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Abstract

Bacterial two component signaling (TCS) systems are the predominant means by
which bacteria sense and respond to external signals. These systems represent a large
family of paralogous proteins; often hundreds of the histidine kinase (HK) and response
regulator (RR) pairs that make up a TCS system can be found in a single cell. How do
these systems maintain faithful signal transmission and avoid cross-talk? To understand
how specificity is determined, we examined co-evolving residues between HKs and RRs,
and guided by this, aimed to rewire specificity of several activities of TCS systems.
Previous work in the lab has successfully rewired specificity of histidine kinases for
response regulators in the phosphotransfer reaction. By mutating different subsets of
these co-evolving residues, we were able to rewire specificity of RRs in the
phosphotransfer reaction, and partially rewire specificity of HKs and RRs in the
phosphatase reaction. Additionally, we identified residues that may dictate specificity
between two domains of the histidine kinase, and found that mutating them altered the
rate of autophosphorylation. These analyses will allow rational rewiring of two
component systems in vivo, and permit us to examine the fitness consequences of this
altered specificity, providing insight into the evolutionary pressures on TCS systems.

Thesis advisor: Michael T. Laub, Assistant Professor of Biology
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Introduction

Motivation: signaling specificity in paralogous gene families

In many biological systems, a single module can be duplicated and altered to be

used in different contexts. This process often involves gene duplication and divergence,

which results in the formation of large, paralogous gene families (Zhang, 2003). In

mammals, the olfactory system comprises one such family: it employs a set of as many as

a thousand G-protein coupled receptor-like proteins to sense different odors (Firestein,

2001). In bacteria, large sets of two-component signal transduction systems are used to

sense and respond to many different environmental stimuli. How are so many similar

systems able to interact specifically and evolve without incurring a detrimental level of

crosstalk? This is an important and widespread problem in understanding biological

systems. In higher organisms, factors such as scaffolding proteins or differential sub-

cellular localization can help to prevent cross-talk between different members of the same

signaling families. However, in other cases, specificity is dictated at the level of

molecular recognition (Newman and Keating, 2003; Zarrinpar et al., 2003; Stiffler et al.,

2007). Bacteria can harbor tens to hundreds of different two-component systems in a

single cell, with similar localization patterns and without the aid of scaffolding proteins.

Specificity in this case would appear to be dependent on the signaling molecules

themselves. Because of this, two-component systems represent an ideal model for

studying how specificity is determined and how it evolves within paralogous gene

families.



Two-component signal transduction systems in bacteria

Bacterial two-component signaling (TCS) systems are the predominant signaling

modality in bacteria. Several have also been indentified in eukaryotes, where signaling is

dominated by cascading Ser/Thr/Tyr phosphorylation systems, rather than stoichiometric

His/Asp systems such as TCS systems (Stock et al., 2000). TCS systems are comprised of

a sensor histidine kinase and cognate response regulator. In response to an environmental

stimulus, the dimerized histidine kinase (HK) autophosphorylates on a conserved

histidine residue, and then transfers these phosphoryl groups to a conserved aspartate

residue on the response regulator (RR). Phosphorylation activates the response regulator

to affect an output within the cell, often by regulating transcription (Stock, 2000). The

response regulator can then carry out an autodephosphorylation reaction to terminate the

signal. Though the regulator contains all the residues necessary for catalysis of

dephosphorylation, this reaction is most commonly stimulated by a second interaction

with the histidine kinase to remove the signal (Fig. 1A). Histidine kinases are thus

bifunctional, as they can promote both the phosphorylation and dephosphorylation of

response regulators, and the conserved histidine, required for autokinase and

phosphotransfer, as important in dephosphorylation as well (Hsing and Silhavy, 1997).

E. coli has 30 known histidine kinases and 32 response regulators (Mizuno,

1997). Histidine kinases range from about 40 to 200 kDa, and most are membrane-bound.

They have been divided into eleven subfamilies, based on their features in multiple

sequence alignments (Grebe and Stock, 1999). EnvZ, an E. coli kinase and one of the

best-studied HKs, belongs to histidine kinase subfamily 2. Members of this family have a
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Figure 1:Organization of a prototypical two-component signal transduction system
(A) Schematic of the two-component signaling paradigm. An external signal stimulates the histidine
kinase (HK) to autophosphorylate.The phosphoryl group is then transferred to a cognate response
regulator (RR), which can effect changes in gene expression or other processes.The HK can interact
with its cognate RR a second time, to dephosphorylate it. RRs can also, at a slow rate
autodephosphorylate themselves.
(B) HK crystal structure (HK853)
(C) Schematic of the domain organization of a prototypical histidine kinase.
(D) RR crystal structure (RR486). Only receiver domain, not effector domain, is shown.
(E) Schematic of the domain organization of a response regulator.



phenylalanine, leucine or methionine six residues proximal to the conserved histidine

(Grebe and Stock, 1999).

EnvZ, which is a prototypical HK, has two transmembrane domains, while others

can have more (Stock et al, 2000). Evidence suggests that autophosphorylation of EnvZ

takes place in trans (Cai and Inouye, 2003), but other kinases autophosphorylate in cis

(Casino et al., 2009). This autophosphorylation reaction produces a phosphoramidate

bond, in contrast to the phosphoester bonds of serine/threonine/tyrosine protein kinases.

The cellular portion of EnvZ is linked to its transmembrane domains by a HAMP linker

domain, a helix-turn-helix motif that is common to many prokaryotic signaling proteins

(Khorchid and Ikura, 2006; Aravind and Ponting, 2006). The HAMP linker is thought to

transmit the extracellular signal to the intracellular HK domains through conformational

rotation (Hulko et al., 2006). EnvZ increases autophosphorylation in response to

signaling (Slauch et al., 1988; Kenney, 2010), but in some other systems, ligand binding

stimulates phosphatase activity of the kinase (Freeman et al., 2000; de Wulf et al., 2000;

Zhang et al., 2010). Like all HKs, EnvZ have two intracellular domains, a dimerization

and histidine phosphotransferase (DHp) domain that contains the conserved histidine, and

an ATP-binding catalytic (CA) domain (Fig. 1C). In addition to maintaining interaction

specificity between HKs and RRs, HKs must maintain the interaction between its DHp

and CA domains.

After autophosphorylation, the high-energy phosphoryl group on the HK is

transferred to a conserved aspartate residue on the receiver domain of a response

regulator protein. This induces a conformational change that allows the effector domain

of the response regulator to carry out the response to the signal (Lee et al., 2001; Stock



and Guhaniyogi, 2006; Stock et al., 2000). The half-life of the phosphorylated aspartate

of a response regulator varies, from seconds to hours, depending on the

autodephosphorylation rate of the regulator, and the phosphatase activity of the kinase

(Stock et al., 2000). The three interactions that dictate the kinetics of signal transfer are

summarized in (1) below:

Autophosphorylation: HK-His + ATP @ HK-His~P + ADP

Phosphotransfer: HK-His-P + RR-Asp @ HK-His + RR-Asp-P (1)

Phosphatase: RR-Asp-P + H20 @ RR-Asp + Pi

Though most TCS systems can be described by this simple paradigm, others have

slightly different arrangements of these modular domains. In such systems, hybrid

histidine kinases can have phosphodonor and phosphoacceptor sites in the same protein.

The domains themselves remain remarkably similar to those in free HKs and RRs (Stock

et al., 2000). Hybrid kinases represent a scenario in which the constraints on interaction

specificity may be lessened because the interacting domains are tethered together.

Though TCS systems are found predominantly in bacteria, a few TCS systems,

and others with homology to TCS systems, are found in higher organisms. In yeast, a

modified two-component system helps to regulate the HOGI osmosensing pathway: a

sensor histidine kinase, SLNl, phosphorylates two response regulators, SSK1 and SKN7,

though an intermediate YPD1 (Brown et al., 1994; Ketela et al., 1998; Liet al., 1998;

Posas et al., 1996). In plants, one example of how two-component systems have been

adapted for use in eukaryotes is that of phytochrome proteins, which transmit

photosensory information. These proteins show homology to histidine protein kinases,



but only a few have the canonical H-boxes of HKs and some are thought to function as

Ser/Thr kinases (Muller et al., 2009). Direct targets of the kinase portion of phytochromes

have not been identified, so it is not known whether they transfer to response regulator-

like proteins. However, mutation of the same conserved region that, when mutated

disrupts bacterial histidine kinase function (Hsing et al., 1998) also effects phenotypes

downstream of phytochrome signaling. A cyanobacterial phytochrome, Cphl _ssp, does

phosphotransfer to a response regulator, Rphl (Grebe and Stock, 1999), and this may

represent an evolutionary intermediate between bacterial and eukaryotic uses of the TCS

signaling modality.

Structural data offer insight into TCS system mechanism and specificity

Despite their diverse cellular roles, TCS proteins, particularly in bacteria, retain

remarkable sequence homology. Structural approaches have traditionally been employed

to understand how these proteins interact and function. However, crystallization of TCS

proteins has been notoriously difficult, and structural data has accumulated from a variety

of sources - only within the last two years has a more complete structural picture of TCS

systems emerged. While response regulator receiver domains have been largely amenable

to crystallization, and a number of structures exist (Stock et al., 1989; Baikalov et al.,

1996; Lewis et al., 1999; Bachhawat and Stock, 2007) the first high-resolution crystal

structure of a histidine kinase was not published until 2005 (Marina et al., 2005) and the

first high-resolution co-crystal was produced only in 2009 (Casino et al., 2009).

Prior to the availability of an HK-RR co-crystal, an understanding of possible

interactions between HKs and RRs was inferred from a co-crystal between the Bacillus



subtilis phosphorelay proteins SpoOB and SpoOF (Zapf et al, 2000). SpoOF is a response

regulator while SpoOB is a histidine phosphotransferase; this protein can accept and

donate a phosphoryl group on a conserved histidine, and dimerizes and forms a four-helix

bundle as HK DHp domains do, but lacks an N-terminal transmembrane domain and C-

terminal CA domain.

Structural understanding of HK-RR interactions has improved with the

publication of an HK crystal structure and HK-RR co-crystal structure. Both structures

are from the HK853-RR468 TCS system from the thermophilic bacterium Thermatoga

maritima. The 1.9 A resolution structure of the entire cytoplasmic domain of HK853

(Fig. IB) contains an asymmetric subunit of the dimerized kinase complexed with one

sulfate ion, water molecules, and one molecule of ADP-p-N, the hydrolysis product of

the AMPPNP provided in the crystallization buffer (Marina et al, 2005). This structure

presents one possible conformation of the histidine kinase in the absence of the response

regulator, and identifies several points of interaction between the DHp and CA domains

in this orientation. Though AMPPNP is an ATP analog, it was hydrolyzed in the buffer to

ADP-P-N, more analogous to ADP since it lacks the y phosphate. Likely because of this,

the ATP lid is disordered in the structure. The sulfate ion is positioned such that it may be

mimicking the phosphate on the histidine. The presence of the ADP analog in

combination with the positioning of the sulfate ion indicates that this structure is

representative of a histidine kinase that has just completed autophosphorylation, rather

than one prepared to bind and dephosphorylate a response regulator (Marina et al., 2005).

Complementary to these data, the co-crystal of HK853 with its cognate response

regulator, RR486 (Fig. 3B), and structures of RR486 alone (Fig. 1D) provide a fuller, but



still incomplete, picture of possible interactions. In the co-crystal of HK853 and RR486,

HK853 has a different orientation of its DHp and CA domains compared to the structure

of the kinase alone. RR486 is a single-domain response regulator. RR486 was

crystallized both in the presence and absence of BeF3-, which, if present, can bind

noncovalently at the conserved aspartate to mimic phosphorylation (Casino et al., 2009).

The combined data from these structures suggest that the response regulator in the

complex is in the conformation associated with the phosphorylated state, since it is most

similar to the structure of RR468 in the presence of BeF3- (Casino et al., 2009). The

conformation of the histidine kinase in the co-crystal appears to be representative of the

phosphatase interaction.

A computational and experimental approach to identify the determinants of TCS system

specificity

Even with these new structural data, experimental work is needed to understand

the molecular basis of specificity in TCS systems. Previous work in our lab has

demonstrated that HKs and RRS do in fact interact specifically, and we have used

computational and experimental methods to identify the determinants of HK specificity

in the phosphotransfer reaction. These studies have enabled the rationally rewiring of

specificity both in vitro and in vivo. By purifying large numbers of HK and RR proteins,

and using a robust assay for effective phosphotransfer between the two, the lab has

demonstrated that HKs exhibit a kinetic preference in vitro for their in vivo cognate

response regulators (Laub et al., 2006). To identify the amino acid residues responsible

for this preference, we first employed a computational approach, using mutual
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and RR receiver domains are indicated.
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Figure 3:
(A) The SpoOB/SpoOF co-crystal. (PDB IF51). Predicted interacting residues shown in orange
and green (kinase) and red and yellow (regulator).
(B) The HK853/RR486 co-crystal. Only one set of interacting residues is shown;the second set
does not appear proximal enough in the crystal structure to represent a potential interaction.
(C) Primary sequence alignment of Bacillus subtilis phosphotransferase SpoOB, and histidine
kinases Thermatoga maritima HK853, E. coli EnvZ, RstB, and CpxA. As in (A) and (B), highly
co-varying residues are shown in green and orange.
(D) Primary sequence alignment of the cognate response regulators to the proteins in (C):
SpoOF, RR468, OmpR, RstA, and CpxR. As in (A) and (B), highly co-varying residues are shown
in red and yellow. Conserved residues are grey, and Spo0B/0F contacts have asterisks.



information (MI) algorithms. Using large multiple sequence alignments of HK and RR

sequences, Skerker et al. searched for residues that co-vary with each other, with the

hypothesis that residues that co-vary between HKs and RRs are likely to be the

specificity-determining residues (Skerker et al., 2008).

This coevolution analysis identified two patches of potential specificity residues

in the HK and RR (Fig. 3). One, clustered around the conserved histidine in the kinases,

appeared best positioned to interact with the response regulator, and so these residues

were tested for their ability to determine specificity. Using the E. coli histidine kinase

EnvZ as a backbone, we replaced the residues identified by mutual information (MI)

analysis in EnvZ with the corresponding residues in a number of other E. coli kinases.

Doing so resulted in a partial specificity switch, but did not completely alter specificity

for all kinases. A flexible loop is positioned in the midst of these MI residues, in between

al and a2 of the histidine kinase; because this loop varies so widely in the number and

types of residues across HK sequences, it did not align well enough to be accessible to

MI analysis. By replacing this loop in the MI alone mutants with the corresponding loop

from the target kinase, we were able to completely switch specificity in all cases tested.

These so-called MI+loop mutants no longer phosphotransferred to OmpR, the cognate

regulator of EnvZ, and each phosphorylated the cognate regulator of its target kinase with

kinetics similar to the wild-type target kinase (Skerker et al., 2008). When several of

these mutant kinases were introduced into E. coli strains containing a reporter for the

output of the signaling system, the mutant kinases functioned effectively in vivo with the

specificity of their target kinase (Skerker et al., 2008).



In this thesis I have aimed to further characterize and re-engineer the determinants

of HK and RR interactions in order to understand how specificity is dictated in two-

component systems, and to ask how it evolves. By re-wiring specificity first in vitro we

can demonstrate how in two-component systems it is prescribed by molecular interaction

alone. Future work will be required to demonstrate, as has already been done with HK

rewiring, that molecular recognition is sufficient to achieve specificity in vivo as well. By

understanding the interprotein and interdomain interactions between the two components

of the system, we can more fully understand how to alter the determinants of phosphate

flow through a TCS system, and rewire specificity without changing other activities of

the proteins. By using all this knowledge to rewire interactions, we will in the future be

able to ask what the constraints are on these interactions as they evolve.



Results

Mutual information identifies co-varying residues

We based this work on the same mutual information analysis that was previously

successful in identifying specificity residues in histidine kinases (Skerker et al, 2008).

Mutual information is one of several computational approaches researchers have

developed to the problem of identifying interacting residues. One other successful

method is statistical coupling analysis (SCA), which is, like mutual information, based on

the idea that if residues are functionally coupled, they will co-evolve. SCA assumes that

given a large and diverse sequence alignment and conservation of functional coupling at

given positions, there should be statistical correlations between the amino acid

distributions at these sites (Socolich, 2005). This analysis has proven successful in the

analysis of WW domain folding; however, we chose to employ mutual information, both

because of the need to validate it as a technique, and because software was freely

available.

We used the same mutual information analysis as in Skerker et al. (2008); briefly,

cognate pairs of HKs and RRs were identified by the fact that such pairs are generally

found in the same operon. From nearly 200 bacterial genomes, roughly 1300 pairs were

identified. Cognate HK and RR sequences were concatenated and then aligned. Using

available software (Fodor and Aldrich, 2004), we calculated the mutual information

between each pair of sites (Fig 2). The mutual information between two positions X,Y in

an alignment is defined as:



Xl X1~~ (2)

Where column X has n different residues, column Y has m different residues, pj is the

probability of finding residuej in column X, qk is the probability of finding residue k in

column Y, and pjk is the number of sequences with residuej in column X and residue k in

column Y divided by the total number of sequences (Skerker et al., 2008; Atchley et al.,

2000; Fodor and Aldrich, 2004) (Fig. 2A,B). In order to distinguish significant mutual

information scores from background noise due to sampling bias, we calculated the MI

scores of randomized HK-RR pairs (Fig. 2C,D). These scores between intermolecular

residue pairs in the randomized alignment all fell well below 0.35, while in the alignment

of cognate pairs, 43 intermolecular residue pairs had MI scores above 0.35 (Fig. 2E). This

43 pairs were composed of 16 histidine kinase residues and 12 response regulator

residues. We took these pairs to be significant; of them, we focused on the subset of 36

pairs between residues in the RR and HK DHp domain, while the remaining 7 were

between residues in the RR and HK CA domain.

When the co-varying pairs identified by mutual information are mapped onto the

SpoOB/SpoOF structure, they cluster into two main regions of interacting residues (Fig.

3A). The residues required to switch specificity in histidine kinases fall into one cluster,

while those in the second cluster were found to have no effect on specificity (Skerker et

al, 2008). This first region co-varies with residues clustered in oc helix 1 of the response

regulator receiver domain, and appears to contact them in the SpoOB/OF co-crystal. The



second region co-varies with a set of residues in the RR spread over several regions in the

receiver domain. These residues overlap with some implicated in response regulator

autodephosphorylation rate (Pazy et al., 2009; Thomas et al., 2006), while others have not

been assigned a function.

Re-wiring response regulator specificity in vitro

Previous work in the lab has identified and re-wired specificity determinants in

histidine kinases. We aimed to determine the corresponding specificity determinants in

the response regulator and to further validate mutual information as a strategy for

predicting co-varying residues. Based on our mutual information data, we focused our

initial mutational analyses on oc 1 of the receiver domain (Fig. 3D).

Using E. coli OmpR, the cognate regulator to EnvZ, as a backbone, we mutated

putative specificity residues to the corresponding amino acids found in RstA and CpxR,

the cognate regulators of RstB and CpxA, and tested the resulting purified proteins for

their ability to be phosphorylated by EnvZ, RstB, and CpxA. Though RstB and CpxA

have higher homology to EnvZ relative to other E. coli RRs, each shows a strong kinetic

preference for its cognate response regulator (Skerker et al., 2008). Since the putative

specificity residues occupied most of a helix 1 in the response regulator, we first replaced

the entire a helix of OmpR with those of RstA and CpxR, reasoning that this would grant

OmpR the specificity of RstA or CpxR if mutual information residues are in fact the sole

specificity determinants. However, one of these constructs, OmpR with the a helix 1 of

CpxA, did not produce a soluble protein, and the other, with the a helix of RstB, was not

phosphorylated by RstA, and only minimally by EnvZ (data not shown). These mutant



proteins likely do not fold properly as the changes introduced included both solvent-

exposed and buried residues.

We then tested whether the residues identified by MI alone, all of which are

solvent-exposed, could switch specificity. We replaced putative specificity residues in a

helix 1 of OmpR with the corresponding residues in RstA, terming the mutants

OmpR[RstA], and CpxR. Substitution of a single residue produced little effect on

regulator specificity; these OmpR mutants were still recognized by EnvZ in the

phosphotransfer reaction, and were not phosphorylated by RstB or CpxR (data not

shown). However, mutating multiple residues simultaneously produced a more

significant switch in specificity. OmpR mutants in which three MI residues were replaced

with the corresponding residues in RstA or CpxA (Fig. 4A,C) were now only weakly

phosphorylated by EnvZ (Fig. 4B,D), although RstB did not recognize the OmpR[RstA]

mutant, and CpxA only partially phosphorylated the OmpR[CpxR] mutant. Because these

assays were carried out at only one timepoint, we tested whether CpxA displayed a

kinetic preference for wild-type CpxR over the OmpR[CpxR] specificity mutant (Fig 4E).

Indeed, CpxA recognizes the mutant better than OmpR, but not as well as CpxR,

indicating that residues outside of this region are required to determine specificity. We

tested whether the second set of residues identified by mutual information contributed to

specificity. These residues cluster near the loop between p-sheet 4 and a-helix 4. This

region is implicated in modulating the autodephosphorylation rate of RRs, and mutating

these residues in one regulator to the corresponding amino acids of a second regulator can

confer the autodephosphorylation rate of the second regulator on the first (Pazy et al.,

2009, Thomas et al., 2006). However, SpoOB/OF

20
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(A) Amino acid sequences of the receiver domains of RR specificity point mutant from OmpR to RstA.
In OmpR, co-varying residues identified by MI analysis were replaced with corresponding residues in
RstA as determined by their positions in an MSA. Mutated residues are shown in bold. Specificity
residues predicted by MI are highlighted. For complete protein sequences see Appendix.
(B) Phosphotransfer specificity of OmpR[RstA ]MI point-mutant response regulator. Each wild-type
and mutant regulator was incubated with buffer or with autophosphorylated cognate kinase (EnvZ)
or specificity target kinase (RstB). Incubations were for 10 seconds. Black arrows denote the
phosphorylated band corresponding to the positionof the regulator.
(C) Amino acid sequences of the receiver domains of RR specificity point mutant from OmpR to CpxR.
(D) Phosphotransfer specificity of OmpR[CpxR] MI point-mutant response regulators.for cognate
(EnvZ) and target (CpxA) kinases. Phosphotransfer reactions ran for 10 seconds.
(E) Timecourse of phosphotransfer specificity of OmpR[CpxR MI] mut1 for target kinase CpxA. CpxA
was autophosphorylated and free phosphate and ATP purified away. Purified, autophosphorylated
kinase was incubated with each response regulator (wild-type cognate RR, wild-type target RR, and
specificity mutant RR) or with buffer alone for 0, 10, 30,60, or 300 seconds before reaction was
stopped by the addition of SBB.



co-crystal identifies this region as having potential contacts with the histidine kinase

(Zapf et al., 2000), and so it seemed possible that this region has dual roles, in

autodephosphorylation and specificity. We mutated MI residues in this region alone and

in tandem with al mutual information residues. In both cases, these mutations did not

alter specificity (data not shown). The finding that residues identified by MI have no

effect on specificity appears to lessen the power of mutual information as an approach to

determining interacting residues. One possible explanation for the identification of these

positions by mutual information is two-component systems may in general evolve with

the constraint that they must maintain a certain rate of phosphate flow through the

system. If this is the case, phosphotransfer and other steps in signal transfer, such as

autodephosphorylation, will co-evolve to some degree. This is a matter for further study,

and our work will provide the tools to elucidate questions such as these.

Mutual information residues dictate specificity in combination with loop regions

Since HK specificity had proven to be determined both by MI residues and by a

flexible loop region that was inaccessible to computational methods, we asked whether

RR sequences might have a similar, poorly alignable loop region. In the background of

several c helix 1 specificity mutants, we mutated a loop region that was not identified by

mutual information, but was implicated as a potential HK contact site in the

SpoOB/SpoOF co-crystal. There is only a single amino acid difference in this loop

between OmpR and CpxR (Fig 5C) and a three amino acid difference between OmpR and

RstA (Fig 5A). We tested these mutants for their ability to accept a phosphoryl group

both from OmpR's cognate kinase, EnvZ, and from the new specificity target kinase,



CpxA or RstB. We first autophosphorylated each kinase and then assayed for

phosphotransfer to mutant and wild-type regulators. These mutants are no longer

recognized by EnvZ, and are phosphorylated by their specificity target kinase, CpxA or

RstB (Fig. 5D,B). In both sets of mutants, the target kinase appears to better recognize its

own cognate regulator than the specificity mutants, but the switch in specificity is

significant. Further, adding the loop region improves on the specificity of mutations in a

helix 1 alone (Fig. 4). We constructed several different a helix 1 mutations, both adding

an additional specificity residue, and returning one of the initially mutated residues (Fig.

4) to that of OmpR. We found that the additional specificity residue, in Mut3 and Mut5,

had a significant impact in both OmpR[RstA] mutants and OmpR[CpxR] mutants - it

increased the ability of the mutant regulator to receive a phosphoryl group from its target

kinase. Replacing one of the three initial a l specificity residues (Mut2) with the

corresponding OmpR residue (Mut4) had a more ambiguous effect, but it appears that

this residue does not have a significant effect on phosphotransfer preference in these

cases. Indeed, subsequent mutual information analysis has found that this residue does

not co-vary with HK residues as highly as others (Michael Laub, unpublished). These

findings further demonstrate the power of mutual information as a means of identifying

interacting residues, but also indicate the necessity of combining computational with

experimental approaches. Though we have found p5-a5 loop to be important, the bulk of

specificity appears to be determined by the residues in al , indicating that the loop region

may serve to stabilize this interaction by forming supplementary contacts with the kinase.

Mutating the loop region alone produces a regulator that is still minimally recognized by
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Figure 5: Mutation of a loop region is needed to switch response regulator specificity
(A) Amino acid sequences of the receiver domains of OmpR 4 RstA RR specificity MI+Ioop mutants.
Residues of OmpR were replaced with corresponding residues of RstA as determined by a multiple
sequence alignment. Mutated residues are shown in bold. Specificity residues predicted by mutual
information are highlighted. MI residues in alpha helix 1 were mutated, in conjunction with residues in
one loop region. For complete protein sequences see Appendix.
(B) Phosphotransfer specificity of OmpR 4 RstA Ml + loop response regulator mutants for cognate and
target kinase. Autophosphorylated cog nate (EnvZ) or target (RstB) kinase was incubated with buffer or
with an equimolar amount of response regulator. Incubations were for 10 seconds with EnvZ and for 15
minutes with RstB due tothe differential rate of phosphotransfer activities of these kinases (data not
shown).
(C) Amino acid sequences of the receiver domains of OmpR 4 CpxR RR specificity MI+loop mutants.
Residues of OmpR were replaced with corresponding residues of RstA as determined by a multiple
sequence alignment. Mutated residues are shown in bold. Specificity residues predicted by mutual
information are highlighted. MI residues in alpha helix 1 were mutated, in conjunction with residues in
one loop region. For complete protein sequences see Appendix.
(D) Phosphotransfer specificity of OmpR 4 CpxR MI + loop response regulator mutants for cognate and
target kinase. Autophosphorylated cognate (EnvZ) or target (CpxA) kinase was incubated with buffer or
with an equimolar amount of response regulator. Incu bations were for 10 seconds with EnvZ and for 15
minutes with CpxA due to the differential rate of phosphotransfer activities of these kinases (data not
shown).

EnvZ in the phosphotransfer region, and only partially recognized (OmpR[RstA]) or not

recognized (OmpR[CpxR]) by the target kinase (data not shown).

Histidine kinases have highly specific phosphatase activity

Histidine kinases have been shown to engage in two reactions with their cognate

response regulator: phosphotransfer and dephosphorylation. Though histidine kinases can

be referred to as phosphatases, they formally do not catalyze this reaction. Rather, the

catalytic residues reside in the response regulator; it has been hypothesized that HKs

increase the rate of the dephosphorylation reaction, possibly by stabilizing the transition

state, since mutation of the conserved histidine largely eliminates phosphatase activity

(Tomomori et al., 1999; Stock, 2001). Having both activities is common, but many HKs

have been described in the literature as having only kinase activity, termed

monofunctional (Alves and Savageau, 2003). Differentiating monofunctional from



bifunctional kinases in sequence or structure has proven a difficult problem (Alves and

Savageau, 2003). Another understanding of monofunctional and bifunctional kinases

seems more plausible: the dual function of kinases can be examined as a balance of two

competing activities, which can be swayed by molecular changes that make one

interaction more favorable than the other. In some kinases, this balance lies heavily to the

kinase side, so that there is little or no detectible phosphatase activity - in this case the

histidine kinase appears monofunctional. If a kinase were to exist in a monofunctional

state over a long period through evolution, it is possible that additional changes to the

system may occur - for example, the kinase no longer recognizing its cognate regulator

in a phosphatase interaction - but such changes may be difficult to detect and categorize

on a systems level. In this explanation, in which HKs in general have both phosphatase

and kinase activities, one should be able to identify determinants in HKs of both

phosphatase specificity and of the phosphotransfer/phosphatase balance. These changes

should affect interaction with the regulator and interaction between the DHp and CA

domains, respectively. This is supported by the identification of EnvZ mutants with

hyperactive kinase activity but low phosphatase activity (K+ P-), and low kinase activity

but high phosphatase activity (K- P+) (Hsing et al., 1998; data not shown).

Though our lab has previously shown that HK phosphotransfer activity is highly

specific, the specificity of the phosphatase reaction has never been studied. The

importance of HK phosphatase activity has been noted in the regulation of several

particular TCS systems (Atkinson et al., 1994), but it is not known to what degree

phosphatase activity functions to regulate TCS systems in general, and whether HKs

show a kinetic preference for their cognate regulators in dephosphorylation as well as in



phosphotransfer. Further, if not all kinases have high levels of phosphatase activity, and if

the determinants of the phosphatase interaction are different from the phosphotransfer

interaction, it is possible that there is less selective pressure to maintain specific

phosphatase activity.

To determine whether HKs have specific phosphatase activity, we first examined

the phosphatase specificity of EnvZ and several other E. coli kinases for the cognate

partner of EnvZ, phosphorylated OmpR. To obtain purified phosphorylated OmpR we

incubated OmpR with radioactive ATP and a small amount of a K+P- EnvZ mutant in

which the phosphatase activity had been decreased so that it was able to

autophosphorylate and phosphotransfer, but act only as a very weak phosphatase (Fig.

6B). Since the half-life of OmpR-P is approximately 90 minutes (Zhu et al., 2000), the

absence of phosphatase activity in the reaction allowed us to load OmpR with phosphate

for an extended time. After removing free phosphate, we then added a stoichiometric

amount of OmpR's cognate HK EnvZ or another E. coli kinase. OmpR was readily

dephosphorylated by EnvZ, but not by other kinases (Fig. 6A); these kinases have

phosphatase activity on their own cognate regulators (data not shown). These data

indicate that, as with phosphotransfer, histidine kinases have a strong preference as

phosphatases in vitro for their in vivo cognate substrates.

HKphosphatase specificity is separable from phosphotransfer specificity

We next asked whether the molecular determinants of phosphatase specificity

were identical to those of kinase specificity. Previous structural studies had not

differentiated between a phosphotransfer and phosphatase interaction between kinases
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Figure 8: Histidine kinases have specific phosphatase activity
(A) Hisitidine kinases were tested for their specificity for cognate and non-cognate regulators in the
phosphatase reaction. First, OmpR, RstA, and CpxR were each incubated with a small amount of a
K+P- version of EnvZ to phosphorylate the regulator. Free phosphate was then purified away, and
phosphorylated regulator was added either to buffer or to an approximately equimolar amount of
cognate or non-cognate kinase.
(B) We made single point mutations in EnvZ to produce two mutants that phosphotransfer effectively
(data not shown) but that have impaired phosphatase activity (K+ P-). K+P- mut1 is more impaired
phosphatase than K+P- mut2, and so this was chosen as the loading kinase to produce
phosphorylated regulator in A. Diminishing phosphatase activity did not alter the specificity of the
kinase. Purified, phosphorylated cognate (OmpR) or non-cognate (RstA) regulator was incubated
with buffer or wild-type or mutant kinase.



and regulators, but we hypothesized that the two interactions would differ for several

reasons. The position of the RR relative to the HK most likely needs to be different in the

phosphatase reaction for the conserved histidine to stabilize the transition state, and the

phosphatase interaction is complicated by the fact that, though most regulators are

thought to be monomers when unphosphorylated, they form dimers or oligomers once

phopshorylated (Stock et al., 2000). Previously identified phosphatase mutations have

been mapped to regions within the DHp domain (Hsing et al., 1998); though it is not clear

whether these mutants altered specificity or simply phosphatase activity of the kinase.

To test whether the residues that dictate phosphotransfer specificity were

sufficient to determine phosphatase specificity as well, we assayed the phosphatase

activity of six sets of MI and MI+loop mutants that were shown to partially and fully

switch phosphotransfer specificity, respectively, from EnvZ to a target kinase (Skerker et

al., 2008). When these constructs were incubated with purified, phosphorylated OmpR,

they no longer dephosphorylated OmpRP at a timepoint at which EnvZ fully

dephosphorylates it (data not shown), indicating that specificity is partly switched by

these mutations. We then tested three sets of these MI and MI+loop mutants (in which

EnvZ had been given the specificity residues of RstB, CpxA, or PhoR) for

dephosphorylation of a new, targeted RR. None of the mutants tested fully

dephosphorylated their target regulators (Fig. 7B), although, with one exception

(EnvZ[CpxA MI]), each mutant was a better phosphatase for the target regulators than

was EnvZ. These results indicate that the phosphatase and phosphotransfer specificity

determinants overlap, but are not identical.
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Figure 7: MI+loop mutants sufficient to switch HK phosphotransfer specificity are not
sufficientto switch phosphatase specificity.
(A) Amino acid sequences of the DHp domains of HK MI + loop specificity mutants in EnvZ.These
mutations are sufficient to fully switch phosphotransfer specificity of EnvZ so that it no longer
phosphorylates OmpR but instead phosphorylates target non-cognate regulator
(Skerker et al., 2008). For complete protein sequences see Appendix.
(B) Phosphatase specificity of histidine kinase MI + loop mutants. Each kinase was incubated with
buffer or with purified, phosphorylated OmpR or specificity target regulator, RstA, CpxR, or the
receiver domain alone of PhoB. Incubations were for 5 minutes.
(C) The same phosphatase reactions as in (B) were carried out for 30 minutes.



Additional determinants may be found elsewhere in the DHp domain, or,

alternatively, in the CA domain. The second region of mutual information residues

identified in HKs (Fig. 3C) represents one possibility. However, initial mutations in these

residues show no effect on phosphatase specificity (data not shown). We also tested

domain-level chimeric proteins which contained the DHp domain of a target kinase, in

this case RstB, fused to the CA domain of EnvZ (Fig. 8A). We reasoned that if specificity

resides solely in the DHp domain, these proteins would have the same phosphatase

specificity as that of the DHp donor kinase. These chimeric kinases have been shown to

autophosphorylate and phosphotransfer, with the specificity of phosphotransfer matching

that of the DHp donor kinase (Skerker et al., 2008). Chimeric RstB-EnvZ did not

dephosphorylate OmpR-P, but did act as a weak phosphatase for RstA-P (Fig. 8B). The

chimeric is not as efficient a phosphatase for RstA-P as full-length RstB is. This could

indicate two things: either that some phosphatase specificity determinants reside in the

CA domain, or that specificity is in fact determined by the DHp domain alone, but that

the interactions between the DHp and CA domain needed for phosphatase activity have

been disrupted by incompatible regions in the DHp of one kinase and the CA domain of

the other.

To differentiate between these possibilities, we examined of the activity of

isolated DHp domains. The isolated EnvZ DHp domain has previously been shown to

function as a phosphatase in vitro (Zhu et al., 2000), albeit more weakly. If specificity is

dictated solely by the DHp domain, and the chimeric proteins did not have fully switched

specificity due to disrupted inter-domain interactions, isolated DHp domains should
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function specifically. Not all DHp domains are capable of acting as phosphatases alone

(data not shown), but we found that in addition to EnvZ, the DHp domain of its ortholog

in C. crescentus, CC1181, does act as a weak phosphatase. We therefore purified the

isolated DHp domains of EnvZ and CC 1181. We also purified EnvZ DHp domains in

which the MI and MI+loop specificity residues identified in Skerker et al., 2008 had been

replaced with those of CC 1181, and compared the ability of these constructs to

dephosphorylate OmpR-P and CC 1182-P with wild-type EnvZ and CC 1181 DHp

domains. While EnvZ DHp specifically dephosphorylates OmpR and CC 1181 DHp

specifically dephosphorylates CC 1182, the mutant constructs do not dephosphorylate

OmpR, even at long timepoints. Instead, they now dephosphorylate CC1182, but with

slower kinetics than does CC 1181 (Fig. 9B). The full-length proteins display similar

patterns of phosphatase activity to their isolated DHp domains (Fig. 9C). This result

indicates that although the residues dictating phosphotransfer specificity contribute to

phosphatase specificity, additional residues in the DHp domain are required. This

experiment does not rule out that additional residues in the CA domain may also be

required, a hypothesis which is supported by the co-crystal of the subcellular domains of

Thermatoga HK853 with its cognate response regulator. This crystal structure indicates

that there are points of contact between the CA domain and RR receiver domain in the

phosphatase interaction (Casino et al., 2009).
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(B) Phosphatase specificity of full-length specificity mutants from E. coli EnvZ to its ortholog in
C. crescentus, CC1 181.OmpR and and CC 182, the cognate regulator of CC1 181, were phosphorylated
and purified. Phosphorylated regulator was then incubated with buffer, wild-type EnvZ, wild-type
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Response regulators have specific phosphatase activity

To further demonstrate that phosphotransfer determinants are insufficient to

dictate phosphatase specificity, we examined a response regulator mutant in which

phosphotransfer specificity had been rewired significantly. This approach helped to

remove some concerns about maintaining interdomain interactions, since the response

regulator effector domain has not been implicated in the catalysis of the

dephosphorylation reaction, and some regulators exist without an effector domain

(Casino et al., 2009). We assayed the phosphatase specificity of OmpR[CpxR]mut5, a

mutant of OmpR in which specificity residues had been replaced with those of CpxR

against EnvZ and CpxA (Fig. 5C). These mutations effect only a partial switch in

phosphatase specificity - the protein is not dephosphorylated by either EnvZ or CpxA

(Fig. 10), while in the phosphotransfer reaction it is not recognized by EnvZ but

transferred to by CpxA (Fig. 5D). These data are incomplete - this regulator was not

tested for an alteration in its autodephosphorylation rate - however, it is unlikely that this

is changed as none of the mutated residues were those identified by Pazy et al., 2009 as

controlling autodephosphorylation rate. This experiment further demonstrates that the

phosphatase interaction is specific, and that its specificity is determined by residues that

overlap with, but are not identical to, the phosphotransfer specificity determinants.

Determinants of histidine kinase autophosphorylation rate

In order to more fully understand how TCS systems maintain specificity, we

aimed to understand additional potential pressures on specificity residues. In particular,

residues face pressures to maintain interdomain interactions, not just interprotein ones,
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and in HKs and RRs there may be overlap between residues responsible for DHp-CA

interactions and those responsible for HK-RR ones. To study this, we asked what

residues were responsible for modulating intraprotein interactions in HKs. Both HKs and

RRs are composed of two main interacting domains, but residues involved in RR receiver

domain-effector domain interactions may be more variable, since effector domains carry

out different functions, and are even absent in some RRs. The amino acids responsible for

the other major RR activity, autodephosphorylation, have already been studied

extensively (Pazy et al., 2009; Thomas et al., 2006).

In addition to coordinating two interactions with the response regulator, the kinase

must maintain specific interactions between its DHp and CA domain to

autophosphorylate, and to dephosphorylate its response regulator. We aimed to

characterize the elements controlling HK autophosphorylation rate in order to provide the

basis for understanding and modeling of phosphate flow through TCS systems, and to

better allow for directed rewiring of one kinase function without accidentally affecting

another. This is a concern because some HK mutants that affect specificity have

inadvertently altered autophosphorylation rate as well (Jeffrey Skerker, unpublished). By

aiming to alter autophosphorylation rate without damaging the integrity of specific

transfer we may eventually parse apart and differentially alter the elements affecting the

various conformations and reactions of two-component signaling systems, as much as is

possible.

We focused our mutational analyses on the second set of co-varying residues

identified by mutual information, which map to a helix 1 of the HK DHp domain.

Residues proximal to this region have been implicated in DHp-CA domain interactions



by the structure of Thermatoga HK853 (Marina et al., 2005), and, further, if this region

has a role in regulating phosphate flow, it might explain why it is identified by MI as co-

varying with the response regulator. We made point mutations in EnvZ, both to the

corresponding residues in RstB, and to alanine. Though no time-course data were

obtained for these mutants, from two data points all of these mutations appear to alter

autophosphorylation rate; most decrease it, but one, A23 11, increases rate (Fig. 11).

These mutations have no effect on the specificity of the kinase for OmpR (data not

shown). It is difficult to conclude whether or not the mutations from EnvZ to RstB grant

EnvZ an autophosphorylation rate more similar to that of RstB because although in vitro

RstB has a slower autophosphorylation rate than EnvZ (data not shown), we have found

in vitro autophosphorylation function to vary with the length of the HAMP linker

included in the construct (Jeffrey Skerker, unpublished), though in general we have found

EnvZ constructs to be better autokinases than RstB constructs. However, it is notable that

all mutations in this region alter autophosphorylation rate.

We then tested the effect of switching specificity in these mutants. A set of three

point mutations converts the specificity of EnvZ to that of RstB (Skerker et al., 2008), but

these alone also give it a slightly decreased autophosphorylation rate (Jeffrey Skerker,

unpublished). A decreased autophosphorylation rate could have confounding effects if

this mutant were introduced in vivo. Therefore, we aimed to test whether combining

autophosphorylation rate mutants with this specificity mutant could have an additive or

compensatory effect on its existing autophosphorylation defect. We added one rate-

increasing mutation (A23 11) and one rate-decreasing mutation (A23 11 R234K T235K) to

the specificity mutant. The resulting two mutants had switched kinase specificity (data
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not shown), as well as diminished autophosphorylation rates compared to A23 11 and

A23 11 R234K T235K alone (Fig. 11). In the context of the rate increasing mutation

A2311, however, the autophosphorylation rate of the kinase is now closer to that of wild

type than was the autophosphorylation rate of the specificity mutant alone (Fig. 11 and

data not shown). In the mutant with an already decreased autophosphorylation rate,

A23 11 R234K T235K, autophosphorylation was further decreased when three EnvZ

specificity residues were swapped for those of RstB.

These data offer not only individual insights into the mechanism of two-

component system interactions, but, combined, provide the tools for directed rewiring of

them. With a more complete understanding of the determinants of signal transfer, we can

rationally redirect phosphate flow through a TCS system to understand its regulation, and

probe the constraints on two-component proteins as they evolve.



Discussion

Conclusions and future experiments

The maintenance of specificity within paralogous gene families is a fundamental

and little-understood problem in biology. In bacterial two-component signaling systems,

a histidine kinase must interact specifically with its cognate regulator, avoiding

interaction with the many non-cognate response regulators present in the same cell.

Paralogous gene families are thought to arise through a process of gene duplication and

divergence (Zhang et al., 2003), but it is not understood what pressures drive this

divergence and maintain pathway insulation.

In this thesis I identified in a response regulator the majority of the molecular

determinants of its phosphotransfer interaction with histidine kinases. I also identified a

portion of the molecular determinants of the histidine kinase and response regulator

phosphatase interaction, and those responsible for the rates of the histidine kinase

autophosphorylation reaction. By understanding the sites that control the rate and

direction of phosphate flow, we have provided the tools to rationally rewire TCS systems.

Rewiring two-component systems can allow us to specifically alter aspects of a system to

understand and model points of regulation, and to probe the constraints laid on TCS

systems as they evolve.

More cases are required to demonstrate the generalizability of these findings; I

have begun this process by partially switching E. coli PhoB phosphotransfer specificity to

that of C. crescentus PhoB, and C. crescentus PhoB specificity to E. coli PhoB



specificity, as well as altered the autophosphorylation rate of C. crescentus PhoR to more

closely resemble that of S. meliloti PhoR (data not shown). In addition, further work

remains to completely rewire these activities. While we have almost entirely switched RR

phosphotransfer specificity in two cases, it appears from these data that another residue or

two may be important in determining molecular recognition of the cognate HK; as more

two-component systems are identified and added to our multiple sequence alignment, this

residue may be identified by mutual information.

More significant molecular determinants of phosphatase specificity remain

undiscovered. Our results indicate that, in addition to DHp-RR contacts, interaction

between the histidine kinase CA domain and the response regulator may be required to

fully switch phosphatase specificity. This is supported by the recent co-crystal structure

of an HK and RR, in what appears to be the phosphatase interaction (Casino et al., 2009).

One promising target for determinants of response regulator phosphatase

specificity is a patch of residues near those involved in autodephosphorylation rate, the

loop region between P4 and a4 (Thomas et al., 2006). We have previously ruled out

these residues as being involved in phosphotransfer specificity. However, three of these

positions were identified as potential contact residues in the SpoOB/SpoOF co-crystal, and

three were found by MI analysis to co-vary highly with HK residues. More tellingly, two

positions in this loop are identified as contacting the HK linker region between the DHp

and CA domains in the co-crystal structure (Casino et al., 2009). We have taken

OmpR[RstA MI+loop] and OmpR[CpxR MI+loop] mutants similar to those tested in

Figure 5 and in addition to these mutations exchanged the p4-a4 loop for the

corresponding one in RstA or CpxR. The addition of this second loop does not alter



phosphotransfer specificity compared to the background mutations alone in either case;

however, it does appear to alter the specificity of the OmpR[RstA] mutant in the

phosphatase reaction so that it is better dephosphorylated by RstB (data not shown).

These data are preliminary, and inferred from an phosphotransfer experiment in which

both phosphotransfer and dephosphorylation were permitted to occur. Controls to ensure

that simply that autodephosphorylation rate has not been increased have not been done;

however, an increase in autodephosphorylation rate would be unlikely to have an effect,

since in both OmpR and RstA this rate is slow relative to the timescale of the experiment.

The HK-RR co-crystal identifies another loop region, between P3 and a3, as contacting

the CA domain, and this represents another potential site of partner recognition in the

phosphatase interaction. The HK-RR co-crystal structure provides insight into potential

determinants of phosphatase specificity in the histidine kinase as well, identifying several

residues in the linker region between the DHp and CA domains, and in the CA domain

that may interact with these residues in the regulator.

Finally, these mutants must be re-introduced into bacteria to demonstrate that

molecular recognition is sufficient to dictate specificity in vivo as well. This has already

been shown in several cases for HK phosphotransfer specificity (Skerker et al., 2008),

indicating that this may also be the case for RR phosphotransfer, and HK and RR

phosphatase specificity.

Understanding the evolution of specificity in paralogous gene families

This research provides tools with which we can better understand evolution in

paralogous gene families. In particular, it has been widely hypothesized, but never



measured, that loss of pathway insulation is detrimental to a cell. The hypothesis implicit

in this idea is that sequence space is, in general, small, and that negative selection against

cross-talk is the driving force in the divergence of paralogous systems, rather than

positive selection or neutral drift.

Such hypotheses are difficult to test, but a range of investigations have

approached this problem by offering evidence in support of negative selection. A small-

scale study examined a pseudogene in Yersinia pestis. Y pestis, which forms biofilms

inside fleas, evolved from Y pseudotuberculosis, which forms biofilms in other contexts

but fails to do so inside insects. Y. pseudotuberculosis contains a gene, rscA, whose

ortholog in Y pestis is a pseudogene . Replacement of the pseudogene in Y pestis with

rscA now produces a mutant unable to form biofilms in insects, indicating that the active

form of this gene had been selected against (Sun et al, 2008).

Several systems approaches to testing negative selection have also been

employed. Zarrinpar et al (2003) studied the specificity of yeast SH3 domains. In S.

cerevisiae there are 27 identified SH3 domains. Zarrinpar et al examined the interaction

of one such domain, that of Sho 1 with its target, the kinase Pbs2 and reported that the

Shol SH3, but none of the 26 other SH3 domains can interact with Pbs2, while SH3

domains from non-yeast proteins can interact with Pbs2. This suggests that negative

selection has had a role in forming the specificity of yeast SH3 domains; Shol has

evolved in the absence of non-yeast SH3 domains, and so overlap in their specificities

has not been selected against. A microarray study of the binding specificity of mouse

PDZ domains found that their specificities are spread out, rather than falling into clusters,
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indicating that cross-reactivity is selected against across the proteome (Stiffler et al,

2007).

All of these studies adopt a retrospective approach, rather than attempting to

recreate a process of evolution. On the other end of the spectrum, researchers have used

experimental evolution to map fitness landscapes (Poelwijk et al., 2007; Romero and

Arnold, 2009). In such experiments, an understanding of the accessible evolutionary

trajectories of a protein is achieved, which offers insight into the ease or difficulty with

which a protein sequence can reach a neighboring sequence through neutral drift. If a

single change occurs in an amino acid sequence, the new sequence is separated from its

parent sequence by a distance of one amino acid. Though these individual differences are

small, the space of possible proteins is very large. Even with mutations occurring in a

step-wise fashion, depending on which mutations occur, and in which order, vastly

different proteins can be reached by different evolutionary trajectories. These different

proteins give different fitnesses to the organism. By trying to evolve proteins in a directed

fashion, sequencing mutations that arise and measuring fitness levels, an understanding

of a fitness landscape emerges (Poelwijk et al., 2007; Romero and Arnold, 2009).

Future directions: a novel approach to examining the fitness consequence of cross-talk

between signaling systems

These studies offer important contributions to our understanding of evolution, but

leave unanswered questions. In particular, the consequence of cross-talk as it might occur

during the course of evolution has not been directly measured. What is the resulting

degree of cross-talk, and the fitness defect incurred, on the scale of one or two amino acid



changes? With our knowledge of TCS systems, we can make small, rational changes in a

TCS protein, and measure both the consequences of these changes to the affected

systems, and to cellular fitness.

In future work, we aim to quantify the fitness cost of small changes in a two-

component signaling system. If a point mutation is introduced into, for example, a

histidine kinase, this mutation can have several possible consequences for signal transfer.

Given our new understanding of the residues controlling the various activities and

interactions of two-component proteins, we can control and prevent alterations to

activities other than specific interaction with the response regulator have occurred by this

mutation. A specificity mutation in an HK may have no effect on the specificity of the

kinase (Fig. 12A); it may introduce new specificity for a non-cognate regulator (Fig. 12B;

it may decrease the kinase's specificity for its cognate regulator (Fig. 12C); or both (B)

and (C) may occur simultaneously (Fig. 12D). In the case of (A) we in general anticipate

that no fitness defect to be incurred. In (B) and (C), depending on the cellular importance

of the signaling systems involved and the degree of change, we expect some fitness

defect to be incurred. This experiments will explore to what degree negative selection

against cross-talk is biologically relevant - perhaps no fitness defect will be incurred by a

slight introduction of cross-talk, or perhaps loss of signaling integrity is often more

detrimental than the introduction of cross-talk.

Figure 12: There are different biological outcomes to mutation in a specificity residue
(A) When a mutation is introduced intothe specificity residues of a two-component protein, there are four
possible effects on specificity. In (A), both pathway insulation and integrity of phosphotransfer are
preserved.
(B) Phosphotransfer with the cognate protein may be maintained, but unwanted crosstalk to a non-
cognate protein may be introduced.
(C) Phosphotransferto the cognate protein may be decreased, but pathway insulation may be
maintained.
(D) Both phosphotransfer with the cognate protein and pathway insulation may be compromised.
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Experimental design: measuring in vivo fitness costs associated with introduction of

cross-talk and loss of signaling integrity

Several components are required to carry out this experiment, but each has been

tested previously in a different context. Competition experiments have widely been used

to measure cellular fitness (Hegreness et al., 2008). Two fluorescent markers can be

integrated into the genomes of two bacterial strains, wild type and a mutant. As the two

strains are co-cultured, the relative fitness of the mutant strain compared to wild type can

be measured by assaying the fluorescent marker (Fig. 13).

Using our understanding of TCS systems we can engineer mutations to alter the

specificity of a kinase. We have, in vitro, analyzed and rewiring the relevant elements

that constrain a two-component system interaction. Some constraints on TCS systems are

not directly relevant for understanding specificity because they depend on the modular

domains that vary widely between TCS systems, such as changes in system input and

output. There are also system-specific constraints involving additional proteins; several

TCS inhibiting or activating proteins have been found to bind to the intracellular domains

of the kinase or to the regulator (Paul et al., 2008; Wang et al., 1997; Atkinson et al.,

1994; Stephenson and Perego, 2002). These regulatory proteins themselves often appear

to be derived from TCS proteins.

Others are more relevant, though still not directly involved in specificity, such as

the balance between kinase and phosphatase activities in the HK, and the

autodephosphorylation rate of the RR. We have partially characterized these, in order to

be better able to alter specificity separately from other HK and RR functions. Primarily,

however, we have focused on the constraints on the molecular interactions between the
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Figure 13: Proportions of different strains in co-culture are readily measurable
(A) Two strains with different fluorescent markers,YFP and CFP, integrated into the genome have been
used in competition experiments to report the ratio of the two strains over time; this provides a
measure of the relative fitness of the strains (Hegreness et al., 2008).
(B) Ratios between two strains can be accurately reported. For each of the ratios, the same microscope
view is shown in DIC and with CFP and YFP filters.
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Figure 14: Integrity of the PhoR-PhoB signaling pathway can be reported by
alkaline phosphatase acitivity.
Reporting systems can be used to quantify phosphotransfer to cognate regulator.
Several TCS systems are especially amenable to reporters because of their biological
relevance. In particular, output of the PhoR/B system can be measured by assaying
for alkaline phosphatase activity as in (Spira and Ferenci, 2007; Fisher et al., 1995;
Chaffin et al., 1999).

Strain background:
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two proteins themselves. As these interacting residues evolve, they may be constrained

by the need to maintain structure, the need to maintain signaling rate within that system,

and the need to prevent signaling between paralogous systems. Though it may not be

wholly generalizable, the lab has demonstrated in numerous cases that specificity can be

drastically altered without compromising HK or RR structure.

We can also, with a careful choice of TCS system, assay the degree of signal

transfer of the mutated system in vivo. In this work, we have focused particular attention

on the EnvZ/OmpR system and PhoR/B systems in several different bacteria. The

PhoR/B system directly regulates the transcription of alkaline phosphatase, commonly

used as a reporter, and readily assayed and quantified (Fisher et al., 1995; Chaffin and

Rubens, 1999) (Fig. 14).

This set-up will enable us to ask what the fitness consequence is of loss of

signaling integrity. We can examine how great a loss of specificity a TCS system can

tolerate, and how much unwanted cross-talk a set of TCS systems can tolerate. Using this

basic design, we can introduce different types and degrees of specificity mutations, in

addition to mutations that simply decrease phosphate flow or introduce promiscuity into a

kinase. A chart detailing an example of how in one such an experiment fitness will be

computed is given in Figure 15. In this example, a mutation is introduced into PhoR to

change its specificity slightly so that while it will still transfer to PhoB, it now also

transfers to OmpR. In such a scenario, we can ask, if a fitness defect is incurred by this

mutation, whether it is due to the loss of signaling integrity (Fig. 12C), introduction of

cross-talk (Fig. 12B) or both (Fig. 12D). Loss of signaling integrity is a concern not just

because introducing new specificity may remove part of the old specificity, but also



defect relative fitness

phoR 1.0
phoR* 0.8
AompR 0.7
AphoB 0.5

B
where x is the quantity of fitness defect due to loss of pathway insulation
and y is the quantity of fitness defect due to loss of phosphotransfer, x+y=0.2

C phoR* insulation + -

phoR* phosphotransfer - +

genotype relative fitness

AphoR + phoR 1 1 1
AphoR + phoR* 0.8 0.8 0.8
AphoR AphoB + phoR 0.5 0.5 0.5
AphoR AphoB + phoR* 0.5 0.8*0.5 (1 -x}*0.5

AphoR+phoR 1 1 1
AphoR + phoR* 0.8 0.8 0.8
AphoR AompR + phoR 0.7 0.7 0.7
AphoRAompR + phoR* 0.8*0.7 0.7 (1-y)*0.7

Figure 15: Proposed experiment: dissection of non-cognate cross-talk and loss of
cognate phosphotransfer
(A) Hypothetical relative fitnesses of mutations.phoR* contains a specificity
mutation that may introduce cross-talk to OmpR in vivo.
(B) The resulting fitness defect may have two components.
(C) Genetic dissection of the different contributions to a fitness defect.
When a specificity mutation,phoR*, is introduced in combination with the
removal of either its cognate partner, PhoB, or its non-cognate target, OmpR,
different fitness levels, dependent on the fitnesses of the individual
mutations, are expected.



because the kinase must now divide its signal in some proportion between its cognate and

new target regulator. In an F. coli strain in which wild type phoR has been knocked out,

either wild type or mutant phoR can be reintroduced. By measuring the fitness of these

mutants in combination with those in which phoB, the cognate ofphoR, or ompR, the

target of specificity mutant phoR, have been knocked out, we may be able to differentiate

between the scenarios in Figure 12 B, C, and D. We can then ask further questions. For

example, if loss of signaling integrity causes a great fitness defect, we can then probe,

through rational mutation, what the effect of increasing PhoR autophosphorylation rate in

this context is on the fitness of that bacterium.

By providing concrete examples of the effect of small changes on cellular fitness,

we can understand the cost of loss of signaling integrity and introduction of cross-talk.

The work presented here provides the basis for these studies. By identifying the

specificity determinants of the interactions between histidine kinases and response

regulators, we can rationally rewire their specificities, and perhaps in the future,

differentially rewire kinase and phosphatase activities, as well as autophosphorylation

rate and autodephosphorylation rates, with the work of Pazy et al., 2009 and Thomas et

al., 2006. The ability to rewire different aspects of a two-component system will not only

allow us to study systems-level evolution in a paralogous gene family, but will aid in the

modeling and study of phosphate flow through individual signal transduction systems.



Materials and Methods

Computational analyses

Computational analyses were performed as described previously in Skerker et al,

2008. Putative cognate two-component proteins were identified in sequenced bacterial

genomes by selecting adjacent genes predicted to encode a histidine kinase (HK) and a

response regulator (RR), by using custom PERL scripts. The sensor and transmembrane

domains of histidine kinases were omitted, as were the effector domains of response

regulators. This retained the dimerization and histidine phosphotransfer (DHp) domain

and catalytic and ATP-binding (CA) domain of the histidine kinases and the receiver

domain (RD) of the response regulators. The domains of each cognate pair were

concatenated into a single sequence and aligned with PCMA (Pei et al., 2003) with some

manual adjustment. Analysis of mutual information was performed using published

software (Fodor and Aldrich, 2004). Columns in the alignment containing more than 10%

gaps were eliminated from consideration. We also ensured that no two sequences in the

alignment had greater that 90% identity to one another. This step helped to minimize the

detection of amino acids that co-vary due to phylogenetic relationships rather than

functional relationships.

Specificity-determining residues were mapped onto the SpoOB:SpoOF crystal

structure (PDB: 1F5 1) using PyMOL (DeLano, 2002). The asymmetric unit contains four

SpoOB and four SpoOF molecules. For clarity, only the four-helix bundle of one SpoOB

dimmer in complex with one SpoOF molecule is shown in (Fig. 3A). Distances between

residues were measured as the shortest distance between any nonhydrogen atoms.
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Cloning and protein purification

Cloning and protein purification were carried out as previously described (Skerker

et al., 2005; Skerker et al., 2008). All protein constructs contained only subcellular

domains. We have found that, in some cases, removing the full HAMP linker domain

prevents HKs from phosphorylating in vitro (Jeffrey Skerker, unpublished). In these

cases, the subcellular domains of the kinase have been purified with part or all of the

HAMP domain attached. All proteins are derived from the genome of E. coli K12, except

for CC 1181 and CC 1182 which were derived from Caulobacter crescentus CB 1 5N

Phosphorylation and phosphotransfer assays

In vitro analyses of phosphorylation and phosphotransfer were performed as

previously described (Skerker et al. 2005). Briefly, histidine kinases in 10 mM HEPES-

KOH (pH 8.0), 50 mM KCl, 10% glycerol, 0.1 mM EDTA, 2 mM DTT, 5 mM MgCl2

were autophosphorylated with 500 [tM ATP and 0.5 [iCi/ 1 [y32 P]-ATP (from a stock at

-6000 Ci/mmol, Amersham Biosciences), and then subsequently incubated with a

response regulator. Kinase and regulator were present at 2.5 [LM each. Reactions were

incubated at room temperature, and products were then separated by 10% SDS-PAGE,

exposed to a phosphor screen, and quantified by using a Typhoon 9400 Scanner (GE

Healthcare) with ImageQuant 5.2.



Phosphatase assays

In vitro analyses of response regulator dephosphorylation were performed as

follows. Response regulators in 10 mM HEPES-KOH (pH 8.0), 50 mM KCl, 10%

glycerol, 0.1 mM EDTA, 2 mM DTT, 5 mM MgCl2 (HKEDG) were incubated with a

small amount of loading kinase and 0.5 [y32P]-ATP (from a stock at -6000 Ci/mmol,

Amersham Biosciences). Total reaction volume was 50 1d. Final concentrations in the

loading reaction were 5 [tM response regulator, 0.1 [tM loading kinase, and 0.05 [tCi/ul

[y32P]-ATP. Reactions were allowed to proceed for between 1 and 2 hours, at 30* C.

After incubation, remaining ATP was hydrolyzed by addition of 7 d hexokinase and its

substrate, 4.7 mM (D)-glucose and incubated at room temperature for 7 minutes. EDTA

was generally added to a final concentration of 12.4 mM. Free phosphate was removed

by washing four times in 10k Nanosep columns with 450 tl of HKEDG.

Reaction volume was brought to 50 p1 with HKEDG and 5 p1 of the

phosphorylated regulator reaction was incubated with 5 [1 of histidine kinase in HKEDG

and ADP. Final concentrations in the phosphates reaction were <2.5 [tM RR-P

(approximate), 2.5 tM histidine kinase, <0.1 [M loading kinase (approximate), and 0.5

mM ADP. Phosphatase reactions were incubated at room temperature for the time

specified and reaction was stopped with 3.5 p1 of 4X sample buffer (500 mM Tris [pH

6.8], 8% SDS, 40% glycerol, 400 mM p-mercaptoethanol) and stored on ice until loaded.

Products were separated by 10% SDS-PAGE, exposed to a phosphor screen, and

quantified using a Typhoon 9400 Scanner (GE Healthcare) with ImageQuant 5.2.
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Appendix

Complete protein sequences of mutants used

>OmpR
LQENYKILVVDDDMRLRALLERYLTEQGFQVRSVANAEQMDRLLTRESFHLMV
LDLMLPGEDGLSICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADDYIPKPFNP
RELLARIRAVLRRQANELPGAPSQEEAVIAFGKFKLNLGTREMFREDEPMPLTSG
EFAVLKALVSHPREPLSRDKLMNLARGREYSAMERSIDVQISRLRRMVEEDPAH
PRYIQTVWGLGYVFVPDGSKA*

>OmpR[RstA]mut1
LQENYKILVVDDDMEVRALLEAYLTEQGFQVRSVANAEQMDRLLTRESFHLMV
LDLMLPGEDGLSICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADDYIPKPFNP
RELLARIRAVLRRQANELPGAPSQEEAVIAFGKFKLNLGTREMFREDEPMPLTSG
EFAVLKALVSHPREPLSRDKLMNLARGREYSAMERSIDVQISRLRRMVEEDPAH
PRYIQTVWGLGYVFVPDGSKA*

>OmpR[RstA]mut2
LQENYKILVVDDDMEVRALLEAYLTEQGFQVRSVANAEQMDRLLTRESFHLMV
LDLMLPGEDGLSICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADDYIPKTTPP
RELLARIRAVLRRQANELPGAPSQEEAVIAFGKFKLNLGTREMFREDEPMPLTSG
EFAVLKALVSHPREPLSRDKLMNLARGREYSAMERSIDVQISRLRRMVEEDPAH
PRYIQTVWGLGYVFVPDGSKA*

>OmpR[RstA]mut3
LQENYKILVVDDDMEVRALLEAYLTEHGFQVRSVANAEQMDRLLTRESFHLMV
LDLMLPGEDGLSICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADDYIPKTTPP
RELLARIRAVLRRQANELPGAPSQEEAVIAFGKFKLNLGTREMFREDEPMPLTSG
EFAVLKALVSHPREPLSRDKLMNLARGREYSAMERSIDVQISRLRRMVEEDPAH
PRYIQTVWGLGYVFVPDGSKA*

>OmpR[RstA]mut4
LQENYKILVVDDDMEVRALLERYLTEQGFQVRSVANAEQMDRLLTRESFHLMV
LDLMLPGEDGLSICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADDYIPKTTPP
RELLARIRAVLRRQANELPGAPSQEEAVIAFGKFKLNLGTREMFREDEPMPLTSG
EFAVLKALVSHPREPLSRDKLMNLARGREYSAMERSIDVQISRLRRMVEEDPAH
PRYIQTVWGLGYVFVPDGSKA*

>OmpR[RstA]mut5
LQENYKILVVDDDMEVRALLERYLTEHGFQVRSVANAEQMDRLLTRESFHLMV
LDLMLPGEDGLSICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADDYIPKTTPP
RELLARIRAVLRRQANELPGAPSQEEAVIAFGKFKLNLGTREMFREDEPMPLTSG
EFAVLKALVSHPREPLSRDKLMNLARGREYSAMERSIDVQISRLRRMVEEDPAH
PRYIQTVWGLGYVFVPDGSKA*



>OmpR[CpxR]mutl
LQENYKILVVDDDMELRALLEELLTEQGFQVRSVANAEQMDRLLTRESFHLMVL
DLMLPGEDGLSICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADDYIPKPFNPR
ELLARIRAVLRRQANELPGAPSQEEAVIAFGKFKLNLGTREMFREDEPMPLTSGE
FAVLKALVSHPREPLSRDKLMNLARGREYSAMERSIDVQISRLRRMVEEDPAHP
RYIQTVWGLGYVFVPDGSKA*

>OmpR[CpxR]mut2
LQENYKILVVDDDMELRALLEELLTEQGFQVRSVANAEQMDRLLTRESFHLMVL
DLMLPGEDGLSICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADDYIPKPFNDR
ELLARIRAVLRRQANELPGAPSQEEAVIAFGKFKLNLGTREMFREDEPMPLTSGE
FAVLKALVSHPREPLSRDKLMNLARGREYSAMERSIDVQISRLRRMVEEDPAHP
RYIQTVWGLGYVFVPDGSKA*

>OmpR[CpxR]mut3
LQENYKILVVDDDMELRALLEELLTEEGFQVRSVANAEQMDRLLTRESFHLMVL
DLMLPGEDGLSICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADDYIPKPFNDR
ELLARIRAVLRRQANELPGAPSQEEAVIAFGKFKLNLGTREMFREDEPMPLTSGE
FAVLKALVSHPREPLSRDKLMNLARGREYSAMERSIDVQISRLRRMVEEDPAHP
RYIQTVWGLGYVFVPDGSKA*

>OmpR[CpxR]mut4
LQENYKILVVDDDMELRALLERLLTEQGFQVRSVANAEQMDRLLTRESFHLMV
LDLMLPGEDGLSICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADDYIPKPFND
RELLARIRAVLRRQANELPGAPSQEEAVIAFGKFKLNLGTREMFREDEPMPLTSG
EFAVLKALVSHPREPLSRDKLMNLARGREYSAMERSIDVQISRLRRMVEEDPAH
PRYIQTVWGLGYVFVPDGSKA*

>OmpR[CpxR]mut5
LQENYKILVVDDDMELRALLERLLTEEGFQVRSVANAEQMDRLLTRESFHLMVL
DLMLPGEDGLSICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADDYIPKPFNDR
ELLARIRAVLRRQANELPGAPSQEEAVIAFGKFKLNLGTREMFREDEPMPLTSGE
FAVLKALVSHPREPLSRDKLMNLARGREYSAMERSIDVQISRLRRMVEEDPAHP
RYIQTVWGLGYVFVPDGSKA*

>PhoB
LARRILVVEDEAPIREMVCFVLEQNGFQPVEAEDYDSAVNQLNEPWPDLILLDW
MLPGGSGIQFIKHLKRESMTRDIPVVMLTARGEEEDRVRGLETGADDYITKPFSP
KELVARIKAVMRRISPMAVEEVIEMQGLSLDPTSHRVMAGEEPLEMGPTEFKLL
HFFMTHPERVYSREQLLNHVWGTNVYVEDRTVDVHIRRLRKALEPGGHDRMV
QTVRGTGYRFSTRF*

>RstA
LNVMNTIVFVEDDAEVGSLIAAYLAKHDMQVTVEPRGDQAEETILRENPDLVLL
DIMLPGKDGMTICRDLRAKWSGPIVLLTSLDSDMNHILALEMGACDYILKTTPPA



VLLARLRLHLRQNEQATLTKGLQETSLTPYKALHFGTLTIDPINRVVTLANTEISL
STADFELLWELATHAGQIMDRDALLKNLRGVSYDGLDRSVDVAISRLRKKLLDN
AAEPYRIKTVRNKGYLFAPHAWE*

>CpxR
LNKILLVDDDRELTSLLKELLEMEGFNVIVAHDGEQALDLLDDSIDLLLLDVMMP
KKNGIDTLKALRQTHQTPVIMLTARGSELDRVLGLELGADDYLPKPFNDRELVA
RIRAILRRSHWSEQQQNNDNGSPTLEVDALVLNPGRQEASFDGQTLELTGTEFTL
LYLLAQHLGQVVSREHLSQEVLGKRLTPFDRAIDMHISNLRRKLPDRKDGHPWF
KTLRGRGYLMVSAS*

>CC 1182
LENVQNAAQSELEAVRGAPSRILIVDDDPGIRDVVSDFLAKHGYVVETAQDGRT
MEQVLARGPIDLIVLDVMLPGEDGLAICRRLSATPEAPAIIMLSAMGEETDRIVGL
ELGADDYLPKPCNPRELLARVRAVLRRRQEPRAVDDAMGAACEFAGWRLDLV
RRELRSPQSIVVNLSSGEFSLLRAFVERPQRVLTRDQLLDLARGRDSDAYDRAID
VQISRLRRKLDDGGGSELIRTIRSEGYMFTAKVVRTP*

>EnvZ
LAAGVKQLADDRTLLMAGVSHDLRTPLTRIRLATEMMSEQDGYLAESINKDIEE
CNAIIEQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVK
MHPLSIKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRK
HLFQPFVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVP
VTRAQGTTKEG*

>EnvZ T247A
LAAGVKQLADDRTLLMAGVSHDLRAPLTRIRLATEMMSEQDGYLAESINKDIEE
CNAIIEQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVK
MHPLSIKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRK
HLFQPFVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVP
VTRAQGTTKEG*

>EnvZT247R
LAAGVKQLADDRTLLMAGVSHDLRRPLTRIRLATEMMSEQDGYLAESINKDIEE
CNAIIEQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVK
MHPLSIKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRK
HLFQPFVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVP
VTRAQGTTKEG*

>RstB-EnvZ full domain chimeric
PHWQDMLKLEAAAQRFGDGHLNERIHFDEGSSFERLGVAFNQMADNINALIASK
KQLIDGIAHELRTPLVRLRYRLEMSDNLSAAESQALNRDISQLEALIEELLTYART
GQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVKMHPLSIKRAVANM
VVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRKHLFQPFVRGDSAR
TISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVPVTRAQGTTKEG*



9VHAVVN(IlAgSAk-IOM"IJLgSAIVNXOONHSWAIICINIWSCIq IOVHJL91-dg-lg
NS90SIRMqlVlDq0-Ml-l(:IJLW-IgHSICIS-IqUOO-SJLWM91VJLAWONASVDVV-IA

VxdD<

*D9XJLJLD6V-dJLAdAdIM
v-aisiDoaasiLoiaqwDNHmciAraOAIVID-IDJLDSIJL-dVSCIDWAAJOAqHXUOgd
VIDdOCIagAOAMV-dNdgJLDSSANIAkDNDk-dVVNAAWNVAVUXIS-ldHW-AA91S

DdArIVJLRI MgkDSgVVIAgD-IAVMq(IVWgWdWFIODJLWIk(11,409IIVND9910NN
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*(ISNI'AVI'MgdlAASA'dJLD">IDAJLS
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JLHIV-Xg-dAVDgrldOgNWW91ADO-IAJL-IdJL-d-IgHSANVAAM JHVD910HWOJLACI

'NdOqd<
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991CIXNIVgVIVVSIMaSWg Mk ll'HAldllllCIHSADVWIIJLWCICIVIO,)IADVVI
[dool+lw-qlsX]ZAug<

*DgNJLJLDOWLA
clAdl/AV-dlSrIDDXgSL0191WDNHtqCIAI-HOAIV-ID-IDJLDSIJLXVSCID-dAAdO4-IH

NUi)gdVIOdDa(IgAOAMV ltqdgJLDSSA' ilAkDtqDk-dVVNAAWNVAV-dNlSldHw
NAgISDdkIVJLHIgUgkDSgVVIAgDIAVNI(IVWF[WdWgODJL 1-1,k(IIAOHIIVND

ggl(IXNIVgVIADGOHSWWgJL"Uk-dIUAIdJL-dICIHSADVWI-IJL-dCICIVIO-)IADVVI
[jj q-ajS'a]ZAUg<

*VSJL

AOdINHMIdtAS,4SJUVDD19SJLCIDNAJLDDWVIVISHAIVIDIDDDDJLS IcraSd(IrI
'dAAdg-4lHgUNgdVIDdDC[CIgAIIJLV-HNDSIIISJLgAJLSHDAXIVNNrlrlMCIrIA IRW
qUWCI-IVVkHDOArIJL-)IFdAJLNadJLAVOlaV-IHIS-lAk-ld-lCldgS-IHIFINOd-dCIIUV
AjL-iiagi-ivariOsicratqqvOSgVVSlt4aSWgqUk lq IA-IdJL 119HVIDCIIIONNSV
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QMGKSLTVNFPPGPWPLYGNPNALESALENIVRNALRYSHTKIEVGFAVDKDGIT
ITVDDDGPGVSPEDREQIFRPFYRTDEARDRESGGTGLGLAIVETAIQQHRGWVK
AEDSPLGGLRLVIWLPLYKRS*

>EnvZ[CpxAMI]
LAAGVKQLADDRTLLMAGVSHDLRTPLTRIRLGTELMSEQDGYLAERINKEIEEC
NAIIEQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVKM
HPLSIKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRKH
LFQPFVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVPV
TRAQGTTKEG*

>EnvZ[CpxA_MI+loop]
LAAGVKQLADDRTLLMAGVSHDLRTPLTRIRLGTALLRRRSGESKLAERINKEIE
ECNAIIEQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVK
MHPLSIKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRK
HLFQPFVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVP
VTRAQGTTKEG*

>CC 1181
ARRLAQPITAFADAAERLGKDPRTPPLNMTGSGEVVAAASAFNMMQERLRRYV
EDRTAMVGAIAHDLRTPLTRLKFRIEAAPEDIRPKLAADIDQMEAMISATLGFVR
DTNRPAERTKLELSSLLESVMDEAAETGGDATVERSEKTVIEGDPVALKRLVSNL
VENALKYGGRARGRVFSEDGMAIIEIDDDGPGVPPAELERVFEPFYRGEPSRNRE
TGGIGLGLAVVRSLARAHGGDVVLANRLGGGLRATVKLPA*

>EnvZ[CC1181_MI]
LAAGVKQLADDRTLLMAGVSHDLRTPLTRIRFRTEAMSEQDGYLAEKINKDIEE
CNAIIEQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVK
MHPLSIKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRK
HLFQPFVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVP
VTRAQGTTKEG*

>EnvZ[CC1181_MI+loop]
LAAGVKQLADDRTLLMAGVSHDLRTPLTRIRFRIEAAPEDLAEKINKDIEECNAII
EQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVKMHPLS
IKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRKHLFQP
FVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVPVTRAQ
GTTKEG*

>EnvZDHp
LAAGVKQLADDRTLLMAGVSHDLRTPLTRIRLATEMMSEQDGYLAESINKDIEE
CNAIIEQFIDYLR*

>CC1181_DHp
ARRLAQPITAFADAAERLGKDPRTPPLNMTGSGEVVAAASAFNMMQERLRRYV
EDRTAMVGAIAHDLRTPLTRLKFRIEAAPEDIRPKLAADIDQMEAMISATLGFVR*



>EnvZ[CC 1181_MI]_DHp
LAAGVKQLADDRTLLMAGVSHDLRTPLTRIRFRTEAMSEQDGYLAEKINKDIEE
CNAIIEQFIDYLR*

>EnvZ[CC1181_MI+loop]_DHp
LAAGVKQLADDRTLLMAGVSHDLRTPLTRIRFRIEAAPEDLAEKINKDIEECNAII
EQFIDYLR

>EnvZG240A
LAAGVKQLADDRTLLMAAVSHDLRTPLTRIRLATEMMSEQDGYLAESINKDIEE
CNAIIEQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVK
MHPLSIKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRK
HLFQPFVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVP
VTRAQGTTKEG*

>EnvZG240AR234AT235A
LAAGVKQLADDAALLMAAVSHDLRTPLTRIRLATEMMSEQDGYLAESINKDIEE
CNAIIEQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVK
MHPLSIKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRK
HLFQPFVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVP
VTRAQGTTKEG*

>EnvZ A2311
LAAGVKQLIDDRTLLMAGVSHDLRTPLTRIRLATEMMSEQDGYLAESINKDIEEC
NAIIEQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVKM
HPLSIKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRKH
LFQPFVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVPV
TRAQGTTKEG*

>EnvZA231 _R234KT235K
LAAGVKQLIDDKKLLMAGVSHDLRTPLTRIRLATEMMSEQDGYLAESINKDIEEC
NAIIEQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVKM
HPLSIKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRKH
LFQPFVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVPV
TRAQGTTKEG*

>EnvZT250VL254YA255R
LAAGVKQLADDRTLLMAGVSHDLRTPLVRIRYRTEMMSEQDGYLAESINKDIEE
CNAIIEQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVK
MHPLSIKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRK
HLFQPFVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVP
VTRAQGTTKEG*

>EnvZA231 T250VL254YA255R
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LAAGVKQLIDDRTLLMAGVSHDLRTPLVRIRYRTEMMSEQDGYLAESINKDIEEC
NAIIEQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVKM
HPLSIKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRKH
LFQPFVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVPV
TRAQGTTKEG*

>EnvZA231 _R234KT235KT250VL254YA255R
LAAGVKQLIDDKKLLMAGVSHDLRTPLVRIRYRTEMMSEQDGYLAESINKDIEE
CNAIIEQFIDYLRTGQEMPMEMADLNAVLGEVIAAESGYEREIETALYPGSIEVK
MHPLSIKRAVANMVVNAARYGNGWIKVSSGTEPNRAWFQVEDDGPGIAPEQRK
HLFQPFVRGDSARTISGTGLGLAIVQRIVDNHNGMLELGTSERGGLSIRAWLPVP
VTRAQGTTKEG*

Novel primers used in constructing mutants

Mutant
OmpR[RstAmut1

OmpR[RstA]mut2

OmpR[RstA]mut3

OmpR[RstA]mut4

OmpR[RstAlmut5

OmpR[CpxRjmutl

OmpR[CpxR]mut2

Template
E. coli K12 ompR

OmpR[RstAjmut1

OmpR[RstA]mut2

OmpR[RstA]mut2

OmpR[RstAjmut3

E. coli K12 ompR

OmpR[CpxRjmutl

Mutation
R15E L16V
GTCGATGACGACATGGAAGTGCGTGCGCTGCTGGAA
TTCCAGCAGCGCACGCACTTCCATGTCGTCATCGAC
R22A
CGTGCGCTGCTGGAAGAGTATCTCACCGAACAA
TTGTTCGGTGAGATACGCTTCCAGCAGCGCACG

R15E L16V R22A P106T F107T N108P
GACTACATTCCAAAAACGACGCCGCCGCGTGAACTGCTG
CAGCAGTTCACGCGGCGGCGTCGTTTTTGGAATGTAGTC

R15E L16V R22A Q27H P106T F107T N108P
GCGTATCTCACCGAACATGGCTTCCAGGTTCGA
TCGAACCTGGAAGCCATGTTCGGTGAGATACGC

R15E L16V P106T F107T N108P
CGTTATCTCACCGAACATGGCTTCCAGGTTCGA
TCGAACCTGGAAGCCATGTTCGGTGAGATAACG

R15E L16V Q27H P106T F107T N108P
CGTTATCTCACCGAACATGGCTTCCAGGTTCGA
TCGAACCTGGAAGCCATGTTCGGTGAGATAACG

R15E
CGTGCGCTGCTGGAAGAATATCTCACCGAACAA
TTGTTCGGTGAGATATTCTTCCAGCAGCGCACG
R22E Y23L
CGTGCGCTGCTGGAAGAACTGCTCACCGAACAAGGC
GCCTTGTTCGGTGAGCAGTTCTTCCAGCAGCGCACG

R15E R22E Y23L P109D
CCAAAACCGTTTAACGACCGTGAACTGCTGGCC
GGCCAGCAGTTCACGGTCGTTAAACGGTTTTGG



OmpR[CpxR]mut3

OmpR[CpxR]mut4

OmpR[CpxRjmut5

EnvZ A23 11

EnvZ A2311 T250V
L254Y A255R

EnvZ G240A

EnvZ A2311 R234K
T235K

EnvZ A2311 R234K
T235K T250V
L254Y A255R

EnvZ R234A T235A
G240A

EnvZ T247R

OmpR[CpxR]mut2

OmpR[CpxR]mut2

OmpR[CpxRlmut3

E. coli K12 envZ

T250V L254Y A255R
(Jeffrey Skerker)

E. coli K12 envZ

A23 11

A2311 T250V
L254Y A255R

G240A

E. coli K12 envZ

R15E R22E Y23L Q27E P109D
GAACTGCTCACCGAAGAAGGCTTCCAGGTTCGA
TCGAACCTGGAAGCCTTCTTCGGTGAGCAGTTC

R15E Y23L P109D
CGTCTGCTCACCGAAGAAGGCTTCCAGGTTCGA
TCGAACCTGGAAGCCTTCTTCGGTGAGCAGACG

R15E Y23L Q27E P109D
CGTCTGCTCACCGAAGAAGGCTTCCAGGTTCGA
TCGAACCTGGAAGCCTTCTTCGGTGAGCAGACG

A2311
GGTGTTAAGCAACTGATCGATGACCGCACGCTG
CAGCGTGCGGTCATCGATCAGTTGCTTAACACC

A2311 T250V L254Y A255R

GGTGTTAAGCAACTGATCGATGACCGCACGCTG
CAGCGTGCGGTCATCGATCAGTTGCTTAACACC

G240A
ACGCTGCTGATGGCGGCAGTAAGTCACGACTTG
CAAGTCGTGACTTACTGCCGCCATCAGCAGCGT

A2311 R234K T235K

CAACTGATCGATGACAAGAAACTGCTGATGGCGGGG
CCCCGCCATCAGCAGTTTCTTGTCATCGATCAGTTG

A2311 R234K T235K T250V L254Y A255R

CAACTGATCGATGACAAGAAACTGCTGATGGCGGGG
CCCCGCCATCAGCAGTTTCTTGTCATCGATCAGTTG

R234A T235A G240A

CAACTGGCGGATGACGCGGCACTGCTGATGGCGGCA
TGCCGCCATCAGCAGTGCCGCGTCATCCGCCAGTTG

T247R
AGTCACGACTTGCGCCGTCCGCTGACGCGTATT
AATACGCGTCAGCGGACGGCGCAAGTCGTGACT

Mutants for which no primers are listed were either constructed by Biobasic gene synthesis, or primers
were obtained from Jeffrey Skerker and Barrett Perchuk in Michael Laub's laboratory.
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