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Abstract

This study looks at the relative importance of the factors which control the concen-
tration of atmospheric carbon dioxide. EOF analyses are run for both the seasonal
and non-seasonal variations for the ten years from 1981 to 1990. The first seasonal
EOF represents the anthropogenic component as well as the breathing of the land
biosphere. Representing 85% of the variation, it has a seasonal variation of almost 6.
The second shows the component of just the land biosphere and has a seasonal varia-
tion of about 4. The third seasonal EOF is thought to portray the effect of upwelling
in the Eastern Pacific on the tropical strip. The first non-seasonal EOF, accounting
for 97% of the total variance, shows an increase of about 11.7 for the period; that of
the Northern Hemisphere is about 1.5 times that of the Southern Hemisphere.

A modification was made to the original anomalies to adjust for the long term
trend in the carbon dioxide data. The rest of the procedure was the same. The first
seasonal EOF, contributing to 65.8% of the variance, appears to represent changes in
the NH terrestrial biosphere. The second seasonal EOF shows the variance between
the long-term trend and the actual data. The third seasonal EOF, with a variance
of 4, again depicts the oceanic variance due to upwelling off the coast of Peru. The
first non-seasonal EOF matches the activity of the El Nifio, supporting the theory
that upwelling increases atmospheric CO2 concentration. It represents over 50% of
the total variation.

Error in this study may stem from unreliable station data due to infrequent sam-
pling, not a long enough time period for the analysis, and not enough stations to
develop a good global result. A stronger, standardized network would greatly en-
hance the outcome of this analysis.

Thesis Supervisor: Reginald Newell
Title: Professor



Acknowledgments

I would like to thank Professor Reginald Newell for all his help and understanding as

my advisor. He always managed to find that one piece of information I was looking

for, and also helped me through some difficult times. To Wenjie Hu, I am forever

indebted for her help with my attempts to program in a language which I knew

nothing about, not to mention teaching me everything she new about eigenvector

analysis. No matter how matter how many times I asked, she patiently explained

everything until I finally understood it.

I also want to thank my parents, Ronald and Arlene Strader, for their help and

support of me in everything, no matter how small, that I have ever tried to do. They

have always been there when I needed them. To my best friends Michelle Bakkila,

John Hansen, Andrea Jensen, and Theresa Hutchings, I just want to say, I don't know

how I could have gotten through and remained sane without you.



List of Figures

B-1 Absortivity at various wavelengths by constituents of the atmosphere

and by the atmosphere as a whole. . . . . . . . . . . . . . . . . . . . 53

B-2 Annual atmospheric CO 2 concentrations during the past 160,000 years. 54

B-3 Atmospheric CO2 derived from the Vostok ice core. . . . . . . . . . . 55

B-4 Atmospheric CO2 derived from the Siple ice core. . . . . . . . . . . . 56

B-5 Monthly atmospheric CO 2 concentrations at Mauna Loa, Hawaii. . . 57

B-6 Location of sites where atmospheric CO2 is sampled. . . . . . . . . . 58

B-7 Seasonal EOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B-8 First Seasonal Eigenvector . . . . . . . . . . . . . . . . . . . . . . . . 60

B-9 Second Seasonal Eigenvector . . . . . . . . . . . . . . . . . . . . . . . 61

B-10 Third Seasonal Eigenvector . . . . . . . . . . . . . . . . . . . . . . . 62

B-11 Northern Hemisphere Seasonal EOF . . . . . . . . . . . . . . . . . . . 63

B-12 Southern Hemisphere Seasonal EOF . . . . . . . . . . . . . . . . . . . 64

B-13 Sea Surface Temperature off the west coast of South America. .... 65

B-14 Non-Seasonal EOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B-15 First Non-Seasonal Eigenvector . . . . . . . . . . . . . . . . . . . . . 67

B-16 Second Non-Seasonal Eigenvector . . . . . . . . . . . . . . . . . . . . 68

B-17 Third Non-Seasonal Eigenvector . . . . . . . . . . . . . . . . . . . . . 69

B-18 Northern Hemisphere Non-Seasonal EOF . . . . . . . . . . . . . . . . 70

B-19 Southern Hemisphere Non-Seasonal EOF . . . . . . . . . . . . . . . . 71

B-20 Seasonal EOF (w/curve-fit) . . . . . . . . . . . . . . . . . . . . . . . 72

B-21 First Seasonal Eigenvector (w/curve-fit) . . . . . . . . . . . . . . . . 73

B-22 Second Seasonal Eigenvector (w/curve-fit) . . . . . . . . . . . . . . . 74



B-23 Third Seasonal Eigenvector (w/curve-fit) . . . . . . . . . . . . . . . . 75

B-24 Northern Hemisphere Seasonal EOF (w/curve-fit) . . . . . . . . . . . 76

B-25 Southern Hemisphere Seasonal EOF (w/curve-fit) . . . . . . . . . . . 77

B-26 Non-Seasonal EOF (w/curve-fit) . . . . . . . . . . . . . . . . . . . . . 78

B-27 First Non-Seasonal Eigenvector (w/curve-fit) . . . . . . . . . . . . . . 79

B-28 Second Non-Seasonal Eigenvector (w/curve-fit) . . . . . . . . . . . . . 80

B-29 Third Non-Seasonal Eigenvector (w/curve-fit) . . . . . . . . . . . . . 81

B-30 Northern Hemisphere Non-Seasonal EOF (w/curve-fit) . . . . . . . . 82

B-31 Southern Hemisphere Non-Seasonal EOF (w/curve-fit) . . . . . . . . 83

B-32 The Effects of El Nifio on Temperature . . . . . . . . . . . . . . . . . 84



List of Tables

A .1 Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.2 Percent Contribution of Eigenvalues . . . . . . . . . . . . . . . . . . . 50

A.3 Percent Contribution of Eigenvalues for Curve-fit EOF . . . . . . . . 51



Chapter 1

Introduction

Carbon dioxide is an important atmospheric gas. It is responsible for absorbing

and re-emitting a portion of the sun's radiation that would otherwise be reflected

or re-emitted by the Earth's surface and lost to space. The fact that much of this

radiation is trapped and emitted back to the surface forces surface temperatures

to be higher than would otherwise be expected. In this respect, carbon dioxide is

similar to atmopheric water vapor, which is the most abundant greenhouse gas in

the atmosphere. Since the beginning of the Industrial Era, fossil fuel combustion has

dramatically increased the amount of C02 in the atmosphere. Scientists have become

concerned over what continued increases in atmospheric C02 may do to the earth's

climate. Models have predicted various outcomes due to enhanced C02 levels. It has

come to the attention of many, that the rate of increase of C02 in the atmosphere

is not as great as calculations had predicted. Each year, only about half of the total

C02 added to the atmosphere actually stays there. Some of the missing portion is

known to be taken out by the oceans, and some by the land biosphere. However,

there is still a large amount that is unaccounted for. Different arguments have been

made in favor of either a terrestrial or oceanic sink, but nothing has been decisively

proven.

This analysis uses an Empirical Orthogonal Function approach to look at the

surface air carbon dioxide data. The EOF method separates as well as yields a

rough map of the different components of variability, such as the land biosphere, the



oceanic contribution, the activity due to the El Ninfo, as well as other phenomena,

in an attempt to distinguish their various roles. Two different sets of EOF analyses

were performed. The original set up an anomaly matix directly from the raw data.

However, upon inspection, it seemed that there were some discontinuities inherent in

that method due to the presence of a general increase of CO2. So, a second technique

was used in which a best-fit curve was set to the raw data, and anomalies were taken

from the difference between the two. This analysis produced much better results.

Both of these methods include runs for the seasonal variation, and the non-seasonal

variation. Such an analysis has never been done on CO2 data before, and the hope

was that it might provide a new angle in the search for the missing CO2 sink. Both

sets of results are analyzed and compared to some of the most recent theories in the

literature.

Questions concerning the reliability of this analysis are discussed, as well as the

accuracy of the raw data. The most important conclusion is that more stations are

needed with better data sampling techniques, so that a longer, more uniform record

can be put together. However, until an extensive network can be maintained and

results can be collected, the quality of such analyses cannot be improved.



Chapter 2

Role of Atmospheric CO2

2.1 Why is Atmospheric Carbon Dioxide Impor-

tant?

Water vapor, carbon dioxide, and ozone are the three atmospheric gases that are

most radiatively active at infrared wavelengths. They are responsible for absorbing

and re-emitting heat that would otherwise be reflected or emitted by the earth's

surface and subsequently lost to space. Thus the presence of these gases forces the

temperature of the earth to be significantly higher than it would be without them [5].

This phenomenon is known as the "Greenhouse Effect."

Water vapor is the most abundant of these gases. The amount of water vapor an

air parcel can hold depends upon its temperature. Warm air is capable of holding

much more water vapor than cold air. Since temperatures are warmest near the earth's

surface, and most evaporation occurs there as well, the majority of the atmosphere's

water vapor is found near the surface. As height increases, the concentration of water

vapor quickly falls off. Therefore, most of the contribution to infrared transfer due

to water vapor is in the troposphere [1].

Ozone is primarily found in a layer in the stratosphere between 15 and 35 km [15],

where it too absorbs in the infrared part of the spectrum. However, most of the focus

on ozone is for its role in blocking out the harmful ultraviolet rays of the sun, and is



another topic of study in itself.

In contrast to these two gases, carbon dioxide is not concentrated in one layer.

It is distributed fairly uniformly throughout the atmosphere, relatively independent

of height or latitude. As can be seen from Figure B-1, carbon dioxide has a wide

absorption band in the 13-18 ptm region. There are also bands around 4.3 and 2.7pm,

as well as several much weaker spikes, but these are not as important, since other

gases such as water vapor are strong absorbers at these wavelengths. However, there

is no other abundant atmospheric gas that has a strong enough band around 15pim

to absorb the large portion of infrared radiation coming from the surface at those

wavelengths. This radiation is then re-emitted both to space and back to the earth's

surface by the carbon dioxide. Because of this absorption and subsequent re-emission

of infrared radiation, the earth's surface is much warmer than it would otherwise be

[7, 5].

As a result, changes in the concentration of atmospheric CO2 have been the cause

for much concern throughout the scientific community. Will a continued increase in

the amount of C02 in the atmosphere cause temperatures to rise? Will that, in turn,

cause glaciers to melt and therefore the oceans to rise? Questions such as these have

instigated the creation of many models in the hopes of predicting the climate changes

that may accompany the anticipated C02 increase.

2.2 History of Atmospheric Carbon Dioxide

The atmospheric C02 record can be traced back to at least 160,000 years. Data

comes from analysis of gas bubbles trapped in ice cores, examination of carbonate

sediments in ocean cores, and the study of carbon isotope changes found in tree rings.

The best information comes from polar ice cores, where air bubbles frozen in time

leave evidence of how the carbon dioxide content of the atmosphere has changed over

the centuries. Figure B-2 shows a pieced together history of atmospheric C02. The

oldest data was obtained from the core taken at Vostok, Antarctica, by the USSR.

This core sample covers the time period from 160,000 to about 1,700 years Before



Present(BP). The ice core recovered at Siple Station in Antarctica provides data from

1734-1983. With this, and measurements taken at Mauna Loa, Hawaii since 1958, a

fairly complete record of atmospheric carbon dioxide can be determined.

The Vostok data is shown more clearly in Figure B-3. 160,000 years ago, the

concentration of atmospheric C02 was about 200ppmv. At about 140,000 BP, this

value rapidly rose to almost 300ppmv. During the next 120,000 years, the amount of

C02 slowly decreased back to about 200ppmv by 20,000BP. Then the concentration

again increased, reaching approximately 275ppmv by 1,700 BP, the most recent part

of that ice core [25].

The Siple data, shown in Figure B-4, seems to indicate that during the period from

1750 to 1800, the atmospheric concentration of carbon dioxide was fairly constant at

about 280ppmv. After this pre-industrial era, the concentration began to rise at an

exponential rate. By 1980, atmospheric C02 had reached the highest levels seen to

date: around 330ppmv, and was still growing [25].

The Mauna Loa data is the longest data set to be measured in real time. That is,

all carbon dioxide measurements were taken directly from the atmosphere. Measure-

ments were started in 1958, at which time the C02 concentration was approximately

315ppmv. The most recent readings shown were taken in 1990, giving an average

concentration of almost 354ppmv [25].

What does all this mean? Trends from 160,000 years ago may be difficult to explain

exactly, but hypotheses can be made based on what we know about climate conditions

at that time. For example, the low values around 30-40,000 years ago coincide with

the Last Glacial Maximum. The following increase matched the glacial-Holocene

transition. Ice ages and other factors, such as volcanic eruptions or variations in the

solar cycle, could alter the amount of C02 the atmosphere holds. Volcanic activity

will inject C02 directly into the atmosphere, while variations in the surface heating

will increase or decrease ocean temperatures, thus reducing or enhancing the amount

of atmospheric C02 that can be absorbed in the sea. What most interests scientists is

the period beginning with the Industrial Era, circa 1800, to the present. In less than

200 years, the concentration has increased by approximately 70ppmv. Prior to this,



the largest increase was about 100ppmv, but over a 10,000 year period [25]! Most of

this recent increase is due to combustion of fossil fuels. Each year, more and more

carbon is added to the atmosphere in this manner. Each year, about 5.4 Gigatons of

carbon are added to the atmosphere by fossil fuel emissions. Another 1.6 Gt comes

from deforestation [16, 21]. That is, as vegetation is burned, more CO2 is released

to the atmosphere. Since there is no evidence that either of these factors will soon

decrease, this rapid growth of atmospheric carbon dioxide has scientists worried over

the future of climates worldwide.

2.3 What Have the Models Predicted for the Fu-

ture?

Because of this concern, many General Circulation Models(GCMs) have been designed

to simulate the future of the earth's climate, given different rates of change for the

various gases in the atmosphere. Not surprisingly, many models have been written

specifically to study how increases in C02 could enhance the greenhouse effect. It

had been estimated that the concentration of atmospheric CO2 would double by the

year 2100, if current trends persisted. With this fact in mind, many GCMs were set

up to predict what effect a doubling of CO 2 would have on temperatures worldwide.

A GCM that considers only the direct effect of increased carbon dioxide may

in fact not show very much change in temperature at all. Most of the radiation

escaping from the earth is emitted in the 8-13pim range, where C02 has no absorbing

bands. The strong absorption band for C02 only covers the region from 13-18p1m.

There is already enough C02 in the atmosphere to absorb and re-emit all the infrared

radiation leaving the earth at wavelengths corresponding to the center of this band

(15pum). So the only way that enhanced C02 levels will directly increase the amount

of radiation being trapped in the atmosphere is by increasing the radiation absorbed

and re-emitted at wavelengths near the edges of this band. Since these bands are

already quite strong, there is only a small growth of infrared absorption caused by

the increased carbon dioxide [1].



If a GCM is to accurately consider the effect that enhanced atmospheric carbon

dioxide levels will have, then certain feedbacks must be included. For example, the

effect that increased CO2 has on the water vapor content must be taken into account.

Since more carbon dioxide will trap more heat, the temperature of the atmosphere

will increase. This will allow more moisture to evaporate, especially near the surface,

where water is plentiful. Since water vapor also acts as a greenhouse gas, as described

previously, the temperature of the atmosphere will continue to increase. Warmer air

is able to hold still more water vapor, so a positive feedback cycle has been created.

The planetary albedo must also be considered. If temperatures increase, then less

snow and ice will be found on the surface of the earth. This decreases the planetary

albedo, allowing more direct radiation to be absorbed at the surface (less reflection),

which subsequently increases the temperature. This is another positive feedback cycle

[16].

There are many factors which, depending on how they are included, may seriously

affect the outcome of a GCM. For instance, cloud feedback can augment or diminish

the effect of carbon dioxide warming. Depending on the height of the cloud, it may

either trap long-wave radiation, thus enhancing the greenhouse effect, or reflect it,

thereby increasing the planetary albedo and reducing the temperature. The effect of

the deep oceans is another consideration. There will be a certain lag time until the

concentration of CO 2 in the oceans equilibrates with that in the atmosphere. De-

pending on what mixing rates are used, which salinities are chosen, the wind stresses

considered, and how it is decided to approximate the physical processes of the ocean,

similar models can output very different results. Perhaps the most difficult factors

to model are unpredictable climate forcing mechanisms. These include volcanoes,

changes in ocean circulation, and other chaotic, unexpected events. Since such events

are impossible to forecast and provide numerous possibilities, only a limited number

of scenarios can be modelled [1].

GCMs are forced to find a compromise between simplicity and realism. In order to

simulate something as realistically as possible, the model must be fairly complicated.

However, if too detailed, it reaches a point where adding parameters or increasing



the number of grid points no longer improves the results. Also, in order to keep the

solutions from being too case-specific, some assumptions and generalizations must be

made. There is a thin line where certain factors are sacrificed and others are included

to keep both the computations reasonable and the results useful.

It is easy to see that these and other factors make modelling very difficult to

do. Different models have predicted temperature increases ranging from two to five

degrees Celcius for a doubling of atmospheric CO 2 . Early estimates were closest

to five degrees, but most recent models predict anywhere from two to four degrees,

depending on the parameters chosen. I won't go into detail here, but the reader can

refer to [16, 1] for more information.

2.4 How Well Have the Models Simulated Ob-

served CO 2 Changes?

In the last few years, it has been observed that the concentration of atmospheric

carbon dioxide is not increasing at the rate that it was expected to. The globally

averaged atmospheric CO2 concentration has increased by about 1.22ppmv per year

since the late 1970s through the 1980s. At this rate, the concentration will increase

by almost 130ppmv during the next century, reaching approximately 480ppmv by the

year 2100 [25]. Though this is a significant increase, it is nowhere near the doubled

amount of approximately 680ppmv that was expected to have accumulated by that

time [1]. Most recently, the increase in atmospheric CO 2 concentration has decreased

[19]. Unfortunately, the raw data was not accessible at the time of this study. So why

has the rate of CO 2 accumulation suddenly slowed down?

In making estimates of future atmospheric C02 concentrations, it had been as-

sumed that as time passed, more of the carbon released to the atmosphere would stay

in the air. During the 1950s, it was estimated that approximately 40-45 percent of

carbon input stayed in the atmosphere. The same was true during the 1960s, at which

time the measured increase of atmospheric C02 concentration was 0.6 to 0.7ppmv per

year. By 1970, this had become almost 1.0ppmv per year [1]. As mentioned above,



however, that rate only increased to 1.22ppmv per year during the 1980s, and held

fairly constant throughout that decade [25]. Most recently the rate of increase has

slowed down. Meanwhile, it is still true that the portion of carbon emissions that

stays in the atmosphere is still about fifty percent.

Models can be made of the amount of carbon input to the atmosphere by fossil fuel

combustion fairly accurately since the amount of oil consumption can easily be mon-

itored. The contribution by deforestation and biomass burning cannot be measured

in such a manner, but can be approximated. Unfortunately, these approximations

have a large error associated with them, making it difficult to determine exact values

for the expected atmospheric CO2 content. However, the models assume a certain

range of values [21], which generally lead to the same questions. Why do only half of

the known carbon emissions actually stay in the atmosphere? Where does the other

portion go? Why has the rate of accumulation begun slowing down? It is known that

some CO2 is taken up by the oceans, and some by the terrestrial biosphere, but how

much by each? But a considerable portion of the missing CO2 is still unaccounted for.

The purpose of this study is to contribute to progress in answering these questions.

Possible solutions will be looked at in more detail in Chapter 6.



Chapter 3

Procedure

My research involved the use of Empirical Orthogonal Functions and eigenvector-

eigenvalue analysis to examine trends in atmospheric carbon dioxide data over a ten

year period. The first section provides a brief outline of the basic EOF procedure.

The second section encompasses all the steps that were necessary to my research.

3.1 Empirical Orthogonal Functions

When dealing with a large data set, the total raw data may be too much information

to digest. Empirical Orthogonal Function analysis, or EOF, provides a means of

simplifying the data to a level that is much easier to study and understand, while

retaining the maximum amount of information. This discussion is a paraphrased

version of the explanation offered by Jane Hsuing in her thesis [8]. Her explanation

was so well written that I could not make any improvements, nor write it any other

way without losing much of the clarity that her paper exuded.

EOF begins with an ixj matrix M, where i describes the number of rows, and j
the number of columns. Physically speaking, i is the number of observations at each

of the j locations. We stipulate that M can be factored into two different matrices,

X and Y:

M = XY. (3.1)



The following conditions are imposed:

XTX = D

yyT = I

(3.2)

(3.3)

where X is an ixj and Y a jxj matrix. D is a diagonal jxj matrix and I is a jxj

identity matrix.

Taking the transpose of each side of (3.1):

MT = (XY)T =YTXTI, (3.4)

then multiplying (3.1) by (3.4):

MTM = YTXTXY, (3.5)

and substituting in for D by equation (3.2) gives:

MTM = YT DY. (3.6)

Finally, through matrix multiplication and use of (3.3):

MTMYT = YTD. (3.7)

But, MTM is simply the correlation matrix, C, as will be discussed in the next

section, so (3.7) becomes:

CYT =YTD. (3.8)

The columns of matrix yT are the eigenvectors of the correlation matrix. The above

equation could also be written as:

YC = DY. (3.9)



where Y contains the eigenvectors arranged in rows. In both cases the diagonal

elements of D define the eigenvalues for C. I prefer the column arrangement, so

equation (3.8) will be used throughout the calculations.

The task of solving for the matrices YT and D is an eigenvector-eigenvalue analysis

problem. By definition, the eigenvectors are orthonormal to one another, and so

act as weighted representations of the data at different sites. Once determined, the

eigenvectors provide a space component as well as a time series that shows how each

vector varies over time. By looking at these instead of the original data, the problem is

much simplified, and different components may be isolated and examined individually.

The different components account for different percentages of the total variation.

This can be shown by the traces of our matrices. The trace of a matrix is the sum of

all its diagonal elements [22]. Using some matrix algebra and equation (3.8), we can

say that:

Tr(C) * Tr(YT) = Tr(YT) * Tr(D) (3.10)

Tr(C) = Tr(D). (3.11)

The sum of the diagonal elements of the correlation matrix is thus equal to the sum

of the eigenvalues in the diagonal matrix. Since by definition, the correlation matrix

is the variance-covariance matrix, then the total variance is also expressed by the sum

of the eigenvalues. Each eigenvalue, in turn, represents the relative importance of its

associated eigenvector in comparison to the other vectors.

The ratio rm:

3
rIm = dm/ E di, m=1,2,3,...j (3.12)

m=1

where dm is the mth eigenvalue, expresses the percent contribution that the mth

eigenvector makes toward the total variance.

The eigenvalues can be reordered from largest to smallest, as long as their associ-

ated eigenvectors are rearranged as well. This way, the largest portion of the variance

is accounted for by the first eigenvector, the second largest by the second, and so on.



The first k eigenvectors will contribute

Erm (3.13)
m=1I

percent of the total variance. We can choose k such that most of the total variance

is explained by those k eigenvectors. This is where EOF becomes quite useful; we

can look at only those k components instead of the complete set of j components and

account for nearly all the variance. Exactly how many eigenvectors are significant

depends on the particular set of data. If the error associated with each eigenvalue is

determined, then the point at which the error bars overlap signifies that the eigen-

vector is in the noise level of the problem, and the results are inconclusive.

3.2 Procedure

EOF analyses were run for both the seasonal and non-seasonal case, as will be de-

scribed below. The seasonal values should show only seasonal variations, with highs

and lows recurring at the same time each year. The non-seasonal should remove

these annual cycles, leaving only long-term fluctuations, such as changes in fossil

fuel consumption, deforestation, and the El Nifio. The data from seventeen differ-

ent World Meteorological Organization/ Background Air Pollution Monitoring Net-

work(WMO/BAPMoN) stations over the ten years from 1981-1990 was used. These

stations and their particular characteristics are listed in Table A.1, while Figure B-6

shows their locations on a map. Observations were made using either an Infrared

Continuous Analyzer, or a flask sampling method. The continuous analyzer runs all

the time, thus giving quite accurate average values for each day. The flask samples are

taken at intervals which vary depending on the station. Some take readings every day,

while others only take several per month. Though there are other stations collecting

CO 2 measurements besides these seventeen, either the observations were unreliable,

too infrequent, or they were not collected over a long enough period of time. The raw

data came from Trends '91, and was verified by the yearly WMO Provisional Daily



Atmospheric Carbon Dioxide Concentrations publications. It was given in the form

of monthly mean surface concentration of atmospheric C02 in ppmv.

The first step is to create an izj matrix A of the form:

a1,1 a 1 ,2  * i * ,j

A = a 2,1 a2,2 - a 2,j

ai,1  ai,2  * ' j

In this case, there is a 120x17 matrix. Each of the 17 columns represents a different

station. The 120 observations for each station are for the 120 months spanning

the ten year period. Average monthly values are given in the form of total ppmv

of atmospheric C02. However, the correlation matrix that we are trying to create

requires a matrix of anomalies, not the actual concentrations. We can determine the

anomalies by making the assumption that each observation can be broken down into

a mean component plus some deviation from that mean:

X = z + X' (3.14)

and therefore the anomaly x':

z1 = X - z. (3.15)

To solve for the seasonal anomalies, one average value for the whole time period is

calculated. Setting this equal to z and implementing equation (3.15), the anomalies

for each month can then be found. For the non-seasonal matrix, twelve different

averages (one for each month of the year) are determined for the ten year period.

Then the non-seasonal anomaly for each month is calculated using the mean value

z for that month. The seasonal anomalies are put into one matrix and the non-

seasonal into another. From this point the anomaly matrices are kept separate, but

the procedure for both is the same.

After the anomaly matrices are set up, they have to be normalized by the standard



deviation. The standard deviation is calculated using the expression [6]:

t

0m = E[an,m2] /(i - 1), m=1,2,3,...,j (3.16)
n=1

where i is the total number of observations per station (in this case 120), and an,m

refers to the corresponding anomaly from the original matrix. The standard deviation

anomalies must be calculated for each of the 17 stations. They can then be used to

solve for the normalized anomalies of the initial matrix:

a',m = an,m/C-m. (3.17)

This new matrix of normalized anomalies a',, which is still of dimension ixj, will

be called M. After this normalized anomaly matrix is obtained, its transpose must

be determined. The transpose of a matrix is defined by:

Mn,m = MTm,n. (3.18)

Multiplying MTM gives the correlation, or variance-covariance matrix. The variance-

covariance matrix is known as such because it contains time-variances for each station

and the space covariance between the stations. It is a symmetric matrix that by

definition contains the variance for all the observations along its diagonal [6], as was

shown previously.

At this point, the eigenvectors and eigenvalues of the correlation matrix can be

determined according to Section 2.1. The actual work is done by computer. Once

the eigenvalues and eigenvectors are obtained, the time series and spacial maps of the

vectors can be created.

The time series describing the variance of the vectors over time is calculated by

multiplying the standard deviation anomaly matrix, M, by the eigenvector matrix,

or:

T = MYT (3.19)



where T is an ixj matrix of the time series. Since the percentage of variation con-

tributed by each eigenvector is known by its associated eigenvalue, only the most

significant vector time series need be plotted. In this case, time series for the first

three eigenvectors are shown, for both the seasonal and non-seasonal cases.

Spacial maps are drawn up by plotting each component of an eigenvector at its

corresponding station. This will show where the biggest variations are coming from

for a particular eigenvector. Remember, the vectors act as weights, so they will show

how much influence each station has for that particular eigenvector. Again, only

the three most significant eigenvectors are mapped for the seasonal and non-seasonal

runs.

Because the anomalies have been divided by the standard deviation, the units

have canceled, and both the eigenvectors and the time series will be non-dimensional

values.

EOF analyses were run for the 17-station matrices. Subsequent runs were made

dividing the stations into two hemispheres. One run looks at the 12 stations in the

Northern Hemisphere, the other at the 5 in the Southern Hemisphere. The results

from the two separate hemispheres can then be compared to the global analysis to

see which hemisphere dominates the overall trends.



Chapter 4

Results and Discussion

4.1 Seasonal EOF

Several runs were performed using the seasonal analysis. The first was for all 17

stations, under the conditions described in the previous chapter. The next run was

for only the 12 stations located in the Northern Hemisphere, and the last was for the

5 stations in the Southern Hemisphere. Trends and patterns could be evaluated, and

the contribution from each hemisphere could then be assessed. The time series for

the first three seasonal EOFs are shown in Figure B-7, while their eigenvectors are

Figures B-8, B-9 and B-10. The time series of the seasonal EOFs for the Northern and

Southern Hemisphere are seen in Figures B-11 and B-12, respectively. The eigenvector

maps for the hemisphere-specific runs have been omitted since there were few stations

for each and the data appeared to be inconclusive. The percent contribution for each

EOF is given in Table A.2.

4.1.1 First Seasonal EOF

The first seasonal eigenvector accounts for almost 85 percent of the seasonal variance.

The time series shows a seasonal peak to trough variance of 5 to 6 (in non-dimensional

units as noted), and an increasing long-term trend of approximately 10.3 over the ten

year period. This would indicate an increase of a little more than 1 per year during



the period from 1981 to 1990. So, the seasonal variation is about five times the

magnitude of the yearly increase, or half that of the ten year trend.

This EOF appears to be the sum of the major components involved in the atmo-

spheric carbon dioxide cycle. The long term increase is a result of the addition of

anthropogenic carbon dioxide, which is primarily due to fossil fuel combustion and

deforestation. The seasonal variation is dominated by the breathing of the land bio-

sphere, with peaks in the spring and lows in the fall.1 The seasonal signal of the

land biosphere may be mixed with a seasonal variation in anthropogenic C02 as well.

During the winter, people living in higher latitudes will burn more oil to heat homes

and businesses, so it seems likely that there will be an increase in anthropogenic C02

emissions during this season. Since the majority of buildings with such heating will

be in the Northern Hemisphere, the seasonal cycle of such a factor would maximize

from December to January, and drop again during the summertime. Of course, the

argument could be made that air conditioning in the summer will keep the signal

fairly consistent year-round. At this point, there are no conclusive studies, and such

a pattern has yet to be evidenced, but it is simply mentioned here as a possible factor

in the time series of this EOF.

The eigenvector map for the first seasonal EOF, Figure B-8, shows a fairly uniform

distribution corresponding to a simultaneous increase over, the whole globe. There

are slightly higher values in the lower and mid-latitudes of the Northern Hemisphere,

suggesting that the contribution is greatest from this region. It is known that much

of the seasonal variation due to the land biosphere comes from the mid-latitudes

of the Northern Hemisphere,2 which could explain the large variances found there.

However, if this were the only factor, then the Northern and Southern Hemispheres

should be of opposite sign, since their seasons are out of phase. Also, the lower latitude

variance can't be explained by the land biosphere, since it has little seasonality at

these latitudes. Therefore, it is most likely that the eigenvectors are reflecting the

long-term anthropogenic effect in the lower and mid-latitudes. Most anthropogenic

'This pattern will be explained in Section 4.1.2, for the case of the second EOF.2 Also to be described in Section 4.1.2.



carbon is known to be injected into the atmosphere at Northern Hemisphere mid-

latitudes, so the fact that there are higher vector values in the northern sub-tropics

as well may be due to wind transport of the airborne C02. Therefore the seasonal

variance due to the combination of anthropogenic and biospheric components is felt

most strongly between 10*N and 400 N. The time series for the hemisphere-specific

runs also show that the NH is dominant (see Figures B-11 and B-12 discussed below).

From the eigenvector map and the time series, it is clear that the Northern Hemi-

sphere dominates the seasonal pattern of the first EOF. This could be due to the fact

that of the 17 stations included in the analysis, 12 were from the Northern Hemi-

sphere, giving a much larger weight to northern trends. In order to determine the

contribution by the separate hemispheres, the time series for each can be examined.

The first seasonal Northern Hemisphere EOF is responsible for almost 92 percent of

the total variance and has a time series that is almost identical to the first global

EOF described above. In Figure B-11, the variance is almost exactly the same, as

well as the maximums and minimums for each cycle. The first EOF for the Southern

Hemisphere, contributing over 98 percent of the variance, is of opposite phase to the

Northern Hemisphere. It shows a maximum in August or September, and a minimum

in March or April. This follows since the terrestrial biosphere will be flourishing in

the Southern Hemisphere from August till March, using up C02, and will be virtually

lifeless the rest of the year. However, changes in anthropogenic C02 could also be

represented by these patterns, making it difficult to separate its contribution from

that of the land biosphere. Either way, the SH variation is very small compared to the

Northern Hemisphere. Its seasonal amplitude is less than 0.5, in contrast to an am-

plitude of 5 in the Northern Hemisphere, making the variation in the NH ten times as

great. So the time series for the hemisphere-specific cases agree with the eigenvector

maps from the global run, showing a smaller variation in the Southern Hemisphere.

Therefore, it makes sense that most of the variance for the first seasonal EOF is due

to fluctuations of the Northern Hemisphere, and the Southern Hemisphere has but a

small contribution in comparison.



4.1.2 Second Seasonal EOF

The second seasonal EOF, which accounts for a little more than 11 percent of the

variance, seems to have extracted the terrestrial biosphere from the curve of the

first EOF. Its time series clearly shows the seasonal breathing of the land biosphere.

Trees and plants require carbon dioxide for the process of photosynthesis. We see

evidence of this in the spring, that as the vegetation begins to flourish, more carbon

dioxide is taken out of the atmosphere. Since the spring bloom occurs rather quickly,

the atmospheric decrease is quite rapid. CO 2 concentrations continue to plummet

throughout the summer months, as long as green plants are able to thrive. By autumn,

however, most of the leaves have fallen off the trees, depriving the atmosphere of this

CO 2 sink. At this point, the now decaying plant material liberates carbon dioxide

back into the atmosphere through the process of respiration. This increase occurs

throughout the winter months, at a rate slower than the spring decrease. It is slower

because the decay process occurs gradually, taking time to release carbon dioxide

back to the atmosphere. All of these features are clearly seen in the second EOF

curve, with a gradual rise always followed by a sharper drop-off.

The Northern Hemisphere dominates this seasonal pattern, with highest atmo-

spheric concentrations of CO 2 in the NH spring, April and May, and the lowest

concentrations occurring in August and September. Indeed, raw data shows that

there is generally greater seasonal variation in the Northern Hemisphere. This is not

surprising since there is more land mass in the Northern Hemisphere, providing a

larger area for plantlife to flourish, and thus a greater terrestrial sink for CO 2 during

the NH summer. The individual hemispheres will be discussed at the end of this

section to determine their respective contributions to this curve.

The second EOF time series shows a smaller peak to trough variation than the

first. The seasonal change is approximately 4 units. This is a large percentage of the

magnitude given by the combined components in the first eigenvector. So, it would

seem that the land biosphere accounts for at least two-thirds of the variability in

the first eigenvector, leaving the anthropogenic component to make up the difference.

What is interesting to note is that this second EOF is actually decreasing over the



ten year period by about 1.6 units. If this component does indeed represent the land

biosphere, then the time series indicates that it's role is decreasing! Arguments con-

cerning deforestation say that the area of land covered by vegetation is decreasing,

particularly in the tropical rainforests, and therefore less CO 2 is being consumed by

the land biosphere. If the rainforests specifically were being reduced, then the sea-

sonal variance would increase, because with less tropical vegetation, the effects of the

more variable, high-latitude forests would become more predominant in the seasonal

cycle. Close examination of the time series shows that the seasonal amplitude is in-

creasing over the ten year period, by a factor of almost 1.2. This could indeed indicate

that some of the tropical rainforests are being destroyed, while simultaneously, less

atmospheric CO 2 is being consumed by the land biosphere.

Figure B-9 shows the second eigenvector with negative values north of 20*N, and

positive values south of that latitude. The fact that the hemispheres are of opposite

sign reflects that their seasonal cycles are out of phase. It seems that the smallest

eigenvectors are found in the tropics, and the largest are around 600 latitude. This

corresponds with the fact that the seasonal variation of the land biosphere is much

less at low latitudes, and highest at upper mid-latitudes. The large change in solar

heating at higher latitudes allows plants and trees to grow during the summer months,

but in the winter the biospheric activity is virtually zero. Near the Equator, the solar

insolation does not change much, and plant activity stays about the same. So, this

second EOF agrees with what we would expect to find if it is indeed the contribution

of the land biosphere.

The EOF time series for the second eigenvector in the Northern Hemisphere again

is very similar to that of the global run. The peaks and troughs occur in phase. The

NH seasonal variance is only a little more than 2, as opposed to 4 in the global analysis,

and its long term trend is a decrease of less than 1 over the ten year period. These

values do not equal those of the total run, but they are augmented by the second

seasonal EOF for the Southern Hemisphere. It is out of phase with the Northern

Hemisphere, increasing from August to March, and decreasing again until August;

the exact opposite of the Northern Hemisphere. The SH peak to trough variation is



difficult to determine because the curve is not even, but it varies between 0.3 and 0.5.

The long term trend is approximately 0.04. So, the Northern Hemisphere appears to

play the dominant role in the terrestrial biosphere, which has been anticipated from

the analysis of the eigenvector maps from the global analysis.

4.1.3 Third Seasonal EOF

The third seasonal EOF time series is out of phase with the first two time series. It

reaches a maximum in October, and a minimum in July. There is a peak to trough

difference of approximately 2. This component of the seasonal variation is about half

the magnitude of the first two EOFs. It is only responsible for about 1.5 percent of

the total seasonal variance. There does not appear to be any overall increase during

the ten year period.

What this time series is showing is not as easily determined as the first two.

Looking at its associated eigenvector map in Figure B-10 may give some idea. All of

the stations are positive except those in the region from 10*S to about 300 N. Since the

map shows a differing variability in this entire tropical strip, it seemed obvious that

something in this region was influencing the atmospheric C02. Upon looking at the

average SST for the tropical strip, it became apparent that the highest temperatures

were found in August and the lowest were seen in February. This seemed to be in

phase with the third EOF curve. As was stated previously, more C02 can be taken

up by colder water. So, it might seem that this is a direct effect of the solubility of

C02 in water. when the temperature is high, the more C02 is forced out of the ocean

and into the atmosphere. However, observations of actual ocean data can be used to

refute this. In the papers by Inoue and Sugimura [10, 11], it was difficult to see a

consistent relationship between sea surface temperature and PC0 2 in the water. So

it would seem that this is not a strong basis on which to make a conclusion.

Instead of looking at the average sea surface temperatures for that entire strip,

consider only the SST for the Eastern Pacific waters off the coast of South America.

The SST in this region is shown in Figure B-13 along with the third EOF time series.

The SST graph shows the monthly anomalies calculated off the yearly average, as



given in [4]. This curve is of opposite phase to the EOF. It reaches a minimum about

one month before the atmospheric C02 concentration peaks, and a maximum three

to four months before the lowest C02 levels are measured. So how is this eigenvector

related to the SST in this narrow region?

It is known that the tropical oceans have a higher concentration of dissolved carbon

dioxide than those at higher latitudes. Therefore, the oceanic pump takes up C02

nearer the poles, and transports it to low latitudes. After it is absorbed, the C02

sinks to the bottom of the ocean where dissolving CaC0 3 supplies additional C02.

The concentration of CO 2 thus increases as the water is transported at great depths

toward the Equator. As it nears the Equator, upwelling occurs. This cold water comes

to the surface in the tropics, and liberates its excess C02 to the atmosphere, where

it will be mixed throughout the atmosphere and can again be taken up in the cold

polar regions. When the strongest upwelling takes place, the ocean temperatures are

at their lowest. From the SST curve, we see that the minimum temperatures occur

in September, when wind stresses cause the upwelling along the coast to increase.

Simultaneously, the largest quantities of carbon dioxide are released. The EOF time

series shows a maximum atmospheric C02 concentration about a month after this

occurs. This one month lag is the time that it would take for the C02 to be released

and build up in the air above the ocean. Once the atmospheric C02 has reached its

maximum, it is mixed rather slowly towards higher latitudes. This process takes some

time, so when we see the SST reaching its highest temperatures, the atmospheric C02

continues to decrease. C02 continues to be dispersed for three to four months after

the SST has peaked. It doesn't begin increasing again until the temperatures have

gone back down, and stronger upwelling again starts pumping greater quantities of

carbon dioxide back into the atmosphere.

The third eigenvector shows that the tropics are subject to the greatest variability

from this upwelling of cold, C0 2-rich water. The fact that the whole tropical strip

from 100S to about 30*N is influenced by this upwelling shows what a strong effect

this phenomenon has. It would appear to completely dominate any other activity in

this region.



The third EOF no longer shows any kind of discernable pattern for the separate

hemisphere analyses, either in its time series or eigenvector map. In both hemispheres,

the third EOF contributes less than one percent of the variance, so it isn't surprising

that the time series are chaotic and appear to be in the noise level.

4.2 Non-seasonal EOF

As with the seasonal analyses, there was one global run done with all 17 stations, using

the procedure described for the non-seasonal analysis. This was followed by one run

for each hemisphere. Again, the global trends can be examined and the contribution

from each hemisphere can be analyzed and compared separately. Figure B-14 shows

the time series for the non-seasonal EOFs. Their corresponding eigenvector maps are

pictured in Figures B-15, B-16, and B-17. The hemispheric time series are given in

Figures B-18 and B-19. Again, the eigenvector maps for the separate hemispheres are

not included, since there are too few stations to draw any reliable conclusions. The

percentages for each component are shown in Table A.2.

The first non-seasonal EOF accounts for about 97 percent of the total non-seasonal

variance. Its time series shows an overall increase of almost 11.7 from 1981 to 1990.

Though this upward trend seems to be very uniform from year to year, there is one

feature of this graph that is a bit unsettling. Every year, in the month of January,

there is a rather large step up from the previous year. Though at first it was thought

to be a problem in the program, it is now believed to be a result of the following:

The mean for each month of the year is determined by averaging all ten monthly

values for that particular month. Then the anomalies are determined by subtracting

that mean from the original reading for that month. The most likely interpretation

for what is happening is that the overall increase is large enough so that each year, the

anomaly increases by a significant step. Since the seasonal variation has been taken

out, the curve for each year is virtually flat, showing little or no slope for that year.

However, when the next year, or in other words the next January, is encountered,

there is a significant increase in the value of the anomaly. This increase is carried



throughout the year, as the other months all show a similar step up from the previous

year's value. This will happen each year, creating a series of steps in the non-seasonal

trend.

The first non-seasonal eigenvector shows a fairly constant distribution of the vari-

ance across the globe. From this, it can be deduced that the long term non-seasonal

increase is distributed uniformly around the earth. However, the analyses for the

separate hemispheres indicate that the Northern Hemisphere has a greater long term

contribution than the Southern Hemisphere. This makes sense since most fossil fuel

combustion occurs in the Northern Hemisphere.

The time series of the second and third non-seasonal eigenvectors, though shown

with the others, have no discernable patterns and follow no known trends. The curves

are chaotic and could not be related to any known surface or atmospheric features.

SST, volcanic eruptions, and the El Nifio were all considered, but no conclusions

could be made. The percent contribution for each is less than one.

The northern and southern non-seasonal analyses showed results similar to those

of the global runs. The first Northern Hemisphere EOF accounts for 96.4 percent

of the total non-seasonal variance, while the first southern EOF is responsible for

98.7 percent of that hemisphere's non-seasonal variance. Both show the same step

function in the transition from one year to the next for the first EOF. The Northern

Hemisphere EOF shows an overall increase of almost 10 units during the ten year

period, while the southern EOF shows an increase of 6.5 for the same time frame.

This follows since most of the carbon being added is a result of fossil fuel combustion

in the NH, so the Southern Hemisphere will not show as great an increase in the long

term trend.

As with the global EOF analysis, the second and third eigenvectors do not seem

to match any known patterns or events and seem to be inconclusive. They all account

for less than one percent each, indicating that their role in the overall non-seasonal

trend is virtually non-existent.



Chapter 5

A Second Analysis

Attention was given in Section 4.2 to the possibility that the technique used for

calculating the anomaly matrices may not be satisfactory. The fact that the non-

seasonal trend went up in steps instead of with a smooth slope led to question whether

the anomaly matrix was continuous. Upon looking at the anomaly curves for the

individual stations, it appeared that many of them increased with this step behavior.

Pulling out the seasonal variation with the method described in Chapter 3 left this

series of jumps, simply by the way the averages and anomalies are defined.1 So it is

inherent in the calculations that the overall trend increases in steps from one year to

the next.

The possible contamination of the seasonal variation was contemplated as well.

The seasonal variation shows a long-term increase, which ideally would be taken out

by the calculations of the original anomaly matrix.2 Also, it is expected that the

eigenvectors for the first seasonal EOF would be of opposite sign since the two hemi-

spheres are out of phase, but in fact, the whole map is positive. The anthropogenic

contribution to that first EOF may be responsible for the lack of sign change, but

the presence of the seasonal cycle with such a strong correlation to the Northern

Hemisphere indicates that the hemispheres should be out of phase, and this should

be reflected in the eigenvectors.

'See the explanation for these discontinuous steps in Section 4.2.
2See Section 3.2.



For these reasons, the original anomaly matrices were re-calculated using a differ-

ent method of eliminating the seasonal and non-seasonal trends. This chapter outlines

the differences in the procedure and the results that were obtained by this method.

5.1 Procedure

The only difference from the original procedure is the way that the anomaly matrices

were calculated. A best-fit curve was determined to approximate the data at each

station. A linear curve-fit was used, since there was no significant increase in accuracy

by non-linear approximations. Next, the difference between the curve and the raw

data was calculated. This gives a new set of values for each station, adjusted for the

long term trend. From this point, the matrices can be calculated for the seasonal

and non-seasonal anomalies, using the same methods described in Chapter 3. This

matrix is simply substituted in place of the raw data. The rest of the EOF analysis

is the same as well.

5.2 Results and Discussion

5.2.1 Seasonal EOF

Again, for the seasonal analysis, three runs were performed: one with all seventeen

stations, and one for each hemisphere. The time series for the first three seasonal

EOFs are shown in Figure B-20, while Figures B-21, B-22, and B-23 are their eigen-

vectors. The Northern Hemisphere and Southern Hemisphere EOFs are shown in

Figures B-24 and B-25; again their eigenvectors are omitted. The percent contribu-

tions for each are tabulated in Table A.3.

First Seasonal EOF

The first seasonal EOF represents about 65.8 percent of the total variance. This is

much lower than the variation determined by the other method. It appears that in

this analysis, the first seasonal EOF reflects the changes in the land biosphere. CO 2



reaches a maximum in the spring, in April or May, and decreases throughout the

summer months as plants consume it from the atmosphere for photosynthesis. The

concentration reaches a minimum in the fall, about August or September, when the

biosphere is on the decline. Like before, the curve drops off sharply as CO 2 is used

up by plants in the spring and summer, but the increase during the winter months is

more gradual, since it takes time for C02 to build up again through respiration.

The seasonal variance for the land biosphere is approximately 10, whereas for

the earlier analysis, the amplitude was only 4. More than 65 percent of the vari-

ation is attributed to the effect of vegetation and possibly some contribution from

anthropogenic cycles. As in the earlier analysis, these factors make up the largest

component.

The Northern Hemisphere again dominates the Southern Hemisphere, which is

evidenced by the fact that the cycle maximizes in the NH spring, and minimizes in

the autumn. The time series of the Northern Hemisphere's first seasonal EOF, Figure

B-24, almost identically matches the global EOF, in both shape and magnitude. The

Southern Hemisphere is out of phase, which is expected since its seasonal cycle is

opposite that of the Northern Hemisphere. The SH variance is not as distinguishable

as that of the NH, nor is it as large; it's seasonal cycle never exceeds 6, and is

inconsistent from one year to the next. These are probably due to the fact that

the SH biosphere is not as extensive, and therefore will not exhibit as much seasonal

variance. It is also important to note that interhemispheric transport will act to bring

some of the anthropogenic C02 into the Southern Hemisphere, thus altering the pure

signal.

The first seasonal eigenvector map has negative values for those locations in the

Southern Hemisphere, and positive for the Northern Hemisphere. This indicates that

the hemispheres are out of phase. That is, as the NH is taking C02 out of the

atmosphere, it is building up in the SH. It appears that the eigenvectors increase

with latitude, particularly in the Northern Hemsisphere. This would ensue from the

fact that there is greater seasonal variation at higher latitudes, because the land

biosphere is practically non-existent during the winter but flourishing during the



summer months. At lower latitudes there is relatively constant plant activity year

round. Thus this eigenvector map, as well as the time series, exhibits the same

patterns as that for the terrestrial biosphere in the previous analysis.

Second Seasonal EOF

The second seasonal EOF is not as obvious as the first. It does not appear to have a

seasonal cycle, but looks chaotic. This may in fact be the residual of the difference be-

tween the line-fit approximation and the actual data. Looking at the eigenvector map

may provide some insight as to where the variation is coming from. The largest values

appear to be centered in the Southern Hemisphere somewhere between 200S and 600S.

Smallest values are at approximately 600N. If the best-fit line used to determine our

anomaly matrix physically approximates the average amount of anthropogenic carbon

being added to the atmosphere over time, then this second eigenvector may represent

the deviation from that value. For instance, it is known that most carbon being added

by fossil fuel combustion is being injected in the Northern Hemisphere between 200

and 600 latitude. So, at any time, the deviation from the anthropogenic input will be

very small in this region, since it is close to the source. However, it takes about 320

days [13] for CO 2 to be distributed globally. So, the variation near the South Pole

will be largest, since it will take longest for changes in carbon injection to reach that

distance. The map reflects all of these characteristics.

If it weren't for the spacial maps created by the eigenvectors, it would be difficult

to differentiate this from the El Nifio signal, which is discussed in Section 5.2.2.

However, because of the distribution of the variance, it is clear that this cannot be

the El Nifio, which would affect the tropical strip, not the higher latitudes.

The results for the Northern and Southern Hemisphere do not appear to be

chaotic. In fact, the time series for the Northern Hemisphere has a cycle almost

identical to that of the third seasonal EOF.a The Southern Hemisphere seems to be

of approximately the same phase as the Northern Hemisphere, but its signal is not

as clear. The amplitudes for both hemispheres are of similar magnitudes; always less

'This cycle will be discussed in the next subsection.



than 4, but highly variable. So it would appear that the variations indicated by the

second hemisphere-specific EOFs match the third global EOF.

Third Seasonal EOF

The third EOF shows a very clear seasonal cycle. It reaches a maximum in November

or December, and a minimum in June or July. This pattern is quite similar to that

of the third EOF for the first analysis. It's amplitude is between 3 and 4 here, but in

the earlier graph, it was only 2. This component now accounts for almost 7 percent of

the variance, whereas before it was only responsible for one percent. So the question

becomes, is this component also evidence of the high CO 2 upwelling and its effect on

tropical strip?

The eigenvector map may help to answer this question. The tropical strip again

appears to be of opposite sign to the rest of the world. All the values in this region

are negative. There is one station in the Southern Hemisphere that is also negative,

but it is an extremely small negative number, and could therefore be attributed to

error. Also, its location is off the tip of South America, so it could be feeling the

effects of the upwelling in the tropics being carried southwards.

The third EOF accounts for about 6.8 percent of the total variance. It has a

seasonal amplitude of about 4 units, which is less than half the amount contributed

by the first EOF. This implies that the terrestrial biosphere contributes much more

to the seasonal variance than this upwelling component does. So, the magnitude of

the seasonal breathing of CO 2 by the land biosphere is more than twice as great.

The third EOFs for the separate hemispheres show no discernable seasonal vari-

ations. Both have magnitudes of less than three, and are responsible for less than

eight percent of the total variation. They would appear to be down in the noise level

of the analysis.

5.2.2 Non-Seasonal EOF

As before, three runs were made. One was for the global analysis with all 17 stations.

The next was for the 12 Northern Hemisphere stations, and finally the 5 in the



Southern Hemisphere. Time series for the first three EOFs are shown in Figure B-

26, and it's associated eigenvectors are seen in Figures B-27, B-28, and B-29. The

Northern and Southern Hemispheric runs are pictured in Figures B-30, and B-31, and

again, only their time series are shown.

The first non-seasonal EOF describes about 52 percent of the total trend. It has a

range of about ten for the entire time period. There are two periods of extremely low

atmospheric carbon dioxide concentration. These coincide with the activity of the El

Niiio! Figure B-32 shows the occurrences of the El Nifio for the relevant time period

[4]. In late 1982-1983, there was a very strong El Nifio. The first non-seasonal EOF

shows a sharp decrease in the amount of atmospheric CO2 at this time. In 1986-1987

another El Niflo occurred, though this time not as strong as before. Simultaneously,

the EOF time series shows another dip, somewhat smaller than the first. The analyses

for the two separate hemispheres show extremely similar curves. The same highs and

lows appear in each. The pattern in the Southern Hemisphere is a bit more marked,

further indicating that it may well be the El Nifio, since the signal would be strongest

in that hemisphere, where it originates. It therefore seems that the El Niflo is directly

tied to the concentration of atmospheric carbon dioxide [14].

Most of the time, there is a strong upwelling in the Eastern Pacific Ocean. This

upwelling brings up colder water that is rich in nutrients as well as CO2. During the

phenomenon known as the El Niio, this upwelling decreases drastically. The water is

warmer, and contains fewer nutrients. The question relative to CO 2 has been, when

is this region contributing to atmospheric CO 2 content, and when is it decreasing it?

While the upwelling is present, the water is rich in CO2 . So excess carbon dioxide

will be added to the atmosphere. However, there are also more nutrients in the water,

allowing for more photosynthesis to occur, which would actually take more CO 2 out

of the air. When the El Nifio occurs, the opposite effect will be created. Therefore,

the argument can go either way as to whether the El Niflo encourages CO 2 uptake

by the ocean, or increases its injection into the atmosphere.

From the time series of the first non-seasonal EOF and the El Nifio, it seems clear

that the presence of the El Nifio acts to diminish the source of carbon dioxide to the



atmosphere. This means that when the upwelling occurs, CO 2 is being added to the

atmosphere. So according to this analysis, the effect of the excess CO 2 outweighs

that of the enhanced nutrient supply in the upwelling water!

The associated eigenvector map partially supports this theory. The two stations

in the middle Pacific have higher values than the rest of the globe. There are also

greater values with increasing latitude in the Southern Hemisphere. This is probably

due to the fact that since the El Nifio emanates from the Southern Hemisphere, it

will be felt the strongest in this hemisphere. Also, since the effect of the upwelling

in this region has already been discussed, it makes sense that the two stations in

the tropical Pacific will show a great variability in response to this effect. Indeed,

we see this reflected in the eigenvectors. Unfortunately, there are no stations in the

Eastern Pacific near the South American coast to make this hypothesis concrete. If

data were collected at the Cosmos/Huancayo station in Peru, this theory could either

be decidedly verified or dismissed4 .

The time series for the individual hemisphere analyses show a similar curve for

the first EOF. The magnitudes and variations in both curves are extremely similar

to that of the global example.

It was questioned as to whether this EOF really was following the trend of the

El Nifio, or if it was actually similar to the second EOF of the seasonal analysis, and

was a reflection of the anthropogenic input. Both graphs seem to be quite similar.

However, it does not seem likely that it is the anthropogenic input, because the

weighting of the eigenvectors would not fit with that theory.

The other EOF time series for the non-seasonal case appear to be lost in the noise

level of this analysis. There is no noticeable trend in any of these other graphs, for

either the global or hemisphere-specific cases.

'Data was collected sporadically at Cosmos/Huancayo for 1984 and 1985 [17].



Chapter 6

The Missing Sink

There have been numerous explanations offered for the 'missing sink' of carbon diox-

ide. Many different models have been expounded revolving around atmosphere-ocean

interaction, only to be discredited by later models. The following chapter is a brief

look at some of the more recent ideas in the search for the carbon dioxide sink.

Prior to 1990, it was popularly believed that the ocean was somehow responsible

for the disappearance of the excess CO2. Box diffusion models used Carbon-14 added

to the air by nuclear testing in the 1950s as a tracer for carbon transport in the

ocean. Such models predicted an oceanic uptake of approximately 2 Gigatons of

carbon per year. Three dimensional ocean circulation models predicted similar values

[27]. Then in 1990, a paper by Pieter Tans and associates presented a new theory

[23]. It claimed that Carbon-14 and other tracers were not an accurate measure

of carbon dioxide in the ocean. Instead, the partial pressures of CO 2 in the ocean

surface waters and the concentrations of atmospheric CO 2 were used in the model

calculations. The difference SpCO 2 represents the potential for CO 2 to move across

the air-sea boundary. Using this premise, it was determined that there were limits

on the amount of CO 2 the northern oceans could absorb. It was also decided, upon

examination of the meridional gradient, that atmospheric transport of CO 2 from the

Northern Hemisphere to the Southern Hemisphere is limited. The final result was

that the ocean is only responsible for taking up 0.3-0.8 Gt of carbon per year, leaving

between 1.5 and 2.0 Gt unaccounted for. A hypothesis was made that there must be



a terrestrial sink at temperate latitudes to properly balance the north-south gradient

of atmospheric CO 2. Before this time, a large terrestrial sink hadn't really been

considered in much detail.

In 1992, Broecker and Peng published a paper showing that the C02 sink might

not necessarily have to be some large value attributed to high latitude forests, but

may in fact be accounted for by a natural north to south transport of C02 dissolved in

the oceans [3]. This is due to the greater PO 4 content of Antarctic waters, which leads

to enhanced levels of respiration C02. Therefore, the surface waters in the Northern

Hemisphere are able to absorb more atmospheric C02 than those of the Southern

Hemisphere, thus setting up a north to south oceanic pump. This is countered by

a south to north atmospheric transport. However, since the Industrial Revolution,

these motions have reversed. The greater concentration of atmospheric C02 in the

Northern Hemisphere has caused the atmospheric motion to carry C02 from north

to south, in turn forcing the ocean pump to go the opposite direction. Broecker and

Peng argue that the northern mid-latitude terrestrial sink need not be as large as

Tans had projected, since the normal tendency for north to south oceanic transport

reduces the gradient, but that a smaller land-based sink may still be necessary to

balance the C02 budget.

Simultaneously, a paper was published by Sarmiento and Sundquist [20] chal-

lenging some of the assumptions Tans' paper made. They pointed out the skin-

temperature effect, that is that surface water temperature is usually a bit colder than

that of the rest of the ocean. It was estimated that this would increase the C02 flux

into the ocean by 0.14-0.54 Gt of carbon per year. Another effect that they discuss

is the oxidation of carbon monoxide given off by the combustion of fossil fuels, to

carbon dioxide. It is thought that this contribution actually accounts for the loss

of 0.25-0.29 Gt of carbon per year from the Northern to Southern Hemisphere. Yet

another factor that they consider significant is the flux of C02 into the ocean by

rivers and streams. Their conclusion is that if all of these are considered, then Tans'

calculations will be in much closer agreement with the general circulation models.

Sarmiento and Sundquist agree that there will still be a need for a terrestrial sink,



but that it will be of much smaller magnitude than Tans originally claimed.

Since then, there have been arguments for the presence of a northern mid-latitude

terrestrial sink, as well as arguments against it. Some studies have been done on

land where logging has been conducted. However, they only took into account the

consumption of atmospheric CO 2 by regrowth, and not its addition by the decay

of dead plantlife. Another analysis examined how climate change and CO 2 have

interacted in recent years by looking at net primary production and soil respiration

in response to temperature and rainfall. It concluded that there could indeed be a

carbon sink of almost 25 Gigatons from 1950-1984. Yet another study utilizing forest

surveys declares that there is no way that the northern mid-latitudes could provide

such a sink [24].

Unfortunately, all of these models are but approximations and simplifications of

atmospheric, oceanic, and terrestrial processes. No one can say for sure which models

are right, or even which assumptions are the best. For so long many agreed that the

oceans were the missing sink, but now attention has turned to the northern temperate

land regions. Even with all of these different studies and analyses, the basic question

of where the missing sink lies is still unanswered.



Chapter 7

Conclusion

7.1 Summary of Results

Though this study was broken into two parts, it would seem that many of the con-

clusions from both techniques actually fit together quite well. For easier discussion,

the first set of runs will be referred to as Ti, and the second set, using the best-fit

curve, will be T2.

The non-seasonal trend for T1 emphasizes the fact that the concentration of CO 2

is steadily increasing with time. It also makes clear the fact that atmospheric CO 2

content is growing smoothly, with no jumps or skips in the record, but simply a steady

increase.

The first eigenvector of T1 sets up an excellent time series outlining the overall

effect of the various factors in the atmospheric carbon dioxide cycle. It's largest

components are believed to be the seasonal breathing of the land biosphere, and

the long-term trend of the anthropogenic carbon input to the atmosphere. Other

components may be included as well, but they are hidden beneath these larger signals.

The second seasonal EOF for T1 is very similar to the first seasonal EOF of

T2. They both very clearly show the seasonal variation of the terrestrial biosphere.

The maximum atmospheric CO2 concentration is measured in April or May, and the

minimum is seen in August. Therefore, the seasonal contribution of the land biosphere

is completely dominated by the Northern Hemisphere. This makes sense because most



of the land mass is located there, providing a greater area for plants to grow, and thus

for seasonal variation to occur. One of the most interesting results of the study was

found in T1: the overall trend for the land biosphere is actually decreasing with time,

while it's seasonal amplitude is actually growing. These findings support the idea

that deforestation in the tropics is having a significant effect on the carbon dioxide

cycle. If tropical rainforests are decreasing, then the total contribution of the land

biosphere will be decreasing. Meanwhile, the seasonal variability will increase, since

the more variable high-latitude forests will gain influence as the rainforests disappear.

The results do indeed show both of theses features.

The third seasonal EOFs for both T1 and T2 show the contribution of the cold

water upwelling off the coast of Peru, in the Eastern Pacific. It would appear that

this relatively small area of upwelling dominates the entire tropical strip from about

100S to 30*N. Despite what stresses the rest of that strip may have, the presence of

upwelling is what controls the whole area. The upwelling brings up large quantities

of C0 2-rich water from great depths. This C02 is then rapidly released into the

atmosphere in that region, affecting the entire tropical strip. This result also supports

the findings of the non-seasonal EOF for T2.

The first non-seasonal trend of this EOF seems to follow the pattern of the El Nifio

events. When the El Nifio brings warmer water into the region, the concentration

of atmospheric C02 decreases. During periods of upwelling, C02 concentration is

significantly higher. This means that the effects of increased levels of C02 are winning

out over the enhanced nutrient concentrations in the deep water. The nutrients would

cause photosynthesis to increase, and use up atmospheric C02, but the excess C02

dissolved in the water would work to increase atmospheric C02 levels. So there are

two forces at work in opposite directions, both due to this upwelling cold water.

According to the results of both this and the third seasonal eigenvectors, the carbon

dioxide effect is strongest, and the upwelling directly increases atmospheric C02.

The second seasonal EOF for T2 is believed to show the deviation from the av-

erage anthropogenic component that was estimated by the best-fit curve. How this

exactly fits into the seasonal cycle is not understood. The smallest eigenvectors are



centered on about 600N, and this has been attributed to the location of the source for

anthropogenic CO2. However, the largest eigenvectors are centered on 40*S. It is not

known what process may be causing this distribution of the variance. It is possible

that this effect may have something to do with the "Roaring 40s" of the Southern

Hemisphere. This will have to be a question that is left for future studies, perhaps

to be solved only once there is increased atmospheric CO2 data available.

7.2 Recommendations for Improvement

The results of this study should be viewed with caution for several reasons. First

of all, the data from the monitoring stations may not be extremely accurate. Some

stations take readings daily, while others only take three or four per month. This

may not lead to the best representation of data for such a station. Also, periodic

calibrations are made to the raw data. Unfortunately, it often takes several years

for such adjustments to be published. The data in this analysis was reviewed in an

attempt to pull out any of the stations with suspicious results, but this led to the

problem of having relatively few stations for a fairly short time period. The observing

stations are also not evenly distributed, so more weight is given to activity in certain

areas. Compromises had to be made to get a reasonable number of stations with

measurements spanning a long enough time to obtain results that actually showed a

trend, and still reflected something real.

Ideally, this analysis should be done with at least fifty stations scattered evenly

around the globe, with continuous measurements and frequent calibrations made at

each one. This way, a much more accurate history of CO 2 changes and trends could

be determined. Unfortunately, it would take a lot of time, not only for such stations

to be set up and manned, but until a record of significant length could be collected

and studied.



7.3 Final Comments

So has the case of the missing sink been solved? It would seem that though this study

might provide more clues as to the possible sources and sinks of carbon dioxide, it

hasn't really answered that burning question. The long-term contribution from the

land biosphere appears to be decreasing. If the theory of a large terrestrial sink in

the Northern Hemisphere temperate zones is true, then its depletion could be the

cause for many problems in the future. Though the contribution of the ocean, as

described by the upwelling component, is not significantly changing size, it is fairly

small in relation to the land biosphere. Neither the oceanic contribution nor the land

biosphere component meet the expectations that we would have for them if they were

a large C02 sink. So the carbon dioxide sink still eludes us. But the solution is out

there, and with continued studies, it will hopefully be found in the near future.
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Table A.1: Stations

STATION LOCATION LAT LONG ALT ENVIRONMENT
Alert NW Canada 82 31'N 62 18'W 210 m Tundra
Amsterdam Island Indian Ocean 37 47'S 77 31'E 65 m Island Seashore Cliff
Amundsen-Scott South Pole 89 59'S 24 48'W 2810 m Snow-covered Plateau
Ascension Island South Atlantic 07 55'S 14 25'W 54 m Island Seashore
Cape Kumukahi Hawaii, USA 19 31'N 154 49'W 3 m Island Seashore
Cape Matatula Samoa 14 15'S 170 34'W 42 m Is Rocky Promontory
Cold Bay Alaska, USA 55 12'N 162 43'W 11 m Treeless Peninsula
Key Biscayne Florida, USA 24 40'N 80 12'W 3 m Coastal Island Seashore
Mariana Islands Guam 13 26'N 144 47'E 2 m Island Seashore
Mauna Loa Hawaii, USA 19 32'N 155 35'W 3397 m Island Tundra
Mould Bay NW Canada 76 14'N 119 20'W 57.6 m Island Tundra
Niwot Ridge Colorado, USA 40 03'N 105 38'W 3749 m Alpine Mountain
Ocean Station M North Atlantic 66 00'N 02 00'E 6 m Open Ocean
Palmer Station Antarctica 64 55'S 64 00'W 33 m Barren Island Seashore
Point Barrow Alaska, USA 71 19'N 156 36'W 11 m Arctic Coast
St Croix US Virgin Islands 17 45'N 64 45'W 3 m Island Seashore
Terceira Island Azores 38 45'N 27 05'W 30 m Island Seashore



Table A.2: Percent
Seasonal

EOF 1
EOF 2
EOF 3

NH Seasonal

EOF 1
EOF 2
EOF 3
SH Seasonal

EOF 1
EOF 2
EOF 3
Non-Seasonal

EOF 1
EOF 2
EOF 3
NH Non-Seaso

EOF 1
EOF 2
EOF 3
SH Non-Season

EOF 1
EOF 2
EOF 3

Contribution of Eigenvalues
Percentage Error

84.9 11.0
11.3 1.5
1.5 0.2

Percentage Error

91.6 11.8
5.5 0.7
0.8 0.1

Percentage Error

98.3 12.7
0.5 .06
0.3 .03
Percentage Error

97.0 12.5
0.7 .09
0.5 .06

nal Percentage Error

96.4 12.4
0.9 0.1
0.6 .08

al Percentage Error

98.7 12.7
0.3 .03
0.1 .01



Table A.3: Percent Contribution of Eigenvalues for Curve-fit EOF

Seasonal

EOF 1
EOF 2
EOF 3

I~IIZ
NH Seasonal

EOF 1
EOF 2
EOF 3

Percentage Error

65.8 8.5
17.3 2.23
6.8 0.9
Percentage Error

85.2 11.0
8.8 1.1
1.5 0.2

SH Seasonal Percentage Error

EOF 1 65.0 8.4
EOF 2 19.0 2.5
EOF 3 7.4 1.0

Non-Seasonal Percentage Error

EOF 1 52.2 6.7
EOF 2 10.6 1.4
EOF 3 6.9 0.9

NH Non-Seasonal Percentage Error

EOF 1 50.0 6.4
EOF 2 10.9 1.4
EOF 3 8.5 1.1

SH Non-Seasonal Percentage Error

EOF 1 74.6 9.6
EOF 2 11.2 1.4
EOF 3 6.1 0.8

Ill
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Figure B-1: Schematic description of the spectrum. The black body curves (a) after Rodgers (1974)) are
drawn so that the area under each curve is proportional to energy and the two curves are normalized
so that they enclose equal areas. The various divisions of the spectrum used in this report and the
absorption bands which are included in the calculations are shown in (b). [7]



a Vostok ice core

A Siple ice core

Mauna Loa (modern)
A/ i 0. 0 * *

*

a 0 13

1a 
Sa

Omu
S at a

In 0

Ra

104 10 102 10' 104

Years BP

Figure B-2: Annual atmospheric CO2 concentrations during the past 160,000 years. [25]

r

400

350

300

250

200

150

10*3



300-

250-

200-

150

160 120 0

Age of Entrapped Air (10 years before present)

Figure B-3: Atmospheric C02 derived from the Vostok ice core. [25 3

E
0.

C

0

8
0

9 1



. 350 -

330-

E
C.

a, 310-
C

C
2.-*

8 290 0 ..*

o * *
o 270-

2501

1700 1800 1900 2000

.Year --

Figure B-4: Atmospheric C02 derived from the Siple ice core. [25]



..E
0.
Q.
CLCL
0

C

C
0

0

380-

360-

340-

320-

300-

1955
I I I I* r

1965 1975 1985 1995

Year

Figure B-5: Monthly atmospheric C02 concentrations at Mauna Loa, Hawaii. (25

.



ATMOrSIHERIc CO 2

80' NALERT

KOTELNY ISLAND M0UL. SA

P.DARROW
OCCAI STATION RIBERY

7.u.

60 N BERING CAPE ST.

015 JAMES X

SHEMYA COLD BAY OCEAN STATION K PUSZTA
ISLAND CAPE ON I E CIMONE

40aN RYORI MEARES e oa SABLE ISLAND * -

SAND AZORES ,
ISLAND* KESCAYNE BERMUDA IZANA

20 N - MAUNA LOA O, I ST. CRO -X

0 GUAM K 0~ 'RAGGED-/%KUMUKAHI POIhT

0 - * CHRISTMAS
ISLAND 3 *EYCHELLES

- ASCENSION

200 S - SAuOA IStAND -

AMSTE ROAM

40 S - CAPE GRIM NEANW ISLAD

ZEALAND

60 S PALMER

STATION

HALLE Y SAY

SOUTH POLE

80 S

100 E 140' E 180* W 140' W 100* W 60' Y/ 20 W 20 E 60 E 100* E

Figure B-6: Location of sites where atmospheric C02 is sampled.



First Seasonal EOF

- -II

'1981. 1982 1983 1984 1985 1986 1987 1988 1989 1990

Second Seasonal EOF

Third Seasonal EOF

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

Figure B-7: Seasonal EOF

10

0

-10



First Seasonal Eigenvector
30 01/

60 N -

40 N ---

20 N1--

0

20S-

40 S

60 S

0080 5
100 E



Second Seasonal Eigenvector

60 H -

4040 N-- ~i

20N -

00

20 S

60 S --

800 S-
10 ' E -

0
-*a3

0

4.)
Cn

0

4/)

U)

100, f



Third Seasonal Eigenvector,
80' H

60

40 N

20 N

0

20 s

40 S

60 S

080 S
* 0'E '

'43
0

to

0

b)

1000 [



First Seasonal EOF

1981. 1982 *1983 1984 1985 1986 1987 1988 1989 1990

Second Seasonal EOF

Third Seasonal EOF

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
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Figure B-12: Southern Hemisphere Seasonal EOF
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SST off the coast of South America and the Third EOF Time Series
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Figure B-13: Sea Surface Temperature off the west coast of South America [4]
and Third Seasonal EOF
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Figure B-18: Northern Hemisphere Non-Seasonal EOF
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Figure B-19: Southern Hemisphere Non-Seasonal EOF
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Figure B-20: Seasonal EOF (w/curve-fit)
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Figure B-24: Northern Hemisphere Seasonal EOF (w/curve-fit)
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Figure B-25: Southern Hemisphere Seasonal EOF (w/curve-fit)
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Figure B-26: Non-Seasonal EOF (w/curve-fit)
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Figure B-30: Northern Hemisphere Non-Seasonal EOF (w/curve-fit)
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