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Abstract

Unconventional roof technologies such as cool roofs and green roofs have been shown
to reduce building heating and cooling load. Although previous studies suggest po-
tential for energy savings through such technologies, many factors affect potential
savings. To further investigate these factors, a tool has been developed to allow
architects and designers the ability to quickly assess the energy saving potential of
different roof technologies and roof constructions for various sites around the world. A
first principles heat transfer model is developed for each of the roof technologies, with
particular care for green roof heat and mass transfer. Two sets of experimental data
from Japan and Florida validate the models by predicting roof surface temperature.
The predicted roof surface temperatures in Japan agree with measured values within
10 and 26% of peak roof temperature flucuations for the cool and green roof respec-
tively, while the same models in Florida agree with measured values there within 7.2
and 14% for the cool and green roof respectively.

The models have been integrated into a free online building simulation tool, MIT's
Design Advisor, available at http : //designadvisor.mit.edu. Numerous simulations
are run, showing that potential energy savings are found to strongly vary with many
parameters, particularly roof type, climate, and amount of insulation. For example,
a one-story building in Boston with an uninsulated modified-bitumen roof can save
82% in cooling and heating energy by adding 3 m 2 K/W of roof insulation, whereas
only 34% if an uninsulated green roof is installed instead. However, in Lisbon, the
same addition of roof insulation to the same building results in 54% savings, while
the installation of an uninsulated green roof results in a 67% reduction. Such findings
and their implications are discussed for other locations and design parameters.

Thesis Supervisor: Leon R. Glicksman
Title: Professor of Building Technology and Mechanical Engineering
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Chapter 1

Roof Technologies

Many kinds of roofs are currently in the world's building stock. As shown in Fig. 1-1,

this array of roofs varies widely in appearance. Less obvious may be the differences

in energy performance of each roof, which will be discussed in this thesis for three

types of roofs: cool roofs, modified-bitumen roofs, and green roofs.

Figure 1-1: Numerous kinds of roofs used in today's building stock. Although the aesthetic
differences between the roofs are apparent, the differences in energy impact are less obvious.
Source [38] [16] [55] [87] [1]



1.1 Potential Impact of Roofs

In the United States and most developed countries the operation of buildings accounts

for 39% of the nation's energy consumption [6]. The end-use of energy in buildings is

dominated by the heating, ventilation, and air conditioning (HVAC) systems. Fig. 1-2

shows the end-use of energy across all U.S. buildings, demonstrating that the HVAC

system accounts for roughly half of all U.S. building energy use (where the HVAC is

defined to include the space heating, space cooling, and ventilation energies). There-

fore, roughly 20% of the primary energy in the United States goes towards heating

and cooling buildings.

2006 U.S. Buildings Energg End-Use Splits

Adjust to SEDS. 6.3%
Other, 8.5Y

Space Heating. 19.8%
Computers. 2.3%

Electronics, 2.8%

Cooking, 3.3%

Wet Clean. 3.4%

Refrigeration, 5-.%Space 
Cooling, 17.7%

Lighting. 7.8%

Water Heating. 9.6% Ventilation. 12.7%

Figure 1-2: 2006 U.S. buildings energy end-use split. Source [2]

Numerous components affect the HVAC system energy use, including the building

envelope, HVAC system components, the use of natural ventilation, the local climate,

and many others. As part of the building envelope, roof technologies have received an

increasing amount of attention in recent years. The state of California, for example,

mandated cool roofs for both commercial and residential buildings in the 2008 revision

of Title 24 [34]. Green Roofs for Healthy Cities (GRHC), a non-profit industry

association aimed at promoting green roofs in North America, contracted independent

Kendon Light, E.A. to poll all corporate members of GRHC. The study found that

the square footage of green roofs in the U.S. grew 80% between the years of 2004-2005

to reach a total of 2.5 million ft 2 [391.

------ ------



Consuming approximately 20% of the U.S. primary energy, the heating, cooling,

and ventilation of buildings demands attention. The alternative roofing industry has

responded through tremendous growth and publicization of their products' benefits,

predominately energy savings. However, one roof technology will not solve all prob-

lems. Building owners must be informed of the benefits their particular building will

realize by installing an alternative roof.

To help reduce building energy consumption by more fully informing building

owners, this thesis seeks to investigate the energy saving potential of various roof

technologies, which will be discussed in the following sections.

1.2 Cool Roofs

United States Secretary of Energy Steven Chu recently advocated cool roofs at the

St. James Palace Nobel Laureate Symposium on May 26, 2009 where he stated that

if all roads were made a paler color and all roofs converted to cool roofs, there could

be "the equivalent effect of taking every car in the world off the road for 11 years"

[43]. The potential for energy savings from cool roofs is discussed in this section.

1.2.1 General Overview of Cool Roofs

A cool roof, shown below in Fig. 1-3, is a roof that has a high ability to reflect the sun's

radiation (wavelength of 0.3-2.5 pm) and emit absorbed thermal energy back to the

sky (wavelength of 4-80 pm) [4] [23]. Thus, it often remains at a lower temperature

than traditional roofing materials, up to 28-33 C cooler, which can lead to energy

savings [90].

Two physical properties determine how "cool" a cool roof is: its reflectivity in the

solar wavelength and its emissivity in the infrared wavelength. The relevance of these

two properties for a roofing system is summarized in Fig. 1-4 below.

Although cool roofs are typically white Fig. 1-3, because of the color's inherit

high solar reflectance and thermal emittance, commercial cool roof coatings are now

available in an assortment of colors [60] [56]. Lawrence Berkeley National Laboratory
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Figure 1-3: (left) This roof's white coating allows it to reflect much of the sun's radiation

and emit absorbed energy well. (right) The measured roof surface temperature for a stan-

dard roof, solid line, and cool roof, dotted line, on a commercial building in Austin, TX.

Source [16][51]

Figure 1-4: Both reflectivity and emissivity affect the incoming energy to the building

through the roof. Source [4]



(LBNL) has developed an online database of a wide variety of "cool" color pigments

[3]. Some of these "cool" colors are shown below in Fig. 1-5, as well as a home with

a colored cool roof [55].

Figure 1-5: (left) A few of the "cool" color pigments analyzed by LBNL found in their
online database. (right) A home with a colored cool tile roof installed. Source [55]

Some of these pigments were used in an experiment on homes in California, in

which the researchers painted roof tiles six different colors in both "cool" and con-

ventional colors [56]. Below, in Fig. 1-6 are figures from their paper comparing the

surface temperatures and reflectivities of the tiles.

Color Pstandard Pcool

Terracotta 0.33 0.48

Chocolate 0.12 0.41

Gray 0.21 0.44

Green 0.17 0.46

Blue 0.19 0.44

Black 0.04 0.41

Figure 1-6: (left) Surface temperature of colored roof tiles. The "cool" roof tiles are on
the top row and the conventional roof tiles are on the bottom. Surface temperatures were
measured from 11:20 to 11:30 AM solar on 17 September 2003 (outside air temperature 27
C, horizontal global insolation 820 W/m 2). (right) The measured reflectivities for the roof
tiles shown on the left. Source [56]



1.2.2 Benefits of Cool Roofs

As previously mentioned, cool roofs can help significantly lower roof surface temper-

atures. This temperature reduction leads to numerous benefits, which are discussed

below.

Cooling Energy Savings

Lower roof temperatures of cool roofs can lead to two primary benefits. First, cooling

energy can be reduced as the net heat flux into the building decreases with lower roof

temperature. The energy savings vary widely in the literature, as Hashem Akbari

of the Heat Island Group at the Lawrence Berkley National Laboratory has shown

savings to be as high as 80%, while Levinson et al has shown savings as low as 1%

[21][56]. One study alone found a variance of 41% in homes with cool roofs [67].

Akbari compiled a table reviewing the measured summertime air-conditioning

daily energy savings and demand from cool roofs [51]. The summertime air-conditioning

savings alone, which are expected to be the highest of the year because of the high

outdoor temperatures, vary from 1-63%. The lowest savings come from buildings

with high insulation and small changes in roof reflectance, while the greatest changes

come from buildings with little insulation and large changes in roof reflectance [51].

Akbari's summary is copied below in Fig. 1-7.

Another study shows the shift and reduction in peak power use with cool roofs

during the summertime in Sacramento, CA , shown in Fig. 1-8 [21].

The investigators found that the high albedo (or high reflectivity) average daily

summertime peak load lies about 0.5 kW below, and two hours after, the low albedo

peak. Although the reduction in peak power is significant, for the majority of hours

each day the average summertime cooling use is approximately the same for both

conventional and cool roofs. During the evening hours, the cool roof actually has

higher cooling energy use because of the shifted peak.

The same study investigated the reduction in summertime cooling load in an

89 m2 one-story school also in Sacramento, CA with roof insulation 3.34 m 2C/W.
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Figure 1-7: Hashem Akbari's summary of documented field studies of measured summer-
time air-conditioning daily energy savings and demand from cool roofs. Ap is the change
in roof reflectivity with the cool roof installation and RB is a radiant barrier. Note the
positive correlation between Ap and summertime air-conditioning savings along with the
negative correlation between the insulation R-value and summertime air-conditioning sav-
ings. Source [51]

Because of the variable internal loads due to student occupation, the thermostat was

set between 21-26 C throughout the experiment. The metal roof underwent multiple

configurations: Metal (albedo = 0.34, emissivity = 0.30), Brown (albedo = 0.08,

emissivity = 0.95), and White (albedo = 0.68, emissivity = 0.91) over the course of

the experiment. Fig. 1-9 below plots the daily air conditioning use versus outside air

temperature of the roof during the experimental session of June 17 through October

15 [21].

In Fig. 1-9, the regression lines of the different configurations immeadiately show

the energy savings of using the White roof over the Brown or Metal for temperatures

between 22-25 C. At temperatures lower than 22 C, there seems to be little difference

between the A.C. use for different roof types. The significant difference between the

reduced demand
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Figure 1-8: Average summertime cooling load shapes for a 170 m 2 one-story home in
Sacramento, CA with roof insulation 1.94 m2C/W. Average daily temperatures of data
shown is between 23.1 and 25 C, and the thermostat is set to 26 C for cooling. Squares
and solid line represent hourly load averages for low albedo days with cooling energy use.
Triangles and dashed line represent hourly load averages for high albedo days with cooling
energy use. The high albedo average daily peak load lies about 0.5 kW below, and two
hours after, the low albedo peak. Source [21]

occupied and vacant White roofs indicates the importance of maintaining constant

internal loads when considering the energy saving potential of roofs

All of the studies mentioned above were conducted in California, Florida, or other

warm to hot climates where cooling loads dominate building energy use. Furthermore,

the majority were conducted during the summer months, during which time the

savings from cool roofs is expected to be highest. Studies have shown that cool roofs

can save the most amount of energy in cooling-dominated climates because their

high solar reflectance keeps heat from the roof, while their high thermal emittance

allows energy to escape the roof [22]. However, in cold climates, those attributes

lead to higher demand for energy [22] [96]. One comprehensive study by the National

Institute of Standards and Technology (NIST) simulated building energy performance

for cool roofs in six climates aroud the United States [96]. In every climate, the

heating energy increased with the installation of a cool roof. Fig. 1-10 below shows
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Figure 1-9: Daily summertime cooling energy use at an 89 m 2 one-story school in Sacra-
mento, CA with roof insulation 3.34 m2C/W. The thermostat is set between 21-26 C
throughout the experiment. Roof albedos: Metal (albedo = 0.34, emissivity = 0.30), Brown
(albedo = 0.08, emissivity = 0.95), and White (albedo= 0.68, emissivity = 0.91). Squares
and solid line represent data collected during the vacant white roof period. Triangles and
dashed line describe data collected during the occupied white roof period. Circles and dot-
dash line represent data collected in the metal roof period (vacant). Diamonds and dotted
line represent data collected in the brown roof period (vacant). Source [21]

the increase in annual heating energy for a home in Bismark, North Dakota (which

had the lowest percent increase in heating energy of the six climates).

Although the cool roof saves cooling energy for the home in Bismark, the increase

in heating energy must be considered when looking at the net impact of the cool roof

on the total annual energy consumption.

Reduced Urban Heat Island Effect

The second primary benefit of a lower roof surface temperature is a decrease in the

Urban Heat Island (UHI) effect. This well researched phenomena occurs in urban

centers where vegetation and open land are replaced with concrete and buildings

and can lead to an increase in ambient temperatures of 2.5 K [20] [90] [80] [19].

Furthermore, it has been shown that each degree Kelvin rise in ambient temperature

Nlba
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Figure 1-10: Simulated annual heating load in MJ for a one-story home in Bismark, ND
with various roof reflectivities and insulation levels. Note the increase in heating energy as
the roof reflectivity is increased. The percent increase in heating energy for Bismark is the
smallest among the 5 climates considered in the study. Source [96]

increases energy demand by 2-4% [19]. Thus many cities around the world are paying

for the UHI effect, like Los Angeles where it is estimated the city pays $100 million

a year for their 1-1.5 GW increase in energy demand from the UHI effect [19]. The

UHI is a complex phenomena caused by numerous factors, including decreased urban

albedo, increased thermal mass, increased surface roughness, increased heat released

from buildings and vehicles, and decreased evaporative areas (or more impermmeable

areas) [80].

Cool roofs help decrease the UHI effect by raising the urban albedo, which reflects

more of the sun's energy back to the sky [20] [90] [80].

Smog Reduction

As a result of lowering the peak summertime ambient temperature, cool roofs help

decrease the amount of smog in cities. The Heat Island Group at the Lawrence

Berkeley National Laboratory found that for every 1 C temperature rise above 22 C,

incident smog in Los Angeles increased by 5% [20].



Minimal Cost Differential

Another benefit of cool roofs is their ease and cost of installation. Built-up roofs are

typically coated with a protective layer, in lieu of which a cool roof coating can easily

be used [30]. In many cases, choosing the cool roof over the traditional roof at the

time of installation or repair can be done with no additional cost. In nearly all cases,

the cool roof can be installed for less than 30% additional costs [30].

Prolonged Roof Life

Additionally, the lower surface temperatures of cool roofs on hot days decrease the

amount of thermal stress on the roof. This decreased thermal stress is expected to

lead to generally longer lifespans compared to traditional roofs [30].

Additional Consideration

However, nearly all cool roofs suffer a loss in performance over their lifespan, especially

on flat roofs. Dirt and other particulates build up over time on the roof surface and

lower the albedo, though the effect is less significant on a sloped roof [30]. Bretz found

that multiple cool roofs that began with albedos of 0.5-0.7 were eventually dirtied to

have albedos of 0.3-0.6 [30]. Most of the albedo decrease happens within the first

months of installation. Although soap can easily restore the original albedo of many

cool roof surfaces, Bretz's financial analysis concludes the additional maintenance

costs of washing are not economical [30].

1.2.3 Areas for Research - Cool Roofs

It has been shown that the ability of cool roofs to reduce roof surface temperature

can lead to cooling energy savings, reduce the UHI effect, potentially decrease the

amount of smog, and help lower a city's energy use. Furthermore, it is known that

cool roofs use more energy than conventional roofs in cold climates or during the

winter in moderate to warm climates. However, in which climate does having a cool

roof save energy over the length of a year? Lastly, the negative correlation between



the amount of insulation and energy savings has been shown, but the amount of

insulation past which a cool roof has minimal savings over a conventional roof is yet

to be determined.

1.3 Modified-Bitumen Roofs

The roofing surface of choice in the US and other OECD countries for flat roofs,

modified-bitumen roofs are easily noticeable above most cities for their contrasting

black color, as shown below in Fig. 1-11 [151.

Figure 1-11: Black modified-bitumen roofs fill Boston's residential Back Bay (left) and
commercial downtown areas (right), as is the case in many OECD cities. Source [8]

1.3.1 General Overview of Modified-Bitumen Roofs

Modified-bitumen roofs consist of a blend of bitumen, or asphalt, and polymer that

allows the asphalt to take on properties of the polymer [12]. Some of the benficial

properties include an increase in resistance to brittleness at cold temperatures, greater

flow resistance at high temperatures, and a higher elasticity [11].

Modified-bitumen roofs were first developed in Europe in the 1960s, but were

quickly introduced to the United States and Canada, where they have flourished

[11]. They are designed for flat or low-sloped roofs and therefore are often used

on commercial buildings. As shown in Fig. 1-12, they typically consist of a top

coating, the bitumen-polymer layer, a waterproofing layer, and insulation above the



roof structural support. Although Fig. 1-12 shows a steel structural support, concrete

is often used as well.

Figure 1-12: Cross section of a modified-bitumen roof, showing the top coat, bitumen-
polymer, waterproofing, and insulation layers. Source [13]

Because of the low reflectivity of thier topmost coating, conventional modified-

bitumen roofs absorb up to 96% of the sun's radiation that reaches the Earth's surface

[56]. This low reflectivity leads to high roof surface temperatures, reaching up to 76

C or higher [51]. Despite the wide-spread use of modified-bitumen roofs, they have

helped increase city temperatures, leading to the UHI effect, as previously mentioned.

1.4 Green Roofs

The New Yorks Times recently published an article on the green spots that are be-

ginning to dot New York City's skyline, which are green roofs. See Fig. 1-13 for

one such roof. In the article, Dr. Stuart Gaffin, Associate Research Scientist at

Columbia's Center for Climate Systems Research, describes the vegetation that cre-

ates green roofs by saying, "They're nature's geniuses at staying cool" [33]. This

section describes green roofs and investigates how "cool" they really are.



Figure 1-13: An extensive green roof in New York, New York. Source [14]

1.4.1 General Overview of Green Roofs

A green roof, sometimes called a living, sod, or vegetated roof, is one covered par-

tially or entirely with vegetation growing in soil. Today, modern green roofs include

numerous additional components to help protect the building, such as drainage, wa-

terproofing, and insulation layers. The schematic of a characteristic green roof system

is shown in Fig. 1-14 below.

Green roofs can be split into two broad categories. Intensive green roofs, shown

below in Fig. 1-15, are charactereized by heavier structural loads, high capitol and

maintenance costs, and accessibility to occupants. Additionally, intensive green roofs

allow for a greater variety of plants including hardy perennials, native flowers, shrubs,

and even trees. These plants require regular maintenance including watering and

weeding. Soil depth is typically 15-61 cm (or more) and weight load is 390-732

kg/m 2 [64].

Extensive green roofs, also shown below, are characterized by lower capitol and
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Figure 1-14: Typical construction schematic of a green roof. Source [10]

maintenance costs and lighter structural loads. Plants such as sedums and prairie

flowers are utilized because they are low to the ground and require less maintenance

(requiring occasional weeding and watering) and can tolerate many weather condi-

tions. Soil depth is typically 2-15 cm and weight load is 73-244 kg/m 2 [64]

In their report Design Guildlines for Green Roofs, Canadian architects Steven

Peck and Monica Kuhn weigh the advantages and disadvantages of intensive versus

extensive green roofs in a table copied below in Fig. 1-16 [53]. It should be noted

that this table is included to help compare the two types of green roofs and not

make definitive statements about them. For example, an extensive green roof can be

asthetically pleasing or an intensive green roof may be less energy efficient than an

extensive one.



Figure 1-15: (left) An intensive green roof, characterized by heavier structural loads, high
capitol and maintenance costs, and accessibility to occupants. (right) An extensive green
roof, characterized by lower capitol and maintenance costs and lighter structural loads.

Source [64] [38]

EXTENSIVE GREEN ROOF INTENSIVE GREEN ROOF

SThin growing medium; little or no Irrigation:
stressful conditions for plants; low plant diversity,

Advantages:
. Lightweight roof generally does not require

reinforcement.
" Suitable for large areas.
- Duitable for roofs with 0 - 30 (slope).
* Low maintenance and long life.
- Often no need for Irrigation and specialized

drainage systems.
. Less technical expertise needed.
- Often suitable for retrofit projects,
e Can leave vegetation to grow spontaneously.
- Relatively inexpensive.
. Looks more natural.
- Easier for planning authority to demand

as a condition of planning approvals.

Disadvantages:
. Less energy efficiency and storm water

retention benefits.
- More limited choice of plants.
e Usually no access for recreation or other uses.
+ Unattractive to some, especially in winter.

- Deep soil; irrigation system; more favorable
conditions for plants; high plant diversity;
often accessible.

Advantages:
- Greater diversity of plants and habitats.
* Good insulation properties.
- Can simulate a wildlife garden on the ground.
- Can be made very attractive visually.
- Often accessible, with more diverse utilization

of the roof. i.e. for recreation, growing food, as
open space.

- More energy efficiency and storm water
retention capability.

" Longer membrane life.

Disadvantages:
- Greater weight loading on roof
- Need for Irrigation and drainage systems

requiring energy, water materials.
- Higher capital & maintenance costs.
. More complex systems and expertise.

Figure 1-16: Comparative chart between extensive and intensive green roofs from Canadian
architects' Design Guildlines for Green Roofs, which provides a succinct summary of the

general differences between the two types of green roofs. It represents the opinions of

the architects who created it, thus, for example, an extensive green roof can be asthetically

pleasing or an intensive green roof may be less energy efficient than an extensive one. Source

[53]
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1.4.2 Benefits of Green Roofs

Numerous benefits of green roofs have helped propel them to cover 10 million m 2 of

roof area in Germany over a decade ago [53]. Similar widespread use spans other

European countries and even the United States, where extensive green roofs have

grown more than 50% for four subsequent years [59].

Reduced storm water runnoff

One benefit of green roofs is their potential to reduce storm water runoff, a problem

increasingly striking urban centers. Green roofs help reduce storm water runnoff by

absorbing rainfall in the growing media, which is later used for evapotranspiration

by the vegetation and soil. This absorption and subsequent evapotranspiration, often

referred to as retention, directly removes water from storm-water and sewage systems.

The storm-water reduction benefits of green roofs are well documented through field

studies and simulations, though consensus is not entirely reached on the extent of

the benefits. One study compares an extensive green roof to a modified bitumen roof

and found that for light rainfall, 2.1 mm, the retention of the green roof was 85.7%.

However, in heavier rainfall, 12.1 mm, while the green roof delayed the runoff by 30

minutes, it failed to retain more than the conventional roof as both cases had the same

runoff volume [84]. Another study found an average retention rate for an extensive

green roof in Athens, GA to be 78% [32]. Nearly every storm that dropped less than

0.5 in (13 mm) of rainfall was retained by over 90%. The lowest retention occured

during a 2.12 in (53.8 mm) rainfall, and was found to be 39% [32]. A third experiment

in Canada reports detailed data from a 34 mm rain event over an extensive green

roof and reference modified bitumen roof, shown below in Fig. 1-18 [29].

All three experiments found that after the soil is saturated (or its field capacity

reached), any additional rainfall will be runoff. For such rain events, green roofs pro-

vide retention in which rainfall is temporarily absorbed and later slowly released, thus

reducing the surge of storm-water to the city's drainage system normally associated

with conventional roofs [44]. The aforementioned Canadian experiment, which was
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Figure 1-17: Rain event on Canadian extensive green roof on October 5-6, 2001. The
purple line, Rain, is essentially matched by the blue line on top, Runoff-R, which is the
measured cumulative runoff from a conventional roof, indicating that the traditional roof
is completely impervious. The green line, Runoff-G, shows the initial delay then reduced
runoff flow rate of the green roof. At approximately midnight, the green roof becomes
saturated and follows the Runoff-R curve, though is always 8 mm lower indicating the 8
mm of rainfall retained by the green roof. Source [29]

conducted over 5 years, found the retention rate of an extensive green roof to vary

significantly with month of the year [28]. Due to extremely cold winters, in which

all precipitation was snow, only the spring and summer months should be noted for

storm-water runoff data below in Fig. 1-18. Additional factors that affect the storm-

water retention capability of a green roof are evaporation and transpiration potential,

antecedent moisture conditions, and soil hydraulic properties [44]. Although the exact

retention capability of green roofs vary, it is well accepted that they can significantly

help reduce storm-water runoff.

Lower roof temperatures

It is well accepted that green roofs can significantly lower roof surface and membrane

temperatures in warm climates [82] [76] [92] [29]. Roof surface temperature reductions

over 30 C have been observed in multiple field experiments, one of which is shown

in Fig. 1-19, in which summertime roof surface temperatures for a conventional and

extensive green roof in Orlando, FL are plotted. As mentioned in Section 1.2.2, lower
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Figure 1-18: Cumulative monthly rainfall and runoff from the reference and extensive
green roofs from Ottawa, Canada (averaged from 2002 - 2005). The minimal runoff during
Jul and Aug is reported to be from increased evaporation potential (likely due to hotter
ambient temperatures). Source [28]

surface temperatures can help mitigate the UHI effect.

conventional roof

green roof

Hour of Day

Figure 1-19: Average summertime surface temperature on a 307 m2 building in Orlando,
FL. Half of the roof is a conventional roof (upper curve) and half is an extensive green
roof (lower curve). The amount of insulation varies from R-value 17-38. Different colors
represent different temperature sensor locations. Source [351.

. .... .......



Prolonged Roof Life

Additionally, green roofs help moderate the temperature of roofs, as shown below

in Fig. 1-20. Even in cold climates, such as northern Canada, green roofs can help

moderate roof temperatures, though their impact is insignificant during the winter

[29]. This temperature moderation often leads to longer roof membrane life. Two

comparative studies between conventional roofs and green roofs have reported the life

of a conventional roof membrane to be 10 and 15 years, while the membrane under a

green roof is forecast to last 40 and 45 years [93] [52]
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Figure 1-20: Daily temperature flucuation for a traditional roof (blue squares), green
roof (green triangles), and ambient air (pink circles) in Ottawa, Canada. Note the higher
flucuations of the traditional roof from Feb - Oct, which lead to higher thermal stress and
shortens roof lifespan. During the winter months, there is an indistinguishable difference
between to green and traditional roofs. Source [29]

Improved aesthetics

Green roofs often improve the aesthetics of the rooftop environment from an extremely

hot black sheet of tar to a more tranquil vegetated area. This benefit of green roofs is

dificult to quantify, but green roof advocates insist that green roofs increase property

value, satisfy "the aesthetic needs of people" in surrounding buildings, and potentially

increase employee productivity [9].



Energy saving potential

Onmura found a 50% reduction of heat flux through a concrete slab with vegetation

compared to a bare concrete slab and extrapolated the results to green roofs in general

[65]. Lazzrin conducted experiments on a hospital in Italy and found energy savings

to be seasonal. In the summer, he found that the heat entering through the roof

was nearly halved by a dry green roof and for a wet green roof, energy was actually

leaving the building [54]. However, in the winter, he found that a green roof increased

the amount of heating energy required [54]. Green roofs can, however, save energy

during the winter. In a Canadian study, Bass and Baskaran measured the daily energy

requirement for space conditioning in both a building with an extensive green and

conventional roof in Ottawa, Canada. They found that the green roof saved total

energy (space heating and cooling energy combined) in every month except January,

where the green roof consumed roughly 10% more than the conventional [29]. Fig. 1-

21 below summarizes the findings from nearly a year of measurements.

8

7 R

6

5

LL

2

0
Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Figure 1-21: Average daily energy requirement due to the heat flow through the roof
surfaces from Nov 22, 2000 - Sep 31, 2001 in Ottawa, Canada. The blue bars, denoted R,
are for a reference conventional roof while the green bars, denoted G, are for an extensive
roof. Source [29]

Sonne observed the impact of a green roof on a two-story building in Florida and

found that during the summer, an average heat flux of 1.51 W/m 2 with a conventional

roof was reduced to 1.23 W/m 2 with a green roof, an 18% reduction [76]. Although
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these percentages may seem encouraging, they depend on numerous parameters (as

will be later shown) and the impact on total building energy can be less substantial.

Reduced sound propogation

Numerical modeling suggests that green roofs can also reduce sound propogation

through cities [69]. Under perfect conditions, a maximum 10 dB reduction in the

adjacent urban canyon was simulated by switching from a conventional roof to an

extensive green roof [69]. This maximum decrease was only noted in dense urban

canyons [69]. Although this noise reduction may seem encouraging, 10 dB is the

difference between a power saw at 3 ft and a motorcycle [5]. Additionally, by adding

3 in of expanded polystyrene insulation to concrete, a 36 dB reduction is reported

from the environment to inside the building [7].

Pollution and air particulate removal

As with any vegetation, green roofs help remove particles and pollution from the air.

It has been estimated that if all the roofs in Washington, DC were green roofs, 58

metric tons of air pollutants could be removed [36]. Such potential can be exciting,

but when a more realistic total green roof area is used, the reductions are not as

large. One study considered 71% (or 19.8 ha) of Chicago's green roof area, (the

leading promoter of green roofs in the US) and found through simulation that green

roofs removed 1675 kg of air pollutants in just under a year [94]. A field study on

a 4000 m 2 green roof in Singapore found the particle and S02 concentration above

the roof dropped 6% and 37% respectively by installing a green roof [95]. Similar

results were found, however, using trees planted in the urban center. Based on a US

Department of Agriculture report and Yang's simulations, a medium-sized tree will

remove as many pollutants as a 19 m 2 extensive green roof, but will only cost $400

rather than $3059 [94][58].



Additional useable space

In the case of intensive green roofs, additional space is often provided for recreation,

growing food, and numerous other activities, including a golf course and outpatient

care space as shown in Fig. 1-22 [9].

Figure 1-22: (top) 6,500 ft 2 intensive green roof atop the Massachusetts General Hospital
Yawkey Center for Outpatient Care and (bottom)15,000 ft 2 intensive green roof in Berlin,
Germany on the coporate offices of Giese + Giese. Source [9]

1.4.3 Areas for Research - Green Roofs

This investigation into the energy saving potential of various roof types does not seek

to add another statistic to the long list of energy savings achieved by installing a green

roof. Instead, it seeks to establish a common standard that can be used to compare

the energy saving potential of numerous types of roofs. Therefore, it aims to fill a

gap in the literature by providing a comparison between different roof technologies in

different climates.

1.5 Roof Construction

Three different types of roofs have been described in detail thus far. Each of these

roofs, however, can share multiple commonalities in how they are constructed.



1.5.1 Roof Insulation - Amount

Insulation is well known to help moderate temperatures in buildings and therefore

help reduce building energy consumption. The magnitude of this moderation and

reduction is discussed in this section.

Temperature Moderation

An experiment in Sri Lanka investigated the effect of insulation on the soffit tem-

perature of small-scale buildings [42]. The soffit is the underside of the roof slab,

and thus its temperature is the same as the cieling underneath the roof, assuming no

drop ceiling is used. In a tropical climate like Sri Lanka, it is ideal to have a lower

soffit temperature. Fig. 1-23 shows the decrease in soffit temperature during a hot,

cloudless day for a concrete roof with 0, 25, 38, and 50 mm of expanded cellular

polyethylene insulation, corresponding to R values of 0.0, 0.71, 1.1, and 1.4 m 2C/W

respectively.
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Figure 1-23: Soffit temperature on small-scale buildings in Sri Lanaka on a hot, cloudless
day for a concrete roof with R values of 0.0, 0.71, 1.1, and 1.4 m 2C/W, corresponding to
0, 25, 38, and 50 mm of expanded cellular polyethylene insulation. Note the near 8 C
temperature difference between the roof with 0 and 25 mm of insulation. The variation of
temperature between the cases with insulation is much less, only decreasing by 1 C when
insulation is doubled. Source [42]

It is shown in Fig. 1-23 that a modest amount of insulation, 2.5 cm, can signifi-

cantly reduce soffit temperatures in a building, by up to 8 C in the tropical climate

of Sri Lanka [42]. In a building with no dropped ceiling, this cooler soffit is in direct

contact with the indoor air, leading to cooler indoor conditions.



Building Energy Reduction

It has been shown that adding insulation can significantly lower soffit temperature,

however, what is the impact of this lower temperature on energy use? The same Sri

Lankan study calculated the heat flux into the building through the roof for the 0,

25, 38, and 50 mm insulation cases. Their findings are shown below in Fig. 1-24
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Figure 1-24: Heat flux into small-scale buildings in Sri Lanka on a hot, cloudless day for
a concrete roof with R values of 0.0, 0.71, 1.1, and 1.4 m 2C/W, corresponding to 0, 25,
38, and 50 mm of expanded cellular polyethylene insulation. Note the peak reduction of
nearly 90 W/m 2, or 90%, average daytime difference between the 0 and 50 mm insulation
cases. By changing the amount of insulation, the 1 C decrease in soffit temperature shown
in Fig. 1-23 results in an 10-15 W/m 2 decrease. Source [42]

This reduction in heat flux through the roof can be compared to the reduction

caused by installing a green roof. A Japanese experiment measured surface and soffit

temperature, net radiation, water content, and other parameters needed to estimate

the different modes of heat transfer on a green and conventional roof [82]. The roof

had no insulation, so the only difference between the two sets of data was the roof

type. FRom the measured data, the heat flux into the building was determined. The

calculated heat flux into the building during a hot summer day in Kobe, JP, is shown

below in Fig. 1-25.

A comparison of Figs. 1-25 and 1-24 shows that both adding insulation and in-

stalling a green roof help reduce heat flux into buildings on a hot day. Because of the

different experimental constructions between the Sri Lankan and Japanese studies,

as well as different climates, it can not be determined whether adding insulation or

installing a green roof more greatly reduces roof heat flux into buildings. Although

the percent reduction in heat flux from adding insulation is higher, nearly 90% for



Figure 1-25: Heat flux into a full-scale building in Kobe, JP on a hot summer day with
no insulation. Note the average daytime reduction of nearly 150 W/m 2, or 60% from
installing a green roof. The insulating effects of the green roof prevent any night cooling
from happening, which occurs with the conventional roof, as evidenced by the negative heat
flux. Source [82]

insulation compared to approximately 60% for a green roof, the absolute reduction

from adding a green roof is nearly twice that of the reduction from adding insulation,

approximately 150 W/m 2 for the green roof compared to approximately 45 W/m 2 for

the insulation.

Few studies have tested the impact of varrying the amount of insulation on green

or cool roofs. A simulation of a green roof in Greece predicted that the annual

total energy savings from a green roof were negligible, 2%, when "heavy insulation"

was used, which resulted in an overall roof R value of 3.85 m2C/W (which included

insulation and structural concrete slab). When "moderate insulation" was used with

overall roof R value of 1.35 m 2 C/W, an annual total energy savings of 4% were

estimated [63]. The same comprehensive study by NIST mentioned in Section 1.2.2

considered, among a few other roof construction factors, the role of insulation on the

annual heating and cooling energy for a building with various roof reflectivities [96].

The study found large savings in cooling energy when a cool roof was installed, but

in nearly every case, the minimum cooling energy was realized when insulation was

added in addition to a cool roof. Fig. 1-26 shows some of the key findings of these

two studies with regard to the effect of insulation on the energy savings from green
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Figure 1-26: (left) Simulated annual total energy savings from installing an extensive
green roof on a building in Greece. The overall roof R value for the non, moderate, and well
insulation cases are 0.129, 1.35, and 3.85 m 2C/W respectively. (right) Simulated annual
cooling load in MJ for a one-story home in Miami, FL with various roof reflectivities and
insulation levels. Note the large potential savings of installing a cool roof, changing the
reflectivity from 0.2 to 0.8, when no insulation is present. Source [63][96]

In Fig. 1-26, although the savings decrease when insulation is used, the total

annual load is significantly reduced with a small amount of insulation, 1.9 m 2C/W,

even without a cool roof. In both studies, the potential savings of installing the green

or cool roof are greatly reduced when insulation is present, though the total cooling

energy is reduced.

1.5.2 Roof Insulation - Location

Not only does the amount of insulation affect the building's performance, but where

the insulation is added within the roof assembly also has an impact. A study in

Turkey used a first-principle analytical model of a concrete roof to show the impact

of insulation location within the roof assembly [66]. Twelve location configurations

were modeled, many of which are physically difficult to reproduce, because insulation

was added within the structural support slab. For each location, two amounts of

insulation were considered, 6.0 and 9.0 cm of glass wool, corresponding to R values

of 1.7 and 2.5 m 2K/W. The study found that the incoming heat flux was reduced



by 17% if all the insulation was placed on top of the roof slab instead of underneath

[66]. Their calculated heat flux through the roof for various insulation locations is

presented below in Fig. 1-27.
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Figure 1-27: Analytical model of heat flux through a concrete roof as insulation location
is varied, beginning at the top of the 20 cm concrete slab and moving downward. The two
plots shown, labeled Qm. and Qmin, reperesent the max and min heat flux through the
roof during the day. 6 cm of glass wool, R value of 1.7 m2K/W is used for this simulated
roof in Elazig, Turkey during a typical summer day. Note the decreased maximum heat
flux when the insulation is added on top of the slab. Source [66]

Although the above study is helpful in understanding the impact of insulation lo-

cation on a building in Turkey with a concrete roof, the impact for different climates,

roof types, and amounts of insulation is unknown. Another analytical study con-

ducted in Saudi Arabia tested the impact of various kinds and locations of insulation

as well, but concluded the optimal location for insulation is on the bottom of the slab

[24]. Though this second study found the difference between the two locations to be

minimal, such conflicting reports warrant further research.

1.5.3 Number of Floors in Building

One final aspect of the roof construction that will be considered may seem unrelated

to roofs: the number of floors in a building. Because the roof only directly impacts



the floor beneath it, the roof of a one-story warehouse will affect the entire building's

energy profile much greater than the roof on a twenty-story highrise. One analytical

study in Italy predicted the impact of adding a green roof to a small two-story building

with a basement, in Athens, Greece. The percent savings in cooling energy was

roughly halved when the entire building was considered, which is expected for a two-

story building [71].

1.5.4 Areas for Research - Roof Construction

It has been shown that roof insulation can significantly decrease building energy use,

roof insulation location affects savings, and that the number of floors in a building

should be considered when predicting the impact of the roof on the total building

energy consumption. However, more research is needed in simultaeneously considering

the impact of these three factors on total building energy use.

1.6 Motivation for Thesis

As mentioned in the previous sections, there are multiple areas of research across

the different roofs and roof constructions. Synthesizing these areas together leads

to the addition this thesis will make to the literature. Although the cooling energy

savings of cool roofs is well documented, the heating energy losses are less published.

One addition this thesis will make will be to weigh the tradeoffs between cooling

savings and heating losses associated with cool roofs. This net energy impact of a

cool roof can then be compared to a modified-bitumen and green roof, providing a

rare but informative perspective on the energy saving potential of all three roofs.

Along with this comparison across technologies, aspects of roof construction will be

considered, which have been shown to potentially have an equal or greater impact on

total building energy use than the roof technologies.

This investigation will also compare the energy saving potential of these aspects

of the roof to the potential of other building components (such as windows, building

orientation, HVAC system, etc.), to verify the effectiveness of changing such aspects.



Finally, this thesis will empower building owners in cities around the world to

quickly understand how various roof technologies will impact their building's energy

consumption.

1.7 Outline of Thesis

To predict the tradeoffs between the three roof technologies, a first-principles analyti-

cal tool has been developed that estimates the energy entering a building through the

roof. Weather parameters, which are easily attained from weather stations around

the world, are the inputs to the tool, allowing any climate to be considered. Further-

more, the model is verified by comparisons to two data sets for both green and cool

roofs in the literature. This tool is explained in detail, along with its verification, in

Chapter 2.

The tool is incorporated into an existing online design aid, MIT's Design Advisor,

that allows architects and designers to easily compare the energy requirements of

various building configurations. This tool will thus become a new roof module for

Design Advisor, which will allow users to quickly see the potential energy savings

of different roof technologies and compare them to other potential savings in the

building (for example, from improving windows, wall insulation, building orientation,

etc). Design Advisor and the incorporation of the roof module will be discussed in

Chapter 3.

Numerous trials and comparisons across the three roof technologies along with

discussion of these results will be presented in Chapter 4.



Chapter 2

Energy Modeling

The aim of this thesis is to provide insight into the energy saving potential of various

roof technologies, as mentioned in the previous chapter. In this chapter, the first

principles used to analyze the energy impact of each roof are discussed, the numerical

modeling techniques used to find solutions to the energy model are explained, and

lastly, the model is validated.

The model developed is intended to be used with averaged weather data from

numerous climates, predicting the expected energy savings of a certain roof technology

throughout an "average" year. However, the model is verified by two sets of data, and

accurately models both situations. Nevertheless, the design criterion of using average

weather data for inputs justifies certain component approximations of the model that

otherwise may not be justifiable.

2.1 Cool and Modified-Bitumen Roof Model

2.1.1 Cool and Modified-Bitumen Roof Energy Balance

The similar construction of both cool and modified-bitumen roofs allows for a single

model to be used for both roofs, in which only a few parameters are altered.

A one dimensional model is used to consider the heat transfer through the roof,

thus it is assumed at any given depth of the roof, temperature is uniform across the



horizontal plane at that depth. The model also assumes that the roof is large enough

such that any potential edge effects are negligible. Although there can be many layers

in either type of roof construction, as shown in Fig. 1-12, the thermal resistances of

the surface coating and waterproofing layer are neglected.

Therefore, the roof model is composed of a 15 cm thick concrete slab with a

variable amount of insulation on top or beneath the slab. In both cases, the upper

surface of the roof is exposed to incident short-wave radiation from the sun, I, long-

wave radiation exchange with the sky, qir,,oof, and convective heat exchange with

the outside environment, Hoof, all of which are in [W/m 2 ]. The case in which the

insulation is beneath the slab is shown in Fig. 2-1. The roof is assumed to be a

gray body, and thus only part of the incident short-wave radiation from the sun is

absorbed, while the rest is reflected back to the environment. The roof's reflectivity,

p, or albedo, determines this ratio as shown in Fig. 2-1.

H q.

I(p ) o ir yoo m

Figure 2-1: Cool roof energy balance with insulation beneath roof slab.

The sky is assumed to be a black body at a temperature T~ky of 10 K below the

ambient temperature [57]. Furthermore, this assumption allows for the long wave

radiation heat transfer to be linearized because of the small temperature difference



between the roof surface and the assumed sky temperature [47]. Thus, qir,roof, the

heat flux per in2 , becomes

qirroof = hrad(Tsky - Tsur face) (2.1)

where had, in units of, [W/m 2 K] is defined as

hrad 4E'm 3  (2.2)

and E is the emissivity of the roof (which is also equal to the absorbtivity of the roof

for long-wave radiation from the gray body assumption), o is the Stefan-Boltzman

coefficient, 5.67e-8 J/sm2K 4 , and Tm is the average temperature of the two bodies

exchanging radiation, in this case, the roof surface and the sky. Although Tm changes

slightly throughout the day and depending on location, any change is relatively small

compared to the absolute temperature, thus its effect on hrad is minimal and hrad is

assumed to be a constant 6 W/m 2K.

The convective heat transfer between the environment and roof is found using a

derived heat transfer coefficient for the average weather conditions on the roof, as

shown in Eqs. 2.3 through 2.5.

Hroof = h(Tamb - Tsurface) (2.3)

where Tamb is the ambient outdoor temperature in K and h is determined from

the average Nusselt number for turbulent flow over a flat plate [61]

1 1 / Retr\ 0.81
Nu = 0.664Retr2 Pr 3 + 0.036ReL. 8Pr043  tReL

where ReL is the Reynolds number based on total length and Retr is the transition

Reynolds number, assumed to equal 50,000 here to account for the ease of transition

from laminar to turbunlent on a roof (due to surface roughness and small vibrations

in the building). The Prandtl number, Pr, for air is assumed to be 0.7. From Eq. 2.4,

and average convective heat transfer coefficient can be derrived from the definition of



Table 2.1: Variation of average heat transfer coefficient over a flat roof with wind speed

the Nusselt number

hL
Nu = TL (2.5)

where L is the length of the roof over which the wind flows, and kflisd is the

conductivity of air, assumed to be 0.0257 W/nK. Table 2.1 shows the variation of

h with a range of expected windspeeds on top of a square roof of length 25 m.

Because average weather data will be used with this model, the range of wind-

speeds in Table 2.1 is expected to account for the majority of wind conditions on top

of the roof. Fig. 2-2 shows the average wind speed at 10 m from 1976-1995 according

to the National Center for Environmental Prediction (NCEP) and National Center

for Atmospheric Research (NCAR) reanalysis data set.

Although a variation of nearly 8 W/m 2 K is shown in Table 2.1, the temperature

difference that drives convective heat transfer, Eq. 2.3, results in a comparatively small

variation in the total heat transfer when the convective heat transfer is compared to

other terms.

One might note that no natural convection is considered in this discussion of

the convective heat transfer, which is correct. Natural convection is ignored on the

roof because the wind, resulting in forced convection, dominates over bouyant forces,

which result in natural convection. Analytically, the comparison between forced and

natural convection can be made using the ratio of the square of Reynolds number,

Re, to the Grashof number, Gr, a nondimensional number that approximates the

ratio of bouyant to viscous forces

windspeed [m/s] h [W/m 2 K]
1 2.88
2 5.05
3 7.00
4 8.83
5 10.6



Figure 2-2: Average wind speed at 10 m from 1976-1995, according to the NCEP/NCAR
reanalysis data set. Note the variation from purple, 1 m/s, to light blue, 5 m/s on all
continents. [18].

Re2 (vL)2
Gr ___________(2.6)

(gBL
3(Tpiate-Tamb))

where all properties are for the ambient air, V is the wind speed on the roof, L

is the length of the roof as before, v is the kinematic viscosity, g is the acceleration

due to gravity, and B is the volumetric thermal expansion coefficient (approximated

as 1/Temperature for ideal fluids, which is used for air).

If this ratio is much great than one, forced convection dominates, and if it is much

less than one, natural convection dominates, but if it is approximately one, both types

of convection are important to consider. The experimentally measured Re and Gr

from a concrete roof at the University of Kobe shown in Fig. 2-3 reveals that forced

convection dominates, thus natural convection is neglected in the model. It can be

observed from Fig. 2-3 that the ratio drops during the day when a large temperature

difference exists between the roof surface and ambient temperatures, thus increasing

Gr.



Figure 2-3: Ratio of measured Re2 for a concrete roof at the University of Kobe that shows
Cr

forced convection dominates on a roof because this ratio is much greater than one. To
maintain a useful scale, all values are capped at 100, though the ratio reaches as high as
33949 at one point of the day. [81].

The thermal mass of the concrete slab, mCIconcrete, is accounted for, and it is

assumed to have constant conductivity along with the insulation. However, the in-

sulation is assumed to have no thermal mass on the basis that it would be negligible

compared to the mass of the concrete and accounting for it would noticeably increase

the complexity of the model [75]. A detailed description of the conduction through

the slab and its thermal mass will follow.

Long-wave radiation and convective heat transfer are the two modes of thermal

interaction between the top most room of the building and the roof. The radiation

heat transfer occurs between the bottom of the roof, which is assumed to be the

room ceiling, and other surfaces in the room. Because air is transparent, no heat

is transferred to it by radiation. It is assumed that all surfaces that will radiate to

the ceiling are at the room temperature, Troo,,,. The temperature difference between

the room and roof is small enough to allow for a linearization of the radiative heat

transfer [47]. Convection from the ceiling to the air in the room will be either forced

or natural convection, or a combination of the two, depending on the ventilation

system. Following the reasoning laid forth by Bryan Urban in his master's thesis, the

linearized radiation and convective heat transfer coefficients are lumped together to
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Table 2.2: Thermal properties of roof used in model

Cool Roof Modified-Bitumen Roof
Roof membrane
reflectivity [-) 0.7 0.1
emissivity [-] 0.95 0.95

Structural support slab
Thickness [m] 0.015 0.015

Density [kg/rn3 ] 2300 2300
Conductivity [W/mK] 1.4 1.4
Heat Capacity [J/kgK] 880 880

Insulation
Thickness [m] not specified not specified

R Value [W/m 2K] variable, user specified variable, user specified

form an effective heat transfer coefficient from the ceiling to the room, hrom, which

is approximated as 10 W/m 2K [88]. The thermal properties of the roof used in the

model are summarized in Table 2.2.

Finally, to complete the energy balance for the cool and modified-bitumen roofs,

consideration must be given to the energy storage capability of the concrete slab,

which is discussed in the next section.

2.1.2 Cool and Modified-Bitumen Roof Numerical Modeling

Modeling Temperature Distribution through Roof

In order to account for the transient temperature gradient through the concrete slab,

while minimizing calculation complexity, it is divided into numerous thin slices. An

energy balance is then performed on each slice, assuming a lumped capacity model

for each slice, to determine the effect of the thermal mass and to simplify the flux

calculation through the slab.

In order to model each slice as a lumped system, heat must diffuse through the

slice more quickly than it diffuses from the environment into the slice. The non-

dimensional Biot Number, Bi, compares these two phenomena for the outermost

slice and is defined as



hl
Bi -. (2.7)

k

where h is the convective heat transfer coefficient, 1 is the characteristic thickness

through which heat conducts (in this case the slice thickness), and k is the conduc-

tivity of the medium through heat transfers (kconcrete in this case). Typically, in order

to make the lumped capacity assumption, the Biot number must be less than 1/6

[61]. However, to be conservative in this case, the Biot number must be less than

0.1. In this model, because there is long-wave radiation in addition to convection on

the roof, both modes of heat transfer must be included in determining what will be a

quasi Biot number. The sum of the linearized radiation heat transfer coefficient and

the convective coefficient creates an overall effective heat transfer coefficient, which

is represented by h in Eq. 2.7. Thus, the maximum slices thickness, 1ma, is

ima = 0.1k (2.8)
h

Given the thermal properties listed in Table 2.2, the required slice thickness to

validate the lumped capacity model is 0.83 cm. Dividing the 15 cm concrete slab by

0.83 cm and rounding up to the nearest whole number results in a total of n = 18

slices.

Nodal Energy Balance

The aforementioned energy balance on the entire roof must now be revisted to consider

each of the 18 slices, or nodes, individually. Furthermore, the energy balance must

be discretized for the sake of calculations. Though this task may seem daunting, the

uniformity of many nodes greatly simlifies it. Because every node is made of concrete

and are all of equal thickness, the mass and heat capacity of each node is uniform,

and denoted m and C, respectively.

The thermal mass of each node allows energy to be internally stored in each. The

change of this internal energy, in joules, is equal to the net energy flux in to or out

of the node



dEintnal = Qin - QOot (2.9)

where dEinternal is the change in internal energy over time dt, Qin is the net energy

entering the node, Qaut is the net energy leaving the node. Because of the lumped

capacity model, dt is small enough to assume that all temperatures (in the slab,

ambient, and in the room) as well as all weather parameters (incident solar radiation)

are constant over dt. The appropriate dt to justify this assumption is determined by

ensuring that the Fourier Number, Fo is less than 0.5

Fo - 2~ < 1 (2.10)
pci 2  2

where 1 is the characteristic length through which conduction takes place, in this

case, the slice thickness. Solving for At using Imax will give the maximum time step

for which a lumped system can be used

Atmax PCI(lmax)2 (2.11)

With the allowable time step now determined, the general nodal energy balance,

Eq. 2.9, can be specifically defined for each node. For the case when insulation is

beneath the roof slab, the roof is divided into slices as shown in Fig. 2-4.

The energy balance for the top node, n = 1, is the most complicated because of

its direct interaction with the outside environment and is shown below

mC(Ti'-T) = [(1 - p)I, hrad,sky(T1 - Tsky) - h(T 1 - Tamb) + 1.5ksb ( 2 - Ti)] At

(2.12)

where T is the current node temperature, Ti' is the node temperature at the next

time step, At, 1 lab is the thickness of a sinlge node, and Ti is the average temperature

of the current and next time step, as defined below

- (2.13)
2



Figure 2-4: Nodal diagram of cool and modified-bitumen roof model, in which each node
has a lumped capacitance. In this case, the insulation is beneath the roof slab and is
included as part of the final node.

The incident solar radiation, I, in W/m 2 is an input to the model, as is the ambient

temperature in degrees Kelvin, Tamb, which also gives Tskv by

Tsky =Tamb - 10 (2.14)

The length in the conduction term, 1 sab, is multiplied by 1.5 to account for the

additional half length of slab through which the heat must conduct from node 2 to

the surface, shown in more detail in Fig. 2-5

The last node of the concrete slab is also more complex because of its interaction

with the room, additional half length in conduction term (for the same reasoning as

the top node), and accounting for the insulation. The final node, node 18, has energy

balance

I I
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Figure 2-5: Diagram of nodes 1 and 2 that shows the additional half length through which
heat must conduct from node 2 to the surface. Similarly, on the bottom of the roof slab,
heat must also conduct an additional half length from the second-to-last node into the room
beneath.

mC(Tis' - T1 8 ) = [ 1 (Troom.Reff,room
- T + 1 s (Ts -

where

1
Reff hroo + Rins (2.16)

where Rin, is an input parameter in units of m 2 K/W.

Because of the additional half length in the conduction term of both nodes 1 and

18, nodes 2 and 17 will also be affected, and have the following energy balances,

respectively

mC(T2 ' - T2 ) = ( - ) + 1 a , (T - T)] At

mC(T 17' - T17) [15 TsIab - 3 ) + 1-l(aT1 - At

(2.17)

(2.18)

All other nodes, nodes 3-16, look the same in terms of the energy model and can

be described by

mC(Ti' - T) = (T - ) + T ( )]At

T17)] At (2.15)

-siab

(2.19)



Insulation Location

The above analysis is done for the cool or modified-bitumen roof with insulation

underneath the concrete slab, thus leaving the concrete exposed to the outside en-

vironment. If the insulation is instead placed on top of the concrete slab, the slab

will be exposed to the indoor conditions, helping to moderate indoor temperatures.

Consequently, the Bi number will slightly change because the overall heat transfer

coefficient in Eq. 2.7 changes. Using the new h determined from indoor conditions

(which is assumed a constant 10 W/m 2 K), the resulting imax is 1.4 cm, which leads

to n = 11 slab nodes and a time step of At = 60 s. The basic energy balance for each

node, Eq. 2.9 will remain the same, but some of the nodal equations will change for

this case.

In the model, a 1/2 in coverboard of conductivity kboard = 0.133 W/mK, density

Pbacrd = 746 kg/m3, and heat capacity CPboard = 1090 J/kgK, is placed on top of

the insulation, to protect it from the environment, as shown in the nodal diagram in

Fig. 2-6. Because the Biot number for the coverboard fulfills the standard assumption

for lumped capacitance, that is Bi < 1/6, the coverboard is added as a single node,

and thus the total number of nodes is now 12.

Now, the top node, made of coverboard, will have an additional resistance in the

conduction term (as well as the additional half length of coverboard), as shown in the

energy balance

S(1 - p)Is hrad,sky(T1 - Tsky) - h(T 1 - Tamb)
(mC)boar(T' -T1) = 1~aa -R(~ - 7)]At (2.20)

+lboard +40-51stab +Rn T2 -T1l)

. ~ k=ord kslab+Rn

Due to the interaction between the first and second nodes and their different

materials, both conductivities must be used, as the heat is tranferring through both

materials from node 2 to node 1. Because of this interaction, the second node is also

affected, which has the following energy balance



Figure 2-6: Nodal diagram of cool and modified-bitumen roof model, in which each node
has a lumped capacitance. In this case, however, the insulation is on top of the roof slab
and is included as part of the first node.

1
(mC)siab(T2' - T2 ) = ± 1 - T2) + k - 2) At (2.21)

lboard _+ - slab + Ris 1stab[kboard kslab+R~ 8 saJ

The remaining interior nodes, nodes 3-10, are the same as before, and have the

energy balance shown in Eq. 2.19. Similarly, the second to last node, now node 11

instead of node 17 for the previous case, has the same energy balance as it previously

did, shown in Eq. 2.18.

However, now that the insulation is on top of the slab, the final node is changed

as Reff in Eq. 2.15 simply becomes the effective heat transfer coefficient between the

ceiling and room, hrom, yielding the following energy balance for node 12, the final

node



(mC)siab(T12 ' - T 2 ) [hroom(Troom - 12 ) + 1 .1ab ( 12 - T11 )] At (2.22)

Numerically modeling cool and modified-bitumen roofs

The discretization presented above, in which the current temperature and temper-

ature at the next time step are averaged, is called the Trapezoidal Rule or Crank-

Nicolson method. This method allows fewer limitations on the time step, making it

more stable and the time step potentially larger, but is slightly more computationally

demanding than other numerical methods. However, the stability and accuracy of

this second-order approximation justify its use [88] [78].

Combining Eqs. 2.12, 2.15, 2.17, 2.18, and 2.19 and also substituting in Eqs. 2.13

and 2.16 creates a large system of equations. By grouping all T' terms on the LHS

and all T terms on the RHS along with all constants (as done below for a single

equation, Eq. 2.19), the following system of equations is obtained.

Single example of grouping terms:

-kAtT'n + (nC + 1sab) T' - 2 l6At'± (2.23)k_ /t ___ktAt k
=-.st'_1+ (mC -k At) Tn + 2slabtT2t

slab 12-slab / Ssa

System of equations found by combining Eqs. 2.12, 2.15, 2.17, 2.18, and 2.19 and

grouping terms as described above:

B - T' = (S . +± At) (2.24)

where B and S are the matricies containing all coefficients for the vectors T' and

7, respectively, Q is the vector containing all constants (such as ambient and room

temperatures, as well as incident solar radiation), and At is the time step. It should

be noted that the terms of Q are constant only over a time step. Solving for T' yields

the final discrete energy balance



(2.25)

Now, using an iterative process, the temperature at the next time step can be

predicted using the current temperature. An example system of n = 4 nodes with

insulation on bottom of the slab is shown below in Eqs. 2.26 to 2.30.
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2.1.3 Differences between Cool and Modified-Bitumen Roofs

As mentioned at the beginning of this section, both cool and modified-bitumen roofs

are numerically modeled by the same equations, Eqs. 2.26 to 2.30, though clearly

have different performances. A large difference between a cool and modified-bitumen

roof from an energy standpoint is their reflectivities, p. While a cool roof can reflect

up to 80% of the incoming solar radiation, a modified-bitumen roof often reflects

only 5%. This difference leads to significant energy implications. Although each roof

company may manufacture a slightly different roof assembly, the general assembly of

both roofs (top coat, the roof membrane, a waterproofing layer, and insulation above

the roof structural support) often remains the same. Thus, it is assumed that the

only difference affecting energy performance between a cool and modified-bitumen

roof is the reflectivity, which is assumed to be 0.7 and 0.05 respectively.

2.2 Green Roof

Numerous similarities exist between the previous energy analysis and the green roof

energy analysis, however, multiple key differences warrant a second energy analysis

for the green roof, which follows.

2.2.1 Modeling Vegetation and Growing Media

Before applying an energy balance to a green roof, it is neccessary to define what

kind of green roof will be used. This definition as well as key assumptions are listed

below.



Type of Green Roof

When deciding which kind of green roof would be modeled, the greatest consideration

is given to the type of green roof that would potentially be used by the most number

of people. The affordability, lighter weight, ease of retrofit, and low maintenance of

an extensive green roof all motivated the selection of an extensive green roof for the

model. A 12 cm clipped, cool-season grass is used as the vegetation, which is assumed

to be actively growing over the entire roof.

The growing media is assumed to be a basic loam soil with constant conductivity

0.8 W/mK and a product of density and heat capacity equal to 1.4e6 J/m 3 K [48].

Although moisture levels within the growing media will certainly change, which in

turn will affect the media conductivity, density, and heat capacity, it is assumed that

over time the media moisture level is maintained high enough to support healthy

grass growth. The above values are taken as the average between the saturated and

wilting values for both conductivity and product of mass and heat capacity, where

"saturated" is defined as the upper physical limit of water that loam can hold and

"wilting" is the minimum amount of water in the loam that can support plant life

[48].

For the purposes of the energy model, all other components of the green roof

are not specified, that is, their thermal resistances are not included. This omission is

made because of the variation not only between green roof compositions (for example,

one roof could have a combined waterproofing and weed retardant layer, but another

roof could have two separate layers), but also between the thermal resistances of

those components (for example, one roof could use sand as a drainage layer, but

another could use a porous rubber matting, both of which have significant differences

in thermal resistance). Because of these variations, the thermal resistances are not

included, though the user is able to account for thermal resistances if they are known.

Some of the variation between green roof compositions and components is shown

below in Fig. 2-7.



Roof type Thicktnes (uni) K-values R-values (mii' K/W) U-value (Blu/nm K)
a. Rooftop garden with vegetation on the exposed roof

Rooftop with 100% urAfing

Outside aii film (Ro)
Tmitfing
Soil substirate (40%

noisture content)
WOL FIN lB sngle

layer polymerised
Cemiient an d si nd ha se

screed to fall
RC slab
Inside air film (Ri)

- 0.055
0.360

100 1.580 0.063

12 0.713 0.001

S0 0.533 0.094

150 1.442 0,104
- - 0.162

IR - 0.810 0.210

b. Rooftop garden with vegetation on the typical flat toof

Rooftop with 100% tur fing

Outside air film (Ro)
Tmffing
Soil substrate (40%

moitiue content)
Filter laver
INSULCBLL.L

50- drinage laye
INSUIFfFX

25 - piotection laver
'WOLFIN 18' nem

bIane with toot resistant
ability (FLL tested)

cme nt and sa nd base
scred to fail

RC flat slab
Inside air film (Ri)

- 0.360
00 1.580 0-063

1 0,035 0.029
50 0.035 1.429

0.040 11.5

15 0.713 0055

50 0.533 0.094

150 1.442 0.104
0.162
Y R 2.372

R Value
Roof Layer [m2K/W]

drainage layer 0.72
waterproofing layer 0.059
structural roof 0.79

Figure 2-7: (above) Detailed listing of the composition of two different types of green roofs
that also includes the components' R-value. (below) Composition of a simple green roof
used for an experiment in Singapore. R-values are listed, which shows the variation from
roof to roof. Source [54][91].

0.074



Modeling Vegetation Layer

Accounting for Radiation within Vegetation Layer

The field of agriculture has long been interested in accurately approximating the

amount of solar radiation absorbed by plants [85][70]. Essential processes in that

field, such as photosynthesis and plant transpiration are dominated by the intercepted

solar radiation. This well established field is useful in the current study by providing

a model for the vegetation.

To approximate the amount of incident sunlight absorbed by a canopy of vegeta-

tion, the Beer-Lambert law is commonly used [85] [70]. Beer-Lambert's law, also called

Beer's law or Beer-Lamber-Bouguer's law, was originally developed in optics, specif-

ically spectrophotometry, where it was used to determine the relationship between

how much light is absorbed by a liquid through which it passes and the concentration

of the liquid [85]. In 1953, Monsi and Saeki first applied the law in agriculture studies

and showed that it is valid within plant canopies. In this application, the canopies

can be thought of as a turbid or semi-opaque medium; the further sun light travels

into them, the greater the decrease in irradiance [85]. The adapted form of Beer's

law for agriculture describes the transmittance, T, through vegetation as

T- exp(-Va - kext - LAI) (2.31)

where a is the fraction of light absorbed by an individual leaf, kext is the vegetation

extinction coefficient, and LAI is the leaf area index of the vegetation. Both a and

ket can vary with wavelength of light, thus two values for each are used, a, and a,

and kext,s and kext,i for short and longwave radiation respectively. Additionally, both

values are most often empirically measured, as are the values used in this model. The

leaf area index, LAI, is the total leaf area per unit ground area [85]. In the case of

grasses, the LAI is directly proportional to the grass height, and can be found using

the following relationship

LAI = 24heightgrass (2.32)



where heightgrass is the grass height in m [251. Using this definition of transmit-

tance, the amount of solar radiation absorbed by the vegetation layer can now be

calculated. Not all of the incident solar radiation enters the vegetation layer, because

it has a collective vegetation reflectivity, Pveg. Accounting for pveg, the amount of

solar radiation absorbed by the vegetation layer is

Is,veg - (1 - Pveg)IS(1 - T8) (2.33)

where I, is the total incident solar radiation, and -r, is the short wave transmit-

tance. Assuming that all incident solar radiation not reflected back to the sky is

either absorbed by the vegetation or passes through to the soil, the solar radiation

reaching the soil is

Isoil = (1 - Pveg)IsTs (2.34)

of which only a fraction is absorbed, determined by the soil absorptivity, asoil

0.83, while the rest is assumed to enter the environment [82]

's,soil = asoii(1 - Pveg)IsTs (2.35)

Vegetation Heat Capacity

The vegetation is assumed to have a heat capacity per leaf square meter of 640J/m 2K,

which Jones found for the "general plant leaf" [49]. This value is multiplied by the

LAI to find the vegetation heat capacity per square meter of soil

C veg = 640LAI (2.36)

where Clveg is the heat capacity for the vegetation in J/m2K. All of the assumed

values for the preceding parameters are listed below in Table 2.3



Table 2.3: Physical Vegetation Parameters

Parameter Symbol Value
Vegetation

Reflectivity Pveg 0.23 [26]
Height heightgrass 0.12 [26]

LAI (calculated) LAI 2.83 [26]
Extinction coefficient, short wave kshort 0.55 [72][86]
Extinction coefficient, long wave k1o 9  0.55 [72] [86]

Transmittance, short wave (calculated) Tshort 0.24 [85]
Transmittance, long wave (calculated) Tpong 0.49 [] [8]

Individual Leaf______
Absorbtivity, short wave ar 0.8 [-] [8]
Absorbtivity, long wave o1  0.2 [-] [85]

Heat capacity per ground area C1leaf 1.8e5 J/m2K [49]
Soil

Reflectivity psoV 0.83 [-] [82]
Conductivity ksol 0.8 W/mK [48]

Density and specific heat capacity product (MC,)soil 1.4e6 J/m 3K [48]

Evapotranspiration

The final aspect of the vegetation model to be explained is the accounting for evap-

oration from the soil and transpiration of the grass. Transpiration is defined as the

vaporization of liquid water contained in plant tissues and the vapour removal to the

atmosphere [26]. It occurs through small openings on plants called stomata, which

cover the leaves, stems, flowers, and even roots of a plant [31]. These two phenomena

are closely linked. Consider the case when there is little moisture in the soil. Conse-

quently, minimal evaporation from the soil can occur, but also, minimal transpiration

will occur because little water has been able to diffuse into the plant for it to tran-

spire. The close link between these two phenomena has helped lead the agriculture

field to develop a concept, evapotranspiration, that accounts for both phenomena.

In its simplest form, evapotranspiration is the transport of water from surfaces to

the atmosphere [31]. Although evaporation from soil and plant transpiration domi-

nate evapotranspiration, evaporation from wet plant canopies and evaporation from

vegetation-covered bodies of water (as found in wetlands) can also contribute to evap-



otranspiration [31]. However, in the case of the extensive green roof at hand, the latter

two contributors are not applicable.

The implication of evapotranspiration in the field of agriculture is enormous, as it

largely determines irrigation rates. For this reason, it has been extensively researched

and modeled and has been found to be affected by weather parameters (predominately

radiation, but also air temperature, humidity and wind speed), crop factors (such

as crop resistance to transpiration, height, roughness, reflection, ground cover and

rooting characteristics), and management and environmental conditions (such as soil

salinity, poor land fertility, limited application of fertilizers, the presence of hard or

impenetrable soil horizons, the absence of control of diseases and pests, poor soil

management, ground cover, plant density and the soil water content) [26]. These

numerous parameters make predicting the amount of evapotranspiration from a given

plant, in a given soil, for a given climate a challenging task. Although there are

models that account for all such paramters, they often require a significant number of

experimentally measured parameters, which severely restricts their scope of use [26]

[25]. Because the motivation behind creating the green roof model in this thesis is to

develop a general model that can be compared to a cool or modified-bitumen roof,

such specificity rules out such complicated models.

Therefore, when choosing an evapotranspiration model, a high priority is given to

a general model that can be used in a variety of climates, that models a representative

grass (the green roof vegetation in this case), and applies for reasonable management

and environmental conditions associated with green roofs. The model found that fits

these criteria best is the hourly-based reference case of the FAO-56 Penman-Monteith

equation [68] [62] [26] [25].

Penman first combined an energy balance with mass transfer in 1948 to develop

an equation that computes evaporation from open water, bare soil, and grass, with

only readily available climatic inputs [68] [45]. Howell well summarizes the evolution

of the Penman equation, which took many transformations before the United Na-

tions' Food and Agriculture Organization (FAO) saw the need for a widely adopted

standard and published its "Crop evapotranspiration - Guidelines for computing crop



water requirements," FAO Drainage and Irrigation paper 56 [45]. In the paper, the

authors assume a reference crop against which all vegetation and management and

environmental conditions could be compared [26]. An experimentally determined crop

coefficient can be measured for any crop, that in turn can be compared to the reference

case. This reference evapotranspiration, ETo, is fully described by climatic inputs.

Thus, readily available weather data combined with a measured crop coefficient can

accurately predict the evapotranspiration rates for any crop.

This method is widely accepted as one of the best models of crop evapotranspi-

ration and is often used as the benchmark to which new evapotranspiration models

are compared [37][50][79]. One major advantage of this equation to the green roof

model at hand is that the reference case, ETo, assumes a hypothetical grass of uniform

height 0.12 m, fixed bulk surface resistance of 70 s/m (implying a moderately dry soil

surface resulting from about a weekly irrigation frequency), albedo of 0.23, that is

activly growing and completely shading the ground [26]. The bulk surface resistance

is defined by the FAO as "the resistance of vapour flow through the transpiring crop

and evaporating soil surface" [26]. Elsewhere, this hypothetical grass is refferred to

as a clipped cool-season grass, which embodies these assumptions [25]. Furthermore,

one dimensional heat and mass transfer is assumed, thus the grass must cover an area

large enough to neglect edge effects [26]. Therefore, because this reference grass is

exactly the grass suitable for the green roof model in this thesis, the calculated ETo

based solely on weather data will accurately model the evapotranspiration from the

green roof. No emperical crop coefficient is needed. This equation for ETo developed

by the FAO varies slightly depending on time scale to account for changes in units,

and thus the equation for hourly data is used (and is defined in the following section

of this thesis, Section 2.2.2).

2.2.2 Green Roof Energy Balance

As with the cool and modified-bitumen roof, a one dimensional model is used for a

large roof, so edge effects are neglected, that ignores the thermal resistance of all roof

components except the structural support, insulation, and now soil. The concrete



structural slab is again assumed to be 15 cm thick, as is the layer of soil. The

insulation is placed either underneath the slab or above it, directly under the soil.

A diagram of the energy balance for the green roof with insulation under the slab

is shown below in Fig. 2-8.

H q. Lvegr~veg veg

I1(1-p.i1S ~ y/j,

H roomq

Figure 2-8: Green roof energy balance. All terms shown are energy fluxes with units

[W/m 2]

Now, instead of exposing the slab to the environmental conditions, the vegetation

and soil buffer the roof from external conditions. The vegetation layer has short and

long wave transmittances r, and Ti, respectively. All of the following terms, and terms

shown in Fig. 2-8 are energy fluxes in [W/m 2]. In addition to the convective, Heg,

short wave radiation, I,(1 - p)(1 - T,), and long wave radiation, qir,veg, heat transfer

between the vegetation and environment, (long wave radiation is between the vege-

tation and T~ky, again assumed to be 10 C lower than Tamb) a latent term, Lveg, is

now present. The only interaction between the vegetation and soil occurs through

long wave radiation, qi,,,cii-veg, although the soil interacts with the environment by

receiving incident solar radiation, I,(1 - p)T,, as well as exchanging long wave ra-



diation, qi,,soi (again, T~ky is used). An exploded view of the interaction between

the vegetation and soil layers, including all radiation terms, is shown in Fig. 2-9.

Heat is conducted through the soil, slab, and insulation, denoted qiucnt. As before,

convection, Hroom, and raditation, qinroom, transfer heat to the room.

Is q i v gq i si
I1 -p)(1- S)

qr,soil-v eg

Figure 2-9: Exploded view of interaction between vegetation and soil layers that shows
the only interaction between the two nodes is long-wave radiation, qir,soil-veg. All radiation
terms for the green roof model are shown, including all terms involving the soil layer (blue
hatched arrows), and all terms involving the vegetation and environment (light blue arrows).
All terms shown are energy fluxes with units [W/m 2].

All vegetation is assumed to be at the same temperature, Teg, which is close

enough to TAkV to warrant a linearized model for radiation heat transfer between

the vegetation and sky. This same assumption is used in the preceding cool and

modified-bitumen roof model, however, Eq. 2.1 now becomes

qir,veg = (1 - Ti) - hrad(Tveg - Tkyk) (2.37)

where hrad is the same value as before, Eq. 2.2, but Tm is now the average between

the vegetation and sky temperatures. Although the vegetation long-wave emissivity

is slightly different than the roof emissivity, the difference has a negligible impact on

the overall h,ad. However, because the vegetation layer is treated as a semi-opaque

layer, not all longwave radiation is able to escape, as indicated by the (1 - Ti) term.

For the same reason, the longwave radiation heat transfer between the vegetation

layer and soil takes a similar form and is expressed as



qir,soi-veg = (1 - Ti) - hrad(Tveg - Tcit) (2.38)

in which the same hrad is used from before, although small temperature differences

would slightly increase the term, the increase is negligible compared to the driving

term (Tveg - Tsoi ).

The long wave radiation between the sky and soil, qir,,oil takes a similar linearized

form, but must pass through the vegetation layer, thus it is expressed as

qirsoil T Ti - hrad(Tveg - Tsky) (2.39)

The convective heat transfer between the vegetation and environment, Hveg, will

be slightly different from the convective heat transfer on the cool or modified-bitumen

roof, Eq. 2.3. This difference arises from the surface resistances of the two roofs. In the

case of the cool or modified-bitumen roof, the large flat roof will allow the boundary

layer of air along the roof to grow fairly thick, decreasing the amount of heat that can

be transferred. In the case of the green roof, the numerous small surface areas of the

grass prohibit any substantial boundary layer from developing, thus increasing the

amount of heat transfer. However, these small surfaces are also obstacles to the wind,

which if flows parallel to the roof, can be greatly weakened by the end of the roof,

slightly decreasing the heat transfer on the green roof. The flatness of the cool and

modified-bitumen roofs provides little obstacle to the wind, which allows the wind to

flow relatively freely over the roof, sightly increasing heat transfer. For the purposes

of this model, these differences are considered negligible because of the small role the

convective heat transfer has compared to the latent and radiation terms. Therefore,

Eq. 2.3 is once again used in which Teg is now used.

The latent heat transfer between the vegetation and the environment, Lveg, is

found using the ETo method mentioned in the preceding section. The provided equa-

tion from the FAO for hourly ETo is [26]

ET -- 0 .408A(Rn - G) + 7 2nu2(Psat(Thr) - Pact) (240)

A + y(1 + 0.34U2)

80



where ETO is the reference evapotranspiration [mm/hr],

R, is the net radiation at the grass surface [MJ/m2hr],

G is the soil heat flux density excluding evaporation [MJ/m2 hr],

Th, is the mean hourly air temperature [C],

A is the saturation slope vapour pressure curve at Th, [kPa/C],

-y is the psychrometric constant [kPa/C],

Psat(Tamb) is the saturation vapour pressure at Th, [kPa],

Pact is the average hourly actual vapour pressure [kPa],

U2 is the average hourly wind speed 2 m above the vegetation [m/s].

ETo is normally defined as the amount of water depth loss per unit time (in this

case, an hourly interval is used) [26]. The water depth loss can also be defined in

loss of water volume as 1 mm/hr of depth loss equals 10 m 3/(ha -hr). Furthermore,

assuming a water density of 1000 kg/m 3 and temperature 20 C, the depth loss can

be converted into an energy flux per unit area as 1 mm/hr of depth loss equals 2.45

MJ/m 2 hr. Thus, converting to SI units, ETo is related to the latent heat flux from

the green roof, Leg in [W/m 2], by the following relationship

2.45 x 106
Lye 3600 ) FTo (2.41)

R, is found by subtracting the net longwave radiation leaving the green roof from

the net incident radiation and converting to the proper units, using the fact that

1W/m 2 = 3.6 x 10- 3MJ/m 2hr

Rn = [Is(1 - p)(1 - Ts) - Qir,,eg] - 3.6 x 10-3 (2.42)

G, the soil flux density, will be explicitly defined in the following subsection.

A is taken from the slope of the graph of water vapor saturation vapor pressure

versus temperature, which is shown in Fig. 2-10

The curve shown in Fig. 2-10 arises from the fact that the amount of water vapor

that can be stored in the air depends on the air temperature. As shown, the higher
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Figure 2-10: The saturation vapor pressure of water vapor in air as a function of temper-
ature [26].

the temperature, the higher storage capacity the air has for water vapor. The greater

the amount of water vapor in the air, the greater partial pressure exerted by the

water vapor in the air. The curve shows the maximum, or saturated, vapor pressure

of water vapor at the temperatures shown [26].

An equation for the slope of the curve in Fig. 2-10 is given for the FAO-56 Penman-

Monteith equation, which is

4098 [0.6108 exp ( 17]2)( )

(Thr + 237.3)2

-y, the psychrometric constant, which is defined as

CPair Pact103

-Ca -w 0.665 x 10 3 Pact (2.44)
vMWa

where CPai, is 1.013e-3 [MJ/kgC], Xv is the latent heat of water vaporization

2.45 [MJ/kg], and MWv and MWa are the molecular weights of water vapor and air

respectively.

Psat(Tr) is found using the well accepted Goff-Gratch equation, shown below [41]



log (10 - Pat(T)) = -7.90298(Tst/T - 1) + 5.02808 log(T~t/T)

-1.3816 x 1 0 -7(1011.344(1-T/Tst) - 1) + 8.1328 x 1 0 -3(1O-3.49149(Tt/T-1) _ 1)

+ log Psat(2t)
(2.45)

where Pat is the saturated vapor pressure in [kPa] at temperature T in [K] and

Tt is the so-called steam-point temperature, or boiling point at 1 atm, 373.15 K [41].

Pact is easily found with Pat known by multiplying it by the outdoor relative

humidity RH,

Pact = RH -Psat (2.46)

U2 is defined as the average hourly windspeed in [m/s] 2 m above the vegetation.

In the green roof model, the windspeed measured from a weather station is used,

which is measured 10 m from the ground. Although this height will not always be

2 m above the roof surface, it serves as a characteristic value and should not be

drastically different from the actual value at 2 m.

To summarize the energy balance for the green roof, it is helpful to split the

green roof into three separate sections for the vegetation, soil, and structural slab.

The energy balance for each section will be described in the following subsection. A

summary of the physical parameters for each section of the green roof is shown in

Table. 2.4

2.2.3 Green Roof Numerical Modeling

Modelling Temperature Distribution through Roof

As with the cool and modified-bitumen roofs, a lumped capacity model is also used

for the vegetation, soil, and structural slab sections of the green roof. Therefore, the

same criterion of Bi < 0.1 must be achieved using Eq. 2.7, which will in turn give



Table 2.4: Thermal properties of green roof used in model

Vegetation surface
reflectivity [-] 0.23 [26]
emissivity [-] 0.95
Growing Media

Material [-- loam [48]
Thickness [m] 0.15

Density - Heat Capacity [J/m 3 K] 1.4e6 [48]
Conductivity [W/mK] 0.8 [48]
Structural support slab

Material [-] concrete
Thickness [m] 0.15

Density [kg/m 3] 2300 [46]
Conductivity [W/mK] 1.4 [46]
Heat Capacity [J/kgK] 880 [46]

Insulation
Thickness [m] not specified

R Value [W/m 2 K] variable, user specified

a maximum slice thickness for the soil and slab from Eq. 2.8. However, because the

vegetation is not assumed to be a solid medium through which heat conducts, no

Biot number is found for it, although all vegetation is assumed to be at the same

temperature and is therefore modeled as a single slice.

Both soil and slab layers must be treated differently because of their different

materials and location. Although the soil layer is not involved in any convective heat

transfer, typically needed for a Biot number, a quasi Biot number, similar to the one

used for the cool and modified-bitumen roof, is once again used. In this case, only

had is used as the effective heat transfer coefficient h in Eq. 2.7. Using the assumed

constant soil conductivity with had the maximum thickness of the soil slices is found

with Eq. 2.8 to be 1.25 cm, resulting in a total of n = 12 soil slices.

To find the maximum slice thickness for the slab layer, not only is the slab con-

ductivity used in Eq. 2.8, but a different heat transfer coefficient must also be used.

Because the soil is now in direct interaction with the environment, rather than the

slab, the indoor convective and radiation coefficients are used as the overall heat



transfer coefficient. Recall the sum of these values is assumed to equal 10 W/m 2K

[88]. Using this value with the conductivity of concrete, the max slice thickness of

the slab layer is found to be 1.36 cm, resulting in a total of n = 11 concrete slices.

Combining the 1 vegetation slice with 12 soil slices and 11 concrete slices results in a

total of n = 24 slices for the green roof model.

Nodal Energy Balance

As in the cool and modified-bitumen roof model, each slice, or node, in the green roof

model has an energy balance applied to it using Eq. 2.9. Before this can be done,

the appropriate time step must be determined from Eq. 2.11. However, Eq. 2.11

will calculate a different time step depending on which material (soil or concrete) is

used. Therefore, Atmax is calculated for both, and the minimum value is used to be

conservative.

With the time step determined, an energy balance is now applied to each node.

In the case when the insulation is beneath the roof slab, as shown in Fig. 2-11, the

vegetation node, or node n = 1, has the following energy balance.

Cveg(Ti' - T 1 ) = {[(1 - Pveg)( - T)Is] - Lveg - [i 1 - Tamb)] (2.47)

-[(1 - Ti) - hrad(Tveg Tky)] - [(1 - TI) - hrad(Tveg - Tsoi)] dt

where again T is the current node temperature, T' is the node temperature at

the next time step, At, and Ti is defined as before, Eq. 2.13. While Lveg is defined

in Eq. 2.41, it is assumed to account for both transpiration from the vegetation and

evaporation from the soil. However, in the green roof model, because the modeled

grass covers the entire soil surface, it is assumed that most water loss occurs through

plant transpiration rather than evaporation from the soil. The FAO shows that for

a given harvestable crop, crop transpiration dominates the evapotranspiration when

the crop is actively growing before harvest, which is similar to the case for the green

roof model, because there is no harvest. Therefore, all latent heat flux is assumed to

occur only in the vegetation layer.
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Figure 2-11: Nodal diagram of green roof model, in which each node has a lumped capac-
itance. In this case, the insulation is beneath the roof slab.
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Figure 2-12: Relative crop transpiration and soil evaporation as percentages of the overall
evapotranspiration over the growing period for an annual field crop. Source [26]

Thus, the first node of the soil, node 2, is defined

(mC)&,jj(T 2' - T 2 ) {[(1 - Pveg)(Ts)osoiIsa [i) -had(T - Tsky)]

-[(1 - ri) -hrad(T 2 - T1 + [ (3 - T2 )]}At

where an additional half length is included in the conduction term for the same

reason as described in Fig. 2-5. Consequently, node 3 is also affected, and has the

energy balance

(mC),ol(Ts'- T 3 ) ksoil (T4
lsoa

(2.49)15 ksoi (-T)+1.5 - isoal

Nodes 4 through 12, have similar energy balances, with the exclusion of the addi-

tional half length in the conduction term

= Io (T+1
ksoil

- ) k i

T I soil

The energy balance for the final soil node, node 13, takes into account the interac-

tion between the soil and slab layers by considering the conductivities and thicknesses

O L

0

0

(2.48)

(mC),Ol(Ti -- Ti)
(2.50)

-3)] At

- i)] At



of both, as shown below.

T13) = (T12 - T13) + L +
soiSM ksosi kslab

(T14 - T13) At

The first slab node, node 14, is also similarly affected, and has the following energy

balance

(mC)slab(T1 4' - T 14 ) = 1 (T13
Skoo kslab

- T14 ) + kslab (Ti5

The interior slab nodes, nodes 15-22, have the energy balance

(mC)siab(Ti' - T)
= kslab

1slab
7i ) + s(T - )] At

The second to last node, node 23, must include the additional half length in its

conduction term, and thus has the energy balance

[ ksl1ab T(mC)sab(T23' - T 23 ) siab (T 2 2 - T 23 )
L slab

kslab (T-
1.5 -1lab T28) At (2.54)

Lastly, the final node of the slab, node 24, which includes the insulation, additional

helf length, and interaction with the interior room, has the energy balance

(mC)sab(T24' - T 24 ) = I (TrOO
Re55 f

(2.55)- T 24 ) + ksab (T241.5 - 1slab

where Reff is defined as it is in the cool and modified-bitumen case, by Eq. 2.16.

(2.51)

- T14) At (2.52)

(2.53)

-7T23) 1At



Insulation Location

The preceding nodal analysis is done for the green roof with insulation beneath the

roof slab. When the insulation is moved above the roof slab, directly under the soil

layer, some of the analysis changes. Fig. 2-13 below shows the nodes for this new

case.

veg irveg Lq veg
irsoil

~A--

node 23
node 24

H q.

Figure 2-13: Nodal diagram of green roof model, in which each node has a lumped capac-
itance. In this case, the insulation is above the roof slab.

A comparison of Figs. 2-13 and 2-11 reveals numerous similarities. One such

similarity is that nodes 1-12, the vegetation and soil nodes, are unaffected by moving

the insulation. Thus, they are modeled using the same equations above, Eqs. 2.47

through 2.50. The first difference between the two cases arises in node 13, where

insulation is now present. The new energy balance for node 13, the last soil node,

..... ............... ........... ..... ............ ....................



now becomes

(mnC)soil(T13'- T 13 ) = ksoi_ (T12 -1T13) + * +.1 (T 1 4 - 113) At
soi-l ~ -- il k kslab + R 8 J

(2.56)

Additionally, node 14, the first slab node, is also affected, and now becomes

(mC )sab(T14' - T 14 ) = + Rins si(T13  1 T14) ksabt
k80o1  kslab +R~ sa

(2.57)

The remaining interior slab nodes are not affected by the change of insulation

location, and thus are described by Eqs. 2.53 and 2.54. However, the final slab node

must be adjusted because no insulation is now present. Thus, the energy balance for

the final slab node is

1.kslab
(mC)sab(T2 4 ' - T 2 4 ) [hroom(Troom - T24) + ksab (T24 - A23) At (2.58)

Numerically Modeling a Green Roof

As is done in the cool and modified-bitumen roof model, the Trapezoidal rule is used

again to numerically model the above system of equations using Eq. 2.25. Analogous

matricies for B, S, Q, T, and P are formed from the preceding energy balances,

which allows the temperature at the next time step to be predicted from the current

temperature.

2.3 Validation of Models

Recall the chief motivation of this thesis, to provide a common basis on which to

compare the energy performance of different roof technologies in different climates.

In order to fulfill this motivation, a certain level of generality in the models must be



achieved. However, the models still must have a sufficient level of specificty to main-

tain an acceptable level of validity in modeling the natural world. To prove both the

generality and specificity of the models, they are validated by two sets of experimental

data that have been obtained from different regions of the world, graciously shared

by Jeff Sonne of the Florida Solar Energy Center (FSEC) and Professor Hideki Take-

bayashi of Kobe University. The models' generality is shown by succesfully modeling

the roof conditions in two different regions of the world without tweaking any pa-

rameters except those that physically change and were measured (such as roof albedo

or structural slab thickness). Simultaeneously, the models' specificity is shown by

accurately predicting roof conditions.

2.3.1 Experimental Setups

FSEC Green Roof Study

The FSEC Green Roof Study initially began as a green roof project led by the Univer-

sity of Central Florida's Stormwater Management Academy, located in Orlando, FL,

under a grant from the Florida Department of Environmental Protection (FDEP).

While the primary purpose of the project was to evaluate rainwater runoff benefits of

the green roof, FDEP, through a U.S. Department of Energy State Energy Program

Grant also funded Jeff Sonne of the FSEC to evaluate the energy performance of the

green roof [35] [76] [40].

One half of this project's 3,300 square foot roof was a conventional, light-colored

membrane roof (with measured reflectivity of 0.50 as determined by the ASTM Stan-

dard E1918-97 methodology) [35]. The other half of the roof had the same membrane

roof with a planted green roof completely covering the surface. The study considered

an extensive green roof with 6 to 8 in of plant media and a variety of primarily native

Florida vegetation up to approximately 2 feet in height, shown in Fig. 2-14. Al-

though the green roof model assumes a 12 cm, or 4.7 in, clipped grass, this difference

in vegetation will test the generality of model.

Symmetry was used in the roof geometry and drainage systems to allow both



Figure 2-14: The extensive green roof with native Florida vegetation up to 2 ft in height,
planted in 6 to 8 in of plant media. The conventional light-colored membrane roof is visible
on the far right of the picture [35

the conventional and green roofs to have similar "mirror image" insulation levels

and corresponding thermocouple loactions. More specifically, the roof assembly was

comprised of the roof membrane, a Georgia Pacific 1/2" Dens Deck @cover board,

polyisocyanurate insulation, and a metal deck. Because concrete was not used as the

structural support of the roof, the cover board is used in leu of the concrete slab

for the purposes of the model. The amount of insulation was approximated using

a laser level at each sensor location, which measures the insulation thickness, from

which a corresponding R-Value is determined [77]. In the middle of both green and

conventional roofs, where there was the least amount of insulation, the R-Value is 2.99

m 2C/W, but closer towards the edges of the roof, it was 6.69 m 2C/W. A section

view of the roof is shown in Fig. 2-15.

Special limits type-T thermocouples, were used to measure temperatures that

include the roof surface, bottom of roof deck, ambient air, interior air, and green roof

plant media surface. The combined accuracy of the thermocouples and multiplexer

was +/ - 1.4C [89] [73]. These temperature measurements were taken at each of

the three locations for the green and conventional roof indicated in Fig. 2-16, which
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Figure 2-15: Section of the green and conventional roofs in the FSEC green roof study,
which shows the symmetric design of the roof. Note the varying amount of insulation, which
is determined to be 2.99 m2C/W in the middle of both green and conventional roofs, and
6.69 m2C/W on the edges of both types of roof. Source [35]

were the exact locations where insulation thickness measurements were taken, in the

center [35]. Thermocouples on the roof surface "were attached to the membrane with

a structural sealant and the three conventional roof sensors were painted to match

the roof color as closely as possible." [35].

1 yThermnocoupe locationts

Conivenional Roof

Greeni Roof

Figure 2-16: Roof diagram showing symmetric thermocouple placement on both green and
conventional roofs. Source [35]

Meteorological measurements taken on site include ambient air temperature, rain-

fall, total horizontal solar radiation, wind speed and direction. All sensors were sam-

pled every 15 seconds, though hourly averages are used in comparisons to the roof

models. The green roof was irrigated twice a week for approximately 15 minutes each

time so the soil was not lacking water as assumed in the green roof model. Although



Table 2.5: Summary of FSEC Experimental Roof Construction - * indicates value is spec-
ified in model and not obtained from experiment

Cool Roof Green Roof
Top surface roof membrane vegetation

reflectivity [-] 0.50 0.23*
emissivity [-1 0.95* 0.95*
Growing Media

Material [-] n/a loam*

Thickness [m] n/a 0.178
Density-C [J/m 3 K] n/a 1.4e6*

Conductivity [W/rnK] n/a 0.8*
Structural support slab

Material [-] Dens Deck @cover board Dens Deck @cover board
Thickness [m] 0.0127 0.0127

Density [kg/m 3 ] 746 746
Conductivity [W/mK] 0.133 0.133
Heat Capacity [J/kgK] 1090 1090

Insulation
Thickness not specified not specified

R Value [W/m 2 K] 2.97 2.97

the FSEC study did not measure humidity, hourly outdoor relative humidity data col-

lected from the Orlando weather station is obtained from Weather Underground and

the National Severe Storms Laboratory [17] [97]. Data collected during both summer-

July 17-23, 2006-and winter-February 3-9, 2006-are used to test the models' validity

in both seasonal extremes.

All physical parameters used in the model are summarized in Table 2.5

Kobe University Roof Study

Hideki Takebayashi and Masakazu Moriyama of Kobe University investigated numer-

ous kinds of roof technologies on the roof of a university building on their campus

from July 2003 through February 2006 [82]. The total roof area of 42.9 m 2 was di-

vided into numerous sections, each of which had a different kind of roof technology,

as shown in Fig. 2-17. The sections considered in this thesis included an extensive,

turf grass green roof, a bare concrete roof, and a white cool roof, which are circled in



Fig. 2-17 [82].
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Figure 2-17: (left) Photograph of the 42.9 m 2 roof of Kobe University building, in Kobe,
JP. (right) Diagram of experimental layout of roof. The circled numbers are considered in
this thesis and include an extensive, turf green roof (2), a concrete roof (9), and a white
cool roof (11). Both photograph and diagram are in the same orientation. Source [83]

Whereas the FSEC vegetation had a greater height and plant diversity than the

green roof model, the clipped grass used in this study is much closer to the vegetation

assumed in the model. The roof construction consisted only of a concrete structural

slab (20 cm thick) for both the concrete and cool roof, though their measured reflec-

tivities were 0.37 and 0.74 respectively. The green roof had a water barrier, which is

neglected for the purposes of the model, between the growing media (21 cm thick)

and the same concrete slab [82].

Measurements taken included growing media surface, roof surface, and soffit tem-

peratures. They also included weather parameters gathered at a nearby weather fa-

cility: ambient air temperature, relative humidity, solar radiation, infrared radiation,

precipitation, wind direction and velocity [82]. Data used from the Kobe University

experiment were taken over three days, from August 27-29, 2004.

A summary of the roof constructions used in all three cases from the University

of Kobe study is presented in Table 2.6 (with the concrete and cool roofs differing

only by their reflectivities).



Table 2.6: Summary of University of Kobe Experimental Roof Construction - * indicates
value is specified in model and not obtained from experiment

Concrete & Cool Roof Green Roof
Top surface roof membrane vegetation
reflectivity 0.37 (concrete), 0.74 (cool) 0.23*
emissivity 0.95* 0.95*

Growing Media

Material [-] n/a loam*

Thickness [m] n/a 0.21

Density - Heat Capacity [J/m 3K) n/a 1.4e6*
Conductivity [W/mK] n/a 0.8*
Structural support slab

Material concrete concrete
Thickness 0.2 m 0.2 m

Density 2300 kg/m 3 * 2300 kg/m 3 *
Conductivity 1.4 W/mK* 1.4 W/mK*

Heat Capacity 880 J/kgK* 880 J/kgK*
Insulation
Thickness n/a n/a
R Value 0 W/I 2K 0 W/m 2K

2.3.2 Model Validation

The first section of this chapter describes the cool, modified-bitumen, and green roof

models developed in this thesis. In order to be validated, the models must be altered

to account for the two different experimental roof constructions. Therefore, for this

section only, input parameters are changed to reflect construction of the test roofs.

Data obtained from both the FSEC and Univeristy of Kobe studies is used to val-

idate the roof models, which are validated by simulating the roof surface temperature

measured in both studies. Although the models ultimately predict the energy flux

into the building associated with either type of roof, the roof surface temperature is

used to validate the models because the energy flux into the building is easily cal-

culated with the roof surface temperature provided an indoor air temperature and

known overall resistance of the roof. The indoor air temperature will be specified

by the user depending on comfort conditions and the overall roof resistance will be

known from the roof construction and amount of insulation. Therefore, since both



Table 2.7: Variation of concrete properties - *Indicates a heat capacity that is not reported,
thus it is held constant. Source: a [46] b [47]

type of concrete k [W/mK] p [kg/m 3 ] Cp [J/kgK]
stone mixa (used in model) 1.4 2300 880

limestone gravelb 0.6 1850 880*
sand and gravelb 1.4-2.9 2400 880*

indoor air temperature and overall roof resistances will be known, the models will

accurately predict the energy flux into the building if they can accurately predict

the roof surface temperature. Thus, the predicted roof surface temperature from

the models is compared to the measured surface temperature from both studies to

validate the model.

Cool and Modified-Bitumen Roof Model Validation

The cool and modified-bitumen roof model is validated using the concrete and cool

roofs from the University of Kobe study. Fig. 2-18 shows the modeled and experi-

mental roof surface temperature for the concrete and cool roof on the University of

Kobe building during August 27-29, 2004. Although a modified-bitumen roof was

not used in the study, the model was still validated by the experimental data because

two roof surfaces of different albedo were used, concrete and a cool roof. The model

is shown to successfully model these roofs with different albedos, as shown in Fig. 2-

18. Thus, because the only assumed difference in allowed energy flux between cool

and modified-bitumen roofs is the albedo, the model is validated by the experimental

data.

For both concrete and cool roofs in Japan, concrete is the only component of

the roof construction, apart from different surface coatings. Although the concrete

properties chosen for the model are well accepted, other values are also reported in

the literature for different types of concrete, which are summarized in Table. 2.7 [46]

[47]. The modeled roof surface temperature corresponding to these different physical

concrete parameters is shown in Fig. 2-19.



Figure 2-18: Simulated and experimental roof surface temperatures for a (top) 20 cm
concrete roof with albedo = 0.37 and (bottom) cool roof with albedo = 0.74 and 20 cm con-
crete slab in Japan with no insulation. Experimental data, provided by Hideki Takebayashi
and the University of Kobe, is from August 27-29, 2004, which includes measured weather
parameters that are used with the roof model to simulate the roof surface temperature.
Source [83].

The comparison of roof surface temperatures in Fig. 2-19 suggests any discrepancy

between the simulated and experimental temperatures arises from slightly different

physical concrete properties. This dependence on the physical properties of the con-

crete is likely from the lack of insulation, which when present dominates the resistance

to heat transfer, thus decreasing the influence of concrete pysical properties.

The cool roof model is also validated by experimental data from the FSEC study.
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Figure 2-19: Simulated and experimental roof surface temperatures for a concrete roof with
albedo = 0.37 in Japan with no insulation. Each type of concrete is listed in Table. 2.7.
Source [83].

Although a "conventional roof" is used in the FSEC study, it is a light-colored roof

with a measured albedo of 0.50, which by some standards is considered a "cool roof"

[30]. Fig. 2-20 shows the simulated compared to the experimental roof surface temper-

ature during the winter, February 20006, while Fig. 2-21 shows the same comparison

for two weeks during the summer months of July and August 2006 [40]. The uncer-

tainty of the measurements and model predictions are included in both figures.

The strong correlation between the cool roof model and experimental data is

shown in Figs. 2-18 through 2-21. When predicting the roof surface temperature of

the University of Kobe and FSEC studies, the predicted roof surface temperature of

the model agrees with the measured value within 10 and 7.2%, respectively, of the

peak roof surface temperature flucuation. As previously described in Sec. 2.3.2, the

model's ability to predict roof surface temperature, which is an upper boundary of

the heat conduction through the roof into the building, implies sufficient ability to

predict heat flux into the building through the roof.

...................



Figure 2-20: Simulated and experimental roof surface temperatures for a conventional roof

with albedo = 0.5 in Orlando, FL constructed of a roof membrane on top of 1/2" cover-

board, 2.97 W/m 2K insulation, above a metal roof deck. Experimental data, provided by
Jeff Sonne and the FSEC, is from February 3-9, 2006, which includes measured weather

parameters that are used with the roof model to simulate the roof surface temperature.

During the first 40 hours of the experiment, substantial rain fell, thus significantly mod-

erating roof surface temperatures. Experimental temperatures are accurate to +/- 1.4

C, while simulated temperatures are accurate to +/- 1.16 C, or 7% of peak roof surface

temperature flucuations. Source [401.

Green Roof Model Validation

Similar to the cool and modified-bitumen roof model, the green roof model is also

validated by both the University of Kobe and FSEC studies. Although the vegetation

in the studies differs (recall a short turf is used in Japan, shown in Fig. 2-17, and tall

native Floridian plants up to 2 ft in height are used in Florida, shown in Fig. 2-14),

the vegetation and its evapotranspiration in the green roof model are not changed

in any way to simulate both cases. Rather, they are held constant to show that the

green roof model can simulate various kinds of green roof vegetation with relative
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accuracy.

Similarly to the cool roof model, the green roof model is also shown to predict

roof surface temperatures (the vegetation temperature in Japan and soil temperature

in Florida), as shown in Figs. 2-22 through 2-24. The green roof model predicts

surface temperatures that agree with measured values within 26 and 14% of peak roof

surface temperature flucuations in Japan and Florida respectively. There is likely less

agreement with the Japanese data because of the high impact of physical concrete

and soil properties, as previously discussed for the cool roof. The lack of insulation

in the Japanese case leads to a higher dependence on accurate physical property

values, which were not experimentally determined. However, in most applications

roof insulation is present so typical physical property values will suffice.

This correlation not only validates the model's ability to predict green roof sur-

face temperatures, but also its generality by modeling two green roofs of different

vegetation sufficiently well. As with the cool roof model, the ability to predict roof

surface temperatures implies an ability to predict the heat flux into the building.

The next chapter will discuss how this calculated heat flux from the model is

incorporated into MIT's existing early-stage design software, the MIT Design Advisor.
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Figure 2-21:
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Simulated and experimental roof surface temperatures for a
roof with albedo = 0.5 in Orlando, FL constructed of a roof membrane on top of 1/2"
coverboard, 2.97 W/m 2K insulation, above a metal roof deck. Experimental data, provided
by Jeff Sonne and the FSEC, is from (top) July 17-23, 2006 and (bottom) August 4-11,
2006, which includes measured weather parameters that are used with the roof model to

simulate the roof surface temperature. Experimental temperatures are accurate to +/- 1.4
C, while simulated temperatures are accurate to +/- 1.16 C, or 7% of peak roof surface
temperature flucuations. Source [40].
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Figure 2-22: Simulated and experimental vegetation surface temperatures for an extensive

turf green roof in Japan with no insulation. The turf is planted in 21 cm of growing media
on top of a water proofing barrier above a 20 cm concrete roof slab. Experimental data
provided by Hideki Takebayashi and the University of Kobe is from August 27-29, 2004,
which includes measured weather parameters that are used with the roof model. Source
[83]
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Figure 2-23: Simulated and experimental soil surface temperatures for an extensive green
roof in Orlando, FL. The vegetation used in the experiment is native Floridian plants up

to 2 ft in height. Although reported growing media is 6-8", an average of 7 " is used in

the model, which sits on top of a 1/2" cover board, above 2.97 W/m 2K insulation, that

protects a metal roof deck. Experimental data, provided by Jeff Sonne and the FSEC,
is from February 3-9, 2006, which includes measured weather parameters that are used
with the roof model. Although the vegetation used in the green roof model is assumed to
be 12 cm cool season grass, the model still accurately simulates the 2 ft native Florida

plants. No vegetation parameters are changed in the model. During the first 40 hours of

the experiment, substantial rain fell, significantly moderating roof surface temperatures.
Experimental temperatures are accurate to +/- 1.4 C, while simulated temperatures are

accurate to +/- 1.38 C, or 14% of peak roof surface temperature flucuations. Source [40]
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Figure 2-24: Simulated and experimental soil surface temperatures for an extensive green
roof in Orlando, FL. The vegetation used in the experiment was native Floridian plants up
to 2 ft in height. Although reported growing media was 6-8", an average of 7 " is used in the
model. The growing media sat on top of a 1/2" cover board, above 2.97 W/m 2K insulation
that protected a metal roof deck. Experimental data provided by Jeff Sonne and the FSEC
was from (top) July 17-23, 2006 and (bottom) August 4-11, 2006, which included measured
weather parameters that are used with the roof model. Although the vegetation used in
the green roof model was assumed to be 12 cm cool season grass, the model still accurately
simulates the 2 ft native Florida plants. No vegetation parameters are changed in the model.
Experimental temperatures are accurate to +/- 1.4 C, while simulated temperatures are
accurate to +/- 1.38 C, or 14% of peak roof surface temperature flucuations. Source [40]
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Chapter 3

Model Integration to Building

Simulator: MIT's Design Advisor

The first-principles model described in the previous chapter has been shown to accu-

rately predict the energy flux into a building. In this chapter, that model is integrated

into a building simulation tool, MIT's Design Advisor, to allow users to see how the

energy flux through the roof will affect the entire building's energy performance. An

overview of the current version of Design Advisor will be followed by a list of new pa-

rameters introduced to the tool for the added roof module, and finally the integration

of the model into Design Advisor will close the chapter.

3.1 Overview of Design Advisor

The MIT Design Advisor (DA) is called by its originator "a simple and rapid building

energy simulation tool, developed specifically for architects and building designers"

[88].

3.1.1 High Level Overview

A high level overview of how the tool works is taken from the originator's thesis [88]:

A logic diagram, [copied in Fig. 3-1], shows how the software works. First,
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the user selects building options on a simplified user interface, [copied in

Fig. 3-2]. When completed, the data are sent to a simulation engine.

Weather data are retrieved for the building's location. A simulation en-

gine models the available daylight, which can be displayed graphically for

several times of day. This daylight information is used to predict how

much artificial lighting is needed to light the indoor space. Electric light-

ing loads are then computed hourly for the entire year. An HVAC loads

module then uses the weather and building information to predict the

monthly and annual heating, cooling, and lighting energy needs. Infor-

mation about occupant comfort is also produced. These results are then

displayed to the user graphically. The entire simulation process and data

interpretation takes less than a minute's time. Once a simulation is com-

pleted, the user may revise the design options and repeat the process,

comparing results side-by-side. Instant design feedback allows the user to

quickly learn which components have large influences on building energy

consumption.

Graphicahe Dntrfaea

User input
Building D i

(revise design) o Aint

Energy

The~ ~~~~~~~~~~HA dalgtmdla el stekycm oens o h VCla oe

Comfort]

DayDaylight

Figure 3-1: Logic diagram of the DA simulation tool. Source [88].

The daylight model as well as the key components of the HVAC load model

(including internal loads, thermal mass, envelope loads, and their combination to

form the HVAC loads model) are explained in more detail below.
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Figure 3-2: A portion of the single-page MIT Design Advisor interface.

3.1.2 Daylight Model

The daylight model includes both direct and diffuse daylight as obtained from the

TMY2 weather data files. For one day of each month, the distribution of diffuse and

direct solar daylight as it is reflected onto each subarea of the room is calculated by

radiosity methods. For direct daylight, the elevation and azimuth of the sun, along

with window area, coating, and blind information is used each hour to determine

the area of the walls and floor that is directly illuminated. For each subsequent

day of the month, the contribution of direct and diffuse daylight to each subarea is

set proportional to the direct and diffuse intensity given in the weather file for that

particular hour and day.

Multiple reflections are accounted for assuming diffuse reflections for all daylight.

As specified in ASHRAE 90.1, we assume surface reflectances of 80% for ceilings,
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50% for walls, and 20% for floors. Reflections from the surfaces on blinds are also

included assuming the blinds reflect diffusely only for lighting calculations, and both

diffusely and directly for radiosity calculations, which affect solar gains. To find the

daylighting on a workplane 0.8 m above the floor, any shadows or blockage due to

furniture or equipment are neglected.

Lighting energy is found using one of two strategies. The first strategy is to assume

that the lighting for each room subarea is separately controlled so that only enough

electrical lighting is provided so that the total of daylight and electrical light equals

the required lighting level on the workplane. The second strategy uses the assumption

that all of the room lights are controlled together. In this case, the electrical light in

the room is uniform and adjusted so that the darkest part of the room receives the

required lighting level. In both cases, the lights are assumed to maintain a constant

efficiency when dimmed so that the light ouput per unit of electrical energy remains

at 53 lumens/watt (typical for fluorescent lights). A graphic representation of the

room subareas and workplane is shown in Fig. 3-3

interior wall

back of room

Figure 3-3: Two-dimensional workplane grid used to determine the lighting level in each
subarea. Source [88]
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3.1.3 HVAC - Ventilation

DA's modeling of building ventilation begins with a user specification of the minimum

ventilation rate in air changes per hour. One air change is defined as replacing the

entire volume of air currently in the building with the same amount of fresh air. In

the tool, air changes can be specified directly, or the air change rate can be linked to

a representative number of people in a room. Because ventilation rates often change

with building occupancy, different rates can be specified for occupied and unoccupied

times.

Although fresh air usually enters a building in one of three ways, mechanical sys-

tems, natural ventilation, or infiltration, only the first two are considered in the tool.

However, if infiltration levels are known, they can be accounted for by including them

in the minimum air change rate. Three ventilation options are possible: mechanical,

natural, and hybrid ventilation (where hybrid combines the previous two). All three

options share the assumptions that: (1) fresh air is brought into the building at the

outdoor air temperature, (2) indoor air is exhausted from the building at the indoor

air temperature, (3) no energy is recovered from the exhaust air, and (4) fan energy

is not considered.

The specific assumptions for each of the three ventilation options taken from the

DA website are listed below:

1. Mechanical Ventilation Cooling and Heating

* The amount of fresh air intake and indoor air exhaust are exactly

determined by the specified ventilation rate.

* No heat is recovered from the indoor air exhaust.

* If the indoor air temperature falls below the minimum temperature

set-point, heating energy is supplied to maintain a comfortable

temperature.

* If the indoor air temperature rises above the maximum temperature

set-point,
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cooling energy is supplied to maintain a comfortable temperature.

* If the indoor air humidity rises above the maximum humidity set-point,

cooling energy is supplied to remove moisture from the air.

2. Natural Ventilation Cooling, Mechanical Heating

* Windows can be opened or closed to help mediate the indoor

environment.

o If the indoor air temperature is approaching the maximum

temperature set-point, and the outdoor air temperature is

cooler, the windows are opened.

o If the indoor air temperature is approaching the minimum

temperature set-point, and the outdoor air temperature is

warmer, the windows are opened.

o If the indoor relative humidity reaches the maximum humidity

set-point, the windows will close if the outdoor humidity ratio

is greater to prevent excess indoor humidity.

*When a window is opened, the fresh-air flow rate through the window is

calculated based on a cross-flow model that involves wind speed, window

dimensions, and room dimensions.

o If the amount of natural ventilation is less than the minimum

required air change rate, the mechanical system will bring in

enough additional fresh air to meet the minimum requirement.

o If the amount of natural ventilation is greater than the minimum

air change requirement, then no mechanical assistance will

be used.

* If the indoor air temperature falls below the minimum temperature

set-point, heating energy is supplied to maintain a comfortable

temperature.

* If the indoor air temperature rises above the maximum temperature

set-point, no cooling energy is supplied. Instead, the upper-temperature

is allowed to float freely.
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* If the indoor air humidity rises above the maximum humidity set-point,

no cooling energy is supplied. Instead, the indoor humidity level

is allowed to float freely.

3. Hybrid Ventilation: Natural and Mechanical Cooling, Mechanical heating

This case is identical to Natural Ventilation Cooling except that:

* If the indoor air temperature rises above the maximum temperature

set-point, the windows are closed and cooling energy is supplied.

* If the indoor air humidity rises above the maximum humidity set-point,

the windows are closed and cooling energy is supplied.

Two types of ventilated window systems may be selected. These windows are

multi-layered windows in which air can flow between two panes of glass. The user

can select where the intake and exhaust air streams are connected (either indoors or

outdoors). If a ventilated window system brings air from the outdoor environment

into the indoor environment, this counts towards meeting the minimum air change

requirement. In this case, the mechanical ventilation rate is then reduced by the

amount of air brought in through the active window. It is possible to configure an

advanced window that exhausts air from the indoor environment. In this case, if

the flow rate exhausted by the window exceeds the mechanical ventilation rate it is

assumed that additional conditioned air is automatically supplied to the room.

Both Cooling and Heating energy are explained in more detail below, as is done

on the DA website.

Cooling and Heating Energy

When the indoor air temperature climbs above the high temperature setpoint, a

(sensible) cooling load is required. Similarly, when the indoor air relative humidity

climbs above the maximum-humidity setpoint, a (latent) cooling load is required. As

expected, when the indoor air temperature falls below the low temperature setpoint,

a (sensible) heating load is required.
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If Natural Ventilation Cooling is chosen, then no chiller system is available and

the cooling load is reported as zero. The air temperature will float freely above the

minimum temperature. In this case the user can view a histogram of the hours spent

at a given air temperature to determine how often the building would be uncomfort-

ably hot without using a mechanical chiller. If Hybrid Ventilation is chosen, a chiller

is used when opening the windows does not maintain a comfortable indoor environ-

ment. Factors that contribute to the cooling and heating load include:

Combined Cooling and Heat Assumptions:

* Solar gains: direct and diffuse radiation passing through window/

blind system, as explained with the preceding Daylight

model explanation.

* Heat passing through the building envelope (walls and windows).

* Heat from electric lights at 53 lumens/watt.

* Heat from equipment, specified by user.

* Heat from occupants: 75Watts/person (sensible)

+ 55Watts/person (latent).

* Specified Ventilation (which can include infiltration) air flows:

MassFowXCpairX(TinsieToutside ).

* No energy is recovered from exhaust air.

* Fan energy is neglected.

Cooling Assumptions:

* Cooling energy represents the combined sensible and latent loads

* Chiller Coefficient of Performance (COP) =

delivered-cooling-energy/electricity-consumption.

COP is assumed to be 3.0 and is constant for latent and sensible loads.

To provide 1 kWh of cooling energy requires (1 kWh /3.0) =

1/3 kWh of electricity.

* Overall efficiency of power generation and distribution system = 30%.

Efficiency = Electrical energy delivered to building / Primary energy
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consumed at power plant. So to provide 1 kWh of cooling energy

requires 1/3 kWh of electricity, which requires

(1/3 kWh - e)/30% = 1.11 kWh of primary energy.

Heating Assumptions:

* Furnace efficiency = 100%, with fossil fuel consumed on site.

To provide 1 kWh of heating energy requires 1 kWh of primary energy.

3.1.4 HVAC - Envelope Loads

The building envelope in the current version of DA consists of all exterior walls and

windows through which heat and light may be exchanged with the outdoor environ-

ment. To simplify DA's simulation, the contributions of the ground to the energy

balance have been neglected.

The following assumptions for the windows are taken from the DA website:

* Conductivity and optical properties for standard single, double, and triple

glazed windows are taken from ASHRAE Fundamentals.

* Variation of glass optical properties with angle of incidence and radiant

spectrum considered using Fresnel relations and Snell's Law.

* Heat transfer through single-, double-, and triple- glazed windows is modeled

with a resistive network including conduction, convection, and linearized

radiation. Radiation heat transfer coefficients are calculated dynamically

as glass temperature changes.

* Heat transfer and solar transmission through windows that have blinds is

computed using a radiosity method.

* The windows are assumed to be continuous horizontal strip windows. The

windows are centered vertically on the inside wall and the window height

is adjusted based on the percent of envelope surface occupied by glazing.

* Blinds can be set to actively respond to the environment in 2 ways, with
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closed blind angle specified by the user:

1. Temperature sensitive: blinds close/open when they cross the

upper alert temperature threshold (too hot).

2. Solar Intensity sensitive: blinds close when the direct normal

illuminance is more than 50,000 lux (glare).

* The exterior horizontal overhang is located at the ceiling level. Shadows

cast by the overhang are considered in the direct solar on the window

and the daylighting.

* The frames for both single and double skin faades are assumed to occupy 16%

of the glazing area with a U-value of 4.2 W/mK between the inside and outside.

Inside blinds are taken as a separate layer whose temperature is calculated by an

energy balance between the inside glass and the room. This includes IR radiation

and convection from both surfaces of the blinds. The blinds also absorb and reflect

solar energy passing through the windows. The radiation properties of the blinds vary

with blind material and color. The blinds reflect diffuse light diffusely and reflect the

direct solar by a combination of specular and diffuse reflection. The latter includes the

view factors between the blind surface and the room sub-areas as well as shadowing

by neighboring blinds. The blind width is taken equal to the blind spacing.

For double skin facades, the temperature of each glazing layer is calculated by a

thermal balance of conduction, convection, IR radiation, and solar absorption. For the

blinds, a four body radiosity calculation is used for the IR between the upper and lower

blind surfaces and the two adjacent glass layers. The air flow in the cavity is assumed

to form two flow channels that do not mix with each other. The air temperature is

calculated at five vertical layers along the flow channel by an energy balance. The

convection heat transfer between the flowing air and the flat glass surface and the

blinds is computed based on the air velocity: hblfnd, = 5.8 + 4 * Vagir[W/m 2 K]. The

program will calculate the performance of inside ventilated (inside air enters channel

and is exhausted back to the room), outside ventilated (outside air enters and exists
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the flow channel) as well as advanced designs where the air can enter from the outside

and exhaust to the inside or vice-versa.

Heat transfer through the exterior walls is calculated using a series resistance

network between the outdoor and indoor air temperatures. The outdoor and indoor

long-wave radiation and convection resistances are used in addition to the conductive

resistance of the wall and any insulation.

A graphical illustration of the heat transfer through both the windows and walls

is shown in Fig. 3-4.

Transmitted solar radiation,
heading for themal mass floor

Ro" R_1

glass
panes"

adiabatic
surfaces floor foor

surfaces

Figure 3-4: Illustration of the heat transfer through the windows (in this case, double

pane) and walls that comprise the building envelope of the previous version of DA. Source
[88]

3.1.5 HVAC - Thermal Mass

The user can add thermal mass to the floor of each room in DA. Fig. 3-5 shows a

diagram of how the thermal mass is represented, and the following list of assumptions

is taken from the Design Advisor website.

* The balance includes heat transfer between the air and thermal mass.
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* The thermal mass temperature is calculated by dividing it up into 10

equal-thickness layers and doing a heat balance for each layer.

* For heavy thermal mass the floor area is assumed to be 10 cm thick concrete

with a bare surface.

* For light building construction, the concrete floor is assumed to be 2 cm thick.

* Concrete for thermal mass has a specific heat capacity of 880 J/kgK and a

density equal to 2400 kg/m 3 .

* The heat transfer coefficient between the floor surface and air is taken

to be 8 W/m 2 K.

* Heat transfer to the walls and ceiling is not included.

* All of the incoming solar energy is assumed to be uniformly absorbed

over the floor surface.

=~~~~ Qia.rn.I AteX /windo,,/Afl

Qsolar.reflected

0Onto roml

insulated surfaces Qonvecion
(adiabatic) concrete

QsolW.aworbed floor

Figure 3-5: Schematic of heat transfer involving the thermal mass stored in the floor of a
building in DA. Source [88].

3.1.6 HVAC - Combination of Components

In order to find the energy associated with the HVAC system, temperature bounds

are defined for the building and as previously mentioned, when the room temperature,
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Table 3.1: Variables used in the DA

Troom, leaves these bounds, heating or cooling energy is required to return Troom within

the desired temperature range. DA uses an energy balance applied to the room to find

the room temperature every minute. The numerous parameters used in the energy

balance, their units, and calculation frequency are shown in Table 3.1

To help understand how these parameters affect the heat transfer in the room,

Fig. 3-6 is copied from Urban's thesis that illustrates the different modes of heat

exchange with the air in a room in the original DA program (before the roof module

is added).

Before the roof module is added, the energy balance of the room is

marmCpa "Troom =(Thr - Troom) [(UA),, + (UA)wai + rhC] + Qint + Qtm (3.1)

where ma,rm is the mass of the air in the room, CPa is the specific heat capacity

of air (assumed to be constant), Thr is the ambient outdoor temperature, UAwi, and

UAwai are the overall heat transfer coefficients for the windows and walls respectively,
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component units computational frequency
Weather Data

Outdoor Air Temperature K hourly
Thermal Solar Flux W/m 2  hourly

Visible Solar Illuminance lux hourly
Internal Loads

Equipment W/m 2  hourly
People W/m 2  hourly

Lighting W/m 2  hourly
Temperature- dependent loads

Envelope gains W/m 2  5 min.
Ventilation W/m 2  1 min.

Thermal mass W/m 2  about 30 sec.
(including reflected solar thermal)

Resultant Values
Room Air Temperature K 1 min.
Heating / Cooling Load W/m 2 1 min.

room Energy Balance



Ventilation

o NHVAC

Air Heating

Envelope Cooling

tinternal
Loads

-(back of room)

Thermal Mass

Figure 3-6: Heat exchange with air in a room, with arrows indicating possible directions
of heat flow. Source [88].

rh is the mass flow rate of air into the room from the ventilation system, Qjnt is the

sum of internal plug and lighting loads, and Qtm is the heat flux from the thermal

mass in the floor. This energy balance can be solved to find Troom at the next time

step (which in this case is a minute) as follows

T'1- ma,rmCpaTroom + At {(Thr) [(UA)win + (UA)wai + rhCpa + Qin + Qtm}
ma,rmCpa + At [(UA)win + (UA)La + mCPa|

(3.2)

As a final summary of the previous version of DA, a logic diagram is shown in

Fig. 3-7.

3.2 New Roof Parameters in Design Advisor

In order to incorporate the energy impact of different kinds of roofs into DA, various

new parameters have to be introduced, which are listed in this subsection. Each

parameter must be specified by the user before an energy simulation is run. Fig. 3-8

shows the user interface for the roof model, which contains each of the following four

new parameters.
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Natural ventilation

Increment Hour]

"HCompute Once Every
15 Minutes:

Envelope U-Values

Optionally, disable
heating in summer

and cooling in winter.

Figure 3-7: Hourly logic used for the DA software. Source [88].
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6. Roof [a] [Modified Bituman Roof
Description

Roof Insulation Choose an insulation, or enter an R-Value manually.. R-Value: 13.0 m2-*C)NV

Roof Insulation Location: Insuation on bottom of roof slab Floors 1

Figure 3-8: User interface for roof module, which allows user to specify the roof type,
amount and location of roof insulation, and the number of floors in the building.

3.2.1 Type of Roof

The user must first specify what kind of roof will be simulated among four options:

adiabatic, modified-bitumen, cool, or green roof. The adiabatic roof assumes no heat

transfer through the roof (as previously assumed in DA), and thus only considers

envelope loads through the walls and windows. The other three types of roofs are

described in sections 2.1 and 2.2.

3.2.2 Roof Insulation R-Value

The user must also chose the R-value for the roof insulation, which can be done in one

of two ways. In the first option, the user may select the amount of insulation from

a list a typical insulation values compiled by Bryan Urban, a screen shot of which is

shown in Fig. 3-9 [88]. The second option allows the user to specify the exact value

of the insulation.

Chose an insulation, or enter an R-Value manual.Ijy

Commercial (Low Insulation)
Commercial (Medium Insulation)
Commercial (High Insulation)

Residential (Low Insulation)
Residential (Medium Insulation)
Residential (High Insulation)

High-
Very High -
Infinite -

Figure 3-9: Screen shot of the types of insulation that can be chosen in DA. The user can
also specify the exact value if it is known. Source [88].
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3.2.3 Roof Insulation Location

In addition to the amount of insulation, the user must specify whether it is above or

beneath the roof structural slab. Recall from Sec. 2.1.2 that for the cool and modified-

bitumen roof model, if the insulation is placed on top of the slab, a 1/2" coverboard

is placed on top of the insulation to protect it from environmental stressors. However,

roof insulation placed beneath the slab is simply added to the bottom of the slab.

Similarly, the green roof model assumes insulation is simply added to the bottom of

the slab as well, if it placed beneath the structural slab. If it is placed above the

slab, it is added between the soil and slab layers with no additional material. Refer

to Sec. 2.2.3 for further discussion and diagrams of the roof insulation used in the

green roof model.

3.2.4 Number of Floors in the Building

Another important parameter added to DA is the number of floors in the building

that is modeled. A more detailed discussion of how this parameter is used in DA

follows, but a simple example reveals the importance of knowing the number of floors

when considering the energy impact of a roof. For example, a large roof on a single-

story warehouse has a much greater impact on the total building energy use than a

small roof atop a 30 story highrise.

3.3 Integration of Roof Model into Design Advisor

The integration of the aforementioned roof model, discussed in Chapter 2 and new

DA parameters into the existing DA program is discussed in this section. Specific

references to the Java source files and html code that comprise the program are not

included in this section, but can be found in Appendix A.

After all changes to the DA program, essentially only two aspects are changed.

First, there is now a heat flux through the roof. Second, multi-story buildings can

now be modeled, in which a total building average energy use per square meter is
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found. These changes are discussed below in more detail.

3.3.1 Accounting for Heat Flux through Roof

The primary change to DA from this thesis is the addition of a heat flux term from

the roof. The heat flux from the roof is modeled similarly as the flux from the thermal

mass in the floor. Every minute, a flux is calculated from the roof that in turn affects

the energy balance in the room. Thus, the new energy balance for the room becomes

ma,,mCpa t (Thr - Troom) [(UA)win + (UA)wal + rhCp] + Qint + Qtn + Qroof

(3.3)

where the only change from Eq. 3.1 is Qoof, which is the heat load from the roof,

defined as

Qroof = Aroof - hroom(Tslab,n - Troom) (3.4)

where Aroof is assumed to equal the floor area (which is defined by the user),

hroom is the effective heat transfer coefficient between the bottom of the roof slab and

the room (which accounts for any added insulation beneath the slab, as explained

in Chapter 2), and TsIab, is the temperature of the final node of the roof slab. The

current room temperature is used to predict Qroof, thus the new expression for T'room

becomes

maCpaTroom + At {Tr [UAwin + UAwai + ThCPa| + Qint + Qtm + ,Qroof}
room maCpa + At [UAmin + UAwal + ThCpa]

(3.5)

As before, all weather data is updated on an hourly basis, and likewise, all other

components of the software logic shown Fig. 3-7 remain the same.
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3.3.2 Accounting for Multiple Building Floors

The second aspect of the DA software that has been changed is the ability to account

for multiple floors in a building. Before a roof is considered, and because no heat

flux from the ground is considered, no consideration was needed for multiple story

buildings. However, now that the top floor of the building, directly under the roof,

has an additional heat load, Q.oof, the top floor must be treated differently than all

other floors. There are two scenarios that are now considered for the number of floors

in the building.

When there is only one floor, no additional modifications are made to the existing

software, apart from the additional Qoof term described above. However, if there

are multiple floors, only the top floor considers Qroof, while all remaining floors are

assumed to have adiabatic roofs due to similar indoor air temperatures on each floor.

The energy requirement per square meter for the top floor is averaged with that of

all remaining floors to obtain an average energy requirement for the entire building.
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Chapter 4

Results

One might argue the most important result of this thesis is the production of a

tool that can quickly and easily assess the potential energy savings of various roof

technologies in cities around the world. This tool is freely available online at

http://designadvisor.mit.edu

However, insight into these various roof types and constructions has been obtained

through running numerous simulations, which will be presented in this chapter.

4.1 Roof Type

As the primary focus of this thesis, the energy impact of various types of roofs is first

presented. It has been shown many times that cool roofs can save cooling energy in

warm climates such as California [21]. It is also known that in cold climates, cool

roofs may actually require more heating energy because they reflect useful heat from

the sun [22] [961. However, the climate in which the cooling energy savings equals

the heating energy losses is more uncertain. Therefore, the same building will be

simulated in a hot, cold, and a few moderate climates to evaluate in which ones

a cool roof leads to net energy savings. The model parameters used are listed in

Appendix B under Table B.1.

As expected, it is shown in Fig. 4-1 that the cool roof performs roughly the same

as the modified-bitumen roof in Minneapolis, a very cold climate. This equality in
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Figure 4-1: Annual heating and cooling load for a single-story residential building with no
roof insulation. See Table B.1 in Appendix B for all input parameters.

energy demand results from an increased heating load for the building with a cool

roof, because less of the sun's heat enters the building. Not just isolated to Min-

neapolis, this increase in heating energy occurs in every city when a cool roof is used.

In a hot climate like Phoenix, the cool roof nearly halves the energy consumption of

the building with a traditional roof. In the three moderate cities simulated, switching

to a cool roof leads to at least minimal savings, even in Boston. In each of the five

cities considered, the green roof leads to the lowest energy consumption, as the soil

helps insulate the roof, which otherwise has no insulation. Furthermore, because the

vegetation is assumed to always be healthily living, the green roof provides passive

cooling to the roof when the incident radiation and ambient temperature are high

enough to allow evapotranspiration. The water required for this evapotranspiration

varies significantly with location, climate, and time of year. However, in the most

extreme conditions, during the Phoenix summer, a weekly irrigation rate of 3.3 in/wk

is needed to allow the modeled evapotranspiration. This weekly rate averages to 13
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in/month of required water in the summer, of which 0.99 in could be met by the av-

erage July precipitation at the Phoenix Sky Harbor International Airport [74]. The

large effect of roof type on energy consumption, up to a 60% reduction, suggests

enormous potential by changing roofs, however particularly in hot arid climates, sub-

stantial water is needed for the roof.

However, such dramatic drops in energy consumption are not always realized. If

the exact same building modeled in Fig. 4-1 is built as a four-story building rather than

a single-story building, the energy impact of each type of roof changes significantly,

as shown in Fig. 4-2.

- -- cooling energy
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Figure 4-2: Average total annual heating and cooling load for the four-story equivalent of
the building modeled in Fig. 4-1 (residential building with no roof insulation). See Table B.1
in Appendix B for input parameters, except the number of floors in the building, which is
4.

As observed in Fig. 4-2, both the relative and absolute change in energy consump-

tion from changing roof types is significantly reduced when a four-story building is

modeled. The reason for this reduction is the interior floors, which are not exposed

to the heat flux through the roof, help moderate the average total building energy
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consumption. The effect of the number of floors in the building will be discussed in

more depth later in this chapter.

An even greater change in the energy consumption of the building shown in Fig. 4-1

occurs if insulation is added to the roof. The exact one-story building modeled before

is re-simulated with 3 m 2K/W of insulation, or 8.6 cm of polystyrene foam, placed

on top of the roof slab, the results of which are shown in Fig. 4-3 [27].
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Figure 4-3: Average total annual heating and cooling load for the equivalent building
of that modeled in Fig. 4-1, save 3 m 2K/W insulation added above the roof slab. See
Table B.1 in Appendix B for input parameters, except the roof insulation amount, which is
now 3 m2K/W.

With insulation, the absolute difference between the 3 types of roofs is drastically

reduced. In climates dominated by heating energy, such as Minneapolis and Boston,

the difference in energy consumption associated with each type of roof is much smaller

than the difference in cooling dominated or moderate climates, roughly 6% in Min-

neapolis. However, in climates dominated by cooling loads, such as Phoenix and

Lisbon, both green and cool roofs can save up to 25% in total energy consumption.

It should also be noted that in every climate, the green and cool roofs now perform
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nearly identically, whereas the green roof out performs the cool roof in every city

when no insulation is used, as shown in Fig. 4-1. Both types of roofs now perform

similarly because the added insulation severely limits heat transfer in both cases.

With no added roof insulation, as in Fig. 4-1, the green roof performs best because

the insulative effect of the soil somewhat limits heat transfer through the roof. When

3 m 2K/W of insulation is added, however, the insulative effect of the added insulation

dominates that of the soil, thus heat transfer is mostly limitted by the added insu-

lation. So, because heat transfer through the cool roof is also limitted by the added

insulation, though not the insulative effect of the soil, both roofs perform similarly.

4.2 Roof Insulation

Two aspects of the roof insulation are investigated in more detail in this section, both

the amount and location of insulation used on the roof.

4.2.1 Roof Insulation - Amount

As shown in Fig. 4-3, 3 m 2K/W of roof insulation seems to even the energy con-

sumption of the building across all roof types in certain climates. Knowing at what

amount of insulation this happens can help lead to smarter building designs. Figs. 4-4

through 4-7 plot the total energy consumption for a one-story building with moderate

plug loads in four different climates. A full summary of input parameters is available

in Appendix B under Table B.2.

In Figs. 4-4 through 4-7, notice how the energy consumption associated with all

three roof technologies approaches the same value as insulation is increased. It should

be noted, however, that in every case the modified bitumen roof has the worst energy

performance. The degree to which a green or cool roof out performs the modified

bitumen roof depends highly on climate. With an R-value of 7 m 2K/W, in the sunny

and hot climate of Sacramento, the cool roof performs best and saves 10 kWh/n 2,

or 9 %, annually over the modified bitumen roof. When solar gains are high, as they

are in Sacramento, cool roofs perform very well as they prevent much of the solar
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Figure 4-4: Average total annual heating and cooling load for a one-story building with
moderate plug loads as a function of roof insulation in Minneapolis, MN. See Table B.2

in Appendix B for input parameters, except for the city and insulation amount, which are
specified in the figure.

Figure 4-5: Average total annual heating and cooling load for a one-story building with
moderate plug loads as a function of roof insulation in Sacramento, CA. See Table B.2 in
Appendix B for input parameters, except for the city and insulation amount, which are
specified in the figure.
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Figure 4-6: Average total annual heating and cooling load
moderate plug loads as a function of roof insulation in St.
Appendix B for input parameters, except for the city and
specified in the figure.

for a one-story building with
Louis, MO. See Table B.2 in

insulation amount, which are

Figure 4-7: Average total annual heating and cooling load for a one-story building with

moderate plug loads as a function of roof insulation in Boston, MA. See Table B.2 in
Appendix B for input parameters, except for the city and insulation amount, which are
specified in the figure.
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energy from entering through the roof. However, in the cold climate of Minneapolis

(again with roof insulation of 7 m 2K/W), the green roof performs best, saving 4.5

kWh/m 2 , or 5 %, annually over the modified bitumen roof. The additional insulation

and thermal mass of the green roof helps lower energy consumption during the winter,

while the evapotranspiration and shading from the grass helps lower consumption in

the summer. Thus, in colder climates, a green roof is expected to perform best.

In Fig. 4-5, there appears to be an optimum amount of insulation for the cool

and green roofs at 1 m 2K/W. This optimum value arrises because of two dominating

factors: when no insulation is present, the solar heat flux through the roof dominates.

When the roof is heavily insulated, the heat generated from the plug loads can not

escape through the roof, especially at night when the cool night sky could help offset

the heat from the plug loads. The optimum value of 1 m 2K/W occurs where there

is enough insulation to significantly reduce the solar heat flux through the roof, but

not too much to keep the heat from internal loads trapped inside.

4.2.2 Roof Insulation - Location

Not only does the amount of roof insulation affect the energy consumption of the

building, but also the insulation location. Assuming a concrete roof slab is used,

when the insulation is above the slab, the concrete's thermal mass adds to that of the

room, whereas when insulation is beneath the slab, the concrete's thermal mass is not

in direct contact with the room because of the resistance of the insulation. Adding

more thermal mass helps moderate the room temperature, thus lowering energy bills,

whether during a hot summer or cold winter.

When the insulation is above the slab, the thermal mass is exposed to the indoor

air temperature, helping to moderate it and lead to lower energy demands. Further-

more, during the day, the absorbed energy on the roof surface can not easily pass

through the insulation and consequently the roof surface temperature is higher than

when insulation is beneath the slab. This higher surface temperature allows more

energy to be transferred back to the environment and not to the building, which is

protected from the insulation. To better understand these tradeoffs, Fig. 4-8 shows
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the energy consumption of a large office building in Lisbon, Portugal plotted as a func-

tion of roof insulation R-value for all three types of roof and two insulation locations.

All input parameters are shown in Appendix B under Table B.3.
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Figure 4-8: Average total annual heating and cooling load for a one-story office building
as a function of roof insulation in Lisbon, Portugal. See Table B.3 in Appendix B for input
parameters, except for the insulation amount and location (on top or under the concrete
roof slab), which are specified in the figure.

Observation of the annual heating and cooling load when no insulation is present

shows the impact of simply adding a coverboard on top of the roof. Recall when the

insulation is placed on top of the roof, a half-inch coverboard is used to protect the

insulation from the environment. This additional layer helps limit the amount of heat

flux through the roof, thus significantly reducing the energy load of the building. In

the case of the green roof with no insulation, the energy demands are equal, because

no coverboard is needed to protect the insulation. As more insulation is added, the

difference between the two configurations narrows, although the case with insulation

on top of the roof slab always requires less energy.

To summarize the insulation section, a building with no roof insulation can gener-

ally realize much higher energy savings by adding as little as 1 m 2K/W roof insulation

instead of installing a new roof. Furthermore, that insulation should be added on top

of the roof structural slab, especially if it is thermally massive. However, if a building
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already has roof insulation, a green or cool roof can lead to additional energy savings,

on the order of 5-10% in the single-story buildings and locations presented here.

4.3 Number of Floors

One component of building construction that is often unmentioned when the energy

savings of a cool or green roof is mentioned is the number of floors in the building.

It has been shown that such roof technologies have the potential of saving energy,

however the eleven-story Chicago City Hall likely does not save much energy with its

roof garden, because ten out of the eleven floors remain unchanged with the new roof.

This section shows how the average energy consumption of the building changes with

the number of floors in the building.

To illustrate this change, the average total heating and cooling energy per square

meter is plotted as a function of the number of floors in the building. Recall the

average total energy is found by assuming the interior floors of the building have

adiabatic cielings while the top floor must consider the heat flux through the roof.

The average total energy is the floor-wieghted average of these values. Two locations

are considered, Lisbon, Portugal (a cooling dominated climate) and Boston, MA (a

heating dominated climate). In each location, a building with 0 and 3 m 2K/W roof

insulation is modeled.

Figs. 4-9 and 4-10 show similar results to those previously presented in Fig. 4-2

where the difference between the three roof technology diminishes with the number

of floors in a building. When roof insulation is used, the difference is even smaller,

as shown in Figs. 4-11 and 4-12 which plot the average total energy demand versus

the number of floors in the building for the exact building used in Figs. 4-9 and 4-10,

but with 3 m 2 K/W roof insulation.

A striking difference between Boston and Lisbon, with no insulation, exists as

shown in Figs. 4-9 and 4-10. In Fig. 4-9, the average annual energy consumption

decreases for all three types of roof as more floors are considered. This phenomena

occurs because the energy consumption of the interior floors with adiabatic ceilings
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Figure 4-9: Average total annual heating and cooling load for multi-story buildings with
no roof insulation as a function of number of floors in Boston, MA. See Table B.4 in
Appendix B for input parameters, except for the number of floors and insulation amount,
which are specified in the figure.
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Figure 4-10: Average total annual heating and cooling load for multi-story buildings with
no roof insulation as a function of number of floors in Lisbon, Portugal. See Table B.4 in
Appendix B for input parameters, except for the number of floors and insulation amount,
which are specified in the figure.

137

- 0 green
_ m cool

- bhitumenV __ -



Boston, MA -3 m2KIW insulation

- -N bitumen
,a 350- green

* * M cool
. 300

250

"0En200

ui 150

0
1 2 3 4 5 6 7 8 9 10

Number of Floors

Figure 4-11: Average total annual heating and cooling load for multi-story buildings with

3 m2K/W roof insulation as a function of number of floors in Boston, MA. See Table B.4 in

Appendix B for input parameters, except for the number of floors and insulation amount,
which are specified in the figure.
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Figure 4-12: Average total annual heating and cooling load for multi-story buildings with 3

m 2K/W roof insulation as a function of number of floors in Lisbon, Portugal. See Table B.4

in Appendix B for input parameters, except for the number of floors and insulation amount,
which are specified in the figure.
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is much less than the energy consumption of the top floor, which includes the heat

flux through the roof. However, in Lisbon, only the modified bitumen roof follows

this trend; the green and cool roofs actually increase in average energy consumption

with the number of floors. This increase in energy consumption results from the

passive cooling effect of both green and cool roofs when no roof insulation is present.

When a floor has an adiabatic roof, all heat gains must be dissipated through the

walls, windows, or by the cooling system. When a green or cool roof is used, though,

the heat can be absorbed by the thermal mass of the roof (recall, which is 15 cm

of concrete for both cases, with an additional 15 cm of soil for the green roof) and

dissipated to the cooler outside environment, especially at night. Furthermore, the

thermal mass will also cool at night, which in turn offsets some of the heat gains early

in the day. Fig. 4-13 helps illustrate this reasoning.

Figure 4-13: Hourly heating load for the interior floors (with adiabatic ceilings) and top
floor with a green and cool roof (no roof insulation) of the building simulated in Figs. 4-9
through 4-12. The results shown are for a representative April day in Lisbon. A negative
heating load indicates a cooling load is applied.

Notice in Fig. 4-13 that both green and cool roofs have no negative heat load,

which corresponds to a cooling load, whereas the adiabatic case has only a cooling

load. Furthermore, during the night, both green and cool roofs require a heating load

because of their cooling effects, which are increased during the night. The insulative
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effect and additional soil thermal mass both help the green roof perform significantly

better than the cool roof when no insulation is present.

The same increase in average energy consumption with number of floors is present

in both Figs. 4-11 and 4-12, where all three roofs in both locations lead to higher

average energy consumption as more floors are added. In this case, the principle

reason for this trend is the effect of thermal mass, as the passive cooling of the green

and cool roofs is limited by the 3 m 2K/W of insulation and the modified bitumen roof

shows the same trend (although it does not have the same passive cooling ability).

The simulated building at hand has "low" thermal mass, which consists of 2 cm of

concrete on each floor. So the interior floors with adiabatic ceilings do not have much

thermal mass, which leads to large interior temperature swings over short periods

of time, which in turn requires more heating or cooling energy to offset the swing.

However, the one-story building (or top floor of a multi-story building) with any of

the three types of roof has an additional 15 cm of concrete thermal mass from the

roof slab. This near sevenfold increase in thermal mass helps moderate these swings,

which leads to energy savings.

Fig. 4-14 shows the moderating effect of the three types of roofs compared to the

adiabatic case, with 2 cm of thermal mass, as well as the adiabatic case when 20 cm of

concrete (or "heavy" thermal mass) is used. All three roofs exhibit similar behavior

as they all require minimal heating during the night and minimal cooling during the

day (though the modified bitumen roof requires slightly more cooling during the day

and subsequently less heating at night due to its high absorptivity). The standard

adiabatic case requires both more heating energy at night and more cooling energy

during the day due to the lack of a moderating thermal mass. When "heavy" thermal

mass is used in the adiabatic case, which is similar to the total thermal mass present

when the roof slab is exposed to the room, a similar moderating effect that that of the

roofs is present. However, because no heat transfers through the roof, the cold night

sky does not cool the room as it does for the three types of roofs. When this night

cooling effect is absent, no heating energy is required during the night, as shown in

Fig. 4-14, but more cooling energy is required during the day, also shown. Therefore,
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Figure 4-14: Hourly heating load for a representative April day in Boston. The interior
floors (labeled "adiabatic"), top floor with a green, cool, and bitumen roof with 3 m2K/W
roof insulation, and interior floors with 20 cm thermal mass (labeled "heavy") of the building
simulated in Figs. 4-9 through 4-12 are considered. A negative heating load indicates a
cooling load is applied.

more thermal mass (whether in the roof assembly or on the floor) can lead to energy

savings.

By comparing the two cases in Boston, Figs. 4-9 and 4-11, a drastic reduction

in average total energy occurs when insulation is added to buildings with few floors.

For example, a one-story building in Boston realizes an 82% drop in required energy

by installing 3 m 2K/W of roof insulation, whereas only a 34% drop is realized if a

green roof is installed. The effect of the roof insulation also has a non-trivial impact

on a ten-story building. By adding the same amount of roof insulation to a 10-story

building, an average total energy savings of 24% can be realized over the un-insulated

10-story building. However, if a green roof with no insulation is installed instead,

only a savings of 10% will be realized.

The roof insulation, as before, has the effect of balancing the energy demands

associated with the three different kinds of roofs. For the 10-story building in Boston

with roof insulation, there is less than a 1% difference between all three roofs. In the

warmer climate of Lisbon, there is a slightly larger reduction of 2% for both green

141



and cool roofs, but it is still quite small. However, because of its more moderate

climate, Lisbon differs from Boston when buildings with few floors are considered.

For example, when roof insulation is added to a one-story building, the average total

energy is reduced by 53%. However, if a green roof with no insulation is installed

instead, the average total energy is reduced by 67%. This difference from the Boston

case arises from the passive cooling capability of the green roof, which helps expell

excess heat when no insulation is present. In Boston, the insulation leads to greater

energy savings because it is a heating dominated climate, thus the passive cooling

capability of the green roof does not lead to annual energy savings (though it does

help in the spring and summer).

4.4 Considerations for Natural Ventilation

The preceeding analysis is done for a building with mechanical heating and cooling.

However, the impact of a green or cool roof on a naturally ventilated building also has

potential to reduce energy demand, as they both can limit heat flux through the roof.

In this section, the same building used before (in Fig. 4-1) is naturally ventilated to

provide cooling, but still mechanically heated. It is assumed that no energy is used

to naturally ventilate the building (no fans or self-operating windows are assumed to

be used), so there is no cooling energy. Instead, to evaluate the effect of installing

a new roof, the number of hours in a year the building is at a certain temperature

is recorded. Additionally, as before, the heating energy required is recorded. A

naturally ventilated building with 0 and also 3 m 2K/W roof insulation is simulated

in both Boston, MA and Lisbon, Portugal, the results of which are shown in Figs. 4-15

through 4-18. All input parameters are shown in Table B.5 in Appendix B.

A quick glance at the indoor temperatures of the buildings with both the green

and cool roofs suggests they perform nearly equally as well in reducing the number of

hours the building is above 28 C. However, when the heating energy is considered, the

28% increase in heating energy from switching to a cool roof must also be compared

to the 18% decrease in heating energy when a green roof is used. Although both cool
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Figure 4-15: Indoor temperatures for a naturally ventilated single-story building with 0
m2K/W roof insulation in Boston, MA. The annual heating energies corresponding to the
modified bitumen, green, and cool roofs are 185.2, 151.3, and 236.4 kWh/m 2 respectively.
See Table B.5 in Appendix B for input parameters, except the location and insulation
amount, which are specified in the figure.

and green roofs perform similarly when cooling the building with natural ventilation,

the increase in heating energy associated with the cool roof makes that choice worse

in terms of overall energy performance. When 3 m 2K/W of insulation is added to

the roof, the results are quite different, and shown in Fig. 4-16.

Little difference exists between the three types of roofs shown in Fig. 4-16. The

cooling from natural ventilation for each type of roof is quite similar, as are the abso-

lute values of the heating energy, though a 12% difference exists between the modified

bitumen and cool roofs (with the modified bitumen roof performing better because of

the cold climate of Boston). As before, the addition of insulation significantly evens

the energy performance of the three types of roofs. The same two scenarios are now

shown in Lisbon, Portugal, (Figs. 4-17 and 4-18) where cooling demand dominates.

Similar to in Boston, the cool and green roofs help reduce the number of hours

the interior temperature is above 28 C. Once again, the heating energy associated

with the cool roof is greatest among the three roofs, 88% higher than that for the

modified bitumen roof. However, because of the more moderate climate, the absolute

difference is less than in Boston. The results for the case when 3 m 2K/W of roof
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Figure 4-16: Indoor temperatures for a naturally ventilated single-story building with 3
m2K/W roof insulation in Boston, MA. The annual heating energies corresponding to the

modified bitumen, green, and cool roofs are 25.3, 27.7, and 28.3 kWh/m 2 respectively. See
Table B.5 in Appendix B for input parameters, except the location and insulation amount,
which are specified in the figure.
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Figure 4-17: Indoor temperatures for a naturally ventilated single-story building with 0
m 2K/W roof insulation in Lisbon, Portugal. The annual heating energies corresponding to
the modified bitumen, green, and cool roofs are 28.5, 25.9, and 53.7 kWh/m 2 respectively.
See Table B.5 in Appendix B for input parameters, except the location and insulation
amount, which are specified in the figure.
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insulation is added is shown in Fig. 4-18.
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Figure 4-18: Indoor temperatures for a naturally ventilated single-story building with 3
m2K/W roof insulation in Lisbon, Portugal. Note the different scale from Fig. 4-17. The
annual heating energies corresponding to the modified bitumen, green, and cool roofs are
0.2, 0, and 0 kWh/m 2 respectively. See Table B.5 in Appendix B for input parameters,
except the location and insulation amount, which are specified in the figure.

When insulation is added, the cooling performance of each roof is again nearly

equal, but now, because of the warmer climate, no heating energy is required (due to

the heating effect of the envelope and internal loads). This finding suggests that in

moderate climates, a cool or green roof will likely not affect the energy performance

of a naturally ventilated residential building with moderate roof insulation.

4.5 Conclusions

To conclude this chapter, it is again emphasized that the chief result of this thesis

is the development of a tool that can quickly and easily assess the potential energy

savings of various roof technologies in cities around the world (freely available online

at http://designadvisor.mit.edu). These conclusions are based on simulations which

use the input parameters available in Appendix B. Thus, any building with drastically

different parameters may perform differently. The following is a list of general insights

regarding roof types and construction:
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- A building with no roof insulation can generally realize much higher energy savings

by adding as little as 1 m 2K/W roof insulation instead of installing a different

kind of roof.

- Although roof insulation greatly evens the energy performance associated with

different roofs, even in a heavily insulated building, a 5-10% savings can be

realized if the proper roof is chosen.

- With roof insulation, cool roofs generally perform best in sunny and hot climates.

Green roofs generally perform best in moderate to cold climates.

- Without roof insulation, green roofs nearly always perform best, provided they are

actively growing, because of the insulative properties of the growing media and

potential passive cooling. However, particularly in hot arid climates

substantial water is needed to realize full passive cooling effect.

- Regardless of insulation, cool roofs nearly always decrease the cooling load while

increasing the heating load.

- In most climates, with moderate to heavy plug loads, more roof insulation is not

always better, especially if a green or cool roof is used.

- If a thermally massive roof structural support is used, better energy performance is

realized if the roof insulation is placed on top of the support rather than beneath it.

- Multi-story buildings, especially those over 4 stories, significantly reduce the overall

building energy savings associated with cool or green roofs.

- Multi-story buildings with insulation realize very little, if any at all, energy savings

for the entire building by switching roofs.
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More thermal mass generally helps lower energy consumption.

- In a naturally ventilated building with no roof insulation, cool and green roofs help

lower maximum indoor temperatures, though cool roofs result in significantly higher

heating loads.

- In a naturally ventilated building with roof insulation, very little, if any at all,

difference in maximum indoor temperature and heating load exists among the three

roofs, especially in moderate climates.

4.6 Next Steps

This work completes the addition of the roof module to the MIT's Design Advisor as

projected by Urban [881. Although the roof module is complete, it can be expanded in

numerous ways, including the addition of more types of roofs (specifically a ballasted

roof), the inclusion of a crop coefficient in the FAO-56 Penman-Monteith equation

so other vegetation types can be more specifically modeled (which can change the

evapotranspiration by up to 45% [26]), the consideration of varying moisture levels in

the growing media (which will affect the conductivity, heat capacity, and density of

the media), and the ability to change the roof albedo for cool roofs to estimate changes

in performance as roofs get dirty. Further expansion to Design Advisor might include,

as suggested by Urban, "...ground thermal model, improved convection relations for

systems with blinds, and additional flexibility in the user-controlled building operation

decisions" [88].
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Appendix A

Altered Design Advisor Java

Source Files and HTML Code

To find specific changes in the Java source code, search for "steve" in the document.

Nearly all changes made by Steve to incorporate the roof module are labeled with my

name.

Java files altered by Steve for the roof addition:

WeatherData

o added a new weather parameter, globalHorizontalRadiation

o Added method getRelativeHumidity WeatherDataReader

o added a new weather parameter, globalHorizontalRadiation

o Added method getRelativeHumidity Roof

o Added a new class that predicts the roof temperature given weather inputs and

returns the heat flux through the roof into the top room of a building

Strategy

o Added roof module

o Added roof energy into runOneHour

o Added parameter windSpeed

Sunlight

o Added global horizontal radiation to class

Room.
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o Added method setRoofO that initiates a Roof object

Scenario

o Added 4 new parameters

Building

o Call method setRoof to create a roof module if it is specified

SingleGizedUnit

o Deleted a System.out.println that printed the readymade window type

SHGCFinder

o Commented out three system.out.println statements

Doube Glazed Unit

o Commented out System.out.println

Webinterface, HTML files edited:

Setup

o Added new field, Roof Description

o Change getScenarioParameters to read 4 roof parameters

o Change setScenarioParameters

o Change the units methods

Bridge-form

o Added 4 parameters for roof

Bridge

o Added 4 parameters for roof

Index

o Added lines to ensure values stored in scenario remain unchanged

o Changed colored tabs to include roof info

Roof.html help file

o Created help file to explain the roof addition

Energy html file

o Changed the title and added an explanation for how the energy is calculated

Energy-monthly html file

o Changed the title and added an explanation for how the energy is calculated
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Assumptions file

o Added assumptions associated with roof analysis

Folders changed

-Added divider to Jigsaw/WWW/design/images folder

-Added "bitumen-roof", "cool-roof', and "green-roof' to

Jigsaw/WWW/design/help/help-images folder
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Appendix B

Building Simulation Parameters
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Table B.1: Simulation Input Parameters for Fig. 4-1

Location
Building length, side A
Building length, side B

Simulation Type
Window Typology

Glazing Type
Window Area
Blind Width

Blind Schedule (daytime)
Blind Schedule (nighttime)
Blind Angle when closed

Blind Color
Blind Emissivity

Blind Absorptivity
Wall Insulation R-Value

Building Type
Occupancy Load

Lighting Requirements
Equipment Load

Air Change Rate per Occupant
Total Air Change Rate

Lighting Control
Orientation

Room Depth
Room Width
Room Height
Thermal Mass

Overhang Depth
Roof Type

Roof Insulation R-Value
Roof Insulation Location

Number of Floors

specified in figure
N/A
N/A

one-sided
dgu

low-e
40%

25 mm
responds to temperature

always closed
75 degrees

Shiny Aluminum
0.22
0.2

2 rn2K/W
Low-rise Residential

0.025 people/m 2

400 lux
1.00 W/m 2

15.0 liters / sec per person
0.5 roomfuls per hour

lights respond to sun - controlled by a one switch
south
4 m
4 m
3 m
low
0 m

specified in figure
0 m2-K/W

top of roof slab
1 floor(s)
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Table B.2: Simulation Input Parameters for Figs. 4-4 through 4-7

Location
Building length, side A
Building length, side B

Simulation Type
Window Typology

Glazing Type
Window Area
Blind Width

Blind Schedule (daytime)
Blind Schedule (nighttime)

Blind Angle when closed
Blind Color

Blind Emissivity
Blind Absorptivity

Wall Insulation R-Value
Building Type

Occupancy Load
Lighting Requirements

Equipment Load
Air Change Rate per Occupant

Total Air Change Rate
Lighting Control

Orientation
Room Depth
Room Width
Room Height
Thermal Mass

Overhang Depth
Roof Type

Roof Insulation R-Value
Roof Insulation Location

Number of Floors

specified in figure
N/A
N/A

one-sided
dgu

low-e
40%

25 mm
responds to temperature

always closed
75 degrees

Shiny Aluminum
0.22
0.2

2 m2 K/W
Low-rise Residential

0.025 people/rm2

750 lux
5.00 W/m 2

15.0 liters / sec per person
0.5 roomfuls per hour

lights respond to sun - controlled by a one switch
south
4 m
4 m
3 m
low
0 in

specified in figure
specified in figure
top of roof slab

1 floor(s)
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Table B.3: Simulation Input Parameters for Fig. 4-8

Location
Building length, side A
Building length, side B

Simulation Type
Window Typology

Glazing Type
Window Area

Wall Insulation R-Value
Building Type

Occupancy Load
Lighting Requirements

Equipment Load
Air Change Rate per Occupant

Total Air Change Rate
Lighting Control

Orientation
Room Depth
Room Width
Room Height
Thermal Mass

Overhang Depth
Roof Type

Roof Insulation R-Value
Roof Insulation Location

Number of Floors

Portugal - Lisbon
N/A
N/A

one-sided
dgu-nb
low-e
50%

2 m2 K/W
Office Building

0.075 people/m 2

500 lux
5.00 W/m 2

15.0 liters / sec per person
1.2 roomfuls per hour

lights respond to sun - controlled by a one switch
south
20 m
5 m

3.5 m
none
0 m

specified in figure
specified in figure
specified in figure

1 floor(s)
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Table B.4: Simulation Input Parameters for Figs. 4-9 through 4-12

Location
Building length, side A
Building length, side B

Simulation Type
Window Typology

Glazing Type
Window Area
Blind Width

Blind Schedule (daytime)
Blind Schedule (nighttime)

Blind Angle when closed
Blind Color

Blind Emissivity
Blind Absorptivity

Wall Insulation R-Value
Building Type

Occupancy Load
Lighting Requirements

Equipment Load
Air Change Rate per Occupant

Total Air Change Rate
Lighting Control

Orientation
Room Depth
Room Width
Room Height
Thermal Mass

Overhang Depth
Roof Type

Roof Insulation R-Value
Roof Insulation Location

Number of Floors

specified in figure
N/A
N/A

one-sided
dgu

low-e
40%

25 mm
responds to temperature

always closed
75 degrees

Shiny Aluminum
0.22
0.2

2 M2K/W
Low-rise Residential

0.025 people/m 2

400 lux
1.00 W/m 2

15.0 liters / sec per person
0.5 roomfuls per hour

lights respond to sun - controlled by a one switch
south
4 m
4 m
3 m
low
0 m

specified in figure
specified in figure
top of roof slab

specified in figure
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Table B.5: Simulation Input Parameters for naturally ventilated building in Figs. 4-15
through 4-18

Location
Building length, side A
Building length, side B

Simulation Type
Window Typology

Glazing Type
Window Area
Blind Width

Blind Schedule (daytime)
Blind Schedule (nighttime)

Blind Angle when closed
Blind Color

Blind Emissivity
Blind Absorptivity

Wall Insulation R-Value
Building Type

Occupancy Load
Lighting Requirements

Equipment Load
Air Change Rate per Occupant

Total Air Change Rate
Lighting Control

Orientation
Room Depth
Room Width
Room Height
Thermal Mass

Overhang Depth
Roof Type

Roof Insulation R-Value
Roof Insulation Location

Number of Floors

specified in figure
N/A
N/A

one-sided
dgu

low-e
40%

25 mm
responds to temperature

always closed
75 degrees

Shiny Aluminum
0.22
0.2

2 m 2 K/W
Low-rise Residential

0.025 people/m 2

400 lux
1.00 W/m 2

15.0 liters / sec per person
0.5 roomfuls per hour

lights respond to sun - controlled by a one switch
south
4 m
4 m
3 m

low
0 m

specified in figure
specified in figure
top of roof slab

1 floor(s)
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