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Abstract

In this thesis, two computational imaging techniques used for underwater research,
in particular, two-phase flows measurements, are presented. The techniques under
study, digital holographic imaging and light field imaging, are targeted at different
flow conditions. In low-density flows, particles and air bubbles in water can be imaged
by a digital holographic imaging system to provide 3D flow information. In the high-
density case, both occlusions and scattering become significant, imaging through these
partial occlusions to achieve object detection is possible by integrating views from
multiple perspectives, which is the principle of light field imaging. The analyses
on the digital holographic and light field imaging systems are carried out under the
framework of phase-space optics.

In the holographic imaging system, it is seen that, by tracking the Space band-
width transfer, the information transformation through a digital holographic imaging
system can be traced. The inverse source problem of holography can be solved in cer-
tain cases by posing proper priori constraints. As is in the application to two-phase
flows, 3D positions of bubbles can be computed by well tuned focus metrics. Size
statistical distribution of the bubbles can also be obtained from the reconstructed
images.

Light field is related to the Wigner distribution through the generalized radiance
function. One practical way to sample the Wigner distribution is to take intensity
measurements behind an aperture which is moving laterally in the field. Two types of
imaging systems, the light field imaging and the integral imaging, realize this Wigner
sampling scheme. In the light field imaging, the aperture function is a rect function;
while a sinc aperture function in the integral imaging. Axial ranging through the
object space can be realized by digital refocusing. In addition, imaging through
partial occlusion is possible by integrating properly selected Wigner samples.

Thesis Supervisor: George Barbastathis
Title: Associate Professor
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Chapter 1

Introduction

Historically, advances in optical imaging instrumentation, such as the microscope

and the telescope, have facilitated diverse scientific discovery. In recent decades,

the fusion of computational power and conventional optical imaging techniques has

created a new paradigm known as computational imaging. The design of compu-

tational imaging systems simultaneously incorporates traditional and novel optical

elements, electronic optical sensors, signal processing and advanced mathematical al-

gorithms. In addition, it leverages the speed and accuracy of optical processing to

enable highly computational systems, which optimize the tradeoffs between the op-

tical and digital world. Generally, a computational imaging system comprises two

kinds of elements, including analog or field transforming elements, such as lenses,

apertures and wave-plates, and digital or intensity transforming elements, such as

CCD and CMOS. Computational imaging involves a series of transformations on the

optical signals. The intensity patterns recorded on the detector are not necessary the

image that are physically analogous to the original objects. All required is that the

intensity patterns encode sufficient information to allow the recovery of the object

after appropriate digital processing operations.



Imaging system

PSF =h(z', y'; x, y, z)

Object space Image plane

U(x, y, z) V(x', y')

Figure 1-1: Schematic of imaging system.

1.1 Fundamentals of imaging systems

Figure 1-1 shows a schematic of an imaging system. The object is three dimensional

(3D) with point emitters located in the 3D space. Radiation from these sources serves

as the input to the imaging system. The detector is typically two dimensional, which

records some intensity pattern due to the inputs. The imaging system is completely

described by the impulse response [34]. In general, the impulse response is a 5D

function [28, 10, 101], h(x', y'; x, y, z) that relates the 2D output image V(x', y') to

the 3D input U(x, y, z). The physical interpretation of the impulse response depends

on the nature of the illumination. Spatially coherent illumination involves a linear

superposition of fields whereas quasi-monochromatic spatially incoherent illumination

results in a linear combination of the intensities from from the point emitters in the

object space. In partially coherent illumination case, the impulse response relates to

the propagation of mutual intensity [8].



1.2 Imaging of two-phase flows

Two-phase flows occur in a wide variety of application areas, e.g., meteorology, fuel

injection and combustion, chemical reactors, pollution, and cavitation. Many ef-

forts have been devoted to their investigation by experimental methods and modeling

approaches. Nevertheless, due to the complex fluid dynamics of turbulent, 3D, two-

phase flows, the physics of bubble formation, propagation and annihilation is not well

understood. During the past decades, numerous imaging techniques have been devel-

oped for imaging two-phase flows in the past decades. They can be summarized into

three main categories: single point measurement techniques, such as phase-Doppler

imaging [64]; planar imaging techniques, such as particle imaging velocimetry (PIV)

[3]; and 3D imaging techniques. Obviously, 3D imaging is preferable due to the 3D na-

ture of two-phase flows. Existing 3D imaging techniques such as neutron radiography

[61], scanning particle imaging [9] and defocusing digital particle imaging velocimetry

[83] typically trade off system complexity for spatial and temporal resolution.

Holography [31] is able to record and reconstruct, in a single shot, information

about the history of the field propagation within an entire 3D volume of interest.

Moreover, Digital holography and digital holographic image processing [94] have re-

cently become feasible due to advances in mega-pixel electronic sensors, e.g. CCD

and CMOS, with high spatial resolution and high dynamic range. Unlike traditional

imaging techniques, digital holography is lens-less, i.e. image formation occurs purely

through digital processing that reverses the effects of diffraction on the optical filed.

This becomes possible because holography allows access to the phase information

present in the optical field. Having the information available in digital form, digital

holography gives the access to the large amount of 3D information, e.g. velocity,

vorticity, void fraction and etc., in the flow fields to be extracted by computational

method.

In high-density flows, the hologram of particle/bubble flows taken from a single

view becomes a speckle-like noisy image. In addition, significant occlusions prevent

targets from being observed due to information loss. One way to overcome the chal-



lenge of partial occlusion is to integrate views from multiple perspectives. Occlusion

differs from view to view, and by digitally integrating multiple views, the shape of a

target embedded in an occlusive media can be reconstructed.

1.3 Phase-space optics

Phase-space optics refers to a representation of optical signals in an artificial con-

figuration space simultaneously providing space and spatial frequency information.

The Wigner distribution [5] is one of the mathematical tools for representation op-

tical signals in the phase-space. It has been widely used for analyzing holographic

imaging [53}, volume holographic imaging [70], axial imaging [68], coherence imaging

[69], wavefront coding [21], integral imaging display [29], and phase imaging [67]. In

optics, spatial frequency is determined by the angle of the rays, which relates to the

concept of perspective. The Wigner analysis provides a guideline of how to implement

the idea of integrating views from different perspectives. The principle is that, if we

can sample the optical signal in multiple positions and their corresponding spatial

frequencies, by combining all the data digitally, the target can be recovered.

1.4 Outline of the thesis

This thesis aims to advance the field of computational imaging by developing novel

computational imaging techniques used for underwater research, allowing flow charac-

terization and object detection and identification. The techniques under study, digital

holographic imaging and light field imaging, are targeted at different flow conditions.

In low-density flows, particles and air bubbles in water can be imaged by a digital

holographic imaging system to provide 3D flow information. In the high-density case,

both occlusions and scattering become significant, and imaging flow itself becomes

difficult. However, imaging through these partial occlusions to achieve object de-

tection is still possible by integrating views from multiple perspectives, which is the

principle of light field imaging. The analyses on the digital holographic and light field



imaging systems are carried out under the framework of phase-space optics.

In Chapter 2, phase-space optics is introduced. The basic concept and properties

of the Wigner distribution function and other related phase-space analysis functions

are summarized. The space-bandwidth product (SBP) is fundamental for analyzing

the performance of an optical system. The SBP is a specific area in the Wigner space.

The transformations on the SBP of an optical signal by first-order optics are analyzed

in the Wigner space.

In Chapter 3, phase-space optics is applied to analyze the holographic imaging

system. The SBPs recorded by different types of holographic setups are studied.

Finally, an in-line holographic imaging system is applied to the two-phase flow studies.

In Chapter 4, the Wigner distribution is related to the radiance. This bridges

the intensity measurements to the Wigner space samples. Two types of imaging

systems, the light field imaging and integral imaging, are studied. The capabilities

and limitations of sampling in the Wigner space using these two systems are presented.

In Chapter 5, conclusions of this thesis and directions for future research are

presented.
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Chapter 2

Introduction to phase-space optics

Phase-space optics refers to a representation of optical signals in a space simulta-

neously providing information about spatial properties of the signal and its angular

spectrum, or equivalently in terms of its temporal and time-frequency characteristics.

Phase-space representation provides unique insights of the physical phenomena. As

compared to the classical Fourier analysis, which provides only global spectrum of the

signal, phase-space analysis uses both local space and spatial frequency information

simultaneously.

The Wigner distribution function (WDF) is one of the mathematical tools for rep-

resentation signals in the phase-space. It was introduced by Wigner [111] in mechanics

in 1932. The WDF is only one example of the larger class of joint representation called

Cohen's class distribution function [14]. For instance, in the signal processing commu-

nity, the Wigner-Ville distribution is widely used as a joint time-frequency transform.

Closely connected with the WDF through a double Fourier transform, the ambiguity

function [116] is used by the radar community for representing signals simultaneously

carrying information about the down range of the target and its velocity.

The WDF, being well suited to combine the physics of wave propagation with the

power of signal processing in the joint space-spatial frequency domain, was first intro-

duced into optics by A. Walther [107, 109] to relate partial coherence to radiometry

and revisited by M. J. Bastiaans [5, 6, 7] a few years later.



2.1 Wigner distribution function

The WDF of an coherent optical field f(x), with its Fourier transform as F(u), can

be defined as

V(x, u) J f(x + x'/2)f*(x - x'/2) exp{-i27rux'}dx' (2.1)

where f(x) is a scalar function at position x, and u is the local spatial frequency com-

ponent. One-dimensional signal is being discussed in this notation for convenience,

and higher dimensional analysis can be carried out in similar fashion.

The physical meaning of x' and u' in (2.1) is evident by looking at the form

F(X1, x2)

F(Xi, X 2 ) = f(Xi)f*(x 2 ). (2.2)

In the partially coherent case, F(Xi, x 2 ) is recognized as mutual intensity function by

taking the ensemble average. We apply the coordinate transformation

X = (X1 + x 2 ), =x 2 -x 1  (2.3)
2

Now it is clear that Wigner distribution W(x, u) arises "midway" of mutual intensity.

Instead of the definition in the space domain, there exists an equivalent definition

in the frequency domain, reading

V(x, u) = J F(u + u'/2)F*(u - u'/2) exp{i27rxu'}du' (2.4)

where F(u) is the Fourier transform of f(x).

It is also worth mentioning the definition of cross-Wigner distribution function of

two functions f(x) and g(x),

Wfg = J f(x + x'/2)g*(x - x'/2) exp{-i27rux'}dx' (2.5)



2.1.1 Properties of the WDF

Here, some of the important properties of the WDF are summarized [103) as follows.

1. Inversion: The original function can be recovered from its WDF within a con-

stant phase factor as

f(x) = f() J W(x/2, u) exp{i27rxu}du. (2.6)

2. Realness: The WDF is a real function:

W(x, u) = W*(x, u). (2.7)

3. Projection property: Although the WDF is real, it is not necessarily non-

negative; this prohibits a direct interpretation of the WDF as an energy density

function (or radiance function). Nevertheless, several projection integrals of the

WDF can be interpreted as energy quantities.

Intensity of the signal

I(x) = If(x)12 = W(x, u)du, (2.8)

Fourier spectrum intensity of the signal

IF(u)12 = W(x, u)dx, (2.9)

Total energy of the signal

E = JJ W(x, u)dxdu = Jf(x)12dz = IF(u)| 2du. (2.10)

4. Region properties: If f(x) = 0 for x x0, W(x,u) = 0 for x>xo.

21



5. Interference: Due to the bilinear nature of the WDF, the WDF of the sum of

two signals f(x) + g(x) is the WDF of f(x), g(x) and an interference term

Wj+g(x, u) = WV (x, u) + W9 (x, u) + W,g (X, u) + Wg,f (x, u).

6. Multiplication and Convolution:

If g(x) = f(x)h(x)

Wg(x, u) = Wf (x, u) *u Wh(x, u)

(2.11)

(2.12)

where *, indicates convolution in u.

If g(x) = f(x) * h(x)

Wg(x, u) = Wf (x, u) *, Wh(X, u) (2.13)

where *x indicates convolution in x.

7. Correlation:

If g(x) = f f (x + x')h(x')dx'

V(x, u) = J W (x + x', u)W/Vh(x', -u)d'.
(2.14)

8. Shifting and Modulation property:

If g(x) =f(x - xo)

W9 (x, u) = Wj(x - Xo, u). (2.15)

If g(X) = ei2
7uoxf(X)

W(x, u) = W (X, u - uo). (2.16)

9. Instantaneous frequency: For a coherent signal f (x) = If (x)I exp{i2,7r#(x)}, the

instantaneous frequency is defined as d#(x)/dx, it can be derived from Wf(x, u)



through
dqp f uW(x, u)du (2.17)
dx f W (x, u)du

10. Ambiguity function: The ambiguity function (AF) A(x', u') [81] is defined by

AF(u', x') = J f(x + x'/2)f*(x - x'/2) exp{-i27ru'x}dx, (2.18)

is related to the WDF through a double Fourier transform:

AY(u', x') = J WJ (x, u) exp{i21r(x'u - u'x)}dxdu (2.19)

One thing to notice about AF is that it takes the form similar to autocorrelation

function (f f(x + x'/2)f*(x - x'/2)dx), which makes it particularly convenient

for analysis in some cases.

11. Cohen's class distribution function: Cohen's class distribution function [14]

is a generalized phase-space representation. The definition of the Cohens class

distribution function is as follows:

C(x, u) = J e i2 '(s)h(, x')f (s + x/2)f*(s - x/2)e- 2 rux'd dsdx'. (2.20)

This definition can be rearranged to two forms, which have more obvious phys-

ical meaning. The first is

C(x, u) = JJ AF(, x')h( , x') exp{-i27r((x + x'u)}ddz' (2.21)

where A.() is the ambiguity function, and the physical meaning of h is a filter

in ambiguity space. The second is

C(x, u) = JJ H(x - s, u - u') W(s, u')dsdu' (2.22)



Fourier Transform

Figure 2-1: Relations among the the Wigner distribution, Ambiguity function, and

the Cohen's class distribution.

where

H(x, u) = h(x', u') exp{-i27r(xx' + uu')}dx'du'. (2.23)

This can be recognized as a convolution in the Wigner space and H is the convo-

lution kernel, which is the 2D Fourier transform of h. The relations among the

the Wigner distribution, Ambiguity function, and the Cohen's class distribution

are illustrated in fig. 2-1.

2.1.2 WDF of special optical signals and transformations

The local spatial frequency corresponds to the angle of a ray in geometrical optics

[341; hence, the WDF provides a connection between ray and wave optics. More

importantly, the WDF is useful to analyze how light behaves as it propagates. As will

seen in the following, the WDF can provide intuitive illustrations of light propagation

in first-order optical systems by geometrical transformations.

We shall start by looking at special optical signals.

1. Point source: A point source located at the position xo can be described by the

impulse signal f(x) = 6(x - xO). Its WDF takes the form

W(x, u) = 6(x - xo). (2.24)
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as shown in fig. 2-2(a).

2. Plane wave: A plane wave with spatial frequency no can be described by f(x) =

exp{i27ruox}. Its WDF takes the form

W(x, u) = 6(U - uo). (2.25)

as shown in fig. 2-2(b).

3. Spherical wave: A spherical wave in paraxial approximation can be described

by a quadratic-phase signal f(x) = exp{igrax2}. Its WDF takes the form

W(x, u) = 6(u - ax). (2.26)

as shown in fig. 2-2(c).

4. Smooth-phase signal: A smooth-phase signal f(x) = exp{i#(x)}.

takes the form

W(x, u) ~ J(u - dl/dx).

Its WDF

(2.27)

by neglecting interference terms, as shown in fig. 2-2(d).

5. Gaussian signal: A Gaussian signal f(x) = exp {-g (x - xo) 2 }. Its WDF takes

the form

W(x, u) = exp - (2.28)((x - Xo)2 + u2 .}

which is a function that is Gaussian in both x and u, as shown in fig. 2-2(e).

Next, we will consider some common optical transformations.

1. Fresnel propagation: Fresnel propagation describes free space propagation under

paraxial approximation. It relates the input and output fields by

f(x') exp {i7 (X - X')2 dxg(X) = j (2.29)



So the WDF of the output field takes the form

W9 (x, u) = Wf (x - Azu, u) (2.30)

which is an x-shear of the input WDF, as shown in fig. 2-3(a), and the amount

of shear is linearly proportional to the propagation distance.

2. Chirp modulation (lens): Chirp modulation, which can be achieved by a lens or

a quadratic phase mask, relates the input and output fields by

g(x) = f(x) exp i z (2.31)

where f is the focal length if a lens is used or relates to the chirping rate in

other cases. So the WDF of the output field takes the form

W 9(x,u) = Wf (x,u + ) (2.32)

which is a u-shear of the input WDF, as shown in fig. 2-3(b), and the amount

of shear is inversely proportional to f.

3. Fourier transform: The space and spatial frequency domains are interchanged

as expected for a Fourier transformer.

Wg(x,u) = Wj(-u, X). (2.33)

as shown in fig. 2-3(c).

4. Fractional Fourier transform: For ID signal, Fractional Fourier transform (FRFT)

[58, 59, 74] is the only transformation for phase-space rotation [50]. The input

and output WDF are related by

Wg(x, u) = Wf (x cos(#) - u sin(#), u cos(#) + x sin(#)). (2.34)



where # is the rotation angle. The fractional degree is defined by P = #/(7r/2).

Similarly, we can take a projection of Wg(x, u) over u, the result is given by [52]

IFRFT[f(x)]12  V9 (x, u)du = R[V; #] (2.35)

where R[Wf; #] indicates the Radon transform of Wf at angle #. (2.35) forms

the principle of phase-space tomography [30, 881. It should also be noted that

in 2D signal case, there are other two phase-space rotational transformations

[96], which are outside the scope of this thesis.

5. Magnifier: If an optical signal is magnified by m, its WDF takes the form

V(x,u) = Wf(mx, u/m), (2.36)

as shown in fig. 2-3(e).

6. First-order optical systems: Similar to the matrix transformations in geomet-

rical optics, it is shown that an ABCD-matrix can also be used to relate the

input and output WDF in first-order optical systems [6].

Wg(x, u) = Wj (Ax + Bu, Cx + Du). (2.37)

So the input (x, u) and output (x', u') space and spatial frequency are related

by

z' A B z (2.38)
u' C D u

where the ABCD-matrix is symplectic [15], with determinant equals to unity. It

is easy to see that the matrices for the previous five basic optical transformations
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are, respectively,

1 -Az 1 0 0 -1

0 1 1/Af 1 1 0

cos(#) -sin(#) m 0 (2.39)
sin(#) cos(#) 0 1/m

2.2 Space-bandwidth product in phase-space

The space-bandwidth product (SBP) is fundamental for judging the performance

of an optical system. It measures the amount of information of an optical signal

or capability for recording optical signals of an optical system. The SBP was first

, k U

FL
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defined as a pure number that counts the degrees of freedom of the system in the

context of the resolution limit [16, 25]. With the introduction of optical phase-space,

a more insightful description of SBP was introduced in terms of a specific area in the

Wigner (x, u) domain [51]. It should also be noted that there are two different but

related SBP definitions: SBP of an optical system and an optical signal. To evaluate

the performance of an optical system, it is important to measure how well the system

SBP satisfies the signal SBP requirement.

2.2.1 Numerical space-bandwidth product

A signal f(x) can be assumed to be band-limited (2.40) and space-limited (2.41) if

the majority amount (e.g. 90%) of energy is within the interval of Ax in space and

Av in spatial frequency.

F(v) = f f(x) exp{-i21rvx}dx ~ 0, if lvi > Av/2. (2.40)

f(x) ~ 0, if lxi > Ax/2. (2.41)

According to the Nyquist sampling theorem, the signal can be recovered if we sample

the signal at equidistant sampling point separated by 6x = 1/Av. The total number

of these samples is

N1 = Ax/6x = AxAv. (2.42)

The number Nr is the SBP of the optical signal.

Similarly, we can analyze the numerical SBP of an optical system NH. The phys-

ical size of the sensor/film Ax' sets the spatial limits. The spatial frequency limits

come from two aspects. First, the numerical aperture (NA) of the optical system

limits the acceptable angle (spatial frequency) range Av' of the system. Second, the

pixel size 6,3x of the sensor/film sets the sampling rate of the system. So the Nyquist

frequency limit of the system is ±1/(2Jix), Av' = 1/6,pi. So SBP of an optical system



NH = Ax'Av' (2.43)

NH= Ax1,ix = Npix, if the pixel size sets the limit, (2.44)

where N,2x is the number of pixels of a sensor/film. (2.44) also shows that the number

of pixels of the sensor/film measures the numerical SBP of the sensor/film. This is

evident if we recall that SBP measures the amount of information that an optical

system can record.

2.2.2 Space-bandwidth product in phase-space

Equations (2.40) and (2.41) define a rectangular symmetrical region W(x, v) in phase-

space, whose surface area equals the SBP of the signal, as shown in fig. 2-4 (a). As

the optical signal propagates through different optical systems, the shape of W(x, v)

changes correspondingly, as discussed in Section 2.1. Fig. 2-4 (b-e) shows the changes

of the shape of the signal SBP W(x, v) after Fresnel propagation (b), a lens (c), a

Fourier transform (d), and a fractional Fourier transform (e). The shape changes of

the SBP by different first-order optical systems can be described as a linear transfor-

mation

SBP(x', v') = SBP(Ax + Bv, Cx + Dv). (2.45)

It is clear that the (ABCD) coefficients here are the same as what we derived in

previous discussion about WDF transformations after a first-order optical system.

So the area of the non-zero region in phase-space (color areas in fig. 2-4) conserves,

which proves the existence of the numerical SBP that a single number can describe

the information content of an optical signal. On the other hand, if we want to record

the signal without information loss, the numerical SBP N only sets the lower bound

of the system SBP requirement. A more general condition is

SBP1 (x, v) C SBPH(X, V) (2.46)
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Figure 2-4: Space-bandwidth product of an optical signal after different optical trans-

formations. (a) Original SBP; (b) Fresnel propagated SBP; (c) SBP after passage

through a lens; (d) SBP after a Fourier transform; (e) SBP after a fractional Fourier

transform.

where SBP 1 is the SBP of the signal and SBPH is the SBP of the system in phase-

space. Note that in common optical systems, the system SBP has a rectangular

shape with x and v symmetry. So the minimum requirement of SBPH is the regions

indicated by Ax and Av in fig. 2-4. However, different shapes of system SBP can be

obtained if a computational shaping of SBPH is used. This leads to the area of the

generalized sampling theorem [98, 99] and "super-resolution" [100] by phase-space

filtering methods, which is outside the scope of this thesis.

I V I V



Chapter 3

Holographic imaging in

phase-space and its application to

two-phase flows

The fundamental problem addressed by holography is that of recording, and later

reconstructing, both the amplitude and the phase of an optical wave arriving from a

coherently illuminated object [34]. So holographic imaging generally consists of two

steps, recording and reconstruction.

In the recording step, a hologram is recorded as an interference pattern formed

by combining a field scattered by a coherently illuminated object, with a field of

illumination (termed reference wave). Although all recording media respond only to

light intensity, the interferometric principle adopted in holographic recording step is

able to store both the amplitude and phase information of the object wave. The

schematic of interferometric recording is shown in Figure3-1.

The complex object can be written as

f (x, y) = If (x, y)I exp{iqt(x, y)}, (3.1)

and the complex reference wave is r(x, y).
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Figure 3-1: Interferometric recording.

The recorded intensity is given by

I(x, y) = If(x, y)|2 + Ir(x, y)|2 + r*(x, y)if(x, y)I exp{i4(x, y)}

+r(x, y)|f(x, y)I exp{-i#(x, y)}

= If + I, + fr* + f*r. (3.2)

While the first two terms of this expression depend only on the intensities of the

individual waves, the last two terms depend on the phase of the object wave, thus

information about both the amplitude and phase of f(x, y) has been recorded. In

holography (i.e. as compared to general interferometry), we further require the am-

plitude of the reference wave is uniform.

In the reconstruction step, the hologram is illuminated by a coherent reconstruc-

tion wave B(x, y). The wave, R(x, y), transmitted past the hologram is

R(x, y) = B(x, y)I(x, y) = BIf + BI, + f Br* + f*Br

= U1 +U2 +U3 +U4. (3.3)

If B is an exact duplicate of the original reference wave r, the third term of (3.3)
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Figure 3-2: Wavefront reconstruction with (a) the original reference wave r as re-

construction illumination, and (b) the conjugate reference wave r* as reconstruction

illumination.

becomes

U3 = Ir 2f(x, y). (3.4)

Since the intensity of the reference wave is uniform, U3 is, up to a multiplicative

constant, an exact duplication of the original wavefront f(x, y). This is illustrated in

Figure 3-2 (a).

In a similar fashion, if B is chosen as the conjugate of the original reference wave,

i.e. as r*, the forth term becomes

U4 = |r|2f*(x,y). (3.5)

which is proportional to the conjugate of the original wavefront f*(x, y). This is

illustrated in Figure 3-2 (b).

In either case, the particular field component of interest is accompanied by three

additional field components. By convention, U1 is called the DC-term, U2 is called

the halo, and U4 and U3 are called the virtual image and the real image, U4 is also

referred to as U3's twin image, respectively.



3.1 Holography in phase-space

3.1.1 Holographic information in phase-space

In (3.3), we showed that a recorded hologram consists of four field components. We

also showed that the information of the original object wave is recorded in U3 ( U4 )

term. We shall start this section by revisiting these points by phase-space analysis.

In chapter 2, we showed that the WDF of a coherent superposition of two optical

signals consist of four components

W+r(X, u) = Wf (x, u) + W,(X, u) + Wfr(X, u) + Wr,f (X, u). (3.6)

where f is complex object wave and r is the reference wave. One dimensional analysis

is used here for simplicity, while extension to two dimensions is straightforward.

In order to find the connections between (3.6) and (3.3), we integrate (3.6) over

spatial frequency u. From the projection property of the WDF, the projection equals

to the intensity recorded on the hologram

I(x) JWf+r(X u)du

= W (X, u)du+ J W,(x, u)du + J Wf,(xu)du JVr,f (x, u)du

= If(x)|2 +Ir(x)1 + f(x)r*(x) + f*(x)r(x). (3.7)

Note that the last two terms in (3.7) are exactly the real and virtual image terms

in (3.3). So the holographic information in phase-space are in the strongly oscillating

cross-terms [115]. This result is illustrated in Figure 3-3 (a). Notice that both W,r

and Wr, are in the midway between W, and W in Wigner space. In fact, it is easy

to see that

Wfr = W,*7. (3.8)

Interestingly, the cross-terms were often considered undesirable, when the WDF

was applied to time-frequency analysis in signal processing, and a number of algo-

rithms were developed to reduce the cross-terms [75].
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It should also be pointed out that, up to now, we have assumed that all of the

information in the object wave f are of interest in our analysis. However, in most of

practical cases, the object wave f is also a combination of the waves scattered from

multiple objects, for instance, multiple particles. In this case, f needs to written as

f = E fn. (3.9)
n

The information of interest are individual object waves fn, instead of the their super-

position f, in this case. Another type of cross-terms due to the interference between

different object waves (termed cross-talks) are produced here. This type of cross-

terms are usually undesirable in holographic signal processing [79].

Another insightful interpretation of holographic information is to analyze the co-

herent superposition of two signals in AF space [97]. Similar to the interference

property of the WDF, the summation of two signals will also generate interference

terms in AF

A.Ff+r(u', x') = A.F (u', x') + AFr(u', x') + A.F f,r(U', X') + AFr,f(u', x'), (3.10)

where

A.Fj,r(U', X') f(x + x'/2)r*(x - x'/2) exp{-i27ru'x}dx. (3.11)

It is informative to compute the cross-ambiguity function when the reference wave

is a plane wave r(x) = exp{i27ruox}.

AFf,,(u', x') J f (x + x'/2) exp{-i27ruo(x - x'/2)} exp{-i27ru'x}dx

exp{i27r(u'/2 + uo)x'}F(u' + uo), (3.12)

AFr,f (u', x') = f*(x - x'/2) exp{i27ruo(x + x'/2)} exp{-i27ru'x}dx

= exp{-i27r(-u'/2 + uo)x'}F*(u' - uo). (3.13)

So the two cross-ambiguity function terms lie on two sides along u'-axis, as shown in

the top figure of Figure 3-3 (b). It is easy to see that if we take a slice of the AF at
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Figure 3-4: The WDF of a hologram.

z' = 0, we get the Fourier transforms of the four components in a hologram, as shown

in the bottom figure of Figure 3-3 (b).

4Ff+r(U', 0) = _F{|f12} + .F{|r|2} + F{|f*r 2} + F{|fr*|2}. (3.14)

Another useful observation is that, in general, the cross-Wigner terms appear in

the middle of the WDFs of individual signals, as in Figure 3-3 (a); while the cross-

ambiguity function terms lie on the "high frequency" part in AF space with the AFs

of individual signals in the central part, as in Figure 3-3 (b). So, a number of AF

based filtering methods have been developed according to this idea [77]. In fact, all

Cohen's class distribution functions can be understood in this way; filters are called

kernels in Cohen's notes [141.

Finally, to find the dual representation of (3.14), we shall look at the WDF of a

hologram.

Wr(x,u) = Wjf2(X, U) + WI,12(X, U) + Wf,-(X, U) + Wf.(x,U). (3.

........ ...................................................... . ... ......... .......

(3.15)
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Compute the WDF of the last two terms by assuming the reference wave is a plane

wave r(x) = exp{i27ruox}.

Wf,.(X, U) = Wf (x, u) *U W*(X, U) = W (x, u + uo) (3.16)

W-r(X, U) = Wf (X, U) *u W(X, U) = W)(x,u - uo) (3.17)

So the WDF of real (f*) and virtual (f) image terms lie on two sides along u-axis,

as shown in the left figure of Figure 3-4. By the projection property of the WDF, we

get the Fourier transforms of the four components in a hologram by integrating the

WDF over its spatial frequency u, as shown in the right figure of Figure 3-4.

3.1.2 Space-bandwidth transfer in different holographic imag-

ing system setups

As pointed out previously, SBP is fundamental for judging the performance of an

optical system. And phase-space analysis is useful to understand how the space-

bandwidth shape evolves as an optical signal is transformed by an optical system

[53, 54] and the space-bandwidth conditions for information recording [104].

The most commonly used holographic imaging system setups are in-line hologra-

phy, invented by D. Gabor in 1948 [31], and off-axis holography, invented by E. N.

Leith and Upatniek [43] in 1962. We will analyze these two setups in the following.

In-line holography

In in-line holography setup, both the reference wave and the object wave are collinear

and normal to the recording medium, as shown in Figure 3-5. The object is assumed

to be highly transmissive. With such an object being coherently illuminated by the

collimated wave shown in Figure 3-5, the transmitted light consists of two components:

(1) a strong uniform plane wave as reference wave and (2) a weak scattered wave as

object wave.

By proper normalization, the reference wave can be written as r(x) = 1, and



Recording
Lens medium

Semi-transparent
object

Source

ObjectReference wave
wave

Figure 3-5: In-line holography setup.

assume the object wave is f(x). The intensity recorded on the hologram is

I(x) 1 + f(x)2

S1+If(x)12 + f(x) + f*(x). (3.18)

The formation of an in-line hologram is analyzed in Wigner space, as shown in

Figure 3-6 (a-c). First, the object is illuminated by an on-axis plane wave. Assume the

significant information content of an object signal is contained within a rectangular

region Wf in Wigner space, and the on-axis plane reference wave is a 6(u)-function

W, in Wigner space, as shown in Figure 3-6 (a). Next, the object wave propagates

a distance to the recording medium plane. This corresponds to, within the paraxial

approximation, a x-shear in the Wigner space, as shown in Figure 3-6 (b). Finally,

the intensity of the interference pattern is recorded by the recording medium with a

known SBP (dotted rectangle), as shown in Figure 3-6 (c). By integrating the WDF

of the hologram (in Figure 3-6 (c)), we can get the Fourier transform of the hologram,

as shown in Figure 3-6 (d). The dotted line shows the Nyquist frequency cutoff of

the recording medium.

As seen in both 3-6 (c) and (d), a limitation of in-line holography lies in the
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Figure 3-7: Off-axis holography setup.

generation of overlapping twin images. A number of methods have been proposed for

eliminating or reducing the twin-image problem, including off-axis setup and phase-

shifting method [117].

Off-axis holography

In off-axis holography, a separate and tilted reference wave are introduced to interfere

with the object wave, as shown in Figure 3-7.

By proper normalization, the reference wave can be written as r(x) = exp{i27ruox}.

Let the object wave be denoted as f(x). The intensity recorded as the hologram is

I(x) = Ir(x) + f(x)12

= 1 +lf(x)| 2 + f(x) exp{-i27ruox} + f*(x) exp{i27ruox}. (3.19)

Again, the formation of an off-axis hologram is analyzed in Wigner space, as

shown in Figure 3-8 (a-c). First, the object is illuminated by an off-axis plane wave.

Assume the significant information content of an object signal is contained within

a rectangular region W1 in Wigner space, and the off-axis plane reference wave is

a 6(u - uo)-function W, in Wigner space, as shown in Figure 3-8 (a). Next, the
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object wave propagates a distance to the recording medium plane. This corresponds

to, within the paraxial approximation, an x-shear in the Wigner space, as shown in

Figure 3-8 (b). Finally, the intensity of the interference pattern is recorded by the

recording medium with a known SBP (dotted rectangle), as shown in Figure 3-6 (c).

The SBPs of the real and virtual images are separated along u-axis by properly chosen

tilting angle. By integrating the WDF of the hologram (in Figure 3-8 (c)), we can

obtain the Fourier transform of the hologram, as shown in Figure 3-8 (d), and the

dotted box shows the Nyquist frequency cutoff of the recording medium.

As seen from both 3-8 (c) and (d), the minimum reference angle required to

separate the twin images is

(min) = 1.5B (3.20)

where B is bandwidth of the optical signal. So the bandwidth requirement for the

recording medium of off-axis holography is 4 times of the requirement of in-line holog-

raphy. In terms of pixel size, off-axis holography requires 4 times smaller pixel size

than the one for in-line holography. This limits the use of off-axis holography in a

number of applications, especially in digital holography, where the production of the

digital sensor, e.g. CCD and CMOS, with pixel size smaller than 1pm is hard to

achieve with current technology.

Space-bandwidth transfer in hologram reconstruction

Once the information is recorded on a hologram, a reconstruction step is carried out

to retrieve the object. The process of reconstruction is analyzed in Wigner space as

shown in Figure 3-9. First, the recorded information is bounded by the detector's

SBP, as shown in the shaded area in Figure 3-9(a). Next, the reconstruction wave

propagates a distance to the object plane. This corresponds to, within the paraxial

approximation, a x-shear in the Wigner space with the direction opposite to the one

in the recording step, as shown in Figure 3-9 (b). Finally, if we assume the object

has unknown complex-valued content, then both the positive and negative spatial-

frequencies are needed to unambiguously recover the signal. The SBP which fulfills
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Figure 3-9: Space-bandwidth transfer in hologram reconstruction.

this requirement, the intersection of the detector and its conjugate SBPs, is shown in

Figure 3-9 (c).

Note that the analysis carried out here assumes that the Nyquist frequency sets

the limits in the spatial frequency of the detector's SBP. It has been pointed out in

the literature that, by fulfilling certain criteria, some of the information that inside

the space limit (lxi < D/2), but outside the Nyquist limit (lul > 1/(25,;2)) can still

be recovered [35, 71, 100].
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3.2 Digital holographic recording and reconstruc-

tion

Conventionally, holography was recorded on a photographic film or plate. Digital

holography (DH) and digital holographic image processing [94] have recently become

feasible due to advances in megapixel electronic sensors, e.g. CCD and CMOS, with

high spatial resolution and high dynamic range. DH, compared to conventional holog-

raphy, does not have the cumbersome requirement of film positioning, handling, and

processing, and has the additional advantage of making the information readily avail-

able in digital form for post-processing [93, 95]. Holography is well known for being

able to record and reconstruct, in a single shot, information about the history of

the field propagation within an entire 3D volume of interest. In addition, the fusion

between optics and computational power makes DH an extremely powerful tool. It

has been used increasingly in a broad spectrum of 3D imaging applications, such as

flow diagnostics [39], e.g. holographic particle imaging velocimetry (PIV) [19, 80, 87],

aquatic bio-imaging [20, 60), holographic microscopy[11, 62], and 3D object recogni-

tion [37].

Due to high space-bandwidth requirement of off-axis holography and relative low

space-bandwidth support of digital sensors, the in-line holography setup is widely

adopted in most of DH setups. In addition to the low space-bandwidth requirement,

in-line holography also has a simple optical setup because the illumination and the

reference beam share the same optics. Furthermore, digital processing makes it pos-

sible to computationally reduce the twin image in an in-line hologram, and several

iterative methods have been proposed [23, 42].

3.2.1 Digital holography recording

Figure 3-10 shows an in-line holography configuration. The illumination is produced

by a laser. The input beam is expanded by a spatial filter, and is collimated by

a plano-convex lens. After propagating through the sample volume, the resultant
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Figure 3-10: Digital in-line holography setup.

hologram is recorded by a digital sensor. The digital sensor provides a linear mapping

of intensity incident during the integration time into the pixel value.

Assume the reference wave is

r(x, y) = A, (3.21)

and the complex amplitude of the object wave is

o(x, y) = A 0(x, y) exp{-i#(x, y)} (3.22)

where A, is the amplitude and # is the phase. The recorded intensity is

I A + A(x, y) 2 + ArO(X, y) + ArO*(X, y). (3.23)

3.2.2 Digital reconstruction

Recall that in conventional holography, the reconstruction is achieved by illuminating

the hologram by a spatially coherent reconstruction wave, which could be either the

original reference wave or the conjugate of the original reference wave. The basic task

of digital reconstruction is to digitally emulate the optical reconstruction process.

First, in in-line holography case, illuminating the hologram by a plane wave is

equivalent to multiplying the hologram by a constant scaling factor, which can be

Laser

NNW



taken as unity. So we take the field at the hologram plane to be equal to the the

intensity recorded on the hologram, determined by (3.23).

Second, the third (or fourth) term in (3.23) is the complex amplitude of the object

wave propagated from the object plane to the hologram plane. In order to reconstruct

the original object, we need to propagate it back to the original object plane. So we

will discuss free space propagation in the following.

Shift-invariance and reconstruction kernel

The free space propagation is described by the Huygens-Fresnel theory of diffraction

[34]. The propagated optical field at a particular image plane, a distance z from the

original plane, is given by

1f exp(ikr)
E(x', y'; z) = - I(x, y) cos dxdy,zA Ir

(3.24)

where A is the wavelength and k is the wave number given by k = 27r/A. The variable

r is the distance between a point in the original plane and a point in the image plane

r = V(z - X') 2 + (y - y') 2 + z 2, (3.25)

and the obliquity factor cos 0 is given by

cos 0 - -

r
(3.26)

Substituting (3.25) and (3.26) into (3.24), we get

E .; -z exp(ikvf(x' - X)2 + (y' - y) 2 + z2 )
E(xA, y z ) = - I(X, + 92 - + z 2  dxdy,

z A if(X - z') + (y - y'2+z
(3.27)



This result has the form of a two-dimensional (2D) linear convolution and may be

written as

E(z', y'; z) = JJ I(x, y)he(x' - x, y' - y; z)dxdy

- {I(x, y) * *he(x, y; z)}|x=2,,=yr,

where ** indicates 2D linear convolution, and

(3.28)

he (x, y; z) =
z exp(ik 2 + y 2 + z2 )

iA x2 +y 2 +z 2

is the exact diffraction kernel for a distance z. The kernel is also called the Point

Spread function (PSF) or the impulse response of the optical system. Its Fourier

transform is

H(u, v; z) = exp {i27rz V'1- (Au) 2 - (Av)2} , /u 2 + v 2 < 1/A. (3.30)

Further simplification can be achieved by adopting the paraxial or Fresnel approx-

imation. This approximation is valid if the lateral displacements |X - x'| and Iy - y'|

are much smaller than the axial distance z. Expanding r by its Taylor series, we get

rz+( - ')2 (y _ yl)2 1 (X _ XI)2 + (y - y')2+
2z 2z 8 z3

(3.31)

and neglecting the higher order terms,

(x-x') 2  (y-_y) 2

r~z +( + 2)
2z 2z

(3.32)

Substituting (3.32) into (3.24), we get the paraxial-approximated diffraction integral

E(x', y'; z) =exp(kz) J (x, y) exp { RL [ - X)2 + (y' - y)2 ] dxdy. (3.33)

(3.29)



Equation (3.33) also can be expressed as a 2D linear convolution,

E(x', y'; z) = I(x, y)hf(x' - x, y'- y; z)dxdy

= {I(x, y) * *hf(x, y; z)}|2=ge=g, (3.34)

where

hj(x, y; z) = z 2 + Y2) (3.35)

known as Fresnel diffraction kernel. It is a 2D chirp function. The Fourier transform

of this kernel is also a 2D chirp function

Hg(u, v; z) = exp(ikz) exp {irAz(u2 + v2)}. (3.36)

Both (3.28) and (3.34) show that free space propagation acts as a linear space

invariant system and can be characterized by a transfer function.

In the non-paraxial regime, the transfer function is given by (3.30). Assume that

the Fourier spectrum of the field at an arbitrary plane E(x, y; z) is U(u, v; z), so the

field can be decomposed into plane waves as

E(x, y; z) = JJ U(u, v; z) exp{i21r(ux + vy)}dudv, (3.37)

which is known as the angular spectrum of this field. So we can rewrite (3.28) in the

angular spectrum domain using the transfer function, and then transform it back to

the space domain

E(x, y; z) = U(u, v; 0) exp {i27rA 1 - (Au) 2 - (Av)2}

circ(A u 2 + v2) exp{i27r(ux + vy)}dudv. (3.38)

Result (3.38) is known as the propagation of angular spectrum.

In the paraxial regime, the transfer function is given by (3.36). Similarly, we can
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get the propagation formula

E(x, y; z) = exp(ikz) JJ U(u, v; 0) exp {i 7rAz(U 2 + v2 )}

exp{i27(ux + vy)}dudv. (3.39)

which is known as Fresnel propagation. We will restrict our discussion to the paraxial

regime. A detailed discussion about the accuracy of Fresnel propagation as compared

to the angular spectrum can be found in [34].

The Fresnel diffraction kernel in space domain is shown in Figure 3-11(a). The

linear system theory applied before can be extended to the phase-space [68]. Taking

1D case for simplicity, the shift invariant system can be expressed as

E 2 (x 2 ) = h(xi - X2)E1 (xi)dxi. (3.40)

By applying the WDF to both sides of (3.40), the input-output relation in the Wigner

space is expressed as

W2(X2, U2) = s W(x2 - x1, u 2 )Wi(Xi, u 2)dxi, (3.41)

where

W (x, u) = j h(x + x'/2)h*(x - x'/2) exp{-i27rux'}dx' (3.42)

is the convolution kernel or impulse response in the Wigner space. In paraxial regime,

this kernel can be computed by substituting (3.35) into (3.42), by neglecting the

constant scaling terms, as

W,(x, u) = 6(u - x/Az). (3.43)

The paraxial approximated kernel in the Wigner space is shown in Figure 3-11(b). It

is a line whose slope is inversely proportional to the propagation distance z. For the

non-paraxial case, readers may refer to [114].

The paraxial Wigner space kernel can be applied to analyze Fresnel holograms.
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Figure 3-12: Point source holograms and their WDFs.



Examples are given in Figure 3-12. Figure 3-12(a) shows a hologram of a single point

source. Analysis in the Wigner space can be carried out by taking the central vertical

line of data and applying the WDF to it, as the results shown in Figure 3-12(b).

Figure 3-12(c) shows a hologram of two point sources locating at different lateral

and axial positions. Again, analysis in the Wigner space is carried out by taking

the central vertical line of data and applying the WDF to it, as the results shown

in Figure 3-12(d). The major feature of the WDF shown in Figure 3-12(b) and (d)

is that there is an "X" shape with its center at the lateral position where the point

source is located. This can be explained by considering that both the object wave

and the conjugate object wave are recorded on the hologram

I f + f*. (3.44)

For the point source case, the WDF consists of two lines with opposite slopes inter-

secting in the horizontal axis at the position where the point source is located. So the

slopes of the two lines of the "X" shape are related to the axial.position of the point

source by (3.43). This technique can be applied to locate point objects [72] and sepa-

rate chirp functions [78]. One limitation is the interference terms in the WDF, which

are evident in Figure 3-12(d). One solution is to apply filtering in the phase space

[79]. Interference terms are in the high frequency region in the Ambiguity space, thus

low-pass filter can be applied to reduce them.

Similarly, we can apply the AF to both sides of (3.40); the input-output relation

in the Ambiguity space is then expressed as

A.F2 (u', x') = JA.Fs('2, x' - x')W1(u', xz')dxz', (3.45)

where

AF8 (u', x') = h(x + x/2)h*(x - x'/2) exp{-i27ru'x}dx (3.46)

is the convolution kernel or impulse response in the Ambiguity space.



Solution uniqueness and focus metrics

The inverse source problem of holography [85] is to find the full complex amplitude

distribution of the original 3D object. It is well known that the solution to this

problem by a single intensity measurement is not unique [8, 28, 86, 112]. However,

a unique solution can be obtained by posing constraints using priori information.

In particular, in digital holography reconstuction, a number of "focus metrics" have

been developed. Applying these focus metrics to the digitally reconstructed images,

"in-focus" features can be recognized.

In general, the focus metrics are based on four types of priori information, in-

cluding optical property, shape, in-focus criteria of human vision perception and

phase-space pattern recognitions. For instance, the optical properties can be that

the object is pure amplitude, or pure phase [22, 48, 80]. In addition, if the objects

have fixed size and shape, as for example in Holographic PIV case, where the tracer

particles are all spherical with fixed size, then a template matching scheme based on

cross-correlation metric [19, 118] can be used. Furthermore, commonly used in-focus

criteria in imaging processing based on human vision perception can be applied, in-

cluding intensity based metric [91, 105], edge sharpness metric [18, 20, 102] and local

pixel-value statistics metric [33, 55, 57]. Finally, several phase-space focus metrics

have been developed. For example, [72] uses the signature of the chirp function in the

Wigner space to detect point scatters, and [41] uses a phase-space cross-correlation

metric.

3.3 Digital holography applied to two-phase flows

In this section, an in-line DH system is applied to study two types of two-phase flows.

The first type is air-in-water mixture flows. In the experiment, a DC motor drives a

small propeller in a water tank to generate air bubbles, which is a typical cavitation

phenomenon. The second type is oil-in-water mixture flows. The flows were generated

by stirring at the oil-water interface. The holograms were taken after the stirring and

the oil-water separation process was recorded.
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Figure 3-13: Digital in-line holography setup.

The system configuration is shown in Figure 3-13. The dimensions of the tank are

100 x 100 x 100mm 3 and the central area with a diameter of 36mm is illuminated.

In the air-in-water experiment, the illumination was produced by a diode laser with

wavelength of 658nm. In the oil-in-water experiment, a HeNe laser with wavelength

of 632.8nm was used. The input beam was expanded by a spatial filter, and was

collimated by a plano-convex lens. After propagating through the sample volume, the

resultant hologram was recorded by a large space-bandwidth product CCD sensor. In

the air-in-water experiment, the sensor was a Kodak KAF16801E CCD with 4096 x

4096 pixels and 9pm pixel pitch.

In the oil-in-water experiment, a Basler A504 CMOS, with 1024 x 1024 pixels and

12pm pixel size, was used. One of the caveat of the CMOS sensor is that it has a sensor

protection glass cover, which is not perfectly flat, and it produces large diffraction

fringe overlapping with the entire hologram. We developped an automated data

analysis algorithm which is robust to this type of noise without having to introduce

an extra background noise reduction step.

The bubbles/oil-droplets are sparsely distributed through the water and their

density is not high enough to corrupt the collimated beam. Thus the two-phase

flows satisfy the assumption of weakly scattering object that is appropriate for in-

line holography. The same beam serves both to illuminate the bubbles/oil-droplets

and as a reference beam. Each bubble/oil-droplet acts like a point scatterer, which

generates the object wave. The hologram is the result of interference between the

undisturbed beam and light scattered by the bubbles/oil-droplets. Figure 3-14 shows



sample holograms of the air-in-water two phase flows (a) and the oil-in-water two-

phase flows (b).

3.3.1 Automated data analysis

An automated data analysis algorithm is essential for quantitive measurement of

two-phase flows due to the large amount of bubbles/oil-droplets to be measured. In

general, there are four essential parts of analyzing this type of digital holograms: dig-

ital reconstruction, focus analysis, feature segmentation, and information extraction.

In the rest of this section we describe each one of these sub-tasks as it applies to our

system.

Digital reconstruction

The captured holograms are reconstructed using the convolution method based on

the Fresnel approximated transfer funcion as discussed in section 3.2.2. Instead of

doing direct convolution, the reconstruction algorithm is implemented based on the

Fast Fourier Transform (FFT), which speeds up the reconstruction. First, the Fourier

transform of a hologram is multiplied by the Fresnel transfer function at a given axial

distance z to find the spectral components at this axial distance z from the sensor

plane. Then, an inverse Fourier transform is applied to reconstruct the object field in

spatial domain from the computed spectra. Figure 3-15 shows a schematic diagram

of the digital reconstruction algorithm. By changing the axial distance variable z in

the Fresnel transfer function, it is possible to digitally reconstruct any plane within

the volume of interest.

Focus analysis and feature segmentation

In general, feature segmentation algorithms can be applied to either 3D [60] or 2D

reconstruction data [91, 1181. In the 3D case, the digital reconstruction algorithm is

first applied to the hologram at every plane within the volume of interest. The re-

sulting 3D reconstruction array stores all the reconstruction planes inside the volume
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(b) A sample hologram of oil-in-water two-phase flows

Figure 3-14: Sample holograms of the studied two-phase flows.
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Figure 3-15: Schematic diagram of the digital reconstruction algorithm.

of interest with each plane having both in- and out-of-focus information, and subse-

quent analysis is carried out on this 3D matrix. For example, in [91], segmentation is

achieved by looking for the local minimum intensity in this 3D array. In [118], a tem-

plate matching scheme based on cross-correlation is used to segment particles in the

3D reconstruction data. In general, other different focus metrics [22, 33, 48, 55, 57, 80]

can be used to segment the object of interest within the reconstructed 3D matrix.

On the other hand, 2D analysis techniques try to minimize the size of the recon-

struction data. By using priori information, it is possible to find a 2D representation

without doing the entire 3D reconstruction. For example, [13] uses a template match-

ing scheme which is directly applied to the hologram. The interference pattern is fit

to a template based on Lorenz-Mie theory to obtain of the particle's position, size

and the refractive index. Another way to realize 2D analysis is to compress the 3D

reconstruction data by throwing out redundant out-of-focus information. For ex-

ample, [60] uses an axially projected Fresnel transfer function which simultaneously

reconstructs all the planes within the volume of interest and axially sums the recon-

structions to form a projected 2D reconstruction image. The resulting 2D projection

image is thresholded to segment each of the object of interest (plankton in that work).

This approach is only suitable for segmenting sparse objects. Similar 2D projections

can also be produced by applying focus metrics at every reconstruction plane. As

FFT FFT-



expected, algorithms based on 2D segmentation usually require much less memory

and can be much more computationally efficient in some applications.

In the two-phase flow experiments, a multi-step algorithm with a 2D segmentation

step is implemented. This algorithm is designed for analyzing two-phase flows with

moderate bubble density, but the general routine may also be applicable to other

cases, such as holographic PIV and plankton imaging. In the first step, successive

planes are reconstructed and the minimum intensity value at each pixel is recorded.

This produces a 2D projection of the minimum intensity. At the same time, the axial

position of where the minimum intensity occurred is recorded, creating a correspond-

ing depth map. Figure 3-16 shows an example of how this method works for a bubble

located 17.5mm from the hologram plane. Pixels a, b and c are edge pixels which

reach a minimum intensity at the focal plane. An interior pixel, d, does not reach a

minimum due to the formation of caustics. An example of the projected minimum

intensity image and the corresponding depth map are shown in Figure 3-17(a) and

(b), respectively.

The second step of the algorithm uses the intensity information to locate bubbles.

The projected minimum intensity image is thresholded to create a map of bubble

edges. Morphological operators are used to re-connect nearby regions through a dila-

tion and an erosion. An example is depicted in Figure 3-17(c), where the thresholding

creates a binary edge mask. This edge mask can then be used with the depth map

to estimate depths of objects, similar to [102], which attempts to use a rough depth

map with large objects. The benefit of this technique is that it provides a depth

estimate for every object in the hologram - albeit poorly for the interior of objects

and sharp corners. Fortunately, these problems have little effect when measuring the

size or position of circular bubbles.

Two-phase flows face an additional challenge: since bubbles are distributed through-

out the volume, there is a chance of overlapping edges in the intensity projection and

depth maps. This appears as two or more distinct depths within a segmented edge

map. A Gaussian Mixture Model (GMM) [89] is used to determine the most likely

number and depths of the bubbles represented in each edge segment. GMMs with



40
z(mm)

(a)

0.45

0.4

0.35

0.3

I 0.25

0.2

0.15

0.1

0.05

20 40
0O 20 40

z (mm)

(b)

60 80

Figure 3-16: Demonstration of the edge minimum intensity focus metric. (a) intensity
"column" corresponding to edge pixels a,b,c as function of distance z from the camera

plane. The intensity is minimum at the focal plane. (b) In the intensity "column"

for interior pixel d, the intensity is not minimum at the focal plane; (c) Intensity

projection near a bubble that was located at z=17.5mm.

-- point d



200 -. U

300 20 .,60.35 20
CL 0

.E300
03 -

4. 024 Pi)~ 41ies2 0 40400 - 40

$0 E
2 4 ~ ~~~~0.25 "ji 0 ixl 1 4
2610E 5 500

0.2 (b)

600 orZ0600 0(

700

600 0.1 800

200 40 60 80 100200 40 60 80 0

Pixe* PPxelsl1

00

50

10

200 400 600 800 1000 200 400 600 800 1000

Pixels Pixels
() (b)

1X 00 X

200 200 60

300 20 5

800 400

evey pxe. () Etrcte edeson he hrshodedinenstyiroe eton (d Refne

10
900

1000 200 400 600 800 1000 100 200 400 600 800 10000
Pixels Pixels

(C) (d)

Figure 3-17: Diagram of key steps of the proposed DH data analysis algorithm applied
to the air-in-water two-phase flows. (a) Intensity projection that contains all the in-

focus pixels. (b) Original depth map records the axial value of the focal plane for

every pixel. (c) Extracted edges on the thresholded intensity projection. (d) Refined

depth map records only the axial value of in-focus bubbles.
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Figure 3-18: Depth map resulting from six bubbles, whose intensity projections are
overlapping. After applying GMM (see text) they are successfully separated and their
individual axial positions are determined. In-focus bubble images are shown in the
insets.

varying number of mixture components are fit to the depth distribution for each edge

segment, and the minimum Rissanen value [901 is used to select the most likely model.

The mean of each mixture component gives the bubble depth. Edges corresponding

to single bubbles also benefit from this approach as it statistically removes some of

the measurement noise, applicable given that a priori knowledge that the bubble edge

should appear at a single depth plane. A refined depth map, such as shown in Fig-

ure 3-17(d), is built from the GMM results. Figure 3-18 shows an example of how

the GMM separates six overlapping bubbles as they appear on their common edge

segment.

Finally, size and 3D position information of every bubble is obtained from the

corresponding segments on the depth map. Bubble sizes are measured from the

equivalent diameters computed from the enclosed areas of each segment.

The same data analysis algorithm is applied to the holograms of the oil-in-water

two-phase flows. The intensity projection and the original depth map are shown in



Figure 3-19(a) and (b), respectively. The binarized projection is shown in 3-19(c). It

is seen that the background fringes, produced by the sensor cover glass, are removed

in this step. Finally, the refined depth map is shown in 3-19(d).

Experimental results

The automated data analysis algorithm is implemented in MATLAB (R2008a) on

a Macintosh with a 2.5GHz Intel Core 2 Duo processor and 4 GB 667 MHz DDR2

SDRAM memory. The holograms are reconstructed with a 0.5mm separation between

neighboring reconstruction planes. It takes about 9 minutes to process one hologram.

An example result from a single hologram of the air-in-water two-phase flows is

shown in Figure 3-20. A 3D visualization of the positions and sizes of the bubbles

recorded in this hologram is shown in Figure 3-20(a). Bubble sizes are scaled for

visibility with color indicating bubble diameters. Figure 3-20(b) shows the bubble

size distribution histogram. The first column of this histogram has an artifact due

to pixel discretization. In this hologram, 1699 bubbles are detected with diameters

ranging from less than 9[tm (the detector pixel size) to 600 pm.

Fluid mechanics literature suggests that the air bubble generation process em-

ployed in our experiment should produce bubbles with size statistics following log-

normal or gamma distribution [12, 106]. The probability density function of the

log-normal distribution is

1 (nx- p)2

f(X; P, o-) = e- 22 ;

where p is the mean of the bubble size's natural logarithm and a is the standard

deviation of the bubble size's natural logarithm.

The gamma distribution probability density function is

-xb
f(x; a, b) = X"- bafI(a)

The bubble size data from eight consecutive holograms, recorded in 1/3 fps, are
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Figure 3-19: Diagram of key steps of the proposed DH data analysis algorithm applied
to the oil-in-water two-phase flows. (a) Intensity projection that contains all the in-
focus pixels. (b) Original depth map records the axial value of the focal plane for
every pixel. (c) Binarized intensity projection. (d) Refined depth map records only
the axial value of in-focus oil-droples.



fitted to these distributions. The probability density and cumulative probability

fitting curves of the bubble size data from one of the holograms are shown in Figure

3-21(a) and (b), whereas the fitting results for all the data from the eight holograms

are shown in Figure 3-21(c) and (d). Figure 3-21 (a) and (c) have different bin

settings because their data set had different cardinalities; nevertheless, both follow

the Freedman-Diaconis rule [26] when generating histograms. The bubble size data

were further subjected to a X2 goodness-of-fit test [17]. The parameters obtained

by fitting the combined data are: in the log-normal distribution fit, p = 3.31016

and o- = 0.718135. In the gamma distribution fit, we obtained a = 1.8665 and b =

19.6344. Both log-normal and gamma distribution hypotheses passed the test at the

5% significance level. T-test [17] was also performed on the log-normal distribution

hypothesis with p = 3.31016 assumption. The data passed the test with estimated

o- = 0.7181.

The dynamic changes of the distribution parameters were further studied. The

evolution in the log-normal and gamma distribution parameters over the eight consec-

utive holograms are shown in Figure 3-22(a) and (b), respectively. It is seen that, in

the same experiment, all parameters fluctuate within a small range around the param-

eter obtained from the combined data quoted above. The holograms were recorded

when the bubble generation process was in equilibrium. Log-normal distribution fits

have relatively more stable parameters, which might suggest that log-normal distri-

bution interprets this particular type of two-phase flows better. Figure 3-23 shows

four frames among the eight consecutive holograms.

The automated data analysis algorithm is also applied to analyze the holograms

of the oil-in-water two-phase flows. Figure 3-24(a) shows a 3D visualization of the

processing results from a single hologram. Oil-droplet sizes are scaled for visibility

with color indicating oil-droplet diameters. Figure 3-24(b) shows the oil-droplet size

distribution histogram. The first column of this histogram has an artifact due to

discretization. Oil-drop size data were fitted to a lognormal distribution, as sug-

gested in [73]. The size distributions provide a measure of the dynamics during the

separation process. The evolution in the log-normal mean and standard deviation



of the oil-droplet size, over 21 consecutive holograms spaced approximately 15 sec-

onds apart, are shown in Figure 3-25(a) and (b), respectively. It is seen that the

mean is statistically stationary, while the standard deviation drops significantly dur-

ing the separation process. The larger droplets have increased buoyancy and rise past

the field-of-view faster, and also break into medium size droplets; while the smaller

droplets merge into medium size droplets. This is also evident in Figure 3-26, which

shows four frames among the 21 consecutive holograms.

3.4 Conclusion

In this chapter, the holographic imaging system was analyzed by phase-space optics.

The holographic information in the phase-space is in the interference terms of the

reference field and the object field. In the Wigner space, the interference terms

appear in the mid-way between the reference WDF and the object WDF. In the

Ambiguity space, the interference terms are in high frequency region. This is useful

when filtering in phase-space is applied.

An in-line digital holographic imaging system was applied to study two-phase

flows. The captured holograms were numerically processed by performing a 2D pro-

jection followed by local depth estimation to obtain the size and position information

of multiple bubbles simultaneously. It was shown that DH is a promising quantitative

measurement technique in two-phase flow research.
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Figure 3-20: Data processing
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Figure 3-21: Bubble size data fitted to lognormal and gamma distributions.
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Figure 3-21: Bubble size data fitted to lognormal and gamma distributions.
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Figure 3-22: Bubble size distribution parameter evolution over eight consecutive holo-
grams; error bars show the 90% confidence intervals for the estimated distribution
parameters.
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(b) Frame 3

(c) Frame 5 (d) Frame 8

Figure 3-23: Evolution of the holograms of the air-in-water two-phase flows.

(a) Frame 1I
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Figure 3-24: Data processing result from a 900 x 900-pixel hologram of the oil-in-water
two-phase flows.
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(a) Dynamic change in the log-normal mean oil-droplet size
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Figure 3-25: Oil-droplet size distribution parameter evolution over 21 consecutive

holograms spaced approximately 15 seconds apart; error bars show the 90% confidence

intervals for the estimated distribution parameters.
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Figure 3-26: Evolution of the holograms of the oil-in-water two-phase flows.



Chapter 4

Light field imaging in phase-space

In high-density flows, the hologram of two-phase flows taken from a single view be-

comes a speckle-like noisy image. In addition, significant occlusions prevent targets

from being observed due to information loss. One way to overcome the challenge of

partial occlusion is to integrate views from multiple perspectives. Occlusion differs

from view to view, and by digitally integrating multiple views, the shape of a tar-

get embedded in an occlusive media can be reconstructed. This perspective imaging

principle is widely used in a number of imaging techniques, such as stereo imaging

[92], synthetic aperture imaging [45], integral imaging [4], and light field imaging [47].

The use of a lens arrays to capture light fields has its roots in Lippmann's 1908

invention of integral imaging [49]. The principle of the system is that each lenslet

records a perspective view of the scene observed from that position on the array.

A conjugate system to integral imaging, termed light field imaging and often called

plenoptic camera [2, 66] in the literature, is to put a field lens in front of the microlens

array. Instead of taking perspective views of the scene directly, the light field system

takes perspective views of the field lens under each microlens; perspective views of

the scene are obtained by post-processing. A microlens array is also used in adaptive

optics, where it is known as Shack-Hartmann wavefront sensor [84]. The microlens

array focuses light onto a detector. As the wavefront slope changes at the lens, the

lateral position of the focus shifts, thus enabling the wavefront slope to be sensed.

Figure 4-1 shows the schematics of integral imaging and light field imaging, respec-
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Figure 4-1: (a) Schematics of integral imaging and its pixel addressing at the sensor
plane in (b); (c) Schematics of light field imaging and its pixel addressing at the
sensor plane in (d).
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Figure 4-2: In conventional single lens imager, all rays from a point object are mapped
to a point on the image plane, as shown in (a); In the Wigner space, samples are
taken along the space x coordinate but not along the spatial frequency u coordinate,
as shown in (b); In integral imaging (Figure 4-1(a-b)) and light field imaging (Figure
4-1(c-d)), samples are taken along both x and u coordinates, as shown in (c).



tively. Three object points at different positions X1 , x2 and X3 are mapped to different

position at the sensor plane. In addition, different spatial frequencies, which corre-

spond to different rays, of the same object point are also mapped to different pixels.

Integral imaging and light field imaging have different pixel addressing at their sensor

planes. Detailed analysis will be presented in the subsequent sections. As a compar-

ison, Figure 4-2(a) shows the schematic diagram of a conventional camera with only

a field lens to conjugate the object plane and the sensor plane. Each object point is

mapped to a single point at the imaging plane. We can also compare the sampling

schemes in the Wigner space. In Figure 4-2(b), the samples of a conventional camera

are illustrated as continuous lines oriented along the spatial frequency (u) axis. So the

conventional camera can only have (lateral) position discrimination. Samples of light

field and integral imaging in the Wigner space are shown as dashed lines in Figure

4-2(c). This is because both space and spatial frequency information are obtained in

these two setups.

4.1 Light fields and the Wigner distribution func-

tion

4.1.1 Light fields

"Light field" is a geometrical optics concept widely used in computer graphics com-

munity [44], mapping from rays to radiance. The concept was first introduced by

Arun Gershun in 1936 [32] and defined as a 5D function, which gives the amount of

light (radiance) traveling in every direction (parameterized by two directional cosines)

through every point in space (parameterized by three Cartesian coordinates). This

5D representation is known as plenoptic function [1], and is shown in Figure 4-3(a).

However, the 5D representation may be reduced to 4D in free space [36, 46, 63].

This is a consequence of the fact that the radiance is conservative along a ray unless

blocked. The 4D set of rays can be parameterized in a variety of ways. One widely

used representation is to parameterize the light field by two planes, where each ray is



(a) the 5D plenoptic function (b) the 4D light field

Figure 4-3: Light field parameterizations.

encoded by its intersections with two parallel planes [46], as shown in Figure 4-3(b).

While this parameterization cannot represent all rays, for example, rays parallel to

the two planes, it relates closely to the analytic geometry of perspective imaging [44].

As illustrated in Figure 4-3(b), a collection of perspective images of the st plane is

taken from an observer position on the uv plane.

4.1.2 Radiance and the Wigner distribution

Radiance

Before relating light field to the WDF, we shall first find the connections between

the radiance and the WDF. The concept of radiance comes from the geometrical

models for energy transport in optical fields [8]. The basic assumption is that the

energy radiated from an element do- of a planar source is distributed according to the

elementary law

d$ = B,(r, s) cos OdadQdt (4.1)

where d# represents the amount of energy, per unit frequency interval at frequency

V, that is propagated in a short time interval dt from a source element da at a point

Q, specified by position vector r into an element dQ of solid angle around a direction

specified by unit vector s. 0 denotes the angle that the s direction makes with the



dQ

dc

Figure 4-4: Illustration of the definition of the radiance function B(r, s).

unit normal n to the source plane, as shown in Figure 4-4. The proportionality factor

B,(r, s), which in general depends on position (r), direction (s) and frequency (v),

is known as the radiance function. The energy flux emanating from a surface is

calculated by

<= J B,(r, s) cos Odo-dQ (4.2)

Radiance in wave optics

The relationship between the radiance function and the wave optics were first studied

by A. Walther [107, 108, 1101, and later by E. Wolf [56, 113] in the 1970s through the

theory of partial coherence. First, write the field in its angular spectrum form

u(X, y, z) = JJ U(L, M) exp{ik(Lx + My + Nz)}dLdM,

N = 11 - L2 - M 2  (4.3)

where (L, M, N) = n denotes a unit vector which indicates the propagation direction

of a plane wave with amplitude U(L, M). The position vector is given by r = (x, y, z).

dLdM can be related to solid angle dQ by

dQ = dLdM/N. (4.4)



For partially coherent illumination, the field is described by the mutual intensity,

which is defined as the ensemble averages

F(ri, r 2 ) S< u(r)u*(r2) >

-JJJJI (L1 M1, L 2 , M 2 )

exp{ik[Lixi + Miyi + Nizi - L2 x 2 - M2 y 2 - N2z2]}

dL 1dM 1dL 2dM 2, (4.5)

where

r(L 1 , M1, L2, M2) =< U(Li, M1)U*(L 2 , M 2) > . (4.6)

The energy flux associated with the field [1071 is

D =1 NJ(L, M, L, M)dLdM. (4.7)

we now introduce the average location of two points and their separation by writing

1
Xa = I (XI + x 2 ),

Xd - X2,

and similarly for y. Applying the same transformation to the direction cosines,

1
La = -(L 1 + L 2),

2
Ld = Li - L2,

(4.8)

(4.9)

and similarly for M and noting that N = cos 6, we can rewrite Equation (4.7) in

terms of the transformed variables as

Naf (La, Ma, 0, 0)dQ cos 0. (4.10)

In his paper, Walther introduced a function that takes the Fourier transform on



F(La, Ma, Ld, Md) only to Ld and Md

f(La, Ma, Ld, M) = JJ (La, Ma,-a, Ya)

exp{ -ik[LdXa + MdYaIjdXadYa- (4.11)

It is easy to recognized that I'(La, Ma, Xa, Ya) is the WDF of the field. Noting that

dXadYa = do- is the element area,

f(La, Ma, 0, 0) =I F'(L, Ma, Xa, a)do-. (4.12)

Finally, we can find the radiance defined in wave optics quantities by relating Equation

(4.1) and Equation (4.10) as

B = (1/A 2 )F'(La, Ma, Xa, ya). (4.13)

Equation (4.13) shows that the radiance is, up to a scaling constant, equal the

WDF of the scalar field. Later, Walther showed that the radiance given by Equation

(4.13) is a unique solution [110]. Radiance defined by Equation (4.13) is known

as the generalized radiance function. However, the expression for radiance given by

Equation (4.13), being the WDF of a scalar field, can become negative, which violates

the positivity of radiance. In fact, Friberg showed that there cannot be a radiance

function satisfying all the ideal properties of radiance [27]. On the other hand, in

the short-wavelength limit, Walter's equation for radiance, (4.13), has been shown

to satisfy all the ideal properties of radiance [24, 40], thereby proving the Wigner

distribution equivalent to radiance at this limit. We shall conclude that the Wigner

distribution of a scalar field is good measure of the radiance of this field.

Another interesting remark in finding the relationship between intensity distribu-

tion and coherence properties was pointed out in Walther's paper [107]. By substi-

tuting the transformations in variables by Equation (4.8) and Equation (4.9) into the



exponent when calculating the mutual intensity in Equation (4.5), he obtained

ik[Llx1 + Miyi - L 2 x 2 - M 2y 2] = ik[LdXa + MdYa + LaXd + MaYd). (4.14)

This shows that (Xa, Ld), (Ya, Md), (Xd, La), and (Yd, Ma) are Fourier pairs. The

dependence of l(Xa, Ya, Xd, Yd) on Xa and Ya represents the intensity distribution in

the plane z = 0, while its dependence on Xd and Yd represents the coherence properties

in this plane. In the far field, the dependence of F(La, Ma, Ld, Ld) on La and Ma (Ld

and Md) gives similar results.

4.1.3 Light field and the Wigner distribution

The relationship between the light field and the Wigner distribution function was

recently studied by Zhang [119]. Since we have derived that the radiance is equal to

the Wigner distribution, and the light field is equivalent to the radiance, it is seen

that the light field is equal to the Wigner distribution

l(x, y, L, M) = W(x, y, L/A, M/A) = W(x, y, u, v). (4.15)

One remaining question is to relate the theory to measurable quantities in exper-

iments. This question is two-fold: on one hand, the Wigner distribution can be

negative, in which case it is not a physically measurable quantity. On the other hand,

there is no angular variation in radiance of the light transmitted through a point. A

related issue is that, due to the uncertainty principle, simultaneously precise mea-

surements in both space and spatial frequency(angle) are impossible. One possible

solution is to consider that samples of the radiance (the Wigner distribution, and the

light field) are taken by detectors with finite size. The resulting quantity is called the

observable light field in [119].

Consider light transmitted through an arbitrary finite aperture centered on the

point (s, t, 0). The aperture has a transmittance function T(x, y). The aperture is

translated along the reference plane (s, t) at z = 0. Suppose we can measure the



z = 0

(u, v)

T(x - s, y - t)

(s, t)

Figure 4-5: A physically measurable quantity related to the radiance is the intensity
of light emanating in a particular direction (u, v) from a translated aperture T(x -
s,y - t).

intensity of light emanating in a particular direction (u, v) from a translated aperture

T(x - s, y - t), as shown in Figure 4-5.

Given a scalar field u(x, y), the field after the aperture is u(x, y)T(x - s, y - t). It

can be written as its angular spectrum

U(u, v) = u(x, y)T(x - .s, y - t) exp{-i27r(ux

The measured intensity is, dropping the scaling constant,

Wosb(s, t, U, v)

+ vy)}dxdy (4.16)

= < I(u, v)12 >

S111< u(x1, y1 )u*(x 2, Y2) >
xT(xi - s, y1 - t)T*( 2 - 8, Y2 - t)

exp{-i27r(u(x1 - X2 ) + v(y 1 - y2))}dxidX2dyidy2. ((4-17)



Rewriting Equation (4.17) into average and difference variables yields:

Wobs(s, t, u, v) 111 < u(x + (/2, y + /2)U*(x - (/2, y - /2) >

xT(x + (/2 - s, y + ,/2 - t)T*((x - (/2 - s, y - q/2 - t)

exp{-i27r(u( + v17)}dxdyddq (4.18)

where x = (x 1 + x2 )/2, ( =X1 - x 2 , y = (Y1 + Y2)/ 2 , 1 = 1 - Y2. By invoking the

convolution theorem, we can rewrite Equation (4.18) as the convolution of two Wigner

distributions:

Wobs(s, t, u, v) = W(xy, U, v) *.,, WT(X - s, y - t, u, v)dxdy

= Wu(s, t, u, v) *s,t,u,v WT(-s, -t, u, v) (4.19)

Therefore, the measurable quantity (the observable light field) is equivalent to the

WDF of the scalar field blurred by the spatially inverted WDF of the aperture trans-

mission function.

4.2 Wave optics analysis of light field imaging

A wave optics derivation of the light field imaging system is carried out in this section.

The paraxial approximation is adopted through out. For simplicity, the equations are

presented in one dimension; extension to 2D is straightforward.

4.2.1 Field at the sensor plane

The light field imaging arrangement is shown in Figure 4-6. The object plane is xi".

A pupil mask, gpM, is assumed to be placed in front of the field lens. A lens, having

a focal length f, is at x'. The microlens array is at x", with each microlens having

a focal length of fm and diameter A. The sensor or output plane is denoted as xOut.

The distances between these planes are z1 , z2 , and z3 , as shown in the figure.

To derive the field at the sensor plane, an input field gin(xin) is assumed at the
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Figure 4-6: Light field imaging system setup.

input plane. After propagating through the field lens and the microlens array, the

resultant field is recorded by a sensor. Starting from the input field gin(Xin), after

propagating to the plane immediately before the aperture stop, the field becomes

g_(x'). The propagation is computed through the Fresnel approximation,

g-(') = Jdxingin(xi) exp i jf(x' - Xi")2}. (4.20)

The field immediately after the field lens is

g+(+') = g-(')gpm(x') exp -irr X 1 . (4.21)

The field immediately before the microlens array is

g_ (X") = dx'g+(x') exp i (') 2 . (4.22)

Let
1 1 1
1= +- (4.23)
z1  z2  f

denote the amount of defocus. Combining Equations (4.20)-(4.23), g (x") can be



rewritten as

9-(") exp i7r dxindxlgin(xin) exp 3 PM(xf)
exp 27r( + ) (4.24)

The transmittance function of the microlens array is

1 z" - kA ( ("-k)2
gmi(x") = krect( A) exp isr , (4.25)

k=-l A f

where rect(e) denotes a rectangular function, whose size is given by the diameter A

of each lenslet. The total number of the microlenses are assumed to be 21 + 1, so the

system is symmetrical about the central lenslet.

The field immediately behind the microlens array is

g+ (x") g (x")gmI (x"). (4.26)

The field at the output plane is

gout (xout) = dx"g+(x") exp i7r (xout -x") 2 } (4.27)

denoting
1 1 1

2 = + (4.28)
z2  z3  fm

gout(Xout) can be written as

gout (Xout) = exp {7 ou s dXin dx'dx"gin (xin) exp {7r i}

k=-l

01 x 2 x! / in - 02 x 12

gpM(xz) exp 27r exp -i27rlj + ) exp {7r
exp kA xout Xre -t( (kAe} (4.29)exp i27r-( f z rect ( ) exp -2r .(.9



4.2.2 Coherent Point Spread Function

From Equation (4.29), we can derive the coherent point spread function(cPSF) of the

system. By assuming the object is a point object at xO, and dropping the constant

phase terms,

iI dx'dx"gpM(x') exp

exp {i27r /( +

{ " kA -

exp i27r (
Afm

L) exp

Xout
)3

V),l' 2 }
17rA

ir rect(z" - kA
A A

exp{
(kA)2 }

4.2.3 Incoherent Point Spread Function

The relationship between the cPSF and the incoherent point spread function (iPSF)

is given by

= IcPSF(xout)| 2

= Jdxdxgpm(x) exp

rect(1 AkA) exp{

exp -i7r AmIx

kX L 2 2 9 PM

rect(X2 - k2AA) exp

exp i7r 
.

e Af}

r A

(X2) exp

-ir2

7 1X2

exp i27rj

-z7r 1 }
exp

exp { Z27r

k1A _x 0 t7

exp zi27r 2 X

-27r (k2A
A fm

(4.31)

Z2

Z2

XOut)

(4.32)

Using a change of variables,

z' = (x'+ x')/2,

a" = (x1' + x'2)/2,

1 2,

(= z" - a2'

cPSF(xout)
k=-l

(4.30)

iPSF(xout)

(4.33)



the iPSF can be rewritten as

= dx'dx"WpVj,, (7 ,ix' - +5XO

Azj

x" + ("/2 - k 1A z" - ("/2 - k 2A

Z drect( A )rect( A
k 1=-l k2 =-l

( 2out z / A (k1+ 2) W /
exp i2r( + ( )

A Aza Az2 Afm, 2

r (ki - k2)A , _ (ki + k2)A
exp i22r (x

where W,,, is the WDF of the pupil mask function

WgpM(X, U) = dgpM(x + 9P2)g*M(x - /2) exp {i27run},

and ki and k2 are indices for the microlenses. Equation (4.34) can be simplified by

introducing

k+ = k1 + k2, k_=k 1 -k 2. (4.36)

The values of k+ and k_ need to satisfy the following conditions:

k1 = (k+ + k)/2,

-1 ki,k 2 1,

We rewrite Equation (4.34) as

iPSF(xout) =

k2= (k+ -k)/2,

ki and k2 are integers.

( XSEWrect(i)
k- k+

k+A -2X" X0 ,

2 ' A AZ 3

exp i27r(#2"zu + x")kA
A Az3 Az2 Afm

x+ kA
AZ2 2f

(4.38)

iPSF(xot)

(4.34)

(4.35)

(4.37)

x xQ

AZ 2 Azi)dx'd"Wg,, x , x



where Wrect(f) is the WDF of the rect function,

Wrect(*)(X, u) = J d rect ( Aj) rect ( A/) exp {i27ru(} , (4.39)

and k+ and k_ satisfy the conditions in Equation (4.37).

The result of Equation (4.38) can be further evaluated for a few special cases.

Assume that the object plane is conjugate to the microlens array plane, so the defocus

term V/1 vanishes. In addition, assume that the pupil mask is a clear aperture and

the diameter of the field lens is A, which is much larger than the size of the microlens

A. The limiting case of A -> +oo will be considered. Then

gPM = 1, (4.40)

whose WDF is a 6-function,

WgVPM = 6(u). (4.41)

addition, assume the field lens plane is conjugate to the sensor plane as in [47, 66],

2 = 0.

Substituting the above assumptions, we can rewrite Equation (4.38) as

iPSF(xout) = JJ dx'dx"6 ( -o)
k- k+ Z Az

exp i27r(-zo - + j )kA
Aza Az2 Afm,

(,, k+A -out +' k+A
2rect(i) - , +.
2 Aza Az2 2Afm

Note that solving the argument of the 6-function gives the position of the image point

at the microlens plane,

z'' = -xo. (4.43)

Furthermore, since rect(x/A) is non-zero only when |xI < A/2, Wrect(x/A) has the same

spatial support. As a result, in Equation (4.42), k+ can be determined by solving the

(4.42)



inequality,
'' k A A

2 2 (4.44)

and only one index, denoted by ko, satisfies this condition. Using this fact, the iPSF

is further simplified as

iPSF(xout) = Zdx'Wrect(1)

exp i27r(- out

Aza

( ,-koA x0 ut x/ koA\
'- - + 2Afm2 ' Az 3  AZ2 2fm

+ -)k A.
Az 2 AfmJ

In order to simplify Equation (4.45) even further, let

Xout koA
U -- + 7

Az3  Az2  2Afm'
,, koA

x8 = X0 2'
2rkA koA

as = (xO 2

Substituting Equation (4.46) into Equation (4.45), the iPSF takes the form

iPSF(xout) = Az2 exp(ias) du Wrect(*) (x,, u) exp(i27rukA).

Since

du WI (x,, u) exp(27rukA) = f (x, + 2

and f(x) = rect(x/A), Equation (4.48) is non-zero only if

k_ = 0.

Recalling the conditions of (4.37), k_ = 0 implies

ko E [-21,-21+2,0...,0,2,...,21-2,21],

or, ko/2 EC - ,- ,.. , ,.. ,l.

kA
2

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)
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Figure 4-7: Illustration of the incoherent point spread function of the light field
imaging system.

Thus, ko/2 only takes integer values, and will denoted by k, hereafter.

The physical meaning of Equation (4.49) is that there is no cross-talk between the

field after neighboring microlenses. Under this condition, Equation (4.50) suggests

that spatial samples are discretized by the position of the centers of the microlenses.

Because when ko/2 = n, n is a integer, the spatial samples take discrete values, nA,

which corresponds to the positions of the centers of the microlenses.

Substituting k- = 0 and ko/2 = k, into Equation (4.45), the expression for the

iPSF becomes

iPSF(xout) = dx'Wrect() ( - o - k1A, k - x/
A zi Afm, Aza Az2

1 if (k, - 1/2)A < -(z 2/zi)xo < (k, + 1/2)A, (4.51)
0 otherwise,

and the mapping from the output coordinate xout to the spatial frequency u is given

by
k1A xout x'
Afm Az 3  Az2

The results of Equation (4.51) are illustrated by Figure 4-7. A point object at xO is

imaged onto the k1th microlens. Its spatial frequency components, which correspond
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Figure 4-8: Wigner distribution function of a rect function. The spatial coordinates
are normalized by the width of the rect function.

to different rays in fig 4-7, are sampled at different locations on the sensor plane, xout.

Equation (4.52) should be used to find the mapping between the spatial frequency

and the corresponding sampling pixel on the sensor plane.

Sampling in spatial frequency domain

The sampling in spatial frequency domain can be further analyzed using the properties

of the WDF of the rect function in Equation (4.51), which is

Wrect(x/A)(X, u) = 2A tri[x/(A/2)] sinc{(2A - 4|xl)u}, (4.53)

where tri(e) is a triangle function and sinc(x) = sin(x)/x is the sinc function. Figure

4-8 shows the WDF of a rect function.

I. Information spreads out as a sinc function.

If a single "ray" is chosen by fixing x' in Equation (4.51), or equivalently a single



spatial frequency component by fixing u in Equation (4.53), it results in a sinc-shaped

intensity distribution at the sensor plane, as shown in Figure 4-9(a). Each pixel of the

sensor integrates the intensities from multiple spatial frequency components, resulting

a unit output, as in Equation (4.51).

The width of the main lobe of the sinc function is

Wf = 1/(A - 21xl|), (4.54)

where x, indicates the position of the image point (the center of the image of a point

object in a strict sense) on the microlens relative to the center of this microlens and

is given by

X1 = -(z 2/zi)xO - k1A (4.55)

The dependence of w1 on x, suggests that the spreading of the sinc-shaped spatial

frequency samples depend on the position of their corresponding image points on

the microlens plane, as illustrated in Figure 4-9. In Figure 4-9 (a), the red image

point, which is near the center of a microlens, produces narrower sinc-shaped spatial

frequency samples. In Figure 4-9 (b), the majority of the energy from a spatial

frequency sample is measured by an individual pixel (the gray blocks in the figure).

The blue image point in Figure 4-9 (a) is near the edge of a microlens. It produces

much wider sinc-shaped spatial frequency samples. Each spatial frequency sample

needs multiple pixels to measure the majority of its energy. As a result, the resulting

pixel value is a combination of several nearby spatial frequency samples, as shown in

Figure 4-9(c).

In section 4.1.3, the measurable Wigner distribution, or the observable light field,

is shown to be a blurred version of the object WDF. The blurring effect is due to a

convolution with the WDF of an aperture function. Later it will be shown that the

blurring effect is equivalent to the mixing of the spatial frequency samples discussed

in this section.

II. The center of the sinc-shaped spatial frequency sample can be calculated by

letting u = 0 in Equation (4.53). Recalling that u is given by Equation (4.52), it
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Figure 4-9: (a) A single spatial frequency component produces a sinc-shaped intensity

distribution on the sensor plane. The red image point near the center of the microlens
produces narrower sinc; and the blue image point near the edge of the microlens
produces much wider sinc. (b) Spatial frequency sample of the red image point in (a)

can be measured by an individual pixel (the gray blocks in the figure). (c) Spatial

frequency sample of the blue image point in (a) spreads over multiple pixels. The

resulting pixel value includes energy from several nearby spatial frequency samples.
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gives the position of the center at the sensor plane

lout Z3 (X' - koA) + koA, (4.56)
Z2

which is the same as the result predicted by geometrical optics.

III. The resolution in the spatial frequency domain can be measured as the width

of the main lobe (wf) of the sine function. Since Wf is on the order of 1/A, the spatial

frequency resolution Rf of the system is on the order of 1/A, The spatial frequency

samples are recorded at the sensor plane, so the spatial frequency resolution can also

be calculated in terms of xOut. Equation (4.52) suggests that u is mapped to zout/AZ3 ,

so

Rout " A/NAm, (4.57)

where Rx"ut is the spatial frequency resolution calculated in terms of x0Ot, and NAm

is the image side numerical aperture of the microlens the and is given by

NAm = A/2z3. (4.58)

A continuous sampling on the sensor plane is assumed when deriving Equation (4.57).

In reality, all sensors are discretized by pixels. If the pixel size is smaller than the

width of the main lobe of the sinc, then the spatial frequency resolution given in

Equation (4.57) can be achieved. In the opposite case, the spatial frequency resolution

will be limited by the pixel size.

IV. Equation (4.56) relates the points on the sensor plane and their conjugate

points on the field lens plane. With the non-overlapping requirement between neigh-

boring sub-images under each microlens, the spreading of single sub-image should

be confined by the size of each microlens (assuming no gaps between neighboring

microlenses):

IXout - koAl < A/2. (4.59)

Considering the most efficient use of the spatial frequency support of both the field

lens and the microlens, the marginal ray from the field lens should reach the edge of
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Figure 4-10: Illustration of incoherent point spread function. Two point objects x01

and X02 are imaged onto the same microlens and their spatial frequency components
corresponding to the same x' are mapped to the same pixel on the output plane.

each sub-image, so

-(A/2) = (A/2). (4.60)

This gives the optimum design requirement of the field lens and the microlens,

NAm = NAc, (4.61)

where NAc = A/2z2 is the image side numerical aperture of the field lens. Result

(4.61), i.e. matching the numerical aperture of the field and the microlens, is intu-

itively satisfying.

Sampling in space domain

As seen in Equation (4.51), all object points which satisfy

z2 A
|- -x + kAJ < -

zi 2
(4.62)

will be imaged onto the same microlens. In addition, the center of the sinc-shaped

spatial frequency samples of these points overlap on the sensor plane since Equation
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Figure 4-11: Digital processing to compute the image of the in-focus object (the left
figure) and digitally refocus to the defocused object (the right figure).

(4.56) is independent of xo. As a result, the spatial resolution is the size of each

microlens, A. This is shown in fig 4-10, where two point objects xo1 and X02 are imaged

onto the same microlens and their spatial frequency components corresponding to the

same z' are mapped to the same pixel on the output plane.

Digital refocusing

To study the digital refocusing capability of the light field system, the output of

defocused object, by letting $ 1 # 0, should be studied. Neglecting the cross-talk

between the field after nearby microlenses, the defocused iPSF, iPSFd, can be derived

from Equation (4.38),

iPSFd(Xont) = d'Wrect() z2 91z' - zXn - kA, -OUt - kA x' - kA

k=-l \ Z1 Az3 Az2

(4.63)
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Figure 4-12: The Fourier Slicing Theorem. A projection taken along a certain di-

rection is equivalent to taking a slice of the 2D Fourier transform along the same

direction.

Equation (4.63) is a Fractional Fourier Transform (FrFT), with the defocus $1 de-

termining the fractional power [50]. Digital refocusing [65, 66] can be achieved by

integrating the samples over the spatial frequency variable (equivalently, over zOt).

Figure 4-11 shows how to compute an image from the data obtained from a light

field imaging system. The intensity of an object is computed by projecting the data

along the spatial frequency axis. Defocusing is equivalent to a rotation in the Wigner

space, where the amount of rotation depends on the defocus. To digitally refocus to

the image, a projection along the rotated spatial frequency axis, u', is carried out.

Instead of computing a projection directly, the Fourier Slicing Theorem [38] can be

applied, which results in a more efficient computation [76]. The schematic diagram

of the Fourier Slicing Theorem is shown in Figure 4-12. A projection of the Wigner

distribution taken along a certain direction, which depends on the amount of defocus,

can be implemented in the Ambiguity space. First, take a 4D Fourier transform of the

WDF, which transforms it to its Fourier conjugate, the Ambiguity space. Next, take

a slice of the ambiguity function along the same direction. Finally, take an 2D inverse

Fourier transform on the Ambiguity function slice, which results in the projection in

the Wigner space.
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In-focus plane

Figure 4-13: Geometrical defocus. Within the range Dg, all object point will be
imaged onto the same pixel, A.

Depth of focus

Two terms contribute to the depth of focus (DoF) of the system, D. The size of

the microlens results in a defocus range, Dg, which can be calculated by geometrical

optics, as illustrated in Figure 4-13. The second term is due to the diffraction, Dd.

The DoF can be approximated by the sum of these two terms,

D~g±d~ A AD = D9 + Dd = A + A(4.64)
M -NA NA 2 '

where M is the magnification, M = z2/zi and NA is the object side numerical

aperture of the field lens, NA = A/2zi.

4.2.4 Partially coherent imaging using a light field imaging

system

Up to here, the incoherent and coherent imaging using a light field imaging system

have been discussed. In practice, the illumination is always partially coherent. Par-

tially coherent imaging in a light field imaging system will be discussed in this section.

Partially coherent light can be described by a temporally stationary stochastic pro-

cess g(x, t); the ensemble average of the product g(Xi, t1)g*(x 2 , t 2) is then a function
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of the time difference ti - t2:

< g(xi, ti)g*(x 2, t2) >= fF(X1 , X 2, ti - t2), (4.65)

where < * > denotes the ensemble average. The function IF(Xi, X2 , ti - t2) is known

as the coherence function. Using the ergodicity and quasi-monochromaticity assump-

tions, the coherence function is sufficiently described by the mutual intensity J, de-

fined as the coherence function at zero time delay:

J(Xi,x 2 ) =< g(Xi)g*(x 2 ) > (4.66)

The mutual intensity at the sensor plane can be calculated by substituting the

field in Equation (4.29) into Equation (4.66):

(4.67)

and the output intensity is

I(x) = J(x, X) = |gout (X)|2. (4.68)

The intensity can be written as

I(xout ) = dxindx'dx"Wgn -in, -"

(, k±A V)/~2X" -Xout X' k±A>
/ rect(*) "- 2 2 k J

k- k+ 2 A A3 A22f,

exp i27r(02x" zout z ' + z" )k-A ,
A - Az 2 fm

(4.69)

where the indices k+ and k- are defined in Equation (4.36) and satisfy the conditions

in Equation (4.37). Again, assume a clear aperture, gpM = 1, the object plane is

conjugate to the microlens array plane, #1 = 0, and the field lens plane and the

sensor plane are conjugate planes, 02 = 0 and no cross-talk between the fields behind
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neighboring microlenses. So k_ equals to 0, and k+/2 is restricted to integer values.

The output intensity can be simplified as

I(XOUt) = dxidx'W . (in" x Azi
k=-l

Z2 zOUt - kA x' - kA

z Az3  Az2

Equation (4.70) implies that light field imaging system samples the WDF of the

object. It takes discrete spatial samples at the microlens plane, kA, and spatial

frequency samples at the sensor plane, (xzut - kA)/Az 3. The result is a blurred object

WDF. The blurring is due to a convolution with the WDF of a rect function. A change

of variables based on the physical implications makes this result evident. First, the

spatial samples are discretized by the microlenses, with sampling rate A. As a result,

the spatial frequency variables in Wrect

ni = (x' - kA)/Az 2 ,

U2 = (kA - xout)/Az 3  (4.71)

denote an input spatial frequency and an output spatial frequency, respectively. This

can also be seen in Figure 4-14. Defining the magnification m = -z 2/zi, the spatial

frequency variable in Wg can be rewritten as

zin - ' - in - kA

Az1 + mu1

kA kA + mui. (4.72)
Azi Az2

where the second equation is due to the approximation that xil/Azi = -kA/Az 3 .

This approximation is valid because the spatial samples are discretized by the central
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Figure 4-14:
Since spatial

Illustration of input spatial frequency and output spatial frequency.
samples are discretized by the central positions of microlenses, it can be

approximated that xi,/Azi = -kA/Az 3.

positions of the microlenses. So, Equation (4.70) takes the form

I(kA, u2 ) =
k=-l

dxinduiWi.

Wrect(') (-kA + min, u 2 - ui), (4.73)

which can be seen as a double convolution between the WDF of the object and the

WDF of a rect function. That is,

(4.74)

and the discretization in the space domain is realized by an integration for the same

spatial sample

(k+1/2)A
I(kA, u) =

J(k-1/2)A

The result of Equation (4.74) is illustrated in Figure 4-15. The WDF of the

object, Wg, is space and spatial frequency limited due to the finite NA of the field
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I(x, u)dx. (4.75)

Xin, i U -kA

I(x, U) ~W (X, U) *x,u Wrecet() (X, U) ,



Sensor plane

---- rect(x/A)

AA

Figure 4-15: Sampling in the Wigner space by a light field imaging system. The
object WDF is convolved with the WDF of a rect function. The convolution process
is depicted as the replicas of the WDF of a rect function along both the spatial and
spatial frequency axis directions. Three spatial samples are taken, depicted as three
columns enclosed by dashed lines. Neighboring spatial samples are shifted by A/Az 2
due to the physical displacements of different microlenses. 7 spatial frequency samples
are taken at each position. Each spatial frequency sample has a width of opix/Az3,
where opix is the pixel size. The samples are recorded on a ID sensor. The sample
arrangement on the sensor is shown to the right.

lens, depicted as the grey area in the figure. The low-pass filtered object WDF is

convolved with the WDF of a rect function. Each column enclosed by dashed lines

corresponds to a microlens. The shift of the columns is due to the lateral displacement

of the microlenses. The number of spatial frequency samples in a column is determined

by the number of sensor pixels behind a microlens. The sample arrangement on the

sensor plane is illustrated in the right-hand side of the figure.
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(d) Gaussian signal with large spatial frequency extent. High frequency contents are cut
off by the finite NA of the field lens.

Figure 4-16: Left: the original WDF of example object signals; middle: the measur-
able WDF, if continuous samples are taken in both space and spatial frequency; right:
the resulting pixellated measurements (solid red line) and the original WDF (dashed
lines). The three microlenses (LI, L2, and L3) discretize the measurable WDF into
three columns. 200 spatial frequency samples are taken within each column. These
three columns are rearranged side-by-side into a vector.
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4.2.5 Simulation results

Simulations to better illustrate how a light field system measures the object Wigner

distribution are shown in Figure 4-16. In the simulation, three microlenses with

200 pixels each were used. The plots on the left are the original WDF of several

example object signals. The middle plots are the measurable WDF if continuous

samples are taken in both space and spatial frequency. The right plots show the

resulting pixellated measurements compared with the original WDF of the object at

the centers of the three microlenses. The three microlenses discretize the measurable

WDF into three columns and 200 spatial frequency samples are taken within each

column, as illustrated in Figure 4-15. These three columns are rearranged side-by-

side into a vector, as shown in Figure 4-15. The shift of the columns is assumed to

be compensated by proper pixel addressing.

Figure 4-16(a) shows a point object with infinite spatial frequency, as shown in

the right plot. The spatial frequency is cut off by the finite NA of the field lens, which

results in a band-limited measurable WDF. The measurable WDF is a convolution

between the band-limited object WDF and the WDF of the rectangular aperture. The

resulting WDF has a rectangular shape in the Wigner space, as shown in the middle

plot. The measurable WDF is discretized in space by the microlenses and in spatial

frequency by the sensor pixels, which produces the pixellated WDF measurements in

the right plot.

Figure 4-16(b) shows a Gaussian signal with a spatial extent larger than the size

of a microlens. The region outside the second microlens, L2, is measured by the

neighboring microlenses, Li and L3, which produces two peaks in the right plot.

The space coordinates only take discrete values that correspond to the centers of the

microlenses. As a result, the peaks are the measured WDF vectors at these positions,

pixels 100 and 500 in the figure, with varying spatial frequencies. The results are

compared with the true WDF at pixels 100 and 500. The measurements have a

larger value due to the integration defined in Equation (4.75).

Figure 4-16(c) shows a Gaussian signal whose space and spatial frequency extent
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Figure 4-17: Integral imaging system setup.

fit to the space and spatial frequency support of the central microlens, L2. The right

plot shows a good match between the measurements and the true value.

Figure 4-16(d) shows a Gaussian signal with its spatial frequency extent larger

than the spatial frequency support of the system. The high frequency components of

the signal get cut off as shown in both the middle and right plots.

4.3 Wave optics analysis of integral imaging

The integral imaging system, conjugate to the light field imaging system, is studied

in this section. The difference of an integral imaging system is that no field lens is

in front of the microlens array. Perspective images are taken by multiple microlenses

onto the sensor plane. The system arrangement is shown in Figure 4-17. Similar

to the previous discussions on the light field imaging system, the cPSF, iPSF and

partially coherent imaging output of an integral imaging system will be studied in

the section.
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4.3.1 Coherent Point Spread Function

The field at the output plane is

iI dxindxgin(xin)

exp i (-

Xe} x - kA)
exp i7r Ai rect( A )

x + kA)x
Z2 fm

exp

exp

-A)r}

where
1 1 1

- + - f
zi Z2 fm

denotes the amount of defocus.

The cPSF of the system is derived by assuming a point object at xO,

cPSF(xout) dx rect( x kA ) exp
Iv--

27r

exp z- (_
out kA 

Z2 fm )

. Ox2 
zirA

(kA)2

4.3.2 Incoherent Point Spread Function

Assume in-focus object

=0.

The iPSF of this system can be derived as

dx Wrect
k_ k+

r. XO-
exp ir(- x

Azi

k- A xO
2 ' Az 1

zout + x )k-A
Az2 Afm
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gout(XOUt)
k=-l

(4.76)

(4.77)

(4.78)

iPSF(Xout)

(4.79)

- +
AZ2

k2A
2Afm}

(4.80)



By letting

,xk+A

Xo Zo out k+A
Azi AZ 2  2Afm'

aoZ = 27r(- zo xout + k+A )kA, (4.81)Azi Az2  2Afm

the iPSF takes the form

iPSF(xzut) = E exp(iao) dx' Wrect(f) (X', UO) exp i 27r kA' /.
k+ k- A Jm)

(4.82)

Since

dx' Wf (X',u o) exp i27r zA'x1 = F (UO + ~jA) F* (uo - -A (4.83)
A fm 2Afm 2Afm

where F is the Fourier transform of f. Here, f(x) = rect(x/A), so

F(u) = sinc(Au). (4.84)

The results of Equation (4.83) are illustrated in Figure 4-7. When k- is large, two

sine functions will be separated by a large distance, thus the contribution of their

product approximates zero, as shown in Figure 4-7(a). Figure 4-7(b) illustrates the

marginal case, in which k_ = ±1, and the two sinc functions are separated by the

distances equal to the width of their mainlobe. In this case, we approximate their

product to be zero. Fig 4-7(c) shows the case where aliasing happens which results

in cross-talk between neighboring microlenses.

The requirement of no-cross-talk between sub-images can be derived as

A 2 
(4.85)

Afm > A f

A > 2Afm, (486
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Figure 4-18: Illustration of incoherent point spread function of integral imaging sys-

tem.
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where the width of the mainlobe of the sine function is given by 2/A. If Equation

(4.86) is satisfied, then

k_ = 0, and k+/2 only takes integer value. (4.87)

Equation (4.80) is simplified as

iPSF(Xout) = sine (- 2 (4.88)
k=-l siz 1  Z2  fm)

The results of Equation (4.88) show that a point object at xo results in multiple output

image due to the microlens array. The space is being sampled as different locations

at the sensor plane zout. The spatial frequency is sampled by different microlenses.

In addition, several properties of the image can be studied:

(1) Centers of the output images are located at

(zout - kA) = Z2 (o - kA). (4.89)
Z1

which is the same as the result predicted by geometrical optics.

(2) Width of the mainlobe, w, which limits the spatial resolution is

2Az 2  A
W A NA'

NA= A (4.90)
2z 2

(3) Digital refocusing: neglecting the cross-talk, the defocused-iPSF is,

iPSFd(Xout) = E J dxWrect() -kA, - - + .
k=-l AZ2  Af

(4.91)

Equation (4.91) is in the form of a Fractional Fourier Transform (FrFT) of the rect

function, with defocus 4 determining the fractional power. Fast digital refocusing
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can be done using the Fourier Slicing Theorem [82].

4.3.3 Partially coherent imaging

The output intensity with an in-focus object can be derived as

I(Xzot) = dxindzWg, zi"' Azi )
k=-1l 

z

Wrect(i) x - kA, " - xout + kA (4.92)
Azi Az 2  Afm

Equation (4.92) implies that an integral imaging system samples the object WDF.

It takes discrete spatial frequency samples at the microlens plane, kA, and spatial

samples at the sensor plane, (xout - kA)/Az 3 . The result is an object WDF blurred

by a 90 degree rotated WDF of a rect function. The 90 degree rotated WDF of a

rect function is equivalent to the WDF of a sinc function. Similar to the light field

derivation, the integral imaging output image can be written as a convolution between

an object WDFand the WDF of a sinc function.

I(x, u) ~ W 9i (X, u) *x,u Wsinc(f) (X, u), (4.93)

and the discretization in the space domain is realized by integrating all values within

each spatial frequency pixel

(k +1/2)A

I(x, kA) = I(x, u)du. (4.94)
(k-1/2)A

The result of Equation (4.93) is illustrated in Figure 4-19. The WDF of the object,

W,, is space and spatial frequency limited due to the finite NA of the microlens,

depicted as the grey area in the figure. The low-pass filtered object WDF is convolved

with the WDF of a sinc function. Each dashed line enclosed group corresponds to a

microlens. The shifts of the spatial samples are due to the lateral displacement of the

microlenses. The number of spatial samples is determined by the number of pixels

behind a microlens. The number of spatial frequency samples is determined by the
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number of microlenses. The sample arrangement on the sensor plane is illustrated in

the right-hand side of the figure.

4.3.4 Simulation results

Simulations to better illustrate how an integral imaging system measures the object

Wigner distribution are shown in Figure 4-20. In the simulation, three microlenses

with 100 pixels each were used. The left plots are the original WDF of several

example object signals. The middle plots are the measurable WDF if continuous

samples are taken in both space and spatial frequency. The right plots show the

resulting pixellated measurements compared with the original WDF of the object at

the centers of the three microlenses. The three microlenses discretize the measurable

WDF into three spatial frequency groups and 100 spatial samples are taken within

each group, as illustrated in Figure 4-19. These three spatial frequency groups are

rearranged side-by-side into a vector, as shown in Figure 4-19. The lateral shift is

assumed to be compensated by proper pixel addressing.

Figure 4-20(a) shows a point object. Its WDF is a 6-function along the spatial

frequency axis. The measurable WDF is a convolution between the 6-function and

the WDF of the sinc aperture. The resulting WDF is shown in the middle figure. The

measurable WDF is discretized in spatial frequency by the microlenses and in space

by the sensor pixels, which produces the pixellated WDF measurements at the sensor

plane, as shown in the right hand-side plot. Under each microlens, a sinc-shaped

intensity pattern is produced, as derived in Equation (4.45).

Figure 4-20(b) shows a Gaussian signal with its spatial frequency extent larger

than the NA of the microlens. The region outside the second microlens, L2, is mea-

sured by the neighboring microlenses, Li and L3, which produces two peaks shown

in the right figure. The spatial frequency coordinates only take discrete values that

correspond to the centers of the microlenses. As a result, the peaks are the measured

WDF vectors at these spatial frequencies, u = ±0.01, with varying space coordinates.

The results are compared with the true WDF at u = ±0.01. The measurements have

a larger value due to the integration in Equation (4.94), as shown in the right figure.
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Figure 4-19: Sampling in the Wigner space by a integral imaging system. The object
WDF is convolved with the WDF of a sinc function. The convolution process is
depicted as the replicas of the WDF of a sinc function along both the spatial and
spatial frequency axis directions. Three spatial frequency samples are taken, depicted
as three groups enclosed by dashed lines. Each spatial frequency sample has a width
of A/Az 2. 5 spatial samples are taken at each spatial frequency. Each spatial sample
has a width of pixel size, JpiX. Neighboring spatial samples are shifted by A/Azi due
to the physical displacements of different microlenses. The samples are recorded on
a ID sensor. The sample arrangement on the sensor is shown to the right.
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Figure 4-20: Left: the original WDF of example object signals; middle: the mea-
surable WDF, if continuous samples are taken in both space and spatial frequency;
right: the resulting pixellated measurements (solid red line) and it is compared with
the original WDF of the object at u equals to 0, 0.01 and -0.01 in the left plots
(cyan,blue and magenta dashed lines). The three microlenses discretize the measur-
able WDF into three groups. 100 spatial samples are taken within each group. These
three groups are rearranged side-by-side into a vector.
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Figure 4-20(c) shows a Gaussian signal with its space and spatial frequency extent

fit to the space and spatial frequency support of the central microlens, L2.

The right plot shows good match between the measurements and the true value.

Figure 4-20(d) shows a Gaussian signal with spatial extent larger than the spatial

support if the non-overlapping between sub-images condition is achieved. The solid

red line shows the measured WDF if the high spatial contents of the signal are cut

off. The difference between the blue dashed line and the solid red line in the right

plot is the overlapping/cutoff region.

4.4 Conclusion

In this chapter, the generalized radiance function, and the relations between the

radiance and the Wigner distribution are first reviewed. Due to the uncertainty

principle, accurate measurements in both space and spatial frequency domain are

not achievable. An approach by scanning a finite aperture to measure the Wigner

distribution is studied, resulting the measurable WDF. Two systems, the light field

imaging system and the integral imaging system, are studied. Both systems produce

images that can be described as measurable WDFs. In the light field imaging system,

the aperture function is a rect function. In the integral imaging system, the aperture

function is a sinc function.
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Chapter 5

Conclusion

As semiconductor fabrication technology advances, sensors and cameras with increas-

ingly high space-bandwidth product and high temporal sampling rate become avail-

able. In addition, increasing computational power makes implementing complicated

post-processing practical. By incorporating optics, advanced algorithms and digital

processing, computational imaging optimizes the tradeoffs between the optical and

digital world.

Two types of computational imaging systems, digital holographic imaging and

light field imaging, have been studied in this thesis. Analysis has been carried out with

the aid of phase-space optics tools. Both imaging systems record the optical signals in

an unconventional way, and object information can be recovered by special designed

post-processing. In digital holography, the complex amplitude of the object wave

is encoded in an interferogram. Fresnel approximated propagation can be applied

to recover the original field given that the first Born approximation holds [8]. In

light field imaging, the object Wigner distribution is sampled at the sensor plane.

The object intensity can be retrieved by integrating the samples along the (rotated)

spatial frequency axis in the Wigner space.

To conclude this thesis, all the presented topics are summarized and future re-

search directions are presented.
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5.1 Digital holographic imaging

It is seen that insightful understanding of holography can be obtained through phase-

space optics analysis. By tracking Space Bandwidth transfer, the information trans-

formation through a digital holographic imaging system can be traced. The inverse

source problem of holography can be solved in certain cases by posing proper priori

constraints. As is seen in its application to two-phase flows, 3D positions of bubbles

can be computed by well tuned focus metrics applied to the reconstructed images.

Size statistical distribution of the bubbles can also be obtained from the reconstructed

images.

There are several interesting topics for future work:

Digital holography applied to two-phase flows

1) The robustness and adaptability of the developed digital holographic image

processing algorithms should be tested and improved.

2) Statistical validations of the quantitative results produced by this technique

should be verified by comparison with existing simulation and experimental results.

3) With the aid of Graphic Processing Unit (GPU), real-time digital holographic

imaging is feasible. It is useful to implement the two-phase flow imaging experiments

with GPU accelerated algorithms.

Inverse source problem

It is well known that holography only records spectral information on a spherical

cap in the k-sphere space [1121. It is interesting to look into the inverse source

problem with random sources. The prior information plays a key role in finding the

unique solutions of the inverse source problem. The mathematical formulation of the

interplay between the recorded information and prior constraints in inverse problem

is interesting. Better understanding of the inverse source problem might lead to wider

applications of digital holography. Another interesting application for solving inverse

source problem is 3D intensity pattern generation.
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Digital holographic imaging using partially coherent illumination

It is known that partially coherent illumination could result in higher resolution [8].

In particle holograms, partially coherent illumination could reduce cross-talk between

different particles. On the other hand, the intensity measurements on the sensor do

not contain the full information of the mutual intensity of the field, which decreases

the resolution. In practice, the resolution is influenced by a number of other factors.

It is interesting to study how the degree of coherence influences the lateral and axial

resolution of holographic and light field/integral imaging systems.

5.2 Light field imaging

Light field is equivalent to the radiance, and the generalized radiance function equals

to the Wigner distribution. One practical way to sample Wigner distribution is to

take intensity measurements behind an aperture which is moving laterally in the field.

Two types of imaging systems, the light field imaging and the integral imaging, realize

this Wigner sampling scheme. In light field imaging, the aperture function is a rect

function. In integral imaging, the aperture function is a sinc function. Another appli-

cation for both the light field imaging and the integral imaging is digital refocusing,

which provides axial ranging through the object space. In addition, imaging through

partial occlusions is possible by integrating samples from different sub-images.

For future work, several interesting topics are related to the light field imaging

Sampling in the phase space

The light field imaging and integral imaging provide an idea to sample in the phase

space. It is interesting to look into other ways to sample in the phase space by

choosing proper aperture functions.

123



Imaging through partial occlusion

It is interesting to conduct the following successive experiments: (i) Build a prototype

of a light field imaging system and carry out experiments without occlusions . Develop

the image reconstruction algorithm, which takes different projections along different

directions in Wigner space and integrates these projections. (ii) An experimental

system where targets of known shape inserted in murky water of controlled compo-

sition, in terms of particle size and density, apply Bayesian estimation techniques to

establish discrimination capability for known targets of different shapes achieved by

different strategies of reconstruction algorithms.
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