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) ABSTRACT

This thesis is an investigation of the way in which
low-frequency topographic oscillations propagate and are
generated over ocean topozrapny. In this study we
emphaslize those topographic oscillations which are
affected by the density stratification of the ocean.

A simple calculation using the model of topographic
osclllations over a constant slope 1is made to interpret

the Aries measurements. It is found that the frequency

and length scales predicted by the theory are consistent
with deduced values from the data, A calculation of

the normal modes of oscillation for a simple one-dimensional
corrugated bottom is made. This is done in order to
111ustrate the possibility of interaction between small-
scale topography and long-scale forced motions in the
ocean, It 1s found that when the scale of the corrugations
1s smaller than WNH/$ , where N 1s the Brunt-~Vaisala
frequency, 4  the coriolis parameter and #  the mean
depth, the topographic oscillations are trapped to the
botton.

The excitation of topographic oscillation by Rossby
waves 1is explored. It is found that Rossby waves do
not efficiently excite bottom-intensified oscillations,
but rather excite topozraphic modes with a velocity node
on the topography. For the period range considered
(less than 1 year) these modes were trapped to the edge
of the slope. It is suzgested that for low-frequencies
the edze of the shelf behaves remarkably like an elastic
membrane yieldins under the influence of the impinging
Rossby wave but springing back with little enersgy lost.



)

The role of the bottom-intensified oscillations
in the adjustment of initially imposed disturbances on
the topozraphy is investigated. It is found that when
the imposed scales of the disturbance are smaller
than WNHA/s the resulting motions consist of a steady
current and bottom-intensified oscillations. The
implications of this partition of the motion in the
vertical are discussed.

The generation of bottom-intensified waves by wind
1s studied and it is found that wind forces cannot
effectively generate these motions. Finally, a study
of the local interaction of topographic oscillations
with a steady shear current is made. It is found
that the general effect of a shear current is to
intensify the oscillations at the bottom, It is also
found that this process leads to the transfer of wave
energy to the current.

Summarizing, it is suggested that perhaps the
most important role of bottom-intensified waves is to
release the ocean interior from the constraints imposed
by topography. '

Thesls Supervisor reter B. Rhines
Assistant Professor, Department of
Meteorology, Massachusetts Institute
of Technology
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Chapter I Introduction

For several years the Woods Hole Oceanographic
Institution has kept an ocean station at a site located
at 399 20'N, 70%4. This station known as Site D is
situated in a reglon of gently sloping bottom (slope
x 1072 ) which extends some 50 km north to the continental
shelf and about iSO km south. The low=-frequency current
meter data collected at this location have been‘recentlj
analyzed by Thompson ( (9 ). The results of this
~analysis indicate that variable cu;rents with beriods
from about a week to a month are on the -average depth-
1ndependent.‘ éhis fact has been inferred by Rhines
( 10 ) from a comparison of the horizontal kinetic
energy spectrum at different.depths calculated from the
data by Thompson, However, pecently collected current
meter records occasionally have shown variable currents
with periods of order a week to two weeﬁé with speeds
decreasing away from the bottom (Schmitz |4 ). These
measurements suggest the presence of a dynamical regime
at low frequencies where stratification is important.

The observation of this peculiar baroclinic structure
in ocean currents is not isolated to Site D. A seriles

of current measurements using Swallow floats made by the

research vessel Aries in the Bermuda rise (1959-1960)
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showed the presence of variable currents whose speeds
increased with depth below the main thermocline and
whose periods were of several weeks. Furthermore,
simultaneous measurements of the curfents and the
density field showed that the currents were geostropiic
(swallow I?. ). One of the most remarkable aspects of
the observations was the magnitude of the velocity

fluctuations. Stommel ;n his book The fulf Stream

( 16 ) discusses the implications of these observa-
tions from the point of view of the general circulation
of the oceans. The emphasis here is the clue their
baroclinic structure provides reéarding their dynamical
origin, |

Theoretical models have‘been proposed to expléin
the observed variability of the currents. ﬁhines (to )
and Thompson ( |9 ) point out that the depth-independent
currents present in the Site D records in the period range
from a week to about a month perhaps can be explained
in terms of depth-independent, topozraphic Rossby
waves., The use of this model implies that these topozsraphic
waves must have sufficiently(long horizontal scales over
the zently slopinz bottom for'stratification not to
destroy the barotropic mode.

The possibility that low-frequency, quasizeostropaic
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currents in the ocean might have larger velocities at
the bottom was suggested by Rhines in a recent paper
( 8 ). In this paper he showed how the effects of
a simple topographic slope (constant'slope), rotation
and stratification combined to support wave motions
which have the broperty of being confined to the bottom
slope decaying exponentially away from it. The paper
demonstrated, for exaﬁple, that for td§0graphic slopes
of order £4J and smaller, where; N is the Brunt -
" Vaisald frequency and 'S‘ the coriolis parameter,
the dynamic scales of the wave motion are given by
keeping the ratio N‘f‘/;;_’\’ O() , where H 1is the
penetration scale of the boundary induced motion, and.

L_ 1s the along-the-slope scale. For slopes €

£S5/ " we can think of L. as the horizontal
scale of the'imposed motion. For an ocean 4 RM  deep
and for ¥ ~0(s") a typical averaze value, if

L <4q0km , the penetration depth will be less
than the ocean depth and the résulting motion will
appear bottom-trapped. The wave frequency for this
case 1s essentially dominated by the component of the
basic density zradient alonz the boundary. If L > 90kn
the penetration depth H will be zreater than the ocean

depth =nd the vertical structure of the motion will show

\
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depth-independence. The frequency of the waves is
determined by the'well-known vortex stretching effect
(topographic (3 -effect). The paper also shows that
introducing the planetary B =-effect results in the
appearance/of a complimentary mode which resembles the
baroclinic Rossby wave ﬁode. These complimentary waves
tend to have a node in @he horizontal velboity'at the
bottom when the slope, stratification and scales are
such that the bottom-trapped waves decay exponentially
within the interior of the fluid. '

In another recent paper Rhines ( 7. ) briefly
reviews %he various 1nterpretat10né of the Aries
measurements and introduces another bossibility based
on the results of this previously mentioned work.

His main point is to suggest that the combined effects

of stratification, rotation and topographic slope are
competitive with the planetary 6 —effect in the Bermuda
rise. We will discuss this suggestion in more detail

in the next chapter.

Some indirect evidence of time-dependent, bottom-
intensified currents can perhaps be found in the published
literature. Since the early 1960's oceanozraphers using
Swallow fldats have observed tne deep currents Stomnmel

predicted would exist in the western boundaries of the
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oceans, Some of'these measurements have shown time
variability. Unfortunately most of the measurements
were takgn for‘only enouzh duratién to define the mean
direction of the fiow, and not long énough to obtain a
time resolution of the motion. For example, the Swallow
“and Wdrthington (19 ) measurements of deep currents in
the Labrador Sea show the presence at certain lpcations
of a deep variable current superimposed on a somewhat
stgadier deep flow.
To summarize, there is limited but suggestive

evidence ,that quasigeostrophic motions in the ocean
show to some extent the pecullar baroclinic structure
of the topographic waves described by Rhines. In view
of this evidence, it is important t6 understand how
topographic waves propagate and are génerated in a
stratified ocean. The general problem éf quasigeostrophic
. ﬁotions which takes into account simultaneously the
real topography of the ocean basins, the planetary

P -effect and the different sources for these motions
is of extreme complexity. The best one can do, at the
present time, is to ilsolate, model and evaluate the
different elements that make up the general problem. In
the forthcoming chapters we will discuss a variety of

problems which model processes where topozraphy might
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iead to observable effects. The goal of this study is
to allow us to describe the gross properties of quasigeo-
stropaic motions in different'oceanic regions in terms
of the-physical parameters of the area (topographic
slopes, horizontal dimensions, depth, stratificatlion,
currents, etc.) and their most likely sources.

In more detail, the thesis will proceed as follows. -
In Chapter I; we will-derive the equationsAfor inviscid,
linear topographic ﬁaves in the sﬁgll slope approximatlon.
' We will discuss the normal mode gsolutions to these
equations over.a constant slope and ovef a one=-
dimensional continuously corrugated bottom.. We will
apply the solutions fof the constant-slope case in a
simple calculation based on the Aries measurements. The
calculation df‘the modes over a corrugated bottom are
done to illuétrate the interaction of a lonz-scale
barotropic wave wlth small-écale topography.. In Chapter
III we will study the excitation of topographic waves by
Rossby waves impinszing én an abrupt chanze in the
topography. In particular we wish to determine the
efficiency of the generation of the bottom-intensified
mode. . ¥We wlll also discuss the problem of wave trapping
over simple topography.

In Chapter IV we will discuss some aspects of the
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local generation of topographic osciilations. In
section A we will consider the response of thé fluiad
over topography to an initially imposed geostrophic
current. In section B we will discuss some aspects of
the excitation of topographic oscillations by wind
slressiover the surface. In section C we will consider
the effects of the local interaction of topographic

waves with a mean shear, PFinally, a general discussion

of the results and conclusions is given in Chapter V.

e
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Chapter II Derivation of the Basic Equations for

Quasiceostropnic Motions over Topozrapihy and Thelir

Elementary Solutions

The basic concept in this study is geostrophilc
balance. The main balance in the momentum equations is
between the horizontal pressure gradient and fhe coriolis
accelerations, while the vertical pressure gradient remains
in hydrostatic equilibpium. This basic state of motion
may not be cénsistent with the phy?ical requirement of
-zero normal velocity over the sloping bottom. Rhines
( & ) found that the stratified £luld could adjust
to such a situatlon by developing a veloclty gradient
strongest at the bot%om and executing small amplitude,
time~dependent oscillations which, for small slopes
€< 3N , were just small departures from geostrophy.
These results should apply to large areas of the ocean
where the average slopes rarely exceed 102 .
Larger slopes are found only around some islands, 1ﬁ the
continental rise and perhaps in the rouzhness scale
of the bottom topography. The quasigeostrophic motions over
the slope 2re the small slope limit of the trapped modes
which exist for arbitrarily large slopes. The larger

slopes, € > S/ , produce ageostrophic motions. When

the vertical scale of the fields comes in contact witn
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the surface of the ocean, these slopés lead to non-
separable solutions in the up-slope and vertical coordinates.

In Pig. 2~1 we see a map ofvthe averaze slopes found
in the western North Atlantic. Over horizontal scales
where the motion would appear trépped to the bottom
L = Ni/f (H is the mean depth of the particular
region), the planetary P -effect has béen cbmpared to
the topographic effect €5/H . At Side D, for
example, <€%/H is about twenty times larger than P’ R
whereas at the site of the Aries measurements, it is
about the same order. Except for the regions with slopes
smaller than {0"3 the planetary .}? -effect is comparable
or smaller than the topographic effect for horizontal
scales less than : N/j_ Hoeprn . 1t is easy to
see that, except for the regions in the continental rise,
the slopes are consistent with the quasigeostrophic limit.

We will now derive the system of eqﬁétions for small-
amplitude, time-dependent motions in the'quasigeostrophic
parameter ranze over small slopes. The implicit assump-
tions in the derivation are: 1. Boussinesq approximation.
We assume lincompressibility of the fluid motion. The
variations of the fluid density are neglected in the
inertial térms but are retained in the buoyancy térm.

The small density variations in the ocean and small
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frequencies of the motions justify thils approximation.
2. Traditional approximation. We omit the horizontal
components of the rotation vector. The presence of
stratification and large horizonﬁal scales of the motions
make these terms smaller than those retalned in the
analysis. 3. ﬁ»-piane approximation. This approxima-
tion is good for topographic motions because their
horizontal scales ére much smaller than ‘5'/13( ‘f/fs’rvv qum
at midlatitudes). 4. We restrict our.dimensional
time scale (1arge compared to rotation) to be small
comparedito the spin-up. We will comment on this
point after we discuss fhe solutions. 5. We neglect
free surface displacements. This approximation is valid
except for very long quasigeostrophlc waves. The
restriction implied on the waveiength is written as
5'2“2/3“«1 . L 1s the length scale associated
with the wave and H  is the depth of fhe region,
The dimensional, inviscid equations are given.by:
X~-momentum equation, axis to the eas?t
(I1-1) ' .
rl w® -+ ((f*. V)(A*—- 5‘*0_* = - ;’x*
o£™ | A

-

Y-momentum equation, axis to the north
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E 3
— =
(I1-2) 2 /U#-{— (u.*vv‘)dl‘*.‘- § ut* — — ‘D-éf

o f.

z-=momentum equation, 2z measured upwafds from the surface
- * -t ’ ,
(II1-3) ™ 4 (B5VHO w® = - P -£ 9
T To fo

N

2= -1 ~af (x*)

Pig. 2-2. Diagram illustrating the topozraphic reglon .
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‘density continuity
X o %Xy ¥
(1I-4) 2 e* L (adt-V)e=o0
2.8 s

mass continuity

: . ¥
¢11-5) 2uF+ 2.V + 2. =0
X * b:"" 22 Co

The boundary condltions we use are

(11-62) Y *

w =o Z=0

At the bottom we have the condition of no normal flow

leading to
LW
(II'6b) W“z - i f(K*) u* Zz-—H-—C\.;(X#)
' I’
X *® * >
The constant slope case, W= -€&UY ad'v g=-H -€x ,

will be treated first because it leads to the simplest
and most transparent results. In section B of this chapter,
we will discuss another model of bottom topography.

Ve decomposé the field variables of the above equations

as follows



. " )
(II-7) p*s Pez) + ,b*(ﬂy*,ztt’)
and .
(1I-8) f*: £, (1 + f_{__a"). + ,;;*(x",yﬁ 2" t’))
We let

¥

(11-9) ‘» P =-9(f+ Fz)
We scalel
(11-10a) (uhv?) — V.(wv)
(II-10b) - w s W, wr W,= AV,
(II-20c) (2,9") — Lxy9)

. ,
(1I-104) z2 —> H=z
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¢ - §ET

(II~-10e)

” .
(II-10f) pe— 5 LV, p
(1I-10g) f* — ffL U p

. T
and let
(II-10h) $%- £ 4 , F= ity
where o= ’%,L - Ie.T 2ffect .

The scaling for ,ﬂ*., f* implies tha\t our basic state
is geostrophié and satisfies the thermal wind balance,
Substituting eqs. I1I-7,8 in eqs. II-l, 6, and using the
scales defined above, we find 'the following non~dimensional

set of equations

(I1-11a) S_{u + 1?,'(&.‘«7)&1 - fu ’-‘-"Fx
' T



Sa;'}.f + R, (v + Fu -‘-‘f"t

(II-11b) Y
. ‘ R : - _—_f
(II-11c) 24‘(53.;}1»’ + Ro(u:V)“"} p=
v — FA)ZA,J'::O
S f + R (@) — (
(II-114d) ~
> A +;_3_Mr = o
(II-1le) . .;s’)-(“ + 3 K
(II-11f) “Ww=o Z=0
and on the slope )
(1I-11g) - _Sy | =-1 -8

The non-dimensional number apﬁearing on the equations
measures the relative importance of each term.

(I11-122) PE €L/y _ ' is the slope parameter
which.measures the size of the féactional change of depth

over a length scale L = .
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(II-12b) A= /L is the aspect ratio.
(11-12¢) M2 N/¢  wnere N=1Y73%%,
is the Brunt-Vaisala freqﬁenoy which we take, for
simplicity, to be a constant. If, for N(zZ) , we use
the lowest value of the distribution of 'AI. in a column
of fluid, our results, frequencies, penetration depths,
etc. are a lower bound to any realistic dependence of
N(2) with depth. Finally, ’

C(11-12a) RZE Ve s the Rossby number.

We consider B<<i . The nonlinear terms may be
neglecteq compared to the local time derivative if

Ro<<® . This assumption is not always valid for

bottom-trapped waves because their horizontal scales
are not large. In the case of the Swallow eddies, for
example, ﬂ.,"’O(S) . We will negiect the effects of
nonlinearities in order to formulate the problem of
topographic motions in the simplest possible manner.,
Rhines recently has shown in a numerical study of »
two-dimensional, quasligeostropnic turbulence that the
motion behaves remarkable like waves when the topographic
parameter is of order the Rossby number.

Since the topozraphic barameter is much less than
one ( Xééi ), we can linearize/the bottom boundary

condition by making a Taylor expansion about Z=-1 .



Eq. II-11g becomes

(II-13) : s(u — Sdx 2| 4
W\ _dew ... =

oz
2=~ 2=~

.-Z::-i

We expand all the dependent variables in. terms of g .
This expansion guarantees that the lowest order balance

will be geostrophic and hydrostatic.

(II-14)
(o) ) u(‘) W
(V.8
) 4/"“) O(s ) +
T _ v 4 S +
1 ow < !

©
To order ) we find

<o)
(II1-152) -V =- Y"

, o)
(II-15Db) : u = - t")
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4 o) ¢o)
(II-15¢) 0 =-pz —F
‘ 1 (o)
(1I-15d) (r) w'=o
¢o) o\
(II;'].SG) ux + NJ = O

o
The & equations are consistent wilth the geostrophic

and hydrostatic approximation.

To order 8' we find
o \ (\)
S ( EA I R S
o : ‘L §
)
(II-16b) 2. YL w4 (zi) yu = Py
oT 5 -
«) .
O = - Pz - f‘)
(II-16¢)
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5 uy 2 4 2 w= o

(II-16§) ;;‘ a\) Y

To the first two orders, the boundary condition at the
top 1is
(I1-161)
)
W =o
at Z= 0O
Using the linearized bottom boundary condition eq. II-1l3,
we find

(11-16g) V= -—u

af z= -1
The first order equations remove the degeneracy of the
fields through the coupling impoéed on the velocities at
the bottom. From egs. II-16a, b, we construct a vortiéity
equation which eliminates the first order'fields except
for the vertical velocity. This velocity 1is coupled to
the zeroth fields by mass continulty and the vertical

hydrostatic equation.

(o)
(11_173) 2 (/u-xw)~ uao\) _ MY.;_“)"F (_0_;_) Vs = o
>F .
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From eqs. II-15¢c and II-16d, we find o
(II-17D) w1 e L 2 Pz
(") oT ()% ot

‘ (0)
Using the geostrophic equations to relate I ijo) in

terms of the pressure +f°) , we obtain an equation in
the lowest order pressure fileld

‘ o)
?;_T (V.ero)+ (‘#"61(32(2:\\ -+ (%_) k‘x = o

(11-18)

This equgtion is usually called the linearized potential
vorticitﬁ equatién. It may be derived directly from
Ertel's theorem. The term 2% r;ﬂ denotes the meridional
diverzence due to the planetary F -effect. The boundary
conditions can also be simply expressed in terms of

/fo”) . Eq. II-16f becomes
(11-192) L2 p92p ot 20
™M)« ot z

and eq. II-16g becomes
(o)
(1I-19D) L2 p” =~ pf

.(a)’- s af 2=-
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We emphaslze that the relatively simple form of the
lower boundary condition, eq. II-19b, depends strongly
on the geostrophic scaling, which in turn depends on the
smallness of the slope. For topographic waves with time
scales of order of the rotation (slopes of order Eﬁd )
the cross-slope gradient of the field becomes.equally
important to the along-the-élope gradients, and has to
be included.

When the f’: ~effect ( 4= 9"/;0") is comparable to
the topographic effect & “‘/5200(‘) , the equations
derived gbove take up a particular.geometric orientation.
They repfesent-£he case in which the slope is oriented
east-ﬁest. If A=0 , the x-coordinate refers to the
up-slope direction and the y-coordinate to the along-
the-slope direction. Fig. 2-1 tells us the importance
of the ‘5 ~-effect compared to the topography for bottom-
trapped motions, :

It is not difficult to derive the general form of
the boundary condition for an arbitrary orientation of
the slope with respect to north. Let us consider that
the slope is oriented at angle q) with respect to north

(see Pig. 2-3).
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Fig. 2-3. Diagram defining the anzles for general form
of the boundary condition for an arbltrary orientation

of the slope.

The simplest way to formulate the problem is to ngte

the bottom boundary condition in terms of the north-
south and east-west coordinates. The potential vorticity
equation II-18 and the surface boundary condition II-1va
remain unchangzed. The bottom boundary condition II-19Db

becomes
¢0)

(11-20) (r:,\)'z 2 Fz = (m«f%n-t- s 2 ‘o z--1

In the next section we wlill use this equation in a simple
calculation,

Section A. 1. Normal Modes

In this section we will briefly review some of the
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main results found by Rhines ( & ). We will also
discuss some aspects of the Aries measurements. Eq. II-13,
the potential vorticity equation for oOi=0 (no planetary

G -effect), will admit solutions of the form

(II. A-1) > KX —lwT _
‘o =R e e cosh MK Z

'
where K=Vid+a®

4?‘03 represents the bottom-intensiflied mode. We note
that the vertical scale is solely determined by the
horizontal wavenumbers, The lower boundary condition

yields the dispersion relation

(II. A-2) w= -4
K tomh MK
where X is the along-the-slope wavenumber and I'A

is the parameter B which appears in Rhines' work. The
dispersion relation states that the wave propagates with
phase veloclity to the left when an obsexrver looks up the

slope. The unscaled form of eq. I. A-2 is

(II. A-2a) T-w = € (&I
5 < Tamh TKH
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For [KH-0( Hedakwm =10 ;¢ L=Yyg =7 490km
frequency given by W = €y ”Q'/kz independent of
stratification. For MTKH>7 4 , we have
strong trappinz and O = €T H\/K . This solution
represents a buoyancy oscillation with its frequency given
by €' times the angle made by the wavenumber wWith
respect to the depth oontoufs. The maximum frequency w=§¢€n
corresponds to the case in which the fluid velocities -
'bscillate up’and down the slope. 1In reglons (see Fig. 2-1)
- where the slope effect is apprecia;ly stronger than the
}3 -effect for distances as largé as a few wave scales,
we might expect to find these trapped motions.
In Fig. 2=4 we éhow the constant-frequency curves
of the dispersion relation eq. II-2a. The curves are
symmetrical about the ["HIRQ\ axis, For con?gnience we
have only drawn half of the curves. oy is the ratio
of the buoyanéy frequency ( {'¢ ) to the frequency of the
waves W = /¢ . The lines of constant ["H K
(circles) denote the penetration scale of the bottom=-
* intensifled mode into the fluid interior. These curves
are non-dimensionalized by the depth -H . For
example, [MKH=2 denotes a penetration scale of one-
half the depth of the region.

Consider a line determined by the projection of the
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wavenumber vector alonz the slope. For large rHK
this line corresponds to a constant-frequency cdrve. The
oscillations are not affected by the surface. As
[MTHK decreases below a certain value, the frequency
curve no longer coincides with the constant-angle curve.
This separafion occurs roughly as the pengtration scale
of the wave reaches the surface, (HK™~ 1 | For longer
wavelengths the frequency of the wave increases, For
K< () , the frequency is dominated by the restor=-
ing force associated with the fractional change of depth
over a wavelength ( €L/H ), rather than by the buoyancy
effect ( I¢€ ). The constaﬁt-frequency burves resemble
those obtained in the hombgeneous limit of topographic
waves.
The group velocity vector is pérpendicﬁlar to the
constant-frequency curve and points in.the direction of
the increasing-frequency curves. 1In Fig; 2-4 the direction
of the zroup velocity vector is denoted by arrows.
Fig. 2-4 can be used to simply describe the ray trajectories
of topozraphic wave packets.
In Fig. 2-5 we show a geographical distribution of
the buoyangy period (the minimum period of the waves)

over the slope rezsions of Fig. 2-1. The period of the

trapoed oscillations could be considerably larger
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depending on theiinclination of the motion with respect
to the depth contours. Fig. 2-5, however, provides a mini-
mum period estimate of the time ohe should remain in a
particular location to resolve the mbtion. For this
chart we have used an average value of fJ(E) for the

column, weighted by the vertical structure of the bottom=-

intensified mode hJH/;L ~ 4 . At Side D where
€/ur20 By ,Tw~ 5-10days . At the site of the Aries
observations, where &/, % /5/5: Tw = 25 dAys .

The unshaded rezions in Fig. 2-5 represent areas where

the topographic map shows the ‘ﬁ -effect to be dominant.
The'topographic maps, however, do not show the fine
structure of the bottom. In the next section we will
~show how this fine structure, with écales of order tens

of kilometers, supports trapped osciilations;

2. Inclusion of the Planetary [ -Effect

If d¥0 , eq. II-18 will admit normal mode

solutions of the followinz form

( ) )fa = ¢ e cosh mz

and
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w
(II. A=3b) . 4,1 = & e CosTZ

(o) .
again represents the bottom-intensified mode,

where )‘oi
and ‘@;a is the Modified Baroclinic Rossby Wave (MBRW) .
If the slope is zero 9=0 ’ f’,m) reduces to the usual
barotropic wave and zé\ becomes a baroclinic Rossby
wave with roots Y=nm '

Substituting the solutions in eq. II-18, we obtain

Wy = ~(E£) Kswmé
- 6/ k2. wm*
(rAY>
and
(II. A-4D)
- [ K SwmO
wL - (E—) KZ.‘_ r‘z/ T
"A)
where 8 is measured with respect to north. The

orientation of the slope with respect to north is now
important, and we use eq. Ii-éo for the bottom boundary
condition to completely determine the modes (Fig. 2-6).

~ These yield



(II. A-5a) A Famhm = ((‘A)ZK c,m»(e—‘ﬂ

=

and
(II. A-5D)
viftonr = -.-([‘_J_\}chos(G‘“@
W,
¥ R
9 £
?.
> X
<o)
,,'“cﬁﬂ
09"14
7

Pig. 2-6. Illustration of the angles appearing in egs.

II. A-5a2 and II. A=-5b.

42



43

We solve egs, II. A-4a, 5a s%multaneously,
eliminatiny the frequency to obtain M as a function
of K fo: a glven anzle. We can do the same for egs.
II. A-4b, 5b, The reader is referred to Rhines ( @ )
for detailed solutions of these equations for the case
L@ =1/, (when the slobe effect éf/u counteracts ]3 )
and =3V, (when it reinforces it). We e:;lphashize that
the mode structure is quantitatively different for
different slope orientations. There are some general
qualitative statements one can deduce from egqs. II. A=-4a,
4b and II. A-5a, 5b. The bottom-intensified wave
solutions exist only for angles '9442 such that
— T, <0-9L T, , that is, when the wave's phase
velocity is to the left when looking up-slope. If }3
opposes €%, and is larger (the least favorable case),
then theré is a wavelength cut-off above which the
bottom-intensified wave cannot exist. The MBRW always
have a component of phase veloclity to the west resardless
of the orientation of the slope. As the slope becomes
stronzer, the MBRW develop a ﬁode in the horizontal
topography at the bottom.

It is of inferest to apply these results to the
Aries measﬁremenps. These current observations were

done in a rezion occupyinz one degree square west of Bermuda
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(680-67° Lonzitude and 32°-31° Latitude). In Fig. 2-1
we see a large scale view of the topography of the
rezion. The average slope € is % 3- o> ,
and is oriented at an angle of about 60° east of
north. The averaze depth is 5 km. so that €/ % 6‘5AKM;'.
In this location B/; = 2.3 16 km"' | 1pe current
measurements were made for éhort intervals of time
(1 week - 2 weeks) with Swallow floats a2t nominal depthé
of 2000 m. and 4000 m. for arperiod of five months
. (Crease 2 ). A dynamic sect;on was performed for
one set of measurements showing thét the observed currents
were geostrophic and had a baroclinic structure similar
to the bottom-intensified mode, Swallow ( | F Y. The
observed speeds were quite hish, c¢f order 10 c~n/ge¢ .
Crease estimated from the observations that the apparent
lengtn scéles assocliated with the motiop were of order
tens of kilometers (X 60km.). The dynaﬁical Rossby
number Ra is of order (0'2 - == of the same order as

S§=€L/uw . From the ‘point of view of our topozraphic
model, nonlinearities should be included. However, to
obtain a rough estimate of the frequency and lenzth
scales implied by the observed vertical structure and

orientation of the velocity vector with respect to the

slope, we will simply use our linear equations. Using
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(0) ('ﬂ-(.-i.-wr)
eqs. II. A=3%a, 4a in dimensional form, we find for F=e. coshmz

o= —~ F,/& K swn 6
° R
and
ert 6-f)
MR“'WMH = €l" KK cen
' w
where H= S Km is the mean depth, = the slope

and (= N/&- . From the observations described by

Swallow, we fit coshwmZ +to the vertical structure

of the current and find that mus 1.5 . We use
=12 which implies Tw =2y %120 MINUTES,
For plane quasigeostrophic waves, the angle o&& (the

direction of the velocitylwith respect to north) is

related to e " (the wavenumber vector angle) by the
relation Tamot=— L . |
: +am O
g \30°
[y
600

" Pig. 2-7. Illustration of angles used to calculate Table 1.
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From o, MH and the parameters which define the region,

we can compute the frequency and wavenumber (Table 2-1).

Tw (K)™
o = 360° 40 days 3Tkn
o = 340° 90 days 30km
o = 60° 26 days 40¥kn

Table 2-1., Periods and wavenumbers calculated from the
Aries data.

In the data, the most typical value for & is
360° (meridional direction)., o=60° is a hypotheti~
cal case for the minimum period, i.e. the velocities point
in an up-slopé, down-slope direction. The value of the
periods and wave scales in Table 1 for %=360° , x=340°

are within the observational estimates. e must be
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cautious about these results because the nonlinearities

seem to be important. The wave steepness, for example,

V,o_\f—.:%?_ is of order . The phase velocity
w

for t=360" to the west is about 6.F mfe .

It is of

the same order as the estimate of the mean flow over the

1l4-month observation period. Fig. 2-8 shows a rough

sketch of the wave for the case d=360".

VERTICAL &
OF THE 8 0\797'70‘%‘70R£
INTENSIFIED WAVE

30°

INSTANTANEOUS
STREAMLINE PATTERN
DIRECTION OF

PHASE PROPAGATION

Pig. 2-8. Sketch of bottom-intensified wave calculated

in Table 2-1.
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We note~that if we had a vertical array of sensors
at a given location determining the vertical strﬁcture
and the frequerncy of the oscillations, eqs. II. A-3a,
4a would determine the horizontal scales and directionality
of the field. On the other hand, ﬁeésuring purely baro-
tropic, t0p6graphic (E'S/H ) and/or planetary ( ?# ) waves
at a single location does not provide enough information
to determine the field. There are many possible wavenumbers
and directions for a given frequency. However, in the
absence of a continuous source of bottom-intensified
modes at_given frequency range, dispersion at low fre-
quencies.limits the persistence time of the wave group
around the sensor area to about one period of oscillation.
This duration of the signal &ould not be long enough to
use spectral techniques. The best one can éxpect is to
search for events in the records.

3, Viscous Bffects

For small bottom slopes the effects of viscous
dissipation on the wave motion can be introduced with the
application of the quasisteady Ekman theory. One finds
that the time-~dependence of the topographic oscillations
is ziven by '

v
i YR £, 9> ven €
(II. A-6) 4P °T‘-‘i’—-&w AP & 5 tomk NKH
5
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where € . is the bottom slope, ¥  the eddjr
viscosity coefficient, k  the horizontal scale of
the motion and ' the mean depth. For lonz scale
wave motion %’,KH« i the damping becomes independent
of stratification and hqrizontal s'cales. The spin-down
time is civen by “@;)%- . Depending on the assumed
values of we can get varlous estimates ranging
from a month to a hundred days. ‘For bottom intensifica-
tion scales of topographic oscillations N/; K> 1
the decay time decreases. It is given by the spin-down
time above, but with H replaced by the vertical
penetration scale NK/,;_ . (?;Ialin 20 ). The
relative importance of the viscous effects with respect
to the topographic effect is.measured by the ratio
(II. A-T)

s )‘Iz K/ c

'/z
This ratio can be rewritten as (:%’u") Kzﬂ .

ratio of the Ekman number to the one half to the topographic

The

parameter 9= e/k(-( . Por 2. 1072 corresponding to
an Ekman layer one hundredth of the depth H , & slop-
ing bottom x5 and  WW~',  the ratio (v/“q'z(x%)
is about one-tentn. This implie;,s that the oscillations

will decay in about ten buoyancy periods ( 2W/ng ).
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However, little is known about the actual dissipating
mechanism in the ocean's lower boundary. Perhaps the
effects of small-scale irrezularities in the ocean floor
are more limportant in the dissipation of the enerzgy of
the toposraphic waves.

Section B. Topographic Modes over a Corruzated Bottom

In the previous sectioh we saw that over a constant
sloping bottom, topozraphic oscillations show bottom- '
intensification when the horizontal scales of the waves
.are smaller than- N4 HpePrn . F:)r example, 1if N/S-

A~ 0C®) , Hp= 3000 m —> L2 50 km .

This implies‘that sources of tﬁese motions must contain
the above scales and‘come in contact with the slope to
excite the bottom-intensified modes. For example,
sources at the ocean surface with scales L<;“! e W1ll not
effectively éxcite the oscillations because their effects
will not penetrate to the bottom topo;raﬁhy. If their
scales are longer than the penetration scale L7%’-“p¢em ’
the direct topographic réesponse will be essentially
depth~independent..

On the other hand, if the bottom topography possesses
its own intrinsic scales, the response of the fluid to

a long-scale generating disturbance wlll contain motions

with horizontal scales directly induced by the topography.
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If the topographic scales are baroclinic, i.e. - "7 7

PR

N/s Hpermw > 1
Lr -

topographic scale), the structure of the modes over

(vhere b+ is the characteristic

the topography will show bottom-intensification. 1In
this way, lonz=-scale barotropic motion can Zenerate
bottom-intensified, topﬁgraphic oscillation. It is
interesting to note that the baroclinic séales.of
bottom~intensified waves are comparable to scales quite
commonly found in the toposraphy of the ocean basins.
For example, Swallow ( 1+ ) reported bottom undulations
of.order;-5brn in amplitude; and length scales of
order teﬁs of kilometers superimpoéed on the relatively
smooth rise to the west of Bermuda. These kinds of
scales are evident in the topographic charts of the
6t (4 ).

It is possibie to determine quasigeostrophic
topOgraphic modes over s small-amplitude: one-
" dimensional corrugated bottom. These modes will be
excited to adjust to a long-scale, directly-forced
barotroplic disturbance to thé topography. Since the
small-scale topozraphy in the ocean is clearly not one -
dimensional, the.value of this calculation lies in
illustratiﬁg the mechanism of energy transfer from

lonz scales to small topozraphic scales, particularly
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those scales which support bottom-intensified motions.

Pig., 2=9. Diagram illustrating the one-dimensional
bottom corruzations.

Consider the bottom corruzations to be given by

Z= - H— OAdwm %/

where O- 1s the amplitude of the topozraphic undula-
tion, L, is the topographic scale and H is the
mean depth., We take $ﬁ<z1 ', the amplitude of the
undulations is very small compared to the mean

depth. This -assumption is realistic for small-scale
topOgrappic rouzhness.

In order to obtain the equations that will describe



‘ 53
the topographic motions, we use egs. II-1 to II-5, with

fhe Rossby number K, set equal to zero. We also set
the ﬁ -effegt equal to zero. At the end of this
sectlion we will comment on the restrictions imposed
on the solution by the assumption ‘Ro=° .

In the scaiing of the equatioﬁs we formally make a
distinétion between the along~-the-slope scale L
"and the scale of the corrugation L, . we will later
take fhe limit of the rafio LVL ~to be smaller than one.
We scale the velocities by the condition of maximum
'divergence in thé continuity equatibn. .The vertical’
veloclities will actually be smaller when we expand the
fields in terms of the topographic neight /y .

The scales are:

(II. B-2a) % L

(11. B-zb) y— Ly

(II. B-2c) 2 — ﬂz

(II. B-2d) 2 —»—cfw
’ ot

W 1is the frequency

(II. B-2e) u—-s LV w
L
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L& Is the velocity in the direction of corruzatlions,

and where V, 1s the magnitude of the velocity in the

y=-direction
(II. B2-f) v Vo ur

Ar : the along-the-slope velocity
(II. B-23g) W —> u/LVo

wr : the vertical veloclity
(II. B=2h) Ap —> £ LV, fo
the pressure scale
(II. B-2i) Ag —> $o Ly Vo fo

. 'SH

perturbation density scale.
We define the following symbols
: L

the ratio of the topographic scale to the along-the-slope
scale

(II. B-3D) F e

=|?

the toposraphic height, €<<{ )

(II. B-3c) H A'

L

W
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the aspect ratio of the topographic scale to the depth.

Substitutinz the above scales in the egs. II-1 to II-5,
we obtain a set of non-dimensional scaled equations

(II. B=-4a)

) Yu -V == P" X~momentum

(II. B-4b)
—cwar +8u -=‘XP*1 y-momentun
(II. B=4c)
. 2
- )' Yw' = - Pi'f z=-momentum
(II. B-4d)
: MY Yw= o
-.‘(,»f - ' = denslty continuity

(II. B-4e)

A Uz + Uy + We =0 continuity,
() in eq. II. B-4d is equal to %éa  which we

take to be order OC1) , At the bottom boundary we

have

(II. B-52) W= — € CosXx U on R=-l—-€Esmx

and at the rigid top boundary we have

(II. B-5b) W=o - g=o

Since the topozraphic helzht € 1s much less

than one, we can linearize the bottom boundary condition
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by making a Taylor expansion about %=-! , Eq. II. B-5a

becomes

(II. B-6) wv|. —é&coswdxwi| o .. —-Ew»«x(u{ + eamalxu, )
2=-1 Ze - ’ = =i 2ay

Since we are interested in quasiéeostrophic oscillations
induced by small-amplitude bottom corrugations, we
expand the fields and the frequency in powers of €& .
The 1m_plicit assumption is that é<<y .

(II. B-7) ' a 2,60 Ce WD

. - 2)) -+ €° ) + . '. .
b P Ot
", | g Sto) f ")

and the frequency

) .
(II. B-8) w = ew Ve

The details of the expansion of the equations afe Similar
to the calculations of page . Ve ﬁill not reproduce
them here. We will simply write the resulting equation
for the lowest-order (in- € ) quasigeostrophic pressure

)
field a?‘o . The interior equation is

(o)
V’“‘ + )I’J‘J (r»\) Io

and the boundary condition

(I1I. B-9)
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(II. B-108)  fpa=°
at the top Z2=o0 , and
. ' ) 2 [o)
. B-10b “_ (oA
(II ) f’z = () Vo-::x Py
tw at the bottom z=-l.

¥  is the parameter lﬂ/L which measures the ratio
of the topozraphic scale to the alonjz-the-slope scale.

1. Normal Mode Solutions

We expect that the solutions to the above equations
“will contain the scales of the topography. We expand

40“” in terms of elementary exponential functions.

: oo {nx
. B-11 Ay
(II. B ) /ioro)z Z Sn(?-) o
' n s~
where X is an order one wavenumber along=-the-slope..

Substituting eq. II. B-1ll in the interior equation we
find that the vertical structure of the solution is of

the bottom-intensified form.

(II. B-12) g (2} = R, cosh M iy yigs 2

The above solution automatically satisfies the boundary
conditlions at the top. For the abbve expansion to work,

we need a few terms to be larger in maznitude than € s
which is the first order term in tne first expansion

of the pressure field. A%t this point we expect that we
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will have to require that Y>> e .
Thls assumption was implicit in the expansion of eq.

II. B=4d. 1If Xﬁé tne problem is not separable in
the vertical and up-the-slope coordinate. This 1is not

a very restrictive condition. We are thinkingz of the
ratio - ¥=L1/  to be at most order Yio ', that is,
an along-the-slope wavelength ten times larger than the
topographic wavelength. Whereas for the ratio é-’—'a/u'
we are thinking of topozraphic amplitudes of order

50m to 100m and e depth of order 5000m ( € ~ {6~ %

).
We substitute the solutions II. B-10 and II. B=-1ll in

the bottom boundary condition II. B~1lOb. We rewrite

. "x ~¢K ‘0)
this boundary condition as [02_“’): (NQ?‘/Q)Y (e +e ),D
: 2w

Matching the same functions of % we obtaln the
following set. of relations

Ao Qo SmhMA 9, = ~ (A 8Y (At*ﬁ-\ cosh ™9

°% Erl

(II. B-13Db) . :

¢cX

e : A ‘{,(sm}\’\\,%. = -(M) il (.A’C"""mﬂ" + A, “’%n’\‘%‘]
* aw(‘) ‘

é‘.ﬁ' A %l%"ﬂnt\% :—(T‘z\.)ly LA. ws(«m\.%o +A.2 Coshl‘,\‘th—l
;R 9, M)

2w
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(II. B~13d) . ‘
A, 7, suhMhg, = -(p'\«)lx[ﬂ.casl-m,%. + A_acosml,q;]

e 1“’(!)

and so on, %n is defined as W for n:o;.\; 2.
The above set of conditions mixes the scales of the
different tépographic modes. We not that the matching
conditions are symmetrical with respect to the indices.
So far no assumptions have been made about YEI"/L\

other than its beinz larger than & =4/, . If

X:’l . » the topographic scale larger than the
along-thg-slope scale, the series solution does not
converge; if Y&t , the seriés.cqnverges'very slowly,
like Yn . . The most interestingz case is ¥<<¢ L |

This limit can be used to model the interaction of a

long-scale forced wave with small-scale topography.

For ¥<<{ and T4, ~ OCOD we can make some ¥
simplifications in the relations II. B-13. Let
o
smi\n.\.c(,, = awhrA, XYl = )\, ¥

and colh MYL ~ 4 . Also
we replace 4o by ¥ and gu by © . Sub-
stituting in II. B-13 we solve for the coefficients
Agmo ‘and A4[A,’ as continued fractions.
From tne first relation in II. B-13, we obtain another

relation for A‘/Fl. and A"‘/Ao . Eliminating
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the coefficients we obtain the following equation for

the frequency

(II. B-14) (w"’~)Q= rh ‘

PR

2 tamhm, - (M) _
Qo) atanhth o 4o

where &  is the small parameter Ly, . We iterate
(II. B-15)
Y
2
(wm)o - _4;((1,\, (
2 tamhMA)
and ‘ i

(w) -i-(_f_‘_v\_- t )7-(\,,_,.&’12,4,\. +)
ot 2 tawhrdd ) 4 2tamhM,

We see that the first correction is small.
Using the dispersion relation we can-calculate

the coefficients A'/A ) A‘}n to the first two orders
o - o )
in ¥ . We find

(II. B-16) ) ,
Moo Ao= gl [OU )" YL (e V20 4.)
0 ° Vil tamhMy ! cochaPA, 8+M‘LN,
@)

where (—) is associated with W >0 and (#) term with
wW<o . We note that the first term is of order & .

In order to sho# that the ma nitude of the terms in the

expansion decreases in orders of g we calculate the

next tern
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(IT. B-17) A, A, - L ¥4 0 L (+o(¥a ﬂ
A, A, 4 tamhath cosham,

We combine these results into the original expression
II. B-11 for the expansion of ‘VA‘O) (the pressure

field). We find

(II. B-18)
) ‘/
P(o)- A etg'j an\MQ’Qi COSENE ~ \rib( By \;“Q (“, O()’Tﬂ‘)
S cosh PA YL tanhn),
x cah M2 coax S € Ot + X_E‘__L—z" LA centh 2Pl
Y | T2 dedn™ cbam,
. ’ 6 ‘ -
X Cex2%® Cea € LT -+ O ( ¥ ) : &

where SL 1s the frequency siven in eq II. B-15.

(o)
Since }oo is- the zeroth order expansion in S we
can only consistently keep terms larser than e .

2. Discussion of Results

In order to discuss the structure of the solution,
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it is convenient to replace the non-dimensional para-
meters that appear in eq. II. B-18 by the natural dimen-
sional scales of the problem. Let Y4 - %ﬁ“<<£ where

JL i1s now the actual along-the-slope wavenumber
and M the actual topographic wavenumber M3 ;{i .
Replacing the symbols in eq. II. B-18 by their definitionms,

eqs. II. B-=3%a to II. B=-3c, ﬁe obtain

(II. B-19)
-Q- I H
o) ‘7Y ( conh NAZ . L
$= e Sl & wat-m(%wyL
Cosh NLH S. ‘Et‘ A
- 5
X ceoh MM 2
5/“ Ceor MY wa't + O(-’E) + - /(
Contn NpH
£
where is the mean depth. The frgquency is O
given by | ‘
II. B=-20 ‘ [
( ) 5= af (Ng ) (+ o(ﬂ\ )
ez H s {-ow.hl\lg

where %@i is the R.tl.s. topographic amplitude.
The expression for the pressure field is particularly

transparent, The topozraphic mode consists of an
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essentially barotropic term ( -':-;.'-X“<< . ) and a
serles of baroclinic modes with smallgr amplitudes. The
most important baroclinic term is the first one. It has
a horlzontal structure Cea- p% directly induced by
the topographic corrugation. It is bottom-intensified '
and decays into the interior with a scale = (Nfﬁﬂg)-.
Its amplitude is roughly given by the ratio of topographic
scale to the along-the-slope scale.
We note that the solution's time-dependence is of
the "standing" type, with the first baroclinic mode
q0° out of phase with the barotropic term. The
oscillations are of the standing type because over a
complete topographic wavelength there is no preferred
direction for the propazation of the waves, unlike
the case for the constant slope discussed in section A..
This does not imply that these modes cannot be matched
with traveling disturbances over the topbgraphy.
Consider the frequency in eq.II. B-20. Vhen
the scale of the toposraphic corrugations is larzer
than the horizontal scale cut;off for bottom~intensified
motion Le= NH/;: i.e. Lepsod ,
the frequency  becomes independent of stratification and

the corruzation scale. It is simply given by
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i

the R.M.S. topographic height scaled by the mean depth.
This result agrees with the homozeneous limit ( N*= o )
calculations made by Rhines ( 11 ). This result is
understandable by reallzinz that for depth-independent
topographic oscillations, the frequency is determined by
the ffactional change of depth of the topography over
the length scale of the wave, i.e.°in this case the
| r.m.s. amplitude of the corrugation over the mean
depth.

When Né PP 24 the frequency increases. The
terms in the equation can be rewritten to bring out the
expliclt dependence of the topographic slope.

(I1. B=-21)
{ (

Py L
= apm N Z —_— y
g '1g (hquﬂ (+awklve*') *

where'df‘/& is the r. m.s. topographic slope. The frequency

relation is analogous to the dispersion relation for
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bottom~intensified waves over a constant slope with the
slope replaced by the actual slope of- the corrugations.

The parameter (Q/N"H)‘Iz is the ratio -of the
penetration scale of the wave to the‘mean depth H .
If we let H-oe , the frequency does not go to zero.

In this 1imit the assumption that the along-the-slope
scale Jl" was larger than l%g H does not remain
valid. The first term in eq. II. B-19 becomes bottom=-

intensified and the frequency relation is given by
i
C= am N Ll \1
'3 /p

independent of the depth.
The frequency relation from which all the limits

discussed above czn be obtained is ziven by

o= ap N X .
2 g tamknts MMA«:J?_@
5

This relation is obtained from eq. II. B-lE‘by not
requiring that the along-the-slope scale be larger
than MNBZ . e see that the frequency appears to
be the geometric mean of two frequencies based on the

slope of the corrugations
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Each of the frequencies is éimilar to the dispersion
relation for topographic waves over a constant slope
(see section'A, eq. IL.A- 2a). :

Let us take some values to compute the parameters
that desgribe the motion for the cése wnere the along-
the-slope scalé is larger than Nﬂg . This limit is
the most interesting‘one. For example, topographic
amplifude 2zi00 » ; mean depth Hz= Sooow ; along-\
the~-slope wavelength 21l = 2. 250Km and £0pographic
scale )u"‘ =2A5Km . With these values we
compute the period of the oscillations T= 2w
to be 50 days. The amplitude of the bottom-trapped
baroclinic wave is 20% of the amplitude of the barotropic
wave., The penetration scale of the first mode is 2500m
from the bottom. The along-the-slope veloclity associated
with the bottom-intensified oscillation is of the same

order as the barotropic velocity of the long-scale wave,

The up-slope velocities of the bottom-intensified mode
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are an order of maznitude smaller.

In this simple model the strenzth of the along-the-
slope velocity depends on 1ts positlion over the corrugated
bottom. It is a maximum at the trough and crests of the
corrugations. This implies that the particle motlons
associated with the trapped wave are deflectea by the
ridges never gzolng over the.tops. This conditlion preserves
the wave character of the motion. '

It is péssible to extend the ?esults of the calcu-
-lation for the pressure field (eq. II. B-20) to the case
where the larze-scale barotropic wéve contains a long
wave scale dependence in the direction of the corruga-
tions, This extensibn of the solution permits us to
match the toposraphic modes witn a disturbance oriented
in an arbitrary direction with respect to the topographic
corrugations. It works out that to lowest order in the

~ ratio of the long-scale wave to the topo,raphic scale

we slimply replace JZ , the along-the-slope wavenumber, A
by K= Vikt4l® ', the total wavenumber of the

lonz wave. The major effect on the solution is the lower-
iny of the frequency of the normal modes by the angle the
long-scale wave makes with the direction of the corruzatiouns.

Eq. II. B~22 becomes



5
(II. B-23) 0= am & N (____.f ) - A
VI & \NpH ] (tanh NRCY
This result was expected because increasing the angle
that the veloclty vector of the long wave makes with the
direction of maximum depth change reduces the restoring
force on the waves,

3. Corruzations on a Slopinz Bottom

In many areas of the ocean the small;scalé topography
is found superimposed on more gradual variations of depth.
In this section we will briefly comment on the competition
between the constant-slope and the small-scale topographic
corrugations in establishing the spatial and temporal
structuré of the ﬁaves. ‘

Consider a bottom configuration given by Z=-#-dx-asmpx

z
A

, e .
7 7 7

% 7 7 //
AU NEENEEEIEEE N lIlII>LIII/IllllllllllLl/lllllll L1 -1

Fig. 2-10. Diagram describing corruzations on a sloping
bottom,
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where H _ is the mean depth, is the constant
slope. The term 6SmM¥ represents the topographic
corrugations superimposed on the gently sloping bottom.
We consider the fractional change of depth over horizontal
scales much larger than the scale of the corrugation
to be small compared to the mean depth H .

As in the case of no-mean slope ( dc}: '), normal
modes can be found when the along-the-slope scale 1is
much larger than the tdpographic scale /4" .

There are three distinct cases that can be considered:

1.;'The net fractional change of depth over a horl-
zontal léngth of the order the dorfugation scale is
comparable to the amplitude of the corrugation. In this
case the vortex stretching effect of the long wave over
the constant sloping bottom dominates the dynamics. To
order (gﬂu) , where £  is the small-scale along-the-
slope wavenumber, the modes do not shownthe scale of the
corrugation. The contribution due to the topographic
corrugations appears in order (9#&‘1 which is very small.
The solution 1s simply a barétropic wave propagating to
the left when looking up-slcpe with frequency ﬂ?'“%f{k, .
2. The net fractional ¢hange of depth over a

horizontal scale_of order the larze along-the-slope

wavelength is comparable to the r.m.s. amplitude of the
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corrugation. In this case the effects of .the corrugation

and the constant slope are comparable. The frequency is

given by

- =
o= -5 +1 \/ 2 @M + 4"

anill 2 NHM famh NHM H2*
F; £

where /Q. ls the along-the-slope wavenumber, Cﬁ#‘
1s the corrugation slope and K is the constant slope.
The presence of a mean slope requires that the solution
have a phase velocity to the left when an observer looks
up the mean slope. Formally as X=>0 we recover
our previous solution eq. II. B=-22. The mean slope
and the corrugations increase the frequency of the
standing oscillations. To order ( J%}L ) the structure
of the topographic modes will exhibit the scale of the
topographic corrugations.

In the Bermuda rise where the mean slope is of
. order 10'3, Swallow reported small=-scale topographic
undulations with amplitudes of order 50m to 100m and
horizontal scales of order tens of kilometers. Assuming
that the small-scale topography 1s as simple as the
model's, we compute that a forced barotropic wave

with horizontal scales of order 100km makes the two

——

effects comparable, i.e. & & 10”% and oL 210
. : M H
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The reported horizontal scales of the topographic
undulations could introduce baroclinicities in the
currents witia rouzhly the same horizontal and vertical
scales as found in the Aries observations.

3. The constant slope 1s so small that the net
fractional depth change over a horizontal lensth scale
of the order of the along-the=-slope scale is much
smaller than the amplitude of corrugation. In this
1imit we essentially obtain the d&=o {(slope) case to
_order (Qﬁé\ , €.

[

(II. B=-20) ) _t
oo ab (Ml :
V2 H S '\-MJ\M
‘ 5
4. Summary

We have seen that a small amplituée, one=-
dimenéional corrugated bottom can support quasigeostrophic,
topozraphic oscillations when the alonz-the-slope scale
is much larger than the corru;atiog scale. The modes
consist of a long-scale, barotropic term and a smaller
amplitude term with its.horizontal structure zlven
direcfly by the horizontal scale of tne topozraphy.

When the topozraphic scale is smaller than the baroclinic
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scale for bottom-intensified waves, N*hﬂﬂvg. the

ﬁopOgraphie wave 1s trapped to the bottom. The vertical
corrugation's penetration sca_le is given by ;/NH .
The frequency 6f oscillation of the mode is given by
the component of N along the r.m.s. topographic
slope of the corrugation., If the corrugatlion scale
is larger than N"N'ﬂ/@ , the topographic wave is
essentially depth-independent and its frequency is given
by the vortex stretching effect assoclated with the
fractional oﬂange of depth over thé corrugzation scale
' (the r.m.s. amplitude of the topography divided by
the mean depth). These topographic modés will be
excited to adjust a long=-scale, directly-forced
barotrophic disturbance to the topography. .

A one~dimensional model of topographic roughness
has many limitationé. The small-scale topography
in the ocean 1s mostly two~-dimensional. We expect
that if the ridges are as long in length as the depth-
independent current's wavelength, the solutions discussed
would describe the initial development of baroclinicitiles
due to small-scale topography.

Two-dimensional topography is muéh harder to treat
analytically. DPerhaps some features of the problem

of one-dimensional topography still remain true.
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Numerical computations of depth-independeﬁt topographic
oscillétions over two-dimensional topqgraphy have been
done by Rhines ( 9 ). His results indicate that
after a relatively short time the horizontal structure
of the motion resembles that of the small-sczle
topography. One can imagine that if the sméll-scale
topography has baroclinic scales te. L‘-‘-N{;“oem’u ,
the resulting motion over two-dimensional topogfaphy
will also intensify at the bottom. The otner limitation
in our one-dimensional model of small-scale topozgraphy
is the neglect oﬁ nonlinearities. The lar;est non-
1;near térms in the problem zre of order Vof§/§ .
Por the observed velocities in the Bermuda rise and

for a topographic scale M~ k. , these terms
are of the same order as the local frequency of tﬁe
oscillation (scaled by §& ). Our solutions sﬁrictly
apply to smaller amplitude waves. For i;fger velocities
" the solutions describe tne initial development of the
currents before the along-the-slope velocities achieve

thelr maximum value.
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Chapter ITII Execltation of Topographic Waves by Rossby

Waves

In the previous chapter we discussed some of the
properties of quasigeostrophic wave motion over local
topography. 1In thls chapter we will consider how these
motions are coupled witﬁ quasigeostrophic motions existing
over an adjacent, but different, t0pograpﬁic énvironment.
Rhines ( /3 ) has studied this problem for a homogzeneous
model of the ocean, Here we will be concerned with under-
standing the coupling between the topographic regions when
the effects of stratification are included. In particular,
we wish ﬁo determine the efficiencj of the generation of
low=-frequency, bottom-intensified, topographic modes by
sources located in a different topographic environment. Ve
will discuss this problem in sohe detail for the simpiest
possible situation: the matching of Rossby waves with
topographic waves. -

Consider a one-dimensional, gradually sloping shelf
interesecting a2 constant-depth, featureless ocean (Fiz. 3-1).
In this simplified geometry,vwe wish to find the structure
of the modes that can be supported over the sloping bottom
in response to Quasigeostrophic wave motion in the ex~
terior region X>o0 ., The slope is taken to be small
in the sense used in the previous chapter, i.e. the

change of depth over the length of the shelf is much less
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Fig. 3~1. Diagram describing the geometry of a gently
sloping shelf, ’

than one. Under this condition the topographic waves
will be quasigeostrophic. To describe the topographic
oscillations, we can use the potential vorticity
equation II-18 and the boundary conditions at top and
bottom, eq. II-192,b, representing no flow through the
boundaries. To be specific, the use of the boundary
conditions above, including the planetary ‘9 -effect,
imply that the shelf in Fig. 3-1 1s oriented north-south.
The positive Yy axis points .morthward, and the positive

X axis éastwards.
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The matching of the solutions to the above equations
with wave motion in the rezion X3o fiies the along=-~the-
slope wavenumber and frequency of the solutions. Therefore,
we conserve the phase of the wave along the slope dis-
continuity. The resulting vertical structure and the
up=-slope wavenumber is determined solely in térms of the
along-the-slope phase velocity and the physical parameters
that describe the region for quasigeostrophic motions .
(slope, stratification,‘coriolis parameter, anq the mean
.depth of the region of interest). e‘l‘he amplitudes of the
topographic mot;ons will be determined by matching the
quasigeostrOphic velocitles at the edge of the region,

In ordervto see‘this and explicitly calculate the
modes ‘over the topography, let Pfo) , the lowest-order,
quasigeostrophic, pressure fileld solution to the potential
vorticity eq. II-18 and boundary conditions II-19a,b be

represented by
(2y-wt)

(111-1) = Lae

In this representation we have extracted the along-the-
slope phase of the waves conserved at the slope discon-
tinuity. Substituting the above form of the solution

into the dimensional form of the vorticity equation II-18,
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we obtain

. 2
c* So

Y]
where F/;a of magnitude X (o

km' 1s the length scale
assoclated with the variation of f with latitude..
w 1s the frequency of the oscillations non-dimension-
alized by s . r is the ratio of the buoyancy fre-
quency to the inertial frequency 07; . For simplicity
‘we transform the above equation into normal form by ex=-

tracting the ﬁ -effect westward drift. . We let B ve

represented by

-~ ;_% x
(II1I-2) xz) = B(x,z)e 2o
Substituting- (III-la) we obtain

d 2 =
(111-3) Bux + .;_1.1,@2% +(%}w‘ ) &=0

subject to the boundary conditions

(111-43) /ez-‘f-'o at L=o .

(The #ertical veloclity is set equal to zero at the top

boundary. )
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(111-40) By = r‘%}f at E=-H ,

(No normal flow into the sloping boundary.)
We again use separation of variables A (¥ 2)=Q()6E(2)
to obtain two more equafions. Separation of variables
at this point can be done because we have linearized
our boundary condition on the sloping bottom. (See page

y €q. II-13)
, 2 . )
9 (g, —#-F a0

represents the dependence of the pressure field in the

up-slope direction, and

(I1I-6) Gzz —+ Y & =0 '

represents the dependence of the quasigeostrophic pressure
' on the vertical coordinate, 3/ is the separation constant,
Substitutinglﬂxi)in the boundary conditions III-4a,b, we
find that G6(2) is subject to the boundary conditions
(I1I-7a) , Gz =0 4, Z&=o0

L3

and
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(I1I-7b)

1., Vertical Modes

Equations III-6, Ta, and 7b are a statement of a .

Sturm-Liouville ( ) problem. If ¥<o , the solution
for G 1is |

(I111-8) G = coah mz

where m3i=- ¥ . The boundary condition at-

Z=-H yields _
2
(I11-9) mu Famb mi = = P& W

There wiil be a éolution only if Jz<b (we have chosen :
the frequency e >o- by convention). This solution represents
the bottom-intensified mode, i.e. stronger motion near the
bottom and propagation of the alonz~-the-slope phase veloc- .
ity to the left when 1ookiné up=slope. Theltranscendental
equation III-9 allows the caiculation of the vertical
structure in terms of the phase velocity along the slope
and the physical parameters describing the topographic
region. e see that there is only one root (Pig. 3-2).

In the 1limit of the slope appfoaching zero (é-»o0 )
"and/or the phase velocity along the slope becoming largze

(>0, Tanhmu2mp <<l indicating that the

~1
vertical scale/&=n1 becomes larger than the depth of
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N2e 8l nm
w (mHu)
tanh mu |
| cosh mz
1If=——-\"—= - |
1
| }
| |
I I
]
] > 2s-M |
(my) mH

Pig. 3-2. Graphical solution of the transcendental
equation III-9 and a sketch of the. vertical structure
of the bottom=-intensified mode.

the ocean. The motion becomes essentially barotropic,
coohmz>1 | This is the limit of the depth-independent
topographic waves, In. the opposite extreme (for larger
slopes and small along~-the-slope phase velocity), the
bottom=-intensified mode becomes strongly trapped to the
bottom, decaying exponentially into the interior of the
fluid. In this limit, the penetration scale b ois given
by wr""e/ml and the vertical structure caahmZ reduces
to -exp Pzeul?.‘./w for Z<o .

We can use MH~v1 (the e-folding penetration depth
equal to the depth of the ocean) as the rough dividing

scale between the essentially barotropic motion ( MH<SL )
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and bottom-trapped motion (mu>4L ). With this value
of mH , we can estimate an along-th34s10pe phase speed

<3; in terms of the physical parameters of the regilon.

The along-the-slope phase velocity of a disturbance im-
pinging on the edge of a shelf greater than cg‘ would
excite an essentially barotroplc response over the sloping
region, while for smaller values the response would be
bottom-intensified. We set mM¥=1%1 in eq. III-9 and

solve for the along~the-slope phase velocity

. (I1I-10) C;i(%) = g_g (rn)zr‘;__i
- 1 tamh

’ i W -
For a slope €=1o , N/;C:l‘g )4-§-==-004 and H=4«m we
obtain C5L A~ I35 Km/ dAy . FPFor smaller slopes
- 1
ég(os and the same average stratification, Cg¢ is

*.5Kkm [day . The along-the-slope phase velocity
of a barotropic Rossby wave with periods‘smaller than 30dA)s
is larger than IOBKVH/AA;' . h These values are much too
high for the waves at this period range to match with
a strongly trapped mode over the tqpcgraphy. At Site D,
bottom=-trapped motion ( ™WH> 4 ) could be excited by
oscillations of the Gulf Stream at the edge of the shelf.

Available records at Sites J and D indeed show Gulf Stream

meanderings with periods of one to two weeks and scales
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of approximately 200 km having phase speeds low enough

to excite bottom=intensified motions QVer the topography.
Returning to eq. III-6, we see that if the separation

constant ¢ is greater than zero the solution to this

equation 1is

(1II-11) G = cosrZ

where ' 2/-‘: r*

© .

The boundary conditions at Z=-H yield

w

A solution will exist for both 70 and )40 (both
possible orientations of the along-the;éiope phase veloclty)
unlike the bottom-intensified mode cenbhhm=E . The ceari
solutions have the same vertical structure as the Modified
Baroclinic Rossby Waves (MBR#) we found in the previous
chapter, (eq. II-A-3b). We can calculate the roots by
solving the transcenden;al equation III-12. PFig. 5-3 shows’

a schématic graphical solution.
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Pig. 3-3. Graphical solution of equation III-1l2 and a
sketch of the vertical structure of the first few MBRW
modes.,
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Again we note that the roots are comﬁletely determined
in terms of the élong-the—sloPe phase velocity and the
parameters that describe the topographic region. There
is an infinite sequence of roots to the equation. We
denote the roots for the f<o case by Yy , i.e. G j=cosni
and for the A>e case by {oj , 1.e. G'J";'" ooy E
For <o , G, has ) nodes in the interval Z=[o,-H]
(from the surface to the sloping bottom) and Jl-l nodes
for ﬂ:>o . PFrom Flg. 3-3 we see that as the slope ap-
proaches zero or as the phase velocity </ (Rl becomes very
large alpng the slope (the barotropic limit for the
bqttom-iﬁtensified mode), the roots of the CosVZ sequence
approach the jq41 , the usual baroclinic Rossby wave '
roots over a constant-depth ocean (- cCe2y; Z2—» coojli2/y ),
In this limit, for ﬂ<c> , the vertical modal structure
over the topography would consist of a single barotropic
mode and an infinite sequence of paroclinic modes coa jlE/H
(Just 1like the set of modes for Rossby waves over a constant-
depth ocean). For L>o , the ¢ospE modes have the
same limit. The first root /SH -approaches zero, and
Canﬁﬂz/H becomes barotropic. All the other roots approach
the usual baroclinic Rossby wave roots ,jEVH as we can
easily see in Fig, 3-3. 1In the opposite limit, i.e. larger

slope, and/or low phase velocities along the slope (the
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strongly trapped limit for the bottom-intensified mode),
the first few roots of the sequences {mCZI and {covbi}
approach the half integer values of Mu , i.e. W~ Won

Fy»ﬂén and so on. However, if for any given value of

T=N/¢ , slope, and along-the-slope phase velocity, the
roots of the Coo/D,'Z and ceabZz start with nodes on the
topography as )24 , the roots always approach the
usual baroclinic Rossby wave roots f 7/n (Fig. 3=3).
Thus, there is no sharp difference in kind between the
modes over the topograbhy and the modes over a flat
bottom -- only a.difference in degree.

Summarizing then, for f£<o (the along-the-slope

phase velocity to the left when looking up-slope), the
topographic slope can support a bottom-intensified mode

and a set of vertically oscillatory modes (MBRW):

(III-13) | (ont 2
G =
eV 2 J= l ZJ .
For }70 , the only vertical modes posslible are
(ITI-14)

G = g. coap, _f. J =02,

Thus we see that the vertical structure of the solution

to the potential vorticity equation over the sloping bottom



86
exhibits a distinct asymmetry depending on the sense of

fhe phase veloclity along the slope.

It might be helpful at this point to sketch the
vertical structure of the bottom-intensified mode and the
first root of the MBRW, Cosr,Zand cespZ, for some
selected valuesAof the along-the-slope phase velocity
(fig. 3-4). In the Table 3-1 we relate the sketches of
the vertical structure of the modes to the actual roots-
used fo calculate the modes. For a given slope and value
of /1=M} , We can assoclate these;roots with a particular
'along-the-slope bhase velocity by eduations I11-9, 12.

To be specific, ﬁe calculated these speeds for a slope é=ﬂ5¢
and fT:axﬁ . =20 implies an average Brunt-Vaisala

period of about 72Menv. . The penetration depth of the
bottom-intensified mode in kilometers was calculated on

the basis of‘én average depth of 4 kum. | .

We notice that as the motion associated with the cos—/ﬂné
mode concentrates at the bottom, the Goéﬂi& mode develops
a node on the topography. Also, we see that the first
mode, cospiZ present for the along-the-slope phase
velocity to the right when looking up-slope, develops a
node on tne topography as the phase vélocity decreases,

In a sense, we see that for low-phase speeds, all of the

motion that comes in contact with the topography is taken
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Pig. 3-4. Sketch of the vertical structure of the bottom-

intensified mode and the first root of the MBRYW, CosZ

and cosp2 for some selected values of the along-the-slope

phase velocity.
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Cs’(4<0) mH m~ H=4km " H cs™(£>0)  (piH)
1 300km/day .6 6.7 kmn 2.6 | 6 300km/day 54
2 | 132kn/day 1.0 bxm | 2.36 | 7 |132km/day | .70
3 70km/day | 1.57 [2.55km | 2.1 718 70km/day | .97
4 32km/day | 3.14 |1.27km | 1.94 | 3 | 32km/day [1.20
5 16kn/day | 5.28 L63km | 1.79 |10 | 16km/day |1.35

Table 3-1. Table relating the vertical structure of the
modes to their along -the-slope pnase velocity.

up by the bottom-intensified mode.

In Fig. 3-5 we show a plot of the resulting vertical
scale of the bottom-intensified mode ( m#H ) when its
along-the-slope phase speed is determined by the baro-
tropic Rossb& wave dispersion relation. These scales
would result in matching topograpnic modes with an incident

barotroplc Rossby wave at the slope discontinuity (Fig. 3-8).
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Pio. 3-5. Plot of resulting vertical scale of the bottom=-intens
g 3 C C - ified mode when
its alonz-the-slope phase velocity is determined by th y
dispersion relation. y the barotropic Rossby wave
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The plot ofiaﬁff is plotted versus the nahdimensiénal
period of the Rossby wave. To obtain the real period,
we multiply the number by the inertial period in fractions
of days. The numbers denote the period 1n days at
latitude 30° . To calculate these curves we used
eq. III-9 with the aloné-the-slope wavenumber given
by the barotropic dispersion relation.fggéﬁfse Eq. III-9
becomes, mH tanh mu = -—f’zéﬂﬁcose/zw"fb . If we add
77  to the angle & , 1t will denote the angle
made by the group velocity vector of the incoming Rossby
wave with respect to north.( /6 3-8)
The curves in Fig. 3-5 were‘célgulated for a slope
é‘-—-lo-z and F:N/gz/o . If we increase the slope and/or
7 , the curves are diSpiaced towards -the lower periods.
The penetration scale m=h becomes smaller, and vice
versa for lower values of &  and/or [/~ . These
results are physically reasonable since increasing stratifi-
cation "softens" the vertical rigidity of the Taylor
column constraint. For a given stratification, a larger
slope requires that the fluid experience a larger change
in the basic density gradient. Therefore, a unit displace=-
ment alongz the tbpographic slope will cause stronger trapping.
In Pig. 3-5 we see that for the lower periods from

a week to a month or two, the resulting penetration scale
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of the bottom-intensified mode 1s actually larger than
't‘;he depth of the ocean ( A = ’/m7 Hoep-m ). The mode
becomes in essence a barotropic wave. The phase velocitlies
of Rossby waves at these low quasigeostrophic periods
are too large for bottom trapping (see Table 3-1).. In
general, the matching of free, high-frequency. Rossby
waves ﬁith topographic modes over slopes smaller than €= %
leads to essentially barotropic motions over the topograpiy.
We recall that the set of vertical modes cosh mZand
{Cbovji} are solutions to a Stu&m-Liouville'differential
equation when Jl<o (the phase velocity along the slope
to the left when looking up-slope), The{aquzf modes are
solutions for the case Ao . Thus, these solutions
form a complete set, and can be used to expand'the vertical
structure of an exterior quasigeostrophic disturbance
impinging 0n the slope discontinuity =x=o  (Pig. 3-1).
We can easily show that these modes are orthogonal. For
R<o , we have the set . .
@’72 ; J=02, ...
Consider the coupling between the bottom-intensified mode

and the MBRV:
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° .
j comhmzeonvz dZ= mUst/»m"[mH+MmA+ r;n‘{'o.m;n]:o
—-H (M) (G H)*

because the bottom'boundary condition III-9, 12 states
that ) .

2
mu +GA~AMH=-— 'SH'.FM':)H = ﬁéﬂlﬁl
O

Thus the bottom-intensified mode is orthogonal to the

MBRW modes. The MBRW modes cos¥;Z are orthogonal to each

other
o
J canzcosntdz = 3:__.""“'5-'7‘_5"“"7" G”f“""gy"'i”-,/“"'"k”]
—H (#)*= (n#)
= O
For X 6 ', we just have the set {eeap 2} and
clearly, '

o
f oo 7 CovppEdE = O
—-M
We can compute the normalization coefficients,

e 2 :
(III-152a) oy, z2dz =¥ [I+ swmrucospH
H 7 P —
. nH

mH

.

(I11-15Db) .Jowl,zmz dz = H [/4. sandymi wsLmH]
2 —
—~H
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and
o

- corpz dz=H 1+ Ssmp Kot #
(III-15¢c) L /v, 2_[ P 7

2. Horizontal Structure of the Topozraphic Modes

In order to fully determine the horiiontal propaga=-
tion properties of the topographic modes, we have to con-
sider the equations describing the dependence of Lcn,z)
in the up=-slope coordinates., For the case /540 , €q.

I1I-5 becomes, for the bottom-intensified mode,

-16) )
(I1I~16) ( _ g2, m?_ 2t o
4f ot Gk
The solution is simply ,
(I11-17a) cvm) CAmx ~<Amx

QR = Ame + Bm €

where the wave number ﬂm is

(III-17b) 7 _ E'z. _ 1?2 4m*®

where (O 1s the frequency, L the along-~the-slope
wavenumber, and Mt the vertical scale of the bottom=-

intensified mode.
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If the bottom-intensified mode is excited by an
impinging Rossby wave at the slope discontinulty
(Fig. 3-8), this wave will propagate in the up-slope
direction since a traveling Rossby wave in the constant-

depth region has

2 .
Jf,z.:. ﬁ_ —-/e2>o
41, %™
)2’ ié the wavenumber of a :barotropic, propaga=-

®

- tion Rossby wave in the direction towards the slope
discontinuity ( X direction in Pig. 3-1).

In Pig. 3-6 we see a plot of the constant frequency
curves for the same.period ranze and topographic para-
meters as in Piz., 3-5 ( /=/0 4and the slope é=Vo'z ).
The along-the-slope wavenumber is calculated using the
barotroplc Rossby wave dispersion relation JeiékoQDSG? .
We note that the orientation of the wavenumbers with
respect to topozraphy indicates that the velocity vector
of the resultinz bottom-intensified mode is oriented very
closely along the slope. In fact, it is within /o™=~ /5°
of the contours. From the above plot we can also deduce

the direction of the energy flow since the zroup velocity

1s perpendicular to the constant-frequency curves and



M=10, £=107*% ~ | Am|— x10% km™

Tw=60
|| |

Fig. 3-6. Plot of the constant frequency curves for the bottom-intensified mode

for the same period range and topographic parameters as in Fig. 3-5. (( denotes
the along-the-slope wavenumber.
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polnts in the direction of decreasing period. The energy
flows with a component to the left when looking ﬁp-slope.
The solutionwzxpdﬁrnx corresponds to energy propagating
in the up=-slope direction, while ka?wﬂn1x to energy
propagating in the down-slope direction. We wish to
emphasize that the calculation presented ;n‘Fig. 3=6 is
a particular one, .done in order to completely describe
the structure of the bottom-intensified modes excited by
Rossby waves., A more general analysis of the dispersion
curves for this mode was presented in Chapter II, page )

For the MBRW, equation III-5 becomes

(I11-18) ) T _gr_ e @
Xx +{/’%‘,2¢o7— “/,—;7-) = o

The solution is simply

(I1I-19a) Qm)s A e +Be

where My’ 1s
(III-19v)
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Por quasigeostrophic periods less than a year, the MBRW

are trapped to the slope discontinuity, and decay in the

2 .
direction of decreasing depth, 1l.e. ﬂo <0 and 705“60{9

where ¢') = //_';},—n. "/%}w,—j").ﬁ for x<o in
Pig. >-1. These modes are present to allow the vertical
structure of the bottom-intensified mode to adjust to the
wave impinging upon the sloping region. We can estimate
the decay scale of the MBRW modes. The along-the-slope
wavenumber A is of order /Z:Fow for match;ng with
~Rossby waves in the constant-depth reglon. For frequencies
greater than 2l 1year the scale of the MBRW Py is
approximétely éiven by %/r* because /"2//;2@" is so small.
The largest decay scale is clearly given by the first root,

;{’-‘—‘ 7, , which is of order Aéc” where A
is the average depth of the ;‘egion. Por example, if
Nfg =10 , H=4Km  then &, = 4okm . Higher
roots have smaller scales. Thus we canr say that the
motion associated with the cosn z modes is confined
to a distance of the order A4 H from the edge of the
shelf, |

Combining the solutions of the; up~-slope dependence

with thelr associated vertical modes, we can construct
a representation for the pressure field. This representa-

tion contains all the quasigeostropic, topographic modes
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that can be suppbrted over a simple sloping bottom in

response to wave motion Specified'at the edge of the

slope region,

(III-2C:) _g(/,[/j+cot+§:) A —Dmx o 451
/o“i—. e o Z(ﬂme + B )goskmzqséﬂgewsqz

where the first term represents the propagating, bottom=-
intensified mode. The terms under the summation sign
represent the horizontally confined MBRW modes trapped
to the edge of the slope. It might be helpful at this
point to'sketch the instantaneous streamline pattern
of the bottom-intensified mode and the first MBRW mode
over the sloping bottom (Fig. 3-7). The sketch in Fig. 3-7
represents the topographic motions excited over the slope
by a quasigeostrophic disturbanée impingingxon the slope
discontinuity, having its along-the-slope phase velocity
traveling in the negative Yy directioﬁ. The amplitudes
are not specified, |

The whole pattern in Pig. 3-7 1s propagating to the
left when looking up-slope. In order that the group
velocity of the bottom-intensified mode have a component
away from the slope discontinulity, the phase of the wave
must propazate towards it. The direction of propagation

VeEer < c«o* |, The streamline

of the wave is given by 2"%1/”213



E—~pECAY LENGTH FROM SHELF EDGE

VERTICAL
STRUCTURE OF
cos r.x MODE

VERTICAL STRUCTURE OF
THE BOTTOM-~ INTENSIFIED
MOODE

STREAMLINES OF THE
HORIZONTAL VELOCITY
FOR Cos r,z MODE

STREAMUINES FOR P
THE BOTTOM-INTENSIFIED _, <,
MODE

DIRECTION OF PHASE
PROPAGAT IoW

Pig. 3-7. Sketch of the instantaneous streamline pattern of the bottom=-
intensified mode and the first MBRW mode over the sloping bottom.
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pattern of the MBRW 1s very similar to the pattern of
traveling surface waves (in the horizontal direction).

The correlation coefficient of the horizontal velocities
is zero,

In the case where the disturbance at the slope dis-
cdntinuity is propagating to the right when looking up-
slope ( L»o0 ), the only possible modes are the ceospZ
and their up-slope dependence is given by '

III-21 .

for <x<«o where

¢P). = I//a,/;,z —//%/;f’zwz__,(ﬁ

L)

(I11-22)

Again, for quasigeostrophic persods: : less ‘than a

year or so, these modes are non-propagating in the up=-slope
direction. These modes forﬁ a complete set and can be

used to calculate the penetration of a quasigeostrophic
disturbance, specified at the slope discontinuity, into

the sloping rezion.

(I11-23) 0 -8 **9) g =
. F = e Z%Q) e J %;I /L e LOSfQZE
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In the 1limit of small slope or large along-the-slope

phase velocity, the largest penetration scale of these

modes; (Cfpt)—' , 1s larger than the penetratiO_n scale

for the modes with phase velocity in the opposite direction,
(dr‘\-‘ , and depends explicitly on the frequency. From

Fiz. 3-3 we see that in.this limit, the root P, is

2 2 ) -1,
approximately given by P, =¢€C IQ\A" so that (Pp,) = -% f‘j’, ~
.2_2.{0 W, For H=4Km and &=to~ " and

wnlfyy y L~ 'S/a’f,w , ﬁ;'eQOKm , whereas qs..:' ~GolKrm -
On the other hand, for small phase veloclty along-the-slope,
the penetration scale (¢pfy4 becomes the same as for

the ceay;2 MBRYW mode . @) | .

3. Reflection from a Step

We have discussed in general terms the modes of
oscillations that can be supported over a simple sloping
bottom. These modes are excited in response to quasi-
geostropnic motion specifled at the 1ntefseqtion of the
sloping region and an adjacent region. We now wish to
apply these results to calculate a specific situation:
the excitation of topozraphic oscillations by a2 monochromatic
field of barotropic Rossby waves impinging on the sloping
bottom. Ve arelinterested in calculating the amplitudes
of the topbgraphic motions and the coefficient of reflection

relative to the incident wave amplitude. These calculations
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will enable us to determine the efficiency of the generation
of the bottom-intensified mode by sources located in an
ad jacent topographic region.

Let us conslder a topographic'région like the one
described in PFig. 3-1. .In order to simplify the problem,
we will consider matching the motions only at one boundary,

X=0 ., The essential features of the problem can be
adequately described without considering matching the
solution at the other boundary, X=-o ., ‘We will cnqpse
our solutions over the slope as if there were no back
reflection at S XxE-e

Consider the following situation. We have a baro-
tropip Rossby wave with a‘Specified frequency, wavelength
and amplitude incidént upon é gradually sloping bottom
oriented north-south (Fig. 3-8).

We represent the incident barotropic wave by

(II1I-24) wy cly -«:(ﬁwx +et) cox

' ‘%’Z = € e 84' e
where A is the along-the-slope wavenumber,  ¢o is
the non-dimensional frequency scaled by £ . 22 is

' 2
given by the vorticity eq. III-3 with Faz=0 , )"’2‘44;:'{' or
- “’
I~ %;‘,ws”’a , where the angle is measured as in

Fig, 3-8. 1In Pig. 3-8 we have the Rossby wave incident
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from the SE quadrant, so that the along-the-slope phase
velocity will be to the left when looking up-slope. This
is the case in which the topography will be able to
support the bottom-intensified mode.

Away from the slope discontinuity, there will be
a-reflected.barotropic wave for %-»o> , since no free

baroclinic Rossby waves are possible-in the frequency

ranze we are considering, The reflected wave is represented

b . .

Fy 0 ‘.13 _L(ﬁ. «.-f-wt) ¥

(III-25) {o,,, =g " @ @ Br e

The signs of the oscillatory function in % are chosen

so that the incident wave has 1its group velocity vector
with a component towards %=o and the reflected wave
field has a component away from =0 (Fig. 3-8).
Over the topography and far away from "5l==o , we have
a transmitted wave of the bottom-intensified form. This
wave 1is the only propagating solution in the up=-slope

direction. e represent it by

(I11-26) . o _ifliy _5(;/_2_ wtwt) < Amx

=€ e o Am € cosd mz
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Close to the slope discontinuity, the adjustment
between the sloping rezion and the constant-depth region
15 accomplished with the aid of horizontally decaying
solutions. These solutions combined with the propagating
solutions complete the set of vertical modgs possible
over the resgion. In the slopingz rezion these modes are,
as we have already seen, the MBRW fedr’?cosﬁ'z %. 1In the
constant-depth region, these modes are non-proﬁagating,
baroclinic Rossby m-odes { e_d"1 coo N2 /y 3 where
¢n?: ("”'/mﬂz- ﬁ;wﬁi’}"& . PFor periods lower
than about one year, the e-folding penetration lenzgth of
these modes from the slope discontinuity at x=o¢ towards
the interior of the constant-depth region is approximately
@n & NT/0H | phe lowest mode &= %oy determines
the envelope of these scales which 1s of order A/’U%GT
Hence, the non-propagating, baroclinic modes present on
both sides of the slope=-change define thé region of adjust-
ment for the.interaction of quasigeostrophic motions. The
size of this region is of order /74 . We can think
of this length scale as the region where the abrupt change
in the slope 1s smoothed out.
Close té the slope-changze, we can represent the

topozraphic modes by
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(ITI-27)

aﬂ

__;( 'X.'HO“'J ,(.//y “7"7* dr’t
ifé 25/1»,6 Cosl,m—z-f-iﬂ.ze ‘osrz

where /4»1 is the coefficient of the transmitted bottom-
intensified mode. Am 1s the up=-slope wavenumber defined
in eq. III-17b and @, is the decaying scale of the

MBRW defined in eq. III~-19b. In the constant-depth region,

the motion is represented by

£

- ( 4‘*‘0t) i/ (JZi —lox -—021
=€ ﬁb e j[rBé + 8,2 3 Bne wS’"f*—}

"=

 (I11-28)

At the discontinuity ¥ =¢o , the horizontal, geostrophic
o)

velocities are continuous. Matching --,gy/°‘ , the

velocity perpendicular to the depth contours, we obtailn

(I11-29)

Am wsAmz+J2 A cosbe = B+6n + Z B, cosrm‘e
=/ . o h=

. ) °
Matching 4= %xf’w , the velocity along the depth contours,
we obtain
(II1-30)

oo
t.gm ﬁmwsémz JZ
=/

\§*

A cos;2 = fJZ(QZ“'EA)-'ﬁg.%ﬁfitusgzg
) H
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The problem consists of determining the magnitudes and

phases of the coefficients Am , Ass , Ba and

n L in terms of the incident wave amplitude B .
We have already seen that, gliven the set of parameters
that determine the topographic rezion (slope €& , I%¥f and
the depth H ), the resulting vertical étructure and
horizontal scales of the modes over the sloping bottom
are determined in terms of the along-the-slope phase
velocity of the incident Rossby wave. ' We have already
pointed out that the roots 7, of the MBRW ces£, €  always
converge on the roots of the baroclinic Rossby waves over
the constant-depth region as the index.j inéreases, i.e.
AR R4 (Fig. 3=3). The bottom-intensified mode
coahrmZ and the MBRW modes %s%,Z form an orthogonal
set. This implies that the coubling of these modes with
the baroclinic modes over the constant-depth rezion
continually~decreases as the mode numbéf.increases. Hence,
for any particular set of parameters defining the match-~
ing problem (slope & , [ , /A and alongz-the-
slope phase veloclity), only a finite number of modes
( cosr 2 vand 605J”8/H) will suffice to accurately describe
the interaction at the slope discontinuity.

In -the barotropic limit m#<<Z , for example, we

need only the depth-independent ﬁopographic mode and a
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reflected barotropic wave. As the transmitted topozraphic
mode intensifies near the bottom, we need the first
modes to account for that part of the motion which is
not near the bottom. In Fig. 3-4 we saw how the structure
of the CostiZ mode compliments the bottom-intensified
mode. Since the reflected barotropic wave cannot by
itself account for the topographic modeés' vertical structure
at the slope discontinuity, baroclinic modes in the constant-
depth reglon are needed. |

The simplest way to perform the matching at the
1ntersection of the two regions is to expand the modes
of one region in terms of the modes of the other. Let .

us expand the bottom-intensified mode and the ceos# =z

modes in terms of a cosine series

(II1-31)
caahm = s mu '(/+ zf )" » (,os.ﬂ]_%)
mH he, ¥ gﬂ‘)z “+
mH
and
(II1-32)

= C-)" nrt )
corvyz = AwmGa (1 + 22 T coSTT
. . nee __(nﬂ‘ (S “
vH nH

-

Substituting these expansions in III-29, 30, we match tae



terms with the same cosine dependence ﬂ,"’ nirz

convenience we define tne symbols

(III-332)

and

(I1I-33D)

Similarly,
(III-33c)

and

(III-33d)

m

=
e, =

SMmH
o -

mHM

(S: = 2smhH C")"
GH - zur)2
. vH

109

For

Matching term by term, we find for the barotropic term
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(III-342)

A1 e,“‘+.A.S,,‘+ﬂ.L §° +... = 8.+ B,

and
(III-34D)
[ cl ¢ d (e--@\
b . = ] ¢ i
<O Am eom"’ ¢'}A’ S‘, +é'z.A’8°
for the first baroclinic mode,

(III-34c)

: \ T ° _ '
Amé‘m-\‘ﬂbs' -+Q.LS‘-\'-—- —'Bﬂ_

t

./

and

(III-344)

oqm A;nelm-l- ér;AF S: -+ A'l. drz gg ‘(‘— :-d)lBt

and so on. Since we have two equations for each mode,

we can eliminate the coeffic;ent~of the reflected baro-
tropic wave B  and the coeffic;ents of all the baro-
clinic modes in the constant-depth region B, . Finally,
we can combine all of these relations in a matrix relating
the aﬁplitudes of the topographic modes to the incident

wave amplitude.



(III-35) - ' . 111
Omel) -i@n i) 5 ._;(é,xux.\s, Am\

e™(é+idm) (It d) 5\ (4 td)S o | A

P (beidm) (Bt b0)Es  (datdr) Ty o[\ P2

¥

- For any particular set of parameters defining the
mztching problem in terms of an incident Rossby wave at
the sloping rezion (slope € , [I'= N/&;uocmﬂ and along-
the-slope phase velocity), the matfix tends to be diagonal,
after a humbeg of columns, indicating that 6nly a limited
nﬁmber of modes are required to perform the matching.
We solved the matrix equation as a system of finite linear
equations., PFor the range of bottom-trapping scales ( my )
considered, enough terms were kept so that the coefficlient
of the reflected wave did not deviate much more than
about 1%. We kept successively 2,/3, 4 terms and equations
for bottom-trapped scales zreater than the average depth
of the rezion WnH<I (the barotropic range). The
variation found in the coefficlent of reflection was
about 1%. For the bottom-trapped scales smaller than the
depth of the region MH>I | we calculated upAto mu= 2N
(or the e-folding distance of the bottom-intensified mode

about 1/6 of the depth). For this case we kept successively
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3, 4, 5 and 6 terms and equations: The variation in the
coefficient of reflection was between 1% and 2%. The
phases converged more slowly. For the upper limit of the
calculation Mr=2T  the variation was about 107.
In Fiz. 3-9.we show the results of the calculation
fof the reflected coefficient using the same topographic

parameters used to calculate Filz. 3-5, (slopé e=10"% ,

M= N/g=to and an averaze depth 4km). The reflection
coefficient is defined as the ratio of the reflected
energy flux in the f direction over the incident

-energy flux in the same direction,.

(I11-36)
gl

where Bg 4is the coefficient of the reflected wave, and
B¢ the amplitude of the incident wave.‘ The coefficient
B“/B; vas obtained by substitﬁfing the calculated
values of the coefficients Am/g; , A1/B; ,--- ete. in
eq. III-34a. The period Tew - in Fig. 3-9 is non-
dimensionalized by the inertial period (s . The lines
of éonstant ™mH indicate the penetration scale of the

bottom-intensified mode into the interior of the fluid.

They are drawn to aid in relatinz the reflection coefficient



20 40 <o 8 100 120 M0 160 180 ROO 220 240 260 280 300 3R0 340 360 380 400
Tw —> .
Fig. 3-9. Reflection coefficient describing the interaction of Rossby waves with

topographic waves., The lines of constant mR indicate the penetration scale of the
excited bottom-intensified mode. Tw 1is the period of the wave in days.
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to the particular bottom-intensifiéd mode'excited in
response to the impinging Rossby wave at the slope dis-
continuity X=o (Fiz. 3-8).A The plot clearly shows
that for a given angle of incidence, the reflection co-
efficient R increases as the penetration scale of the
bottom~intensified mode decreases beyond 7ﬁHﬂvi , Or

H'=m"'~ Hpepm . This increase in &  indicates
that the bottom-intensified mode is not effectively
generated by the impinging Rossby wave,

The greatest transmission of energy for any given
angle of incidence occurs at the low periods, in the
nearly bérotropic 1limit MH<K1 . In the homogeneous
approximation for topographic waves N =o , the
reflection coefficient for any ziven angle of incidence
is independent-of frequency (as long as we do not consider
the matching of the topographic waves at the other end
of the shelf, x=-a , as in PFig. 3-1).'.The results for
" the homogeneous 1limit are shown by the dashed lines in
Fiz. 3-9. Ve note that in agreement with the nomogeneous
model N%c> , the reflection.coeffioient does not vary
much with period until we reach the mH~1 curve.

Physically, the increase in the reflection coefficient
beyond the curve mH =41 1is due to two effects. As the

resulting penetration scale of the bottom-intensified
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mode decreases, the up~-slope wavenumber A increases
nuch faster than the exterior Rossby wave wavenumber in
the same direction, X . (In the barotropic limit,

mi<i or in a homozeneous model, N%=q , the ratio of
Xb/%rn is independent of frequency.) This large change
in the wavenumbers decréases the transmission amplitude
over the slope. Furthermore, as the resuiting penetration
scale decreases, the amplitudes of the horizontally de=-
caying baroclinic modes must increase so that the modes
over the topozraphy can adjust to the barotropic vertical
structure of the incoming wave. Hence, part of the amplitude
of the iﬁcident wave 1s redistributed among the topographic
modes decaying away from the edze of.the shelf, This
redistribution occurs at the ‘expense of the amplitude
of the bottom~intensified mode. Since the horizontally
decaying modes carry no energy, the reflection coefficient
increases. In Fig. 5-10 we show the chaﬁge in the amplitudes
of the bottom=-intensified mode,coshmz and the first two
modes (oSN and CoSh2 as a function of the penetration
scale MKk for a coanstant anéle of incidence. We refer

to Fig. 3-4 fof a sketch of the vertical structure of
these modes. ' '

It is clear that while the amplitude of the bottom-

intensified mode decreases, the MBRW modes zain in strength.
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From this it would seem that when the scales of the

incldent Rossby wave match with a strongly trapéed bottom~
intensified mode, the edie of the shelf behaves like an
elastic membrane. It yields under the influence of the
impingihg wave and springs back with little energy lost.
The penetrafion of the wave into the sloping region is

given by the longest decay length scale of the,ﬁggﬂi modes,
4 3

2N H
s

51

CO5 r,Z MODE

COS r;z MODE

o\

1 - R 3 4 5
mH—>

Fig. 3-10. Amplitudes of the bottom-intensified mode and
the first two modes coshiz and cosw,? as a function of the
penetration scale wH for a constant angle of incidence.
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In Fig. 3-11 we show a plot of the calculated amplitude
of thé bottom-intensified mode as a function of frequency.
We clearly see that as the penetration scale decreases,
"the amplitude of the mode decreases. Along a line of
constant penetration scale, the amplitude increases as
the angle of incidence of the Rossby wave groﬁp velocity
turns in the direction perpendicular to the slope (Fig.
3-8). . This increase in the amplitude corresponds to thé
decrease in fhe reflection coefficient in Fig._3-9 (along
- the lines of constant wmH ). T;e amplitude of the
bottom-intensified mode increases because as 8-> 90°, the
velocity of this mode Bver the sloping bottom is turning
in the along-the-sloﬁe direction and is experiencing a
smaller effective slope. In fact, this effect is responsible
for the concavity of the mMH= consTANT lines (see
Figs. 3-9, 3=11). The dashed lines in Fig. 3-11 denote
the amplitude of topographic motion if tﬁe effect of
stratification were negzlected. We note that the calculations
presented above were made for a bottom slope of order one
in one-hundred. ©Smaller slopes essentially displace the
calculated curves in Figs. 3-9, 3-11 towards the longer
periods. The nearly barotropic limit MuU<4 1is extended

for a larger period range.
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Pig. 3-11. Plot of the calculated amplitude of the bottom-
intensified mode as a function of period.
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Up to the present, we have coﬁsidered the matching .
of Roésby waves only at one boundary. In principle there
is no difficulty in treating more complicated topography
suqh as a full sloping step, a small amplitude ridge and
a series of sloping bottoms back-to-back to simulate the
variation of the slope. In the case of a ridge, for
example, we would have) to use vertical modes cos Pj“i‘. "
eq. IITI-23%, in order fo mateh the bottom~-intensified
mode across the ridge top. The details of the computation
become increasingly more involved as the number of boundariés
to be considered lncreases. The physical conclusions
appear t6 be essentially the same as those we found in
the simpler problem: Rossby waves transmit energy most'
effectively over topography in the long-scale, high-
frequency range. For quasigeostrophic slopes, the re=~
sulting topographic motions under these conditions are
essentially barotropic. Bottom-intensified modes appear
for low alongz-the-slope phase velocities, but their
amblitudes, except for occasional resonances, are small.

The results of the calcﬁlation of the reflection
coefficient (Fig. 3-9) indicate the following: 1. Rossby
waves cannot ‘excite bottom-intensified waves with any
siznificant amplitude. 2. In the low quasigeostrophic

periods ( Tssodnys), Rossby waves produce essentially
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barotropic topographic oscillations. 3. For low
frequéncies Rossby waves exclte waves trapped to the

edge of slope (Fig. 3-/) which have larger velocltiles
close to the surface and a node on ithe topography. These
waves have larger amplitudes than the bottom-intensified
wave. - These conclusions indicate that bottom;intgnsified
waves over topography must have a local origin.

4, Wave Trapping

It is pdssible fof topographic features in the ocean
.to support wave motions which cannat be couplea (or are
weakly coupled) to propazating waves outside the topo-
graphic region; This trapping of wave energy océurs
because the wave motion over the topozraphy experiences
‘1nterna1 reflections at the edze of the rezion. Internal
reflections occur, in turn, because the alonz-the-slope
phase velocity of the topographic oscillations is too
slow to match with freely propagating wafes outside the
region,

Rhines ( /3 ) has studied wave trapping over
simple one-dimensional and cylindrically symmetric
topography within the homogeneous approximation. When
the effects of stratification are included, the vertical

structure of the normal modes of oscillation will intensify

at the bottom, mH >1I , whenever the horizontal scales
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of the modes are less than fi@t4 wnere H  1s the
average depth. Also, the adjustment of the verfical
structure of the bottom-intensified oscillations at the
edge of the sloping region will excite horizontally
trapped, baroclinic waves. These baroclinic waves decay
away in botﬁ directions from the edge of phe sloping region.

When compared to the homogeneous problem, the major
effect of these horizontally trapped, baroclinic oscilla-
tions is to further weaken the coupling of the normal
modes. over the topographlc feature with the exterior.
This redgbes the possibility of coupling ‘with other
nearby features which could suppbrt‘similar modeé of
oscillation,

To illustrate the weakeﬁing of the coupling, let us
consider the calculation of the normal modeévover a
shelf with a wall at one énd and a constant-depth region

at the other.

TR Y

Fig. 3-12. Diagram describinzg the shelf for the calcula-
tion of topographic normal modes.
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we would like to point out that the simplést way to
demonétrate the weakeninz of the coupling with increasing
bottom-intensification is to calculate the refiection of
an incident bottom-intensified mode on a slope dis-
continuity such as we described in Fig. 3-8. We would
find that for a zgiven topographic reglon, és we decrease
the penetration scale\Pf the wave into the interior of
the fluid -m#H , the phase of the reflected wave would
be larzer than the bhase obtained for the homogeneous
case, tending towards nm , that is, perfect reflection.
Similarly, when one considers discrete modes, a measure
of the céupling with the exterior region is given by the
way the eigenvalues approach the solutions for a rigid
"wall at Aso . We will show that the eigenvalues of
the normal modes are increased over the homogeneous
values when the baroclinic, horizontally trapped motions ,
are included to adjust the vertical stfﬁcture of the bottom-
intensified motion. The eigenvalues tend toward the solu-
tions one would obtain for a rigid wall at =%=o instead
of an open region.

The shelf in Fig. 3-12 is considered infinite along
the y-direction. This topographic region might represent

an idealized continental shelf. For small slopes, i.e.

€ay, << 1 , the topographic motion will be
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quasigeostrophic, and we can apply the vertical normal
mode aecomposition of the previous section. Fof simplicity
we set [>=o , which implies we are dealing with along-
the-slope scales Q_‘<<14”“7% .

Over the slope, the only possible oscillatory solu-
tion in the‘up-slope direction has the fopm of the bottom-

intensified mode

III=- __.C((-u +wt) .
( 37){@: e 2 cosh M2 Sun Am (X+e)

where Am , the wavenumber 1h the up-slobe direction,

is glven by

(I1I1-38) Ae = m>_L*
,—rl
where /Z is the along=-the=slope wavenumber and the m

inverse of the penetration scale of the bottom-intensified
mode. As we have already seen, this mode only exists for

,?<¢> , that is when-the along-the-slope phase propa=- -
gates 1o the left when lookiﬁg up-slope. We note that the
solution above already satisfies the condition of no flow

into the boundary at 4=-a . In the case of a rigid
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wall, the condition of no flow swmi,azoat x=o yields

the eigenvalues for wmH and its associated frequency
for each possible value of the along=-the-slope wavenumber
. 2 2 z 2

'and WOn = ')*‘a“ )
re Vinm=s Uar Fouh .Pa!f \/w_“)‘wh)‘

In the case of an open region, the motion extends
1ts influence beyond the edge. Since the vertical depend-
ence of the bottom-intensified mode has to be adjusted
at the edge, we need the set of solutions ces-hz @Xp ¢r2
which deéays in the up=-slope direction (see paze 96 ).
Over the sloping bottom, we represeni the lowest order
quasigeostrophic preséure field as |
(I11-39)

~ 81y +wt) o~
“’ﬂl@bﬁ ‘“w[Amsw),,(xw) coshmz + 2A35M¢6'(X+a\cosr,z]

- j=

where.the terms under the summation sign represent the
MBRW we found in the previoué section. d.rl.' , the
decay scale of these modes, is given by ¢ht=(C}p1*‘£z\ .
The roots Y,°  are determined in terms of particular

values of the boﬁtom-intensified scale by the relation
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mH temhim H =‘—-V3f§+tu~% v; H

We note that the pressure field {J°‘ satisfies the no-
flow condition at X=- o .

In the open region xw>o , we use the'vorticity
equation II-18 with /;=o to find the complete set of
solutions in the vertical. They satisfy the top and bottom
boundary condit;onshof no-flow., These solutions do not
exist by themselves. They are used to represent the in-
fluence pf the topographic motion beyond %«=o + For
the regign beyond the shelf, we represent the solution by

(111-40)
(o\ Ay gy o =¥
,Y; = ¢ 1Be "+ Bn€ ooSQ_T%%]

n<=t

where 4%:=l£|)l&| 1s the along-the-slope wavelength and

. v

P = ‘/('_‘l")"+ 1z . The barotropic solution

N "

decays with scale 4%? Zgiven by the alonz-the-slope wave=
length of the topographic oscillation. The penetration
depth defines the maximum region of influence of the
topographic oscillations. The baroclinic solutions decay
much faster,

At x=o we match the horizontal quasigeostrophic
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9
velocities a, v . Por WU=-2b we nave
, >y
(ITI-41) ‘
&oSIﬂIZ:
ﬁqumaws&m%«kZﬂ,smAhawﬁrz 3+;Z='3n

J=i

. o)
and for A~ = 2P
(I11-42) oo
oQ
. wspz=-p B -2 ¢ B sz
Am Im o5 Ama o5 hmz +/§, A ¢5wst""6“ / ’é 2o #

For any given along=-the-slope wavenumber, the above
equations are satisfied by a discrete set of bottom=-
Intensified scales and their associated frequencies. As

in the reflection problem in the previous section, we

expand the cosbhmz and each cos[2 mode in
terms of the complete set of functions iJ cosnr2 .

. H
(I11-43)

: ) oo
ceahmaz = éo”'_,. > e""'coSn_rl_%
h=y H

and
(LII-44) coer-_S + ’5 5 cosl e

n<) H
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where the symbols €, J €, » % and 9n have
been defined in eq. III=-33 (page - ). We substitute

the above expansions in the eqs. III-41, 42 and match

term by term ( : 2
Am sim Ama ép”‘"‘ A smb dq“ 8o + Azs‘m}""zq 8 +--+ =B,

A Am cosdae + A B svhd.a S, + Arbr, smh d.a St ==¢b

We eliminate the coefficients in the right-hand side by
combining ] and v equations term by term. We
obtain an infinlite set of homogeneous equations.
(II1-45)

éom(qS,ém)ma + Am OSAma) 5'; (¢o$m'jd,,a+¢r,tashd.i “) ----- \

’ (
é.m(¢, 5\m)m4 -+ )mwskma\ 5, (‘t‘}‘%“"l"‘qq + ¢q t—oS‘quA) S

&, (&, swho. + A o5) @) - - e

)

Bs

Setting the determinant of tne matrix equal to zero allows

us to calculate the eigenvaldes of the problem.

The eigenvalues were calculated as follows. Particu-

lar values of the vertical scale of the bottom-~intensified
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mode MmHK  were chosen, then a number of roots of the

MBRW modes were calculated by using the relation

ﬂH1n»gu=_;mu’hw$Vﬂn

We calculated all the other parameters that appear in the
matrix 2“J¢5J€::S: for a number of rows and columns.
The value of partial determinants were obtained by
evaluating the first element and the second, third and
fourth rows and columns. We denoted these values by
, I{)IQJEQJE%. We. repeated the calculations for‘other
values o: mH | and the results were plotted versus
W# . Ve noted that the results of D, , Dy, Dy
passéd practically through the same point on the axis,
indicating that the roots of.QaT%)tx4 converged rapidly
to a fixed value, which is yhe root of the determinant,
The range of values MH can be estiméted for each
eigenvalue as follows. In the case ofAé‘rigid wall at
Xz o , the first eigenvalue is glven by =mAma
or ?m<="a where A& - is the width of the shelf. We

know that the case of mo-wall at x =o , the root has

to be smaller (Fig. 3-13), S0  MH< (W V(_a;)z.‘.;_z ! .
.9
The minimum value can be obtained by settinzg Qmasze

Then | MH> MHL ., The range of possible roots

MK is within pUlL < mH< ﬂHV&)z*,gz ' for
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Pig. 3-13. Sketch of the first eigenvalue for a rigid
wall at X=o and an open region at ¥X=o .

the first eigenvalue. The second mode of oscillation
can be calculated by choosing /mH  between the first
calculated eigenvalue and the second eigenvalue for the
rigid wall case, and so on for higher roéts.. For example,
imégine a shelf 100 km. wide and 4 km. deep. Set the
albng-the-slope' wavenumber 2= t)iooxm and rn = N/g
/o . The value of MH for the first

eigenvalue is within the range .4 < MHL (.32 , that
is, within a vertical scale 2.5 times larger than the depth
and about .75 of the depth., The second eigenvélue is
within (m#), and 2.54., For the above case MLa=1 and

T, =.d , Wwe show in Table 3-2 the actual numerical
values of the determinants used in obtaining the vertical
structure of the lowest eigenvalue. PFor this particular
case, D, 1is beyond the accuracy of our calculations

because we are déaling with the difference of very large
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6| +1.47-10% +.643

-2

.3 +.786-10

9| +.021-10 +.089 | +594.46-10

.92 +.042 | +102.15-10%

-2

.93 | =.231-10 -.0015 -32.01-10%

1.0 -.927-107% -.163 | -793.02-10%

-2

1.2 -300'10 -'506

Table 3-2. Table showing the numerical values of the
determinants used in obtaining the vertical structure
of the lowest eigenvalue.

numbers close to the root., However, it is clear that the
roots are converzging between ,92 and .33. Graphically,

the intersection of "™mH  on the axis is about ,927

(Pig. 3-14). The horizontal eigzenvalue (Am a)
correspondinz to the vertical' scale MH=427is Ama=21

In the homogeneous case, that is, ﬁeglecting the baroclinic
modes trapped at the edge of the slope, we obtain Ama= 2.03 .,
For lérger stratification or a narrower shelf, for example

l’.’f: 1 ° and afl=et , we obtain m#=2.36 and
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fraphical solution to eq. III-43 in terms of

- partial determinants,

Fig. 3-14,
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Amac 24 compared to dmac203 for the homogeneous
case, It 1s clear that the presence of the baroclinic
modes at the edge of the shelf is pulling the horizontal
eizenvalues closer to the rigid wall limit Amas 3./¢

In Fig. 3-15 we show a plot of the calculated values
of the vertical intensification scale MH as a function
of the along-the-slope wavenumber for different values
of the parameter ['Fla . For all M™MH ' the
correspondinz eigenvalues Ama& are larger than the
homogeneous case and approach the rigid wall values as

La : increases.

The dashed line (Fig. 3-15) meeting the W, =1 curve

denotes the vertical eigenvalues of the rigid wall at

X= O case, We notice that for small values of

MHfa. mH is smaller than 1 . until
al ~ Yf(r¥a) | or when PHMl ~ 4 :
For the case FWZ==1 , the vertical intensification
scale i is always greater than 1, indicating that

all the modes show vertical intensification.

In Fig. 3-16 we show a plot of the frequency scaled
by €N/s (the topozraphic buoyancy frequency), as
a function of the along~the-slope wavenumber (ﬁa) ’

scaled by the shelf width,
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Fig. 3~15. Plot of the calculated values of the vertical

intensification scale as a function of the along~the-slope

wavenumber,

e plotted the curves for different values of ['H/a .
/e roughly compares the toposraphic scale O to the

cut~off scale for bottom-intensification ,P H . For



Pig. 3-16. Plot of the frequency
of the lowest topozraphic mode as

3 a function of the along-the-slope
: wavenunber.
2
a
——s z >
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a constant . MH , we can think of (/o as defining

the dispersion relations for shelfs of different widths.
For example, if M=(p and H=d4km , MHfp= o4
-implies a width a=<ookwm ; for TH/p= 1,‘3:40 km.,
The line of constant penetration depth Ymw#H  has been
-drawn to help identify fhe rezions of vertical intensifica-

tion. There is a problem in visualizing fhe iines of

constant M™H in a plot for @ vs (Ja) because their pro-

Jections on this plane appear to converge on the origin.

In Pig. 3=-17 we will show a sketch of the three-dimensional

surface. -

We ﬁotice that for small valués of )la; the curves
are nondispersive and in agreement with the homozeneous
calculations. This is due to the fact that the velocities
of the waves lie very closely along the depth contours.
For the curve [Hj=.f , for example, as La increases,
the frequency rises rapidly beyond the buoyancy limit

Te=co . The topographic waves do not feel the
effects of stratification at such lonzg wavelenzths. The
frequency reaches a maximum ét approximately the point
where the along-the-slope wavelength becomes about the
same order as the up=-slope wavenumber Ama ~ 2
(fixed by fhe mode number). It is in this range of

wavelengtns that the motion can feel the full impact
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of vortex stretching. As pcb increases, the frequency
decreases because the wavelenzth becomes small, However,
unlike the homogeneous limit, the frequency cannot decrease
indefinitely. As soon as the length scales become less
than N@ HpePtn , the buoyancy rezime begins to
dominate. The frequency does not decrease below (Fé&)
because, as &a. 1ncreasés, the velocity field is turnf
ing all the time in the direction of maximum depth chanée
(the up-slopé direction).

For MW/ o4 and Thfp=o4d " , the vertical
structure of the oscillations is #ertically intensified
for all the values of al . Therefore, the buoyancy
effect dominates and the frequency never rises-above (e .
For large alfl , the frequency approaches &(° Dbecause
the velocity .vector turns in the up-slope direction
feeling the full restoring force of the buoyancy effect

er : | .

We recail that the above calculations were made for
the lowest mode of oscillation. Higher modes displace the
curves towards the lower frequencies for any given along-
the slope wavenumber. It is possible to find the normal
modes for more complicated topography, such as a full
slopihg step, a2 ridge and a cylindrically symmetric sea-

mount or island. The same general conclusions apply.
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Pig. 3-17. A sketch of the three-dimensional surface
defined by tne frequency, alonz-the-slope wavenumber and
the vertical intensification scale.

wnen the horizontal scale of the actual modes 1is less

than !i“oeuﬂ , their vertical structure shows
5
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bottom-intensification. The eigenvalues of the modes are
larger than those found in the homogeneous limit, indicat-
inz that the inclusion of stratification confines the

motion more strongly to the topography. .
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Chapter IV. Some Aspects of the TLocal Generation of

Bottom=-intensified Topozraphic Oscillations

In the previous chapter we determined that bottom-
intensified oscillations were not effectively generated
by sources located in an adjacent topographic environ-
ment. The matching conditions at the intersection of
the topographic regions ylelded very smali amﬁlitudes
for the waves with bottom-intensified scales mH>1 .
Purthermore, in the high quasigeostrophic frequenciles,
Rossby waves could only excite depth-independent
topographic oscillations, Our discussion on wave trapping
also shoﬁed thatAbottom-intensified normal modes tended
to remain confined within the immediéte vicinity of the
topography. PFrom all this, it would seem that the
presence of bottom-intensified bscillations at a given
location in the ocean topography must be ascribed to
local sources, )

Sources of local energy fér bottom-intensified
motions can be divided roughly into two kinds. 1. Direct
forcing of the topographic oécillations by some initially
prescribed flow which has to be adjusted at a sloping
boundary. We note that in order for the topographic
oscillatiohs resulting from such an adjustment to be

bottom-intensified, the initially imposed flow must have
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horizontal scales smaller than N%nmulg. 2. Indirect
forcing of the oscillations by the interaction of long=-
scale, directly forced waves with bottom topography
possessing baroclinic scales, that is, .QL«/N < Hoeeru
where L-r is a characteristlic length scale for the
bottom topography, and h,unuis the average depth of the
ocean in the general location. We discuséed the free
solutions to such a situation in Chapter II, section
5, for a one-dimensional corrugated bottom.

In this chapter we will concentrate on the first
kind of source for bottom-intensified motions. In
section A we will discués the reépbnse of a stratified
fluid over a sloping bottom to an initially imposed
geostrophic flow. In setion B we will comment on the
wind generation of bottom-intensified oscillations.

In section 0 we will discuss the local interaction of
a steady shear current with topographic ﬁaves.

In the following pages.we will deal with the
excitation of topographic oscillations over regions
which are horizontally unbounded. This kind of model
is clearly(unrealistic, especially for the very long
scales. However; 1t is useful because the simplicity
obtained iﬁ the results leads to a clear understanding

of the character of the motion., In principle we are not
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restricted to this over-simplification. The normal
modes that we found in the previous chapter could be
used to match the forced response over the topography
with regions exterior to it.

Section A. Response of the Fluid over a Sloping Bottom

t0 an Initially Imposed Geostrophic Plow

This problem is interesting because it illustrates
simply how the field of motion adjusts to the topographic
slope. Consider a simple sloping bottom described in

. Figo 4"‘10

Piz. 4-1. Diagram describing the topographic rezion.

At a given time, over a.sloping bottom, we prescribe
a geostrophic flow satisfying the thermal wind equations.
This state of motion may not be consistent with the
physical requirement of.zero normal velocity over the
slopiﬁg bottom. This implies that the initial zeostrophic

motion cannot remain unchanged, unless it was originally
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prescribed to flow along; constant-depth céntours. In
general terms what happens is that the slope wipes out
that part of the initial disturbance that came in
contact with the bottom, and replaces the motion there
with time-~dependent toﬁographic oscillations. The
vertical structure of the tdpographic osciilations
will be bottom-intensified if the scales of the initially
imposed motion are less than N&‘*oanw .

Let us consider the problem in detail. When the
horizontal scales of the imposed motion L are small
enough so that the fractionsl change of depth over L.
are smalél. , d=elyy <<t , we can use the system of
equations derived in Chapter II,eqs. II-18, II-19a,b.

We recall that thelr derivatlon 1is based on a lineariza-
tion of the boundary condition on the sloping bottom,
and a scalinz of the time-dependence by the small
parameter ) . The velocity, the préssure and the
density perturbation fields were expanded in terms of

5 to preserve the requirement that the basic state
of the system be geostrophic; The equations are

(IV. A"‘l) a 2 4 —
-—Sr(V‘ ‘:n-l- ) Fzz) o
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the potential vorticity equation, to the lowest order
in & . [ . 1is the ratio lV@-and )\ measures
the ratio of the horizontal scale L to the depth H .
Por simplicity we have set the planetary (4.» -effect
equal to zero. TWe w111 laterdiscuss its effects. Ve
recall that'the above equation was deriveq under the
assumption that the Rossby number Ro was small compared
to the topographic parameter § . The condition of no

normal flow at the bottom slope yields

. A~ { = - =-1
(IV. A-2) (F,\)z %rt, lo'J Z |

and the condition of zero vertical velocity at the top
yields '

(IV. A=3) L 2 z0 EF-‘O
=5 fE |

In order to calculate the topographic response for an
initlally imposed geostrophic flow we find it convenient
to Laplace transform our equations. Let the Laplace

transform of % be represented by % .
' ' ~sT

(IV. A-4) 4—0("‘9,3,5) = So ‘récx.\i,’i,ﬂ e dJdT
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For simplicity we will say that the initial geostrophic

flow 1s depth-independent. We will see, however, that
the result can be extended to an initial geostrophic flow
with arbitrary depth-dependence. We can think of the
situation in two ways. At time T=0  a zeostrophic

flow is set up over the slope, or at (=0 the bottom

is tilied over a region supporting a geostrophic flow.

In both cases, f=o actually denotes a time interval -

much ionger than an inertial period.

We represent the geostrophic £low at T=0 simply
.by
(IV. a-5a) 2 P (x,0) = 27 = V&, o)
ox .3
(IV. A-5b) fy 4 %, 0) 3y

We find the eq. IV. A=l becomes

(IV. A-6) V30 4L L o= V2
) ( Lr‘/\)i P%a _; ' ‘E

and the boundary conditions

(IV, A-72) 2 F":: o Z=o0
0z
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and ) L -

(IV. A=TDb)

In order to make the horizontal dependence as general as

possible we Fourier transform the equations in X, 4

o= —¢ Cextty)
(IV. A=9) )Yo . SX dhdl ¢ -t ‘1\4) Cle 4, 2,5)

2w
-

and for the initial disturbance,

(IV. A-10) ¢ Ckaddy)
T Pzt [ ETT ek, 4Rl
2n o .

In spectral form the equations become,

IV, A-11 é
| ! e - - (BT Pled)
dz? =
and _ A .
(IV. A-122) {02= o &F°
A A

(IV. A-12Db)



146

The advantage of this scheme is that we generalize as
much as possible the form of x=-, y-dependence of the
initial condition, while at the same time we sinzle
out the z-dependence for speclal treatment. Let

be represented by,

(1v. A-13) j"p.: Al coshmz + Clhk,4,5)

Substituting in IV. A-11 we obtain, mq"=(f‘A\<)7' and
C='/$3’(b~cﬂ).‘ The vertical structure‘ of the bottom-
intensif;ed solution is given directly by the horizontal
scales of the motion times the ratio N/g , as we

have seen before (in dimensional form M= M@‘< ).
Solution IV. A-13 automaticaily satisfles the boundary
condition at the top, 2=o0 . The boundary condition

at the bottom slope, eq. IV. A-12b, provides the coupling
between the amplitude of the depth-independent geostrophlc
flow and the induced bottom-intensified motion. Substitu-
ting eq. IV. A-13 in IV. A-12Db, we find

O
Alk,L, %) = - cu)i “(m . ot TAK

TaM&f“k

for the amplitude of the bottom-intensified motion.

"~ Let Y = QQ(K) which in the theory of
' tanh M\ k
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bottom-intensified oscillations represents the buoyancy

oscillation frequency, or the maximum allowed frequency

of the waves for a given topographic slope (see Chapter II,
eq. II. A-2). The solution to eq. IV. A~-1l1l can be

written as,

(IV. A=15)

. A
:io(b.,ﬂ,z,s)=£(h,ﬂ)§ ls(“wd"‘"“‘% \4_ ceahn Kzi

coshmMik s+cl _m«\ coshME

By inspection we see that the Laplace transform inverse
can be readily performed The solution, .,

(IVv. A- 16

: -C(kx+bq3
_ d bdf Peo,0)i[1- coshmed Y& + coshmia
/‘a ‘xl“hl“)’ S :- ( . CGS(qf‘,\V. | w_-—-shmk

X .e.xp—i(kx+1.(ﬂ+-flgn §)T7o

I\
0o

;. T <o

The elementary response (the solution inside the
parenthesis) consists of two.parts; a steady component
which has zero horizontal velocity at the bottom, and a
wave component which has the ‘zeneral form of the bottom-
intensifiea mode, and which propazates with a component

of the phase velocity to the left vhen looking up=-slope.
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We notice that at 1=0 the hypefbolic solutions cancel
each other and we are left with the initial disturbance.
For T>o©  the slope has cancelled out that part of the
initial disturbance that came in contact with the bottom,
and replaced the motion there by time-dependent topographic
oscillations, | |

If we substitute eq.-IV. A-16 in the original egs.
IV. A=l, IV. A=2 and IV. A-3 we see that after T=o
the steady term has no effect on the equations because
it is time-independent and is zero at the bottom slope.
Prom this is clear that the initial zgeostrophic disturbance
could have been dependent on the vertical coordinate
because the only part of the flow that induces the
topographic oscillations is its value at the bottom.
We can generalize the solution to be -

(IV. A-17) 2

- (o §( 2 - cochiin )
f(x,q,'t,‘r) = SS = Pk, ) P 5;,:(2’") CoshMK
—r>

+ (.eaa"\nt\K% e

e (hx+ﬁ.65+—%ﬂ)
b {

where &2(2) 1s the z-dependence of the g  component
of the initial pressure disturbance. As one expects if

£|2 (%=-() =0 there is no adjustment required. In Pig. 4-2
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we show a sketch of the horizontal velocity field

projected in the up-slope direction.

Te
0 7>0

L it i fr s 1t YT U N O OO O O O A

STEADY CURRENT : WAVE

Pig. 4-2. Diagram illustrating the vertical structure
of geostrophic currents.

In order to best discuss the solution we change the

representation of %' to dimensional form

. A-18o)o ' .. C\‘Qnﬁu;) _ -t (lx Lg(j *-:‘-‘T\\
%)(W,%T):jg M!ouf(h,l) (l' ws"«f‘k%)e + Coszv'\f“ﬁ%Q }
AN costh ki T

3

for the depth-independent initial disturbance. H 1is

the depth and &«  in the time dependence is élyanLpKH ,

where € 1is the slope. Let us take a specific form of £(k,2)
Ple,2) =21 §(k-k,) §H-Lo)

which corresponds to a simple sinosoidal wave oriented

~1
at an angle with O=Tum 49 respect to the slope. ie

o
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first note that expression IV. A-18 yields the homogeneous
limit for very small T[Ko , as one expects. The
topographic motion will be depth-independent when the
horizontal scales of the imposed motion yield a vertical

penetration scale %E larger than the depth of the

o .
ocean, #K >> H . The freguency &« 1in this limit becomes
’ . A

the well-known topographnic p-effect frequency, independent
of stratification, but dependent on the horizontal scale,

‘ o= eﬁbu . The steady part of the solution essentially
disappears, i.e. coshlk2 _, 1 and the whole column of

. Coshnk,H

fluid is rigidly coupled in the vertical .to execute the

oscillations
Cei(hkox 4 4 Lo T
C(hox oy + L )

(IV. A-19 ,
) &JCYM,E,T): e

When the scales of the imposed motion are lesé than
U‘K{L H |, the elementary solutions become decoupled

in the vertical because stratification weakens the

rigidity of the vertical columns of fluid. There is a

steady part which is not in contact with the topography
(fhat is why it is steady), and a time-dependent oscilla-

tion which is cohcentrated at the bottom. Ve notice

taat the sﬁeady geostropnic flow can be quite arbitrary

in 1ts horizontal structure. It does not hqve to flow
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alonz the depth contours to remain steady as in the
homozeneous limit because its motion does come in contact
with the topozraphy. We notice that if f=0 , that is,
a current flow along the contours, then the initial
motion is not disturbed by the topozraphy and there

are no waves excited.

It might be helpful at this point to sketch the
streamline pattern (instantaneous) for the simple
disturbance in the case of bottom-lnten31fication,

n( {ezu:\” << 0 (Fig. 4-3). Ve set
L8> 27 5(‘!-*!»\5(2\%90_) in eq. IV. A-18 and take the

real part to‘oﬁtain

(IV. A=20)
({4,_—. («‘ T ‘)caa«dzox 'th*j) & Co.slan,z
w%ﬁka“ Caa—%r\k,

K c,os(haxh L, (y+<T ﬂ

Another simple calculation can be made if we take
the initial disturbance to bé a cylindrically symmetric
§- FumeTion  in K-space, i.e. PCk) = Y B(Kk=k) )
This corresponds to the zeroth order Bessel function
in the space coordinastes (M= Jo(l%r) , The above

disturbance is interesting because the dispersion
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Fig. 4-3. A sketch of the bottom-intensified wave
and the steady current resulting from the adjustment
of an initial disturbance to the topozraphy.

relation of the topographic oscillations is highly
directional, as we already saw in Chapter II, section 4,
and as we can readlly see in the time-dependsnce of
integral IV. 4-18, i.e. w=-f%¢ L& A disturbance
of the form Jo(¥%¥) is the simplest way one can model
the directional properties (in this case we fix the
magnitude of the wavenumber But not its direction).

Substituting for AK in eq. IV. A-18 we find
(IV. A-21)

_i(Rorcos (6-F) + ELwseT
'h‘u‘h?-.'r\= (‘ wsM‘K,a_ Jo(kor)+ CO_______$L1PK0?'- Jeq__ ronb ko
“oshnkok coshnko 5 .l
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where the angles appearing in the lntezral are defined

in Fig, 4-4,
g

K
6
¢ ‘
'11“ > x
V¢4

SLOPE

Y

r

PFig. 4-4. Pigure describing the angles appearing in
eq. IV. A-21.

The integral is Jjust equal to

(IV. A-222) '
. _ T \
an - (Kor los(B- ) + €rcos _ - .
S de ¢ Tuhko bt Jo((/k:r7~+ 1k rerTeosfp + €01 )
Py : T PR

Towh Ko tawnr i H

or in terms of x- and y-coordinates

(IV. A-22b) Lt
J-o(\/“:"t*(koy*f__“._" \'z_ 1

toanhlMK, H

Agalin the topographic slope has wiped out the initial
disturbance at the bottom. The topozraphic response,
concentrated at the bottom if I"KeH > 4 , propzgates

as 2 whole alonz the slope without chanze of shape (Fig, 4a5) ..
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Fiz. 4-5. Sketch of the topographic oscillations excited
by a cylindrically symetric disturbance over a sloping

shelf.

The propazation without change of shape is understandable

in terms of the propazation of the elementary plane waves

that =2ppear in the intezral IV, A-222z2.

1f we set P(gL)=1 in eq. IV. A-18, the integral

repreéents the Fourier transform of the two-dimensional

Green's function that describes the response of the fluid
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to a unit impulse, Eq. IV. A-21 is the aetual form
of thé transform where { now means tane distance
between the source point'and the point of observation.
Eq. IV, A-22b is the form of the norizontal and time-~
dependence of the elementary components of the topozraphic
oscillations.

The effects of viscous dissipation at the sloping
boundary can be introduced by the use of the Ekman
compatibility condition. The modificéfions to the
normal mode solutions have been discussed in Chapter II,
section A (paze 48 ). Here we wish to make the point
that if %he scales of the initially imposed motion lea@
to topographic bottom-intensified oscillations, the steady
part of the solution is unaffected by the dissipative
processes at the lower boundary; The topographic
oscillations concentrated at the bottom eventually decay
due to frictional effects, whereas the sfeady flow
persists for a much longer time. (For horizontal scales
longer than MHpern/$ the whole column is affected by
the frictional effects at the bottom.) The implications
of this partition of the motion in the vertical is
th2t over 2 slopinz bottom one would expect to find
low-frequency horizontal kinetic energy in tne baroclinic

scales leading to bottom intensification, L £ g.'upepm
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This enerzy will decrease as we approach the bottom
slope., This simple picture 1s complicated by the
fact that surface stresses with horizontal baroclinic
scales would produce an equivalent effect.

In the above paragrapn we used the phrase "low-
frequency" for two reasons. 1. If we includé the
planetary F -effect in the considerations that
lead to the solution of the initial value problem, the

interior flow over the topographic;lePe will no

-lonzer remain steady. The general solution including

both effectskis quite difficult td solve analytically.

In the special case where the topographic restoring

force 1is much strongér than the planetary P <effect

and the horizontal scales L sguw—m , the modifica-
tion to the interior flow is simply to introduce a phase
propagation with a component to the west. The bottom-
intensified oscillations essentially remain unchanged
because they are in contact with the bottom slope where

the toposraphic effect dominates. 2. We neglected non-
linear effects in the solution. Thls 1is Justifiable for
the bottom-intensified oscillations because we assumed

that the toposrapnic restoring force dominated the process.

However, we see thot since the interior flow is not in

contact with the topography, the sma2ll nonlinearities
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will eventurlly affect the motion. The sfructure
of thé "steady" flow will slowly evolve with time due
to nonlinear =advection.

At this point one cannot help but speculate about
the previously mentioned Site D observations. The
frequency spectrum calculated by Thompson éhowed that
the horizontal kinetic enerzgy decreased with depth for
periods greater than asbout 30 days. For smaller periods
the frequency specﬁrum was depth-indepéndent. Thompson
( 19 ) and Rhines ( L O ) suggested that the

high-frequency contributions to the spectrum were

‘due to depth-independent Rossby topographic oscillations,

implying that the horizontal scales of these motions

had to be larzer than N Hoeern /5— .. Perhaps part

of the energy found at the 1oweﬁ frequencles is due

to drifting eddlies orizinating in the adjustment of
disturbances wlth the baroclinic scales( .Ls_NHoenu/ﬁ’- )
to the slopinz bottom. These disturbances will also
generate bottom-intensified oscillations, but they

decay due to frictional effects. Of course, this does

not rule out the possibility that part of the low-frequency

contributions to the enerzy spectrum could be due to
horizontally trapped waves of the sort we discussed in

the previous chapter. e reczll that for low,



along-the-slope phase veloclties, these waves had a

node on the topography. They are excited in thé
adjustment of 2 time-dependent disturbance impinging

on 2 rexzion with a slopinz bottom. e also recall,
‘however, that the UV correlation of these waves

was zero, wﬁereas there is no reason why the advecting
eddies produced by the vertical decouplinz of the motion

would have such a property.
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Section B. Wind Génerated Bottom-intensified Oscillations

In the open ocean one possible source of local energy
for bottom-intensified oscillations 1is wind stress over
the surface. We wish to comment on the effectiveness
of this source of energy in excifing bottom-intensified
topozraphic waves. |

Let us consider a constant slopinz bottom. The
slope 1is constant in the sense that it does not vary
over distances larger than the imposed horizontal scales
on the fluid. Ve also take the slope to be small in
the sense that the fractional change of heizht over the
imposed‘wave séale is small compared to the mean depth;
we will show that over a constant sloping bottom the
direct effects of wind stress over the surface will
not effectively excite bottom-intensified oscillations
with penetration scales smailer than the mean depth of
the region. *

Consider a sloping bottom represented by Fig. 4-6.

Pig. 4-6. Diagram describing the toposraphic region.
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We are interested in the excitation of topographlc
oscillations by an applied wind stress that is gradually
turned on and after some time is again gradually turned
off. The time scale for the changes in.the wind 1s
considered to be long compared to an inertial period.
Following Holton ( 3 ) we represent the effects of
the wind stress by a vertical velocity at the base of

the Ekman layer at the surface
Pl -
b_' wlbt t/s_

1]

W e

where T is the wind streés and ¥ .the coriolis
parameter, - .

For the treatment of this problem we can use
eqs. II-1lla to II-lle in Chapter II. By assumption
we set the Rossby number and the planetary P -effect
equal to zero. In this problem the interior vertical
velocity is matched to the wind stress vértical veloclty
at the base of the Ekman layer. The boundary condition
on the sloping bottom is given by the condition of no
flow into the boundary. Since we are interested in
topographic oscillations excited by the wind, we scale
our time dependénce by the topographic parameter SEGVH<€1
We recall that this parameter measures.the fractional

change of depth of the topographic region over a wave
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scale ( L ). 1In this case ( L ) fefers to the
imposed scale of the wind. We scale the amplitude of
the horizontzal velocities in the interior by -Zf/hig
where ©Co, is the amplitude of the wind stress and
H is the mean depth. This guarantees that our non-

dimensional interior horizontal velocities will be
order one,

Following the procedure described in Chapfer II
we obtain a set ofvnon-dimensional scaied equations
for the lowest order quasigeostrophlc pressure field.
For the interior motion we have
(IV. B-1)

2 (o) N o - o
2 (W% dgya b))

where A  is equal to NR/gL ., L is the imposed
scale of the wind stress and H 1is the mean depth. At
the surface we have ‘ | |

L 2pe W
T )

Dk

(IV. B=2)

where’ﬁ) is the non-dimensional vertical velocity

at the base of the surface Ekman layer induced by the
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stress. The above equation describes the matching

between the interior motion and the wind. At the sloping

bottom we have the condition of no flow into the boundary

(IV. B=3) , 5 1O _ (o)
(™ T = =P ==

We recall that the bottom boundary condition was linearized
about the mean depth because 8441 .
Let us take a simple spatial and time representation

for ’fb .

(IV. B-4) ~itkxtly) ¢ 0 T<o
D-W, < i | Te>Tvo

[s] T>7o

Using Laplace transform techniques as in the previous
: )\
section we arrive at the following solution for ,%ﬁo

During the forcing period o< T<T, we find

(IV. B-5)
@ _ Naoi T AmhmAK(2Y 4 1 (1= tomh MK galiiikt
¥ L Loah 1) K C.%_n tomh A K
~«Lar _Qkx+2ﬂ
- e “ (1= fanhTrik) wa)ar')ucfSe
[4 —

After the forecing stops TU»To we find
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(Iv. B-6) ~ e R (1) _.«-'z}i.n.'r
. &
/t;o).: ™ lbo Tosvv\,f\ MK + __li_(,e_ - e )
.—\:. co2MAK . t—lz

a A -~ ¢ (lex+f9)
X (1= tanh AKY ) gz b e

Foamh NA K

Solution IV. B=5 satisfies the initial condition of no .
motion at T1=0 , In the above solutions -2 = "/\/i-amk'r',\K.
For the vertical penetration scale of the topographic

. oscillations smaller than the meag depth of the region,

A K>1 , fL is the buoyandy frequency of the
bottom-inten'sified oscillations (see Chapter II, page 35 ).
For (MAK<<1 , the vertical penetration scale of the
coah (WKZ function 1aréer than the depth of the
region, (2 . is the maximum frequency due to the vortex
stretching of the fluid over the slopinz bottom. Ve
see that the actual frequency of the oscillations depends
on the angle the wavenumber makes with the alonz-the-slope
direction A&/ . e also note that the oscillations
propagate with a component of the phase veloclity to the
left when looking up-slope. The solution for ,?‘d‘ is
not singzular at L=o ~as can be easily demonstrated

by taking the limit fJ20 .

Some of the features of the solution are: 1. During
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the forcinz -period there is a directly driven horizontal
current with a node on the topography. As in the initial
value problem discussed in section A, topographic
oscillations are excited to compensate for the ad just-
~ment of the directly dr;ven horizontal current on the
sloping botfom. However, associated with the directly
driven flbw,there is a small vertical velocity. To
compensate, the fluid responds with a time-independent
bottom=-intensified wave. This makes the velocity normal
to the sloping bottom zero. vhen the forcing stops,

T>Te , there is no longer a directly driven current.
The previously time-independent'boitom—intensified response
becomes a topographlc oscillation.

Ouf main intergst here lies in the factor

(i—tamh MK) multiplying all the terms with the bottom-
intensified form coshMKkZ . Ve see that when MAK
is numerically larger than 2 , the téfm becomes
negligibly small., This indicates that the amplitude of
the bottom-intensified mode becomes very small when
the e-folding penetration distance of the surface
stress is smaller than about half the mean depth of
the rezion. For PAk=1 , that is, an e-folding
penetration distance equal to the mean depth, the term

(1-taxhMK) 1is equal to .5 indicating that weak
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bottom~-intensification of topozraphic waves can be |
excited by surface stresses with horizontal scales

L equal to NHyepru /& . For example, if Nf=2o
and H= FKm , then L.=(oowm. The behavior of
the function (— faM}\zf“/sKH,e_?” versus “.%_Eubc?'ru
the ratio of the depth to the penetration scale of the
topographnic oscillations, indicates that there is a
sharp cut-off in the amplitude of the oscillations
veyond N/ KHpepnu= 1 . As one expected, the topographic
oscillations most effectively gene}ated by the'wind
over a constant slope have essentially a barotropic
strugturé, PO;K|4oawu<<1 . This is so because for
horizontal scales L= I(l much larger than N“‘DePr»/& ’
the direct effects of surfacé stresses can penetrate
to the bottom without attenqgtion.

We should emphasize that the above calculations
were done for constant Brunt-Vaisala freduency. The
highter values of N found in the thermocline will
tend to further reduce the penetration of the wind
stress for a given horizontai scale, This implies that
the scale of effective surface disturbances would have
to be larzer than the simple constant [V theory suggests.

As a final point we wish to mention that tne

effectiveness of wind stress in generating bottom-
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intensified oscillations is considerably enhanced if
the topography has small-scale features. The condition
for the surface stresses to be effective is the same

as before, that is, they must be sufficiently long-
scaled to penetrate to the topography. However, the
response of the fluld will now partially consist of
topographic motions with horizontal scales induced by
the topography. If the typical topographic scale L+
is baroclinic ( Lrﬁﬁ‘;ﬂoepm ), a por%ion of the
energy of the wind should go to support bottom-intensified

motions.
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Section ¢. The Local Interaction of Topozrapnlc Waves

with a Steady Shear Current

We wish to consider the interaction of topographic
oscillations with a steady horizontal shear current
over a simple sloping bottom without considering the
source of the topographic waves' energy. In order to
consider the problem in its simplest possible.context,
we assume that the current is flowing along depth
contours. e also assume that the current is being
supported by a pressure gradient whose presence 1s
external to the problem,

Th; situation described above is interesting for
the following reasons. 1. The mainveffect of the
shear is to rotate -the phase’ planes in the direction
of the current. The turning of the phase planes shortens
the wavelenzths of the topographic oscillations. Ve
recall that the vertical structure of the topograpnic
oscillations is simply coupled to the horizontal
wavelengths by tne interior pofeﬁtial vorticity equation.
As the wavelenzgths decrease due to the tilting of the
phase planes by the shear, the vertical structure
intensifies at the bottom. Thus we see that the shear

provides a'mechanism for the continuous production of

bottom-intensified oscillations. A depth-independent
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wave entering the region of shear could be transformed
into a bottom-intensified oscillation as the wave propagates
into the shear current. 2. The local interaction of
the topographlic oscillations wilth the shear reduces the
frequency of the oscillations and leads to a gradual
transfer of the wave energy to the mean current.

1. Derivation of the Eguations

Consider a topozraphic region described in Fig. 4T | .
The slope 1s 'taken to be small in the usual sense, that
1s, the fractional change of depth over a wave écale
is small compared to the mean depth G‘-/g':‘ Scet
Floﬁing élong &epth contours we have a barotropic current
with'a mean shear in’ the up-slope direction. We consider
that the variation of the velocity with the up=-slope
coordinate over a scale of order the horizontal wavelength
of the topographic waves can be approximated locally

by a linear shear

V(X)k\/oﬂ' Y'JL

Frém equations II-1 to iI-éb in Chapter II we can
obtain a quasilinearized set of eqﬁations to describe
the interaction of the topozraphic oscillations wita
the mean steady flow. j’;Ie assume that the Rossby

number of the self-interaction of the perturbation
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Fig. 4-7. Illustration of a mean shear over a sloping
shelf.

fields is much smaller than the Rossby number that
describes the interaction of the perturbation fields '
with the mean flow. This simply means that the amplitudes
of velocities éssoqiated with the topographic oscillations
are taken to be much smzller than the amplitude of the
mean flow. |

We recall that in the derivation of the equatlons
describing the topographic oscillations in Chapter II,
the time dependence was scaled‘by thé small topographic
parameter 8 .  The boundary condition at the bottom
slope was linearized about the mean depth using a
Taylor expansion in the small parameter § . The
fields were then expanded in terms of § to obtain

the lowest ordef equations for the quasigeostrophic
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pressure field. Here we are interested in the interaction
of the quasigeost;ophic toposraphic pscillations with
the mean shear. Ve take the Rossby number describing
this interaction to be comparable to the topographic
parameter. In the expansion of the equations wve formally
keep the ratio of this ﬁossby number to the topographic
parameter & whenever it appears 1in the'equétions.
Following the procedure described 1n Chapter II we
obtain a set of non-dimensional scaled equations for
the lowest order quasigeostrophic pressure field ?fo‘
For the interior equation we obtain
| )

%r‘l' R_‘_sg (H-ﬁx)_?_\[ V'tr%*(}t:)i f’:zz :}so‘

(IV. c-1)
( 33

where ‘A= NH/&L P Re is the Rossby number based
on the amplitude of the mean flow over the topographic
wave scale, f3 is a non-dimensional shear which we
take to be order one. e do not ﬁake the assumption
that the shear is weak compafed to the topographic
parameter S . The potential vorticity equation
has been modified by the introduction of an advective

term due tb the mean current.

At the rizid surface at the top we have the condlition
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of zero vertical veloclity

)
(IV. C¢-2) d Ro )2 =06 Zz=o0
( + s ( 1+ Bx bs\}F@

g

2T

and at the sloping boundary we have the condition of
no normal flow into the boundary

(IV. ¢-3) o (m),_'rm )
| 2 + R (1+pN)2 = - Y z=-
( oT s F 3‘33 t’z

The abofe equations constitute our model equations to
study the interaction of topographic waves with a mean
shear. These equations bring to mind the equations
Rhines used in his study of twoédimensional‘turbulence
on a )? -plane ( |2 ). His equations can be
obtained by vertically integrating the ébove equations
and replacing the advective term due to the mean shear
by the actual nonlinear advection due to the self-
interaction of the perturbation fields.

2. Solutions and Interpretations

To solvée egs. IV. C-1, 2 and 3 we assume a solutlion

of the form
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(IV. C=4) TR o\(x‘-l—px)'r)
1.2
40 Dz = S MR (14 p T 2 @ ;
where ,Q 1s the along-the-slope wavenumber of the
solution. A is a symbol denoting the ratio of

the Rossby number to the topographic parameter'and l%
is the non-dimensional shear. The above solution can
be interpreted as a quasligeostrophic topographic wave
whose velocity at [0  was oriented in the up-slope
directioh. The vertical structure of the solution at

T=0 is given by ceshMiLlZ . The term [LIAT
denotes the up-slope wavenumber which is continually
changing due to the tufning of the phase planes by the
shear. The equation for P“) satisfies the interior
equation IV, C-1 and the top boundary condition ldentically.
The form of the function §TT) and 1ts dependence on
time is determined by matching IV. C-4 in the lower
boundary condition. We find that . $c¢1) is ziven by
(Iv. ¢=-5)

| | . AT'

zap:tsnA "

§(M= G el ! j e »
KC +d1{;111\\l,_ S A2 C ”d[a'zrz) “ | wedpr ,éfomkn,\m\@,\ff)
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where C} - is an arbitrary constant. Combining the
above result with.equation IV. C-4 we obtain an.exact
solution to our model equations for the lowest order
quasigeostrophic pressure field.
(IvV. ©-6)

. ) V 2 v
i) G rawl ( ceah AL AT TR
= — \
("“" N d\,P‘qu"z +amkmu(cn+¢‘p’r’)" coshh MALR| C t+&’(s‘T‘)""

T
x 2gp :‘:é(l.ll(cj—o((n[ax)‘r +m\ dr - n?a
o(1aFTY 2 temh Al (T

The}Solution above represents a quasigeostrophic
wvave imbedded in the shear current., The wafe amplitude,
wavenumber, vertlcal structure and direction of propagza-
tion are being continually changed as the phase planes
are rotated by the meaﬁ shear. The total wavenumber
increases as ‘R‘C‘*u?f?rz)nt' . Since the shear does
not affect the along-the-slope wavenumbef, the only way
the phase planes can turn is by continually increasing
the up-slope wavenumber. The associated veloclty field
continually rotates in the direction of the current, which
1s also the along-the-slope direction. We note that as
the wavenu@ber ihcreases the vertical structure of the
topographic wave intensifies at the bottom slope. 1In a

sense the steady shear current is bottom-intensifyinzg the
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topozraphic oscillations.

Differentiating the phase of the wave with respect
to time, we determine that the frequency of the wave
decreases as the angle of oriéntation of the wavenumber
with respect to the along-~the-~slope direction increases

IV. C=7

(
= —UROED) + _TA "
w e (t+ 0(7'(5"17-\"2 touwdr 0 1£] C ‘-+¢\-‘P‘l"z) *

The first term corresponds to the épparent frequency
" due to the translation of the waves by the mean cufrent,
while the second term corresponds to the actual frequency
of the oscillafions: The form of the last term is
analogous to the frequency relation we found in Chapter II
for topographic waves on the slope (eq. II. A-2). To
see this, we simply replace-lR(Cl+u?Fsz)"‘ ' by the
wavenumber K . In Piz. 4- 8 we show a sketch of
the phase planes being turned by the shear current, This
figure is similar to the figure shown by Phillips ( €& )
in his calculation of 1ﬁterna1 waves on a shear current.
In Pig. 4-9 we show a plot of the vertical
structure of the wave at different instances in the
turning of the phase planes by the shear. In this

calculation we have chosen the following values for the
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4-9, ©Plot of the vertical structure of the topographic wave at different

times during the interaction with the mean shear.
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the parameters that determine the vertical structure.

NfgzT=15 , depth H=4Km and the along-the-
slope wavenumber /Ll = Yoo kv . For the value of
the dimensional shear we have chosen (/ytlo'zf , that
is, horizontal shear with a strength one one-hundredth
of the coriolils paraméter. It corresponds td a change
in horizontal velocity of /bo"y%eo in a distance of
one hundred kilometers. The times in the figure are
plotted as mﬁltiples of the inertial period. ¥We see
- that the interaction of a topograéiic wave with a shear
has resulted in the production of a bottom-intensified
wave.

In order to evaiuate the effectiveness of -this

process in producinz bottom-intensified osclllations,
we calculate -the energj of the waves in the shear
current. Tne total enersy of the t0poorapnic oscillatlons
is zgiven to order 3 by the horizontal kinetic energy
and the potential energy associated with the density
surface deformation over the basic density field. From
the pressure field (eg. IV. C-6) we calculate the
horizontal velocities and the density field. The kinetlec

energy 1s given Dby
(Iv. ¢-8) E.= L (G 1A 2% cod TR (14 LRT) 22
4

o el € e PprT) R
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where G is the arbitrary amplitude of the topographic

oscillations. A  is the along-the-slope wavenumber.

The potential energy is given by

(1. 6-9) ¢t - (az(nA;el)i,sz"‘n,\m-(c‘;,{‘(s‘r‘)""?:.

L

iE‘A)"‘ 4 st TAR) -\—d\-"‘Ssz) M

Adding the two contributions we find that the total energy
is given by

(IV. ¢-10) |
£ =il T 8% coahhz muel C1va?piry iz

I i SEVAWA »a‘{s"r‘B 2

Integrating the above equation 2lonz the vertical, one
finds that the total energy is given by

(IV. ¢-11)
o

S Edz=L 614" Ml o
- 4. (! +-o("p"'t"'\'l2famh Il (+d:"/5z713 *

By inspection we feelize that the terms dependent on

time are directly propdrtional to the frequency of the
topozrapnic oscillations measured relative to a frame
moving witﬁ the mean current (eq. IV. C=7). This implies

that as the shear turns the phase planes of the topozraphic
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oscillations, the total enerzy decreases in direct
proportion to the frequency. The enerzy lost bj the
wave must be compensated for by an equivalent gain by
the mean current. However, our analysis cannot describe
this process. In Fig. 4-10‘ we show a plot of the total
energy of the topographic oscillations versus time. For
this computation we have chosen the same Qalue for the
parameters that was used in the calculation of the
vertical structure of fhe oscillations in Fig. 4-9 .
The energy has been normalized by the value of the

energy at T=o .,

E(T)
E (o)

T T
T=0 10 .20 30 40 JS0 To=0

Fig., 4-10. ©Plot of the total energy decay of the topozraphic
oscillations during the interaction with the mean shear.
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In zeneral terms, Fig., 4-10 shows that the wave

enerzy decreases as the topographic oscillation is turned
by the shear. From the plot in the above figure and from
eq. IV. C-11, we see that there are actually two regimes
of energy decay. For the barotropic limit PAMJCt+&W¢H“3”z
the enersy of the topographic oscillations decays much
faster, like (I+—dvfff)~‘ , while for the bottom-
intensified 1limit the enerzy decays like (lfveﬁ?Tz)uz .
(A homogeneous model of the interaction of topographic
oscillations with 2 shear misses the second limit.)
These twp regimes are related to the different restor-
ing forces on the waves. One can think that the reason
wave energy is lost to the mean current is that the
effect of the shear is to turn the wave in the direction
where the restorinz force on the wave is léast effective
(the constant-depth contours). In the barotropic limit
the vortex stretching effect requires tﬁét the frequency
of the waves diminishes as the scale of wave and as the
projection of the wavenumber alonzg the maximum depth
change decreases. So, as the scale of the wave deoreéses
due to the turning of the phase planes by the shear, the
current can more effectively extract the energy from the
waves, -However, in the more complete thiee-dimensional

problem when the horizontal scale of the wave becomes
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smaller than MNjgHperw, wnere H  is the mean depth,
the restoring force on the waves is fundamentally
different. It is now given only by the projection of
the wavenumber in the direction of the component of
stratificatibn up the slope. The effectiveness of the
restoring fﬁrce lasts much lonzer.

In order to further investizate the interaction of
the oscillations with the mean flow, we calculate the
Reynold stress that the wave exerts on the mean flow.

We find that i1t is ziven by

(IV. 0-12)

G ) A* ol‘%T ml-nn,uuelc mkl”) <
(!+Aﬂ"TzH'anl\r‘,\LUCHeLP'T' 1 Cooh mamICtHET) >

R: -ur=-L1

For the initial conditions imposed on the waves at

time T=o0 , we see that the Reynold stress is negative "

and decreasing with time., This is interpreted to mean
that the wave enerzy is feeding the mean flow. This

conclusion azrees with our previous result that the

wave energy decreases with time due to the interaction.

Andther interesting prOperty.is the following. If we
plot the total enersy of the oscillations as a function

of depth at different times durinz; the interaction
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(eq. IV. ¢-10), we find that after the topozraphic
oscillation crosses over from the depth—independent
rezime to the bottom-intensified regime, the energy
of the wave remains constant at the bottom while 1t
continues to decrease in the interior of the fluid.
This fact coupled with £he effect of the Reynold stress
of the wave on the mean flow (eq. IV. C-lé) would seem
to indicate that dynamically the oscillation is bottom=-
intensifying because the mean current is extracting
wave enerzy from the interior of the fluid. This in
turn implies that the "steady" current is being built
up baroclinically. A more'completé anzlysis would
show the mean current increasing in strength with
the larzer velocities at the top. It is interesting
to speculate whetner the steady baroclinic current
observed at Site D might not be sustained by a more
complicated version of this process, pafticularly in
view that recent analysis of the data seeﬁs to show no
permanent tilt 6f the density surfaces (Scamitz.l5 ),
Finally we would like to point out thnat our
solutions for the interaction of the topograpnic
oscillations with a mean shedr can be interpreted from
the point 6f view of ray theory. The time T appearing

in our equztions now refers to the time interval between
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the initial position of the wave packet and 1ts present
position, determined by integrating the group velocity
equations with respect to time. The absolute frequency
of the waves (the frequency measured with respect to a
fixed point in the topography)is.constant. The relative
frequency of the waves varies just'enough in the shear
to compensate for the variation in the apparent frequency
due to the waves being translated by the current. The |
statement that wave energy is proportional to the
.frequency of the oscillations can how be 1nter§reted as
the conservation of the energy of‘the wave packet
over the relative frequency in agreement with the
results found by Bretherton ( 1 ).

Summarizing, we have seen that the local interaction
of.a mean shgar with topographic waves can lead to
the bottom-intensification éf the osclllations. This
interaction leads to the transfer of the wave energy
to the'mean current and as such is not an éffective
zenerator of bottom-intensified waves. The suzgestion
that the wave energy zoes 1n£o the mean flow baroclinically

is interesting in itself and should be studied further.
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Chapter V Conclusion

In this thesis we have investigated the propagation
and zeneration of topographic oscillations in simplified
models of ocean topography. e have concentrated on
those topographic oscillations which show the effects
of stratification. The basic element in this study has
been the bottom-intensified quasigeostrophic topographic
wave, In our investigation we have discovered that the
presence of bottom-intensified oscillations invariably
implied the presence of other quasigeostrophic motions
which have a velocity node on the topography. Perhaps
this is representative of the roie of bottom-intensified
oscillations in' the schemé of low-frequency motions in
the ocean. Their role is siﬁply to ad just low=frequency
disturbances to the constraints imposed by fhe oceanlc
topography on the resulting flows.

In Chapter II we reviewed the topographic character-~

" istics of the western North Atlantic and found that except

for the continental rise, the topographic slopes were on
the average consistent with the quasizeostrophic approxi-
mation for topozraphic waves. After deriving the basic
equatlions for this study, we'applied our model in a
simple calculation based on the Aries measurements,

We found that for the observed vertical structure and



185
orientation of the velocity field with respect to the
sloping bottom, the theory predicted frequencies and
wavelenzths which were in rough agreement with the deduced
values from the data., 1In section B, Chapter II, we calcu-
lated the quasigeostrophic normal modes of oscillation
over a small-amplitude one-dimensional corrugated bottom.
This was done to model the interaction of large-scale
forced motions in the ocean with small-scale tobography.
We found the modes éonsisted of a loniy~-scale wave and &
smaller~amplitude component with horizontal scales
directly}induced by the topographic scale. We found that
if the topographic scale was baroclinic L :‘.’V/sl-lu,r,, the
structure of the small-scale term was bottom-intensified.
Since the small-scale topography in the ocean is clearly
not one-dimensional, the value of this calculation was
to illustrate the possibility of energy transfer from
the long=-scale directly forced waves to émall-scale
topography.

In Chapter III we studied the problem of the excitation
of quasigeostrophic oscillations on a2 sloping shelf by a
field of Rossby waves impinging at the edge of the shelf,
Wwe found that for the hizh quasigeostrophic frequencies,
Rossby waves could only excite depth-independent topographic

oscillations. This result agrees with calculations made
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by Rhines ( (3 ) for a homogeneous model of the ocean,
Physically this result depends on the fact that'the
topozraphic oscillations induced by high frequency Rossby
waves have such long horizontal scales that they are not
affected by stratification. Fof low quasigeosﬁ%ophic‘
frequencies; Rossby waves matched with topographic waves
showing the effects of stratification. ' The tOpOgraphic.
modes consisted of a bottom-intensified wave and a
collection of topographic baroclinic waves which had a
node on the topography. For the frequency range that

we considered, these baroclinic waves were trapped to

the edge of the shelf decreasing exponentiaily into the
interior of the shelf. They were exclted to adjust

the vertical structure of thé Rossby wave to the vertical
structure of the bottom-intensified mode whioh was the
only propagating solution in the slope regiomn.

The most important result found was that the
amplitude of the bottom-intensified mode was very small
when the scales of the impinzing Rossby wave matched the
bottom-intensified mode. Most of the enerzy was reflected
back. However, jhe amplitude of the baroclinic modes
trapped to the edze of the shelf was larze. The physical
plecture that one extracts from this process is that the

edge of the shelf acts like an elastic membrane yielding



187
under the effect of the impinging Rossby wave but
springing back with little energy lost. It 1s interesting
to speculate if the very low frequency contributions to
the horizontal kirnetic spectrum calculated by Thompson
( 19 ) from the Site D data might not be due t0 a process
such as this. We recall that the very low frequency enerzy
of the spectrum decreased with depth -- exactly the
property that the baroclinic wave trapped to the edge of
the shelf would havé.

In the last part of Chapter III we discussed the
question of topographic trapping of bottom-intensified
waves. We found that the adjustment of the vertical
structure of the bottom-intensified wave at the edge
of the shelf excited other low-frequency baroclinic
waves, These baroclinic waves ﬁere trapped"to the
edge of the shelf decaying horizontally in both direc-
tions. We found that their presence was-responsible for
enhancing the efficiency of wave trapping by the tbpog-
graphy. The imélication of these results is that bottom-
intensified oscillatims do not couple well with near-by
regions which could support similar modes. In this
chapter we concluded that bottom-intensified oscillations
are not effectively generated by sources located exterior

to their topozraphic environment, and that once excited
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over local topography, their energy tends to remain
confined within the topozraphic rezion of their.generation.
From this 1t would seem that the presence of the bottom-
intensified oscillations at a given 1bcation nust be
ascribed to local sources. | h

In Chabter IV we discussed some aspects of the local
generation of bottom-intensified oscillations. In section
A we studied the generation of topographic oscillations
by an initially imposed geostrophic current. e found
that when the scales of the initial disturbance were
smaller than L<NH/g where H is the mean depth
of -the region, the topographic fesbonse conéisted of
a bottom-intensified oscillation and a steady current
with a node on the sloping bbttqm. When the imposed
scale of the initial disturbance was larger than NH/g
the whole column of fluld was set in ospillation. In
general terms, what happens is this: When the imposed
scales are smaller than NWV} , Stratification becomes
important and its effect is to weaken the vertical
rigidity of the column of fluid. Since the only part
of the initial motion that rneeds adjusting is the part
that comes in cohtact with the slope, the resulting

motion decouples in the vertical, The steady geostropnic

flow which results from the adjustment can be quite

©
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arbitrary. It does not have to flow along the depth
contours as in the homogeneous limit to remain steady.
The bottom=-intensified oscillation resulting from the
ad justment of the initial disturbance to the topography
eventually decays due to frictional effects, while the
steady flow persists for a much longer time. ' This
vertical partition of the motion for initial-value-like
disturbances has interesting implications. It says that
over a sloping bottom one would expect to find very
~low-frequency horizontal kinetic e;ergy in the‘baroclinic
scales leading to the bottom-intensification of the
topograpﬁic 6séillations. This energy will decrease
withvdepth as we approach the bottom slope. However,
the interlor flow_over the tépographic slope will not
remain steady if we include ﬁhe planetary (3 ~-effect.
Furthermore, - the nezlected nonlinearities should also
affect the steady flow because the topngaphic restoring
force is not restraining its influence. The structure
of the stesady fiow will slowly evolve with time due to
nonlinear advection.

We can speculate that part of the energy found at
the low frequencies in the horizontal kinetic ener:y
Spectfum calculated by Thompson ( ! ) mizht be due

to drifting eddies originatinzg in the adjustment of
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disturbances with baroclinic scales Lﬁ%"p to the
sloping bottom around Site D, These disturbances will
also generate bottom-intensified oscillations, but they
decay due to frictional effects. It is interesting to
point out that this zeneral decrease of energy with
depth was obtained by considering the interaction of
Rossby waves with a sloping shelf.

In section B of Chapter IV we discussed the wind
generation of topographic oscillations. We found that
. bottom-intensified oscillations we}e not effecfively
generated by the wind because surface stresses with
horizontal séales leading to bottom~intensified response
do not penetrate t0 the botton slope. However, lonz-
scaled wind forces at the sufface can generate a forced
Barotropic current which 1n.turn can interact with
small=scale topozraphy to produce bottom-intensified
oscillations (see Chapter II, section B);

In section C of Chapter IV we discussed the interaction
of a steady sheér current wiph topozraphic oscillations.
We found that the turning of the wave crests of the
oscillations by the shear resulted in the production of
bottom-intensified oscillations. However, the interaction
of thé wave with the shear also resulted in the transfer

of wave energy to the mean current. The vertically

A



191
integrated total energy of the oscillatibns decreased
in direct proportion to the frequency of oscillétion.
This result is similar to the one found by Phillips ( &
in his study of the interaction of internal waves with a
mean shear, Another interesting result was implied by
actually loéking at the vertical dependenqe of‘the total
enerzy. This showed that the farther away we looked from
the bottom boundary, the more rapidly the wave energy
was lost. This observation, coupled with the fact that
enerzy lost by the wave must be compensated for by an
equivalent gzain by the mean current, would seem to indicate
thaf the steady current was being built up béroclinically.
(The larger increases in the velocity were occurring away
from the bottom boundary.) Again we see anotner example
of the ﬁecﬁliar property mentioned at the bezinning of
the conclusion., Bottom~intensified oscillations seem
to be zalways associated with barbclinic ﬁotions having
larzer velocities at the top. Another interesting point
about bur solution for the interaction of topographic
waves with a shear current is the following. It is
related to wave character of our solutions., e recall
that our solutioﬁ is wave-like even thouzh the Rossby
number describing the interaction with the mean snear

was of the same order as the topozraphic parameter
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(our basic restofing force for the waves). This is
unlike Phillips's solution which only showed wave character
in the limit of a weak shear compéred to the basic re-
storing force of the internal waves , N=2 . Our results
bring to mind the remarkable results found by Rihines ( /2 )
in his study of geostrophic turbulence in a ﬁ -plane.
He found that when the Rossby number describing the large-
scale motion was of order the tdpographic effeét, the
flow patterns looked extraordinarily wave-like. His
calculations were two-dimensional while our results
are three-dimensional. Perhaps a more careful and con-
plete analysis of the simple interaction of a mean shear
with topographic oscillatlons can provide more pnysiéal
insight and shed some 1izht onto the more complicated
problem of three-dimensional.geostrophic tuibulence
in a F -plane, ‘

As a final remark we would like to suzzest that an
experiment to generate bottom-intensified oscillations in
the laboratory should be carried out., It should be done
as an initial value problem. This should clarify some
of the ideas about the vertical decoupling of the motlon
by topographic slopes. It should be done for tne case
in whiech the Rossby number is of the same order as the

oscillations' frequency. ©Perhaps the results will show
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that the motion close to the topozgraphy is a bottom=-
trapped oscillation while the interior motion is composed
of drifting eddies originating from the initial decoupling
of the motion by the topography. We would like to add
that a paraboloidal bottom configdration is the simplest
one to use. The normalvmodes over this configuration
were found by Rhines ( & ). A sliced c&linder confisura-
tion will not lead to a simple model structure for the
bottom-intensified waves. Unlike depth-independent
topographic waves, bottom~intensified waves do not reflect
simply at boundaries crossing constant-slope lines. The
reason fﬁr this can be easily seen‘by looking at the
dispersion curve in Fig. 2-4 , Chapter II. To conclude,
the 1nvestigations'carried out in this thesis seem to
point to the result that the most important role of
bottom=-intensified motions is to release the interior

of the ocean from the constraints imposed by topography.
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