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In this article, the size effect on the dynamic behavior of a simply supported 

multi-cracked microbeam is studied based on Modified Couple Stress 

Theory (MCST).  At first, based on MCST, the equivalent torsional stiffness 

spring for every open edge crack at its location is calculated; in this regard, 

the Stress Intensity Factor (SIF) is also considered for all open edge cracks. 

Hamilton’s principle has been used in order to achieve the governing 

equations of motion of the system and associated boundary conditions are 

derived based on MCST. Then the natural frequencies of multi-cracked 

microbeam are analytically determined. After that, the Numerical solutions 

have been presented for the microbeam with two open edge cracks. Finally, 

the variation of the first three natural frequencies of the system is 

investigated versus different values of the depth and the location of two 

cracks and the material length scale parameter. The obtained results express 

that the natural frequencies of the system increase by increasing the material 

length scale parameter and decrease by moving away from the simply 

supported of the beam and node points, in addition to increasing the number 

of cracks and cracks depth. 
© 2018 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

Nowadays, because of the development of new technologies, approaches to design and research 

about small size structures have been increased more than ever. Micro and nanostructures such 

as microbeams are one of the most common important components, which are used in the micro-
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electromechanical systems (MEMS) such as microswitches. [1, 2]There are several studies on 

microbeams using the size-dependent theories. Kong et al.[3] showed the size effect of 

microbeam in the natural frequency of the system. They used Euler-Bernoulli model for the 

beam and analytically solved the dynamical problem of the system using Modified Couple Stress 

Theory (MCST). Park and Gao[4]  also used MCST with Euler-Bernoulli model for bending of a 

cantilever beam. Dado and Abuzeid [5] investigated about coupled transverse and axial vibratory 

behavior of cracked beam with a concentrated mass and rotary inertia at end of the beam. Al-

Basyouni et al. [6]studied vibration analysis of Functionally Graded (FG) microbeams based on 

MCST. Li et al.[7] investigated on bending, buckling and vibration analysis of axially FG a 

Euler-Bernoulli microbeam based on the nonlocal strain gradient theory. In other words, the 

scale parameter changes during the length of the beam. They derived the equations of motion 

from Hamilton’s principle and for solving the equations used a Generalized Differential 

Quadrature Method (GDQM). The influences of power-law variation and size-dependent 

parameters have also been investigated on the bending, buckling and vibration behaviors of 

axially FG beams. Shafiei et al. [8]obtained equations for transverse vibration of rotary tapered 

microbeam. Zhang and Wang[9]  showed exact controllability and observability of a microbeam 

with the boundary-bending moment. Fang et al. [10]presented governing equations of three-

dimensional free vibration of rotating FG microbeams based on MCST using Euler-Bernoulli 

beam theory. Babaei et al.[11] also investigated on free vibration analysis of an FG microbeam 

based on MCST using Euler-Bernoulli model and considering thermal effect. Recently, Taati and 

Sina [12] utilized Multi-objective optimization of distribution parameter of FGM, thickness and 

aspect ratio in a microbeam embedded in an elastic medium in order to minimize and maximum 

deflection, maximum stress and mass and maximizing values of natural frequency and critical 

buckling load.  

On the other hand, the problem of the damage of structures cannot be ignored. One of the most 

important faults in a structure is the existence of cracks, especially in small structures. Often, in 

research, crack is modeled with a torsional spring and the effect of crack existence is investigated 

on the natural frequency of vibrational systems and component’s life. Some research has 

examined the impact of just one crack in the system  . Akbarzadeh and Shariati [13] presented 

analytical solutions of a critical buckling load and the post-buckling response for an open edge 

cracked microbeam with simply-supported boundary conditions based on MCST with Euler-

Bernoulli’s model. They also studied a cracked Timoshenko Nano-beam  and considered coupled 

effects between the axial force and bending moment by two equivalent springs.[14] Alsabbagh et 

al.  [15]introduced simplified formula for the stress correction factor in terms of the crack depth 

to the beam height ratio. Panigrahi and Pohit [16] researched about the effect of a crack on the 

nonlinear vibration of rotating FGM cantilever beam having large motion based on the 

Timoshenko’s beam model. Soltanpour et al. [17] investigated equations of free transverse 

vibration of an FG cracked nano-beam resting on elastic medium with Timoshenko’s model with 

simply supported-simply supported (SS) and Clamped-Clamped (CC) boundary conditions. 

Akbas[18] presented analytical and numerical solutions for free vibration of a cracked FG 

cantilever microbeam based on MCST with Euler-Bernoulli’s model. Huyen and Khiem[19]  

investigated frequency analysis of a cracked FG cantilever beam. Behera et al.[20]  investigated 

the influence of crack incline on first three mode shapes of a cantilever beam. Moreover, they 

verified numerical solutions with experimental test results. Rahi [21] investigated the lateral 

vibration of a cracked simply-supported microbeam based on MCST. He presented four models 
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for Stress Intensity Factor (SIF) and compared them in his numerical results and showed the 

effect of the crack depth ratio  , the crack location    and material length scale parameter   on 

the equivalent torsional stiffness of the crack and first two natural frequencies of the system. 

Nakhaei et al. [22] presented some models for a beam with a breathing crack with two different 

circulars and V-shape for the shape of the crack. Then, effects of the crack’s parameters which 

include depth, shape, and location on the first natural frequency of the system were investigated. 

Fu et al. [23] studied on a simply-supported cracked beam considering nonlinear stress 

distributions near the crack with two different T-shape and rectangular cross-sections for the 

beam and then, presented an estimation for local and global stiffness. In addition, another 

interesting approach for researchers is crack detection (for one crack or multiple cracks) and 

recently, there are many studies on this subject.[24-33]  

Another group of studies is about beams with multiple cracks. Shoaib et al. [34] investigated on 

effects of single and double edge crack on the dynamics of piezoelectric cantilever-based MEMS 

sensor. Khiem and Hung[35]  used a closed-form solution for free vibration of multiple cracked 

Timoshenko beam with various boundary conditions. Cannizzaro et al. [36] presented closed-

form solutions for multi-cracked circular arch beam under concentrated static loads. Yoon et al.  

[37]investigated the influence of two open cracks on the dynamic behavior of a double cracked 

simply supported beam both analytically and experimentally. Lien et al. [38] presented first three 

mode shapes of a multiple cracked FG Timoshenko beam for different boundary conditions.  

According to mentioned researches, the effect of multiple cracks fault in microbeams has not 

been investigated until now. In this article, a simply-supported microbeam with multiple open 

edge cracks is considered. then the governing equations with the corresponding boundary 

conditions are obtained based on MCST using an analytical approach. and present Afterward, in 

the case study, a cracked microbeam with two cracks is studied. Finally, the effect of the position 

and depth of the cracks and also material-length-scale parameter on the first three natural 

frequencies of the system are investigated.  

Therefore, the main contribution of the article is investigating the effect of multiple cracks on the 

free vibration of micro-beams with Simply-Supported (SS) boundary condition.  In addition, in 

this paper, a general solution is presented by using a logical algorithm for determining boundary 

conditions of the microbeam with multiple cracks. In other words, natural frequencies of the 

multi-crack micro-beam calculated analytically for the first time. 

2. Multi-cracked microbeam modeling  

Consider a microbeam with   cracks in which crack number   has depth    and location     from 

the left support. Microbeam has the rectangular cross-section, with width  , height  , length  , 

with the coordinate system X-Y-Z as shown in Fig. 1. The open edge cracks are assumed 

perpendicular to the neutral axis of the microbeam and non-propagating.  
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Fig. 1: Microbeam with multiple open edge cracks 

According to the number of cracks, lateral displacement of microbeam is divided into     

segments and every segment has a specific function of displacement. In other words, 

displacement of the beam includes     separate functions of the displacement and time. 

Every crack can be modeled with torsional spring such that each of them has a torsional stiffness. 

It can be said in another way that for analysis of the lateral vibration, the multi-crack microbeam 

can be modeled in     segments which are connected to them with torsional springs at 

locations         …     (please see Fig. 2). According to Fig. 2, cracks are modeled with 

torsional springs with equivalent torsional stiffness    ,    , … ,     .  

 

 
Fig. 2: Modeling of open edge cracks with torsional springs 
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3. Calculation of the equivalent torsional stiffness of cracks 

According to the reference [21], which has presented new models for calculating local stiffness 

with considering the Stress Intensity Factor (SIF), the equivalent torsional stiffness for every 

crack can be written as follows: 
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)
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 [
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where 
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where   is non-dimensional coefficient which is defined as the ratio of crack depth   to the 

height of cross-section of the microbeam   or   
 

 
  .  

4. Governing equations of motion 

According to the previous sections, by assuming the material properties Young's modulus  , 

Poisson’s ratio  , density  , cross-section area moment of inertia   and material length scale 

parameter  , the strain energy    of each segment of the microbeam can be written as follows 

[21]: 
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where   denotes cross-section of the microbeam, and    ∫   
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cross section area-moment of inertia.  

The kinetic energy of the system   can also be written as follows: 
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where   is the density of the microbeam.  

Based on Hamilton’s principle, which is as follows: 

 
∫  (     )   
  

  

   (5) 

By substituting the Eqs. (3) and (4) into (5), and after simplifying by using variation calculus, 

governing equations of each segment of the microbeam can be derived as follows: 
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The solution of Eq. (6) can be written as follows: 
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By substituting Eq. (8) into Eq. (6) and with some algebraic simplification, we have 
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where   is natural frequency,   is the material density of the microbeam, and   is the cross-

section of the microbeam.  

Also, the general solution of Eq. (9) for each segment can be obtained as follows: 

  ( )       (  )       (  )        (  )        (  ) (10) 

where     (         ) are constants. 

Equation (10) can be utilized for every segment and therefore, the governing equations of motion 

of the first to final n+1 segment, respectively, can be written as follows 
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where  ̃  to  ̃ (   ) are constants and     is location of the crack number  . By assuming     as 

the crack location of   (      …   ), the boundary conditions of the system can be expressed 

as follows: 
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where     is the equivalent torsional stiffness spring of the microbeam at i-th crack’s location.  

By substituting Eqs. (13) and (12) into Eq. (11), a set of  (   ) algebraic equations resulting 

in matrix form for   cracks can be written as follows: 



A. Rahi et al. / Journal of Theoretical and Applied Vibration and Acoustics 4(2) 205-222 (2018) 

211 

 

 [ (   )]{ ̃ }                   …   (   ) 
(14) 

where the non-zero components of matrix [ ] can be expressed as follows: 
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where       …     

For the nontrivial solution of Eq. (14), the determinant of the matrix [ ] must be zero. The 

obtained results are natural frequencies of the system, which can be calculated by semi-analytical 

or numerical methods.  

5. Case study: A microbeam with two cracks 

According to Eqs. (12), (13), by assuming two cracks in the microbeam, the boundary conditions 

of the system can be rewritten as follows:  

 
  ( )          

    
   

( )    

(16) 

 
  ( )          

    
   

( )    

   (   )    (   )         (   )    (   ) 

    
  

(   )  
   
  

(   )  
    
   

(   )  
 

   
 

    
  

(   )  
   
  

(   )  
    
   

(   )  
 

   
 

 
 
    
   

(   )   
    
   

(   )            
    
   

(   )   
    
   

(   )         

 
 
    
   

(   )   
    
   

(   )            
    
   

(   )   
    
   

(   ) 

According to Eq. (16), for two cracks we have 12 boundary conditions, this means that matrix   

has 12 rows and 12 columns or [ ]      . Therefore, non-zero components of matrix   can be 

simple as follows: 
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6. Numerical results and discussion 

In this section, the numerical method is utilized for solving the problem and obtaining first three 

natural frequencies of the system. The multi-cracked microbeam is assumed to be made of an 

epoxy material with the following mechanical properties [21]: Young's modulus           , 

Poison's ratio       , density             , and material length scale parameter   
       . Also, length and cross-section dimensions of the multi-cracked microbeam are length 

     , height         and width      . 

According to Figs. 1 to 3, the first three natural frequencies of the system (           ) have 

been plotted versus cracks depth ratio ( ) with three different material length scale parameter’s 

ratios (
 

 
           ); the location of first and second cracks are fixed at 

   

 
     , 

   

 
 

   , respectively. The results show that the natural frequencies increase by increasing material 

length scale parameter and decrease by increasing cracks depth due to the reduction of the 

equivalent torsional stiffness   . 

 

 

Fig. 3: Variation of the first natural frequency versus the crack depth ratio with three different values of the 

material-length-scale parameter  

 

Figures 4, 5 and 6, are related to the investigation on the effect of the first crack position and the 

depth of cracks on the frequencies. The second crack location has been fixed at 
 

 
 and material 
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 length scale parameter is constant in the ratio of 
 

 
     . The figures show that the frequencies 

decrease by increasing the cracks depth and decrease by increasing the number of cracks from 

the one crack to the two cracks and also generally decrease if the location of the crack moves 

from the simple supports and node points. 

  

 

 

 
Fig. 4: Variation of the second natural frequency versus the crack depth ratio with three different values of the 

material-length-scale parameter 

 

In Figs. 9, 10 and 11, the depth of the two cracks is equal and has a constant ratio of        

    and once again, the second crack location has been kept constant at  
 

 
  and the first crack 

location changes from zero to 
 

 
  with three different material-length-scale ratios. The obtained 

results express that the natural frequencies of the system increase by increasing material length 

scale parameter and decrease by moving away from the simply supported of the beam and node 

points.  
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Fig. 5: Variation of the third natural frequency versus the crack depth ratio with three different values of the 

material-length-scale parameter 

 

 

 
Fig. 6:  Variation of the first natural frequency versus the crack depth ratio with the various first crack location  
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Fig. 7: Variation of the second natural frequency versus the crack depth ratio with the various first crack location  

 

 

 
Fig. 8: Variation of the third natural frequency versus the crack depth ratio with the various first crack location  
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Fig. 9: Variation of the first natural frequency versus the first crack location with three different values of the 

material-length-scale parameter 

 

 

 
Fig. 10: Variation of the second natural frequency versus the first crack location with three different values of the 

material-length-scale parameter 
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Fig. 11: Variation of the third natural frequency versus the first crack location with three different values of the 

material-length-scale parameter 

 

7. Verification 

In a special case, if  
 

 
  , the microbeam is converted to a macro system and also by neglecting 

cracks in the beam by substituting    , the system will be converted to a simple Euler-

Bernoulli beam problem without any crack. Therefore, in Figs. 3, 4 and 5, the intersection of the 

blue line curves with the vertical axis must be exactly equal to natural frequencies of the simply-

supported Euler-Bernoulli beam as follows[39]: 
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By replacing mechanical properties and dimensions of the beam, the first three natural 

frequencies of the system can be calculated as follows:  
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The above analytical results exactly are equal to the frequencies of the blue line curves in Figs. 3, 

4 and 5, respectively.  

Also for macro beam cases (or if  
 

 
  ), according to Eq. (7) then     . In these cases, the 

general solution of Eqs. (11) and boundary conditions Eqs. (16) will be exactly equal to the 

general solution and boundary conditions of Yoon et al. [37] that investigated the free vibration 

of double cracks a simply-supported Euler-Bernoulli beam. 

In addition, by assuming a single crack in the system, governing equations of boundary 

conditions of Eqs. (12), (13) are written as follows: 
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Eqs. (20), (21) exactly are equal to boundary conditions of Rahi [21] that researched on the effect 

of a crack on a simply-supported micro beam where       . 

8. Conclusion 

In this paper, a simply-supported microbeam with multiple cracks was studied. In addition, based 

on MCST, the lateral dynamic behavior of the microbeam with Euler-Bernoulli model was 

investigated. First, every open edge crack was considered with a torsional spring based on 

MCST. Then, the governing equations of motion and boundary conditions of the system were 

obtained using Hamilton’s principle. The governing equations were solved by the separating 

variables method. After that, the natural frequencies of the system were analytically calculated. 

Finally, numerical results were presented for the microbeam with two open-edge cracks. The 

results show that the depth of the cracks, the location of cracks, and material length scale 

parameter are extremely effective on the natural frequencies of the system.  
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