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of Doctor of Philosophy.

ABSTRACT

This thesis is an -investigation of the way in which
low-frequency topographic oscillations propagate and are
generated over ocean topography. In this study we
emphasize those topographic oscillations which are
affected by the density stratification of the ocean.
A simple calculation using the model of topographic
oscillations over a constant slope is made to interpret
the Aries measurements. It is found that the frequency
and length scales predicted'by the theory are consistent
with deduced values from the data. A calculation of
the normal modes of oscillation for a simple one-dimensional
corrugated bottom is made. This is done in order to
illustrate the possibility of interaction between small-
scale topography and long-scale forced motions in the
ocean. It is found that when the scale of the corrugations
is smaller than IVH/5 , where M/ is the Brunt-Vaisala
frequency, .-~ the coriolis parameter and H the mean
depth, the topographic oscillations are trapped to the
bottom.

The excitation of topographic oscillation by Rossby
waves is explored. It is found that Rossby waves do
not efficiently excite bottom-intensified oscillations,
but rather excite topographic modes with a velocity node
on the topography. For the period range considered
(less than 1 year) these modes were trapped to the edge
of the slope. It is suggested that for -low-frequencies
the edge of the shelf behaves' remarkably like an elastic
membrane yielding under the influence of the impinging
Rossby wave but springing back with little energy lost.



The role of the bottom-intensified oscillations
in the adjustment of initially imposed disturbances on
the topography is investigated. It is found that when
the imposed scales of the disturbance are smaller
than NMf/s the resulting motions consist of a steady
current and bottom-intensified oscillations. The
implications of this partition of the motion in the
vertical are discussed.

The generation of bottom-intensified iaves by wind
is studied and it is found that wind forces cannot
effectively generate these motions. Finally, a study
of the local interaction of topographic oscillations
with a steady shear current is made. It is found
that the general effect of a shear current is to
intensify the oscillations at the bottom. It is also
found that this process leads to the transfer of wave
energy to the current.

Summarizing', it is suggested that perhaps the
most important role of bottom-intensified waves is to
release the ocean interior from the constraints imposed
by topography.

Thesis Supervisor Peter B. Rhines
Assistant Professor, Department of
Meteorology, Massachusetts Institute
of Technology
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Chapter I Introduction

For several years the Woods Hole Oceanographic

Institution has kept an ocean station at a site located

at 390 20'N, 70OW. This station known as Site D is

situated in a region of gently sloping bottom (slope

Z 10 . which extends some 50 km north to the continental

shelf and about 150 km south. The low-frequency current

meter data collected at this location have been recently

analyzed by Thompson ( I 9 ). The results of this

analysis indicate that variable currents with periods

from about a week to a month are on the average depth-

independent. This fact has been inferred by Rhines

( 10 ) from a comparison of the horizontal kinetic

energy spectrum at different depths calculated from the

data by Thompson. However, recently collected current

meter records occasionally have shown variable currents

with periods of order a week to two weeks with speeds

decreasing away from the bottom (Schmitz i- ). These

measurements suggest the presence of a dynamical regime

at low frequencies where stratification is important.

The observation of this peculiar baroclinic structure

in ocean currents is not isolated to Site D. A series

of current measurements using Swallow floats made by the

research vessel Aries in the Bermuda rise (1959-1960)
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showed the presence of variable currents whose speeds

increased with depth below the main thermocline and

whose periods were of several weeks. Furthermore,

simultaneous measurements of the currents and the

density field showed that the currents were geostrophic

('Swallow I ). One of the most remarkable aspects of

the observations was the magnitude of the velocity

fluctuations. Stommel in his book The Gulf Stream

( 1 6 ) discusses the implications of these observa-

tions from the point of view of the general circulation

of the oceans. The emphasis here is the 'clue their

baroclinic structure provides regarding their dynamical

origin.

Theoretical models have been proposed to explain

the observed variability of the currents. Rhines ( 1 0 )

and Thompson ( 19 ) point out that the depth-independent

currents present in the Site D records in the period range

from a week to about a month perhaps can be explained

in terms of depth-independent, topographic Rossby

waves. The use of this model implies that these topographic

waves must have sufficiently long horizontal scales over

the gently sloping bottom for stratification not to

destroy the barotropic mode.

The possibility that low-frequency, quasigeostropnic



currents in the ocean might have larger velocities at

the bottom was suggested by Rhines in a recent paper

( g ). In this paper he showed how the effects of

a simple topographic slope (constant slope), rotation

and stratification combined to support wave motions

which have the property of being confined to the bottom

slope decaying exponentially away from it. The paper

demonstrated, for example, that for topographic slopes

of order and smaller, where' N is the Brunt -

VisLls frequen'cy and 5- the coriolis parameter,

the dynamic scales of the wave motion are given by

keeping the ratio / OA, where H is the

penetration scale of the boundary induced motion, and.

L is the along-the-slope scale. For slopes e

we can think of L as the horizontal

scale of the imposed motion. For an ocean 4 1Ri deep

and for 0 0(6') a typical average value, if

L <1 'K' , the penetration depth will be less

than the ocean depth and the.resulting motion will

appear bottom-trapped. The wave frequency for this

case is essentially dominated by the component of the

basic density gradient .along the boundary. If L >40kr

the penetration depth H will be greater than the ocean

depth and the vertical structure of the motion will show



depth-independence. The frequency of the waves is

determined by the well-known vortex stretching effect

(topographic -effect). The paper also shows that

introducing the planetary -effect results in the

appearance of a complimentary mode which resembles the

baroclinic Rossby wave mode. These complimentary waves

tend to have a node in the horizontal velocity at the

bottom when the slope, stratification and scales are

such that the bottom-trapped waves decay exponentially

within the interior of the fluid.

In another recent paper Rhines ( 7' ) briefly

reviews the various interpretations of the Aries

measurements and introduces another possibility based

on the results of this previously mentioned work.

His main point is to suggest that the combined effects

of stratification, rotation and topographic slope are

competitive with the planetary 9 -effect in the Bermuda

rise. We will discuss this suggestion in more detail

in the next chapter.

Some indirect evidence of time-dependent, bottom-

intensified currents can perhaps be found in the published

literature. Since the early -1960's oceanographers using

Swallow floats have observed the deep currents Stommel

predicted would exist in the western boundaries of the



oceans. Some of these measurements have shown time

variability. Unfortunately most of the measurements

were taken for only enough duration to define the mean

direction of the flow, and not long enough to obtain a

time resolution of the motion. For example, the Swallow

and Worthington ( 1 ) measurements of deep currents in

the Labrador Sea show the presence at certain locations

of a deep variable current superimposed on a somewhat

steadier deep flow.

To summarize, there is limited but suggestive

evidencethat quasigeostrophic motions in the ocean

show to some extent the peculiar baroclinic structure

of the topographic waves described by Rhines. In view

of this evidence, it is important to understand how

topographic waves propagate and are generated in a

stratified ocean. The general problem of quasigeostrophic

motions which takes into account simultaneously the

real topography of the ocean basins, the planetary

-effect and the different sources for these motions

is of extreme complexity. The best one can do, at the

present time, is to isolate, model and evaluate the

different elements that make up the general problem. In

the forthcoming chapters we will discuss a variety of

problems which model processes where topography might
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lead to observable effects. The goal of this study is

to allow us to describe the gross properties of quasigeo-

strophic motions in different oceanic regions in terms

of the physical parameters of the area (topographic

slopes, horizontal dimensions, depth, stratification,

currents, etc.) and their most likely sources.

In more detail, the thesis will proceed as follows.-

In Chipter II we will derive the equations for inviscid,

linear topographic waves in the small slope approximation.

We will discuss the normal mode solutions to these

equations over-a constant slope and over a one-

dimensional continuously corrugated bottom.. We will

apply the solutions for the constant-slope case in a

simple calculation based on the Aries measurements. The

calculation of the modes over a corrugated bottom are

done to illustrate the interaction of a long-scale

barotropic wave with small-scale topography., In Chapter

III we will study the excitation of topographic waves by

Rossby waves impinging on an abrupt change in the

topography. In particular we wish-to determine the

efficiency of the generation of the bottom-intensified

mode. We will also discuss the problem of wave trapping

over simple topography.

In Chapter IV we will discuss some aspects of the
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local generation of topographic oscillations. In

section A we will consider the response of the fluid

over topography to an initially imposed geostrophic

current. In section B we will discuss some aspects of

the excitation of topographic oscillations by wind

stress over the surface. In section 0 we will consider

the effects of the local interaction of topographic

waves with a mean shear, Finally, a general discussion

of the results and conclusions is given in Chapter V.



19

Chapter II Derivation of the Basic Equations for

Quasigeostrophic Motions over Topography and Their

Elementary Solutions

The basic concept in this study is geostrophic

balance. The main balance in the momentum equations is

between the horizontal pressure gradient and the coriolis

accelerations, while the vertical pressure gradient remains

in hydrostatic equilibrium. This basic state of motion

may not be consistent with the physical requirement of

-zero normal velocity over the sloping bottom. Rhines

( S ) found that the stratified fluid could adjust
to such a situation by developing a velocity gradient

strongest at the bottom and executing small amplitude,

time-dependent oscillations which, for small slopes

C / , were just small. departures from-geostrophy.

These results should apply to large areas of the ocean

where the average slopes rarely exceed JO~

Larger slopes are found only around some islands, in the

continental rise and perhaps in the roughness scale

of the bottom topography. The quasigeostrophic motions over

the slope are the small slope limit of the trapped modes

which exist for arbitrarily large slopes. The larger

slopes, E >- t/r , produce ageostrophic motions. 'When

the vertical scale of the fields comes in contact with



20

the surface of the ocean, these slopes lead to non-

separable solutions in the up-slope and vertical coordinates.

In Fig. 2-1 we see a map of the average slopes found

in the western North Atlantic. Over horizontal scales

where the motion would appear trapped to the bottom

L / (H is the mean depth of the particular

region), the planetary f -effect has been compared to

the topographic effect . At Side D, for

example, 46/H is about twenty times larger than

whereas at the site of the Aries measurements, it is

about the same order. Except for the regions with slopes

smaller than (0-3 the planetary J -effect is comparable

or smaller than.the topographic effect for horizontal

scales less than - HPEnr - . It is easy to

see that, except.for the regions in the continental rise,

the slopes are consistent with the quasigeostrophic limit.

We will now derive the system of equations for small-

amplitude, time-dependent motions in the quasigeostrophic

parameter range over small slopes. The implicit assump-

tions in the derivation are: 1. Boussinesq approximation.

We assume incompressibility of the fluid motion. The

variations of the fluid density are neglected in the

inertial terms but are retained in the buoyancy term.

The small density variations in the ocean and small
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frequencies of the motions justify this approximation.

2. Traditional approximation. We omit the horizontal

components of the rotation vector. The presence of

stratification and large horizontal scales of the motions

make these terms smaller than thos.e retained in the

analysis. 3. -plane approximation. This approxima-

tion is good for topographic motions because their

horizontal scales are much smaller than ( (1Okm

at midlatitudes). 4. We restrict our dimensional

time scale (large compared to rotation) to be small

compared, to the spin-up. We will comment on this

point after we discuss the solutions. 5. We neglect

free surface displacements. This approximation is valid

except for very long quasigeostrophic waves. The

restriction implied on the wavelength is written as

L is the length scale associated

with the wave and H is the depth of the region.

The dimensional, inviscid equations are given by:

x-momentum equation, axis to the east

(II-1)

-4- (it.V%4& AhX~~,i

y-momentum equation, axis to the north



*
~

f'.
.-. + (

z-momentum equation,

(II-3) D 
*

z measured upwards from the

... V .. 0
UJo

4

y*k

legal Ill %.

Zz -H -CF(K")

Diagram illustrating the

(11-2)

23

surface

Figa. 2-2. topogrraphic region .
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density continuity

(11-4) U ~
(II-4) *, f . + ($ - )f

mass continuity

(11-5) 2 4
bj4P

+ M'I~
i*

The boundary conditions we use are

(ii-6a) *
Ur 0 0-

At the bottom we have the condition of no normal flow

leading to

(II-6b) - c 4 f(*) u -
:fCar)

4- - 4.e"w
The constant slope case, W C-~~

will be treated first because it leads to the simplest

and most transparent results. In section B of this chapter,

we will discuss another model of bottom topography.

We decompose the field variables of the above equations

as follows



(xy*S~

(X -(x4 ~t

We scale

(II-10a) (&~r) V 0 (c~l~)

Kwo a e\ Va

L (x, )

z t -> f

(II-7)

and

25

(II-8)

We let

(11-9)

(II-10b) AAr

(Il-0c)

(II-10d)

-- r

--



y{L V4

- f f

and let

(II -10h) f j 3C I +0( x

- xffe-ct-.
where

The scaling for implies that our basic state

is geostrophic and satisfies the thermal wind balance.

Substituting eqs. 11-7,8 in eqs. 11-1, 6, and using the

scales defined above, we find the following non-dimensional

set of equations

(II-lla) g .. [- 447 .--.

(II-10e)

-I -1 26

r _(II-lof)

(II-10g)



(II-llb)

(II-llc)

(II-lld)

(II-lle)

and on the slope

(II-11)

27

a . "U", (XV)4r + 3:L U -

,DT

£ ~ -r~aV)r (rA)r
a T

S4. ? -- - 0
- x

0-

2 -
4gX- A

The non-dimensional number appearing on the equations

measures the relative importance of each term.

(II-12a) - is the slope parameter

which measures the size of the fractional change of depth

over a length scale L
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(II-12b) is the aspect ratio.

(II-12c) U where'

is the Brunt-Vaisala frequency which we take, for

simplicity, to be a constant. If, for N() , we use

the lowest value of the distribution of .(\/ in a column

of fluid, our results, frequencies, penetration depths,

etc. are a lower bound to any realistic dependence of

N(Z() with depth. Finally,

(II-12d) O. /, L is the Rossby number.

We consider 9<c . The nonlinear terms may be

neglected compared to the local time derivative if

.90 <<z . This assumption is not always -valid for

bottom-trapped waves because their horizontal scales

are not large. In the case of the 8wallow eddies, for

example, We^'O(O . We will neglect the effects of

nonlinearities in order to formulate the problem of

topographic motions in the simplest possible manner.

Rhines recently has shown in a numerical study of

two-dimensional, quasigeostrophic turbulence that the

motion behaves remarkable like waves when the topographic

parameter is of order the Rossby number.

Since the topographic parameter is much less than

one ( 44I ), we can linearize the bottom boundary

condition by making a Taylor expansion about -= -1- .
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(11-1.3) s 4...

We expand all the dependent variables in. terms of 6

This expansion guarantees that the lowest order balance

will be geostrophic and hydrostatic.

(11-14)

Lk7

To order

(II-15a)

LA

co)

'P
+ C)

we find

AMr

,- Op) ...

tol

- O -x

(0
(II-15b)

C a)



(II-15c)

1d A o)

(II-15d) (')W

(II-15e)

The S

eo) (o\
Ux + Ar -- 0

equations are consistent with the geostrophic

and hydrostatic approximation.

To order we find

(II-16a)

(II-16b)
(0)

l.^A' - (+o)

(t -()

(II-16c)

(II-16d)
( IV ,J

D-

cO)
0 - -2.

30
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(II-16e) --

To the first two orders, the boundary condition at the

top is

(II-16f)

at a:- 0

Using the linearized bottom boundary condition eq. 11-13,

we find

(II-16g) r .- -

at

The first order equations remove the' degeneracy of the

fields through the coupling imposed on the velocities at

the bottom. From eqs. II-16a, b, we construct a vorticity

equation which eliminates the first order fields except

for the vertical velocity. This velocity is coupled to

the zeroth fields by mass continuity and the vertical

hydrostatic equation.

(II-17a) Z'(Ar *-. t o)) - M) +
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From eqs. II.-15c and II-16d, we find

(II-17b) 1 .. _ * - (r, - iE

Using the geostrophic equations to relate LA .'t in

CO)
terms of the pressure , we obtain an equation in

the lowest order pressure field

(II-18) ( )

This equation is usually called the lineaqrized potential

vorticity equation. It may be derived directly from

Ertel's theorem.. The term /1 x denotes the meridional

divergence due to the planetary -effect. The boundary

conditions can also be simply expressed in terms of

. Eq. II-16f becomes

(II-19a) (0)

(N') ~ OT

and eq. II-16g becomes

(II-19b) 1- y at 2=-)
21T
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We emphasize that the relatively simple form of the

lower boundary condition, eq. II-19b, depends strongly

on the geostrophic scaling, which in turn depends on the

smallness of the slope. For topographic waves with time

scales of order of the rotation (slopes of order 5/t ),

the cross-slope gradient of the field becomes equally

important to the along-the-slope gradients, and has to

be included.

When the' -effect ( (=/ 4 ) is comparable to

the topographic effect v , 00) ,the equations

derived above take up a particular geometric orientation.

They represent the case in which the slope is oriented

east-west. If Od=o , the x-coordinate refers to the

up-slope direction and the y-coordinate to the along-

the-slope direction. Fig. 2-1 tells us the importance

of the -effect compared to the topography for bottom-

trapped motions.

It is not difficult to derive the general form of

the boundary condition for an arbitrary orientation of

the slope with respect to north. Let us consider that

the slope is oriented at angle with respect to north

(see Fig. 2-3).
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z

~1-v' I.

Fig. 2-3. Diagram defining the angles for general form
of the boundary condition for an arbitrary orientation
of the slope.

The simplest way to formulate the problem is to write

the bottom boundary condition in terms of the north-

south and east-west coordinates. The potential vorticity

equation 11-18 and the surface boundary condition II-19a

remain unchanged. The bottom boundary condition II-19b

becomes
to) (0)

(11-20) = +
(rA) 6T DX

In the next section we will use this equation in a simple

calculation.

Section A. 1. Normal Modes

In this section we will briefly review some of the
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main results found by Rhines ( S ). We will also

discuss some aspects of the Aries measurements. Eq. 11-18,

the potential vorticity equation for d=o (no planetary

-effect), will admit solutions of the form

(II. A-1) CO)

=A -e4 cosi S ', M Y.E7

where K =
(d) represents the bottom-intensified mode. We note

that the vertical scale is solely determined by the

horizontal wavenumbers. The lower boundary condition

yields the dispersion relation

(II. A-2) -

t< rA K

where S is the along-the-slope wavenumber and PA

is the parameter 6 which appears in Rhines' work. The

dispersion relation states that the wave propagates with

phase velocity to the left when an observer looks up the

slope. The unscaled form of eq. I. A-2 is

(II. A-2a) _ = 6 I (I

kt~~4CK H
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For ('k00( 14= 4Y"3 J- if L= 7/ 'q io11 v ,

frequency given by W = / k/c2 independent of

stratification. For i~ H 7 . , we have

strong trapping and co = c i K . This solution

represents a buoyancy oscillation with its frequency given

by 6 P times the angle made by the wavenumber with

respect to the depth contours. The maximum frequency w= 6r

corresponds to the case in which the fluid velocities

oscillate up and down the slope. In regions (see Fig. 2-1)

where the slope effect is appreciably stronger than the

-effect for distances as large as a few wave scales,

we might expect to find these trapped motions.

In Fig. 2-4 we show the constant-frequency curves

of the dispersion relation eq. II-2a. The curves are

symmetrical about the HIR\. axis. For convenience we

have only drawn half of the curves. O(1 is the ratio

of the buoyancy frequency ( ft ) to the frequency of the

waves C = r/f' . The lines of constant r 14 i<

(circles) denote the penetration scale of the bottom-

intensified mode into the fluid interior. These curves

are non-dimensionalized by the depth - . For

example, P'1K(<-m2 denotes a penetration scale of one-

half the depth of the region.

Consider a line determined by the projection of the
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=R-
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r =1
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0=1.2

oc=1.O5

Fig. 2-4. Constant-frequency curves of the dispersion
relation for topographic waves.
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wavenumber v-ector along the slope. For large

this line corresponds to a constant-frequency curve. The

oscillations are not affected by the surface. As

f(4H K decreases below a certain value, the frequency

curve no longer coincides with the constant-angle curve.

This separation occurs roughly as the penetration scale

of the wave reaches the surface, C 14 f ̂' i . For longer

wavelengths the frequency of the wave increases. For

K < (tM) , the frequency is dominated by the restor-

ing force associated with the fractional change of depth

over a wavelength ( GL/H ), rather than by the buoyancy

effect ( [6 ). The constant-frequency curves resemble

those obtained in the homogeneous limit of topographic

waves.

The group velocity vector is perpendicular to the

constant-frequency curve and points in,-the direction of

the increasing-frequency curves. In Fig. 2-4 the direction

of the group velocity vector is denoted by arrows.

Fig. 2-4 can be used to simply describe the ray trajectories

of topographic wave packets.

In Fig. 2-5 we show a geographical distribution of

the buoyancy period (the minimum period of the waves)

over the slope regions of Fig. 2-1. The period of the

trapped oscillations could be considerably larger
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+280 Fig. 2-5. Map describing the geographical
distribution of the buoyancy period for
bottom-intensified topographic escillation
in the western North Atlantle.
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depending on the inclination of the motion with respect

to the depth contours. Fig. 2-5, however, provides a mini-

mum period estimate of the time one should remain in a

particular location to resolve the motion. For this

chart we have used an average value of N(a) for the

column, weighted by the vertical structure of the bottom-

intensified mode N H/g ~v . At Side D where

/g1 /. , T --5-lodAy . At the site of the Aries

observations, where 6/ f P/ Ty . 25 dAys

The unshaded regions in Fig. 2-5 represent areas where

the topographic map shows the -effect to be dominant.

The topographic maps, however, do not show the fine

structure of the bottom. In the next section we will

show how this fine structure, with scales of order tens

of kilometers, supports trapped oscillations.

2. Inclusion of the Planetary f -Effect

If dfo eq. 11-18 will admit normal mode

solutions of the following form

(II. A-3a) 4*.

and
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where 4 again represents the bottom-intensified mode,

and is the Modified Baroclinic Rossby Wave (MBRTi).

(0)0If' the slope is zero d=0 , .f' reduces to the usual

barotropic wave and r' becomes a baroclinic Rossby

wave with roots Yr=r1~

Substituting the solutions in eq. 11-18, we obtain

(II. A-4a)

(o) K sn

(WA)-

and

(II. A-4b)

K 4-

where e is measured with respect to north. The

orientation of the slope with respect to north is now

important, and we use eq. 11-20 for the bottom boundary

condition to completely determine the modes (Fig. 2-6).

These yield



(II. A-5a) J tvem -= ( K

and

(II. A-5b)

v- tosvA r
02.

K

Fig. 2-6.
II. A-5a

Illustration
and II. A-5b.

of the angles appearing in eqs.

42

C, a( a-C9)
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We solve eqs. II. A-4a, 5a simultaneously,

eliminating the frequency to obtain (WV as a function

of K for a given angle. We can do the same for eqs.

II. A-4b, 5b. The reader is referred to Rhines ( S )

for detailed solutions of these equations for the case

. = IT/2 (when the slope effect 6/g4 counteracts j3 )

and q=3N3W (when it reinforces it). We emphasize that

the mode structure is quantitatively different for

different slope orientations. There are some general

qualitative statements one can deduce from eqs. II. A-4a,

4b and II. A-5a, 5b. The bottom-intensified wave

solutions exist only for angles e-( such that

-i/ ?~'4 E/ , that is, when the wave's phase

velocity is to the left when'looking up-slope. If

opposes Ef/ and is larger (the least favorable case),

then there is a wavelength cut-off above which the

bottom-intensified wave cannot exist. The MBRW always

have a component of phase velocity to the west regardless

of the orientation of the slope. As the slope becomes

stronger, the MBRW develop a node in the horizontal

topography at the bottom.

It is of interest to apply these results to the

Aries measurements. These current observations were

done in a re(gion occupying one degree square west of Bermuda
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(680-670 Longitude and 320-310 Latitude). In Fig. 2-1

we see a large scale view of the topography of the

region. The average slope E is I 3 o

and is oriented at an angle of about 600 east of

north. The average depth is 5 km. so that 6/j G 10O -

In this location / , io m . The current

measurements were made for short intervals of time

(1 week - 2 weeks) with Swallow floats at nominal depths

of 2000 m. and 4000 m. for a period of five months
Q

(Orease , ). A dynamic section was performed for

one set of measurements showing that the observed currents

were geostrophic and had a baroclinic structure similar

to the bottom-intensified mode, Swallow ( I ). The

observed speeds were quite high, of order 50 Cf/4ec

Crease estimated from the observations that the apparent

length scales associated with the motion were of order

tens of kilometers (X 60km.). The dynamical Rossby

number Ro is of order 10 -- of the same order as

From the point of view of our topographic

model, nonlinearities should be included. However, to

obtain a rough estimate of the frequency and length

scales implied by the observed vertical structure and

orientation of the velocity vector with respect to the

slope, we will simply use our linear equations. Using
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,o) 'IK-X'-w

eqs. II. A-3a, 4a in dimensional form, we find for =e cAsh M

and

where f4 -5 Ky%- is the mean depth, G the slope

and (e / - From the observations described by

Swallow, we fit cos) Yn 2. to the vertical structure

of the current and find that 7n H. I.5 . We use

V (Z which implies T,, .r/ 1j 2oM imuuTES.

For plane quasigeostrophic waves, the angle o, (the

direction of the velocity with respect to north) is

related to (the wavenumber vector angle) by the

relation '-w.o(- - -

Fig. 2-7. Illustration of angles used to calculate Table 1.
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From d) M14 and the parameters which define the region,

we can compute the frequency and wavenumber (Table 2-1).

Table 2-1. Periods and wavenumbers calculated from the
Aries data.

In the data, the most typical value for d6 is

3 0 (meridional direction). o= 60* is a hypotheti-

cal case for the minimum period, i.e. the velocities point

in an up-slope, down-slope direction. The value of the

periods and wave scales in Table 1 for O=360* , d=340'

are within the observational estimates. Wfe must be

= 360 40 days 37km

= 340 90 days 30km

o= 60* 26 days 40km



cautious about these results because the nonlinearities

seem to be important. The wave steepness, for example,

Vo .=RC is of order £ . The phase velocity

for cA=36o* to the west is about 6 ,4 '-'/Se:. It is of

the same order as the estimate of the mean flow over the

14-month observation period. Fig. 2-8 shows a rough

sketch of the wave for the case d=3GO

VFRT/C STRUCTURE
OP TH E 80770M -
/NTE/./PIEo WAVE

/NSANTANEOC/5'
S STREAMLINE PATT[RN

PHASC PRopAG47AT/0 E

Fig. 2-8. Sketch of bottom-intensified wave calculated
in Table 2-1.
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We note- that if we had a vertical array of sensors

at a given location determining the vertical structure

and the frequency of the oscillations, eqs. II. A-3a,

4a would determine the horizontal scales and directionality

of the field. On the other hand, measuring purely baro-

tropic, topographic (E/a ) and/or planetary ( )waves

at a single location does not provide enough information

to determine the field. There are many possible wavenumbers

and directions for a given frequency. However, in the

absence of a- continuous source of bottom-intensified

modes at given frequency range, dispersion at low fre-

que-ncies limits the persistence time of the wave group

around the sensor area to about one period of oscillation.

This duration of the signal would not be long enough to

use spectral techniques. The best one can expect is to

search for events in the records.

3. Viscous Effects

For small bottom slopes the effects of viscous

dissipation on the wave motion can be introduced with the

application of the quasisteady Ekman theory. One finds

that the time-dependence of the topographic oscillations

is given by

(I. -6) y1-4 - N6 N i1 C4V tJH
( I I . :F - " N k I
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where 6 -is the bottom slope, ' the eddy

viscosity coefficient, 1 the horizontal scale of

the motion and' 44 the mean depth. For long scale

wave motion _N e. L the damping becomes independent

of stratification and horizontal scales. The spin-down

time is given by . Depending on the assumed

values of 'Y we can get various estimates ranging

from a month to a hundred days. For bottom intensifica-

tion scales of topographic oscillations N/ 1M4> 

the decay time decreases. It is given by the spin-down

time above, but with H replaced by the vertical

penetration scale N4K/. (Walin20 ). The

relative importance of the viscous effects with respect

to the topographic effect is measured by the ratio

(II. A-7)2

This ratio can be rewritten as -2. . The

ratio of the Ekman number to the one half to the topographic

parameter S / . For E 1c)72 corresponding to

an Ekman layer one hundredth of the depth 14 , a slop-

ing bottom 6t o and the ratio

is about one-tenth. This implie.s that the oscillations

will decay in about ten buoyancy periods ( '/,
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However, little is known about the actual dissipating

mechanism in the ocean's lower boundary. Perhaps the

effects of small-scale irregularities in the ocean floor

are more important in the dissipation of the energy of

the topographic waves.

Section B. Topographic Modes over a Corrugated Bottom

In the previous section we saw that over a constant

sloping bottom, topographic oscillations show bottom-

intensification when the horizontal scales of the waves

are smaller than- HbeprTm For example, if M/

4Oc0) j H-. 5000 m, -+ L -50 .4m- .

This implies that sources of these motions must contain

the above scales and come in contact with the slope to

excite the bottom-intensified modes. For example,

sources at the ocean surface with scales L 1<i / 4,will not

effectively excite the oscillations because their effects

will not penetrate to the bottom topography. If their

scales are longer than the penetration scale L '7 44(pTj ,

the direct topographic response will be essentially

depth-independent..

On the other hand, if the bottom topography possesses

its own intrinsic scales, the response of the fluid to

a long-scale generating disturbance will contain motions

with horizontal scales directly induced by the topography.
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If the topographic scales are baroclinic, i.e.

1 r (where L-r is the characteristic

topographic scale), the structure of the modes over

the topography will show bottom-intensification. In

this way, long-scale barotropic motion can generate

bottom-intensified, topographic oscillation. It is

interesting to note that the baroclinic scales of

bottom-intensified waves are comparable to scales quite

commonly found in the topography of the ocean basins.

For example, Swallow ( I' ) reported bottom undulations

of order - r0 in amplitude, and length scales of

order tens of kilometers superimposed on the relatively

smooth rise to the west of Bermuda. These kinds of

scales are evident in the topographic charts of the

IGY ( 4 ).

It is possible to determine quasigeostrophic

topographic modes over a small-amplitude, one-

dimensional corrugated bottom. These modes will be

excited to adjust to a long-scale, directly-forced

barotropic disturbance to the topography. Since the

small-scale topography in the ocean is clearly not one-

dimensional, the value of this calculation lies in

illustrating the mechanism of energy transfer from

long scales to small topographic scales, particularly
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those scales which support bottom-intensified motions.

Fig. 2-9. Diagram illustrating the one-dimensional
bottom corrugations.

Consider the bottom corrugations to be given by

(II. B-1)

= -/

where 0- is the amplitude of the topographic undula-

tion, L is the topographic scale and H is the

mean depth. We take %<< I , the amplitude of the

undulations is very small compared to the mean

depth. This -assumption is realistic for small-scale

topographic roughness.

In order to obtain the equations that will describe

IC -- -- -
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the topographic motions, we use eqs. II-1 to 11-5, with

the Rossby number 6o set equal to zero. We also set

the -effect equal to zero. At the end of this

section we will comment on the restrictions imposed

on the solution by the assumption 0

In the scaling of the equations we formally make a

distinction between the along-the-slope scale L-

and the scale of the corrugation L. . We will later

take the limit of the ratio L to be smaller than one.

We scale the velocities by the condition of maximum

divergence in the continuity equation. The vertical'

velocities will actually be smaller when we expand the

fields in terms of the topographic height OY

The scales are:

(II. B-2a)

(II. B-2b)..L

(II. B-2c)~

(II. B-2d) -

CO is the frequency

(II. B-2e) U LV



L.5 is the velocity in the direction of corrugations,

and where Va is the magnitude of the velocity in the

y-direction

(II. B2-f) Ar -+ V

Ar the along-the-slope velocity

(II. B-2g:) w .- 4VO

low . the vertical velocity

(II. B-2h) - L , f,

the pressure scale

(II. B-21) . V

perturbation density scale.

We define the following symbols

(II. B-3a)
L

the ratio of the topographic scale to the along-the-slope

scale

(II. B-3b) 0 ~

the topographic height, G<i<.

(II. B-30) 14_
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the aspect ratio of the topographic scale to the depth.

Substituting; the above scales in the eqs. II-1 to 11-5,

we obtain a set of non-dimensional scaled equations

(II. B-4a)

(I B-4b

(II. B-4b)

-- C W4-4OK

(II. B-4c)

(II. B-4d)

(II. B-4e)

U -r +I-r. 4U .- a AI .0

((M)

x-momentum

y-momentum

z-momentum

density continuity

continuity.

in eq. II. B-4d is equal to

take to be order OCO

which we

. At the bottom boundary we

have

(II. B-5a) ' = - E Cos X " 0 -a=- I -- 5l'X

and at the rigid top boundary we have

(II. B-5b)
Ar-= 0 .= 0

Since the topographic height 6 is much less

than one, we can linearize the bottom boundary condition
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by making a Taylor expansion about =-I . Eq. II. B-5a

becomes

(II. B-6)&er(, -- scJ-XW4 +.-- .:.... . 4-e x -

Since we are interested in quasigeostrophic oscillations

induced by small-amplitude bottom corrugations, we

expand the fields and the frequency in powers of E

The implicit assumption is that d 4'

(II. B-7)

and the frequency

(II. B-8) C

The details of the expansion of the equations are similar

to the calculations of page . We will not reproduce

them here. We will simply write the resulting equation

for the lowest-order (in- . ) quasigeostrophic pressure

field . The interior equation is

(II. B-9) . ob

j IYL

and the boundary condition
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(II. B-10a)

at the top Z , and

(II. B-10b) *0) ((Q YCA* x 3

at the bottom 2--(.

is the parameter L/L which measures the ratio

of the topographic scale to the along-the-slope scale.

1. Normal Mode Solutions

We expect that the solutions to the above equations

will contain the scales of the topography. We expand

S(0) in terms of elementary exponential functions.

(II. B-11) 2: S, c)- e

where A is an order one wavenumber along-the-slope.

Substituting eq. II. B-11 in the interior equation we

find that the vertical structure of the solution is of

the bottom-intensified form.

(II. B-12) 1(2) = P,, na sCIOJg gapI:

The above solution automatically satisfies the boundary

conditions at the top. For the above expansion to work,

we need a few terms to be larger in magnitude than ,

which is the first order term in the first expansion

of the pressure field. At this point we expect that we
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will have to require that 0 77 .

This assumption was implicit in the expansion of eq.

II. B-4d. If 66 the problem is not separable in

the vertical and up-the-slope coordinate. This is not

a very restrictive condition. We are thinking of the

ratio - to be at most order '/t , that is,

an along-the-slope wavelength ten times larger than the

topographic wavelength. Whereas for the ratio =
we are thinking of topographic amplitudes of order

50m to 100m and a depth of order 5000m ( 2 " ~ )

We substitute the solutions II. B-10 and II. 3-11 in

the bottom boundary condition II. B-10b. We rewrite

this boundary condition as 2 fA ( +e

Matching the same functions of % we obtain the

following set.of relations

(II. B-13a)

(II. B-15b)

(II. B-13c)
A, +Afa
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(II. B-15d)

and so on. is defined as V a+ffI for 4=o-,t 2.

The above set of conditions mixes the scales of the

different topographic modes. We not that the matching

conditions are symmetrical with respect to the indices.

So far no assumptions have been made about Y L

other than its being larger than - = a/ , if

the topographic scale larger than the

along-the-slope scale, the series solution does not

converge. If r ! , the series converges very slowly,

like I/M . The most interesting case is v .

This limit can be used to model the interaction of a

long-scale forced wave with small-scale topography.

For (<L and PA, 'V 0 C) we can make some

simplifications in the relations II. B-13. Let

and AVA- - . Also

we replace 'o by A. and - by VI . Sub-

stituting in II. B-13 we solve for the coefficients

A /A and A4/A,' as continued fractions.

From the first relation in II. B-13, we obtain another

relation for Ai 1/ and A -/. Eliminating
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the coeffici-ents we obtain the following; equntion for

the frequency

(II. B-l4) ((w.) A ! ..

where 2"

(II. B-15)

(CXA )0

is the small parameter

- ±( 112-iP,'

L /l. . We iterate

and
(&. (4)

We see that the. first correction is small.

Using the dispersion relation we can -calculate

the coefficients A /A Anto the first two orders

in . We find

(II. B-16)

AO A* VLSi PAhPj

where (-) is associated with (A) >o and (+) term with

to < . We note that the first term is of order Y

In order to show that the ma'nitude of the terms in the

expansion decreases in orders of d' we calculate the

next term

+ 2 '2 p1- +--

~~'t-cwAA N z a g

n N I +... )
+.4j,7. N1
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t , (I+ 0(l

We combine these results into the original expression

II. B-11 for the expansion of o ) (the pressure

field). We find

(II. B-18)

2/

ces Y c at - PA y (,+ 0(YZl
= Ace y t-a^A PA )9) i

-- . tcA i _ ~ coa ,2r'A.

- .t-a ,0 icaA : N,CeOA rAj,

x cO21-'Z ceo' S- ^ O+

where --a

Since

is the frequency given in eq II. B-15.

is- the zeroth order expansion in we

can only consistently keep terms larger than E.

2. Discussion of Results

In order to discuss the structure of the solution,
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it is convenient to replace the non-dimensional para-

meters that appear in eq. II. B-18 by, the natural dimen-

sional scales of the problem.' Let YA - where

is now the actual along-the-slope wavenumber

and the actual topographic wavenumber 4 i YL.

Replacing the symbols in eq. II. B-18 by their definitions,

eqs. II. B-3a to II. B-3c, we obtain

(II. B-19)

Ca) NA

A.f

5

where 1-4

given by

(II. B-20)

COJ'- 4- 0( + -

is the mean depth. The frequency is d

/I (t (+O(

.S-

where V2 is the K.tS. topographic amplitude.

The expression for the pressure field is particularly

transparent. The topographic mode consists of an
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essentially barotropic term ( ! R<< A ) and a

series of baroclinic modes with smaller amplitudes. The

most important baroclinic term is the first one. It has

a horizontal structure Coo-fo- directly induced by

the topographic corrugation. It is bottom-intensified

and decays into the interior with a scale A = (N/ .

Its amplitude is roughly given by the ratio of topographic

scale to the along-the-slope scale.

We note that the solution's time-dependence is of

the "standing" type, with the first baroclinic mode

qo" out of phase with the barotropic term. The

oscillations are of the standing type because over a

complete topographic wavelength there is no preferred

direction for the propagation of the waves, unlike

the case for the constant slope discussed in section A..

This does not imply that these modes cannot be matched

with traveling disturbances over the topography.

Consider the frequency in eq.II. B-20. When

the scale of the topographic corrugations is larger

than the horizontal scale cut-off for bottom-intensified

motion L i /f .e. Le

the frequenoy'becomes independent of stratification and

the corruration scale. It is simply given by
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the R.-,S. topographic height scaled by the mean depth.

This result agrees with the homogeneous limit ( N= - )

calculations made by Rhines (11 ). This result is

understandable by realizing that for depth-independent

topographic oscillations, the frequency is determined by

the fractional change of depth of the topography over

the length scale of the wave, i.e.*in this case the

it-.1- . amplitude of the corrugation over the mean

depth.

When -i , the frequency increases. The

terms in the equation can be rewritten to bring out the

explicit~dependence of the topographic slope.

(II. B-21)

5 1

where is the /."- -5. topographic slope. The frequency

relation is analogous to the dispersion relation for
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bottom-intensified waves over a constant slope with the

slope replaced by -the actual slope of-the corrugations.

The parameter is the ratio of the

penetration scale of the wave to the mean depth I-.

If we let H-+eo , the frequency does not go to zero.

In this limit the assumption that the along-the-slope

scale was larger than t/ 4 does not remain

valid. The first term in eq. II. B-19 becomes bottom-

intensified and the frequency relation is given by

independent of the depth.

The frequency relation from which all the limits

discussed above can be obtained is given by

This relation is obtained from eq. II. B-13 by not

requiring that the along-the-slope scale be larger

than JJ/4 . We see that the frequency appears to

be the geometric mean of two frequencies based on the

slope of the corrugations



66
o*= Jo1 6x 6

Each of the frequencies is similar to the dispersion

relation for topographic waves over a constant slope

(see section A, eq... A- 2%).

Let us take some values to compute the parameters

that describe the motion for the case where the along-

the-slope scale is larger than NIg . This limit is

the most interesting one. For example, topographic

amplitude a=ioo v ; mean depth M4=.ooow ; along-

the-slope wavelength 21L = t. 2toKv and topographic

scale p' . With these values we

compute the period of the oscillations = yT

to be 50 days. The amplitude of the bottom-trapped

baroclinic wave is 20% of the amplitude of the barotropic

wave. The penetration scale of the. first mode is 2500m

from the bottom. The along-the-slope velocity associated

with the bottom-intensified oscillation is of the same

order as the barotropic velocity of the long-scale wave.

The up-slope velocities of the bottom-intensified mode
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are an order of magnitude smaller.

In this simple model the strength of the along-the-

slope velocity depends on its position over the corrugated

bottom. It is a maximum at the trough and crests of the

corrugations. This implies that the particle motions

associated with the trapped wave are deflected by the

ridges never going over the tops. This condition preserves

the wave character of the motion.

It is possible to extend the results of the calcu-

lation for the pressure field (eq. II. B-20) to the case

where the large-scale barotropic wave contains a long

wave scale dependence in the direction of the corruga-

tions. This extension of the solution permits us to

match the topographic modes with a disturbance oriented

in an arbitrary direction with respect to the topographic

corrugations. It works out that to lowest order in the

ratio of the long-scale wave to the toporaphic scale

we simply replace 9. , the along-the-slope wavenumber,

by k= 9t5i.4 , the total wavenumber of the

long wave. The major effect on the solution is the lower-

in; of the frequency of the normal modes by the angle the

long-scale wave makes with the direction of the corrugations.

Eq. II. B-22 becomes
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This result was expected because increasing the angle

that the velocity vector of the long wave makes with the

direction of maximum depth change reduces the restoring

force on the waves.

3.. Corrugations on a Sloping Bottom

In many areas of the ocean the small-scale topography

is found superimposed on more gradual variations of depth.

In this section we will briefly comment on the competition

between the constant-slope and the small-scale topographic

corrugations in establishing the spatial and temporal

structure of the waves.

Consider a bottom configuration given by iE=-tt-dX-Asw 'A

z

H

Fig. 2-10. Diagram describing corrugations on a sloping
bottom.
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where H is the mean depth, of is the constant

slope. The term o.5e / represents the topographic

corrugations superimposed on the gently sloping bottom.

We consider the fractional change of depth over horizontal

scales much larger than the scale of the corrugation

to be small compared to the mean depth H .

As in the case of no-mean slope ( c<=o ), normal

modes can be found when the along-the-slope scale is

much larger than the topographic scale A" .

There are three distinct cases that can be considered:

1. The net fractional change of depth over a hori-

zontal length of the order the corrugation scale is

comparable to the amplitude of the corrugation. In this

case the vortex stretching effect of the long wave over

the constant sloping bottom dominates the dynamics. To

order (9/P) , where J is the small-scale along-the-

slope wavenumber, the modes do not show the scale of the

corrugation. The contribution due to the topographic

corrugations appears in order (9/g) which is very small.

The solution is simply a barotropic wave propagating to

the left when looking up-slope with frequency "r~ -_ .

2. The net fractional change of depth over a

horizontal scale of order the large along-the-slope

wavelength is comparable to the r.m.s. amplitude of the
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corrugation. In this case the effects of -the corrugation

and the constant slope are comparable. The frequency is

given by

__L N__ +

where is the along-the-slope wavenumber, oIA4

is the corrugation slope and iO( is the constant slope.

The presence of a mean slope requires that the solution

have a phase velocity to the left when an observer looks

up the mean slope. Formally as k-+O we recover

our previous solution eq. II. B-22. The mean slope

and the corrugations increase the frequency of the

standing oscillations. To order ( 5," ) the structure
of the topographic modes will exhibit the scale of the

topographic corrugations.

In the Bermuda rise where the mean slope is of

order 10~ 3, Swallow reported small-scale topographic

undulations with amplitudes of order 50m to lOOm and

horizontal scales of order tens of kilometers. Assuming

that the small-scale topography is as simple as the

model's, we compute that a forced barotropic wave

with horizontal scales of order 100km makes the two

effects comparable, i.e. t ! I0 and oL /1O



71

The reported horizontal scales of the topographic

undulations could introduce baroclinicities in the

currents with roughly the same horizontal and vertical

scales as found in the Aries observations.

3. The constant slope is so small that the net

fractional depth change over a horizontal length scale

of the order of the along-the-slope scale is much

smaller than the amplitude of corrugation. In this

limit we essentially obtain the Azo (slope) case to

order ,

(II. B-20)

4. Summary

We have seen that a small amplitude, one-

dimensional corrugated bottom can support quasigeostrophic,

topographic oscillations when the along-the-slope scale

is much larger than the corruration scale. The modes

consist of a long-scale, barotropic term and a smaller

amplitude term with its horizontal structure given

directly by the horizontal scale of the topography.

When the topographic scale is smaller than the baroclinic
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scale for bottom-intensified waves, NHDe?%/S the

topographic wave is trapped to the bottom. The vertical

corrugation's penetration scale is given by /yg .

The frequency of oscillation of the mode is given by

the component of N along the r.m.s. topographic

slope of the corrugation. If the corrugation scale

is larger than WAoem/ , the topographic wave is

essentially depth-independent and its frequency is given

by the vortex stretching effect associated with the

fractional change of depth over the corrugation scale

(the r.m.s. amplitude of the topography divided by

the mean depth).' These topographic modes will be

excited to adjust a long-scale, directly-forced

barotrophic disturbance to the topography.

A one-dimensional model of topographic roughness

has many limitations. The s'mall-scale topography

in the ocean is mostly two-dimensional. We expect

that if the ridges are as long in length as the depth-

independent current's wavelength, the solutions discussed

would describe the initial development of baroclinicities

due to small-scale topography.

Two-dimensional topography is much harder to treat

analytically. Perhaps some features of the problem

of one-dimensional topography still remain true.
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Numerical computations of depth-independent topographic

oscillations over two-dimensional topography have been

done by Rhines ( 9 ). His results indicate that

after a relatively short time the horizontal structure

of the motion resembles that of the small-scale

topography. One can imagine that if the small-scale

topography has baroclinic scales i.e. LDp N o pr ,

the resulting motion over two-dimensional topography

will also intensify at the bottom. The other limitation

in our one-dimensional model of small-scale topography

is the neglect of nonlinearities. The largest non-

linear terms in the problem are of order V .

For the observed velocities in the Bermuda rise and

for a topographic scale / /g , these terms

are of the same order as the local frequency of the

oscillation (scaled by £ ). Our solutions strictly

apply to smaller amplitude waves. For larger velocities

the solutions describe the initial development of the

currents before the along-the-slope velocities achieve

their maximum value.
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Chapter III Excitation of Topographic Waves by Rossby

Waves

In the previous chapter we discussed some of the

properties of quasigeostrophic wave motion over local

topography. In this chapter we will consider how these

motions are coupled with quasigeostrophic motions existing

over an adjacent, but different, topographic environment.

Rhines ( 13 ) has studied this problem for a homogeneous

model of the ocean. Here we will be concerned with under-

standing the coupling between the topographic regions when

the effects of stratification are include.d. In particular,

we.wish to determine the efficiency of the generation of

low-frequency, bottom-intensified, topographic modes by

sources located in a different topographic environment. We

will discuss this problem in some detail for the simplest

possible situation: the matching of Rossby waves with

topographic waves.

Consider a one-dimensional, gradually sloping shelf

interesecting a constant-depth, featureless ocean (Fig. 3-1).

In this simplified geometry, we wish-to find the structure

of the modes that can be supported over the sloping bottom

in response to quasigeostrophic wave motion in the ex-

terior region X>o . The slope is taken to be small

in the sense used in the previous chapter, i.e. the

change of depth over the length of the shelf is much less



/ >1 / 

Z-H-Ex

x= -a X=o

Fig. 3-1. Diagram describing the geometry of a gently
sloping shelf.

than one. Under this condition the topographic waves

will be quasigeostrophic. To describe the topographic

oscillations, we can use the potential vorticity

equation 11-18 and the boundary conditions at top and

bottom, eq. II-19a,b, representing no flow through the

boundaries. To be specific, the use of the boundary

conditions above, including the planetary -effect,

imply that the shelf in Fig. 3-1 is oriented north-south.

The positive y axis points -northward, and the positive

X axis eastwards.
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The matching of the solutions to the above equations

with wave motion in the region X>o fixes the along-the-

slope wavenumber and frequency of the solutions. Therefore,

we conserve the phase of the wave along the slope dis-

continuity. The resulting vertical structure and the

up-slope wavenumber is determined solely in terms of the

along-the-slope phase velocity and the physical parameters

that describe the region for quasigeostrophic motions

(slope, stratification, coriolis parameter, and the mean

-depth of the region of interest). The amplitudes of the

topographic motiQns will be determined by matching the

quasigeostrophio velocities at the edge of the region.

In order to see this and explicitly calculate the

modes over the topography, let , the lowest-order,

quasigeostrophic, pressure field solution to the potential

vorticity eq. 11-18 and boundary conditions II-19a,b be

represented by

(III-1) Cal

In this representation we have extracted the along-the-

slope phase of the waves conserved at the slope discon-

tinuity. Substituting the above form of the solution

into the dimensional form of the vorticity equation 11-18,
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we obtain

(III-la) + c aa + ex

where P/, of magnitude t (0 KmrW is the length scale

associated with the variation of f with latitude.

W is the frequency of the oscillations non-dimension-

alized by . ' is the ratio of the buoyancy fre-

quency to the' inertial frequency Ne . For simplicity

we transform the.above equation into normal form by ex-

tracting the -effect westward drift.. We let E be

represented by

(III-2) f. (.x,ii' ,i) E.

Substituting-(III-la) we obtain

(111-3) + +

subject to the boundary conditions

(III-4a) o at i-o

(The vertical velocity is set equal to zero at the top

boundary.)
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(I II-4 b) a* 0t 4= 14

(No normal flow into the sloping boundary.)

We again use separation of variables

to obtain two more equations. Separation of variables

at this point can be done because we have linearized

our boundary condition on the sloping bottom. (See page

eq. 11-13)

(111-5) Q - -

represents the dependence of the pressure field in the

up-slope direction, and

(111-6) .... 0

represents the dependence of the quasigeostrophic pressure

on the vertical coordinate. OY is the separation constant.

Substituting'(x,l) in the boundary conditions III-4ab, we

find that 6(.) is subject to the boundary conditions

(III-7a) 0 ;a.

and
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(III-7b)

1. Vertical Modes

Equations 111-6, 7a, and 7b are a statement of a

Sturm-Liouville ( ) problem. If X<-O , the solution

for & is

(111-8) 6-

where yM --- . The boundary condition at

~=-HY yields

(111-9) - 4

There will be a solution only if 2<o (we have chosen

the frequency W'5- by convention). This solution represents

the bottom-intensified mode, i.e. stronger motion near the

bottom and propagation of the along-the-slope phase veloc-

ity to the left when looking up-slope. The transcendental

equation 111-9 allows the calculation of the vertical

structure in terms of the phase. velocity along the slope

and the physical parameters describing the topographic

region. de see that there is only one root (Fig. 3-2).

In the limit of the slope approaching zero (4-+o)

and/or the phase velocity along the slope becoming large

( LL 4-~+ ), 'famA~rh H << 1 indicating that the

vertical scale h--ns becomes larger than the depth of
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(mH) mH

Fig. 3-2. Graphical solution of the transcendental
equation 111-9 and a sketch of the vertical structure
of the bottom-intensified mode.

the ocean. The motion becomes essentially barotropic,

COZ)'t+i. This is the limit of the depth-independent

topographic waves. In-the opposite extreme (for larger

slopes and small along-the-slope phase velocity), the

bottom-intensified mode becomes strongly trapped to the

bottom, decaying exponentially into the interior of the

fluid. In this limit, the penetration scale --I is given

by W 1e/111 and the vertical structure ca-L mii!A reduces

to -emf rlli~If/w for 24 .e

We can use Mahov1. (the e-folding penetration depth

equal to the depth of the ocean) as the rough dividing

scale between the essentially barotropic motion ( "f44i. )
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and bottom-trapped motion ( mno w i ). With this value

of 'nH , we can estimate an along-the-slope phase speed

Cs in terms of the physical parameters of the region.

The along-the-slope phase velocity of a disturbance im-

pinging on the edge of a shelf greater than C6  would

excite an essentially barotropic response over the sloping

region, while for smaller values the response would be

bottom-intensified. We set -mHo = in eq. 111-9 and

solve for the along-the-slope phase velocity

(III-10) (
CS Tr 14 L an

For a slope C=- ( (/ =5 Jr.I , and N4 A.krL we

obtain cS ~ ~45 v/dAy . For smaller slopes
-3 t-

6 et o and the same average stratification, Cs is

" Ay The along-the-slope phase velocity

of a barotropic Rossby wave with periods smaller than 3odAYS

is larger than /0 /h/44yy. These values are much too

high for the waves at this period range to match with

a strongly trapped mode over the topography. At Site D,

bottom-trapped motion ( "%(4> i- ) could be excited by

oscillations of the Gulf Stream at the edge of the shelf.

Available records at Sites J and D indeed show Gulf Stream

meanderings with periods of one to two weeks and scales
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of approximately 200 km having phase speeds low enough

to excite bottom-intensified motions over the topography.

Returning to eq. 111-6, we see that if the separation

constant Y is greater than zero the solution to this

equation is

(III-11) - co. = C Z

where

The boundary conditions at 2--H yield

(111-12) .

A solution will exist for both and .S40 (both

possible orientations of the along-the-slope phase velocity)

unlike the bottom-intensified mode c.:an Y' . The cedb.'iE

solutions have the same vertical structure as the Modified

Baroclinic Rossby Waves (MBRW) we found in the previous

chapter, (eq. II-A-3b). We can calculate the roots by

solving the transcendental equation 111-12. Fig. 3-3 shows'

a schematic graphical solution.
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Fig. 3-3. Graphical solution of equation 111-12 and a
sketch of the vertical structure of the first few MBRf
modes.
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Again we note that the roots are completely determined

in terms of the along-the-slope phase velocity and the

parameters that describe the topographic region. There

is an infinite sequence of roots to the equation. We

denote the roots for the 40 case by Y* , i.e. &j=CoSr)*L

and for the 1* case by j , i.e. GY=

For I , 'j has nodes in the interval 2=[o/*W

(from the surface to the sloping bottom) and ja-f nodes

for kwo . From Fig. 3-3 we see that as the slope ap-

proaches zero or as the phase velocity "S/il becomes very

large along the slope (the barotropic limit for the

bottom-intensified mode), the roots of the Cv~rjE sequence

approach the j"/N , the usual baroclinic Rossby wave

roots over a constant-depth ocean (- CodY5 E-+ CmJ/H ).

In this limit, for 4o , the vertical modal structure

over the topography would consist of a single barotropic

mode and an infinite sequence of baroclinic modes coo.Jir/H

(just like the set of modes for Rossby waves over a constant-

depth ocean). For ,>-o , the C&SfZ modes have the

same limit. The first root /,H approaches zero, and

CQ/I/ becomes barotropic. All the other roots approach

the usual baroclinic Rossby wave roots jT/hy as we can

easily see in Fig. 3-3. In the opposite limit, i.e. larger

slope, and/or low phase velocities along the slope (the
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strongly trapped limit for the bottom-intensified mode),

the first few roots of the sequences ce.&rSjf and j6'.,Y-

approach the half integer values of 7T/i+ , i.e. T-> 1Ja

r-.01/2H and so on. However, if for any given value of

'=N/l , slope, and along-the-slope phase velocity, the

roots of the c.oog and C-oa.j- start with nodes on the

topography as j-*o , the roots always approach the

usual baroclinic Rossby wave roots j' -t (Fig. 3-3).

Thus, there is no sharp difference in kind between the

modes over the topography and the modes over a flat

bottom -- only a.difference in degree.

Summarizing then, for .2<o (the along-the-slope

phase velocity to the left when looking up-slope), the

topographic slope can support a bot'tom-intensified mode

and a set of vertically oscillatory modes (MBRW):

(111-13) C .

For J o0 , the only vertical modes possible are

(111-14)

Thus we see that the vertical structure of the solution

to the potential vorticity equation over the sloping bottom
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exhibits a distinct asymmetry depending on the sense of

the phase velocity along the slope.

It might be helpful at this point to sketch the

vertical structure of the bottom-intensified mode and the

first root of the MBRW, CosrZ and Cash7-- , for some

selected values of the along-the-slope phase velocity

(Fig. 3-4). In the Table 3-1 we relate the sketches of

the vertical structure of the modes to the actual roots-

used to calculate the modes. For a given slope and value

of A=/ , we can associate theseeroots with a particular

along-the-slope phase velocity by equations 111-9, 12.
-2

To be specific,~ we calculated these speeds for a slope <-to

and f'20 . Flo implies an average Brunt-Vaisala

period of about 72h1PJ-. The penetration depth of the

bottom-intensified mode in kilometers was calculated on

the basis of an average depth of 4 km.

We notice that as the motion associated with the Cosa$hE

mode concentrates at the bottom, the cosrZ7 mode develops

a node on the topography. Also, we see that the first

mode, c-ospil_ present for the along-the-slope phase

velocity to the right when looking up-slope, develops a

node on the topography as the phase velocity decreases.

In a sense, we see that for low-phase speeds, all of the

motion that comes in contact with the topography is taken
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Fig. 3-4. Sketch of the vertical structure of the bottom-
intensified mode and the first root of the MBR1fT, co5 r,-.
and Cospyz for some selected values of the along-the-slope
phase velocity.
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Table 3-1. Table relating the vertical structure of the
modes to their along-the-slope phase velocity.

up by the bottom-intensified mode.

In Fig. 3-5 we show a plot of the resulting vertical

scale of the bottom-intensified mode ( 7ntH ). when its

along-the-slope phase speed is determined by the baro-

tropic Rossby wave dispersion relation. These scales

would result in matching topographic modes with an incident

barotropic Rossby wave at the slope discontinuity (Fig. 3-8).

1 300km/day .6 6.7km 2.6 6 3O0km/day .54

2 132km/day 1.0 4km 2.36 7 132km/day .70

3 70km/day 1.57 2.55km 2.17 8 70km/day .97

4 32km/day 3.14 1.27km 1.94 9 32km/day 1.20

5 16km/day 6.28 .65km 1.79 10 16km/day 1.35
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Fig. 3-5. plot of resulting vertical scale of the bottom-intensified mode when
its alon--the-slope phase velocity is determined by the barotropic Rossby wave
dispersion relation.
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The plot of ."?Hf is plotted versus the ncn-dimensional

period of the Rossby wave. To obtain the real period,

we multiply the number by the inertial period in fractions

of days. The numbers denote the period in days at

latitude 30 . To calculate these curves we used

eq. 111-9 with the along-the-slope wavenumber given

by the barotropic dispersion relation J. Eq. 111-9

becomes, P" ., u .. ts r2 . If we add

7r to the angle 0 , it will denote the angle

made by the group velocity vector of the incoming Rossby

wave with respect to north.(F163-8)

The curves in Fig. 3-5 were calculated for a slope

to and (=N/=O . If we increase the slope and/or

P , the curves are dispiaced towards -the lower periods.

The penetration scale M*= h becomes smaller, and vice

versa for lower values of 6 and/or /r . These

results are physically reasonable since increasing stratifi-

cation "softens" the vertical rigidity of the Taylor

column constraint. For a given stratification, a larger

slope requires that the fluid experience a larger change

in the basic density gradient. Therefore, a unit displace-

ment along the topographic slope will cause stronger trapping.

In Fig. 3-5.we see that for the lower periods from

a week to a month or two, the resulting penetration scale



of the bottom-intensified mode is actually larger than

the depth of the ocean ( -= Y,)y '4 ePng ). The mode

becomes in essence a barotropic wave. The phase velocities

of Rossby waves at these low quasigeostrophic periods

are too large for bottom trapping (see Table 3-1).. In

general, the matching of free, high-frequency. Rossby

waves with topographic modes over slopes smaller than zi6/

leads to essentially barotropic motions over the topography.

We recall that the set of vertical modes cosAin and

Czj co vjE are solutions to a Sturm-Liouville differential

equation when (the phase.velocity along the slope

to the left when looking up-slope). The[c&=/g,9 modes are

solutions for the case > . Thus, these solutions

form a complete set, and can be used to expand the vertical

structure of an exterior quasigeostrophic disturbance

impinging on the slope discontinuity -C=o (Fig. 3-1).

We can easily show that these modes are orthogonal. For

j<o , we have the set

Consider the coupling between the bottom-intensified mode

and the MBRW:



An A =. - M 4 0n f4 +
-4 (On R) ?*(r 1)'

because the bottom boundary condition 111-9, 12 states

that

din U --.. A m H. - r I-a.-rj 14 P H L
f ... A 1

Thus the bottom-intensified mode is orthogonal

MBRW modes. The MBRW modes Coa2 Z are orthogonal

other

c r c4; :A)2= . (r 1 -1,

.C7

For R >o

clearly,

and, we just have the set {cea

.16 C>c~t4'

We can compute the normalization coefficients,

(III-15a)

(III-15b)

r. "csr,

2. 2

c~a:|~ O ;Y Af/-- -(

f oAr h=!

H]

I4~ ~5~~n~4knh4co$4mN]
mH

to the

to each



and

(III-15c) -"*4 a r47- ____S__

2. Horizontal Structure of the Topographic Modes

In order to fully determine the horizontal propaga-

tion properties of the topographic modes, we have to con-

sider the equations describing the dependence of .. t(2)

in the up-slope coordinates. For the case -40 , eq.

111-5 becomes, for the bottom-intensified. mode,

(III-16) C. . _ 2 (" f

The solution is simply

(III-17a) Cy

where the wave number

(III-17b) -2

is

- '2 m,

where [O is the frequency, the along-the-slope

wavenumber, and 'in- the vertical scale of the bottom-

intensified mode.

93
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If the bottom-intensified mode is excited by an

impinging Rossby wave at the slope discontinuity

(Fig. 3-8), this wave will prbpagate in the up-slope

direction since a traveling Rossby wave in the constant-

depth region has

is the wavenumber of a :barotropic, propaga-

tion Rossby wave in the direction towards the slope

discontinuity ( X direction in Fig. 3-1).

In Fig. 3-6 we see a plot of the constant frequency

curves for the same period range and topographic para-

meters as in Fig. 3-5 ( /.;/o and the slope 6c=:/o ).

The along-the-slope wavenumber is calculated using the

barotropic Iossby wave dispersion relation C,0. s67
244<>

We note that the orientation of the wavenumbers with

respect to topography indicates that the velocity vector

of the resulting bottom-intensified mode is oriented very

closely along the slope. In fact, it is within /0'~/S"

of the contours. From the above plot we can also deduce

the direction of the energy flow since the group velocity

is perpendicular to the constant-frequency curves and
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Fig. 3-6. Plot of the constant frequency curves for the bottom-intensified mode
for the same period range and topographic parameters as in Fig. 3-5. (.( denotes
the along-the-slope wavenumber.
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points in the direction of decreasing period. The energy

flows with a component to the left when looking up-slope.

The solution.AiXreImx corresponds to energy propagating

in the up-slope direction, while .2)f -tvn to energy

propagating in the down-slope direction. We wish to

emphasize that the calculation presented in Fig. 3-6 is

a particular one,.done in order to completely describe

the structure of the bottom-intensified modes excited by

Rossby waves. A more general analysis of the dispersion

curves for this mode was presented in Chapter II, page

For the MBRW, equation 111-5 becomes

(I 1 +j -402. j I 2.=. 2

The solution is simply

(III-19a) g,

where is

(III-19b) - -



For quasigeostrophic periods less than a year, the MBRW

are trapped to the slope discontinuity, and decay in the

direction of decreasing depth, i.e. r and 9r 0-9

where #r -,2 for X< o in

Fig. 3-1. These modes are present to allow the vertical

structure of the bottom-intensified mode to adjust -to the

wave impinging upon the sloping region. We can estimate

the decay scale of the MBRW modes. The along-the-slope

wavenumber is of order for matching with

Rossby waves in the constant-depth region. For frequencies

greater than ztLetAR the scale of the MBRW Or- is

approximately given by *//~' because 1ggz2 is so small.

The largest decay scale is clearly given by the first root,

r = 7 ,which is of order /-/ where A/

is the average depth of the region. For example, if

N/g =0 H=9 I P<m then O4 * Higyher

roots have smaller scales. Thus we can say that the

motion associated with the Co modes is confined

to a distance of the order M/g# from the edge of the

shelf.

Combining the solutions of the up-slope dependence

with their associated vertical modes, we can construct

a representation for the pressure field. This representa-

tion contains all the quasigeostropic, topographic modes
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that can be supported over a simple sloping bottom in

response to wave motion specified at the edge of the

slope region.

(111-20) - - -
wy Amto ---- m )C#5*2 jr0

where the first term represents the propagating, bottom-

intensified mode. The terms under the summation sign

represent the horizontally confined MBRW modes trapped

to the edge of the slope. It might be helpful at this

point to sketch the instantaneous streamline pattern

of the bottom-intensified mode and the first MBRW mode

over the sloping bottom (Fig. 3-7). The sketch in Fig. 3-7

represents the topographic motions 'excited over the slope

by a quasigeostrophic disturbance impinging on the slope

discontinuity, having its along-the-slope phase velocity

traveling in the negative Y direction. The amplitudes

are not specified.

The whole pattern in Fig. 3-7 is propagating to the

left when looking up-slope. In order that the group

velocity of the bottom-intensified mode have a component

away from the slope discontinuity, the phase of the wave

must propagate towards it. The direction of propagation

of the wave is given by mlv (/). w' . The streamline
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pattern of the MBRW is very similar to the pattern of

traveling surface waves (in the horizontal direction).

The correlation coefficient of the horizontal velocities

is zero.

In the case where the disturbance at the slope dis-

continuity is propagating to the right when looking up-

slope ( X >o ), the only possible modes are the c-5osfi-

and their up-slope dependence is given by

(111-21) qo V(A. -x

f or X4.0 where

(111-22) ~1 7 '

Again, for quasigeostrophic pev/od? s : less than a

year or so, these modes are non-propagating in the up-slope

direction. These modes form a complete set and can be

used to calculate the penetration of a quasigeostrophic

disturbance, specified at the slope discontinuity, into

the sloping region.

(II-23)
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In the limit of small slope or large along-the-slope

phase velocity, the largest penetration scale of these
-I

modes, (pf , is larger than the penetration scale

for the modes with phase velocity in'the opposite direction,

rY , and depends explicitly on the frequency. From

Fig. 3-3 we see that in this limit, the root is

approximately given by =so that (fp

fW .to , For 14=4Kxn and G= to^ and

(030 >XV S^' j 20trk , whereas cdr # 9o%<.-

On the other hand, for small phase velocity along-the-slope,

the penetration scale ( ) becomes the same as for

the Cva, MY IBRW mode

3. Reflection from a Step

We have discussed in general terms the modes of

oscillations that can be supported over a simple sloping

bottom. These modes are excited in response to quasi-

geostrophic motion specified at the intersection of the

sloping region and an adjacent region. We now wish to

apply these results to calculate a specific situation:

the excitation of topographic oscillations by a monochromatic

field of barotropic Rossby waves impinging on the sloping

bottom. We are interested in calculating the amplitudes

of the topographic motions and the coefficient of reflection

relative to the incident wave amplitude. These calculations
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will enable us to determine the efficiency of the generation

of the bottom-intensified mode by sources located in an

adjacent topographic region.

Let us consider a topographic region like the one

described in Fig. 3-1. .In order to simplify the problem,

we will consider matching the motions only at one boundary,

X.= 0 . The essential features of the problem can be

adequately described without considering matching the

solution at the other boundary, Xa-o . We will choose

our solutions over the slope as if there were no back

reflection at x=- .

Consider the following situation. We have a baro-

tropic Rossby wave with a specified frequency, wavelength

and amplitude incident upon a gradually sloping bottom

oriented north-south (Fig. 3-8).

We represent the incident barotropic wave by

(111-24) c 0- J

where Y is the along-the-slope wavenumber, td is

the non-dimensional frequency scaled by 5 . is

given by the vorticity eq. 111-3 with 'Pa =0 4 or

ki j "fa , where the angle is measured as in

Fig. 3-8. In Fig. 3-8 we have the Rossby wave incident
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from the SE -quadrant, so that the along-the-slope phase

velocity will be to the left when looking up-slope. This

is the case in which the topography will be able to

support the bottom-intensified mode.

Away from the slope discontinuity, there will be

a reflected barotropic wave for 9c->oo , since no free

baroclinic Rossby waves are possible in the frequency

range we are considering. The reflected wave is represented

by

(111-25) S= e BR

The signs of the oscillatory function in 6 are chosen

so that the incident wave has its group velocity vector

with a component towards %=o and the reflected wave

field has a component away from '4=o (Fig. 3-8).

Over the topography and far away from "'.Xo , we have

a transmitted wave of the bottom-intensified form. This

wave is the only propagating solution in the up-slope

direction. We represent it by

(III-26) C. .-etWt.) ':2ex
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Close to the slope discontinuity, the adjustment

between the sloping region and the constant-depth region

is accomplished with the aid of horizontally decaying

solutions. These solutions combined with the propagating

solutions complete the set of vert.ical modes possible

over the region. In the sloping region these modes are,

as we have already seen, the MBRW Ee cos . In the

constant-depth region, these modes are non-propagating,

baroclinic Rossby modes ( . " c-o rr-2. where

#n r (l7/p 4- , -. For periods lower

than about one year, the e-folding penetration length of

these modes from the slope discontinuity at to towards

the interior of the constant-depth region is approximately

n . The lowest mode 0' '/7f determines

the envelope of these scales which is of order ^- 7dr

Hence, the non-propagating, baroclinic modes present on

both sides of the slope-change define the region of adjust-

ment for the interaction of quasigeostrophic motions. The

size of this region is of order P// . We can think

of this length scale as the region where the abrupt change

in the slope is smoothed out.

Close to the slope-change, we can represent the

topographic modes by
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(III-27) -x

where 4 kn is the coefficient of the transmitted bottom-

intensified mode.

in eq. III-17b and

'2m

4f'

is the up-slope wavenumber defined

is the decaying scale of the

MBRW defined in eq. III-19b. In the constant-depth region,

the motion is represented by

(III-28)

4?_ 1 e- 4(_0S

At the discontinuity Zro , the horizontal, geostrophic

Y/-velocities are continuous. Matching , the

velocity perpendicular to the depth contours, we obtain

(III-2)

g,, co~m + -; oy .= 8 84  +I E3 L, cosnfl
Jw-j . hi

Matching /r. the velocity along the depth contours,

we obtain

(111-30)

5- 4
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The problem consists of determining the magnitudes and

phases of the coefficients Am , s , Ra and

in terms of the incident wave amplitude EC

We have already seen that, given the set of parameters

that determine the topographic region (slope 6 , /iv and

the depth // ), the resulting vertical structure and

horizontal scales of the modes over the sloping bottom

are determined in terms of the along-the-slope phase

velocity of the incident Rossby wave. We have already

pointed out that the roots 7y of the MBRW cCosPe: always

converge on the roots of the baroclinic Rossby waves over

the constant-depth region as the index / increases, i.e.

25-+T/ (Fig. 3-3). The bottom-intensified mode

CJb- and the MBRW modes cos5P32 form an orthogonal

set. This implies that the coupling of these modes with

the baroclinic modes over the constant-depth region

continually decreases as the mode number increases. Hence,

for any particular set of parameters defining the match-

ing problem (slope e , / , H and along-the-

slope phase velocity), only a fini-te number of modes

( cosre and CosjVeaf ) will suffice to accurately describe

the interaction at the slope discontinuity.

In-the barotropic limit M?/<<1 , for example, we

need only the depth-independent topographic mode and a
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reflected barotropic wave. As the transmitted topographic

mode intensifies near the bottom, we need the first

modes to account for that part of the motion which I

not near the bottom. In Fig. 3-4 we saw how the str';cture

of the CoSrE mode compliments the. bottom-intensifiei

mode. Since the reflected barotropic wave cannot by

itself account for the topographic modes' vertical structure

at the slope discontinuity, baroclinic modes in the constant-

depth region are needed.

The simplest way to perform the matching at the

intersection of the two regions is to expand the modes

of one region in terms of the modes of the other. Let

us expand the bottom-intensified mode and the c::pse-E

modes in terms of a cosine series

(111-31)

m5 M4 7

and

(111-32)

- ,44,nj- - 4- I
P,1=

Substituting these expansions in 111-29, 30, we match the

C Os

14



terms with the same cosine dependence I) r __

convenience we define the symbols

(III-33a)

maH

and

(III-33b)
$1M C-)"

mie j _nI
* >>> H

Similarly,

(III-33c) d$et-n ~ H

ribl

and

(III-33d)
,(fl)2

Matching term by term, we find for the barotropic term

109

. For
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(III-34a) I

and

(III-34b)

for the first baroclinic mode,

(III-34c)

and

(III-34d)

and so on. Since we have two equations for each mode,

we can eliminate the coefficient -of the reflected baro-

tropic wave Bra, and the coefficients of all the baro-

clinic modes in the constant-depth region ' . Finally,

we can combine all of these relations in a matrix relating

the amplitudes of the topographic modes to the incident

wave amplitude.



(111-35) .

e~~~~~'4 Stt~ A ' Idr (

111

A2

2.f 6l) 2

0

For any particular set of parameters defining the

matching problem in terms of an incident Rossby wave at

the sloping region (slope E P= N/ fot and along-

the-slope phase velocity), the matrix tends to be diagonal,

after a number of columns, indicating that only a limited

number of modes are required to perform the matching.

We solved the matrix equation as a system of finite linear

equations. For the range of bottom-trapping scales ( mi )

considered, enough terms were kept so that the coefficient

of the reflected wave did not deviate much more than -

about 1%. We kept successively 2,/3, 4 terms and ,equations

for bottom-trapped scales greater than the average depth

of the region yH<1 (the barotropic range). The

variation found in the coefficient of reflection was

about 1%. For the bottom-trapped scales smaller than the

depth of the region nN> , we calculated up to m w=Zf

(or the e-folding distance of the bottom-intensified mode

about 1/6 of the depth). For this case we kept successively
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3, 4, 5 and 6 terms and equations. The variation in the

coefficient of reflection was between 1) and 2j. The

phases converged more slowly. For the upper limit of the

calculation M=2 , the variation was about 10%.

In Fig. 3-9 we show the results of the calculation

for the reflected coefficient using the same topographic

parameters used to calculate Fig. 3-5, (slope ,

/ 10I and an average depth 4km). The reflection

coefficient is defined as the ratio of the reflected

energy flux in the X direction over the incident

energy flux in the same direction.

(III-36)

where -3 is the coefficient of the reflected wave, and

B the' amplitude of the incident wave. The coefficient

was obtained by substituting the calculated

values of the coefficients fw/g , / -.- etc. in

eq. III-34a. The period Teo in Fig. 3-9 is non-

dimensionalized by the inertial period T* . The lines

of constant Yn H indicate the penetration scale of the

bottom-intensified mode into the interior of the fluid.

They are drawn to aid in relating the reflection coefficient
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Fig. 3-9. Reflection coefficient describing the interaction of Rossby waves with
topographic waves. The lines of constantMnm indicate the penetration scale of the
excited bottom-intensified mode. T'm is the period of the wave in days.
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to the particular bottom-intensified mode excited in

response to the impinging Rossby wave at the slope dis-

continuity d o (Fig. 3-8). The plot clearly shows

that for a given angle of incidence, the reflection co-

efficient increases as the penetration scale of the

bottom-intensified mode decreases beyond 1%nHloi , or

'%- = 14 DePTr4 . This increase in R indicates

that the bottom-intensified mode is not effectiVely

generated by the impinging Rossby wave.

The greatest transmission of energy for any given

angle of incidence.occurs at the low periods, in the

nearly barotropic limit YnH<1 . In the homogeneous

approximation for topographic waves N= , the

reflection coefficient for any given angle of incidence

is independent of frequency (as long as we do not consider

the matching of the topographic waves at the other end

of the shelf, '=-xo , as in Fig. 3-1). The results for

the homogeneous limit are shown by the dashed lines in

Fig. 3-9. We note that in agreement with the homogeneous

model Njo , the reflection coefficient does not vary

much'with period until we reach the Vwf-vi curve.

Physically, the increase in the reflection coefficient

beyond the curve nNR=i is due to two effects. As the

resulting penetration scale of the bottom-intensified
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mode decreases, the up-slope wavenumber Iiivv increases

much faster than the exterior Rossby wave wavenumber in

the same direction, b'e . (In the barotropic limit,

-wt~ or in a homogeneous model, N2=o , the ratio of

* lrn is independent of frequency.) This large change

i.n the wavenumbers decreases the transmission amplitude

over the slope. Furthermore, as the resulting penetration

scale decreases, the amplitudes of the horizontally de-

caying baroclinic modes must increase so that the modes

over the topography can adjust to the barotropic vertical

structure of the incoming wave. Hence, part of the amplitude

of the incident wave is redistributed among the topographic

modes decaying away from the edge of the shelf. This

redistribution occurs at the 'expense of the amplitude

of the bottom-intensified mode. Since the horizontally

decaying modes carry no energy, the reflection coefficient

increases. In Fig. 3-10 we show the change in the amplitudes

of the bottom-intensified mode,codsm2E and the first two

modes CoS-rj and cosrt as a function of the penetration

scale rMn for a constant angle of incidence. We refer

to F'ig. 3-4 for a sketch of the vertical structure of

these modes.

It is clear that while the amplitude of the bottom-

intensified mode decreases, the MBRW modes gain in strength.
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From this it would seem that when the scales of the

incident Rossby wave match with a strongly trapped bottom-

intensified mode, the edge of the shelf behaves like an

elastic membrane. It yields under the influence of the

impinging wave and springs back with little energy lost.

The penetration of the wave into the sloping region is

given by the longest decay length scale of the 4034e modes,

.5

Cos rz MODE

~jCO A,M
SC IB C- 

c4S r 1z M O DE

3 , mn H -

Fig. 3-10. Amplitudes of the bottom-intensified mode and
the first two modes cosria and cosrz-z as a function of the
penetration scale -m for a constant angle of incidence.
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In Fig. 3-11 we show a plot of the calculated amplitude

of the bottom-intensified mode as a function of frequency.

We clearly see that as the penetration scale decreases,

the amplitude of the mode decreases. Along a line of

constant penetration scale, the amplitude increases as

the angle of incidence of the Rossby wave group velocity

turns in the direction perpendicular to the slope (Fig.

3-8).. This increase in the amplitude corresponds to the

decrease in the reflection coefficient in Fig. 3-9 (along

the lines of constant w4a ). The amplitude of the

bottom-intensified mode increases because as 6-c to" , the

velocity of this mode over the sloping bottom is turning

in the along-the-slope direction and is experiencing a

smaller effective slope. In fact, this effect is responsible

for the concavity of the 1n"H onSMTA T lines (see

Figs. 3-9, 3-11). The dashed lines in Fig. 3-11 denote

the amplitude of topographic motion if the effect of

stratification were neglected. We note that the calculations

presented above were made for a bottom slope of order one

in one-hundred. Smaller slopes essentially displace the

calculated curves in Figs. 3-9, 3-11 towards the longer

periods. The nearly barotropic limit I'i<1 is extended

for a larger period range.



Am|
~3il

Tw -- >

Fig. 3-11. Plot of the calculated amplitude of the bottom-
intensified mode as a function of period.
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Up to the present, we have considered the matching 

of Rossby waves only at one boundary. In principle there

is no difficulty in treating more complicated topography

such as a full sloping step, a small amplitude ridge and

a series of sloping bottoms back-to-back to simulate the

variation of the slope. In the case of a ridge, for

example, we would have to use vertical modes c< j S

eq. 111-23, in order to match the bottom-intens'ified

mode across the ridge top. The details of the computation

become increasingly more involved as the number of boundaries

to be considered increases. The physical conclusions

appear to be essentially the same as those we found in

the simpler problem: Rossby waves transmit energy most

effectively over topography in the -long-scale, high-

frequency range. For quasigeostrophic slopes, the re-

sulting topographic motions under these conditions are

essentially barotropic. Bottom-intensified modes appear

for low along-the-slope phase velocities, but their

amplitudes, except for occasional resonances, are small.

The results of the calculation of the reflection

coefficient (Fig. 3-9) indicate the following: 1. Rossby

waves cannot'excite bottom-intensified waves with any

significa.nt amplitude. 2. In the low quasigeostrophic

periods ( T.$3odAys), Rossby waves produce essentially
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barotropic topographic oscillations. 3. For low

frequencies Rossby waves excite waves trapped to the

edge of slope (Fig. 3-) which have larger velocities

close to the surface and a node on the topography. These

waves have larger amplitudes than the bottom-intensified

wave. -These conclusions indicate that bottom-intensified

waves over topography must have a local origin.

4. Wave Trapping

It is possible for topographic features in the ocean

to support wave motions which cannot be coupled (or are

weakly coupled) to propagating waves outside the topo-

graphic region. This trapping of wave energy occurs

because the wave motion over the topography experiences

internal reflections at the edge of the region. Internal

reflections occur, in turn, because the along-the-slope

phase velocity of the topographic oscillations is too

slow to match with freely propagating waves outside the

region.

Rhines ( I 3 ) has studied wave trapping over

simple one-dimensional and cylindrically symmetric

topography within the homogeneous approximation. When

the effects of stratification are included, the vertical

structure of the normal modes of oscillation will intensify

at the bottom, W14> I , whenever the horizontal scales
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of the modes- are less than Nlt( where ( is the

average depth. Also, the adjustment of the vertical

structure of the bottom-intensified oscillations at the

edge of the sloping region will excite horizontally

trapped, baroclinic waves. These baroclinic waves decay

away in both directions from the edge of the sloping region.

When compared to the homogeneous problem, the major

effect of these holzontally trapped, baroclinic oscilla-

tions is to further weaken the coupling of the normal

modes over the topographic feature with the exterior.

This reduces the possibility of coupling -with other

nearby features which could support similar modes of

oscillation.

To illustrate the weakening of the coupling, let us

consider the calculation of the normal modes over a

shelf with a wall at one end and a constant-depth region

at the other.

Fig. 3-12. Diagram describing the shelf for the calcula-
tion of topographic normal modes.
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We would like to point out that the simplest way to

demonstrate the weakening of the coupling with increasing

bottom-intensification is to calculate the reflection of

an incident bottom-intensified mode on a slope dis-

continuity such as we described in Fig. 3-8. We would

find that for a given topographic region, as we decrease

the penetration scale of the wave into the interior of

the fluid -AH , the phase of the reflected wave would

be larger than the phase obtained for the homogeneous

case, tending towards r , that is, perfect reflection.

Similarly, when one considers discrete modes, a measure

of the coupling with the exterior region is given by the

way the eigenvalues approach the solutions for a rigid

wall at %=0 . We will show that the eigenvalues of

the normal modes are increased over the homogeneous

values when the baroclinic, horizontally trapped motions

are included to adjust the vertical structure of the bottom-

intensified motion. The eigenvalues tend toward the solu-

tions one would obtain for a rigid wall at X=o instead

of an open region.

The shelf in Fig. 3-12 is considered infinite along

the y-direction. This topographic region might represent

an idealized continental shelf. For small slopes, i.e.

4E / <e1 , the topographic motion will be
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quasigeostrophic, and we can apply the vertical normal

mode decomposition of the previous section. For simplicity

we set f=o , which implies we are dealing with along-

the-slope scales (<C*

Over the slope, the only possible oscillatory solu-

tion in the up-slope direction has the form of the bottom-

intensified mode

(111-37) - c IjC X*

where , the wavenumber in the up-slope direction,

is given by

(111-38)

where is the along-the-slope wavenumber and the /W

inverse of the penetration scale of the bottom-intensified

mode. As we have already seen, this mode only exists for

140 , that is when the along-the-slope phase propa-

gates to the left when looking up-slope. We note that the

solution above already satisfies the condition of no flow

into the boundary at '.=-a . In the case of a rigid
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wall, the condition of no flow sv1 Ar=oat -ro yields

the eigenvalues for mm and its associated frequency

for each possible value of the along-the-slope wavenumber

and W 1P CL

In the case of an open region, the motion extends

its influence beyond the edge. Since the vertical depend-

ence of the bottom-intensified mode has to be adjusted

at the edge, we need the set of solutions ccp ar-

which decays in the up-slope direction (see page 6 ).

Over the sloping bottom, we represent the lowest order

quasigeostrophic pressure field as

(111-39)

04 4AMS I Pnax4& e4,. 2 m - 71 Aj s x+) zox(

where the terms under the summation sign represent the

MBRW we found in the previous section. gr' , the

decay scale of these modes, is given by

The roots Y,' are determined in terms of particular

values of the bottom-intensified scale by the relation
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.m14 tcAdJvn = - 14 tc aAV3N

We note that the pressure field satisfies the no-

flow condition at X=- o-

In the open region x-o , we use the vorticity

equation 11-18 with c~o to find the complete set of

solutions in the vertical. They satisfy the top and bottom

boundary conditions of no-flow. These solutions do not

exist by themselves. They are used to represent the in-

fluence of the topographic motion beyond -x=o . For

the region beyond the shelf, we represent the solution by

(111-40)

where (4.| is the along-the-slope wavelength and

. The barotropic solution

decays with scale c ,~ given by the along-the-slope wave-

length of the topographic oscillation. The penetration

depth defines the maximum region of influence of the

topographic oscillations. The baroclinic solutions decay

much fas.ter.

At %= o we match the horizontal quasigeostrophic
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velocities 4. - . For A.=- 3.t we have

(111-41)

and for 4f x

(111-42)

For any given along-the-slope wavenumber,. the above

equations are satisfied by a discrete set of bottom-

intensified scales and their associated frequencies. As

in the reflection problem in'the previous .section, we

expand the <:"4M and each cosr.) a mode in

terms of the complete set of functions C05rn a .

(111-43)

and

(111-44) Cos 14D
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where the symbols E, J and n have

been defined in eq. 111-33 (page ). We substitute

the above expansions in the eqs. 111-41, 42 and match

term by term

AIn, A m A C+ A, 4 + A 4r, * r 1 s 14rq 6|+ .SB6

We eliminate the coefficients in the right-hand side by

combining t and ' equations term by term. We

obtain an infinite set of homogeneous equations.

(I11-45)

~~~ co)nA a +v aosic. 4q), A rh

Setting the determinant of the matrix equal to zero allows

us to calculate the eigenvalues of the problem.

The eigenvalues were calculated as follows. Particu-

lar values of the vertical scale of the bottom-intensified
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mode Tn#+ were chosen, then a number of roots of the

MBRW modes were calculated by using the relation

Tj 4 t~o-rj -- Vn Vn R

We calculated all the other parameters that appear in the

matrix , E for a number of rows and columns.

The value of partial determinants were obtained by

evaluating the first element and the second, third and

fourth rows and columns. We denoted these values by

D, ) 0Ds ,D. We. repeated the calculations for other

values of V d , and the results were plotted versus

Yn 14 .We noted that the results of _z, Df4

passed practically through the same point on the axis,

indicating that the roots of Di'D,(b converged rapidly

to a fixed value, which is the root of the determinant.

The range of values 'ThfrA can be estimated for each

eigenvalue as follows. In the case of a rigid wall at

X the first eigenvalue is given by -S n -

or where 0- is the width of the shelf. We

know that the case of/-.o-wall at x =o , the root has

to be smaller (Fig. 3-13). So MM< ('U

The minimum value can be obtained by setting m a= o

Then M '> P14 A . The range of possible roots

lrm 4 is within 74.< nR< PH for
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x=-a 0 C-C. x o

Fig. 3-13. Sketch of the first eigenvalue for a rigid
wall at K=o and an open region at X=

the first eigenvalue. The second mode of oscillation

can be calculated by choosing 4TH between the first

calculated eigenvalue and the second eigenvalue for the

rigid wall case, and so on for higher roots. For example,

imagine a shelf 100 km. wide and 4 km. deep. Set the

along-the-slope wavenumber = '/oo Ym and = N/S

10 . The value of ,t f-f for the first

eigenvalue is within the range .4 < VA-4 (.3Z , that

is, within a vertical scale 2.5 times larger than the depth

and about .75 of the depth. The second eigenvalue is

within (11 and 2.54. For the above case la=ti and

17y=.'q , we show in Table 3-2 the actual numerical

values of the determinants used in obtaining the vertical

structure of the lowest eigeigvalue. For this particular

case, D4 is beyond the accuracy of our calculations

because we are dealing with the difference of very large
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mvi D, Dz D3

.6 +1. 4 7-10-' +.643

.3 +.786-10~2 +.299

.9 +.021-10-2 +.089 +594.46-102

.92 +.042 +102.15-102

.93 -. 231-10-2 -.0015 -32.01-10.2

1.0 -. 927-10z -. 163 -7 9 3 .02-10z

1.2 -3.0-10'- -.50o6

Table 3-2. Table showing the numerical values of the
determinants used in obtaining the vertical structure
of the lowest eigenvalue.

numbers close to the root. However, it is clear that the

roots are converging between .92 and .93. Graphically,

the intersection of on 4 on the axis is about .927

(Fig. 3-14). The horizontal eigenvalue ("A Ma

corresponding to the vertical scale Md=-q11s lr4 2i.

In the homogeneous case, that is, neglecting the baroclinic

modes trapped at the edge of the slope, we obtain Am4 2.03.

For larger stratification or a narrower shelf, for example

(3I= 3 -and ao4 , we obtain mtO2.3(6 and
CL
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Fig. 3-14. Graphical solution to eq. 111-43 in terms of
partial determinants.
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Iae r2.1q compared to im ac 2,03 for the homogeneous

case. It is clear that the presence of the baroclinic

modes at the edge of the shelf is pulling the horizontal

eigenvalues closer to the rigid wall limit 2vmac 3-'Y

In Fig. 3-15 we show a plot o.f the calculated values

of the vertical intensification scale "1f as a function

of the along-the-slope wavenumber for different values

of- the parameter Pa/0  . For all t4 the

corresponding eigenvalues m& are larger than the

homogeneous case and approach the rigid wall values as

a , increases.

The dashed line (Fig. 3-15) meeting the PN/f= Icurve

denotes the vertical eigenvalues of the rigid wall at

o case. We notice that for small values of

(1/0. , anis smaller than L until

aI (r/A) ,or when I' U(UeI ^s

For the case T1a= 4 , the vertical intensification

scale -Th4 is always greater than 1, indicating that

all the modes show vertical intensification.

In Fig. 3-16 we show a plot of the frequency scaled

by GN/5  (the topographic buoyancy frequency), as

a function of the along-the-slope wavenumber GQa)

scaled b7 the shelf width.
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Z 3 4 5 6 7 8 9 10 11 'IZ

Fig. 3-15. Plot of the calculated values of the vertical
intensification scale as a function of the along-the-slope
wavenumber.

We plotted the curves for different values of P14/o'

PH/a- roughly compares the topographic scale CL to the

cut-off scale for bottom-intensification r 1 . For
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Fig. 3-16. Plot of the frequency
of the lowest topographic mode as
a function of the along-the-slope
wavenumber.
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a constant .'' , we can think of C)/ as defining

the dispersion relations for shelfs of different widths.

For example, if tr 10  and 14m'4km , P/a= it

implies a width o.= f-4 ok va ; for a 04 *

The line of constant penetration depth vYn has been

-drawn to help identify the regions of vertical intensifica-

tion. There is a problem in visualizing the lines of

constant '" R in a plot for c VS da) because their pro-

jections on this plane appear to converge on the origin.

In Fig. 3-17 we will show a sketch of the three-dimensional

surface. -

We notice that for small values of ,to.. the curves

are nondispersi.ve and in agreement with the homogeneous

calculations. This- is due to the fact that the velocities

of the waves lie very closely along the depth contours.

For the curve rN/=- , for example, as So. increases,

the frequency rises rapidly beyond the buoyancy limit

P6- = O . The topographic waves do not feel the

effects of stratification at such long wavelengths. The

frequency reaches a maximum at approximately the point

where the along-the-slope wavelength becomes about the

same order as the up-slope wvenumber An. a ^ 2

(fixed by the mode number). It is in this range of

wavelengths that the motion can feel the full impact
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of vortex stretching. As So- increases, the frequency

decreases because the wavelength becomes small. However,

unlike the homogeneous limit, the frequency cannot decrease

indefinitely. As soon as the length scales become less

than N/; MoePrN , the buoyancy regime begins to

dominate. The frequency does not decrease below (T'6)

because, as 9A increases, the velocity field is turn-

ing all the time in the direction of maximum depth change

(the up-slope direction).

For -/,yL-and , the vertical

structure of the oscillations is vertically intensified

for all the values of a. Therefore, the buoyancy

effect dominates and the frequency never rises-above ('6

For large ajl , the frequency approaches 6C' because

the velocity-vector turns in the up-slope direction

feeling the 'full restoring force of the buoyancy effect

We recall that the above calculations were made for

the lowest mode of oscillation. Higher modes displace the

curves towards the lower frequencies for any given along-

the slope wavenumber. It is possible-to find the normal

modes for more complicated topography, such as a full

sloping step, a ridge and a cylindrically symmetric sea-

mount or island. The same general conclusions apply.
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Fig. 3-17. A sketch of the three-dimensional surface
defined by the frequency, along-the-slope wavenumber and
the vertical intensification scale.

When the horizontal scale of the actual modes is less

than 4iletr , their vertical structure shows
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bottom-intensification. The eigenvalues of the modes are

larger than those found in the homogeneous limit, indicat-

in, that the inclusion of stratification confines the

motion more strongly to the topography.
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Chapter IV. Some Aspects of the Local Generation of

Bottom-intensified Topogfraphic Oscillations

In the previous chapter we determined that bottom-

intensified oscillations were not effectively generated

by sources located in an adjacent topographic environ-

ment. The matching conditions at the intersection of

the topographic regions yielded very small amplitudes

for the waves with bottom-intensified scales vnHvi

Furthermore, in the high quasigeostrophic frequencies,

Rossby waves could only excite depth-independent

topographic oscillations. Our discussion on wave trapping

also showed that bottom-intensified normal modes tended

to remain confined within the immediate vicinity of the

topography. From all this, it would seem that the

presence of bottom-intensified oscillations at a given

location in the ocean topography must be ascribed to

local sources.

Sources of local energy for bottom-intensified

motions can be divided roughly into two kinds. 1. Direct

forcing of the topographic oscillations by some initially

prescribed flow which has to be adjusted at a sloping

boundary. We note that in order for the topographic

oscillations resulting from such an adjustment to be

bottom-intensified, the initially imposed flow must have
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horizontal scales smaller than NgUeoprj/. Z. Indirect

forcing of the oscillations by the interaction of long-

scale, directly forced waves with bottom topography

possessing baroclinic scales, that is, .L,/g < 'O1,CPT

where L is a characteristic length scale for the

bottom topography, and LIMp is the average depth of the

ocean in the general location. We discussed the free

solutions to such a situation in Chapter II, section

B, for a one-dimensional corrugated bottom.

In this chapter we will concentrate on the first

kind of source for bottom-intensified motions. In

section A we will discuss the response of a stratified

fluid over a sloping bottom to an initially imposed

geostrophic flow. In secion B we will comment on the

wind generation of bottom-intensified oscillations.

In section 0 we will discuss the local interaction of

a steady shear current with topographic waves.

In the following pages we will deal with the

excitation of topographic oscillations over regions

which are horizontally unbounded. This kind of model

is clearly unrealistic, especially for the very long

scales. However, it is useful because the simplicity

obtained in the results leads to a clear understanding

of the character of the motion. In principle we are not
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modes that we found in the previous chapter could be

used to match the forced response over the topography

with regions exterior to it.

Section A. Response of the Fluid over a Slopina Bottom

to an Initially Imposed Geostrophic Flow

This problem is interesting because it illustrates

simply how the field of motion adjusts to the topographic

slope. Consider a simple sloping bottom described in

Fig. 4-1.

@@ ti o 1 1 1 1 1 a a a I a -

Zu-H- Ex

Fig. 4-1. Diagram describing the topographic region.

At a given time, over a sloping bottom, we prescribe

a geostrophic flow satisfying the thermal wind equations.

This state of motion may not be consistent with the

physical requirement of zero normal velocity over the

sloping bottom. This implies that the initial geostrophic

motion cannot remain unchanged, unless it was originally
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prescribed to flow along constant-depth contours. In

general terms what happens is that the slope wipes out

that part of the initial disturbance that came in

contact with the bottom, and replaces the motion there

with time-dependent topographic oscillations. The

vertical structure of the tdpographic oscillations

will be bottom-intensified if the scales of the initially

imposed motion are less than / (a . '

Let us consider the problem in detail. When the

horizontal scales of the imposed motion L are small

enough so that the. fractional change of depth over L

are small , EEL/w <.< , we can use the system of

equations derived in Chapter II,eqs. 11-18, II-19ab.

We recall that their derivation is -based on a lineariza-

tion of the boundary condition on the sloping bottom,

and a scaling of the time-dependence by the small

parameter 6 . The velocity, the pressure and the

density perturbation fields were expanded in terms of

S to preserve the requirement that the basic state

of the system be geostrophic. The. equations are

(IV. A-l) -I. +
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the potential vorticity equation, to the lowest order

in . is the ratio N .and A measures

the ratio of the horizontal scale L to the depth -.

For simplicity we have set the planetary 6 -effect

equal to zero. We will laterdiscuss its effects. We

recall that the above equation was derived under the

assumption that the Rossby number R. was small compared

to the topographic parameter S . The condition of no

normal flow at the bottom slope yields

(IV. A-2) a'4 - I

and the conditi-on of zero vertical velocity at the top

yields

(IV. A-3) 02
(FA) %T

In order to calculate the topographic response for an

initially imposed geostrophic flow we find it convenient

to Laplace transform our equations. Let the Laplace

transform of be represented by

(IV. A-4) N1ZS I
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For simplicity we will say that the initial geostrophic

flow is depth-independent. Wie will see, however, that

the result can be extended to an initial geostrophic flow

with arbitrary depth-dependence. We can think of the

situation in two ways. At time T=O a geostrophic

flow is set up over the slope, or at T= 0  the bottom

is tilted over a region supporting a geostrophic flow.

In both cases, T=o actually denotes a time interval

much longer than an inertial period.

We represent the geostrophic flow at ~=o simply

by

(IV. A-5a) - A ~ K

(IV. A-5b) ~ 9

We find the eq. IV. A-1 becomes

(IV. A-6) 2.

and the boundary conditions

(IV. A-7a) 0
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(IV. A-7b)
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~- ~, = - _

In order to make the horizontal dependence as general as

possible we Fourier transform the equations in

(IV. A-9)

;j; 2 ~
-~0

4)A ZS

and for the initial disturbance,

(IV. A-10) ... ,'x 4 4
F- Cx, LI) 2. T C12

In spectral form the equations become,

(IV. A-ll)

and

(IV. A-12a)

~~z4 - (r.Mc::V j~, - (rA~)Z 9LI~,~t)
T~

A

(Iv.A-12) ~r.A

V.xt *- - I.

0

(IV. A-12b)
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The advantage of this scheme is that we generalize as

muoh as possible the form of x-, y-dependence of the

initial condition, while at the same time we single

out the z-dependence for special treatment. Let

be represented by,

(IV. A-13) d

Substituting in IV. A-l we obtain, m=(.rA and

C/ F(O). The vertical structure of the bottom-

intensified solution is given directly by the horizontal

scales of the motion times the ratio N/ , as we

have seen before (in dimensional form -K

Solution IV. A-13 automatically satisfies the boundary

condition at the top, a= o . The boundary condition

at the bottom slope, eq. IV. A-12b, provides the coupling

between the amplitude of the depth-independent geostrophic

flow and the induced bottom-intensified motion. Substitu-

ting eq. IV. A-13 in IV. A-12b, we find

L~ s +(A) , ca PAK
la towk PA k

for the amplitude of the bottom-intensified motion.

Let x Z which in the theory of
+*A4 i'A k
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bottom-intensified oscillations represents the buoyancy

oscillation frequency, or the maximum allowed frequency

of the waves for a given topographic slope (see Chapter II,

eq. II. A-2). The solution to eq. IV. A-ll can be

written as,

(IV. A-15)

By inspection we see that the Laplace transform inverse

can be readily performed. The solution,

(IV. A-16)

O T 4

The elementary response (the solution inside the

parenthesis) consists of two parts: a steady component

which has zero horizontal velocity at the bottom, and a

wave component which has the 'general form of the bottom-

intensified mode, and which propagates with a component

of the phase velocity to the left when looking up-slope.
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We notice that at l'( the hyperbolic solutions cancel

each other and we are left with the initial disturbance.

For T a the slope has cancelled out that part of the

initial disturbance that came in contact with the bottom,

and replaced the motion there by time-dependent topographic

oscillations.

If we substitute eq.-IV. A-16 in.the original eqs.

IV. A-1, IV. A-2 and IV. A-3, we see that after' T= 0

the steady term has no effect on the equations because

it is time-independent and is zero at the bottom slope.

From this is clear that the initial geostrophic disturbance

could have been dependent on the vertical coordinate

because the only part of the flow that induces the

topographic oscillations is its value at the bottom.

We can generalize the solution to be

(IV. A-17)

V ~' -t ~I iTA (~~'- VK ) I

where (t) is the z-dependence of the 4 component

of the i,nitial pressure disturbance. As one expects if

=0 there is no adjustment required. In Fig. 4-2
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we show a sketch of the horizontal velocity field

projected in the up-slope direction.

-rr.o

STEADY

r>O

Fig. 4-2. Diag:ram illustrating the vertical structure
of geostrophic currents.

In order to best discuss the solution we change the

representation of to dimensional form

(IV. A-18) -i(6x
L~kex %)

coI s n <

4- (~jTj)

for the depth-independent initial disturbance. 4 is

the depth and o</ in the time dependence is 6V/ Ip 1K4

where G is the slope. Let-us take a specific form ofe(k1%

which corresponds to a simple sinosoidal wave oriented

at an angle with respect to the slope. W'Te

Cyle,) 6AtJ> 111
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first note t.hat expression IV. A-18 yields the homogeneous

limit for very small Pko , as one.expects. The

topographic motion will be depth-independent when the

horizontal scales of the imposed motion yield a vertical

penetration scale -I larger than the depth of the

ocean, >>' . The frequency o( in this limit becomes

the well-known topographic P-effect frequency, independent

of stratification, but dependent on the horizontal scale,

S04= . The steady part of the solution essentially

disappears, i.e. CO5r Vot--1. and the whole column ofI C4oS ki P I'.14A
fluid is rigidly coupled in the vertical .to execute the

oscillations

(IV. A-19)- +

When the scales of the imposed motion are less than

(?) < , the elementary solutions become decoupled

in the vertical because stratification weakens the

rigidity of the vertical columns of fluid. There is a

steady part which is not in contact with the topography

(that is why it is steady), and a time-dependent oscilla-

tion which is concentrated at' the bottom. We notice

that the steady geostrophic flow can be quite arbitrary

in its horizontal structure. It does not have to flow
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along the depth contours to remain steady as in the

homogeneous limit because its motion does come in contact

with the topography. We notice that if )=O , that is,

a current flow along the contours, then the initial

motion is not disturbed by the topogTraphy and there

are no waves excited.

It might be helpful at this point to sketch the

streamline pattern (instantaneous) for the simple

disturbance in the case of bottom-intensification,

1 ( 4N-1.)'? << H ('Fig. 4-3). We set

f(,b.iT$Y(-'.)6(f+A.) in eq. IV. A-18 and take the

real part to obtain

(IV. A-20)

+4 (- 4i r'o 14- _t_____2% o

Another simple calculation can be made if we take

the initial disturbance to be a cylindrically symmetric

5-- four~nos in K-space, i.e. ?CRc= '/g. 5k'

This corresponds to the zeroth order Bessel function

in the space coordinates PCr)= TP(R. . The above

disturbance is interesting because the dispersion



Fig. 4-3. A sketch of the bottom-intensified wave
and the steady current resulting from the adjustment
of an initial disturbance to the topography.

relation of the topographic oscillations is highly

directional, as we already saw in Chapter II, section k,

and as we can readily see in the time-dependence of

integral IV. A-18, i.e. At- 4 ry A disturbance

of the form So(kr) is the simplest way one can model

the directional properties (in this case we fix the

magnitude of the wavenumber but not its direction).

Substituting for RP-) in eq. IV. A-18 we find

(IV. A-21) -4ro(Pi CesC4D$P g 5
co S6 n ce,
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where the angles appearing in the integral are defined

in Fig. 4-4.

SLOPE

Fig. 4-4. Figure describing the angles appearing in
eq. IV. A-21.

The integral is just equal to

(IV. A-22a)

Noc (-P + e (PS 19 T
I 1i~rlko i+

0 atr Varo'4H to4' k, 14

or in terms of x- and y-coordinates

(IV. A-22b)

-T- y I.

Again the topographic slope has wiped out the initial

disturbance at the bottom. The topographic response,

concentrated at the bottom if 1IKoI > I propagates

as a whole along the slope without change of shape (Fig. 4-5).

"N
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Fig. 4-5. Sketch of the topographic oscillations excited
by a cylindrically mrmnetric disturbance over a sloping
shelf.

The propagation without change of shape is understandable

in terms of the propagation of the elementary plane waves

that 9ppear in the integral IV. A-22a.

If we set O~k,4=' in eq. IV. A-18, the integral

represents the Fourier transform of the two-dimensional

Green's function that describes the response of the fluid
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to a unit impulse. Eq. IV. A-21 is the actual form

of the transform where f now means the distance

between the source point and the point of observation.

Eq. IV. A-22b is the form of the horizontal and time-

dependence of the elementary components of the topographic

oscillations.

The effects of viscous dissipation at the sloping

boundary can be introduced by the use of the Ekman

compatibility condition. The modifications to the

normal mode solutions have been discussed in Chapter II,

section A (page 4 ). Here we wish to make the point

that if the scales of the initially imposed motion lead

to topographic bottom-intensified oscillations, the steady

part of the solution is unaffected by the dissipative

processes at the lower boundary. The topographic

oscillations concentrated at the bottom eventually decay

due to frictional effects, whereas the steady flow

persists for a much longer time. (For horizontal scales

longer than W4PePrA/f the whole column is affected by

the frictional effects at the bottom.) The implications

of this partition of the motion in the vertical is

that over a sloping bottom one would expect to find

low-frequency horizontal kinetic energy in the baroclinic

scales leading to bottom intensification, L f ADeng
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This energy will decrease as we approach the bottom

slope. This simple picture is complicated by the

fact that surface stresses with horizontal baroclinic

scales would produce an equivalent effect.

In the above paragraph we used the phrase "low-

frequency" for two reasons. 1. If we include the

planetary -effect in the considerations that

lead to the solution of the initial value problem, the

interior flow over the topographic slope will no

longer remain steady. The general solution including

both effects is quite difficult to solve analytically.

In the special case where the topographic restoring

force is much stronger than the planetary ? -effect

and the horizontal scales L : Der , the modifica-

tion to the interior flow is. simply to introduce a phase

propagation with a component to the west. The bottom-

intensified oscillations essentially remain unchanged

because they are in contact with the bottom slope where

the topographic effect dominates. 2. We neglected non-

linear effects in the solution. This is justifiable for

the bottom-intensified oscillations because we assumed

that the topographic restoring force dominated the process.

However, we see that since the interior flow is not in

contact with the topography, the small nonlinearities
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will eventumlly affect the motion. The structure

of the "steady"flow will slowly evolve with time due

to nonlinear advection.

At this point one cannot help but speculate about

the previously mentioned Site D observations. The

frequency spectrum calculated by Thompson showed that

the horizontal kinetic energy decreased with depth for

periods greater than about 30 days. For smaller periods

the frequency spectrum was depth-independent. Thompson

( I9 ) and Rhines ( £0 ) suggested that the

high-frequency contributions to the spectrum were

due to depth-independent Rossby topographic oscillations,

implying that the horizontal scales of these motions

had to be larger than N.' Perhaps part

of the energy found at the lower frequencies is due

to drifting eddies originating in the adjustment of

disturbances with the baroclinic scales( L IE/OFePT/ )

to the sloping bottom. These disturbances will also

generate bottom-intensified oscillations, but they

decay due to frictional effects. Of course, this -does

not rule out the possibility that part of the low-frequency

contributions to the energy spectrum could be due to

horizontally trapped waves of the sort we discussed in

the previous chapter. We recall that for low,
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along-the-slope phase velocities, these waves had a

node on the topography. They are excited in the

adjustment of a tim-dependent disturbance impinging

on a region with a sloping bottom. We also recall,

-however, that the tAl correlation of these waves

Was zero, whereas there is no reason why the advecting

eddies produced by the vertical decoupling of the motion

would have such a property.
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Section B. Wind Generated Bottom-intensified Oscillations

In the open ocean one possible source of local energy

for bottom-intensified oscillations is wind stress over

the surface. We wish to comment on the effectiveness

of this source of energy in exciting bottom-intensified

topographic waves.

Let us consider a constant sloping bottom. The

slope is constant in the sense that it does not vary

over distances larger than the imposed horizontal scales

on the fluid. Ile also take the slope to be small in

the sense that the fractional change of height over the

imposed wave scale is small compared to the mean depth.

We will show that oVer a constant sloping bottom the

direct effects of wind stress over the surface will

not effectively excite bottom-intensified oscillations

with penetration scales smaller than the mean depth of

the region.

Consider a sloping bottom represented by Fig. 4-6.

-0

aiepmili -

.- . d

Fig. 4-6. Diagram describing the topogra phic region.
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We are interested in the excitation of topographic

oscillations by an applied wind stre.ss that is gradually

turned on and after some time is again gradually turned

off. The time scale for the changes in the wind is

considered to be long compared to an inertial period.

Following Holton ( 3 ) we represent the effects of

the wind stress by a vertical velocity at the base of

the Ekman layer at the surface
A &

Ur y a-cVAA 'C /

where T is the wind stress and .the coriolis

parameter.

For the treatment of this problem we can use

eqs. II-lla to II-lle in Chapter II. By assumption

we set the Rossby number and the planetary P -effect
equal to zero. In this problem the interior vertical

velocity is matched to the wind stress vertical velocity

at the base of the Ekman layer. The boundary condition

on the sloping bottom is given by the condition of no

flow into the boundary. Since we are interested in

topographic oscillations excited by the wind, we scale

our time dependence by the t'opographic parameter S=_l/.

We recall that this parameter measures the fractional

change of depth of the topographic region over a wave
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scale ( L ). In this case ( L ) refers to the

imposed scale of the wind. We scale the amplitude of

the horizontal velocities in the interior by */11S

where 7o is the amplitude of the wind stress and

14 is the mean depth. This guarantees that our non-

dimensional interior horizontal velocities will be

order one.

Following the procedure described in Chapter II

we obtain a set of non-dimensional scaled equations

for the lowest order quasigeostrophic pressure field.

For the interior motion we have

(IV. B-l) 0Ca

where 1'A is equal to L . E is the imposed

scale of the wind stress and N is the mean depth. At

the surface we have

(IV. B-2) c)

(r'A) DT

where D is the non-dimensional vertical velocity

at the base of the surface Ekman layer induced by the
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stress. The above equation describes the matching

between the interior motion and the wind. At the sloping

bottom we have the condition of no flow into the boundary

(IV. B-3)(3

We recall that the bottom boundary condition was linearized

about the mean depth because 4 . .v

Let us take a simple spatial and time representation

for /D

(IV. B-4) 'x0) O -r<o

'K To>TPo

T >TO

Using Laplace transform techniques as in the previous

section we arrive at the following solution for

During the forcing period o<T<To we find

(IV. B-5)

Y- CraA A KC Jta -ic"J411A K
k;.

- kx+ RY)

-aI

-a

(r I-.

After the forcing stops tT; we find
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(IV. B-6 ) -_A.a (T-T.) -. <'..nT

Solution IV. B-5 satisfies the initial condition of no

motion at T~O . In the above solutions --O =~ )/tca PA K(.

For the vertical penetration scale of the topographic

oscillations smaller than the mean depth of the region,

rA K> i , -- is the buoyancy frequency of the

bottom-intensified oscillations (see Chapter II, page35 ).

For (A'<I , the vertical penetration scale of the

co.A %K'7. function larger than the depth of the

region, .2. is the maximum frequency due to the vortex

stretching of the fluid over the sloping bottom. We

see that the actual frequency of the oscillations depends

on the angle the wavenumber makes with the along-the-slope

direction A/t<. - We also note that the oscillations

propagate with a component of the phase velocity to the

left when looking up-slope. The solution for is

not singular at ,=0 as can be easily demonstrated

by taking the limit -0 .

Some of the features of the solution are: 1. Durin3
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the forcing -period there is a directly driven horizontal

current with a node on the topography. As in the initial

value problem discussed in section A, topographic

oscillations are excited to compensate for the adjust-

ment of the directly driven horizontal current on the

sloping bottom. However, associated with the directly

driven flow, there is a small vertical velocity. To

compensate, the fluid responds with a time-independent

bottom-intensified wave. This makes the velocity normal

to the sloping bottom zero. When the forcing stops,

1T>T. , there is no longer a directly driven current.

The previously time-independent bottom-intensified response

becomes a topographic oscillation.

Our main interest here lies in the factor

(I-tc4'iAk) multiplying all the terms with the bottom-

intensified form Cos'K Z . We see that when ('AK

is numerically larger than 2 , the term becomes

negligibly small. This indicates that the amplitude of

the bottom-intensified mode becomes very small when

the e-folding penetration distance of the surface

stress is smaller than about half the mean depth of

the region. For RAK=1 , tAat is, an e-folding

penetration distance equal to the mean depth, the term

0-t"d61K) is equal to .5 indicating that weak
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bottom-intensification of topographic waves can be

excited by surface stresses with horizontal scales

L equal to NgoeprU / f . For example, if N/=2.o

and H.I 5 Kvn , then L=oo syn. The behavior of

the function I- t'w4N 4 K14D en versus N__A D rrA

the ratio of the depth to the penetration scale of the

topographic oscillations, indicates that there is a

sharp cut-off in the amplitude of the oscillations

beyond .N (<Aepw' 1 - . As one expected, the topographic

oscillations mos.t effectively generated by the wind

over a constant slope have essentially a barotropic

structure, N4 K OnaCi . This is so because for

horizontal scales .. K much larger than N .epro/ ,

the direct effects of surface stresses can penetrate

to the bottom. without attenuation.

We should emphasize that the above calculations

were done for constant Brunt-Vaisala frequency. The

highter values of N found in the thermocline will

tend to further reduce the penetration of the wind

stress for a given horizontal scale. This implies that

the scale of effective surface disturbances would have

to be larger than the simple constant /\ theory suggests.

As a final point we wish to mention that the

effectiveness of wind stress in generating bottom-
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intensified oscillations is considerably enhanced if

the topography has small-scale features. The condition

for the surface stresses to be effective is the same

as before, that is, they must be sufficiently long-

scaled to penetrate to the topography. However, the

response of the fluid will now partially consist of

topographic motions with horizontal scales induced by

the topography. If the typical topographic scale LT

is baroclinic ( LT44DepN ), a portion of the

energy of the wind should go to support bottom-intensified

motions.
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Section 0. The Local Interaction of Topographic Waves

with a Steady Shear Current

We wish to consider the interaction of topographic

oscillations with a steady horizontal shear current

over a simple sloping bottom without considering the

source of the topographic waves' energy. In order to

consider the problem in its simplest possible context,

we assume that the current is flowing along depth

contours. We also assume that the current is being

supported by a pressure gradient whose presence is

external -to the problem.

The situation described above is interesting for

the following reasons. 1. The main effect of the

shear is to rotate -the phase' planes in the direction

of the current. The turning of the phase planes shortens

the wavelengths of the topographic oscillations. We

recall that the vertical structure of the topographic

oscillations is simply coupled to the horizontal

wavelengths by the interior potential vorticity equation.

As the wavelengths decrease due to the tilting of the

phase planes by the shear, the vertical structure

intensifies at the bottom. Thus we see that the shear

provides a mechanism for the continuous production of

bottom-intensified oscillations. A depth-independent
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wave entering the region of shear could be transformed

into a bottom-intensified oscillation as the wave propagates

into the shear current. 2. The local interaction of

the topographic oscillations with the shear reduces the

frequency of the oscillations and leads to a gradual

transfer of the wave energy to the mean current.

1. Derivation of the Equations

Consider a topographic region described in Fig. 4-7

The slope is 'taken to be small in the usual sense, that

is, the fractiona. change of depth over a wave scale

is small compared to the mean depth 9.L/g -S.

Flowing along depth contours we have a barotropic current

with a mean shear in' the up-slope direction. We consider

that the variation of the velocity with the up-slope

coordinate over a scale of order the horizontal wavelength

of the topographic waves can be approximated locally

by a linear shear

From equations II-1 to II-6b in Chapter II we can

obtain a quasilinearized set of equations to describe

the interaction of the topographic oscillations with

the mean steady flow. ;e assume that the Rossby

number of the self-interaction of the perturbation
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Fig. 4-'7. Illustration of a mean shear over a sloping
shelf.

fields is much smaller than the -Rossby number that

describes the interaction of the perturbation fields

with the mean flow. This simply means that the amplitudes

of velocities associated with the topographic oscillations

are taken to be much smaller than the amplitude of the

mean flow.

We recall that in the derivation of the equations

describing the topographic oscillations in Chapter II,

the time dependence was scaled by the small topographic

parameter 6 . The boundary condition at the bottom

slope was linearized about the mean depth using a

Taylor expansion in the small parameter 6 . The

fields were then expanded in terms of £ to obtain

the lowest order equations for the quasigeostrophic
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pressure field. Here we are interested in the interaction

of the quasigeostrophic topo--raphic oscillations with

the mean shear. Te take the Rossby number describing

this interaction to be comparable to the topographic

parameter. In the expansion of the equations we formally

keep the ratio of this Rossby number to the topographic

parameter 5 whenever it appears in the equations.

Following the procedure described in Chapter II we

obtain a set of non-dimensional scaled equations for

the lowest order quasigeostrophic pressure field

For the interior equation we obtain

(IV. 0-1) ( t K

or -Y O{)*

where N 14/L is the Rossby number based

on the amplitude of the mean flow over the topographic

wave scale. is a non-dimensional shear which we

take to be order one. de do not make the assumption

that the shear is weak compared to the topographic

parameter S . The potential vorticity equation

has been modified by the introduction of an advective

term due to the mean current.

At the rigid surface at the top we have the condition
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of zero vertical velocity

(IV. 0-2) ( 0

and at the sloping boundary we have the condition of

no normal flow into the boundary

(IV. 0-3)c)

The above equations constitute our model equations to

study the interaction of topographic waves with a mean

shear. These equations bring to mind the equations

Rhines used in his study of two-dimensional turbulence

on a -plane ( IZ ). His equations can be

obtained by vertically integrating the above equations

and replacing the advective term due to the mean shear

by the actual nonlinear advection due to the self-

interaction of the perturbation fields.

2. Solutions and Interpretations

To solve eqs. IV. 0-1, 2 and 3 we assume a solution

of the form
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(IV. A-4)

4.4, 1 4

where 9 is the along-the-slope wavenumber of the

solution. 0 is a symbol denoting the ratio of

the Rossby number to the topographic parameter and

is the non-dimensional shear. The above solution can

be interpreted as a quasigeostrophic topographic wave

whose velocity at T=O was oriented in the up-slope

direction. The vertical structure of the solution at

T=o is given by ce:A tIX . . The term (l olT~

denotes the up-slope wavenumber which is continually

changing due to the turning of the phase planes by the

shear. The equation for satisfies the interior

equation IV. 0-1 and the top boundary condition identically.

The form of the function i(T) and its dependence on

time is determined by matching IV. 0-4 in the lower

boundary condition. We find that -CT) is given by

(IV. 0-5)

$441 ( r4 1 1 (T) 2 t 4 (T



173

where & is an arbitrary constant. Combining the

above result with.equation IV. 0-4 we obtain an exact

solution to our model equations for the lowest order

quasigeostrophic pressure field.

(IV. c-6)
1l

rAC I(%T1 ) 4CAg. I' IL -i

. 4o - A ( i ( zk A l ( LA-(E

The solution above represents a quasigeostrophic

wave imbedded in the shear current. The wave amplitude,

wavenumber, ver-tical structure and direction of propaga-

tion are being continually changed as the phase planes

are rotated by the mean shear. The total wavenumber

increases as (RI *4,Te . Since the shear does

not affect the along-the-slope wavenumber, the only way

the phase planes can turn is by continually increasing

the up-slope wavenumber. The associated velocity field

continually rotates in the direction of the current, which

is also the along-the-slope direction. We note that as

the wavenumber increases the vertical structure of the

topographic wave.intensifies at the bottom slope. In a

sense the steady shear current is bottom-intensifying the
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topographic oscillations.

Differentiating the phase of the wave with respect

to time, we determine that the frequency of the wave

decreases as the angle of orientation of the wavenumber

with respect to the along-the-slope direction increases

IV. 0-7

t eC1+ 4. r%A
S1 2z1 2~ -jc.. AA Ix I C t+O

The first term corresponds to the apparent frequency

due to the translation of the waves by the mean current,

while the second term corresponds to the actual frequency

of the oscillations. The form of the last term is

analogous to the frequency relation we found in Chapter II

for topographic waves on the slope (eq. II. A-2). To

see this, we ~simply replace - 12(I''T by the

wavenumber k . In Fig. 4- 8 we show a sketch of

the phase planes being turned by the shear current. This

figure is similar to the figure shown by Phillips ( ( )

in his calculation of internal waves on a shear current.

In Fig. 4-9 we show a plot of the vertical

structure of the wave at different instances in the

turning of the phase planes by the shear. In this

calculation we have chosen the following values for the



Fig. 4-8. Sketch of thelintensification of a topographic
wave due to the interaction with a mean shear.
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the parameters that determine the vertical structure.

N/g=.' = 15 , depth H=4 xwi and the along-the-

slope wavenumber = =Aoo (vv . For the value of

the dimensional shear we have chosen , that

is, horizontal shear with a strength one one-hundredth

of the coriolis parameter. It corresponds to a change

in horizontal velocity of /00'/5eo in a distance of

one hundred kilometers. The times in the figure are

plotted as multiples of the inertital period. We see

that the interac'tion of a topographic wave with a shear

has resulted in the production of a bottom-intensified

wave.

In order to evaluate the effectiveness of -this

process in producing bottom-intensified oscillations,

we calculate -the energy of the waves in the shear

current. The total energy of the topographic oscillations

is given to order by the horizontal kinetic energy

and the potential energy associated with the density

surface deformation over the basic density field. Prom

the pressure field (eq. IV. 0-6) we calculate the

horizontal velocities and the density -field. The kinetic

energy is given by

(IV. 0-8) T = (&Ik('AtfR cdAt-t(-+-/--T3--

_' - C oY* t2
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where & is the arbitrary amplitude of the topographic

oscillations. , is the along-the-slope wavenumber.

The potential energy is given by

__cA -1I. CT

Adding the two contributions we find that the total energy

is given by

(IV. 0-10)

Integrating the above equation along the vertical, one

finds that the total energy is given by

(IV. C-li)

By inspection we re!lize that the terms dependent on

time are directly proportional to the frequency of the

topographic oscillations measured relative to a frame

moving with the mean current (eq. IV. 0-(). This implies

that as the shear turns the phase planes of the topographic
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oscillations, the total energy decreases in direct

proportion to the.frequency. The energy lost by the

wave must be compensated for by an equivalent gain by

the mean current. However, our analysis cannot describe

this process. In Fig. 4-10 we show a plot of the total

energy of the topographic oscillations versus time. For

this computation we have chosen the same value for the

parameters that was used in the calculation of the

vertical structure of the oscillations in Fig. 4-9.

The energy has been normalized by the value of the

energy at T=o

ECT)
E (0)

TSo 10 .zo 30 40 50 M.=0

Fig. 4-10. Plot of the total energy.decay of the topographic
oscillations during the interaction with the mean shear.
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In general terms, Fig. 4-10 shows that the wave

energy decreases as the topographic oscillation is turned

by the shear. From the plot in the above figure and from

eq. IV. 0-11, 'we see that there are actually two regimes

of energy decay. For the barotropic limit rmatt+ n

the energy of the topographic oscillations decays much

faster, like (I +00,T3- , while for the bottom-

intensified limit the energy decays like

(A homogeneous model of the interaction of topographic

oscillations with a shear misses the second limit.)

These two regimes are related to the different restor-

ing forces on the waves. One can think that the reason

wave energy is lost to the mean current is that the

effect of the shear is to turn the wave in the direction

where the restoring force on the wave is least effective

(the constant-depth contours). In the barotropic limit

the vortex stretching effect requires that the frequency

of the waves diminishes as the scale of wave and as the

projection of the wavenumber along the maximum depth

change decreases. So, as the scale of the wave decreases

due to the turning of the phase planes by the shear, the

current can more effectively extract the energy from the

waves. -However, in the more complete three-dimensional

problem when the horizontal scale of the wave becomes
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smaller than N/& oR.ePT , where H is the mean depth,

the restoring force on the waves is fundamentally

different. It is now given only by the projection of

the wavenumber in the direction of the component of

stratification up the slope. The effectiveness of the

restoring force lasts much longer.

In order to further investigate the interaction of

the oscillations with the mean flow, we calculate the

Reynold stress that the wave exerts on the mean flow.

We find that it is given by

(IV. 0-12)

6& IA A C~irAL ck T ~~'~(+

For the initial conditions imposed on the waves at

time T'=o , we see that the Reynold stress is negative '

and decreasing with time. This is interpreted to mean

that the wave energy is feeding the mean flow. This

conclusion agrees with our previous result that the

wave energy decreases with time due to the interaction.

Anbther interesting property is the following. If we

plot the total energy of the oscillations as a function

of depth at different times during the interaction
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(eq. IV. C-10), we find that after the topographic

oscillation crosses over from the depth-independent

regime to the bottom-intensified regime, the energy

of the wave remains constant at the bottom while it

continues to decrease in the interior of the fluid.

This fact coupled with the effect of the Reynold stress

of the wave on the mean flow (eq. IV. C-12) would seem

to indicate that dynamically the oscillation is bottom-

intensifying because the mean current is extracting

wave energy from the interior of the fluid. This in

turn implies that the "steady" current is being built

up.baroclinically. A more complete analysis would

show the mean current increasing in strength with

the larger velocities at the top. It is interesting

to speculate whether the steady baroclinic current

observed at Site D might not be sustained by a more

complicated version of this process, particularly in

view that recent analysis of the data seems to show no

permanent tilt of the density surfaces (Schmitz15' ).

Finally we would like to point out that our

solutions for the interaction of the topographic

oscillations with a mean shear can be interpreted from

the point of view of ray theory. The time T appearing

in our equations now refers to the time interval between
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the initial position of the wave packet and its present

position, determined by integrating the group velocity

equations with respect to time. The absolute frequency

of the waves (the frequency measured with respect to a

fixed point in the topography)is constant. The relative

frequency of the waves varies just enough in 'the shear

to compensate for the variation in the apparent frequency

due to the waves being translated by the current. The

statement that wave energy is proportional to the

frequency of the. oscillations can now be interpreted as

the conservation of the energy of the wave packet

over the relative frequency in agreement with the

results found by Bretherton ( 1 ).

Summarizing, we have seen that the local interaction

of a mean shear with topographic waves can lead to

the bottom-intensification of the oscillations. This

interaction leads to the transifer of the wave energy

to the mean current and as such is not an effective

generator of bottom-intensified waves. The suggestion

that the wave energy goes into the mean flow baroclinically

is interesting in itself and should be studied further.
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Chapter V Conclusion

In this thesis we have investigated the propagation

and generation of topographic oscillations in simplified

models of ocean topography. We have concentrated on

those topographic oscillations which show the effects

6f stratification. The basic element in this.study has

been the bottom-intensified quasigeostrophic topographic

wave. In our investigation we have discovered that the

presence of bottom-intensified oscillations invariably

implied the presence of other quasigeostrophic motions

which have a velocity node on the topogra'phy. Perhaps

this is representative of the role of bottom-intensified

oscillations in- the scheme of low-frequency motions in

the ocean. Their role is simply to adjust low-frequency

disturbances to the constraints imposed by the oceanic

topography on the resulting flows.

In Chapter II we reviewed the topographic character-

istics of the western North Atlantic and found that except

for the continental rise, the. topographic slopes were on

the average consistent with the quasigeostrophic approxi-

mation for topographic waves. After deriving the basic

equations for this study, we applied our model in a

simple calculation based on the Aries measurements.

We found that for the observed vertical structure and
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orientation of the velocity field with respect to the

sloping bottom, the theory predicted frequencies and

wavelengths which were in rough agreement with the deduced

values from the data. In section B, Chapter II, we calcu-

lated the quasigeostrophic normal modes of oscillation

over a small-amplitude one-dimensional corrugated bottom.

This was done to model the interaction of large-scale

forced motions in the ocean with small-scale topography.

We found the modes consisted of a lon3-scale wave and a

smaller-amplitude component with horizontal scales

directly induced by the topographic scale. We found that

if the topographic scale was baroclinic Lr:014I4oeur, the

structure of the small-scale term was bottom-intensified.

Since the small-scale topography in'the ocean is clearly

not one-dimensional, the value of this calculation was

to illustrate the possibility of energy transfer from

the long-scale directly forced waves to small-scale

topography.

In Chapter III we studied the problem of the excitation

of quasigeostrophic oscillations on a sloping shelf by a

field of Rossby waves impinging at the edge of the shelf.

We found that for the high quasigeostrophic frequencies,

Rossby waves could only excite depth-independent topographic

oscillations. This result agrees with calculations made
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by Rhines ( 13 ) for a homogeneous model of the ocean.

Physically this result depends on the fact that the

topographic oscillations induced by high frequency Rossby

waves have such long horizontal scales that they are not

affected by stratification. For low quasigeosrophic

frequencies, Rossby waves matched with topographic waves

showing the effects of stratification. The topographic

modes consisted of a bottom-intensified wave and a

collection of topographic baroclinic waves which had a

node on the topography. For the frequency range that

we considered, these baroclinic waves were trapped to

the edge of the shelf decreasing exponentially into the

interior of the shelf. They were excited to adjust

the vertical structure of the Rossby wave to the vertical

structure of the bottom-intensified mode which was the

only propagating solution in the slope region.

The most important result found was that the

amplitude of the bottom-intensified mode was very small

when the scales of the impinging Rossby wave matched the

bottom-intensified mode. Most of the energy was reflected

back. However, the amplitude of the baroclinic modes

trapped to the edge of the shelf was large. The physical

picture that one. extracts from this process is that the

edge of the shelf acts like an elastic membrane yielding
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under the effect of the impinging Rossby wave but

springing back with little energy lost. It is interesting

to speculate if the very lowi frequency contributions to

the horizontal kinetic spectrum calculated by Thompson

( 19 ) from the Site D data might not be due t'o a process

such as this. We recall that the very low frequency energy

of the spectrum decreased with depth -- exactly the

property that the baroclinic wave trapped to the edge of

the shelf would have.

In the last part of Chapter III we discussed the

question of topographic trapping of bottom-intensified

waves. We found that the adjustment of the vertical

structure of the bottom-intensified wave at the edge

of the shelf excited other low-frequiency baroclinic

waves. These baroclinic waves were trapped to the

edge of the shelf decaying horizontally in both direc-

tions. We found that their presence was responsible for

enhancing the efficiency of wave trapping by the topog-

graphy. The implication of these results is that bottom-

intensified oscillaticns do not couple well with near-by

regions which could support similar modes. In this

chapter we concluded that bottom-intensified oscillations

are not effectively generated by sources located exterior

to their topographic environment, and that once excited
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over local topography, their energy tends to remain

confined within the topog)raphic region of their generation.

From this it would seem that the presence of the bottom-

intensified oscillations at a given location must be

ascribed to local sources.

In Chapter IV we discussed some asspects of the local

generation of bottom-intensified oscillations. In section

A we studied the generation of topographic oscillations

by an initially imposed geostrophic current. We found

that when the scales of the initial disturbance were

smaller than L!5 N/4/5 where 14 is the mean depth

of-the region, the topographic response consisted of

a bottom-intensified oscillation and a steady current

with a node on the ~sloping bottom. When the imposed

scale of the initial disturbance was larger than NJ44

the whole column of fluid was set in oscillation. In

general terms, what happens is this: When the imposed

scales are smaller than NI/j , stratification becomes

important and its effect is to weaken the vertical

rigidity of the column of fluid. Since the only part

of the initial motion that needs adjusting is the part

that comes in contact with tle slope, the resulting

motion decouples in the vertical. The steady geostrophic

flow which results from the adjustment can be quite
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arbitrary. It does not have to flow along the depth

contours as in the homogeneous limit to remain steady.

The bottom-intensified oscillation resulting from the

adjustment of the initial disturbance to the topography

eventually decays due to frictional effects, while the

steady flow persists for a much longer time. This

vertical partition of the motion for initial-value-like

disturbances has interesting implications. It says that

over a sloping bottom one would expect to find very

low-frequency horizontal kinetic energy in the baroclinic

scales leading to the bottom-intensification of the

topographic oscillations. This energy will decrease

with depth as we approach the bottom slope. However,

the interior flow over the topographic slope will not

remain steady.if we include the planetary 3 -effect.

Furthermore,-the neglected nonlinearities should also

affect the steady flow because the topographic restoring

force is not restraining its influence. The structure

of the steady flow will slowly evolve with time due to

nonlinear advection.

We can speculate that part of the energy found at

the low frequencies in the horizontal kinetic energy

spectrum calculated by Thompson ( 19 ) might be due

to drifting eddies originating in the adjustment of
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disturbances with baroclinic scales LONo to the

sloping bottom around Site D. These disturbances will

also generate bottom-intensified oscillations, but they

decay due to frictional effects. It is interesting to

point out that this general decrease of energy with

depth was obtained by considering the interaction of

Rossby waves with a sloping shelf.

In section B of Chapter IV we discussed the wind

generation of topographic oscillations. We found that

bottom-intensifi.ed oscillations were not effectively

generated by the wind because surface stresses with

horizontal scales leading to bottom-intensified response

do not penetrate to the bottom slope. However, long-

scaled wind forces at the surface can generate a forced

barotropic current which in turn can interact with

small-scale topography to produce bottom-intensified

oscillations (see Chapter II, section B).

In section C of Chapter IV we discussed the interaction

of a steady shear current with topographic oscillations.

We found that the turning of the wave crests of the

oscillations by the shear resulted in the production of

bottom-intensified oscillations. However, the interaction

of the wave with the shear also resulted in the transfer

of wave energy to the mean current. The vertically
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integrated total energy of the oscillations decreased

in direct proportion to the frequency of oscillation.

This result is similar to the one found by Phillips ( 6 )

in his study of the interaction of internal waves with a

mean shear. Another interesting result was implied by

actually looking at the vertical dependence of the total

energy. This showed that the farther away we looked from

the bottom boundary, the more rapidly the wave energy

was lost. This observationcoupled with the fact that

energy lost by the wave must be compensated for by an

equivalent gain by the mean current, would seem to indicate

that the steady current was being built up baroclinically.

(The larger increases in the velocity were occurring away

from the bottom boundary.) Again we see another example

of the peculiar property mentioned at the beginning of

the conclusion. Bottom-intensified oscillations seem

to be always associated with baroclinic motions having

larger velocities at the top. Another interesting point

about our solution for the interaction of topographic

waves with a shear current is the following. It is

related to wave character of our solutions. 'Je recall

that our solution is wave-like even though the Rossby

number describing the interaction with the mean shear

was of the same order as the topographic parameter
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(our basic restoring force for the waves). This is

unlike Phillips's solution which only showed wave character

in the limit of a weak shear compared to the basic re-

storing force of the internal waves. / 2  . Our results

bring to mind the remarkable results found by Rhines ( /2- )

in his study of geostrophic turbulence in a ( -plane.
He found that when the Rossby number describing the large-

scale motion was of order the topographic effect, the

flow patterns looked extraordinarily wave-like. His

calculations were two-dimensional while our results

are three-dimensional. Perhaps a more careful and com-

plete analysis of the simple interaction of a mean shear

with topographic oscillations can provide more pnysical

insight and shed some light onto the more complicated

problem of three-dimensional geostrophic turbulence

in a J -plane.

As a final remark we would like to suggest that an

experiment to generate'bottom-intensified oscillations in

the laboratory should be carried out. It should be done

as an initial value problem. This should clarify some

of the ideas about the vertical decoupling of the motion

by topographic slopes. It should be done for the case

in which' the Rossby number is of the same order as the

oscillations' frequency. Perhaps the results will show



193

that the motion close to the topography is a bottom-

trapped oscillation while the interior motion is composed

of drifting eddies originating from the initial decoupling

of the motion by the topography. WJe would like to add

that a paraboloidal bottom configuration is the simplest

one to use. The normal modes over this configuration

were found by Rhines ( 8 ). A sliced cylinder configura-

tion will not lead to a simple model structure for the

bottom-inte.nsified waves. Unlike depth-independent

topographic waves, bottom-intensified waves do not reflect

simply at boundaries crossing constant-slope lines. The

reason for this can be easily seen by looking- at the

dispersion curv.e in Fig. 2-4 , Chapter II. To conclude,

the investigations carried out in this thesis seem to

point to the result that the most important role of

bottom-intensified motions is to release the interior

of the ocean from the constraints imposed by topography.
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