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In general, joints are assumed without clearance in the dynamic 

analysis of multi-body mechanical systems. When joint clearance is 

considered, the mechanism obtains two uncontrollable degrees of 

freedom and hence the dynamic response considerably changes. The 

joints’ clearances are the main sources of vibrations and noise due to 

the impact of the coupling parts in the joints. Therefore, the system 

responses lead to chaotic and unpredictable behaviors instead of 

being periodic and regular. In this paper, nonlinear dynamic behavior 

of a four-bar linkage with clearance at the joint between the coupler 

and the rocker is studied. The system response is performed by using 

a nonlinear continuous contact force model proposed by Lankarani 

and Nikravesh [1] and the friction effect is considered by a modified 

Coulomb friction law [2]. By using the Poincaré portrait, it is proven 

that either strange attractors or chaos exist in the system response. 

Numerical simulations display both periodic and chaotic motions in 

the system behavior. Therefore, bifurcation analysis is carried out 

with a change in the size of the clearance corresponding to different 

values of crank rotational velocities. Fast Fourier Transformation is 

applied to analyze the frequency spectrum of the system response. 
©2016 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

Over the last few decades, the dynamic modelling of multi-body systems has been identified as 

an important tool in the analysis, design, optimization, control and simulation of complex 

mechanisms. Clearance may cause severe vibration, noise and affect the dynamic properties and 

accuracy of the mechanism response. Therefore, it is very important to study the clearance effect 

on the dynamics of machine systems. Linkage with clearance is a high-order nonlinear time 

varying system which is difficult to be analysed. 

A great number of researches have been conducted to investigate the effect of joint clearance on 

the dynamic response of mechanical systems [3-15]. Dubowsky [16, 17] developed an impact 
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pair model to describe the joint clearance in mechanisms. The model divided the contact between 

the journal and bearing of a joint linkage into two categories named the contact and noncontact 

phases. Rhee and Akay [18] investigated the dynamic response of a four-bar mechanism with 

revolute clearance joint. Haines [19] investigated the dynamic response of the revolute joints 

with clearance experimentally. Using the massless model, the study by Senviratne and Earles 

[20] showed that chaotic behavior is exhibited in the dynamic response of a linkage with 

clearance. Schwab et al. [21] compared different revolute joint clearance models in the dynamic 

analysis of rigid and elastic mechanical systems. The hydrodynamic lubrication model, in this 

case, was based on the Reynolds equation for a thin film, incorporating the finite length of the 

bearing and the effect of cavitation in the fluid film. Flores [22-24] analyzed the stabilizing 

effects of lubrication in a clearance joint on the dynamic behavior of mechanisms. Flores and 

Lankarani [24] investigated spatial rigid multi-body lubricated systems with spherical clearance 

joints. They also presented a general methodology for dynamic modeling and analysis of the 

planar multi-body systems with multiple clearance joints [25]. Muvengei et al. [12] investigated 

multi-body systems with clearance and without the friction effect to obtain and characterize the 

slip-stick effects. Daniel and Cavalca [26] studied the dynamics of a slider-crank mechanism 

with hydrodynamic lubrication in the clearance of connecting rod-slider joint. Tang et al. [9] 

studied the nonlinear dynamic behavior of a four-bar linkage considering clearance. Koshy et al. 

[27] investigated the effects of crank rotational velocity and clearance size on the dynamic 

response of a slider-crank mechanism both numerically and experimentally. They proved that the 

slider acceleration amplitude increases by increasing the two parameters. Bai et al. [28] 

simulated the wear phenomenon in a four-bar mechanism with joint clearance by utilizing 

Archard’s wear model. Tian et al. [29] proposed a comprehensive method for dynamic analysis 

of a geared multi-body system supported by Elasto Hydro Dynamic (EHD) lubricated cylindrical 

joints. Askari et al. [30] studied the effect of friction-induced vibration and contact mechanics on 

the maximum contact pressure and moment of artificial hip implants. 

In order to eliminate the contact loss between the journal and the bearing, a controlling 

mechanism based on the DFC method is proposed by Olyaei and Ghazavi [11]. An optimization 

method is proposed to alleviate the undesirable effects of joint clearance by Varedi et al. [3]. The 

study has optimized the mass distribution of the links for a slider-crank mechanism in order to 

reduce or eliminate the impact forces in the journal-bearing system. Bifurcation analyses with the 

change of clearance size are carried out by Rahmanian and Ghazavi [4]. 

In this paper, bifurcation and chaos phenomena are investigated in a four-bar mechanism with an 

imperfect joint. First, the set of motion equations governing the system’s dynamics are 

established. Then, the solutions are obtained through applying the fourth order adaptive Runge-

Kutta method. A MATLAB code is developed for numerical simulation of the equations. It is 

shown that strange attractors exist in the discrete time domain when the system exhibits a chaotic 

motion. This behavior appears for low values of input crank velocity. 

The main purpose of this research is stability analysis of the multi-body mechanical system with 

revolute clearance joint through bifurcation diagrams. The Poincaré portraits and FFT plots are 

prepared for some specific values of the mentioned parameters in order to demonstrate the 

periodic and chaotic behaviors of the mechanism. 
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2. Kinematic analysis 

In this section, normal and tangential relative velocities of the contact points are calculated by 

considering a continuous contact mode in the journal-bearing system. The schematic diagram of 

a revolute clearance joint is shown in Fig. 1. Radial clearance is introduced as the difference 

between the journal and bearing radii as: 

 
 

B J
c R R  (1) 

where J
R  and B

R  are the journal and bearing radii respectively and c indicates the clearance 

size. The contact between journal and bearing is recognized when Eq. 2 is satisfied. 

 

    (R R ) 0
B J

r  (2) 

where r  is the magnitude of the clearance vector and   represents the relative penetration 

depth between the colliding bodies. 

B

P
r  and 

J

P
r  vectors represent the position of contact points on the bearing and journal in the 

global reference frame XY  given by: 

 

 
/O

B B B

P O P
r r r  (3) 

 
 

/O

J J J

P O P
r r r  (4) 

 

   /

/O /O

B J B J B J

P O O P P
r r r r r  (5) 

As illustrated in Fig. 1, 
B J

O O
r r rn  . Relative velocity of the contact point can be calculated by 

differentiating Eq. 5 as follows: 

 

       /B J

P B B J J
v rn R R r t  (6) 


J  and B  are the journal and bearing angular velocities respectively and   represents the  

orientation of the clearance vector r  from the positive X axis. 
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Fig. 1: Normal and tangential contact forces 

3. Normal and tangential contact forces 

One of the most well-known contact force models which is frequently used in multi-body 

mechanical systems is proposed by Lankarani and Nikravesh [1]. This is a nonlinear viscoelastic 

contact force model and is utilized to model the normal contact force between the journal and the 

bearing. 

The normal contact force model is as follows [1]: 

 
  


 

 
  
 
 

2

( )

3 1
1

4

rn

N

c
F K  (7) 

where K  is the generalized stiffness,   represents the relative penetration depth between the 

colliding bodies, rc  is the restitution coefficient and the exponent n  is set to 1.5 for the case 

there is a parabolic distribution of contact stresses in circular and elliptical contacts [11].   is 

the relative normal velocity of contact points and ( )   indicates the initial impact velocity which 

remains constant during each contact process. 

The generalized stiffness K  is a function of the radius and material properties of the spheres i   

and j  and is written as: 
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 (8) 

Here 
i
 and 

j
 are material parameters given by: 

 







21
k

k

k
E

,  ,K i j  (9) 

 

  

Journal 

Bearing 

  

 

 

 

 

 

  

  

 

 



S. Boorghan Farahan et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(1) 90-105 (2016) 

95 

 

In Eq. 9, k
E  and k

  are the Young's modulus and the Poisson's ratio of the journal and bearing 

respectively. 

It is worth to mention that in Eq. 8, the curvature radius of the contact profiles is positive for 

convex surfaces and negative for concave surfaces. Generally, this model is suitable for most 

mechanical contact problems especially in cases where the energy dissipation during contact 

process is relatively low in comparison with the maximum elastic energy absorbed. In other 

words, Eq. 7 is more reliable when the restitution coefficient is close to unity. 

Furthermore, the friction force is applied to the system when the tangential component of the 

relative velocity of the colliding points is not negligible. The modified Coulomb's friction law is 

expressed by Ambrósio [2]: 

 
  t

t f d n

t

V
f c c F

V
 (10) 

where 
dc  is the dynamic correction coefficient, 

 

0

0

0 1

1 0

1

1

0

t

t

d t

t

v v

v v
c v v v

v v

v v

 



  


 

 (11) 

in where 0
v  and 1

v  are the tangential velocity tolerances. The dynamic correction factor 
dc  

prevents the friction force from changing direction for almost null values of tangential velocity. 

This is contemplated by the integration algorithm as a dynamic response with high frequency 

contents and thereby, forcing a reduction in the time step size. 

According to the models proposed by Lankarani et al. [1] and Ambrósio [2], the resultant contact 

force on the bearing is: 

 

  
 23

2 2 2
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3 1
1 1

4

r

C f d B J

c r
Q K c c r R R
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 
     
 
 

 (12) 

Introducing cQ  as the magnitude of the contact force and   as its orientation, then: 

 

1tan
B B J J

f d

B B J J

R R r
c c

R R r

  


  


  
  
  
 

,      (13) 

According to the Fig. 2, r  and   can be calculated as follows: 



S. Boorghan Farahan et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(1) 90-105 (2016) 

96 

 

 

                 
  

1
2 2 22 2

1 2 2 3 3 4 4 4 4 2 2 3 3
cos cos cos sin sin sin

rel rel
r X Y L L L L L L L  (14) 

 

  


  

 
   

           

1 1 4 4 2 2 3 3

1 2 2 3 3 4 4

sin sin sin
tan tan

cos cos cos

L L LY

X L L L L
 (15) 

Time differentiation on Eqs. 14 and 15 gives r  and   in the matrix form as: 

 

      

        


     

    
       

1

2 2 3 3 3 4 4 4

4 4 4 2 2 3 3 3

sin sin sincos sin

sin cos cos cos cos

L L Lr r

r L L L
 (16) 

4. Equations of motion 

Figure 2 illustrates a four-bar mechanism with revolute clearance joint in connection of the 

coupler and the rocker. The clearance magnitude is magnified in order to better comprehend the 

problem. Each revolute joint with clearance removes two kinematic constrains, hence, this 

mechanism is a three-degree-of-freedom linkage. Therefore, dynamics of the journal inside the 

bearing is controlled by the impact-contact forces. Generalized coordinates to set the system 

configuration is   
2 3 4

[ ; ; ]q . 

 

Fig 2: Four-bar mechanism with revolute clearance joint between the coupler and rocker. 
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The Lagrangian equations for the motion of an unconstrained dynamical system are in the form: 

 

,nc k

k k

d L L
Q

dt q q

  
  

  
     ;   2,3,4k   (17) 

where  L T U  is the Lagrangian function. T and U are the system kinetic and potential 

energies respectively. ,nc kQ  is the non-conservative generalized force corresponding to the 

generalized coordinate kq  and can be calculated as: 
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,* *
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. .
c i i

nc k i i

i k k

V
Q F M

q q





  
     
  (18) 

In Eq. 18, 
*

iF  and 
*

iM  are the resultants of the external forces and moments acting on the mass 

center of the body i   respectively. ,c iV  and i
 are the translational and rotational velocities for 

the mass center of the body i  respectively. Using Eq. 18, the generalized forces can be written as 

follows: 

  
2 2 2 2sincQ L Q M      

  
3 3 3sin sinc iQ Q L R       

  
4 4 4sin sinc jQ Q L R       

(19) 

In Eq. 19, 2M  is the external moment asserted on the crank. 

Kinetic and potential energies of the system are written as follows: 
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The Lagrangian function is: 
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(22) 

Then, differential equations of motion are obtained by using the Lagrange equation for each  

generalized coordinate and given by, 

 

                2
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cos( ) sin( ) cos cos sin( )
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1 1
cos sin( ) R sin( )

4 2G c J c
I m L m gL L Q Q  (25) 

where iL  is the length of the 
thi  link and 

iGI  denotes the inertia moment about the center of mass 

for each member. 2M  is the required input torque exerted on the crank to maintain its constant 

angular velocity. 

5. Results 

Detection of the beginning instant of the contact process is very important for mechanical 

systems with contact phenomenon. This is for computing the exact initial impact velocity 
( ) 

 

and therefore, a variable time step-size algorithm must be utilized. The initial conditions for 

numerical simulation are based on the results of the kinematic analysis of the four-bar 

mechanism in which all the joints are assumed to be ideal [31]. 

The first contact between the journal and the bearing is detected under the following condition: 

    1 0n nt t    (26) 

Therefore, the contact may occur between the two discrete times of 1nt   and nt . Since, the 

continuous contact force model is utilized, this trend continues, regarding the other contact 

process. 
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In order to validate the numerical simulation performed in this paper, some results including the 

follower acceleration, external moment asserting on the crank and the journal center trajectory 

relative to the bearing center are compared to the numerical results published by Flores et al. [31] 

(see Fig. 3). 

 

(a) 

 

(b) 

 
(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 3: Numerical results in the present work: (b) follower acceleration, (d) crank moment required to keep the crank 

angular velocity constant, (f) journal center trajectory relative to bearing center for clearance 0.2mm. (a), (c) and (e) 

are the corresponding numerical results from Flores [31]. 
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Geometrical and material properties of the linkage required for numerical simulation are listed in 

Table 1. Erkaya and Uzmay [8] studied the same mechanism with multiple revolute clearance 

joints. 

 

 

Table 1: Geometrical and material properties of the mechanism. 

Link number Mass (kg) Length (m) Inertia moment (kg∙m2
) 

1 − 0.8 − 

2 0.494 0.25 0.0046 

3 1.003 0.75 0.0545 

4 0.74 0.45 0.0189 

 

 

The linkage dynamic behavior for two different crank rotational velocities has been simulated. 

The clearance size and the friction coefficient between the contact surfaces of the journal and 

bearing are equal to 0.5 mm and 0.1 mm respectively. The coupler angular acceleration in 

comparison with the ideal joint and the journal center locus are computed for these two crank 

angular velocities as shown in Fig. 4. These figures belong to two rotations of the crank. A high 

peak appears in the rocker acceleration when the impact mode occurs among the joint elements. 

As the links are rigid, the impact forces are spread through the mechanism and identically 

appeared as high moment peaks, (Figs. 4a and 4c). When the journal follows the bearing wall 

and contact loss does not occur, continuous contact mode is governed in the journal-bearing 

system. Furthermore, this is observed as low amplitude perturbations around the ideal response. 

 

(a)

 

(b) 

 

Fig 4: Coupler angular acceleration for: (a) 250rpm and (c) 3500rpm; Journal center  

trajectory relative to the bearing center for: (b) 250rpm and (d) 500rpm. 
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At low speed, the high peak points in the coupler acceleration are related to the impact-rebound 

mode, hence small perturbations around the ideal case refer to the continuous contact mode 

between the journal and the bearing. When the crank velocity increases, the coupler acceleration 

amplitude increases and contact loss does not occur since the journal will track the bearing wall 

forever. It can be seen from Fig. 4d that the journal will not be in contact at some regions of the 

bearing surface when the mechanism exhibits periodic motion. 

In general, impact loads due to joint clearance cause a chaotic behavior in dynamic response of 

the system. Discrete system behavior is shown in Fig. 5. As illustrated in Figs. 5b and 5c, at low 

values of the crank speed (250rpm), frequent collisions occur between the joint elements and this 

leads to chaotic motion. Since the number of points in the Poincaré portraits are infinite, 

existence of strange attractors or chaos can be deduced in the dynamic response. These figures 

contain 30000 points. Fractal structure is clearly visible in these figures as the main characteristic 

of chaotic systems. Fractal means that the geometry has infinite details and self-similar structures 

at different levels of magnification. A wide output frequency spectrum of the system is another 

way to detect chaos, while the system input is a harmonic motion with single frequency. In order 

to represent the system response in the frequency domain, FFT analysis is carried out. For 

periodic motion, there are differentiable high peaks at the system natural frequency and its 

harmonics while a wide range of frequencies along with disturbances are visible for chaotic 

motion. In the case of chaotic motion, frequency response of the system involves disturbances 

between two consecutive natural frequencies. 

Bifurcation diagram, Poincaré portraits and FFT plots are simulated at the speed of 3500 rpm in 

Fig. 6. The system contains period-one orbit in this clearance size 0.44 mm. In this case, the 

system response has only one stable fixed point and this will be attracted to the stable limit cycle 

in continuous phase space when the response reaches it’s steady state behavior. For period-one 

motion, the recognizable peaks in the FFT diagram are just repeated at integer coefficients of the 

system natural frequency and the plot is smooth in other frequencies (Fig. 6b). The highest peak 

(c) 

 

(d) 

 

Fig 4: Coupler angular acceleration for: (a) 250rpm and (c) 3500rpm; Journal center  

trajectory relative to the bearing center for: (b) 250rpm and (d) 500rpm. 
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is always associated to the natural frequency of the system and its exact value is determined in 

the figure. 

 

                                            (a) 

 
(b) 

 

(c) 

 

Fig. 5: (a) FFT plot, (b) and (c) Poincaré portraits describing the four-bar linkage behavior for 250rpm. 

 

Chaotic and periodic behaviors are also depicted in the continuous phase space in Fig. 7. 
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                            (a) 

 

                            (b) 

 
(c) 

 

(d) 

 

Fig. 6: Bifurcation diagram (a), FFT plot (b) and Poincaré portraits (c-d) describing the four-bar 

linkage behavior for 3500 rpm 
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(a) 

 

(b) 

 

Fig. 7: The continuous state space of system response for: (a) rpm, (b) rpm. 

6. Conclusion 

In this research, nonlinear behavior of a four-bar linkage with clearance is investigated. 

Differential equations of motion are derived using the Lagrangian approach. Impact and rebound 

modes between the journal and the bearing lead to high peak points in the coupler acceleration. 

When the journal follows on the bearing wall, continuous contact mode is occurred and the 

system response oscillates with slight amplitudes around the ideal case. 

Poincaré portrait and FFT analysis are applied to represent the system behavior in the discrete 

state space and frequency domain respectively. Bifurcation analysis with the change in clearance 

size is applied for a specific value of the crank angular velocity. Because a four-bar mechanism 

with clearance is a high-order nonlinear system, more intricate Poincaré mapping figures are 

expected. Strange attractors or chaos phenomenon can be deduced in the mechanism behavior 

which are the main characteristics of a chaotic system. As shown, the system response will be 

attracted to it’s period-one orbit embedded in the strange attractors when the crank input velocity 

increases. 

It is observed that the results extracted from FFT analysis and Poincaré phenomena are in precise 

conformity with those obtained from bifurcation diagrams. 
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