01 117 25 +6 44 23 +4 5 100+14

Path type definitions are as follows: 1, Arrivals with paths that do not cross the rise axis or which
pass above the axial magma chamber for shots in the central area of dense shooting; 2, as for type I
except shots are on the outer refraction lines; 3, diffractions from beneath the axial magma chamber; 4,
Moho turning phases for ranges < 40 km; 5, arrivals propagating between the two outer refraction
experiments. For each path type and instrument three quantities are listed; the number of paths N, the
mean t* value t*, and the deviation from the average t* value At* for similarly configured instruments.
t* values are determined using 4x-prolate MWSA and 0.6 s of the waveform except for path type 3
where 0.3 s of the waveform is used.
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Table 4.2. Station t* Corrections.

Data Set

Upper Crustal No Paths Below
Instrument All Data Paths Only Magma Chamber

ms ms ms

AOBH 1 -7.1 -7.6 -7.9
2 -8.9 -8.4 -8.3
3 -6.6 -6.1 -6.7
4 -2.2 0.3 -0.2
5 -10.8 -9.6 -10.4
6 -2.3 -0.6 -1.8
7 -10.7 -12.2 -12.4

DOBH 10 -1.5 -0.6 -1.3
12 1.8 1.6 1.8
13 2.6 1.9 1.0
14 -2.3 -2.9 -3.0
15 0.6 1.6 1.5

OBS 1 1.4 2.1 0.5

The sign convention is that the station corrections are added to the t*

values predicted by the models. Station corrections are calculated

using two-dimensional inversions for an axis-symmetric Q-1 structure

with the constraint that the sum of the DOBH corrections is equal to
zero. "Upper Crustal Paths" include no paths turning at depths
significantly greater than 3 km.
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FIGURE CAPTIONS

Figure 4.1.

Figure 4.2.

Figure 4.3.

Record sections for (a) AOBH 1 and (b) AOBH 7 for profiles
orientated perpendicular to the rise axis. A water path correction has
been applied to the ranges and travel times, and amplitudes are scaled
linearly with range to correct for wave divergence. Dashed lines show
predicted travel times obtained from ray-theoretical paths through the
unmodified velocity model proposed by Vera et al. [1990] assuming a
horizontal seafloor. The location of the rise axis is shown as a dotted
line.

(a) Ray-theoretical crustal wave paths, corresponding to the AOBH 1
records shown in Figure 4. la, calculated assuming the velocity model
of Vera et al. [1990] and a horizontal seafloor. Paths are shown for
direct upper-crustal arrivals and diffractions above the axial magma
chamber (solid), diffractions below the magma chamber (dotted), and
a Moho-turning phase (dashed). (A dot-dashed line also shows a
single ray path for a Moho-turning phase recorded by an instrument 9
km off-axis) (b) Approximate crustal ray paths [Thurber, 1983] for
the same source-receiver combinations as (a) determined for the
velocity model obtained from delay time tomography [Toomey et al.,

1990a]. Since the delay time tomographic model only extends to 5 km
depth, the deeper structure is based upon a 1-km nodal
parameterization of the model of Vera et al. [1991]. The paths are
plotted with respect to a datum 2880 m below sealevel. (c) Wave
paths corresponding to those shown in (a) obtained from the delay
time tomographic velocity model by introducing constraints into the
approximate ray tracing algorithm of Thurber [1983] (see text). (d)
As for (c) except paths correspond to the oblique record section for
DOBH 12 shown in Figure 4.3a and are shown after projection onto a
plane that is perpendicular to the rise axis.

Record sections plotted as for Figure 4.1 for (a) DOBH 12 and (b)
DOBH 14. The profiles are orientated at 420 and 302* respectively,

azimuths that make an angle of about 50* with the rise axis.
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Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

Record sections for (a) DOBH 12 and (b) DOBH 14 showing

waveforms for paths that propagate between the two outer refraction

lines (Figures 1.1 and 2.1). The plotting conventions are as for Figure

4.1 except that the origin of the plots is located at the most northerly

shot location (Shots 1 and 221 for the western and eastern lines,

respectively) and the profiles are orientated parallel to rise axis.

Examples of t* estimates obtained from a 0.6-s-long data window for

DOBH 12 waveforms from the obliquely-oriented record section

shown in Figure 4.3a. (a) The windowed waveforms are plotted

against source-receiver range. The waveforms are scaled to show

equal maximum amplitudes and are aligned with respect to the

automatic pick. The ranges of several waveforms have been adjusted

slightly so that the traces do not overlap. (b) Portions of the source-

and receiver-corrected (equation 1.24) 4n-prolate MWSA spectra

with signal-to-noise ratios greater than 2 (solid) and least-squares

straight line fits used to estimate t* (equation 1.7) (dashed).

t* estimates for DOBH 14 obtained using 4n-prolate MWSA from

windows that include (a) 0.3 s and (b) 0.6 s of the waveform

immediately following the automatic pick. Estimates are shown for all

shots within the central region of the experiment and are plotted at the

shot location. t* values <0.03 s are shown as pluses which decrease

linearly in size as the t* value increase while t* values >0.03 s are

shown as crosses whose size increases linearly with t*. Thus, t*

values close to 0.03 are represented by very small symbols. The

locations of instruments are shown as open squares. DOBH 14 lies

to the southeast of the plotted region.

t* estimates for paths that do not cross the rise axis or pass above

the axial magma chamber for (a) AOBH 1 (located to the west of the

plotted area), (b) AOBH 7 (located to the east), (c) DOBH 10

(located to the northwest), and (d) DOBH 13 (located to the

northeast). Estimates are obtained using 4x-prolate MWSA and 0.6
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Figure 4.8.

Figure 4.9.

Figure 4.10.

Figure 4.11.

Figure 4.12.

Figure 4.13.

s of the waveform immediately following the automatic pick. The
plotting conventions are the same as for Figure 4.6.

As for Figure 4.7 but showing t* estimates from an 0.6-s window
aligned with the onset of the Moho-turning phase.

(a) (i) t* estimates, (ii) relative uncertainties, and (iii) the maximum
frequency used to obtain the t* estimates for both direct crustal and
Moho-turning phases recorded by AOBH 2 (located to the west). t*
values are plotted using the same conventions as Figure 4.6 . The
uncertainties are shown as crosses whose size increases with
uncertainty using the same scaling factor used to plot the t*
estimates. The maximum frequency is also shown using crosses
whose size is proportional to the frequency interval used to estimate
t* value (the lower frequency is 10 Hz). (b) As for (a) except for
DOBH 12 (located to the southwest). The maximum frequency is
shown using a smaller scale.

t* estimates and uncertainties, obtained for seismic waveforms which
propagate west to east between the two outer refraction lines, for (a)
DOBH 13, (b) AOBH 7, and (c) DOBH 14 plotted against the shot
distance from the most northerly shot of the western refraction profile
(Shot 1). t* estimates are obtained using 4n-prolate MWSA and an
0.6-s data window positioned with respect to a manual pick of the
higher amplitude secondary.

t* estimates for paths that pass below the axial magma chamber for
(a) AOBH 1 (filled square) and (b) DOBH 12. The plot convention is
the same as for Figure 4.6 .

Record sections and predicted arrival times for (a) AOBH 4 and (b)
DOBH 15 for profiles orientated perpendicular to the rise axis. The
plotting conventions are the same as for Figure 4.1.

Record sections plotted as for Figure 4.1 for (a) AOBH 4 and (b)
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Figure 4.14.

Figure 4.15.

Figure 4.16.

Figure 4.17.

DOBH 15 for profiles orientated at about 500 to the rise axis. The

dashed lines show minimum and maximum travel times for a Moho-

turning phase (see text).

(a) Ray-theoretical crustal wave paths, corresponding to the AOBH 4

records shown in Figure 4.12a, calculated assuming the velocity model

of Vera et al. [1990] and a horizontal seafloor. Paths are shown for

direct upper-crustal arrivals and diffractions above the axial magma

chamber (solid or dotted) and diffractions below the magma chamber

(dashed or dotted). The dotted lines denote paths for phases for

which a reliable t* value cannot be determined for either path. (b)
Approximate crustal ray paths [Thurber, 1983] for the same source-

receiver combinations as (a) determined for the velocity model

obtained from delay time tomography [Toomey et al., 1990a] and

plotted with respect to a datum 2880 m below sealevel. (c) Wave

paths corresponding to those shown in (a) obtained from the delay

time tomographic velocity model by introducing constraints into the

approximate ray tracing algorithm of Thurber [1983] (see text). (d)
As for (c) except wave paths are for the oblique paths to AOBH 4

shown in Figure 4.13a and have been projected onto a plane that is

perpendicular to the rise axis.

t* estimates for arrivals with paths that do not cross the rise axis or

which pass above the axial magma chamber for (a) AOBH 4 and (b)

DOBH 15. Estimates are obtained using 4n-prolate MWSA and 0.6 s

of the waveform immediately following the automatic pick The

plotting conventions are the same as for Figure 4.11

As for Figure 4.15 but showing t* estimates from an 0.3-s-long data

window aligned with the onset of the diffraction below the magma

chamber.

(a) t* estimates, (b) relative uncertainties, and (c) the maximum

frequency used to obtain the t* estimates for non-rise-crossing phases

and diffractions above and below the magma chamber for AOBH 6.



160

The plotting conventions are the same as for Figure 4.9.

Figure 4.18.

Figure 4.19.

Figure 4.20.

Figure 4.21.

Figure 4.22.

(a) t* estimates and uncertainties for shots on the eastern refraction
line recorded by AOBH 4 (located to the west of the axis). t* values
are plotted against the distance parallel to the rise axis from the most
northerly shot (Shot 221). t* estimates are obtained using 4n-prolate
MWSA and an 0.6-s-long data window aligned with the automatic
pick. (b) As for (a) except for shots on the western line (Shot 1 is the
most northerly shot) recorded by DOBH 15 (located to the east of the
axis).

(a) (i) t* estimates and (ii) uncertainties for AOBH 5 obtained using
4ir-prolate MWSA and an 0.6-s-long data window aligned with the
automatic pick. (b) As for (a) except for OBS 1.

(a) Ray-theoretical crustal wave paths to AOBH 5 for approximately
rise-perpendicular paths from shots to the east of the rise axis
calculated assuming the velocity model of Vera et al. [1990] and a
horizontal seafloor. (b) Approximate paths [Thurber, 1983] for the
same source-receiver combinations as (a) determined for the velocity
model obtained from delay time tomography [Toomey et al., 1990a]
and plotted with respect to a datum 2880 m below sealevel.

Maximum absolute amplitudes within the first 0.6 s of the waveform
for (a) AOBH 1, (b) AOBH 6, (c) DOBH 10, and (d) DOBH 15
plotted against source-receiver range. In the case of the AOBHs
amplitudes have be normalized to the amplitude of the calibration
pulse. At short ranges values for the DOBHs fall well above the plot
limits. The cutoff amplitude used to exclude saturated waveforms on
the AOBHs is shown as a dashed line.

The off-axis Q-1 profile that is assumed in areas of the experiment not
included in the inversions and which is used as a starting model in the
axis-symmetric two-dimensional inversions. The profile is shown for
0.5-km (solid) and 1.0-km (dashed) nodal spacings. The model is



Figure 4.23.

Figure 4.24.

Figure 4.25.

Figure 4.26.

Figure 4.27.
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based on the Q-1 structures obtained from smoothest model

inversions of the the outer refraction lines presented in Chapter 2;

profiles with a smoothing weight b = 10 in Figure 2.13 are averaged

and a minimum value of 0.002 is assigned at large depths).

Approximate wave paths used in the inversion of all the data for a

two-dimensional symmetric structure. Selected paths are shown to

illustrate the full spatial distribution paths used in the inversion after

projection onto a rise-perpendicular plane. With the exception of a

few rise parallel paths for a Moho-turning phase for which t*

estimates have a large uncertainty (Chapter 2), there is a marked

absence of paths at depths between about 1.5 and 2.0 km depth

beneath the rise axis.

Normalized squared data misfit (equation 1.40) plotted against

smoothing weight for an inversion for a two-dimensional axis-

symmetric Q-1 structure using the full t* data set. Vertical dotted and

dashed lines show the smoothing weights for which solutions are

presented in Figure 4.25. Dashed vertical lines delineate smoothing

weights for which contour plots of the uncertainty and spread are also

presented in Figures 4.26 and 4.27, respectively.

Smoothest model solutions showing the two-dimensional axis-

symmetric Q-1 structure obtained from an inversion of all the data for

smoothing weights of (a) b = 180, (b) b = 56, (c) b = 18, (d) b = 5.6,

(e) b = 1.8, (f) b = 0.56, (g) b = 0.18. The contour interval is 0.01.

Formal linearized uncertainty factors (equation 1.38) for the Q-1
models with (a) b=56 (Figure 4.25b), (b) b=5.6 (Figure 4.25d), and

(c) b=0.56 (Figure 4.25f). The contour interval is 0.025 for dashed

contours, 0.1 for solid contours, and 0.5 for bold contours.

Square root of the spread function (equation 1.42) calculated for the Q-
1 models with (a) b=56 (Figure 4.25b), (b) b=5.6 (Figure 4.25d), and

11ji I MIN 111 1"
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Figure 4.28.

Figure 4.29.

Figure 4.30.

Figure 4.31.

(c) b=0.56 (Figure 4.25f). The spread is normalized to yield a value of
unity for a two-dimensional boxcar measuring 1 km on each side.
Contours are separated by factors of two.

Results of inversions for two-dimensional axis-symmetric Q-1
structure using paths confined to depths above 3 km. (a) The
normalized squared data misfit plotted against smoothing parameter.
Vertical dashed lines show smoothing weights for which Q-1 models
are shown. (b) The distribution of wave paths used in the inversion
plotted as for Figure 4.23. (c) The Q-1 model for a smoothing weight
b=10. (d) (i) The Q-1 model for a smoothing weight b=1. (ii) The
formal uncertainty factors for the model shown in (i). (e) The Q-1
model for a smoothing weight b=10.

(a) Horizontal section at a depth of 2.5 km below the seafloor through
a three-dimensional Q-1 model obtained from a constrained inversion
for upper crustal structure (see text). (b) A vertical section along the
rise axis through the same model.

(a) Maximum Q-1 values and formal uncertainties for the 2-3-km-deep
axial low-Q anomaly in the three-dimensional inversions presented in
Figure 4.29 plotted against location along the rise axis. (b) As for (a)
except Q-1 values and uncertainties are averages obtained within
areas centered on the rise axis. Averages are obtained between 2
and 3 km depth and over a half width of 2 km (solid) and 4 km
(dashed). (c) The maximum negative velocity perturbation in the
delay time tomographic model [Toomey et al., 1990a] plotted against
position along the rise axis. (d) Averages of the velocity anomaly
obtained over the same areas as (b).

Results of inversions for axis-symmetric surface Q-1 models which are
invariant along the rise axis. Solutions are shown for inversions
obtained from a data set that includes t* values from non-rise-crossing
and shallow rise-crossing paths. (a) The normalized squared data
misfit plotted against smoothing weight b for the inversion that
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Figure 4.32.

Figure 4.33.

Figure 4.34.

Figure 4.35.
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includes data for all the instruments. Dashed lines show smoothing
weights for which solutions are presented. (b)-(d) A comparison of
models obtained from a data set that that includes values for all
instruments (solid lines with error bars) and a data set that excludes
values for instruments located on the rise axis (dashed lines). The
smoothing weights are (b) b = 100, (c) b = 10, (d) b = 1.

t* values for non-rise crossing paths to (a) DOBH 10, (b) DOBH 12,
(c) DOBH 13, and (d) DOBH 14. Values are shown for shots located
on the outer refraction lines approximately 20 km off-axis (open
circles), 6-9 km off axis (pluses), and 3-6 km off axis (crosses). All t*
values are calculated from an 0.6-s-long window using 4n-prolate
MWSA.

Results of inversions for two-dimensional near-surface Q-1 structure
(see text). (a) The normalized squared data misfit plotted against
smoothing parameter. Vertical dashed lines show smoothing weights

for which Q-1 models are shown. (b-d) Surface Q-1 models for
smoothing weights (a) b=10, (b) b=1, and (c) b=0.1.

The results of an inversion of t* values obtained for paths between the

two outer refraction lines. The inversion determines along axis

variations in an 8-km-wide region of constant Q-1 centered on the rise

axis; the Q-1 model of Figure 4.22 is adopted elsewhere. (a) The

normalized squared data misfit plotted against the smoothing
parameter b. Vertical dashed lines delineate smoothing weights for

which Q-1 models are shown. (b) The Q-1 models for smoothing

weights b=3000 (dot-dashed), b=300 (solid with formal error bars),

and b=30 (dashed). (c) The square root of the spread for a smoothing

weight b=300. The values are normalized to yield a value of unity for

a 1-km-wide boxcar

t* values (error bars) and model predictions (asterisks) for the

solution presented in Figure 4.34 with a smoothing weight b=300 for

(a) DOBH 12 and (b) DOBH 14.
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Figure 4.36.

Figure 4.37.

Figure 4.38.

(a) The distribution of wave paths plotted as for Figure 4.23 for the
inversion of a data set comprising t* estimates for non-rise crossing
paths, shallow rise-crossing paths, and the Moho-turning phase
(excluding paths between the two outer refraction lines) for non-rise
axis instruments. (b) The starting model which is obtained from a
two-dimensional axis-symmetric inversion of the data set with the
constraint that the model is vertically invariant below 4 km depth.

Sections through the three dimensional Q-1 model obtained by a
constrained inversion (see text) of a data set comprising t* estimates
for non-rise crossing paths, shallow rise crossing paths, and the
Moho-turning phase (excluding paths between the two outer
refraction lines) for non-rise axis instruments. (a)-(c) Vertical
sections orientated perpendicular to the rise axis at y = -4 km, y = 0
km, and y = 4 km. (d) A horizontal section at a depth of 4 km below
the seafloor.

(a) Maximum Q-1 value and formal uncertainties for the axial low-Q
anomaly in the model shown in Figure 4.37 plotted against position on
the rise axis. (b) As for (a) except the average QI value below 4 km
depth and within 2 km of the rise axis is shown. (c) The average Q-1
value below 4 km depth and within 4 km of the rise axis (solid) is
compared with the along axis Q-1 model (b=300) for paths that
propagate between the two outer refraction lines (Figure 4.34b,
b=300).
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Figure 4.2 cont.
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(a) (iii) AOBH 2 - Upper Frequency Limit
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AOBH 4 - Magama Chamber Diffraction
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CHAPTER 5

THE INTERPRETATION OF THE ATTENUATION STRUCTURE OF THE EAST

PACIFIC RISE

The East Pacific Rise at 9*30'N has been the site of many targeted studies of in

seismology [Orcutt et al., 1976; Herron et al., 1978; Detrick et al., 1987; Vera et al.,

1990; Toomey et al., 1990a; Christeson et al., 1991a, b], bathymetry [Macdonald et

al., 1984, 1992; Wilcock et al., 1992], petrology [Langmuir et al., 1986], gravity

[Madsen et al., 1990], high-resolution imaging [Haymon et al., 1991], and magnetics

[Carbotte and Macdonald, 1992]. Indeed, the large number of observational

constraints led Sinton and Detrick [1992] to base their model for magma chambers

on fast-spreading ridges on this locality. In this chapter we attempt to incorporate

the knowledge of the attenuation structure presented in earlier chapters into

geological models developed from previous work.

The Q-1 models show that P-wave attenuation in the crust on the East Pacific

Rise is dominated by two regions of low-Q. High levels of attenuation in the

uppermost crust are presumably the result of high porosity and possibly alteration.

The observation that near-surface Q values decrease rapidly as crust moves off axis,

a change that correlates with a decrease in seismic velocities [e.g., Vera et al., 1990;

Toomey et al., 1990a; Christeson et al., 1991a, b], suggests that studies of

attenuation can contribute to a better understanding of the processes which control

the evolution of the shallow crust. A low-Q region beneath the rise axis is related to

the high temperatures and the presence of partial melt within the crustal injection
zone. If the Q structure within this region can be used to obtain constraints upon the

distribution of temperature and partial melt, then such information can provide a

basis for refining existing models of axial crustal structure [e.g., Sinton and Detrick,

1992].

THE NEAR-SURFACE Q STRUCTURE

The inversions presented in both Chapter 2 and Chapter 4 show a substantial

evolution in the near-surface attenuation structure of oceanic crust with age. In

Chapter 2 one-dimensional Q profiles were derived from rise-parallel refraction lines

both on the rise axis and 20 km off axis. The off-axis t* values, which correspond to
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0.35-My-old crust, show little variation with range and are dominated by a highly
attenuative upper layer for which the minimum thickness is poorly constrained but for
which the maximum thickness is no greater than about 1.5 km. The t* data are not
compatible with the model of oceanic Q structure obtained from laboratory
measurements of ophiolite samples at ultrasonic frequencies (1 MHz), room
temperature, and the appropriate pressure [Wepfer and Christensen, 1991]. Their
model includes Q values of about 50 both in the uppermost crust and in the gabbros
which form the lower crust. Since the frequencies at which the laboratory
measurements were made are separated from those of our seismic observations by
about five orders of magnitude, the discrepancy presumably results from a frequency
dependence of Q in gabbro. One-dimensional models derived from inversions of our
data require an average Q ~ 30 in the upper 1 km, while values in the lower crust lie
in the range 500-1000.

In contrast, upper crustal Q values on the rise axis are markedly higher than
those observed off-axis although the measurements have a higher degree of
uncertainty due to the poorer responses of the instruments deployed on the axis.
The data for OBS 1 suggest an average Q value in the crust above the magma
chamber of 90 ± 10 in good agreement with the results of Vera et al. [1990], while
the inversion for AOBH 5 yields a substantially larger Q of 200 ± 40. However,
while repeating the inversions with the station corrections derived from inversions of
all the data in Chapter 4 (Table 4.2) produces little change in the results for OBS 1,
the value for AOBH 5 is reduced to 120 ± 15.

Inversions utilizing the entire t* data set that are presented in Chapter 4
resolve a fairly narrow region of relatively high Q centered on the rise axis. This
high-Q region appears to extend to distances of about 2-4 km off axis, but the width
of the high-Q zone is not well-resolved, and the smoothing constraint will act to
broaden the anomaly. The on-axis surface Q-1 values obtained in an inversion for an
axis-symmetric, two-dimensional model of near surface Q (Figure 4.31) are about
0.02-0.03. Such values correspond to average Q values over the upper 1 km of about
50-70, values appreciably less than those obtained in Chapter 2. Thus, the bulk of
the high-Q anomaly probably extends only 1-2 km from the rise axis.

These observations correlate strongly with the observed changes in the velocity
structure. Both the ESP data [Vera et al., 1990; Vera and Diebold, 1991] and delay
time tomographic inversion [Toomey et al., 1991a] (Figure 1.2a) resolve high near-
surface velocities along the rise axis at 9030'N. Such a feature is also indicated by
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similar studies at 13*N [McClain et al., 1985; Burnett et al., 1989; Harding et al.,

1989; Caress et al., 1992]. On-bottom seismic experiments [Christeson et al., 1991a,

b] resolve axial velocities of 5.0-5.5 km/s at depths of 100-200 m below the seafloor,

values which contrast with maximum velocities of about 4.5 km/s observed in the

uppermost 300 m of crust off axis. Harding et al. [1990, 1991] trace a reflector

across the rise axis which they correlate with the base of layer 2A. The depth of the

reflector increases from about 200 m on-axis to 400-600 within 1-2 km of the rise

axis, in good agreement with a value of 400 m off-axis obtained from an earlier multi-

channel experiment in the region [Herron, 1982] and with the average layer 2A

thickness of 0.7 ± 0.2 km determined for young Pacific crust from a compilation of

sonobuoy refraction data [Houtz and Ewing, 1976].

Two explanations have been advanced to explain the changes in shallow

velocity structure. First, the decrease in velocities may result from an increase in

porosity due to faulting [McClain et al., 1985; Burnett et al., 1989; Caress et al.,

1992]. Second, the thickness of the extrusive layer may increase off-axis due to

blanketing by volcanic flows that erupt from a narrow injection zone [Toomey et al.,

1990a]. Two observations lend strong support for the second explanation. First, the

narrow axial summit graben observed in this area [Haymon et al., 1990], coupled

with models of mid-ocean ridge magmatism [Cann, 1974; Kidd, 1977], requires that

dikes must penetrate close to the surface at the rise axis. Second, the travel time

between the reflection from the base of layer 2A and the magma chamber remains

constant irrespective of the layer 2A thickness [Harding et al., 1990, 1991],

suggesting that the thickness of layer 2A increases by the addition of new material

from above. However, the processes are not mutually exclusive, and both extrusive

thickening and in situ porosity changes may contribute to the change in upper crustal

properties.
The attenuation observations of this study provide new constraints on the

nature of the shallow age-dependent structure in very young oceanic crust. A

comparison of t* values between the axial and off-axis data presented in Chapter 2

suggests that two-way propagation through the upper crust must contribute an

additional -0.015 s to the off-axis observations. The addition of a 400-m layer of

low-Q layer 2A yields a t* increase of about 0.012 and 0.005 s for Q values of 20 and

50, respectively. Thus, the maximum observed thickening of layer 2A [Harding et

al., 1990, 1991] combined with the minimum shallow crustal Q value observed on the

Juan de Fuca Ridge by Jacobson and Lewis [1990] can barely account for the entire
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increase in shallow crustal contributions to t*. Assuming an average value for layer
2A thickening (300 m) yields a near surface Q - 12 if thickening is to account for the
entire t* dicrepancy. Thus, the average near-surface Q (30) of Jacobson and Lewis
[1990] suggests that crustal thickening and in situ evolutionary processes contribute
about equally to changes in the upper crustal attenuation structure. Moreover, the
increase in layer 2A thickness obtained from the reflection data is larger than other

estimates. The on-bottom experiment of Christeson et al. [1991a, b] shows that the

thickness of the very-low-velocity surficial layer (Vp < 3 km/s), which they suggest

is composed of highly fractured and porous basalts, increases from about 50-100 m

on-axis to only 130-180 m off axis, though an underlying layer with significantly

higher velocities (Vp > 4) does extend to a depth of at least 300 m off axis. On the

basis of the analysis of wide-aperture profile data, Vera and Diebold [1991] suggest

that the thickness of layer 2A increases from about 100-150 m on axis to 200-300 m

off axis. Such thickness increases require that near-surface Q be less than 10.
Thus, if the near-surface observations of Jacobson and Lewis [1990] are applicable

to the East Pacific Rise, crustal thickening may account for only a small fraction of
the increase in attenuation observed off-axis.

ESP data [Vera et al., 1990; Vera and Diebold, 1991], travel time tomography
[Toomey et al., 1990a], mutli-channel seismic data [Harding et al., 1990, 1991], and
on-bottom refraction experiments [Christeson et al., 1991a, b] all suggest that the
evolution of upper crustal velocities at 9*30'N primarily occurs within less than 2 km
(0.035 My) of the rise axis. Similarly, the inferred width of the high-Q near-surface
anomaly is 1-2 km. Significant large scale tectonic faulting, in contrast is not
observed inward of the flanks of the volcanic high [Macdonald, 1982], which at this
location are located about 2 km off axis [Wilcock et al., 1992]. On-bottom
observations suggest that tectonic extension also results in abundant faulting and
fissuring [e.g., Macdonald, 1982]. Indeed, at this location fine scale fissuring is

observed in on the crest of the rise axis [Haymon et al., 1990; Wright and Haymon,

1991]. However, such features are probably confined to incompetent surficial pillow
basalts since at larger depths extension is likely to be accommodated by magmatic
injection. Since the uppermost layer is presumably highly porous on eruption, it is
unclear if tectonic processes will significantly affect the velocities and attenuation in
this layer. Indeed, the on-bottom experiments of Christeson et al., [1991a, b] show a
small increase in near-surface velocities off-axis. The spacing of fractures that
develop in deeper, more competent units is likely to be related to that of major faults.
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Since the horst and graben structures [Lonsdale, 1977] and inward facing faults

[Rea, 1975] that characterize the flanks of the EPR are spaced at intervals of

several kilometers [Wilcock et al., 1992], it is unclear whether tectonic activity alone

can significantly increase the average porosity of oceanic crust on the scales

sampled in this experiment. These results suggest that tectonically-induced

increases in porosity do not contribute significantly to rapid changes in crustal

velocities and Q, although the seismic observations cannot entirely rule out a more

gradual, smaller scale evolution of seismic properties by such a mechanism.

An alternative explanation of near-axis variations in porosity is hydrothermal

activity. The EPR at 9*30'N is hydrothermally active [Haymon et al., 1991], with the

high-temperature venting confined to the flanks of the axial summit graben [Haymon

et al., 1991]. High-temperature seawater may produce rapid increases in porosity

[Lister, 1974] and alteration [Humphris and Thompson, 1978; Alt et al., 1986], both

of which act to decrease Q [Wepfer and Christensen, 1990] at ultrasonic frequencies,

though changes in porosity accompanying alteration may be of more importance than

alteration itself. The maximum thickness of the low-Q layer off-axis is constrained

to be about 1.5 km, a value that coincides with the thickness of the lid of the axial

magma chamber, which in turn must be an upper bound to the depth of axial

hydrothermal circulation.

Within downflow zones and at the base of the hydrothermal cell, the

hydrothermal fluids will cool the host rock and induce thermal contraction, cracking

[Lister, 1974], and an increase in porosity. In contrast, upflow zones will be

characterized by hydrothermal fluids whose temperatures exceed those of the host

rock and will therefore not be sites of additional thermal cracking. Moreover, the

deposition of hydrothermal minerals within such regions [e.g., Delaney et al., 1987]

will tend to reduce pre-existing porosity. While high-temperature vents are known

to be confined to the rise axis the patterns of hydrothermal circulation are poorly

known [e.g., Goldfarb and Delaney, 1988]. On the basis of a preferred rise-parallel

orientation for hydrothermal veins in the Oman ophiolite Nehlig and Juteau [1988]

argue that hydrothermal circulation is primarily confined to planes orientated parallel

to the rise axis. However, the orientation of hydrothermal veins may reflect the

configuration of the upflow zone rather than that of the whole hydrothermal system.

At 9*30'N the gaps between high temperature vents are compatible with a pattern of

circulation in which downflow zones are also located on axis [Haymon et al., 1991].

However, the along-axis continuity of low-temperature venting inferred from the the
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distribution of fauna suggests that the downflow is located off axis [Haymon et al.,
1991]. If a significant proportion of the downflow for the large scale hydrothermal
circulation occurs away from the rise crest, then increases in porosity occurring as

crust moves off-axis from the vicinity of upflow to downflow zones might explain the
observed increase in upper crustal attenuation.

McClain et al. [1985] suggest that near-surface velocities may increase slightly

between crustal ages of 0.1 and 0.3 My at 12*50'N, an observation that is apparently

supported by the delay-time tomographic inversions [Burnett et al., 1989; Caress et

al., 1992]. McClain et al. [1985] suggest that such a change may be a consequence

of a reduction in near-surface porosity resulting from the filling of voids by the

alteration products of passive off-axis hydrothermal circulation [e.g., Lister, 1981;
Fisher et al., 1990]. Indeed, such a mechanism is generally accepted as the

explanation for a large increase in layer 2A velocities observed in much older crust

[Houtz and Ewing, 1976; Jacobson, 1992]. The inversions presented in Chapter 4

and a careful analysis of the t* data set suggest that a similar trend in attenuation
may occur at this site. The data are compatible with a small 5-10 % reduction in

near-surface Q between 0.15 and 0.35 My-old crust. However, the effect is fairly

subtle and might be explained equally well by Q anisotropy. Since near surface
cracks and fissures are preferentially orientated parallel to the rise axis [Macdonald,
1982; Wright and Haymon, 1991], attenuation may be higher for waves propagating
perpendicular to the rise axis than for the rise-parallel paths used to constrain the
0.35-My-old structure. To distinguish between these two mechanisms would require
a better azimuthal distribution of ray paths.

THE AXIAL Low-Q REGION

Several early models of mid-ocean ridges [e.g., Cann, 1974; Dewey and Kidd,
1977; Palister and Hobson, 1981], which were constructed with few geophysical
constraints, call for large molten magma chambers extending from upper crustal
depths to the base of the crust. However, even on the East Pacific Rise, which has a
high magmatic budget such models have been known for some while to be
inconsistent with seismological observations. Early refraction experiments on the
EPR [Orcutt et al., 1975, 1976; Rosendahl et al., 1976] detected a low-velocity zone
whose top coincided with an upper crustal reflector [Herron et al., 1978, 1980; Hale
et al., 1982] which was interpreted to be the roof of a magma chamber. However,
the vertical extent and velocities of the low-velocity anomaly detected by the
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refraction experiments were not consistent with a very magma body. Indeed later

refraction experiments which included rise-crossing paths [Lewis and Garmany,

1982; Bratt and Solomon, 1984; McClain et al., 1985] placed strong limits on the

maximum dimensions of axial magma bodies. More recently, a large body of

seismological data including extensive multi-channel reflection profiles [Detrick et

al., 1987; Mutter et al., 1988; Kent et al., 1990; Vera et al., 1990], expanding spread

profiles [Harding et al., 1989; Vera et al., 1990], and two delay-time tomographic

experiments [Burnett et al., 1989; Toomey et al., 1990a; Caress et al., 1992] has

resulted in a much better understanding of the upper crustal structure along the axis

of the East Pacific Rise between 9*N and 13*N. A thin, continuous, 1-2 km-deep

magma lens is present along large segments of the rise axis [Detrick et al., 1987].

The width of the magma lens at 9*30'N is about 1.2 km [Kent et al., 1990], and the

maximum thickness is much less than 1 km [Toomey et al., 1990a] and may be as

small as a few tens of meters [Kent et al., 1990]. The magma lens is underlain by a

more extensive region of lowered seismic velocities extending to the base of the

crust. Along-axis discontinuities in the magma chamber reflections [Mutter et al.,

1988] and variations in the low-velocity zone [Toomey et al., 1990a] are correlated

with morphological discontinuities evident in bathymetric data. Thus, the seismic

data are more compatible with models of mid-ocean ridges which include only a small

sill-like magma body underlain by a more extensive region of partial melt [Sleep,

1975, 1978; Nicolas et al., 1988; Sinton and Detrick, 1992].

None of the more recent seismological studies however, places very strong

constraints upon the structure of the lower crust. The multi-channel seismic

reflection data do not image the Moho reflection immediately beneath the rise rise

axis [e.g., Detrick et al., 1987], while the ESP data only constrains the average

crustal velocity beneath the magma body [Harding et al., 1989; Vera et al., 1990].

Delay time tomographic inversions could, in principle, resolve the lower crustal

structure. However, the travel time inversion at 9*30'N [Toomey et al., 1990a] does

not include waves propagating at depths significantly deeper than 3 km beneath the

rise axis. The inversion at 12*50' N [Burnett et al., 1989; Caress et al., 1992] does

include a significant number of PmP (Moho turning) phases propagating at lower

crustal depths, but the solution is based on a single iteration using ray-paths derived

from a one-dimensional velocity model and it is not clear how well the resulting

model resolves details of the sub-axial lower crustal structure.
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Obtaining good constraints on the structure beneath the magma body is

essential if models of fast spreading mid-ocean ridges are to be further refined. Both
the magma chamber model of Sleep [1975, 1978], which is based on thermal
considerations, and the model of Nicolas et al. [1988] include only a small
completely molten region. Indeed, the sill-like shape of the magma body in model
proposed by Sleep [1975] is in excellent agreement with the seismic reflection data.
However, both the models include large cumulate mush zones extending to the base
of the crust and several kilometers to either side of the rise axis. Although the melt
fraction is not explicitly stated, the implication of the models is that throughout much

of this region this fraction is relatively high (>10 %). In contrast, a more recent

model proposed by Sinton and Detrick [1992] for the EPR at 9*30'N includes a
smaller upper crystal mush zone lying immediately beneath the magma body in
which the melt fraction exceeds about 40% and underlain by a more extensive region
containing considerably smaller melt fractions. Since the attenuation measurements

presented in this thesis include a large number of observations for paths crossing the
rise axis at a range of depths, the data may help to distinguish between such
models.

Laboratory Determinations of Q at High Temperatures in Mafic Rocks
Ideally, the Q1 models obtained in this study should be combined with

laboratory measurements of Q to obtain tight constraints on temperatures and the
spatial distribution of partial melt beneath the EPR. However, the validity of such a
procedure depends upon the accuracy and applicability of laboratory studies.
Obtaining measurements that are valid for both the compositional, pressure, and
temperature conditions in the Earth and for the frequency, scale, and strain rates of
seismic observations is a formidable task [e.g., Jackson, 1986; Christensen and
Wepfer, 1989]. A number of measurements have been carried out on mafic and
ultramafic samples at elevated temperatures [Woirguard and Gueguen, 1978;
Berckhemer et al., 1979; 1982; Sacks and Murase, 1983; Kampfmann and
Berckhemer, 1985; Sato and Manghnani, 1985; Manghnani et al., 1986; Sato et al.,
1988, 1989; Gueguen et al., 1989; Jackson et al., 1992]. The majority of these works
were motivated by a desire to understand the properties of the asthenosphere and
are thus primarily devoted to ultramafic samples.

The earlier measurements were obtained at room pressure. Woirguard and
Gueguen [1978] obtained a limited number of QS measurements at seismic
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frequencies by studying the forced torsional oscillations of natural peridotite and

polycrystalline forsterite and enstatite samples. Berckhemer et al. [1979] deduced

Q spectra of peridotite up to 1 Hz from measurements of the creep response to the

sudden changes in a uniaxial load. Sacks and Murase [1983] used a pulse

transmission technique to measure Qp in peridotites at frequencies of 40-300 kHz

and temperatures up to 1180*C. However, the most comprehensive set of

measurements were obtained by Berckhemer et al. [1982] and Kampfmann and

Berckhemer [1985] for a variety of mafic and ultramafic materials. Using a forced

torsional oscillation method, Berckhemer et al. [1982] systematically measured Q-1

in a dunite and a synthetic forsterite over the frequency band 0.003-30 Hz and at

temperatures ranging to values above the solidus. Kampfmann and Berckhemer

[1985] repeated such measurements for a number of rock samples including basalts,

gabbros, and a peridotite. Figure 5.1 shows results for peridotite and gabbro.

Qualitatively, the form of the variations of Q-1 with temperature and frequency is

similar for all samples studied. A quantitative description of the attenuation spectra

[Kampfmann and Berckhemer, 1985] suggests that three mechanisms are operating.

The general increase with temperature results from high-temperature background, a

mechanism that is poorly understood in rocks [e.g., Jackson and Anderson, 1970].

At lower temperatures an absorption peak which shifts to higher temperatures with

increasing frequency is probably the result of a dislocation mechanism [Woirguard

and Gueguen, 1978; Gueguen et al., 1981]. Above the solidus, whose precise

temperature is not presented for these samples, a third frequency-independent

mechanism is also operative. For these experiments in which the melt sample

cannot be more than a few percent, the contribution from this latter mechanism is

significant at the highest temperatures but never exceeds 50% of the total

attenuation.
A significant problem with high-temperature measurements conducted at

ambient pressures is that absorption in microcracks which result from thermal

stresses may contribute to the measurements [e.g., Jackson et al., 1984].

Moreover, since the minimum depth of our observations of the axial low-Q zone is

about 2 km, it is not clear how applicable room pressure measurements are to our

study. Sato et al. [1988, 1989] present Qp measurements for peridotite as a function

of temperature obtained at pressures of 0.20, 0.48 and 0.72 GPa. The values were

obtained by applying a spectral ratio method to pulse transmission measurements at

60-880 kHz, frequencies that are several orders of magnitude above the seismic
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band. The results show no resolvable frequency dependence and once Q and the

temperature are normalized to the values at the solidus, the trends in Q are
independent of pressure. The Q values extend to melt concentrations of about 5%,
and show no pronounced contribution from the small melt component, increasing
smoothly with temperature through the solidus. On the basis of calculations of the
activation volume, Sato et al. [1989] argue that the attenuation mechanism is grain-
boundary damping, which they equate to the high temperature background. Sato and
Sacks [1990] suggest that since the grain boundary mechanism is dependent upon

the grain size, laboratory measurements at high frequencies and small grain sizes
may scale to the lower frequencies and larger grain sizes typical of seismic
observations. On the basis of the absence of a strong frequency dependence in their
results they argue that their measurements fall within a regime that is equivalent to

the region of weak frequency dependence in the absorption band model of Anderson
and Given [1982]. By comparing oceanic geotherms derived from heat flow data in
older oceanic crust with the temperatures their results predict for models of seismic

Q, Sato and Sacks [1989] proceed to derive a small correction term to account for the
differences between the laboratory and upper mantle conditions.

However, the extrapolation of their results to seismic frequencies, which is
based on the assumption of a common grain boundary mechanism, may be without
foundation [Jackson et al., 1992]. Jackson and Anderson [1970] suggest that the
high-temperature background almost certainly results from a poorly understood
mechanism involving dislocations and not grain-boundaries, though attenuation may
be enhanced near grain boundaries due to the high concentrations of dislocations in
such regions. A dislocation mechanism is also favoured by Gueguen et al. [1981]
and Kampfmann and Berckhemer [1985]. Gueguen et al. [1989] present Q values
obtained for single forsterite crystals at seismic frequencies. The measurements
show that attenuation increases with temperature in a manner similar to that
observed in polycrystaline samples. Moreover, Q-1 values increase by about a factor
of 2 after the crystal is deformed. Such observations rule out a grain boundary
mechanism as the cause of high-temperature background and lend strong support to
a dislocation mechanism.

However, determining the appropriate mechanism for seismic observations
requires measurements obtained simultaneously at high pressure and seismic
frequencies. A forced torsional oscillation apparatus to obtain such measurements
has recently been developed [Jackson et al., 1984, Jackson and Paterson, 1987]. The
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first measurements obtained at high temperatures are presented by Jackson et al.

[1992] for a dunite sample from the same formation as that used by Berckhemer et

al. [1982]. The results cannot be directly applied to the tomography experiment

since the maximum temperatures studied were only 1000*C. However, the QS
values obtained at 0.3 GPa are not grossly inconsistent with the dunite

measurements of Berckhemer et al. [1982] and the single forsterite crystal results of

Gueugen et al. [1989], lending support to a dislocation mechanism at higher

pressures. The results also suggest that the lower temperature measurements in

the studies of Berckhemer et al. [1982] and Kampfmann and Berckhemer [1985]

may be influenced by microcracking.

Measurements using forced torsional oscillations of rock cylinders are limited to

small melt concentrations since they require a competent sample. While

measurements at all melt concentrations are feasible using pulse transmission

techniques, the only direct measurements available for basaltic magmas [Sato and

Manghnani, 1985; Manghnani et al., 1986] were obtained at temperatures above the

liquidus and frequencies of about 1 MHz. Measured levels of attenuation are high

with Q values less than 10 at temperatures just above the liquidus and show a

strong frequency dependence that is fit very well with a Gaussian distribution of the

logarithm of the relaxation times. However, the relaxation times are very short, and

extrapolating the results to seismic frequencies yields negligible levels of

attenuation. Thus, while other mechanisms may be important at lower frequencies it

is possible that the the level of attenuation in basaltic melts at seismic frequencies

may be very low.

Constraints on the Temperature and Melt Concentration Beneath the Axial
Magma Body

It is fairly clear from the discussion above that the experimental data obtained to

date are not adequate to allow a quantitative conversion of the models of Q-1
presented in this thesis to meaningful models of the temperature and partial melt

distribution beneath the rise axis. However, more qualitative comparisons are still

worthwhile. As noted above the bulk of laboratory studies have been confined to

ultramafic materials that are representative of mantle compositions. None of the t*

estimates presented in this thesis are for phases that propagate within the mantle.

For the Q-1 inversions, the deepest wave paths beneath the rise axis belong to a

secondary arrival follows the mantle phase propagating between the two outer
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refraction lines. Indeed, the high amplitudes observed for rise perpendicular paths
strongly suggest that this phase turns within the Moho transition zone beneath the
rise axis, a region which seismic models of ophiolites suggest is composed of
layered mafic and ultramafic cumulates [e.g., Karson et al., 1984; Collins et al., 1986].
Assuming that the axial low-Q zone is 8 km wide, the Q values obtained for this
phase range from 70-140 (Figure 4.35), with the better constrained values above
100. Halving the width of the region to 4 km similarly halves the Q values.

These values seem incompatible with the results of Sato et al. [1988, 1989].
The results obtained for peridotite at 0.2 GPa, a pressure that corresponds very
closely to that at the Moho, predict Qp - 6 at the solidus and suggest that the
values obtained for the longest range paths require temperatures 200-300* below the
solidus. Applying the correction derived from comparisons with heat flow data [Sato
and Sacks, 1989] decreases the predicted temperature further by about 50*. Simple
models of the axial thermal structure preclude temperatures at the base of the crust
below about 1200*C [Sinton and Detrick, 1992]. Experimental measurements [e.g.,

Ito and Kennedy, 1967] show that the solidus of a lherzolite at this depth is below
1200*C while that of a fully depleted harzburgite is about 1400*C. While some
ultramafic cumulate layers may have similarly high solidus temperatures, the
average solidus temperature within the Moho transition zone will probably be
significantly lower than 1400*C. Thus, the predictions of Sato et al. [1988, 1989]
seem implausible.

In contrast, the Qs values measured by Berckhemer et al. [1982] for dunite at
room pressure are entirely compatible with our observations. Assuming Qp/Qs=2.25
and using laboratory values obtained at 10 Hz, the Q-1 values modelled in the Moho
transition zone correspond to temperatures of -1200-1260*C for an 8-km-wide
anomaly and -1260-1320*C for a 4-km wide anomaly, values that are in excellent
agreement with the thermal constraints of Sinton and Detrick [1992]. The Qs
measurements for peridotite [Kampfmann and Berckhemer, 1985] require
temperatures of 900-1250*C. The large range of possible temperatures for this
sample results from the presence of a prominent low-temperature absorption peak
(Figure 5.1). However, as noted above, the experimental measurements of
attenuation at the lower temperatures may be augmented by microfracturing.

Figure 5.2 shows Qp values at 10 Hz for the basalt and gabbro obtained by
Kampfmann and Berckhemer [1985]. At low temperatures all the models show
similar trends with Q increasing exponentially with the reciprocal of the temperature.
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At temperatures close to the solidus, the affect of the absorption peak merging with

the high temperature background (Figure 5.1) is to decrease the sensitivity of Q to
changes in temperature. Models derived from inversions of t* estimates for

diffractions beneath the magma chamber (Figure 4.28) include well-resolved Q
values as low as 30 directly below the axial magma body. Inspection of Figure 5.2

suggests that such values might be compatible with very low melt fractions or even

with no melt at all. However, the errors accompanying a quantitative comparison of

the two sets of measurements may be large. Moreover, in the absence of

experimental measurements it is not entirely clear how Q will vary in rocks

containing a larger melt fraction.

The frequency independent contribution to Q-1 at supersolidus temperatures

inferred from the laboratory measurements [Kampfnann and Berckhemer, 1985]

suggests that the contribution to Q-1 arising from melt increases rapidly with

temperature. Extrapolating such results to higher melt fractions would predict Q
values much smaller than our results even at moderate (~10%) melt fractions. A

frequently cited mechanism for melt-related anelasticity at low melt concentrations is

melt squirt [Mavko and Nur, 1975], a process which involves local transient flow

between cracks at different orientations in response to shear stresses. Quantitative

models of melt squirt for various melt configurations [O'Connell and Budiansky, 1977;

Mavko, 1980; Schmeling, 1985] suggest that the melt squirt contribution to Q-1 is

strongly dependent upon the distribution of melt. The attenuation resulting from <1

% melt distributed in thin sheets along grain boundaries may be equivalent to that

resulting from 5 % melt in tubules along grain edges [Mavko, 1980]. The equilibrium

distribution of melt is almost certainly a network of tubules along triple junctions

[Cooper and Kohlstedt, 1986]. However as Kampfmann and Berckhemer [1985]

point out an equilibrium melt distribution may not be achieved in their experiments

and so it is not clear if the levels of melt-generated attenuation they obtain are

applicable.
A feature of melt squirt mechanisms is that the levels of attenuation for a given

melt configuration increase rapidly with the melt concentration. An alternative

mechanism which has been invoked to explain the transient creep response of

olivine-basalt partial melts and which involves changes in the size of triple junctions

in response to isotropic stresses [Green et al., 1990] also shows substantial

increases in attenuation with temperature and melt fraction. However, both

mechanisms are based upon melt distributed in thin sheets or tubules along grain
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boundaries within a competent matrix, and it is not clear what mechanisms will be

operative in a rock containing much higher melt concentration, particularly once melt

fractions reach values close to 50%, at which point the solid aggregate is no longer

bonded [Marsh, 1989]. Indeed if there is no significant attenuation mechanism in

basaltic melts other than that detected at ultrasonic frequencies [Sato and

Manghnani, 1985; Manghnani et al., 1986], seismic Q may be relatively high in

predominantly molten regions.

The finite difference models suggest that the diffraction beneath the magma

chamber propagates over a large range of depths beneath the rise axis. While the

depth of propagation of this phase will depend upon the velocity structure which is

poorly known, a qualitative inspection of the finite difference results suggests that

for the velocity model of Vera et al. [1990] significant energy may propagate at

depths extending from the magma lens at 1.5 km depth to about 3.0 km depth. There

are two possible explanations for the attenuation of this phase. The first is that the

recorded signal propagates through a region with a melt fraction much less than

about 10 %. Such an interpretation, which arises directly from the extrapolation of

the laboratory measurements and theoretical models of attenuation, places strong

limits upon the depth extent of the crystal mush zone beneath the magma lens.

Conversely, it is conceivable that the melt fractions and consequently Q-1 at 2-3 km

depth are much higher than the t* measurements suggest. In such a case the Q
values of the models might be representative of propagation both within a relatively

high-Q magma body and a crystal mush region with very high melt fractions directly

below. This second explanation is, however, highly speculative. Not only does it

rely on unsupported assumptions about Q at high melt concentrations but it is

probably incompatible with the seismic data. If the magma body and crystal mush

zone represent a relatively high-Q path for propagation of the diffracted phase then

either the diffracted arrival should be compatible with velocities within a largely

molten region or the arrival should be emergent since energy propagating in higher

velocity regions at larger depths would have higher levels of attenuation. Neither of

these effects is observed. The diffracted arrival does not appear to be emergent, and

the arrival times seem consistent with ray-theoretical paths crossing the rise axis at

about 2.5 km depth. The lowest velocities imaged in the tomographic inversion

[Toomey et al., 1990a] are about 5 km/s, well above the values of <3 km/s predicted

for molten basalt [Murase and McBirney, 1973; Sato and Manghnani, 1985;
Manghnani et al., 1986]. Therefore, it seems reasonable to conclude that the
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diffraction below the magma chamber propagates in a region of containing a low melt

fraction and that the thickness of the crystal mush zone is fairly small.

The Q-1 models for the lower crust (Figures 4.25 and 4.37) suggest that axial

Q-1 values in this region may range from 25-50, with average values close to 30.

Such results are lower than the average Q value of 50 in the crust beneath the rise

axis determined from t* values for rise parallel paths in Chapter 2 (see the

discussion of Figure 4.25 in Chapter 4). However, the value of 60 ± 10 determined

for AOBH 5 may be biased by the effects of signal distortion and signal-generated

noise in the direct recording system of the AOBH (Appendix A). The value of 40 ±

10 for OBS 1, which may also be biased because of the very small frequency interval

used to obtain t* estimates, is compatible with the Q values derived from inversions

of rise crossing paths. Moreover, the paths for these phases (Figure 2.19)

propagate significant distances in the Moho transition zone which has a higher Q
than the lower crust (Figures 4.34 and 4.38c).

The axial Q values are dependent upon the width of the low-Q anomaly, which is

not very well constrained by the data. Indeed, because of the uncertainties in the

paths and in the t* estimates, the detailed Q structure in the lower crust is not well

resolved. However, the similarity of Q values with those determined for the

diffraction below the magma chamber suggests that the homologous temperature and

the melt fraction may be fairly similar to the values at shallower depths.

Although the precise location of wave paths in the lower crust is not well

constrained the relative depths of paths beneath the rise axis is probably correct.

Figure 5.3 shows average t* values for all phases passing below the magma

chamber plotted against the depth of the path beneath the rise axis for both the

DOBH and AOBH data (the diffraction below the magma chamber is placed at 2 km

depth). Variations in t* values with path depth may reflect changes in Q values but

will also be affected by structure off axis, particularly the width of the anomalous

zone. Thus, the lower values for the diffraction below the magma chamber and the

Moho turning phase at 3 km depth probably result from the smaller width of the

anomaly at shallower depths. For both AOBH and DOBH data the maximum

averaged t* values are for paths crossing the rise axis at 4 km depth, although at

greater depths the trends are noticeably different. The DOBH t* values are

generally relatively constant for paths crossing the rise axis between 3 and 6 km

depth suggesting that the homologous temperature and melt fraction may also be

relatively invariant. The average t* for paths between the outer refraction lines is
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placed at 7 km depth and is markedly lower. Such a difference is most simply

explained in terms of a decrease in the homologous temperature resulting from the

more mafic composition of the Moho transition zone. In contrast to the DOBHs, the

AOBH t* values which are subject to larger uncertainties but for which the wave

paths are probably better known, show a progressive decrease for paths crossing

the rise axis between 4 and 7 km depth. Such values are compatible with an

appreciable decrease either in the homologous temperature or the melt fraction

through the lower crustal section.

Clearly, if the wave paths are correct, the t* values for the AOBHs and DOBHs

are incompatible. The effect of including data from both instruments in the inversion

is to produce a small decrease in t* values for paths in the lower crust (Figures 4.25

and 4.37). The discrepancy may result from systematic errors in t* estimates arising

from corruption from other phases or from non-attenuative frequency-dependent

components of propagation. However the possibility exists that changes in the

wave path locations resulting from a better understanding of the velocity structure in

this region might account for the apparent discrepancy between AOBH and DOBH

t* estimates and significantly improve the resolution of the Q-1 inversions in the

lower crust.
The primary result of this section is that axial Q values at depths extending from

no more than 1 km below the roof of the axial magma chamber to the base of the

crust are consistent with relatively small (<< 10%) melt fractions that show only

subtle variations with depth. The models of Sleep [1975, 1978] and Nicolas et al.

[1988], which include a melt-rich cumulate mush extending throughout the crust. If

such models are correct then the width of such a region within the lower crust must

be small. The model of Sinton and Detrick [1992] includes a smaller mush zone with

high melt fractions extending only to mid-crustal depths and underlain by a more

extensive region with smaller melt fractions. Our results are compatible with this
model and strongly suggest then the dimensions of the crystal mush zone may be

fairly small extending less than 1 km below the magma lens. Following Ryan

[1987], Sinton and Detrick [1992] suggest that the depth of the magma lens might

be controlled by the depth of neutral buoyancy of the basaltic magma. If this is the

case, compaction theory [McKenzie, 1984] would suggest that even in the presence

of a small buoyancy force magmas would be delivered to such depths fairly

efficiently. Such considerations seem to be consistent with models which include

very small melt fractions at depth and a relatively thin crystal mush zone. On the
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other hand, the densities of magmas erupted on mid-ocean ridges are smaller than
those for more basic magmas [e.g., Stolper, 1980; Sparks et al., 1980] and so the
melt concentration in the crustal column may not be controlled by compaction theory
but rather by changes in the depth of neutral buoyancy with crystal fractionation.

Along-Axis Variations
Although the inversions show apparent along-axis variations in the axial low-Q

anomaly, when compared to the magnitude of the axial anomaly resolved in

inversions for two-dimensional structure across the rise axis, such variations are

fairly small. The variance reduction achieved between one-dimensional models and

the axis-symmetric two-dimensional model is over 50% (Figure 4.24) and is about

70% when only paths crossing the rise axis are considered. In contrast the decrease

in variance between two- and three-dimensional models is no more than 20 %.
However, while two-dimensional models fit the data fairly well, the inversions

presented in the last chapter suggest that some along-axis variations are resolved

by the data.

The diffractions below the magma chamber require about a 25 % increase in Q-1
values in the shallowest portions of the low-Q anomaly toward the north of the

experiment (Figure 4.38). As discussed in the last section such results do not

correlate with the largest negative velocity perturbations in the delay time

tomographic models [Toomey et al., 1990a] which show a pronounced minimum 2 km

south of the center of the experiment. Toomey et al. [1990a] argue that the largest

low-velocity anomaly which falls between two devals (deviations from axial

linearity) at 9028'N and 9035'N, represents a region of elevated temperatures along a

thermally segmented rise axis. To evaluate the plausibility of such an explanation it

is necessary to consider the expected characteristics of a high-temperature portion of
a thermally segmented rise axis. Axial temperatures below the magma body are

presumably limited to values close to the liquidus temperature of the magma.

Although erupted lavas do show compositional variations along this portion of the

EPR [e.g., Langmuir et al., 1986], these will produce negligible changes in the

liquidus temperature within the experimental area. A thermally robust portion of the

rise axis is thus more likely to be characterized by higher melt fractions close to the

rise axis and a broader thermal anomaly. Inspection of the velocity structure of

Toomey et al. [1990a] (Figure 1.2) shows that the largest negative velocity anomaly

coincides with the narrowest width of the axial low velocity zone. Indeed, the width
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of the anomaly progressively increases toward the north of the experiment, and

values averaged over 4 km width show a trend that is very similar to the Q- 1 models

(Figure 4.38). Because of the limited resolution of the Q-1 inversions, the increase

in Q-1 values we observe to the north might also be explained by an increase in
width of the anomaly. Thus, both the velocity data and Q-1 data in the northern

portion of the experiment are compatible with either an increase in width of the

thermal anomaly underlying the magma chamber or an increase in the partial melt

content over a fairly broad region.
If largest axial velocity anomalies in the model of Toomey et al. [1990a] are well

resolved, they are presumably the manifestation of along-axis variations in the size

of the melt lens and the crystal mush zone, a region that may not be sampled by the
t* measurements. Since this feature does not correlate with the broader anomaly

observed in both the Q-1 and velocity models it is not compatible with a long-term

segmented structure. Indeed simple arguments can be presented to argue against

long-lived segmentation. The depth of the magma lens [Harding et al., 1990, 1991]
is relatively constant along this portion of the East Pacific Rise. The multi-channel

seismic reflection data [Barth and Mutter, 1991] suggests a progressive increase in

crustal thickness of ~700 m per 10 km from north to south across the experiment

area. However, such an observation does not appear compatible with gravity

measurements [Madsen et al., 1990] which suggest a relatively uniform crustal

thickness. Moreover, a cursory inspection of the record sections for shots between

the two outer refraction lines (e.g., Figure 4.4) shows that the arrival times of the

first-arriving mantle phase and the delay of higher amplitude secondary crustal
phases with respect to the mantle phase do not show the large systematic
variations that would be expected for a change of more than 2 km in crustal
thickness. Thus, the crustal thickness may be relatively constant within the

experiment area. Since the EPR extends primarily by constructional volcanism, in

the absence of lateral motions of solid material and crustal thickness variations the

time averaged heat budget must be constant along the rise axis throughout this

region. Along-axis variations in the magnitude of the thermal anomaly and partial

melt fraction must be short lived. Indeed the structure within the magma body and
upper crustal portion of the thermal anomaly may be primarily controlled by the

episodicity of eruptions and the efficiency of hydrothermal cooling, processes that

have time scales of the order of 102-103 years in this region [Haymon et al., 1991].
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The deeper Q structure also shows along-axis variations. The lower crustal

model (Figures 4.37 and 4.38) shows small but possibly significant increases in Q-1
toward the south and north of the experiment. The Q structure determined for the

longest wave paths (Figures 4.37 and 4.38), which is probably representative of the

structure near the axial Moho transition zone, also shows a minimum near the center

of the experiment. Q-1 values in this region show a very large apparent increase to

the south which is not well resolved since it is primarily the result of data from one

instrument. However, this increase correlates with a general north-to-south

increase in delay times observed on all instruments [Toomey et al., 1990b], although

changes in delay times could also result from a proposed southward increase in

crustal thickness [Barth and Mutter, 1991] rather than from an increase in the axial

thermal anomaly. Although the minimum amplitudes of the along-axis variations in

the magnitude of the low-Q anomaly coincide fairly closely at all depths, the models

do not extend for sufficient distance along the rise axis to determine if the upper and

lower crustal structures are well correlated.

Large scale mid-ocean ridge segmentation resulting from transform faults and

large overlapping spreading centers is commonly explained in terms of gravitational

instabilities within the upper mantle [Whitehead et al., 1984]. The length scale of

such instabilities (-100 km) [Whitehead et al., 1984, Crane, 1985; Schouten et al.,

1985] is too large to be resolved by this experiment, though such processes may

contribute to the trends in Q-1 structure observed across the experiment region.

Toomey et al. [1990a] propose that along-axis variations in the magnitude of the

axial thermal anomaly may correlate with smaller scale segmentation on a scale of

10-15 km which on the EPR results is manifested by small offsets of the axial

summit caldera and changes in orientation of the rise axis [e.g., Macdonald et al.,

1992]. To the extent that such segmentation is correlated with the distribution of

eruptions and hydrothermal activity [Haymon et al., 1991] this seems plausible.

Indeed, the axial chamber chamber has a segmented structure [Mutter et al., 1988]

with the width of the magma lens varying systematically between segments that are

bounded by devals [Kent et al., 199 1a, b]. However, small scale segmentation may

also be determined by the brittle response of the uppermost crust to spreading forces

and it is not clear if such a mechanism requires a strong correlation with variations in

the underlying thermal structure.
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CONCLUSIONS

In this thesis we have demonstrated the feasibility of using simple assumptions about
the attenuation of seismic waves to obtain models of apparent Q-1 in the crust and Moho
transition zone of the East Pacific Rise at 9*30'N. Many features of the Q structure
appear very similar to the velocity models obtained at 9*30'N [Toomey et al., 1990a; Vera
et al., 1990], with low Q values corresponding to regions of low velocities. However,
since well-resolved Q values vary by over an order of magnitude (from about 25-30 to
500-1000), while compressional wave velocities lie between 2 and 8 km/s, the t*
measurements are particularly sensitive to regions of anomalously low Q. The Q-1
models resolve low-Q regions in the uppermost crust and beneath the rise axis at depths
greater than 2 km. Figure 5.4 is a schematic section across the East Pacific Rise
summarizing how such observations can be incorporated into a geological model of
crustal structure.

In the shallow crust both seismic velocities and Q are observed to decrease rapidly
with seafloor age within 1-2 km of the rise axis. Following Toomey et al. [1990a] it is
now generally accepted that the decrease in near-surface velocities at this site results
primarily from an increase in the thickness of surficial high-porosity basalts due to
blanketing by flows erupted along the rise axis [Harding et al., 1990, 1991; Christeson et
al., 1990a, b; Vera and Diebold, 1991]. However, the increase in layer 2A thickness is
not sufficient to account for the changes in Q values averaged over the upper 1 km unless
near-surface Q values are much lower than observed elsewhere [Jacobson and Lewis,
1990]. Thus, in situ changes in porosity probably also contribute to decreases in Q off-
axis. Since tectonic fissuring and fracturing is primarily observed at distances greater
than 2 km from the rise axis, we suggest that hydrothermal processes may contribute
substantially to the rapid evolution of crust off-axis. Within the upflow zones which are
located on-axis hydrothermal deposits may reduce preexisting porosity, while in
downflow zones located off-axis porosity will increase as a result of thermally induced
cracking (Figure 5.4).

The uppermost portion of the low-Q anomaly resolved in the inversions presented in
this thesis coincides closely with the low-velocity anomaly imaged by delay time
tomography. However, the t* data set also includes a substantial number of high-
amplitude Moho-turning phases which cross the rise axis at lower crustal depths and
whose travel times are not included in the inversion for velocity conducted to data
[Toomey et al., 1990a]. The Q-1 models resolve a fairly constant axial Q of about 25-50
extending from about 2.5 km depth to the base of the crust. Laboratory studies suggest
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that such values require at most small melt fractions. Our preferred model of the axial

structure (Figure 5.4) includes a small crystal mush zone whose thickness is constrained

to be no more than 1 km, underlain by a much larger region of low melt concentrations.

Such a model suggests that magma is transported efficiently through the lower crust to the

axial magma chamber.

There are several ways in which future work could improve the resolution of

attenuation studies. The minimum source-receiver separation was limited to 4 km in this

study due to the presence of the water wave within the spectral-estimation window at

shorter ranges. As a result we are unable to resolve vertical variations in the attenuation

structure at crustal depths less than 1 km. Studies employing near-bottom sources and

receivers can overcome this problem. The resolution of Q-1 models within the axial low-

Q zone is limited by the large uncertainties in wave paths and might be substantially

improved by a better knowledge of the velocity structure. An important requirement of a

model of the lower crustal velocity structure is that it predicts the high amplitudes of the

Moho-turning phase. However, calculations of seismic amplitudes require that the effects

of attenuation be taken into account. Such considerations suggest that seismic Q and

velocity should be determined by simultaneous inversions. Indeed, high-resolution

models of both Q and velocity might be able to constrain variations in both homologous

temperature and melt fraction, properties that cannot be independently determined using a

single seismic parameter. The analysis of rise-perpendicular record sections in Chapter 4

was rendered particularly difficult by the large separation of traces. Refraction

experiments utilizing rise-perpendicular lines of closely spaced shots could significantly

improve our understanding of axial structure and might be suitable for forward modelling

by the full-waveform finite difference technique. Additional constraints upon rise axis

structure might be obtained by constraining seismic models to show variations compatible

with simple models of thermal structure across the rise axis. In particular, the width of

the axial low-Q anomaly should be compatible with thermal models. Finally, while the

formidable difficulties associated with experimental measurements of seismic properties at

high temperatures and frequencies and appropriate frequencies must be recognized, there

is clearly a need for more laboratory measurements obtained under conditions more

closely approximating those of seismic propagation within the oceanic crust and

uppermost mantle.

ON
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FIGURE CAPTIONS

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4.

Experimentally determined Qs- 1 of (a) peridotite and (b) gabbro at

ambient pressure as a function of frequency and temperature [from

Kampfmann and Berckhemer, 1985].

Qp values for a plagioclase basalt (solid), an olivine-plagioclase
basalt (dashed), and gabbros with mean grain diameters of 0.25 mm
(dot-dashed) and 0.5 mm (dotted) plotted against homologous
temperature. The results are obtained from the experimental
determinations of QS by Kampfimann and Berckhemer [1985]
assuming Qs/Qp = 2.25 and solidus temperatures for the basalt and

gabbros of 990*C and 1040*C, respectively.

(a) Averaged DOBH t* values for paths passing beneath the magma
body plotted against the depth of the approximate wave path beneath
the rise axis (the diffracted phase is plotted at 2 km depth). Station
corrections are applied to the t* data before averaging. The solid line
and error bars do not include measurements for DOBH 10 which has
anomalously low values for these paths even after application of the
station correction. The dashed line shows the effect of including
DOBH 10. (b) As for (a) except data are for the AOBHs.

Schematic cross-section of the East Pacific Rise with a geological
interpretation of the low-Q anomalies (speckled). The increase in
near-surface attenuation off-axis results from an increase in the
thickness of pillow basalts and from thermally induced fracturing in
hydrothermal downflow zones. The axial low-Q anomaly includes a
small upper crustal magma chamber comprising a magma lens and a
crystal mush zone underlain by a more extensive region containing at
most a small fraction of partial melt.
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APPENDIX A

THE INSTRUMENT RESPONSES

INTRODUCTION

The EPR tomography experiment utilized three different seismic recorders, the

WHOI analog ocean bottom hydrophone (AOBH), the WHOI digital ocean bottom

hydrophone (DOBH) and the MIT ocean bottom seismometer (OBS). The

attenuation studies presented in this work require a good knowledge of the

amplitude (or power) response of each instrument. In this Appendix the response of

each instrument in discussed in turn. The AOBH incorporates a direct analog tape

recorder, and its response must be measured by a series of tests. The DOBH is a

sophisticated instrument for which a theoretical transfer function can be derived. An

on-bottom self-calibration test provides a check on these results. The response of

the OBS has been described in detail by Trihu [1982] and is discussed only briefly

here.

ANALOG OCEAN BOTTOM HYDROPHONE

Introduction

From the first deployments in 1976 to the last in 1988, the WHOI AOBH was

the workhorse of the Woods Hole seismology group. About 150 deployments were

successfully made without loss of an instrument and with a data recovery rate well

in excess of 90%. The design and construction of the AOBH are described in detail

by Koelsch and Purdy [1978]. The instrument package, comprising an Ocean &

Atmospheric Science (OAS) model E-2SD pressure-compensated hydrophone, a

recording package, an AMF model 325 acoustic-release transponder, strobe lights, a

radio beacon, and 4 glass flotation spheres, is generally deployed 3-5 m above the

seafloor. There are four channels, namely two low-frequency channels with gains

separated by 20 dB which record the seismic data, a modulated envelope-detected

high-frequency channel which allows precise identification of water wave arrival

times, and IRIG-B time code carried on a 25 HZ signal. These are recorded

continuously using a slow-speed, direct-recording analog tape recorder which has a

dynamic range of about 30 dB.
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To permit use of waveform amplitude data and to detect instrument
malfunctions, two calibration tests are routinely carried out. First, prior to each
cruise the amplitude response of the low-frequency channels is measured by
recording a sinusoidal signal generated by an oscillator connected in parallel with the
hydrophone. Second, during each deployment 2-s-long 10-Hz, 200-gV (peak-to-

peak) calibration signals are introduced in series with the hydrophone four times

near the end of each hour. However, while some use has been made of waveform

amplitude ratios [Fischer and Purdy, 1986] and of the principal features of amplitude

spectra of microearthquake recordings [Toomey et al., 1988; Wilcock et al., 1990;
Kong et al., 1992], the majority of work utilizing AOBH data has been confined to the

use of P wave arrival times and to qualitative comparisons of amplitudes. Since no

previous work had required accurate corrections for instrument response, it was

necessary in this study to determine the frequency response of the low-gain, low-
frequency channels which were used for all the spectral measurements, the reliability

and uncertainty in the estimated responses, and the characteristics of tape

saturation and other non-linear effects. The results are presented in detail below.

The Low-Frequency Low-Gain Channel
The principal objective in designing the AOBH was to enable the determination

of water wave and P wave arrival times on the high- and low-gain channels,

respectively, with a timing uncertainty of 10 ms or better. To this end the gains on

the low-frequency channels were set conservatively high so that the ratio of signal to
ambient noise and not the instrument gain would control the amplitude threshold for
phase identification. As a consequence, the explosive source deployed in the
tomography experiment generates P-waves that saturate the low-frequency, high-
gain channel at all but the largest ranges, while the low-gain channel is frequently
saturated at ranges below 10-15 km. For this reason, the waveforms used in this
work are obtained exclusively from the low-gain channel.

Figure Al is a flow chart showing the recording system for the low-frequency
low-gain channel. The hydrophone output passes through a preamplifier and a low-
pass (-100 Hz cutoff) filter at which point the low- and high- gain channels diverge.
The appropriate low-gain amplification is applied to the signal which is added to a 5
kHz bias current and passed through the head driver (voltage to current) amplifier
which feeds directly into the tape head. The data are recorded on 1/4" (0.6 cm) 3M
Scotch magnetic tape at a speed of 1/40 in/s (0.064 cm/s). The tape recorder is
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designed to ensure a smooth, constant-speed motion of tape over the tape heads

with flutter and wow never exceeding 10% [Koelsch and Purdy, 1978].

Figure A2 is a flow chart showing the playback and analog-to-digital conversion

scheme. Immediately after deployment the 1/4" data tape is transcribed onto 1/2"

(1.3 cm) Ampex 787 precision magnetic tape for archiving. The data tape is played

back-at 1 7/8 in/s (4.7 cm/s, 75 times real time) on a Crown 700 Series tape recorder,

and the output, after attenuation to 1V (peak to peak), is recorded on a Honeywell

5600C FM tape recorder at a tape speed of 15 in/s (38 cm/s). The 1/2" tape is

subsequently used for playback and analog-to-digital conversion. For this step the

output channels of the Honeywell recorder are amplified to 10V (peak to peak), and

the low-frequency channels are bandpass-filtered using Krohn-Hite 3500 filters.

Analog-to-digital conversion is performed by a Digital LPA11-K 12-bit converter

attached to a Digital Vax 11-780 computer. A short term/long-term event detection

algorithm allows retention of selected portions of the digital data.

To accurately determine arrival times on the data channels requires that the

channels are correctly aligned with the time code channel. Misalignments arise from

relative skew of the tape record and reproduce heads. Skew can be measured

straightforwardly for both the AOBH/Crown record/reproduce tape head and for the

Honeywell tape heads by generating a test tape for which the input to all channels is

the same. Unfortunately, due to an initial oversight and a subsequent hardware

failure, no skew test tape was available for the particular Honeywell recorder used

for the tomography experiment transcription. To overcome this problem an

alternative playback scheme involving analog-to-digital conversion directly from the

original 1/4" tape was devised (Figure A2). However, since the quality of the signal

on the 1/4" tape degrades rapidly after several playbacks, the waveform data used

for the attenuation studies were obtained using the conventional playback scheme.

The skew introduced by the Honeywell was shown subsequently to be negligible.

While a theoretical response may straightforwardly be calculated for most

components of the AOBH instrument and playback system, this is not feasible for

the 1/4" tape recorder [D. E. Koelsch, pers. comm., 1989]. Moreover, the fidelity of

low speed analog direct recording systems is notoriously unreliable and is the major

source of variability and uncertainty in the AOBH response. Therefore, to determine

the instrument response of the AOBH, an extensive series of tests was conducted.

By carefully calibrating the results using the 10-Hz calibration pulses recorded
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during the tomography experiment an estimate of the absolute amplitude response of
the AOBH during the deployment can be recovered.

Response Tests
Testing Configuration

The instrument response test comprised recording the attenuated output of a

signal generator and analyzing the results, after playback and analog-to-digital
conversion. To overcome the problems associated with reproducing the hydrophone
input impedance, the preamplifier was bypassed during these tests (Figure Al). To
facilitate more efficient data reduction, the alternative playback scheme (Figure A2),
which eliminates the Honeywell tape recorder, was used. The transfer function fT
determined from the tests can be related straightforwardly to the full instrument
response (including playback) i by

i(s) = fi(s) f2 (s) f3(s) f4(s) fT(s) (Al)

where s is the complex frequency and the transfer functions are defined as follows:

fl(s) = Hydrophone response.

f2(s) = Hydrophone capacitance and preamplifier input network.
f3(s) = Honeywell record-reproduce, input attenuator, and output amplifier

response.
f4(s) = Correction for changes in the settings of the anti-alias bandpass filters

Before discussing the test results these four components of the full response not
incorporated in the tests will be presented in turn
Hydrophone response

The hydrophone sensor used in the AOBHs is a high-quality pressure-
compensated hydrophone designed to operate at all ocean depths. The
manufacturers specifications require a flat response in the interval 0-500 Hz with a
tolerance of ±10% (1 dB) and a sensitivity of -87 dB with respect to 1 V/pbar. Thus
hydrophone response may be simply written

fi(s) = 44.6 V/bar (A2)
Hydrophone capacitance and preamplifier input network

The schematic for the preamplifier used in the AOBHs is shown in Figure A3.
At frequencies above 1 Hz the capacitance C2 can be ignored. The hydrophone
capacitance and preamplifier input form a simple RC high-pass filter for which the
transfer function is
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f2(s) = Gi G2 s/G5
1+s/ (A 3)

where the two gains G1 and G2 are defined in terms of the components shown in

Figure A3

G1= R2
R1 + R2 + R3

G2=R4+R

and the characteristic frequency is

C1+ CH
(R1 + R2 + R3) C1 CH

Component values, which in some cases differ slightly between instruments, are

presented in Table Al along with the resulting amplifier parameters. In all cases the

total gain is approximately 10 and the characteristic frequency is less than 1 Hz.

Honeywell Record-Reproduce (with attenuation and amplification)

The Honeywell 5600C is a high quality FM tape recorder. A simple calibration

using a monochromatic source shows that the record-reproduce amplitude response,

including the required attenuation and amplification, is flat to ±0.5% within the

frequency band of interest. However, since the Honeywell underwent hardware

repairs and a fresh calibration between the times of transcription and analog to

digital conversion, the transfer function for the tomography experiment may have a

higher uncertainty, although it is almost certainly insignificant when compared with

other contributions. The absolute gain of record-reproduce system is unity with an

uncertainty of ± 10% (1 dB). The gain of the attenuators and amplifiers is adjustable

with increments of 3 dB and 2 dB, respectively. However, since absolute amplitude

measurements are always referenced to the 10 Hz calibration pulses, the gains are

of no importance provided the tape recorder is not overloaded. Thus, the transfer

function can be simply written

f3(s) = 1 (A4)

Anti-alias Filter
The anti-alias filter is a Krohn-Hite Model 3500C bandpass filter with low and

high cutoff frequencies that are independently adjustable between 2 Hz and 200 kHz.

The response in the "'Max Flat" setting approximates a 4-pole Butterworth, a filter

which has a transfer function that is optimally flat within the passband and which can

be written
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f4(s) = 1

Q (- - -(-1)1/8) s -3 (-l) /8)
i HC LC

where OHC and oLC are the low and high cutoff angular frequencies and (-1) 1/8i are
chosen to be the four roots with negative real components. A filter calibration was
conducted. Within the passband, the response lies within 2% of the theoretical
response. However, the cutoff frequencies can only be set to an accuracy of 10%.
Thus filter corrections are only reliable within the passband. For this reason the
passband used for the instrument tests (0.4 - 80 Hz) was chosen to be larger than
that typically used for data reduction (3 - 40 Hz or 2 - 67 Hz).

Sine Wave Tests

Tests conducted using a sine wave signal provide the most straightforward
method to measure the amplitude response and saturation characteristics of the
AOBH.

Amplitude

For each instrument one minute of data was recorded at input voltages of 2, 10,
and 50 mV (peak to peak), for about 10 frequencies logarithmically spaced between
1 and 60 Hz. After playback and analog-to-digital conversion, a simple least squares
inversion was used to determine the amplitude of the best fitting sine wave. Such a
method is less efficient than a calculation of the root mean squared (rms) amplitude
but avoids biases that might result from signal distortion or signal-generated noise.
The method gives almost identical results to those obtained using a fast Fourier
transform but is computationally more efficient for long time series, and the misfit can
be used to obtain an estimate of the uncertainty.

Figure A4 shows examples of the normalized amplitude responses for AOBHs
1 and 7 for three different input voltages. For each instrument the responses
estimated from the 2 and 10 mV input signals are almost identical. However, the 50
mV test consistently yields lower normalized amplitudes than the 2 and 10 mV
tests, indicating that at this input voltage the AOBH tape recorder is at least
partially saturated. A comparison between the two instruments shows that while
the responses at lower frequencies are very similar, the upper frequency limit differs
significantly between the two instruments. At 40 Hz the response of AOBH 7 is 16
dB below the peak response while for AOBH 1 it is only 4 dB lower.
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In Table A2 the amplitude responses derived from these tests are presented for

all instruments. The results are normalized to 10 Hz, the frequency of the calibration

pulse which can be used to determine absolute amplitudes. The values for the 2 and

10 mV tests represent a good estimate of the amplitude response below saturation

levels. In terms of bandwidth, the responses of AOBH 1 and 7 (Figure A4)

represent extremes of the range of measured AOBH responses.

Saturation

To analyze the saturation characteristics of the AOBH the response at selected

frequencies was determined for a larger set of input voltages. Figure A5 shows the

results for AOBHs 1 at 5, 10, 20 and 40 Hz, while Table A3 lists results at 10 Hz for

all instruments. The tests show that saturation occurs fairly abruptly. Below 20 mV

the response is nearly linear with a less than 20% decrease in sensitivity between 2

and 20 mV at all frequencies, while at 50 mV the instrument is almost completely

saturated and shows an almost constant recorded amplitude at higher voltages.

Indeed, at input voltages above 100 mV the recorded amplitudes actually decrease

slightly. The saturation voltage decrease slightly with increasing frequency.

Signal Distortion and Signal Generated Noise

Measurements of spectral slopes from highly attenuated waveforms require

good estimates of higher frequency spectral amplitudes in the presence of a

predominantly low-frequency signal. Such estimates will be severely compromised if

the instrument-playback response includes significant levels of signal distortion and

signal-generated noise, since the spectral leakage from low-frequency signals may

swamp the low-amplitude, high-frequency component of the input signal.

The majority of response tests were conducted using a Heath SG-1271 signal

generator which has poor specifications for harmonic distortion. To assess the

importance of spectral leakage additional tests were conducted on AOBH 1 using an

accurate signal generator which has a harmonic distortion 60 dB below the input

signal. The harmonic distortion DH in units of dB is defined by

DH = -10 10 P(F)
P(n F) (A6)

where P(f) is the spectral power density at frequency f, F the input frequency, and n

is the order of the harmonic of interest. Alternatively, distortion D may be quantified

by measuring the spectral power outside a small bandwidth A (2 Hz) centered upon

the input frequency F

mll=lmlillwlliml ill, .1 111"'1111111101 11WINIMINI
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F+A/2
IP (f)

D = -10 logio 1 -f=F-A/2
f=FNyquist

I P(f)
f=Fm (A7)

A choice of Fmin=O results in a measure of spectral leakage to all frequencies while
a value Fmin= f-A/2 yields estimates of spectral leakage to higher frequencies, a
more meaningful quantity when considering the biases distortion might introduce into
spectral measurements of t*.

Figure A6 shows examples of power spectra recorded by AOBH 1 for 10 and 20
Hz input signals. In both cases spectral amplitudes away from the input frequency
are markedly higher than ambient noise levels recorded with no input signal. The
levels of distortion for AOBH 1 measured according to equation (A7) are shown in
Figure A7 for input frequencies of 5, 10, 20, and 40 Hz together with ambient noise
levels. The results show that signal distortion on the AOBH may be significant. At
very low input amplitudes distortion is not resolved above ambient noise levels,
while at higher amplitudes values range between about -30 and -20 dB. For the 5
and 10 Hz tests, the lowest levels of distortion (--30 dB) are observed for input
voltages which are below saturation levels. One result of saturating the instrument
is to increase the levels of distortion by up to 10 dB for lower frequency input
signals.

The effect of spectral leakage upon the expected values of t* estimates can be

predicted from these tests if it is assumed that the process is linear. Equation (1.7)
can be used to estimate a theoretical power spectrum for an incoming signal
assuming an impulsive source. In the frequency domain this input is multiplied by
the power response, cross-correlated with the 10 Hz power spectrum shown in
Figure A6a, and then divided by the power response. Equation (1.7) is then used to
obtain the expected value of the t* estimate. The results are shown in Figure A8.
Estimates for low t* signals are little affected by spectral leakage but t* estimates
obtained for higher actual t* values achieve a maximum value that may actually
decrease with further inputs in t*. The t* value at which such biases become
apparent is dependent upon the frequency. Choosing a frequency band whose
minimum recorded powers are 1/1000 the maximum recorded amplitude results in t*
estimates that are little effected below t* = 0.04 s but which achieve a maximum
value of about 0.06 s. While decreasing the frequency interval further would increase
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the maximum resolvable t* values slightly, it will also increase the uncertainties

accompanying the straight line fit to the logarithm of the power spectrum. In this

thesis t* values are estimated over frequency intervals which are constrained to

have power ratios of no more than 1000. Indeed, many such intervals are similar to

those that would be obtained from inspection of the signal to ambient noise ratios.

Two Frequency Tests

A small number of tests were conducted on AOBH 1 to measure the response of

the AOBH to a signal comprised of two sine waves of different frequencies. The

relative signal amplitude was held constant while the absolute amplitude was

varied. Figure A9 shows the results for 5 and 20 Hz signals with an amplitude ratio

of 20:1. Over a 40 dB range of input voltages, the response is approximately linear,

while the relative amplitude of the higher frequency decreases markedly once the

saturation voltage is achieved.

Square Wave Tests

Sine wave tests provide an accurate method of measuring the amplitude

response of a linear system. However, they provide no direct estimate of the phase

response, nor do they provide an adequate method to detect non-linear response

characteristics for broadband signals. To remedy these deficiencies the response of

the AOBHs was also measured using a low-frequency (~0.3 Hz) square wave with

a range of input amplitudes.

Considering a square wave of period T and unit amplitude

f(t) = 1 (0 < t < T/2)

f(t) = 0 (T/2 < t < T)

the Fourier transform of one cycle is

F(D)= co -2 (A8)

This is a notched response with maximum amplitudes proportional to the reciprocal

of the frequency. While the decrease in spectral amplitudes with frequency does not

follow the relationship predicted for attenuated seismic waveforms, the general

decline in spectral amplitudes can be considered analogous to an attenuated wave

when considering a relatively small frequency interval. Assuming an impulsive

source the decrease in spectral amplitudes between 10 and 40 Hz is equivalent to an

intrinsic attenuation of t*=0.015 s while the amplitude decrease over smaller
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frequency intervals is representative of higher degrees of attenuation. The discrete
Fourier transform corresponding to equation (A8) is

F(n) = INn = 1, 3, ...N7cn
F(n) = 0 n = 2, 4, ...N (A9)

where N is the number of samples. A smoothed discrete Fourier transform obtained
from the square wave response will thus be

Fs(n) - (A10)

This can be converted to the Fourier transform of a delta function FD(o)=N/T

straightforwardly

FD(n) ~ ipN Fs(n)
T (Al1)

Such an operation, which is the equivalent of differentiation, is unstable at high
frequencies since noise levels are amplified. However, by taking the Fourier
transform of several cycles (-10) and smoothing the result using a running mean
over 9M samples where M is the number of cycles, a reasonably stable estimate of
the the impulse response over the frequency band of the AOBH can be obtained.
The procedure is illustrated in Figure A10.
Amplitude

Figure All shows the square wave amplitude response measured at various
input amplitudes for AOBHs 1 and 7 together with the sine wave results presented

earlier. At lower input voltages the shapes of the amplitude responses are in good
agreement, the response of AOBH 7 being markedly lower than AOBH 1 at higher
frequencies. The apparently lower amplitudes observed for the square wave tests
below about 4 Hz are an artifact of smoothing the spectral estimates. As was the
case for the sine wave tests the effects of saturation is to decrease the relative
amplitudes of high frequencies. However, in comparison with the sine wave tests,
saturation appears to occur at markedly lower input voltages, an effect which
produces the large misalignment of the 50-mV sine and square wave responses.
This apparent discrepancy can be explained by considering the mechanism of
saturation. Saturation occurs when the head current in the tape recorder reaches a
certain threshold. To compare the sine and square wave results it is necessary to
compare not the input amplitude levels but the maximum head current amplitudes.
For tests which do not saturate the instrument, a square wave results in a maximum
recorded amplitude about twice that of a sine wave test with the same rms
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amplitude. Thus, one might expect saturation for square waves to occur at half the

input voltage of sine waves. Indeed comparing the 25-mV square wave and 50-mV

sine wave tests the discrepancy is small. The offset between the sine wave and

square wave responses at 2 and 10 mV is due either to the small amount of non-

linearity seen below saturation voltages (e.g., Figure A5) or to variations with time

of the absolute sensitivity, a topic discussed in detail later in this section.

Phase

The square wave tests also provide good estimates of the phase response of

the AOBHs (Figure A10) at frequencies below about 50 Hz. Indeed, attempts to

obtain the phase response solely from the amplitude response using the method of

Bode diagrams [e.g., Close, 1966] were unsuccessful, since this method requires

accurate measurements of the amplitude response at frequencies well outside the

instrument passband.

Uncertainties

Prior to each deployment the AOBH undergoes an extensive series of checks

and adjustments, the procedures for which are well established and documented.

Indeed, the thoroughness with which they have been routinely performed, together

with the quality of the instrument design, accounts for the consistently high data

return rates achieved for these instruments. Since the response tests were

performed nearly eighteen months after the tomography experiment, and several

instruments were deployed elsewhere in the intervening period, those steps in the

instrument preparation pertinent to the response were also performed prior to the

tests. In particular, there are three dashpot adjustments, controlling the tape speed,

the bias current and the head current, which affect the response of the instrument.

We discuss below the uncertainties introduced by these adjustments.

Bias Current
Direct current tape recorders require the addition of a high frequency bias current

to the signal prior to recording (Figure Al). The AOBHs use a bias current at 5

kHz, a frequency that is readily available from the chronometer and which is well

above the data frequency band. The bias current levels are set prior to each

deployment by attaching a current meter to the output of each head driver amplifier

and adjusting a dashpot until the peak to peak amplitude viewed on an oscilloscope

is 4 ma. This adjustment is relatively straightforward to make accurately and is

probably good to within better than ±10%. Systematic errors might arise from

MIN11111ill'i
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inaccuracies in the sensitivity of the current meter, but since the same current meter
was used for all deployments they are presumably be invariant between cruises. In
Figure A12 the effect upon the amplitude responses of AOBHs 3 and 6 of reducing
the bias current amplitude by 10% is shown. In both cases the recorded amplitude
increases by about 10% at all frequencies. There is no resolvable change in the
shape of the amplitude response.
Head Current

The amplitude levels of the data signal output from the head driver amplifier
(Figure Al) are adjusted prior to each cruise using a 25 Hz test signal in parallel
with the hydrophone. For the low-frequency, low-gain channel a 4-mV input signal is
used, and the dashpot adjusted until the head driver current amplitude is 0.5 mA.
This is a very difficult adjustment to make accurately. First, the head current is
added to the higher amplitude bias current, so the amplitude level must be read from
variations in the bias current envelope. Second, with the current meter and
oscilloscope both set to maximum gain, the current meter sensitivity is only 1 mA
per division (-1 cm). In consequence this adjustment is probably accurate to no
better than ±20 %. As is the case for the bias current adjustment, additional
systematic errors are presumably largely invariant between deployments. The effect
upon the amplitude response of reducing the head current 20% is also shown in
Figure A12. The amplitudes recorded are similarly reduced by about 20% with no
resolvable change in the shape of the amplitude response.
Tape Speed

Prior to each cruise the tape recorder undergoes a complete overhaul. Just
before deployment the tape speed is adjusted so that the tape capstan flywheel
revolves once every 16 s. Figure A12 shows the change in amplitude response
resulting from a 10 % reduction in the tape speed. At lower frequencies the effect is
small, but at higher frequencies there is a marked decrease in amplitudes by up to
25%. Thus, large variations in tape speed would significantly increase the
uncertainties accompanying corrections for the instrument response. While the
initial tape speed can easily be set to within ±1 %, it is possible that the tape speed
may vary significantly during a deployment, due the varying amount of tape on supply
and take-up reels, the lower temperatures at the seafloor, and the reduction in
battery voltages during the deployment. The effect of changing the tape-driving d.c.
voltage is shown in Figure A13. Provided the voltage is higher than about 13 V the
tape speed is not sensitive to the driving voltage. For most deployments, including
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all those in the tomography cruise, the battery voltages are above this threshold

immediately before a deployment but upon recovery are at values between 12 and 13

V. Such a drop in voltage should result in a tape speed reduction of a few percent.

However, the effect of the progressive redistribution of tape and of the lower

temperatures found on the seafloor are harder to estimate.

Fortunately, a precise measure of the tape speed may be made using the time

code channel. Since the Crown and Honeywell tape speeds and the digitization rate

are constant, all variations in the number of digitized samples per second of time

code can be directly related to tape speed variations. Moreover, since the

instrument is recording time code within minutes of the final tape check, the absolute

tape speed can also be estimated. Figure A14 shows tape speeds during the

tomography cruise for AOBH 1 and AOBH 4. Both instruments show tape speed

variations of only a few percent. Indeed, the 7.5% speed variation observed for

AOBH 4 is the larger than all the other instruments. AOBH 4 shows a smooth

decrease in tape speeds, a trend that is characteristic of most other instruments and

is presumably a result of the decrease in tape driving voltage. AOBH 1 has a nearly

constant tape speed, except for six hours of increased speeds near the start of the

deployment and a steady increase in speed over the last two days, an increase that

is observed on several other instruments. While the observed tape speed changes

should produce perceptible changes in instrument response the resulting errors in t*

measurements should be small (5 0.002 s).

Reproducibility

To test the reproducibility of the measured responses the full set of sine- and

square-wave calibration tests were repeated for AOBH 1 and AOBH 3 without

recalibrating the instruments. The 10-mV amplitude responses are shown in Figure

A15. In both cases there is good agreement (within about 10 %) in the shape of the

response, with the largest discrepancies occurring at higher frequencies. However,

there are discrepancies of up to 50 % in the overall amplitude levels.

The cause of this large effect is a change in the relative alignment of the AOBH

record and Crown playback heads, since for a direct-recording tape recorder a

relative misalignment of the heads will result in a decrease in the output amplitudes.

As will be shown in the next section, the calibration pulse amplitudes and time code

amplitude can be used to correct for this effect.
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Calibration Pulses and Absolute Amplitudes
All measurements of absolute amplitudes using the AOBH must be referenced

to the calibration pulses. While accurate measurements of absolute amplitude are
not explicitly used in this thesis, approximate values are required to determine
whether individual waveforms saturated the instrument. Moreover, absolute
amplitudes may be required for future work. Therefore, a method by which precise
estimates of absolute amplitude may be obtained using the calibration pulses is

presented in some detail below.

During each deployment, four 2-s-long calibration pulses are recorded towards
the end of each hour, at times 58:45, 58:55, 59:45, 59:55 (hours:minutes). Figure
A16 shows the circuit used to generate the calibration pulse from a 0 to 5 V (peak to

peak) 10 Hz square wave. The output is introduced across resistor R3, which is in
series with the hydrophone (see R3 in Figure A3). Ignoring the initial d.c. offset of
the calibration pulse the output of the calibration circuit is

Vou= R3 Vin 3.7 Vin

(R2 + R3 + R4  R21 (2.1 x 10-6 + 10
+sC 22 s (A12)

At 10 Hz, the principal frequency of the calibration pulse, the amplitude is 220 pV
(peak to peak). Figure Al7a shows the predicted form of the recorded calibration
pulse.

To check the theoretical amplitude, the calibration pulse was recorded during the

response tests for each instrument. This was achieved by reconnecting the
preamplifier and placing a shielded 0.012-p.F capacitor across the hydrophone input
sockets to mimic the impedance of the hydrophone. Figure A17b shows the result
for AOBH 4. The predicted and the observed form of the pulse are in excellent
agreement. An estimate of the calibration pulse amplitude can be obtained by
comparing the amplitude at 10 Hz with the result of the 10-Hz 2-mV sine wave test
amplitude, after correction for the preamplifier gain. Measured amplitudes, which
range between 190 and 230 pV, are listed in Table A4. Considering the
uncertainties arising from the direct recording system and the tolerances of electronic
components (± 5%), these amplitudes are in good agreement with the theoretical
predictions.

The calibration pulse amplitudes were also monitored throughout the
tomography experiment for each instrument. Figure A17c shows a typical example.
The signal-to-noise ratio is only about 2. A least squares inversion algorithm was
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used to fit a 10-Hz sine wave to each pulse. The method has the advantage that it is

robust in the presence of noise, and the rms least squares misfit can be used to
obtain a formal linearized uncertainty. The uncertainties for individual

measurements are generally of the order of 5 %. In Figure A18, calibration pulse

amplitudes are plotted against time for AOBH 4. Although the specific form of the

plot varies between instruments, several features are common to all instruments.

Calibration pulse amplitudes show very large variations during the experiment,

particularly during the first few days. Amplitude levels show gradual trends

punctuated by large, rapid (perhaps instantaneous) changes. As noted above, such

variations result from changes in relative alignment of the instrument record and

Crown playback heads. Sudden amplitude jumps sometimes coincide with changes

in the Honeywell transcription tape, a time when Crown tape-head alignments are

likely to change because the 1/4" tape is manually rewound a few turns. In other

cases sudden changes may originate during acquisition. Contributions to

progressive changes may arise from changes in tape tension, from varying amounts

of tape on the reels, and from slack in the tape guiding mechanism.

The most obvious method to interpolate between calibration pulse amplitudes is

to fit a smooth curve to the data. However, such methods ignore short-term

variations in the data. To measure the magnitude of such variations the mean

squared amplitude change S2 (or variance) over a time interval AT can be defined
N
Y [ai(t) - ai(t+AT)] 2

(SAT)2 - i=1
N (A 13)

where a(t) is the calibration pulse amplitude at time t, and N is the number of pairs

of calibration pulses separated by AT. Because of the regular spacing of calibration
pulses this quantity can only be evaluated for a limited number of values AT. In

Table A5 values of S are presented for time intervals of 10 s, 1 minute, and 1 hour

together with the rms uncertainty of measurements of calibration pulse amplitudes.

In the absence of any variation of amplitude with time all these quantities should

have the same value. However, in all cases values of S obtained for a 10-s interval

are larger than the measurement uncertainty. Moreover, in most cases S values are

significantly greater for a AT=1 hour than for AT =10 s or 1 minute. These results

suggest that appreciable variations in absolute amplitude scales occur over time

intervals less than 1 hour, variations that cannot be modelled by fitting a smooth

curve to the calibration pulse data.
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Fortunately, the time code amplitude can be used to interpolate between
calibration pulses. Since tape head misalignments are presumably largely invariant
between channels, the resulting amplitude fluctuations should be the same on all
channels. The time code comprises a 25 Hz signal that modulates between high and
low amplitudes twice a second (Figure Al7d). The amplitude of the high amplitude
portions of the time code can be measured precisely over a small time period
enclosing the calibration pulse. A linear relationship relating time code amplitudes

to calibration pulse amplitudes may be determined and used to obtain estimates of
calibration pulse amplitudes at the desired time.

For the tomography experiment, the mean of the four calibration pulse
measurements at the end of each hour was fitted to the mean high-amplitude time
code amplitude (taken over 5 s) by minimizing the rms misfit obtained from

a(t) = b(t) (C +Dt) (A 14)

where b is the time code amplitude and C and D are the fitting parameters. The

quality of the fit can be assessed by evaluating the normalized value x2

N ai(t) - bi(t)(C+Dt)]2

X2 
Gi

N-2 (A15)
where N is the number of data points used. In most cases X2 values close to unity
are obtained from a single fit to each day of data. Large values of X2 can invariably
be reduced significantly by using two fits on either side of an obvious discontinuity.
Mean values of X2 obtained for each instrument are presented in Table A5.

The process is illustrated for AOBH 4 in Figure A19. The calibration
amplitudes predicted for shot times are also shown. It is immediately apparent that
there are rapid fluctuations in the predicted calibration pulse amplitudes, variations
that are severely aliased by the available calibration pulse amplitudes. The quality
of the fit leads to the conclusion that such variations are real and not an artifact of
unrelated fluctuations in the time code amplitude. Assuming that equation (A15)
correctly models all variations in time code amplitude fluctuations, this relationship
would imply an error in time code derived estimates of calibration pulse amplitude of
less than 1 %. Since mean values of X2 do exceed unity slightly, this assumption is
not completely justified. However, the uncertainties are clearly considerably smaller
than values of 5-10% obtainable from a smooth fit to the data.
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Conclusions
The preceding section has detailed how the amplitude response and absolute

amplitude levels have been determined for the AOBH. The procedure is too complex
to permit the calculation of a precise uncertainty in the amplitude response.
However, the tests suggest that the relative amplitudes at widely spaced
frequencies should be reproducible to an accuracy of a few tens of percent. Thus, the
correction for the instrument power response should be accurate to within a factor of

two which for a frequency range 10-40 Hz suggests a maximum systematic error in

t* of 0.004 s. The results also suggest that instrument saturation and spectral

leakage may further bias t* for high-amplitude and highly attenuated waveforms,

respectively.

DIGITAL OCEAN BOTTOM HYDROPHONE
Introduction

The WHOI DOBH [Koelsch et al., 1982] is similar to the AOBHs in its

mechanical configuration, employing an identical hydrophone sensor and recovery

and release system. The recording electronics, however, are radically different. the

DOBH is microprocessor controlled, recording digitally the outputs of one high

frequency and up to four low-frequency channels on a commercially available 16.7-

Mbyte cartridge tape. Both hardware and software are designed to permit

operational flexibility. A modular design allows sensors, amplifiers and antialiasing

filters to be changed with little effort prior to each deployment. Within a single

deployment the instrument may be programmed to record in a variety of modes.

Start and end times delimit tasks, during which a number of parameters control the

mode of acquisition (event detect or preset), the record length and sample rate of
each channel, and the nature of self-calibration tests.

For the tomography experiment all instruments operated in an event-detect

mode. However, it was necessary to specify four tasks per instrument to allow for

dormant periods in the later part of the experiment during which airgun refraction

data could be recorded by the AOBHs without filling the DOBH cartridge tapes. The

high-frequency channel was bandpassed filtered from 300 to 500 Hz, and an envelope

threshold algorithm was used to detect events, triggered by the arrival of the water

wave. A short 2-s record of the modulated, integrated signal was recorded to allow

for subsequent determination of the water wave arrival time. Simultaneously a

longer 30-s record of low-frequency data commencing 28 s before the water wave

-MMININNIhild MINNIMINIM1111
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arrival time was recorded. A sample rate of 250 Hz was used together with a 80-Hz
low-pass filter. A system self-calibration test, comprising 12 1-s, 0.9-mV (peak to
peak) sine waves logarithmically spaced between 1 and 2000 Hz, was performed at
the start of each task and subsequently after every 100 events.

Unlike the AOBH the frequency response of the low-frequency channel of the
DOBH may be predicted by a series of theoretically derived equations [D. E.
Koelsch, pers. comm., 1989]. The self-calibration tests serve both as an independent
check on the validity of these equations and a precautionary test to detect
instrument malfunctions.

Theoretical Response
Figure A20 is a schematic flow chart showing the major components of the low-

frequency channel. The instrument response I(s) may be written as the response of
a series of reactive networks

I(s) = fi(s) . f2(s) . f3 (s) . f4(s). f5(s) . f 6(s) (A16)

where s is the complex frequency and transfer functions fi(s) are defined as follows:

fi(s) = Hydrophone response

f2(s) = Hydrophone capacitance and preamplifier input network

f3(s) = Preamplifier output and antialias filter input

f4 (s) = Antialias filter

f5 (s) = Gain ranging input

f6 (s) = Gain ranging amplifier

The response of each component [D. E. Koelsch, pers. comm., 1989] is described
below.
Hydrophone Response

The hydrophone sensor used in the DOBH is the same as that used in the
AOBH. The response is given by equation (A2).
Hydrophone Capacitance and Preamplifier Input

Three different preamplifiers were used in DOBH units during the tomography
cruise. In each case the hydrophone capacitance and preamplifier input form a high-
pass filter with a configuration identical to that used in the AOBH (Figure A3)
except that the capacitor C2 is absent. The response is given by equation (A3).
Component values and filter parameters for each DOBH are presented in Table A6.
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The preamplifier unit in DOBH 11 was designed for the source monitoring

experiment and has a gain about 1/100 that of the other units. The preamplifier in

DOBH 10 has a characteristic frequency of 1 Hz while for other units it is about 5
Hz.

Preamplifier Output and Filter Input

The output of the preamplifier and input into the filter section (Figure A21)
forms a simple RC network whose response is

f3(s) = G s/i
1+s/M (A 17)

where the gain is given by

G = - 0.989
Ri + R2

and the characteristic frequency is

M = 1 = 11.0 s-1
(R1 + R2)C

Filter Section

The design of the DOBH allows the use of a variety of low-pass and band-pass

antialias filters. For all deployments during the tomography cruise a 6-pole, 2-dB-

ripple, low-pass Chebyshev filter with a cut-off frequency of 80 Hz was used. This

filter is approximated by three cascaded, 2-pole Sallen and Key filters whose

network is shown in Figure A22. The response of each two-pole filter may be

written as

fSK= (1 +2s +2
6 6 2J (A18)

where the characteristic filter frequency is given by

i3= 1/
(RiR 2CiC2)u2  (A19)

and the damping factor by

(R1 + R2) C 2

(4RiR2C1)1/ 2  (A20)

The component values and corresponding filter parameters for the three filters used

to construct the low-pass filter are listed in Table A7. The response of the whole

filter is simply
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3

f4(s) = 1
i11+ 2(is + S2

Mi Mi2 /(A2 1)
where i is the index of the Sallen and Key filter.
Gain-Ranging Amplifier Input

The input to the gain ranging amplifier (Figure A21) is a simple RC network
whose response is

f5(s) = s/2
1 + s/t (A22)

where

a = 1- =10.0 s-1
RC

Gain-Ranging Amplifier and Analog-to-Digital Converter
The gain-ranging amplifier chooses between the output of four simple transistor

amplifiers separated by 12 dB and the unamplified signal. The precise gains
calculated from the resistor values are 4.007, 16.07, 64.37, 256.2 (±1 %). After gain
ranging the signal passes through a sample-and-hold circuit into a 12-bit ±10 V
analog-to-digital converter. During data reduction the output of the analog-to-digital
converter is normalized with respect to the maximum gain of 256. Thus, the
response of this section may be written in terms of digital units (du) per volt

f6(s) = 256 x 4096 = 5.243 x 104 d.u./V
20 (A23)

To prevent overloading of the gain-ranging amplifiers diodes are included on the
inputs. As a result, the maximum amplitude on the lowest gain setting is clipped at
about one half the saturation amplitude of the digitizer.

Figure A23 shows the total theoretical amplitude and phase responses of
DOBH 15 derived from equations (A2), (A3), (A16), (A17), (A21), (A22), and
(A23). The low-frequency cutoff results from the preamplifier input and output
circuits and the gain- ranging amplifier input while the response at higher frequencies
is controlled by the Chebyshev low-pass filter.

Calibration Tests

The calibration signal is generated using a 4410 chip and consists of twelve 1-s-
long sine waves with frequencies spaced at factors of 2 between 0.997 and 2041 Hz
and a nominal peak-to-peak amplitude of 1 V. This signal is attenuated to 0.894 mV
(peak to peak) using the circuit shown in Figure A24 and is introduced in series with
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the hydrophone. Due to a software oversight, calibration tests recorded within a
task were conducted immediately after the preceeding event. As a result, these

tests are swamped by seismic reverberations within the water column. Thus, for

each instrument only the four calibration tests recorded at the start of each task may

be used to estimate the instrument response. These were recorded at 0:600 GMT

on 24 January, 30 January, 31 January and 1 February (the explosive shoots were

deployed in eight sessions between 24 and 31 January).

Figure A23 shows the results along with theoretical predictions for DOBH 14.

The primary features are common to all instruments. The amplitudes of the all but

the first calibration test always agree within a few percent or better. The first test,

however, recorded consistently lower amplitudes than succeeding tests;

discrepancies listed in Table A8 vary between 10 and 30% (1-3 dB). The cause of

this is unknown. While some components of the DOBH may be temperature-

sensitive, the first calibration test always occurs over 40 hours after deployment, a

period that should easily allow the instrument to reach thermal equilibrium. Since

most explosive shots occurred between the first and second tests which are

separated by 6 days, there is a dilemma as to which better represents the

instrument response at the time of the shots. Without an understanding of the cause

of the effect this question cannot be answered unambiguously. However, the lower

amplitude levels are a transient feature and there is no resolvable increase in

amplitude levels after the second test. Thus, it is reasonable to infer that the time

constant for the persistence of lower amplitude levels is much less than six days and

that the later tests better represent the instrument response for the majority of the

tomography experiment.

A comparison of the calibration test results with the theoretical predictions

(Figure A23) shows that there is excellent agreement between the shapes of the

responses. Within the instrument pass band the measured and predicted ratios of

the responses at two frequencies never differ by more than about 10% (1 dB).

However, there is a discrepancy in the absolute amplitude levels. The later

calibration tests yield sensitivities (Table A8) between 70% and 85% of the

predicted value, while for the first tests the discrepancy is even larger. There are a

number of possible effects that together may account for this discrepancy. First, the

4410 chip used to generate the calibration pulse has specifications which permit a

tolerance in output voltage at 25*C of ±12 %. At 4*C there may also be a systematic

offset from the 25*C levels though the temperature specifications suggest it will be
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small. The theoretical response may be in error due to uncertainties in component

values. However, since all critical resistors have tolerances of ±1%, and gain

primarily comes from two components, the preamplifier and the gain-ranging

amplifier, component value errors should not alter the output amplitude by more than

a few percent. A significant systematic bias towards lower measured amplitudes

may be introduced during multiplexing and analog-to-digital conversion. Sample-and-

hold circuits are used to pass samples from each channel to the digitizer in turn. If

the RC time constant of this circuit does not greatly exceed the sample interval then

a significant but constant fractional loss of signal amplitude will occur prior to

digitization. There is no straightforward method to measure the magnitude of this

effect.

Conclusions

The DOBH is a sophisticated digital instrument for which a theoretical
approximation to the response may be calculated. The shape of this response
agrees very well with the results of self-calibration tests though the measured

amplitude levels are about 25 % lower than those predicted. By using the theoretical

response shape and calibration test amplitude levels, the absolute amplitude
response can be obtained to the accuracy of about ±10%.

DIGITAL OCEAN BOTTOM SEISMOMETER

The MIT OBS [Mattaboni and Solomon, 1977; Duschenes et al., 1981] is an

event-triggered digital instrument that records the output of three orthogonal 4.5-Hz
seismometers deployed in an external geophone package. The response has been
described in detail by Trdhu [1982]. Since that time the instrument has undergone
only minor modifications comprising the replacement of the geophones and a doubling
of the digital unit voltage.

Following equation (3.6) of Trihu [1982] the complex spectrum of geophone
displacement M in cm/s may be related to the recorded seismogram D by

M(s) = 0.0024 D(s)

103 - s V(s) F(s)
256 (A24)

where g is the automatically controlled gain (which for all explosive shots recorded
by the tomography experiment was 256), V is the geophone response, and F the
filter board response.
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The geophone currently in use in the MIT OBS is a Geo Space HS-1. The

transfer function for the geophone may be written

V(s) = As 2

W + s2 + 2bts(Or (A25)

where or = 28.3 radians/s is the natural resonant frequency of the geophone and A

and bt are dependent upon the geophone properties and are given by

bt= bo +
20rm(R+Rc) (A26)

A =GR
R + Re (A27)

where bo = 0.27 is the open circuit damping, G = 0.41 V/n/s is the intrinsic

sensitivity, m = 28.5 g the moving mass, Rc = 900 Q the coil resistance, and R =

1800 Q the shunt resistance. These values yield bt = 0.656 and A = 0.273 V/cm/sec.

The low pass filter used in the OBS is an approximation to a 6-pole Chebyshev

filter with a cut off frequency of 30 Hz and a passband ripple amplitude of 2 dB. The

response is

F(s) = 1.8776
(s/me)2 + 1.1722 s/we +11 (A28)

where the cut off frequency mo=193.4 radians/sec. The amplitude response (Figure

A25) is characterized by a rapid drop in amplitudes above 30 Hz.



Table Al. Component values and filter parameters for the AOBH preamplifiers

Nominal component values Filter parameters

R1, R2, R3, R4, R5, CH, C1, G, G2 i,

Instrument MQ MG Q k kg pF gF Hz

1 1.50 10.2 100 11.0 100 1.0 0.012 0.87 9.9 5.6

2 1.50 10.2 100 11.0 100 1.0 0.012 0.87 10.4 5.6

3 1.50 40.0 100 11.0 100 1.0 0.012 0.96 10.2 1.6

4 1.00 10.2 100 11.0 100 1.0 0.012 0.91 9.9 5.7

5 1.50 10.2 100 11.0 100 1.0 0.012 0.87 9.9 5.6

6 1.50 10.2 100 11.0 100 1.0 0.012 0.87 10.1 5.6

7 1.50 10.2 100 11.0 100 1.0 0.012 0.88 10.3 5.4

Components symbols correspond to the circuit diagram shown in Figure A3, while the filter parameters are

those of equation (A3). The component values presented are the nominal values (±5 % for resistors and ±10 %

for capacitors). The filter parameters are calculated using accurate measurements of all resistor values (±i%).



Table A2. Amplitude responses of the AOBHs determined from sine wave tests

Normalized Amplitude at Frequency, Hz
Input

Voltage,
Instrument mV 1 2 3 4 5 7 10 15 20 30 40 50 60

0.39 0.88

0.39 0.85

0.50 0.89

0.41 0.86

0.41 0.90

0.52 1.00

0.46 0.89

0.45 0.85

0.52 0.97

0.46 0.92

0.46 0.93

0.53 1.03

1.05

1.00

1.04

1.04

1.05

1.15

1.04

1.00

1.12

1.05

1.06

1.21

- 1.07

- 1.05

- 1.09

1.08 1.10

1.09 1.08

- 1.18

1.05

1.07

1.14

1.10

1.10

1.23

1.08

1.08

1.06

1.10

1.10

1.19

1.08 1.00 0.98 0.89 0.79 0.64 0.41 0.21

1.04 1.00 0.92 0.88 0.73 0.61 0.44 0.22

- - 0.78 0.69 0.57 0.43 0.29 -

1.04

1.06

1.12

0.96

0.99

1.07

1.10

1.10

1.12

1.00 0.89 0.78 0.51 0.19 -
1.00 0.89 0.76 0.47 0.24 -

1.00 0.80 0.63 0.40 0.21 -

1.00 0.85 0.79 0.61 0.43 0.21 -
1.00 0.88 0.82 0.58 0.40 0.14 -
1.00 0.84 0.66 0.53 0.40 0.22 -

1.00 0.93 0.87 0.65 0.51 0.34 -
1.00 0.93 0.86 0.71 0.52 0.34 0.18

1.00 0.88 0.75 0.63 0.51 0.36 0.17



Table A2. continued

Input Normalized Amplitude at Frequency, Hz
Voltage,

mV
Instrument 1 2 3 4 5 7 10 15 20 30 40 50 60

5 2 0.46 0.97 1.11 1.14 1.14 1.11 1.00 0.91 0.80 0.58 0.36 - -

10 0.49 0.96 1.10 1.15 1.13 1.08 1.00 0.91 0.81 0.56 0.38 0.18 -

50 0.58 1.06 1.18 1.21 1.20 1.14 1.00 0.81 0.69 0.50 0.32 0.19

6 2 0.39 0.80 0.95 0.99 1.01 1.06 1.00 0.93 0.85 0.74 0.62 0.42 -

10 0.44 0.86 1.01 1.06 1.09 1.06 1.00 0.96 0.91 0.78 0.60 0.45 0.21

50 0.49 0.95 1.07 1.12 1.11 1.06 1.00 0.80 0.73 0.61 0.49 0.28 -

7 2 0.56 1.15 1.25 1.33 1.27 1.19 1.00 0.80 0.65 0.38 - - -

10 0.46 1.10 1.27 1.28 1.25 1.17 1.00 0.79 0.64 0.38 0.20 - -

50 0.58 1.14 1.26 1.28 1.27 1.16 1.00 0.77 0.63 0.38 0.18 - -

These results are normalized to 10 Hz and do not include the preamplifier response. The signal generator used for the

tests is adjustable to within <10 % of the nominal frequencies given above. The amplitudes above have been corrected

to the nominal frequencies using the slope of a fourth order polynomial fit to the logarithms of the data.



Table A3. Saturation characteristics of the AOBHs at 10 Hz determined from the sine wave tests

Normalized amplitude at input voltage, mV

Frequency,
Instrument Hz 2 5 10 25 40 50 70 100 150 300

1 10.2 2.00 5.08 10.0 23.2 33.2 - 41.9 42.0 42.0 -

2 10.2 2.00 4.81 9.52 21.9 - 35.7 - 39.9 40.2 39.0

3 10.0 2.00 - 9.7 22.9 - 36.1 39.3 40.4 41.2 40.0

4 10.2 2.00 4.92 9.54 22.3 34.3 37.9 44.5 45.9 44.5 43.4

5 10.2 2.00 5.05 9.79 22.3 33.9 38.0 43.2 44.5 44.6 44.0

6 10.2 2.00 4.60 9.06 22.0 30.7 34.9 38.5 38.9 38.2 37.2

7 10.2 2.00 4.85 9.76 23.8 35.7 41.5 50.3 52.2 52.8 53.9

Recorded amplitudes are normalized to a value of 2.00 for an input voltage of 2 mV.
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Table A4. Measured AOBH calibration pulse amplitudes

Amplitude, Formal Uncertainty,
Instrument pV pV

1 196 4
2 205 4

3 204 4

4 230 4

5 192 4

6
7 201 4

Due to an experimental oversight no value was obtained for

AOBH 6. The amplitudes and formal uncertainties are obtained by
fitting a 10-Hz sine wave to a recorded calibration pulse using a

least squares inversion algorithm.
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Table A5. Fractional rms uncertainty of calibration pulse amplitude measurements,

the fractional rms time variation of calibration pulse amplitude measurements, and

the misfit X2 for linear relationships between calibration pulse and time code

amplitudes for the AOBHs

Measurement rms amplitude variation over
Uncertainty Time code fit

Instrument rms 10 s 1 minute 1 hour x2

1 0.037 0.052 0.070 0.093 2.11

2 0.027 0.035 0.046 0.065 1.16

3 0.057 0.086 0.089 0.088 0.86

4 0.037 0.058 0.065 0.096 2.08

5 0.031 0.038 0.070 0.115 1.40

6 0.039 0.052 0.078 0.107 0.69

7 0.028 0.039 0.051 0.062 1.57

The rms measurement uncertainty and rms variation of calibration pulse amplitudes

with time are normalized to the calibration pulse amplitudes. The rms variation of

calibration pulse amplitudes with time is calculated according to equation (A13). The

misfit x2 of the time code and the calibration pulse amplitudes is calculated for the

whole deployment using equation (A15) with parameters determined separately for

each day.



Table A6. Component values and filter parameters for DOBH preamplifiers

Component values Filter parameters

CH, C1,
pF gFInstrument MO MU

G2

Hz

10 0.1 10.2 100 11.0 100 1.0 0.012 0.990 10.09 6.56

11* 2.1 0.02 100 11.0 100 1.0 0.012 0.00943 10.09 31.87

12, 13, 14, 15 0.1 2.0 100 11.0 100 1.0 0.012 0.952 10.09 32.22

* This preamplifier was used on DOBH 14 for the source monitoring experiment. Component specifications are ±1 % for

resistors and ±2 % for capacitors.



Table A7. Component values and filter parameters for three 2-pole Sallen and Key filters used to

approximate the 6-pole Chebyshev filter in the DOBH

Component values Filter parameters

2-pole RI, R2, R3, C1, C2, E,

filter number kh ki pF pF Hz

1 56.2 56.2 10.0 0.2 0.0628 159 0.560

2 56.2 56.2 10.0 0.276 0.0083 371 0.173

3 42.2 42.2 10.0 1.0 0.0024 484 0.049

Component specifications are ±1 % for resistors and ±2 % for capacitors.
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Table A8. Absolute amplitude levels obtained from the DOBH self-calibration test

Sensitivity as a fraction of the theoretical value

Instrument 1st test 2nd, 3rd, and 4th tests

10 - 0.71 (±0.01)

12 0.77 0.86 (±0.06)

13 0.63 0.77 (±0.01)
14 0.56 0.79 (±0.01)

15 0.62 0.72
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FIGURE CAPTIONS

Figure Al.

Figure A2.

Figure A3.

Figure A4.

Figure A5.

Figure A6.

Figure A7.

Flow chart showing the main components of the recording system for

the low-frequency, low-gain channel on the AOBH.

Flow chart showing the analog-to-digital conversion scheme used to

obtain seismic records from the AOBH. An alternative scheme that

was used to obtain P wave arrival times and for calibration tests is

also shown (see text).

Circuit diagram for the AOBH preamplifier. The calibration pulse is

introduced across resistor R3. Component values are listed in Table

A1.

Amplitude responses for (a) AOBH 1 and (b) AOBH 7 obtained from

2 mV (pluses and solid), 10 mV (crosses and dashed), and 50 mV

(circles and dot-dashed) sine wave tests. The curves are obtained

using a fourth order polynomial fit to the data. The results are divided

by the input voltage and normalized with respect to the 2 mV, 10 Hz

result.

Sine wave saturation of characteristics of AOBH 1 at 5 Hz (pluses

and solid), 10 Hz (crosses and dashed), 20 Hz (circles and dot-

dashed) and 40 Hz (asterisks and dotted). (a) The recorded

amplitude as a function of input voltage. (b) The sensitivity, obtained

by dividing the recorded amplitude by the input voltage, as a function

of input voltage. Both plots are normalized to an input voltage of 2

mV.

Examples of recorded power spectra (solid) for high-quality 20-mV

sine wave inputs with frequencies of (a) 10 Hz and (b) 20 Hz.

Ambient noise levels are also shown (dashed).

Distortion levels D determined using equation (A7) for AOBH 1 at

(a) 5 Hz, (b) 10 Hz, (c) 20 Hz, and (d) 40 Hz. The solid lines show
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Figure A8.

Figure A9.

Figure A10.

Figure A11.

the spectral leakage to frequencies above a 2-Hz-wide band centered

on the input frequency, while the dashed lines show spectral leakage

to all frequencies outside the frequency band. Ambient noise levels

are also shown (dotted lines).

Predicted effects of the measured spectral leakage upon estimates of

t* under the assumption that spectral leakage is a linear process. The

expected values of t* are plotted against the input t* value for

estimates obtained over the frequency intervals 10-20, 10-30, 10-40,

and 10-50 Hz (solid). The expected t* estimate is also shown for a

frequency interval constrained to include recorded powers no less than

1/1000 the largest recorded spectral power (dashed).

Recorded amplitude ratio of 5 Hz and 20 Hz signals plotted against

the input amplitude of the 5 Hz signal, for an input signal comprising 5

and 20 Hz sine waves with an amplitude ratio of 20.

Series of plots illustrating the technique used to obtain the impulse

response of the AOBH from the response to a low-frequency square

wave. (a) A portion to the times series recorded by AOBH 1 for a 0.3
Hz square wave input with a 12.6 mV peak-to-peak amplitude. (b)
Smoothed amplitude and (c) phase spectra obtained from 10 cycles of

the square wave response. (d) Time series obtained from an inverse
fast Fourier transform of (b) and (c). (e) Time series, (f) amplitude
spectrum, and (g) phase spectrum for the impulse response of AOBH
1 obtained using equation (A11).

Amplitude responses estimated for (a) AOBH 1, and (b) AOBH 7
using both square wave (solid) and sine wave (dashed) tests. The

sine wave results are shown for peak-to-peak input amplitudes of 2,

10 and 50 mV. The square wave results are shown for peak-to-peak

input amplitudes of 2, 5, 10, 25, 50, and 100 mV (AOBH 1 only) and

are obtained by multiplying the responses obtained from square
waves with 1.26 times the stated amplitude.
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Figure A12.

Figure A13.

Figure A14.

Figure A15.

Figure A16.

Figure A17.

Figure A18.

The effect on the 10-mV sine wave amplitude response of errors in

bias current, head current, and tape speed adjustments for (a) AOBH

3 and (b) AOBH 6. The effect of reducing the bias current by 10 %

(circles and dot-dashed), the head current by 20 % (asterisks and

dotted), and the tape speed by 10 % (crosses and dashed) are shown

together with the initial amplitude response (pluses and solid).

Tape speed as a function of the tape driving d.c. voltage normalized to

the value at 13 V.

Tape speed normalized to the speed at the time of deployment for (a)

AOBH 1 and (b) AOBH 4 plotted against time (Julian days) for the

tomography experiment. Values are obtained from digitization rate

observed during analog-to-digital conversion.

Repeated measurements of 10-mV amplitude response for (a) AOBH

1 and (b) AOBH 3 derived from sine wave tests (pluses and solid)

and square wave tests (dashed ). Tests were repeated after

reloading the 1/4" tape but without recalibrating the instrument.

Circuit used to generate the AOBH calibration pulse; the circuit is

introduced in series with the hydrophone. The resistor R3 is the same

as R3 of Figure A3.

Calibration pulses for AOBH 4: (a) The theoretical recorded

calibration pulse. The calibration pulse predicted by the circuit in

Figure A16 has been convolved with the instrument response

normalized to unit amplitude at 10 Hz. (b) A calibration pulse

recorded during the instrument response tests. (c) A typical

calibration pulse recorded during the tomographic experiment. (d) 25-

Hz time code recorded simultaneously with the calibration pulse

shown in (c).

Calibration pulse amplitudes at 10 Hz plotted against Julian day for

AOBH 4. (a) All measured amplitudes are shown as pluses. (b)
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Figure A19.

Figure A20.

Figure A21.

Figure A22.

Figure A23.

Uncertainties obtained for groups of four calibration pulses at the end
of each hour are shown as error bars. Dashed lines show the times

the Honeywell tape was changed during transcription.

Calibration pulse amplitudes predicted from time code amplitude

variations for AOBH 4. For each day one set of parameters (except

for Julian day 26 where two sets are calculated) is determined for the

linear relationship between calibration pulse and time code amplitudes

expressed in equation (A14). The mean amplitudes and uncertainties

for the four calibration pulses at the end of each hour are shown as

error bars connected by a dotted line. The calibration pulse

amplitudes predicted from the time code amplitude using equation

(A14) are shown both for the times of calibration pulses (open circles)

and the times of the explosive shots (pluses).

Flow chart showing the reactive components of the recording system

for the low-frequency channel on the DOBH.

Circuit diagram for the preamplifier and filter section. Component

values are: R, = 103 Q, R2 = 9.0.9 k9, C = 1pF. The portion of the

circuit outside the dashed box has the same configuration as the input

to the gain-ranging amplifier, which has component values: R2 = 105

n, C = 1 F.

Circuit diagram the two-pole Sallen and Key filter used to construct

the 6 pole, 2-dB-ripple, low-pass Chebyshev filter used in the DOBH

during the tomography experiment.

Theoretical response and calibration test responses for DOBH 14

using (a) logarithmic and (b) linear axes. The theoretical response is

shown in both plots as a solid line. In (a) the first test (06:00 GMT

24 January) is shown as a dot-dashed line while the three later tests

(06:00 GMT 30, 31 January, and 1 February) are shown as dashed
lines. In (b) the third test is plotted with error bars after

normalization to the theoretical amplitude levels.
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Figure A24. Circuit used to generate the DOBH calibration test signal; the circuit
is introduced in series with the hydrophone. The resistor R3 is the

same as R3 of Figure 3.

Figure A25. Amplitude response of the MIT digital OBS.
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APPENDIX B

THE SPECTRAL ACCURACY OF THE FINITE-DIFFERENCE SOLUTIONS

NUMERICAL STABILITY

Evaluation of the accuracy of finite-difference seismograms is an important

problem that has received considerable attention [e.g., Alford et al., 1974; Kelly et

al., 1976; Stephen, 1983, 1988]. The formulation used in this study [Virieux, 1986]

has been tested for several types of models, none of which closely corresponds to

the magma chamber model. Virieux [1986] considered a corner-edge model and a

water-solid step discontinuity. Dougherty [1989] compared analytical and finite

difference solutions for acoustic scattering from an infinite elastic cylinder. Stephen

[1990] examined acoustic benchmark solutions for a perfect wedge, a lossless

penetrable wedge, and a plane-parallel waveguide. Finite-difference studies of

complex media have dealt extensively with the scattering from random media

[Frankel and Clayton, 1984, 1986; McLaughlin et al., 1986; McLaughlin and

Anderson, 1987; Dougherty and Stephen, 1988; Charrette, 1991; Toksdz et al., 1991].

However, such studies have generally been limited to mean velocity perturbations of

5-20%, values significantly smaller than the variations in the magma chamber model

(Figure 3.3). Moreover, few studies have explicitly considered the broadband

spectral content of finite difference waveforms [Frankel and Clayton, 1984; Charrette,

1991]. By far the most frequently used source wavelets are derivatives of a

Gaussian function [Kelly et al., 1976; Stephen et al., 1985], for which the half power

bandwidth is limited to about one octave. For these reasons, it is important to verify

the stability and broadband spectral accuracy of the finite difference waveforms

generated for this study.
The von Neumann numerical stability requirement for this formulation [Virieux,

1986] requires that the quantity y, defined by

y = f2 Vp A
Ax (B1)

where At is the sample interval and Ax is the grid spacing, have a value of less than

or equal to unity. For a maximum P-wave velocity of 7 km/s, a value At/Ax 5 0.1 is

required. A more limiting constraint arises from grid dispersion, a process whereby

high frequencies travel more slowly than low frequencies. This effect may alter the
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characteristics of the waveform, broadening the initial pulse and producing a
characteristic oscillatory tail, while possibly altering the spectral content of the
waveform. To avoid this problem it is generally recommended that the quantity H,

defined by

H=Ax
(B2)

where X is the wavelength, should have a maximum value of about 0.1 [e.g., Alford

et al., 1974; Virieux, 1986], though Stephen [1988] recommends a more stringent
limit of 0.05. In practice the maximum acceptable value for H may vary between
studies since the amount of dispersion increases with the propagation distance as
well as the grid spacing and the acceptable level of dispersion may depend on the
application of the finite-difference solutions.

Virieux [1986] presents a quantitative expression for the grid dispersion in his
formulation. The ratio qp of the finite-difference P-wave velocity to the true velocity
is always less than unity and can be written

qp = /sin- -- sin2 (ifH cos 0) + sin 2 (7cH sin 0)
inH f2 (B3)

where 8 is the angle of propagation with respect to a grid axis. By substituting VS
for Vp in equation (B1), equation (B3) can be used to calculate a value for the
corresponding S-wave ratio qs. For all the models in this work the value of H at the
upper half-power source frequency is

HU = 0.1875
V (B4)

Within the water column Hu = 0.125, a value slightly greater than the generally
recommended value. Corresponding qp values range from 0.975 to 0.987 for
propagation parallel and at 450 to the grid. Figure B1 shows waveforms for a test
model comprised solely of a homogeneous water layer. At a depth of 160 grid points
(Figure Bib), which is equivalent to 20 wavelengths at the upper half-power
frequency, the effects of dispersion are very apparent, particularly for propagation
parallel to the grid. However at a depth of 40 grid points (Figure B la), which is the
thickness of the water layer in the magma chamber models, the effect on waveforms
is slight. Indeed, a visual comparison of the water waves with the source signature
(Figure 3.2) shows no additional oscillations on the tail of the waveform. Spectral
analysis shows that even at the larger ranges the changes in spectral content are
negligible.
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Within the crustal component of the model, propagation distances are much

larger and the heterogeneous velocity structure makes the cumulative effects of

dispersion more difficult to estimate. Therefore, more stringent limitations on the

maximum size of H are necessary. The maximum crustal P-wave wave velocity is

limited to 4 km/s (HU = 0.047) except in a small region corresponding to the location

of an axial magma chamber where the minimum value is 3 km/s (HU = 0.063). Such

values yield maximum qp values of 0.997 and 0.994, respectively, and none of the P-

wave phases within the models show considerable dispersion. The minimum non-

zero shear wave velocity is 2 km/s (HU = 0.096) which yields a maximum qS=0.985.

Some of the S-wave phases do show appreciable dispersion (e.g., Figure 3.4a), but

since spectral analysis is confined to P-waves this is considered acceptable.

A COMPARISON OF FINITE-DIFFERENCE AND REFLECTIVITY SOLUTIONS

A complete test of the finite difference solutions for the magma chamber model

is not possible since no other full-waveform technique exists to model adequately

the waveforms for such a complex structure. However, as a partial test of the finite

difference method, solutions for laterally-invariant models are compared with those

obtained by the reflectivity method [Fuchs and Mailler, 1971], a comparison that has

been previously used to evaluate a different finite-difference formulation [Stephen,

1983]. Two velocity profiles (Figure B2), representative of off-axis and axial

structure in the magma chamber model, were used in this comparison. Finite

difference solutions were calculated with a 7.5-m grid spacing and a 4-25 Hz source

for both profiles and with a 3.75-m grid and a 8-50 Hz source for the off-axis profiles.

The velocity profiles contain smooth velocity gradients which must be approximated

by a layered model in the reflectivity method. White and Stephen [1980] and

Stephen [1983] recommend a minimum layer spacing of one fifth of the compressional

wavelength. However, Chapman and Orcutt [1985] suggest that such a fine spacing

is not necessary in most cases. In the reflectivity solutions presented here, the

layer thickness is constrained to be no more than one half the minimum

compressional wavelength and to incorporate a velocity jump of no more than 0.1

km/s. Tests using the upper portion of the models suggest that further reduction in

the layer thickness has little effect on the waveforms. Since no attenuation is

incorporated in the models, very long time series (15-45 s) are calculated to

minimize wraparound in the time domain [e.g., Mallick and Frazer, 1987]. To

minimize computation time reflectivity solutions are calculated for ray parameters
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ranging between 1/15 and 1/3.2 s/km and for angle of incidence increments of 0.03*.

Record sections calculated by both techniques are shown in Figure B3 for the

off-axis profile and the 4-25 Hz source. A range-dependent amplitude correction has

been applied to account for divergence, which differs between the two solutions,
since the reflectivity algorithm includes a point source while the finite-difference

algorithm utilizes a line source. The reflectivity solutions to not include the water

wave because of the angle limits of integration. The shapes and amplitudes of the P

arrivals are in reasonable agreement at all ranges though small phase shifts

between the two solutions are apparent. The PP ampitudes correspond well at

ranges greater than about 10 km but show appreciable phase shifts, while at shorter

ranges the finite difference solutions have noticeably higher amplitudes. The finite

difference record section also includes appreciably higher amplitudes immediately

following the PP arrival. At larger ranges this energy clearly separates into coherent

arrivals whose paths include more than one downward surface reflection (PPP,

PPPP, etc.), an observation which discounts a dispersive origin for the difference. In

contrast, the PPP phase in the reflectivity solutions has a very low amplitude, and

higher order phases are barely visible. The reflectivity solution also shows a high

amplitude headwave at ranges above 8 km, propagating at 4 km/s, an arrival that is

not apparent in the finite difference solutions. The results of ray-theoretical

amplitude calculations which include the correct amplitude coefficients for plane-

wave water-solid reflections [Ergin, 1952] correspond closely to the finite-difference

amplitudes, suggesting that the finite difference solution is correct. The discrepancy

in the reflectivity solution might result from the limited range of angle integration, the

layered approximation of the velocity model, or the failure of the particular reflectivity

algorithm used in this study to model correctly the water-solid interface at low

angles of incidence [. A. Collins, pers. comm., 1991].
To compare the spectral content of the waveforms, apparent t* values were

estimated from the spectral slope (equation (1.7)) and are shown in Figure B4. The

results show fairly good agreement at all but the shortest ranges. For the off-axis

model (Figures B4a and b) there is good agreement at ranges greater than 6 km. At

ranges less than 6 km the 4-25 Hz reflectivity solution yields markedly higher t*
values, although the discrepancy is smaller for the 8-50 Hz source. For the on-axis

model (Figure B4c) there is also good agreement at ranges greater than 6 km. At

short ranges the rapid fluctuations in apparent t* values observed in the finite

difference solution cannot be reproduced using the reflectivity technique.
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We can advance no satisfactory explanation for the discrepancy between

reflectivity and finite difference solutions at short ranges. However, two

observations suggest that the finite-difference solutions may be incorrect. First, in

Figure B3a the water wave at 3 km range has a highly oscillatory tail while at

shorter and longer ranges this is not the case. Comparison with Figure B 1 and the

observation that this effect is not apparent at shorter ranges discounts the

possibility that this is a straightforward consequence of grid dispersion. Second, a

series of test models incorporating a constant gradient beneath the water-solid

interface frequently resulted in an unrealistic loss of high frequency P-wave energy

content at ranges just above the critical range even after HU was decreased

significantly. Such results, while not fully quantifying the problem, suggest that the

water-solid interface in the Virieux [1986] formulation may be unstable for certain

choices of model parameters. While this discrepancy deserves further study, we

emphasize that the spectral analysis of finite difference waveforms presented in

Chapter 3 is not critically dependent on short-range paths.
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FIGURE CAPTIONS

Figure B1.

Figure B2.

Figure B3.

Figure B4.

Finite-difference record sections showing the a water wave recorded

by a horizontal lines of receivers located (a) 40 grid points and (b) 160
grid points below the upper surface of the finite difference grid.

Layered velocity profiles used in the comparison of finite-difference

and reflectivity solutions. The layered approximations used in the

reflectivity solutions are shown for the axial (dashed line) and off-axis

(solid line) profiles. The smooth profiles used in the finite difference

models are shown as dotted lines.

A comparison of (a) finite-difference and (b) reflectivity record

sections for the off-axis velocity profile calculated using the 4-25 Hz

source. To correct for divergence, the finite-difference seismograms

have been scaled by the square root of the range while the reflectivity

seismograms have been scaled by the range.

(a) A comparison of apparent t* values estimated for finite-difference

(circles) and reflectivity (crosses) solutions for the off-axis velocity

structure. t* has been estimated in the frequency band 4-25 Hz using

47c-prolate MWSA and a 0.4-s-long window which includes 0.3 s of

the waveform. (b) As for (a) except that the source waveforms and

the t* estimates are for a frequency interval of 8-50 Hz. (c) As for (a)

except that the axial velocity structure is used.
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