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Drivers of mining trucks are exposed to whole-body vibrations (WBV) and 
shocks during the various working cycles. These exposures have an 
adversely influence on the health, comfort and also working efficiency of 
drivers. Determination and prediction of the vibrational health risk of the 
mining haul trucks at the various operational conditions is the main goal of 
this study. To this aim, three haul roads with low, medium and poor 
qualities are considered based on the ISO 8608 standard. Accordingly, the 
vibration of a mining truck in different speeds, weights and distribution 
qualities of the materials in the dump body are evaluated for each haul road 
quality using the Trucksim software. An artificial neural network (ANN) is 
used to predict the vibrational health risk. The obtained results indicate that 
the haul road qualities, the truck speeds and the accumulation sides of 
material in the truck dump body have significant effects on the root mean 
square (RMS) of vertical vibrations. However, there is no significant 
relation between the material’s weight and the RMS values. Also, the 
application of ANN revealed that there is a good correlation between the 
predicted and simulated RMS values. The performance of the proposed 
neural network to predict the moderate and high health risk are 88.11% and 
93.93% respectively. 

© 2017 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

Operators of all mobile machineries used in heavy industries such as mining are usually exposed 
to whole body vibrations (WBV). These vibrations reduce the efficiency of operators and have 
adverse non-ergonomic effects on their body [1]. 
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In the past, numerous studies have been done to explore the WBV exposure levels during the 
operation of mining equipment and machineries including haul trucks [2-5], load haul dumps 
(LHDs) [6, 7], shovels [8] and drilling machines [9, 10]. Among them, the haul trucks have been 
mostly studied due to their various working cycles including loading, transporting, dumping the 
load and returning to the loading area. Other vehicles are fixed or have a very short movement in 
their working place. Therefore, mining trucks are subject to the most dangerous vibrational 
health risk than the other vehicles. 

Kumar [2] studied the WBV of two types of trucks; 240 t mechanical drive trucks and 320 t 
electric drive. In this research, the data were collected on smooth frozen roads. Results of this 
research showed that the frequency-weighed root mean square (RMS) of vertical vibration was 
between 0.30 and 2.72 m/s2. Also, the unloaded travel cycles had the highest vibration 
accelerations. In another study, the WBV of 150 t haul trucks was measured by Eger et al. [11] 
using field data. The mean RMS of vertical accelerations was recorded between 0.28 and 0.37 
m/s2 for two trucks which indicates their low health risk level. Smets et al. [3] measured the 
WBV of eight haulage trucks with 35, 100 and 150 t capacities using field data. The obtained 
results revealed that the truck operators were typically exposed to moderate through high levels 
of WBV risk. Also, the truck type was found having no significant effect on the RMS of vertical 
vibrations which was consistent with Kumar’s results. In the mentioned study, the interaction 
between speed, road roughness and the vibration magnitude and their effects on the WBV were 
not discussed. 

Loading operation is one of the other causes of the vibrational health risk discussed in some 
researches. Frimpong et al. [4] studied vibrations in the high-impact shovel loading operations 
(HISLO) transmitted into cabin using a 3D dynamic model in MSC.ADAMS software. The 
results of this research showed that the maximum vibrations in the loading period occur at the 
first and second loading passes when the truck was empty. Therefore, they proposed that the 
vibration control in the first two passes of the loading operation is important. In a recent study, 
the WBV exposure of 32 haul trucks (with 136 to 290 t capacity) were measured [12]. The RMS 
of vertical accelerations for 20 trucks was in the moderate health risk level. However, the haul 
road conditions considered by field observations had a large effect on vertical vibration. 

In the above mentioned studies, the effect of truck type, driver gender, work cycle and loaded or 
unloaded truck dump body on the WBV have been investigated. There is not enough research 
considering the various mining operational conditions such as truck speed, weight and load 
geometry in the truck dump body. These parameters have influence on the vibration of small to 
medium mining trucks because of their light weights. In this paper, to compensate these 
deficiencies, an extensive range of operational conditions and their effects on the WBV of 
mining trucks are studied based on ISO 2631-1 standard. These operational conditions include 
the various haul road qualities, truck speeds and the materials’ weights in the truck dump body. 
Also, distribution qualities of materials in the dump body are considered. To achieve the 
mentioned purposes, vibrational simulations are carried out using a comprehensive truck model 
in Trucksim software. An artificial neural network (ANN) is used for vibrational health risk 
prediction. A neural network is a powerful data model used to represent the complex relationship 
between the inputs and outputs of a system. Nowadays, ANNs have been successfully applied in 
the field of mining engineering such as prediction of blasting propagation velocity and ground 
vibration [13-15], prediction of methane ventilation in the longwall mining [16], localizing 
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people in confined underground areas [17], ground subsidence prediction [18], prediction of 
slope stability [19], coal mine safety production [20] and prediction of fuel consumption of 
mining dump trucks [21]. 

The results of this paper provide guiding principles for truck operators to drive the vehicle with 
low vibrational health risk and suggest a new approach to predict the dangerous operational 
conditions. Therefore, these results will be helpful for the researchers and designers to present 
practical solutions for health risk reduction of mining trucks. Optimization of the vehicle 
suspension system, maintenance of the haul road, improvement of the loading quality and 
suggestion of the safe speed limits based on the haul road quality can reduce the health risk of 
operators. 

The paper is organized as follows: In section 2, analysis of WBV and health risk level of 
vibrations are presented according to ISO 2631-1 standard. In section 3, artificial neural network 
is introduced and discussed. In section 4, a haul truck is firstly simulated by the TruckSim 
software and then the operational conditions including haul road quality, truck speed, weight and 
accumulation side of the materials in the truck dump body are described. The simulated truck is 
run at the above mentioned operational conditions and the risk levels of WBV at all operational 
conditions are discussed. Finally, in section 5, the artificial neural network is applied for health 
risk level prediction at various operational conditions. 

2. Whole body vibration analysis 

The most popular standard for measurement and evaluation of the human response to WBV is 
ISO 2631-1 standard. The two main criteria for describing acceleration amplitude in ISO 2631-1 
are the frequency-weighted RMS (ܽ௪௥௠௦) and the vibration dose value (ܸܸܦ) [22]: 

 ܽ௪௥௠௦ = ඨ1ܶ න ܽ௪ଶ ்ݐ݀ (ݐ)
଴   (1) 

ܸܦܸ  = ඨන ܽ௪ସ ்  ݐ݀ (ݐ)
଴  (2) 

where aw(t) is the frequency-weighted acceleration at time t and T is the measurement duration. 
Accordingly, the daily vibration exposure for 8 hours equivalent frequency-weighted RMS is 
calculated as follows [22]: 

(8)ܣ  = ܽ௪ ඥܶ/8  (3) 

where ܽ௪ is the frequency-weighted RMS and T is the exposure time in hour. 

To evaluate the health risk level of vibrations, ISO 2631-1 defines “health guidance caution 
zone, (HGCZ)”. In practice, the exposures below, within and above the HGCZ are usually 
considered as low, moderate and high health risk respectively. For an 8 hour daily exposure, the 
upper and lower bounds of HGCZ are 0.47 m/s2 and 0.93 m/s2 respectively based on the RMS. 
The corresponding values for the VDV measure are 8.5 m/s1.75 and 17 m/s1.75 [23]. ISO 2631-1 
defines the crest factor (CF) as the ratio of the maximum instantaneous peak value of the ܽ௪(ݐ) 
to its RMS value [22]: 
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ܨܥ  = max (ܽ௪(ݐ))ܴܵܯ (ܽ௪)  (4) 

If the CF exceeds 9, vibration effects on the driver’s body may not be estimated. In this 
condition, the VDV is used for evaluation and prediction of health risk. 

3. Artificial neural networks 

The artificial neural network (ANN) is an information processing tool used to simulate the 
human brain structure and functions. Neural networks (NN) resemble the human brain in two 
steps. At the first step, the knowledge for NN is required through learning and at the second step, 
the network knowledge is stored in the strengths of inter-neuron connections known as synaptic 
weights [24]. The most common NN model is the multilayer perceptron (MLP) which requires a 
desired output in order to learn. One of the supervised algorithms in MLP is the feed-forward 
back-propagation network which consists of one input layer, one or more hidden layer(s) and one 
output layer [25]. The input layer includes n neurons coding the n pieces of information 
( ଵܺ, … , ܺ௡) at the entry of the system. The output layer comprises a single neuron corresponding 
to the value to be predicted. Each node of the output layer is linked to all nodes in the hidden 
layer and all hidden layer nodes are linked to all input layer nodes. All nodes are linked with 
each other by the weighted connection [24]. The weight of the first layer is coming from the 
input and the weight of each subsequent layer is coming from the previous layer. The summation 
of weighted input values in the neuron of hidden layer is calculated as follows [26]: 

 ௝ܽ = ෍ ௜ܺ ∙ ௜ܹ௝௡௜ୀଵ  (5) 

where ௜ܺ is the input value, ௜ܹ௝ is the weight of the connection for the ith  input in the input layer 
with the jth neuron of the hidden layer and ݊ is the number of input variables. 

Response of the neurons in the back-propagation method is quantified using transfer functions. 
There are different types of linear and non-linear transfer functions such as purely linear (Purlin), 
positive linear (Poslin), tangent sigmoid (Tansig) and logarithmic sigmoid (Logsig). Generally, 
the non-linear and linear transfer functions are used, respectively, in the hidden and output layers 
[27]. Logsig is the most common non-linear transfer function in the back-propagation NN: 

(௝ܽ)݃݅ݏ݃݋ܮ  = 11 + exp (− ௝ܽ) (6) 

The error signal (݁௞) between the input ݐ௞ and the output ݕ௞ of layer ݇ used to calculate the 
weight updates is defined as follows: 

 ݁௞ = ௞ݐ −  ௞ (7)ݕ

The error signal represents the network power in the knowledge learnt. Accordingly, to 
recognize the optimum network, different network architectures are tried by calculating the mean 
square of error (MSE) as the total error function: 

ܧܵܯ  = 12 ෍ ௞ݐ) − ௞)ଶ௡௞ୀଵݕ  (8) 
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4. Mechanical simulation of vibrations 

In this section, TruckSim as a powerful software for simulating the behavior of heavy trucks is 
used for simulation studies. A three-axle truck shown in Fig. 1 with the parameters of Table 1 is 
used for the simulation study [28]. Such trucks are popular in mining activities due to their high 
maneuverability and compatibility in various operational conditions. Operational conditions are 
described at the following sub-section. 

 

 
Fig. 1. Truck used for the simulation study [28] 

 

Table 1. Parameters of the case study truck [28] 

Parameter Value 

Sprung mass (kg) 6500 

Front unsprung mass (kg) 600 

Rear unsprung mass (kg) 1600 

Mass of seat and driver (kg) 100 

Stiffness of front suspensions (N/m) 400000 

Stiffness of rear suspensions (N/m)  2500000 

Tire stiffness (N/m) 1350 

Seat stiffness (N/m) 57600 

Damp coefficient of front suspensions (N∙s/m) 20000 

Damp coefficient of rear suspensions (N∙s/m) 30000 

Damp coefficient of seat (N∙s/m) 400 

Dump body dimensions; long× width× height (m) 5×2.4×2 

4.1. Operational conditions 

The operational conditions for the simulation studies are given in Table 2. The truck speed is in 
the range of 40 to 70 km/h with 5 km/h intervals. The weight of materials in the truck dump body 
is 24 to 30 t with 2 t intervals. To consider materials distribution qualities, the materials gravity 
center is moved around the area center of the truck dump body. Also, the uniformly distributed 
case is considered. 
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Table 2. Operational conditions for the simulated truck 

Parameter Range No. of states 

Speed (km/h) [40:5:70] 7 

Materials weight (t) [24:2:30] 4 

The accumulation sides of 
materials in the dump body 
(load geometry) 

100, 200 and 300 mm to left (driver) 

100, 200 and 300 mm to right 

100, 200 and 300 mm to front 

100, 200 and 300 mm to rear 

Uniformly distributed materials 

3 

3 

3 

3 

1 

 

In this paper, for definition of the haul road quality, road classification based on the ISO 8608 
standard is used. In this classification, road roughness has been classified using the Power 
Spectral Density (PSD) values at the spatial frequency of 1/2π cycles/m. In ISO 8608 
classification, the relationship between the PSD and the spatial frequency on logarithmic scale is 
considered for the road classification as shown in Fig. 2 [29]. 

Ranges of the PSD values at the spatial frequency Ω0= 1/2π cycle/m, Sg(Ω0), for different classes 
of road are given in Table 3. In this study, as shown in Fig. 3, three roads in the classes of good 
(B), medium (C) and poor (D) are created based on the ISO classification for the truck constant 
speed of 65 km/h. 

 

 

 
Fig. 2. Classification of the road roughness by ISO 8608 [29] 
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Table 3. Classification of the road roughness in ISO 8608 [29] 

Class of the road 

Degree of roughness (Sg(Ω0)ൈ10-6  m3/Cycle) 

Range Geometric mean 

A (Very good) < 8 4 

B (Good) 8 – 32 16 

C (Average) 32 – 128 64 

D (Poor) 128 – 512 256 

E (Very Poor) 512 – 2048 1024 

F 2048 – 8192 2048 

G 8192 – 32768 4096 

H > 32768 16384 

 

 
Fig. 3. Three roads created in the good, medium and poor classes 

4.2. Vibrational simulation outputs and discussions 

In this section, simulation studies are carried out to show the health risk level of vibrations at the 
various operational conditions. Regarding all states defined in Table 2 together with the three 
haul road qualities, the simulated truck is run in all (7×4×13×3=) 1092 operational conditions. 
The 8 h equivalent frequency-weighted RMS (A(8)) of the driver which is in the left (driver) side 
of the truck cabin at all 1092 conditions are obtained from MATLAB software. It is noted that, in 
each trial, it is assumed that the truck operates only 7 h in each 8 h working cycles. For example, 
Fig. 4 represents the vibration signal in time and frequency domains corresponding to 30 t 
uniformly distributed materials at good haul road condition and the speed of 40 km/h. 

 
Fig. 4. Vibration signal for 30 t uniformly distributed materials at good quality haul road in the time and frequency 

domains (speed 40 km/h) 
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According to Fig. 4, the RMS of vertical vibration is 0.642 m/s2 which indicates the moderate 
health risk. Also, the high vibrational energy is observed at 2.21 Hz in the frequency domain. For 
the same condition, the RMS of signal for the medium and poor quality haul roads are calculated 
as 0.793 m/s2 and 1.074 m/s2 respectively. The results indicate that, deterioration of the haul road 
quality from good to medium and poor respectively, increases the RMS values by 23.52% and 
67.29%. 

In the following, the mean RMS values are compared in the different operational conditions and 
their effects on the mean RMS are analyzed statistically. To achieve this aim, analysis of the 
variance (ANOVA) is used. ANOVA is applied for determination of the independent variable(s) 
effects on the dependent variables. In ANOVA, the absence of a difference between the means of 
independent variable(s) and dependent variables is defined as the null hypothesis. In other words, 
the null hypothesis in ANOVA is that the means of two groups of variables are equivalent. The p 
value is used to accept or reject the null hypothesis. Small p value, for example smaller than 0.05 
at 5% significant level, indicates that there is a strong evidence to reject the null hypothesis and 
vice versa [30]. In this paper, the multivariate analysis of variance is done at 5% significant level 
using SPSS.22 software and the results are given in Table 4. Based on the results presented in 
Table 4, the road conditions, the truck speeds and the materials’ distribution qualities are the 
most effective parameters on the RMS values (p< 0.001). The materials’ weight has no 
significant effect on the RMS values (p> 0.05). 

Table 4. Results of the ANOVA at 5% significant level 

Variable df F- Value Significant 

Haul road quality 2 1152.772 < 0.001 

Speed 6 43.120 < 0.001 

Materials weight 3 0.550 0.648 

Load geometry 12 4.847 < 0.001 

Two-way interaction 

Haul road quality × Load geometry 24 54.800 < 0.001 

Haul road quality × Speed 12 560.361 < 0.001 

Load geometry × Speed 72 44.622 < 0.001 

Three-way interaction 

Speed × haul road quality × Load geometry 144 11.974 < 0.001 

 
At the remaining of this section, the effect of the various haul road qualities, the truck speeds and 
also the distribution qualities of materials on the RMS values is studied. To achieve this aim, 
Scheffe’s Post Hoc Test is used. The Scheffe’s Post Hoc Test is the mean comparison test used 
for finding relationships between the sub-groups of the significant parameters [30]. Results of the 
Scheffe test are given in Table 5. In this Table, there is no significant difference between each 
subgroup of the operational conditions which have the same symbol (p> 0.05). Scheffe test 
reveals that there is a significant difference between all haul road qualities. The materials’ weight 
levels have no significant effect on the RMS values (with the same symbol). Moreover, the 
accumulation of the materials on the rear sides has the lowest effect on the RMS values. 
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Table 5. The results of the Scheffe’s Post Hoc Test  
Haul road quality Speed (km/h) Materials’ weight (t) 

Poor Medium Good 70 65 60 55 50 45 40 24 26 28 30 

1.486a 1.067b 0.823c 1.336a 1.276b 1.209c 1.134d 1.065e 0.972f 0.886g 1.142a 1.131a 1.120a 1.109a 

Material accumulation side 

300 mm 
to left 

200 mm 
to left 

100 mm 
to left 

300 mm 
to right 

300 mm 
to front 

200 mm  
to front 

100 mm 
to front Uniform 

300 mm 
to rear 

200 mm 
to right 

100 mm 
to rear 

200 mm 
to rear 

100 mm 
to right 

1.280a 1.250b 1.173c 1.132d 1.128d 1.114d 1.094e 1.071f 1.068f,g 1.056f,g,h 1.051g,h 1.046h 1.021i 

5. Prediction of the health risk level using ANN 

In this section, the artificial neural network is applied to predict the vibrational health risk level 
at various operational conditions. To achieve this aim, firstly, the neural network with the best 
performance is architected. Then, the performance of the proposed ANN is evaluated. 

5.1. Neural network architecture 

For the implemented neural network, the input layer data is composed of four parameters; haul 
road quality, truck speed, weight and accumulation side of the materials in the truck dump body. 
The output layer is composed of a single parameter; the RMS of vertical acceleration. The first 
data set consists of about 90% of mechanical simulation data and the other data, selected 
randomly, are used for evaluation analysis of the network. The numerical codes, considered for 
each operational parameter are given in Table 6. 

A feed-forward back-propagation network, described in section 3, is selected for this study. 
Logsig and Purlin, respectively, are applied as transfer functions for the hidden and output 
layers. Also, training of the network is implemented by the Levenberg-Marquardt algorithm. To 
select the best network, several networks with different architectures are created using the back-
propagation algorithms available in MATLAB software. The best results, given in Table 7, are 
obtained by different neuron and layer numbers. It is obvious from Table 7 that the best values of 
correlation coefficient for training and validation are 99.90% and 99.70% respectively. 
Therefore, the 9-9-1 network architecture is selected as the final network for prediction of the 
health risk level. 

Table 6. Numerical codes which were used as each operational condition 

Haul road quality Truck Speed 
(Km/h) 

Load geometry Materials weight (t) 

Parameter Code Parameter Code Parameter Code Parameter Code Parameter Code 

Good 1 40 1 Uniform 1 100 mm to front 8 24 1 

Moderate 2 45 2 100 mm to left 2 200 mm to front 9 26 2 

Poor 3 50 3 200 mm to left 3 300 mm to front 10 28 3 

 55 4 300 mm to left 4 100 mm to rear 11 30 4 

  60 5 100 mm to right 5 200 mm to rear 12   

  65 6 200 mm to right 6 300 mm to rear 13   

  70 7 300 mm to right 7     
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Table 7. The best results obtained from different neuron and layer numbers 

Neural network architecture MSE Best 
training 
performance 

Best 
epoch 

Training 
correlation 

Validation 
correlation 

Test 
correlation 

8-9-1 0.0161 0.0162 12 0.940 0.933 0.960 

9-9-1 0.0006 0.0003 68 0.999 0.997 0.997 

7-8-1 0.0156 0.0131 7 0.949 0.945 0.941 

7-7-1 0.0089 0.0125 17 0.947 0.960 0.952 

6-6-1 0.0221 0.0140 13 0.947 0.931 0.949 

9-1 0.0035 0.0035 78 0.987 0.987 0.986 

8-1 0.0137 0.0063 46 0.976 0.959 0.973 

6-1 0.0140 0.0107 50 0.949 0.960 0.935 

 

5.2. Performance analysis of the proposed network 

For validation analysis of the selected network, 102 random actual data from mechanical 
simulation are compared with the estimated data from the proposed 9-9-1 network. The data used 
for the network performance analysis are given in Table 8. Regarding to the validation results 
illustrated in Fig. 5, there is 99.34% correlation between the actual and estimated RMS values. 

Moreover, the network is validated by comparison of the estimated and the actual health risk 
level of the dataset used for the network performance analysis. The results are given in Table 9. 
According to Table 9, the performance of the proposed ANN for prediction of the moderate and 
high health risk levels are 88.89% and 93.93%, respectively. These results show that the 
proposed network is an effective tool for vibrational health risk prediction. 

 

 

 
Fig. 5. Correlation between the actual and predicted RMS values of vertical vibration 
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Table 8. Dataset used for performance analysis of the network 
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1 2 3 1 11 1.092 High 52 2 5 4 5 1.076 High 

2 2 1 1 11 0.895 Moderate 53 1 5 2 4 1.151 High 

3 1 1 3 10 0.754 Moderate 54 1 6 2 6 0.891 Moderate 

4 2 5 2 9 1.221 High 55 2 4 2 11 1.164 High 

5 2 5 4 1 1.151 High 56 3 1 3 2 1.240 High 

6 1 1 3 5 0.687 Moderate 57 3 2 2 8 1.302 High 

7 2 1 3 4 0.927 High 58 2 5 3 2 1.279 High 

8 1 6 3 5 0.887 Moderate 59 1 4 2 6 0.840 Moderate 

9 1 3 4 9 0.889 Moderate 60 1 2 3 11 0.835 Moderate 

10 2 4 3 2 1.219 Moderate 61 1 4 4 1 0.889 Moderate 

11 2 7 3 4 1.551 High 62 3 6 1 4 2.242 High 

12 3 3 1 3 1.620 High 63 2 1 3 12 0.867 Moderate 

13 2 7 2 11 1.353 High 64 1 1 4 9 0.740 Moderate 

14 1 3 2 1 0.867 Moderate 65 1 2 3 7 0.795 Moderate 

15 2 3 1 8 1.073 High 66 1 7 2 11 1.022 High 

16 1 3 2 13 0.835 Moderate 67 2 6 3 3 1.425 High 

17 1 4 1 9 0.970 High 68 1 2 4 13 0.759 Moderate 

18 2 7 4 14 1.181 High 69 3 4 2 3 1.707 High 

19 2 1 2 8 0.888 Moderate 70 2 2 4 3 1.044 High 

20 3 5 2 1 1.666 High 71 1 4 3 5 0.819 Moderate 

21 3 6 2 1 1.763 High 72 1 5 3 3 1.095 High 

22 2 6 3 6 1.165 High 73 2 2 1 1 0.980 High 

23 3 5 3 2 1.809 High 74 2 6 4 11 1.300 High 

24 1 3 1 10 0.904 Moderate 75 2 5 4 2 1.249 High 

25 3 2 1 5 1.330 High 76 3 3 3 9 1.543 High 

26 1 7 1 12 0.960 High 77 2 1 4 12 0.867 Moderate 

27 1 7 1 6 0.929 High 78 1 1 3 11 0.749 Moderate 

28 1 4 2 2 1.040 High 79 1 4 1 6 0.871 Moderate 

29 2 7 1 8 1.309 High 80 1 3 2 14 0.853 Moderate 

30 1 3 1 11 0.911 High 81 1 6 3 14 0.909 High 

31 3 6 1 7 2.005 High 82 1 5 3 14 0.893 Moderate 

32 2 3 1 6 1.011 High 83 2 6 2 7 1.279 High 

33 1 6 3 1 0.945 High 84 3 2 4 4 1.411 High 

34 1 7 2 5 0.887 Moderate 85 3 7 4 6 1.733 High 
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35 2 6 2 11 1.326 High 86 2 2 3 9 0.979 High 

36 1 7 3 10 1.011 High 87 3 6 1 1 1.761 High 

37 3 5 1 3 1.917 High 88 1 4 1 2 1.053 High 

38 3 6 4 6 1.706 High 89 3 4 1 5 1.567 High 

39 2 3 4 1 1.032 High 90 1 3 3 1 0.862 Moderate 

40 2 4 1 1 1.113 High 91 1 4 4 5 0.801 Moderate 

41 1 1 1 1 0.716 Moderate 92 3 1 2 5 1.231 High 

42 1 7 4 12 0.910 High 93 2 1 2 14 0.904 High 

43 2 7 2 14 1.212 High 94 3 5 4 9 1.765 High 

44 1 5 2 12 0.907 High 95 1 6 1 1 0.976 High 

45 1 1 3 9 0.745 Moderate 96 3 3 3 2 1.475 High 

46 1 3 2 3 1.010 High 97 2 7 3 13 1.198 High 

47 2 5 3 11 1.253 High 98 1 3 4 8 0.877 Moderate 

48 1 1 2 13 0.702 Moderate 99 1 6 1 5 0.904 High 

49 3 1 4 6 1.248 High 100 2 7 2 4 1.574 High 

50 2 4 1 4 1.346 High 101 1 6 4 14 0.895 Moderate 

51 1 4 2 4 1.107 High 102 2 3 4 7 0.982 High 

Table 9. Prediction of the health risk level based on the proposed neural network 

Number of cases 

Health Risk level ANN prediction Real data 

32 36 Moderate 

70 66 High 

102 102 Total 

6. Conclusion 

Driving trucks in various mining operational conditions generate dangerous health risk of 
vibrations that needs special attentions. In this paper, haul road quality, truck speed, weight and 
load geometry in the truck dump body are considered as the main controllable mining 
operational conditions. The RMS value of vertical vibration at the driver side of a three-axle 
truck cabin is obtained using the Trucksim software at all operational conditions. The vibrational 
heath risk levels are evaluated according to ISO 2631-1 standard. The feed-forward back-
propagation artificial neural network (ANN) is used to predict the health risk levels. Results of 
this study show that mining truck drivers are exposed to moderate to high vibrational health risk. 
There is a significant difference between the haul road quality, the truck speed and the materials 
distribution in the truck dump body in the RMS of vibrations. The materials’ weight has no 
considerable effect on the RMS value of vibration. To reduce the vibrational health risk, it is 
proposed that the loader operators attempt to accumulate the materials uniformly or near to the 
rear side of the dump body as much as possible. Application of the proposed ANN shows that 
there is a good agreement between the observed and predicted RMS values (R2= 99.34%). 
Therefore, the proposed ANN could be used as a helpful tool for health risk prediction. These 
results provide practical guidelines for the operators to drive the trucks with low health risk. 
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