
3D Modeling with Silhouettes

by

Alec Rivers

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

I Ai

A uthor
Department of Electrical Engineering and Computer Science

January 29th, 2010

Certified by..............
Fredo Durand

Associate Professor
Thesis Supervisor

Accepted by I*-.

Terry P. Orlando
Chairman, Department Committee on Graduate Students

ARCHivES

MASSACHUSETTS INSTrTUTE
OF TECHNOLOGY

FEB 2 3 2010
LIBRARIES

2

3D Modeling with Silhouettes

by

Alec Rivers

Submitted to the Department of Electrical Engineering and Computer Science
on January 29th, 2010, in partial fulfillment of the

requirements for the degree of
Masters of Science in Computer Science and Engineering

Abstract

With the increasing power of computers and the spread of dedicated graphics hard-
ware, 3D content has become ubiquitous in every field, from medicine to video games.
However, designing 3D models remains a time-consuming and costly process, so far
limited mainly to professionals who have trained extensively with complex modeling
suites. We present a new sketch-based modeling approach which aims to make this
process simpler and cheaper for professionals, while also making it easy enough for
amateurs to use. In our approach, models are interactively designed by drawing their
2D silhouettes from different views. The core idea of our paper is to restrict the input
to 2D operations, removing the need to explicitly create or position 3D elements.
To create complex shapes, we allow the user to perform CSG operations on silhou-
ettes. We introduce a new algorithm to handle CSG operations that leverages special
properties of silhouette cylinders to convert the CSG problem into one that can be
handled entirely with 2D operations, making implementation much simpler and more
robust. We also introduce a smoothing operator that can generate a smooth shape
that matches a set of input silhouettes. We evaluate our approach by using it to model
a random sampling of man-made objects taken from the words in WordNet, and show
that all of the tested man-made objects are suitable to being modeled quickly and
easily using their silhouettes. We also present a user study that demonstrates that
novice users are able to use our implemented modeler more effictively than Google
SketchUp, a leading commercial 3D modeler also aimed at novice users.

Thesis Supervisor: Fredo Durand
Title: Associate Professor

4

Acknowledgments

I would like to thank Professor Durand, my current adviser, as well as Professor Takeo

Igarashi of the University of Tokyo, who was advising me when I started this project.

I'd like to thank the graphics groups of MIT and the University of Tokyo for their

feedback. I'd like to thank Professor Doug James of Cornell for starting me on the

path to academia. I'd like to thank my family for their encouragement and my cat

Zeke for giving me support.

6

Contents

1 Introduction 11

2 Related Work 13

2.1 Sketch-Based Modelers......... 14

3 User Interface 15

3.1 Constructive Solid Geometry......... 16

3.2 Smoothing.......... 17

3.2.1 2D Smoothing............... 17

3.2.2 Beveling................ 17

4 Algorithms 19

4.1 Calculating the Visual Hull......... 20

4.2 Extension to Arbitrary CSG Trees............... 22

4.3 Smoothing.......... 23

4.3.1 Enforcing Rims..................... 24

4.3.2 Minimizing Variation of Laplacian Magnitude.... 24

5 Results 27

6 User Study 31

7 Conclusions and Future Work 35

8

List of Figures

1-1 Intersecting 2D silhouettes: The two silhouettes on the left were

used to automatically generate the 3D model on the right. Note that

the line drawings are not projections of the 3D model, but rather the

input that generates the model. 11

3-1 Constructive solid geometry: A coffee mug assembled from input

silhouettes using CSG operations........ 15

3-2 Smoothing: Input silhouettes (a) are intersected to find a sharp shape

(b) which is then smoothed while preserving the specified silhouettes

(c) . 1 7

4-1 Finding the visual hull: (a) Two silhouette cylinders defined by a

circle and and L shape are intersected to produce a 3D shape. (b) The

intersections of the cylinders with the middle horizontal plane are used

to generate a semicircular facet............. 20

4-2 CSG operations: the red cube is being subtracted from the L-shape.

(c) Examining the cross-section through the illustrated plane. 21

4-3 Rim calculation: The rims are calculated based on the unsmoothed

shape (a), and then locked in place while smoothing occurs (b). . . . 23

5-1 Complex scene: Every model in this image was designed and com-

posited using our implemented modeler. Rendering was performed

separately using a commercial package. 28

6-1 User study models: Here we show for each object in our user study

the middle-ranked model done using our approach and done using

SketchUp.......... 31

6-2 User study results: Each column represents a different ranking of

models done in the user study, with the highest-quality models at the

top and the lowest-quality at the bottom. Green boxes indicate mod-

els designed with our approach; red boxes are models designed with

SketchU p. 32

Chapter 1

Introduction

We present a new sketch-based modeling approach that facilitates the creation of 3D

models of man-made objects and targets amateur and professional users. Our work

is motivated by observing the workflow of traditional CAD, where design usually

proceeds in two phases. A designer first sketches an object in 2D, often from front,

side, and top views, and then uses these sketches as a reference in constructing a 3D

model a computer. While most of the creative designing occurs in 2D, the process of

translating those 2D sketches into a 3D model is tedious, and often takes the most

time. The 3D position for every element of the model must be specified, and when

referring to sketches, the designer must be constantly translating a desired change in

a 2D view to the sequence of 3D operations that will produce that change.

We propose a new approach that can construct a 3D model directly from 2D draw-

Figure 1-1: Intersecting 2D silhouettes: The two silhouettes on the left were used
to axtomatically generate the 3D model on the right. Note that the line drawings are
not projections of the 3D model, but rather the input that generates the model.

...

ings of an object from different views, eliminating the transfer step. The core idea

that makes our approach tractable, from both a user interface and implementation

perspective, is to focus on object silhouettes.

From the user's point of view, silhouettes are simpler than full-fledged 2D drawings

and alleviate the need for explicit correspondence between views. The user specifies a

shape by drawing its silhouettes in two or more orthographic views, and a 3D shape

that matches those silhouettes is automatically generated and displayed. A user can

therefore focus on iterating the 2D drawings, allowing much faster experimentation

and modeling.

From an algorithmic standpoint, we show that silhouettes dramatically simplify the

computation of one of the most challenging features in CAD-CAM: Boolean opera-

tions, a.k.a. Constructive Solid Geometry (CSG). Building on ideas from the visual

hull and silhouette intersection, we introduce simple algorithms that operate entirely

in 2D but can generate complex 3D CSG objects. We also enable the creation of

smooth shapes that approximate the least-variation-of-curvature surfaces that match

their input silhouettes.

Chapter 2

Related Work

We use a 3-view interface similar to existing CAD modeling systems, e.g. [20, 15, 1].

Unlike these programs, in our approach, the three views are used solely as canvases

for sketching 2D silhouettes. Sketching is the only input tool, and there is no need

to perform any 3D operations, or to specify the exact positions of 3D elements.

To generate the surfaces corresponding to input silhouettes, we build upon the concept

of the visual hull and silhouette intersection [8, 12, 11, 9, 21, 3]. Whereas the visual

hull has previously been used mainly to reconstruct 3D shapes from video or image

capture, we introduce its use as a modeling tool. Furthermore, while the visual

hull involves only intersections, we support the application of arbitrary CSG trees to

cylinders generated by silhouettes. We also allow the user to construct a complex

model out of simpler parts (see Figure 1-1), preventing artifacts from self-occlusion

which can arise when using the visual hull on silhouettes from images.

Our approach shares some similarities with systems developed to convert drafted

wireframe representations of objects to CAD models [17, 22, 2]. These were mainly

offline systems that involved processing an input sketch with no correspondences to

infer the set of all possible implied 3D models. Our approach, by comparison, is

interactive, generates just one 3D model, and maintains explicit associations between

silhouettes in different views. Our approach can also handle a wider range of input

silhouettes, can generate a wider range of geometry, arbitrary topology, and smoothed

shapes.

2.1 Sketch-Based Modelers

2D sketching has recently been leveraged as a powerful tool for 3D modeling [4, 13,

7, 6, 23, 19, 18, 5, 10] and editing [14]. In most previous sketch-based modelers,

the model was represented by a 3D construct (e.g. a mesh or a set of curves), and

2D sketches were used to modify that 3D construct by rotating around the model in

a 3D view and drawing into the scene. By comparison, in our approach, the model

is represented by 2D drawings, and the 3D model is not required as a context for

further 3D sketching. This allows the user to work on persistent 2D views which can

be edited in any order, and avoids the need for constant 3D rotation. The orthographic

views also make it easier to design man-made, axis-aligned objects than with previous

freeform sketch-based modelers.

To achieve smooth shapes, we build on the algorithms presented in FiberMesh, which

introduced way to compute a smooth mesh that connects a set of 3D curves. We

introduce a special form of FiberMesh-style smoothing that smooths the mesh while

maintaining the original silhouettes. We use this method to obtain a smooth shape

that matches the input silhouettes.

Chapter 3

User Interface

In our approach, a 3D model is assembled out of parts. Each part is specified by two

or three silhouettes from front, side, or top views. As the user creates and refines

the silhouettes of a part, the corresponding 3D model is automatically generated and

displayed. For example, if the user sketches a triangle in the front and side views,

and a square in the top, a pyramid will appear in the 3D view. The calculation is

fast enough to provide immediate feedback. Our implemented interface allows the

user to specify silhouettes only from orthographic views, as this is a natural and well-

understood modeling approach; however, our algorithms can work with silhouettes

from any view.

A shape with complex or occluded segments is built up by composing it out of indi-

vidual parts. This matches a natural 2D drawing approach of splitting objects into

parts, and also sidesteps what would otherwise be a major problem of underspec-

Figure 3-1: Constructive solid geometry: A coffee mug assembled from input
silhouettes using CSG operations.

.......

ification. Because shapes match their silhouettes exactly, the connections between

adjacent parts are exact.

Parts need not have silhouttes specified for all views. For views in which no silhouette

is specified, a bounding box is calculated from the other views and drawn in gray in

the missing views. This helps the user position other parts relative to that part in that

view. This bounding box also allows us to calculate correct Z-ordering of silhouettes

in other views.

A part's silhouette in one view imposes certain constraints on the part's silhouettes

in the other views. For example, the height of a part's silhouette in the side view

should match the height of the part's silhouette in the front view. While a part is

selected, these constraints are illustrated as guidelines showing the maximum and

minimum extents of the silhouette in the X and Y directions. These constraints

are not enforced during the drawing process, however; if an artist draws past the

boundaries, the program will allow it, but will cut the polygon internally before

generating the 3D model.

3.1 Constructive Solid Geometry

Parts can be combined using regularized Boolean operations, as described in [16].

In our interface, we allow union and subtraction operations, though our algorithm

can also work with arbitrary CSG trees. This allows for the creation of objects that

cannot be fully specified by just their exterior silhouettes. For example, a coffee cup

has a concavity that can never be seen from any exterior silhouette, but that can be

constructed by subtracting one cylinder from a larger cylinder (see Figure 3-1).

(a) (b) (c)

Figure 3-2: Smoothing: Input silhouettes (a) are intersected to find a sharp shape
(b) which is then smoothed while preserving the specified silhouettes (c)

3.2 Smoothing

Shapes constructed purely from CSG operations on silhouettes will always have sharp

facets. However, we allow the user to toggle for each part whether the desired shape

is sharp or smooth. A smoothed part generates an approximation of the smoothest

possible shape that satisfies the input silhouettes. This is illustrated in Figure 3-2.

Smoothing operations are performed strictly after CSG operations: a smoothed object

cannot be unioned with or subtracted from any other, but an object that is composed

out of CSG operations can be smoothed.

3.2.1 2D Smoothing

Smooth surfaces will by default minimize the variation of curvature in both principal

curvature directions. However, the user can specify that a part should minimize

variation of curvature only around one axis. The primary purpose of this is to allow

the construction of solids of revolution, though actually it supports a slightly more

general class of shapes (e.g., solids of revolotion that have been stretched in one axis).

3.2.2 Beveling

Each part (excluding smoothed parts) can be optionally beveled as a post-processing

step. We use a standard approach to beveling, the algorithm for which is outside the

scope of this thesis.

..

18

Chapter 4

Algorithms

Traditionally, calculating Boolean operations on arbitrary polyhedra involves many

special cases, and an error in one part of the mesh can make it impossible to gen-

erate the correct surface elsewhere. It is notoriously difficult to produce a robust

implementation.

In this chapter, we present a simple and robust algorithm that can caluclate the solid

resulting from an arbitrary CSG tree applied to silhouette cylinders (the orthographic

equivalent of silhouette cones). Our algorithm builds on the work of [12, 11], which

showed that finding the visual hull (the intersection of silhoutte cylinders) could be

done using 2D operations.

In fact, we show that the computation of CSG trees over silhouettes can similarly

be computed using only 2D operations. This includes calculating the visual hull,

which is simply a Boolean intersection of silhouette cylinders, and arbitrary Boolean

operations on visual hulls, which is the application we use the algorithm for in our

modeling approach.

We also introduce an algorithm for smoothing a shape constructed from silhouettes.

This smoothing operation attempts to minimize the variation of Laplacian magnitude,

as in [13], but generates a surface that still has the original input silhouettes.

(a) (b)

Figure 4-1: Finding the visual hull: (a) Two silhouette cylinders defined by a
circle and and L shape are intersected to produce a 3D shape. (b) The intersections
of the cylinders with the middle horizontal plane are used to generate a semicircular
facet.

4.1 Calculating the Visual Hull

The facets of a CSG solid are a subset of the facets of the input shapes. Our algorithm

proceeds by examining each plane on which one or more input facets lie and using 2D

operations on the plane to calculate what part of the plane is a surface of the CSG

solid.

We first process the input silhouette cylinders to find the set of planes on which any

input facets lie. Then, for each plane, we process the intersection of the plane with

each silhouette cylinder separately. For each silhouette cylinder c, we find two 2D

polygons: ic, the intersection of the plane and the cylinder, and se, the union of any

of the cylinder's facets that lie completely on the plane. s, is contained within ic.

In Figure 4-1, we illustrate these terms by showing the intersection a plane with the

shape defined by the intersection of a circle silhouette and an L-shaped silhouette.

The solid lines on the plane indicate the ic for the red and green silhouette cylinders,

while the shaded green rectangle is sgreen.

If a silhouette is not perpendicular to the plane, finding ic is simply a matter of

casting the silhouette onto the plane. This is visible in Figure 4-1 with ired. If they

are perpendicular, as with the green silhouette, we intersect the silhouette with the

2D line that is the plane's projection into image space (the black line in Figure 4-1

(a)) for that silhouette, resulting in a set of line segments which we extrude infinitely

........... - r

(a) (b) (c)

Figure 4-2: CSG operations: the red cube is being subtracted from the L-shape.
(c) Examining the cross-section through the illustrated plane.

on the plane to generate ic.

Finding se is straightforward. The cylinder facets that lie entirely on the plane must

belong to silhouettes perpendicular to the plane. For each such silhouette, the seg-

ments of the silhouette that lie on the plane's projected line are the ones that have

corresponding facets on the plane. These facets are just the rectangles defined by

those segments' infinite extrusions in the silhouette's viewing direction.

Once we have ic and se relative to the plane for all the silhouette cylinders, we can

compute i, and s,, the polygons for the interior and surface of the CSG solid on this

plane. We first show the calculation for the case when the solid is the intersection of

two silhouette cylinders:

i = ii n i2 (4.1)

S = (s1 U s2) n i, (4.2)

In the case of Figure 4-1, performing the above operations yields the grey semicicle,

which is the surface of the intersection (the visual hull) generated by that plane.

Computing the se for all the other planes on which a facet may lie will result in

generating all of the facets of the visual hull. (The smooth circle can be discretized

into an ngon.)

................

4.2 Extension to Arbitrary CSG Trees

We now show how to calculate i, and s, for union, subtraction, and XOR operators.

These operators can then be applied in sequence to process an arbitrary CSG tree.

Union:

ip = il U i 2 (4.3)

S, = (Si - (i 2 - S2)) U (s 2 - (i1 - Si)) (4.4)

Equation 4.4 follows from the intuition that the surface produced by a union of two

shapes is the part of the first surface that does not lie strictly within the second shape,

combined with the part of the second surface that does not lie strictly within the first

shape.

Subtraction:

i, = (ii - i2) U s 2 (4.5)

S, = (Si - (i 2 - S2)) U (s2 0 i1) (4.6)

XOR: XOR can be implemented as a combination of union and subtraction oper-

ators: A e B = (A - B) U (B - A).

One final refinement must be made to handle the case when two surfaces overlap. To

handle this case, we separately record for each cylinder-plane intersection separate

copies of s, corresponding to surface facets with a positive normal relative to the plane

and with a negative normal relative to the plane. The normal can be determined for

the facet of an individual input cylinder easily. For derived CSG solids, we carry out

the above surface operations twice for each plane, once on the positive input surfaces

to calculate s+ and once on the negative surfaces to calculate s-. When adding facets

to the mesh, we can then generate separate facets with positive and negative normals.

Optionally, we can subtract (s+ n s-) from s+ and s- to avoid generating an infinitely

(a) (b)

Figure 4-3: Rim calculation: The rims are calculated based on the unsmoothed
shape (a), and then locked in place while smoothing occurs (b).

thin, double-sided surface.

4.3 Smoothing

In this section we present an algorithm for smoothing a shape defined by silhouettes

that preserves the original input silhouettes. We build on the smoothing algorithm

of [13].

The first step in smoothing is to remesh the visual hull to enable it to be smoothed.

This is done by intersecting each facet with a regular grid of squares projected flat

onto the facet's surface. This results in each facet being split into a collection of

small patches, suitable for smoothing. We take care to ensure that the generated

mesh remains watertight along seams between facets.

Ensuring that a mesh maintains its silhouettes as it smooths is difficult. One way a

mesh could fail to satisfy its silhouettes is if it expands beyond its silhouettes during

smoothing. We preclude this possibility by only allowing each vertex to move in the

direction opposite to its normal. That leaves the more tricky problem of a mesh

shrinking to the point that it no longer satisfies a silhouette.

4.3.1 Enforcing Rims

A single point on a given silhouette defines a line in 3D space that passes through

that point and extends infinitely in the viewing direction of that silhouette. We refer

to this as the point's rim line. A mesh has shrunk too much if there exists a silhouette

point for which the rim line never touches the mesh. To ensure that a mesh continues

to match its silhouette as it is smoothed, we explicitly calculate a point on each rim

line and lock it in place before smoothing. We call these points the rim points, or

collectively the rims, an established term for the positions at which a smooth shape

touches its visual hull.

It may be tempting to propose calculating rims on the fly during smoothing. We

experimented with this approach, but found that it generates noisy placements, and

rims that appear to be good candidates during initial smoothing may not generate

the intuitively expected 3D shape.

Our algorithm for calculating rim points is straightforward. Conceptually, every point

along each silhouette should corresond to a rim point on the visual hull. In practice,

because the mesh is composed of discrete triangles, this is not necessary. We consider

only rim lines that pass through a vertex of the remeshed model. For each of these rim

lines, we calculate its intersection with the unsmoothed model, resulting in a set of

line segments. We then place a rim point at the center of each of these segments. The

mesh must then be re-tesselated to include these points. Although this rim-finding

system may seem simplistic, we have found it to work well in practice (see Figure

4-3).

4.3.2 Minimizing Variation of Laplacian Magnitude

We take the approach to smoothing described in FiberMesh and apply it as a sequence

of simple smoothing iterations. Each iteration updates the positions of the vertices

as follows:

ci = xi Li (4.7)

c'= IriIci (4.8)
jENj

x'=xi + c'ni (4.9)

where xi is the position of vertex i, Ni is the set of neighbor vertices connected to

vertex i, Li is the discrete graph Laplacian of the mesh at vertex i, and ci is the

estimated curvature at vertex i. Rim vertices are locked in place. This update step

is applied repeatedly until the greatest change of position for a vertex in the mesh

is less than some threshold. This converges to an approximation of the least-squares

solution to minimizing the variation of Laplacian magnitude across the mesh.

2D smoothing as described in Section 3.2.1 is achieved by limiting Ni for each vertex

to the subset of connected vertices that lie at the same depth relative to the smoothing

plane.

26

Chapter 5

Results

Using only 2D input reduces by one dimension the challenge of constructing a 3D

model, making the process easier and faster for the user. Furthermore, allowing

CSG operations removes a major limitation of visual hulls, which is that they can-

not express concavities in which both principal curvatures are negative. With CSG

operations, one could theoretically assemble any object with flat facets by unioning

together large numbers of small, easily-specified elements (for example tetrahedra).

In practice, our approach works best with objects that have axis-aligned or smooth

surfaces. Designing objects with rough or complex surface detail requires specifying

many silhouettes or many CSG operations to specify all of the details. Similarly,

complex smooth shapes that cannot be split into parts, for example animals, are also

difficult to model, because without splitting them in to parts there is no good way to

specify all of the surface details.

Man-made objects are often strongly axis-aligned, have simple surfaces, and naturally

decompose into simpler subparts. We believe that this makes them naturally suited

to being modeled using our approach. We furthermore hypothesize that the great

majority of man-made objects can be modeled quickly and accurately with parts

defined solely by their silhouettes.

To test this hypothesis, we decided to model a random sample of man-made objects

Figure 5-1: Complex scene: Every model in this image was designed and compos-
ited using our implemented modeler. Rendering was performed separately using a
commercial package.

28

using our approach. We used WordNet to generate a list of random hyponyms of

the word "artifact", in the meaning of a physical entity created by man, which we

believed would fairly sample all man-made objects. We used Google search to select

an image of the given object, selecting from the first page of either web or image

search results. We then created a 3D model of the object, using the image as a

reference. We proceeded in order down the list, only skipping words that did not

correspond to concrete physical objects (8 of the first 32 words generated).

In Table 5.1 we show the models created for each word. Models were created by two

individuals, neither of whom had significant previous 3D modeling experience. The

average time to create a model was 25.2 minutes, with a standard deviation of 10.6

minutes.

In our approach, individual subparts must be axis-aligned, but they can be rotated

relative to one another to create complex shapes. To illustrate the total level of

complexity possible with our approach, we modeled an office scene, shown in Figure

5-1, entirely using our modeling system. This scene demonstrates that our approach

scales well to complex scenes.

I1
Knobkerrie

Slide

Writing implement

Racetrack

Cantilever bridge

.0 0 o

Odd leg caliper

Water fountain

Bicycle seat

Ax head Press box

4~~

Switch

Spark plug

Skywalk

Keystone

Abaya

Meat counter

0
Chinese puzzle

0

Piano action Mask Hydrogen bomb Doggie bag

Table 5.1: Evaluation: A random sampling of man-made objects modeled using
our approach, shown with the silhouettes that generate them. Dashed silhouettes
represent subtracted shapes. The average time to create a model was 25.2 minutes,
with a standard deviation of 10.6 minutes.

30

Mao jacket Sputnik Bed

IC7

Chapter 6

User Study

Finally, we ran a user study to test our belief that users find modeling in 2D with

silhouettes easier than modeling in a 3D view with 3D operations. We compared

our approach to that of SketchUp [19], which is a 3D modeler also aimed at novice

users, but which uses a single 3D view, in which users model by drawing lines on a

3D surface and extruding shapes.

Our user study involved ten participants, recruited from the general population, all

of whom were familiar with computers but none of whom had previous experience

doing 3D modeling. Each participant spent twenty minutes following a tutorial of our

modeler, and twenty minutes following a tutorial provided by Google for SketchUp,

in randomized order. The participant was then shown a series of three photographs

Oddleg caliper Slide Press box

Our modeler

SketchUp

Figure 6-1: User study models: Here we show for each object in our user study
the middle-ranked model done using our approach and done using SketchUp.

Oddleg caliper Slide Press box

Figure 6-2: User study results: Each column represents a different ranking of
models done in the user study, with the highest-quality models at the top and the
lowest-quality at the bottom. Green boxes indicate models designed with our ap-
proach; red boxes are models designed with SketchUp.

of objects: an oddleg caliper, a slide, and a pressbox. These were selected from the

random list of objects used in the evaluation mentioned above, and were chosen due

to their wide range of scales and complexity. The participant modeled each of these

objects in sequence, spending a maximum of 25 minutes on each, or until the user

felt that the model was complete. The participant switched between using our mod-

eler and SketchUp, never modeling the same object twice (each participant therefore

created a total of three models). Half the participants started with SketchUp, and

half with our modeler. The study lasted approximately two hours for each user. We

show the resulting models in Table 6.1.

In a second phase of our user study, ten people who had not participated in the first

part were were asked to sort rendered images of every model created into a total

ordering by quality. The rendered images were produced in a third-party commercial

renderer and could not be distinguished as to which modeler was used to create them.

In Table ??, we show the results of these rankings, illustrating that models done

with our modeler were consistently ranked higher than models done with SketchUp.

To quantify this, we calculated for each ranking all the pairs of a model done with

our modeler against a model done with SketchUp. We found that on average in 83%

of the pairs the model done with our modeler ranked higher.

However, these statistics are obscured by the fact that users had different levels of

overall skill, so a highly skilled user's models would often outrank models done by

less skilled users, regardless of the relative ease of use of the two approaches. We

therefore calculated what percentage of users had better average rankings with our

modeler than with to SketchUp. We found that every single user in our study had

better averages with our approach. For users that did two models with our approach

and one with SketchUp, both models done with our approach ranked higher than the

SketchUp model in all cases; for users that did one model with our modeler and two

with SketchUp, the one with our modeler ranked higher than both of the models done

with SketchUp in all cases.

Our modeler SketchUp Our modeler

Our modeler

~tK
Table 6.1: User study models: The set of all models generated by our ten users.
Note that five users started with our modeler, while the other five started with
SketchUp.

SketchUp SketchUp

%0

Chapter 7

Conclusions and Future Work

We proposed the use of 2D silhouettes as a modeling tool. We presented an algorithm

for robustly calculating CSG operations on cylinders defined by 2D silhouettes, and

for generating a smooth shape that matches a set of silhouettes.

We believe that the models in Table 5.1 demonstrate that the majority of man-made

objects are amenable to being modeled quickly and easily using our approach. Each

object could be broken down into subparts which were easily specified from their

silhouettes. However, cloth objects suffered in fidelity, as it was hard to capture the

complex deformations of their surfaces from their silhouettes. We can gain additional

control of smoothing by refining a shape using CSG operations prior to smoothing,

which we used to achieve defined cheekbones on the smooth face of the mask.

Aside from smoothing settings, the models are entirely specified by their silhouettes,

which are shown. Therefore, any user who could can those 2D drawings can create

the corresponding 3D models. The simplicity of the 2D drawings illustrates what we

believe to be the power of silhouettes as a modeling tool.

We believe that the results of the user study (Figures 6-1, 6-2 and Table 6.1) show

that novice users were able to design measurably better models using our approach

than using SketchUp. As SketchUp is a leading modeler aimed at new users, we

believe that this is a valid comparison, and demonstrates the effectiveness of our

approach.

The robustness and simplicity of our CSG algorithm makes it attractive for many

applications. In future work, it could be extended to support a larger class of shapes:

in general, we believe the outlined algorithm would work with any solid for which (1)

the planes of all of its facets are known, and (2) it is possible to easily compute its

intersection with a plane, including determining what part of the plane lies on the

solid's surface.

Bibliography

[1] CATIA. Dassualt systemes. 2009.

[2] Zen Chen and Der-Baau Perng. Automatic reconstruction of 3d solid objects

from 2d orthographic views. Pattern Recogn., 21(5):439-449, 1988.

[3] Jean-Sebastien Franco and Edmond Boyer. Exact polyhedral visual hulls. In

Proceedings of the Fourteenth British Machine Vision Conference, pages 329-

338, September 2003. Norwich, UK.

[4] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: a sketching

interface for 3d freeform design. In SIGGRAPH '99: Proceedings of the 26th

annual conference on Computer graphics and interactive techniques, pages 409-

416, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[5] Levent Burak Kara and Kenji Shimada. Sketch-based 3d-shape creation for

industrial styling design. IEEE Comput. Graph. Appl., 27(1):60-71, 2007.

[6] 0. Karpenko, J. F. Hughes, and R. Raskar. Free-form sketching with variational

implicit surfaces. Computer Graphics Forum, 21(3):585-594, 2002.

[7] Olga A. Karpenko and John F. Hughes. Smoothsketch: 3d free-form shapes from

complex sketches. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers, pages

589-598, New York, NY, USA, 2006. ACM.

[8] A. Laurentini. The visual hull concept for silhouette-based image understanding.

IEEE Trans. Pattern Anal. Mach. Intell., 16(2):150-162, 1994.

[9] Svetlana Lazebnik, Yasutaka Furukawa, and Jean Ponce. Projective visual hulls.

Int. J. Comput. Vision, 74(2):137-165, 2007.

[10] M. Masry, D. Kang, and H. Lipson. A freehand sketching interface for progressive

construction of 3d objects. In SIGGRAPH '07. ACM SIGGRAPH 2007 courses,

page 30, New York, NY, USA, 2007. ACM.

[11] Wojciech Matusik, Chris Buehler, and Leonard McMillan. Polyhedral visual

hulls for real-time rendering. In Proceedings of the 12th Eurographics Workshop

on Rendering Techniques, pages 115-126, London, UK, 2001. Springer-Verlag.

[12] Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J. Gortler, and

Leonard McMillan. Image-based visual hulls. In SIGGRAPH '00: Proceedings

of the 27th annual conference on Computer graphics and interactive techniques,

pages 369-374, New York, NY, USA, 2000. ACM Press/Addison-Wesley Pub-

lishing Co.

[13] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Fibermesh: de-

signing freeform surfaces with 3d curves. In SIGGRAPH '07: A CM SIGGRAPH

2007 papers, page 41, New York, NY, USA, 2007. ACM.

[14] Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel Cohen-Or. A sketch-based

interface for detail-preserving mesh editing. ACM Trans. Graph., 24(3):1142-

1147, 2005.

[15] Pro/ENGINEER. Parametri technology corporation. 2009.

[16] A. A. G. Requicha. Mathematical Models of Rigid Solid Objects. Number 22 in

Production Automation Project. 1977.

[17] Hiroshi Sakurai and David C. Gossard. Solid model input through orthographic

views. SIGGRAPH Comput. Graph., 17(3):243-252, 1983.

[18] R. Schmidt, B. Wyvill, M. C. Sousa, and J. A. Jorge. Eurographics workshop

on sketch-based interfaces and modeling (2005) j.a. jorge and t. igarashi (guest

editors) shapeshop: Sketch-based solid modeling with blobtrees.

[19] SketchUp. Google. 2009.

[20] SolidWorks. Dassualt systemes. 2009.

[21] Richard Szeliski. Rapid octree construction from image sequences. CVGIP:

Image Underst., 58(1):23-32, 1993.

[22] W. Wang and Georges G. Grinstein. A survey of 3d solid reconstruction from

2d projection line drawings. Comput. Graph. Forum, 12(2):137-158, 1993.

[23] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. Sketch: an

interface for sketching 3d scenes. In SIGGRAPH '96: Proceedings of the 23rd

annual conference on Computer graphics and interactive techniques, pages 163-

170, New York, NY, USA, 1996. ACM.

