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Abstract

This thesis is concerned with the dynamic fluid transport properties of fractures and
porous media and their application to the estimation of formation hydraulic prop-
erties using borehole acoustic logging techniques. In the first part of the thesis, the
dynamic response of a viscous fluid in a borehole fracture to the oscillatory pres-
sure excitation of borehole acoustic waves is investigated, which leads to the theory
of fracture dynamic conductivity. The distinction between this dynamic conductiv-
ity and the conventional cubic law conductivity is whether the viscous skin depth,
6 = (2v/w)1/2, is large or small compared to the thickness of the fracture. Although
this characteristics of dynamic fluid flow is obtained using the simple plane parallel
fracture model, the physics involved is universally true for dynamic fluid flow in hy-
draulic conduits of rocks. The theory of fracture dynamic conductivity is compared
with the theory of dynamic permeability of a general porous medium. It is found
that the latter theory, when applied to the the fracture case, is in excellent agree-
ment with the theory of fracture conductivity. This points to the general behavior of
frequency-dependent fluid motion through conduits in rocks, regardless whether they
are fractures or pores. Consequently, in acoustic logging measurements performed in
a typical frequency range of [2-20] kHz, the dynamic fluid flow theory, instead of the
conventional Darcy's law, is the appropriate theory for the fluid flow in the formation
induced by logging acoustic waves.

In the second part of the thesis, the concept of dynamic permeability is applied
to the important problem of acoustic logging in a permeable porous formation us-
ing borehole Stoneley waves. The interaction of the Stoneley wave with the porous
formation is decomposed into two parts. The first is the interaction of the Stoneley
with an equivalent elastic formation composed of the saturated porous matrix. The
second is the interaction with pore fluid flow governed by the dynamic permeability.
In this manner, a simple dynamic model is obtained for the Stoneley propagation
in permeable boreholes. This simple model is compared with the complete model
of the Biot-Rosenbaum theory for the effects of a porous formation on the Stoneley



propagation characteristics. It is found that the results from the two models agree
very well for a hard formation, although they differ at higher frequencies for a soft
formation because of the increased formation compressibility. The simple model is
also tested with recently published laboratory experimental data of Stoneley wave
measurements. The theory and experiment are in excellent agreement. As a result,
the application of the dynamic fluid flow theory not only clearly points to the physical
process involved in wave propagation in permeable boreholes, but also yields a much
simplified Biot-Rosenbaum model that can be applied to the problem of acoustic
logging in porous formations, especially to an inverse problem to extract formation
permeability from Stoneley wave measurements.

In the third part, the problem of acoustic logging in a fluid-filled borehole with a
vertical fracture is investigated both theoretically and experimentally. The Stoneley
wave is used to probe the borehole. The propagation of this wave excites fluid motion
in the fracture and the resulting fluid flow at the fracture opening perturbs the fluid-
solid boundary condition at the borehole wall. The dynamic conductivity is applied
to measure the fluid flow into the fracture and a boundary condition perturbation
technique is developed to study the effects of the change in the boundary condition
on the Stoneley propagation. The results indicate that the fracture has significant ef-
fects on the Stoneley waves, especially in the low frequency range. Significant Stoneley
wave attenuation is produced and the Stoneley phase velocity is drastically decreased
with decreasing frequency. Ultrasonic experiments are performed to measure Stone-
ley propagation in laboratory fracture borehole models. Cases of both hard and soft
formations are studied. For both formations, the experimental results are found to
agree well with the theoretical predictions. The important result of this study is that,
a quantitative relationship between the Stoneley propagation and the fracture char-
acter is found. This relationship can be used to provide a method for characterizing
a vertical borehole fracture by means of Stoneley wave measurements.

In the last part, the guided wave propagation in a fluid-filled borehole with a
horizontal fracture is investigated. For the solution of the problem, a hybrid method
is used to generate wave modes for the two regions separated by the fracture. The
modes are then summed to match the boundary conditions at the fracture surfaces. A
singularity problem arises in matching the surface conditions and is regularized by bal-
ancing borehole fluid flow across and into the fracture. The latter flow is characterized
using the fracture dynamic conductivity. The results show that at low frequencies,
the Stoneley wave attenuation across a fracture is controlled by the fluid flow into the
fracture. As frequency increases, mode conversion at the fracture becomes important.
Above the cut-off frequency of the first pseudo-Rayleigh mode, the Stoneley wave is
strongly coupled with pseudo-Rayleigh waves, which is demonstrated by synthetic
microseismograms. The pseudo-Rayleigh wave is strongly attenuated and reflected
by thin as well as thick fractures. These effects are more pronounced towards the
cut-off frequencies than away from the frequencies. Consequently, in acoustic logging
measurements, the lack of wave energy across a borehole fracture may be a very good



indication of the existing fracture. The substantial effects of a fracture on pseudo-
Rayleigh waves have been verified in the laboratory by experimenting with thin and
thick fracture models. The experimental results demonstrate the guided wave char-
acteristics across a fracture and confirm the theoretical analysis on these effects. The
wave characteristics in the vicinity of a fracture, as described in this study, can be
used to provide useful information for the detection and characterization of borehole
fractures using acoustic logging techniques.

Thesis Advisor: M. Nafi Toks6z
Title: Professor of Geophysics

Thesis Co-Advisor: Chuen H. Cheng
Title: Principal Research Scientist
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Chapter 1

Introduction

1.1 The Subject of the Thesis

One of the prominent features of the earth's upper crust is the presence of fractures

and joints of all scales. In addition, many rocks in the upper crust have porosity

and are characterized as porous, permeable media. The determination of fluid-flow

properties of sedimentary as well as crystalline rocks are of great importance for basic

scientific studies, ground water hydrology, environmental problems, and the evalua-

tion of the hydraulic conductivity of reservoir rocks in petroleum production. One

technique which can directly measure the fracture and porous medium properties is

acoustic logging in a borehole that penetrates such formations. This logging mea-

surement involves acoustic waves that are generated by a source in the borehole and

propagate along the borehole. The focus of this thesis is to study the response of

a viscous fluid, saturating fractures and pores of the formation, subject to a bore-

hole wave excitation, and the determination of hydraulic conductivity using borehole

guided waves.

In the study of formation hydraulic properties using acoustic logging, one must

bear in mind that the fluid flow in the formation fracture or pore system due to a

borehole wave is dynamic in nature, because acoustic logging is usually performed in



a typical frequency range of [2-20] kHz. The nature of dynamic fluid flow in fractures

and porous media must be understood before it can be applied to study its effects on

borehole acoustic waves. On the other hand, the incorporation of the flow effects into

the borehole propagation problem is a non-trivial task. In addition to the fluid flow

effects, the borehole waves may also be subject to such effects as the coupling with

the elastic properties of the formation and the scattering and mode conversion at

the fracture surfaces, etc. For example, in the case of logging in a porous formation,

the motion of the borehole wall includes both the elastic deformation of the wall

and the fluid flow through the wall, while in the presence of a vertical fracture along

the borehole, in addition to the effects of elastic wall motion and fluid flow, axial

symmetry is lost because the fluid flow occurs at a small part of the borehole wall.

Furthermore, in the presense of a horizontal fracture, the wave phenomenon becomes

more complicated. The borehole waves leak their energy into the fracture and are

scattered at the fracture surfaces. For each particular problem, this thesis develops

specific techniques to find the solutions and analyzes the borehole wave propagation

characteristics. Ultrasonic borehole fracture model experiments are also performed

to study wave propagation in these models and to test the theoretical predictions. To

this end, the thesis provides the physical insight into the various problems associated

with acoustic logging in fractured and porous formations and illustrates some useful

applications.

1.2 Background

During the propagation in a fluid-filled borehole, seismic waves interact with the

formation and the effects of this interaction are recorded by a receiver in the borehole.

The time series of the entire recorded wave trains displayed for successive measured

depths are known as full waveform acoustic logs. The first arrival of the full waveform

acoustic log is the compressional head wave which propagates along the borehole



wall. Following the head wave are borehole guided waves: the pseudo-Rayleigh and

Stoneley waves. Because a large portion of strain energy of these waves is trapped in

the borehole, they are the prominent arrivals on an acoustic log. The pseudo-Rayleigh

wave exists above a certain frequency called the cut-off frequency. The onset of this

wave arrives at the shear wave velocity of the formation and the wave is strongly

coupled with the formation shear strength. Therefore, the pseudo-Rayleigh wave is

sensitive to the formation fractures that are filled with fluid with zero shear strength.

The Stoneley wave is an interface wave borne in borehole fluid. This wave exists for

all frequencies but is most effectively excited at low frequencies. Because this wave is

effectively associated with borehole fluid pressure, the Stoneley wave tends to drive

the fluid into the formation through fractures and pores that are open to the borehole

wall. The hydraulic exchange results in the change in the Stoneley wave velocity and

attenuation. Thus the Stoneley is sensitive to the formation permeability and fracture

conductivity.

The study of acoustic wave propagation in a cylindrical borehole appeared in the

1950's and 1960's, and has undergone a rapid development in the past ten years. The

theoretical foundation was laid by Biot (1952), who presented a derivation of the pe-

riod equation for borehole guided waves and their dispersion characteristics. White

and Zechman (1968) computed synthetic microseismograms for a borehole containing

a rigid tool in the center. Roever et al. (1974) studied the the wave propagation

in terms of modal theory and a ray-type expansion, which led to the discovery of

the laws of amplitude decay of borehole head waves as a function of distance. These

geometric decay laws were in agreement with later work of Winbow (1980), Zhang

and Cheng (1984), and White and Tongtaow (1981). Using a branch cut integration

technique, Tsang and Rader (1979) gave the form of the pressure response for the

early part of the signal with the head wave arrivals. Peterson (1974) studied the full

waveform as a sum of guided waves by generating synthetics via pole and branch

cut integration in the complex wavenumber plane. Rosenbaum (1974) investigated



the effect of formation permeability on high frequency acoustic wave train by using

Biot (1956a,b) theory for a porous solid to model a permeable formation surround-

ing a borehole. Although there was not much interest following the publication of

the work, the topic pioneered by this work has now become an important topic of

intense research in the past few years, and will be discussed in more detail in Chap-

ter 3. In the past decade, borehole acoustic logging studies have gained significant

progress in both theoretical development and field applications. Cheng and Toks6z

(1981) applied the discrete wavenumber technique to generate synthetics for various

formations. They also investigated the effect of an elastic tool along the borehole axis

on the wave characteristics. Cheng et al. (1982) found that the Stoneley wave in a

soft formation is influenced strongly by the formation shear velocity . This allows

the use of this wave as an indirect method for obtaining the formation shear veloc-

ity (Cheng and Toks6z, 1983; Chen and Willen, 1984; Liu, 1984; Stevens and Day,

1986). Cheng et al. (1982) applied the sensitivity analysis of borehole guided waves

to the determination of in-situ attenuation from full waveform acoustic logs. This

technique has later been further developed by Burns (1986) for the radially layered

geometry which occurs when an altered zone is present in the formation or casing

is introduced into the borehole. For the layered geometry, Schoenberg et al. (1981)

studied synthetic waveforms in conjunction with laboratory scale model waveforms.

Tubman et al. (1984, 1986) computed synthetic microseismograms in cased boreholes.

In addition to the increasingly complex geometry, complexities in formation physi-

cal properties have also been introduced. White and Tongtaow (1981) investigated

the case of a borehole surrounded by a transversely isotropic formation. Recently,

Elleffsen (1990) has studied the problem using perturbation and variational methods

and inverted formation anisotropic properties using Stoneley waves. Chan and Tsang

(1983) treated the case of multiple radial layers, the elastic constants of each layer

being transversely isotropic. Schmitt (1989) investigated the more complicated case

of a borehole surrounded by multiple porous layers with anisotropy in both elastic



constants and permeabilities. Problems that involve bed-boundaries have also been

treated. Stephen et al. (1986) have computed finite-difference synthetic microseis-

mograms for such problems. Recently, Tsang (1985, 1987) has treated the transient

acoustic logging problem for a borehole with a horizontal bed boundary separating

two formations. The technique he used was a hybrid method. This method is a useful

tool for studying wave propagation in waveguides with discontinuities, and will be

described in more details in Chapter 5.

In the past ten years, full waveform acoustic logging has found an important ap-

plication in the detection and characterization of borehole fractures. Through field

observations, Paillet (1980) was able to recognize the effects of fractures intersecting

the borehole on the logging waveforms. Since then, studies based on field data (Pail-

let, 1983; Hsu et al., 1983; Arditty and Staron, 1987; Hardin et al., 1987; Brie et al.,

1988), theoretical modeling (Bhashvanija, 1983; Stephen et al., 1985; Mathieu, 1984,

Tang and Cheng, 1989; Hornby et al., 1989), and ultrasonic laboratory models (Giler

and Toks6z 1987; Lakey, 1985; Poeter, 1987; Hornby et al., 1989) have been used to

relate acoustic log characteristics to fracture properties. All studies show that full

waveform acoustic logs are attenuated by fractures. The magnitudes of attenuation

have been different. The field results show significant attenuation in some cases and

little attenuation in others. Theoretical results, obtained using different techniques

and different assumptions in formulating the problem, have yielded different results.

The theoretical studies have been concerned with fluid-flow in a fracture. The problem

of fluid-flow in a fracture has been studied by many workers starting from Boussinesq

(1868). The analogy of parallel planar plates is commonly adopted to represent the

fracture surfaces and the fluid-flow is assumed laminar. Snow (1966), Romm (1966),

Louis (1969), and Bear (1972) have derived the basic equations describing the flow

through a fracture. These workers have shown that the hydraulic conductivity of a

fracture is proportional to its aperture cubed. Witherspoon et al. (1980) performed

experiment to evaluate the validity of the cubic law and found that this law is valid



even for a closed fracture where the surfaces are in contact. Later numerical simu-

lations of Brown (1987) and Rothman (1988) have substantiated this experimental

observation. Because the cubic law is well established, several workers tried to apply

it to characterize in-situ fracture properties using seismic measurements. For exam-

ple, Beydoun et al. (1985) applied the cubic law to relate the borehole tube waves

and the fluid-flow in a borehole fracture intersecting the borehole. Mathieu (1984)

formulated the problem of Stoneley wave attenuation across a plane-parallel fracture

by assuming that the fluid flow in the fracture is governed by viscous forces and

that the conduction of fluid obeys cubic law. His result, however, when applied to

the laboratory modeling data, would predict the almost complete attenuation of the

Stoneley waves. But the laboratory data show that Stoneley waves can cross fractures

as thick as the borehole radius and still has significant amplitude (Giler and Toks5z,

1987). It is this discrepancy between theory and experiment that leads the study of

dynamic fluid-flow effects in Chapter 2. The earliest modeling of wave propagation

across a horizontal fracture was based on the direct calculation of waveform time

series using finite-difference models containing boreholes and fractures (Bhashvanija,

1983; Stephen et al., 1985). These calculations require large fracture apertures in the

modeling because of the number of nodal points needed to resolve the effects of the

fracture. In addition, because of the overlap of different wave components (such as

pseudo-Rayleigh and Stoneley waves) in the time domain, the response of the fracture

on each wave component is difficult to resolve. In Chapter 5, this problem is treated

in the frequency domain using the hybrid method of Tsang (1985, 1987), and the

effects of the fracture on borehole guided waves are studied.

Although horizontal and inclined fractures are a common phenomenon in acoustic

logging, vertical fractures are frequently encountered in many situations. For ex-

ample, the fractures resulting from hydraulic fracturing in oil production are often

vertical. Borehole Stoneley waves are found to attenuate along such fractures (Cheng,

personal communication). Laboratory modeling of Giler and Tok6z (1987) has also



demonstrated this phenomenon. However, theoretical modeling was not available

to help understand the cause of this phenomenon. In Chapter 4, this problem will

be handled using a boundary condition perturbation theory in conjunction with the

dynamic flow theory developed in Chapter 2 of this thesis.

1.3 Outline of Thesis

This thesis is divided into six chapters. Chapter 1 defines the subject of the thesis,

reviews the background work concerning acoustic logging in fractured and permeable

formations, and outlines the studies covered by this thesis.

Chapter 2 studies the dynamic fluid flow effects in a fracture filled with a Newto-

nian viscous fluid. On the basis of the analysis, the theory of dynamic conductivity of

a fracture is derived, and is applied to obtain a simple model for Stoneley wave prop-

agation across a fracture. Comparison is then made between the theory of fracture

dynamic conductivity and the theory of dynamic permeability of a porous medium.

The comparison reconciles the two theories and illustrates the general behavior of

dynamic fluid motion in hydraulic conduits of rocks, be they fractures or pores.

Chapter 3 illustrates a successful application of the dynamic fluid flow theory to

the important problem of logging in porous formations. This chapter begins by briefly

reviewing currently existing models for Stoneley propagation in permeable boreholes

and their similarities and differences. These are some quasi-static models and the

complete model of Biot-Rosenbaum theory. The differences arise because the dynamic

effects of pore fluid flow were not taken into account in the quasi-static models. By

characterizing the dynamic pore fluid flow using the concept of dynamic permeability,

this chapter presents a very simple dynamic model which yields practically the same

results as those from the Biot-Rosenbaum model in the presence of a permeable hard

formation. Comparison is also made between laboratory experimental data and the

simple theory and there is an excellent agreement between theory and experiment.



The study of this chapter provides a useful simple model which can be applied to the

estimation of formation permeability using Stoneley wave measurements.

In Chapter 4, the problem of logging in a vertically fractured borehole is in-

vestigated both theoretically and experimentally. The borehole is probed using the

Stoneley wave, whose propagation excites dynamic fluid flow in the fracture. The dy-

namic conductivity is then used to measure the amount of fluid flow into the fracture.

A boundary condition perturbation technique is developed for the borehole situation

and is used to study the effects of the fracture on the Stoneley wave propagation.

Cases of both hard and soft formations are studied. Ultrasonic experiments are per-

formed to measure Stoneley propagation in laboratory fracture borehole models using

aluminum and lucite as the hard and the soft formation, respectively. The experi-

mental procedure and data processing are described. The results are compared with

theoretical predictions. This chapter provides the relationship between the Stoneley

propagation and the fracture character. This relationship can be used to provide a

method for characterizing a vertical fracture by means of Stoneley wave measure-

ments.

Chapter 5 treats the problem of guided wave propagation in a fluid-filled borehole

intersected by a horizontal fracture. A hybrid method is employed to generate wave

modes in the two regions separated by the fracture. The coupling of the modes with

the boundary conditions at the fracture surfaces results in the transmission and re-

flection of the incident borehole wave. A singularity problem arises in matching the

surface conditions and is regularized by balancing the fluid flow across and into the

fracture. The latter flow is measured using the fracture dynamic conductivity. The

effects of the fracture on the borehole Stoneley and pseudo-Rayleigh waves are ana-

lyzed and are compared with the results from the ultrasonic experimental modeling.

The guided wave characteristics in the vicinity of a fracture as described in this chap-

ter may be used to provide useful information for the detection and characterization

using acoustic logging technique. Chapter 6 summarizes the important results and



major conclusions of this thesis.



Chapter 2

Dynamic Fluid Flow in Fractures

and Porous Media

2.1 Introduction

There is an increasing interest in fracture characterization in using both full waveform

acoustic logs and vertical seismic profiling (VSP) surveys (Paillet, 1980; Hsu et al.,

1985; Beydoun et al., 1985; Hardin et al., 1987). In full waveform logging, a model

by Mathieu (1984) has been used to model Stoneley wave attenuation across a frac-

ture. Although qualitative correlations were found between the model and field data

(Hardin et al., 1987), this model is imperfect because it is a kinematic rather than a

dynamic model. In VSP surveys, a model by Beydoun et al. (1985) has been used

to study tube wave generation by a borehole fracture. In both models, however, fluid

flow in the fracture was treated as quasi-static, and the "cubic law" (Snow, 1965) for

steady flow was assumed. Since both models deal with dynamic wave phenomena, the

validity of this law under dynamic conditions is subject to question. One of the major

goals of this chapter is to investigate the behavior of fluid motions in a fracture under

dynamic wave excitations. The results will lead to the theory of dynamic conductivity

of a fracture, which is an extension of the cubic law into the dynamic regime. As



will be shown later in this chapter, the distinction between high- and low-frequency

behaviors of the fracture fluid motion is whether the viscous skin depth, 6 - 2v/w,

is large or small compared to the aperture of the fracture. When 6 is large compared

to fracture aperture, fluid flow is diffusive, while when the reverse is true, fluid flow

becomes a propagational wave motion.

Analogous to the dynamic fracture fluid flow and conductivity, the fluid motion in

a porous medium possesses similar properties. The conventional static permeability

of a porous medium is analogous to the cubic law conductivity of a fracture. Under

dynamic wave excitation, the pore fluid flow also exhibits frequency-dependent be-

haviors, and is characterized as the "slow wave" in Biot's (1956a,b, 1962a,b) theory

for a porous medium. Basically, Biot's theory predicts three distinct types of waves in

a fluid-saturated porous medium (Biot, 1956a,b), the "fast" compressional and shear

waves, and the the slow compressional wave. The former waves are analogous to the

P and S waves in an elastic solid, while the latter wave is a dilatational wave primarily

associated with the motion of the pore fluid. Cleary (1978, 1980) pointed out that

the slow wave does not contribute appreciably to the stress associated with the low

frequency disturbance and can not be easily detectable in low permeability materials

because of its diffusive nature. In high permeability materials such as sintered glass

beads, the slow wave was observed as a propagation wave (Plona, 1980), and calcula-

tions show that the measured properties are entirely consistent with the Biot theory

(Dutta, 1980). Using Biot theory, Schmitt (1985, 1986) has made a thorough study

on the behaviors of these three waves and their variations with permeability, poros-

ity, and saturant fluid, etc. Of the three waves, the slow wave is the most sensitive

to these parameters. The slow wave exhibits strong frequency-dependent behaviors.

At low frequencies, the slow wave motion is diffusive, and the amount of fluid flow

driven by this motion is well described by the static Darcy's law. At high frequencies,

however, this wave is a propagational wave and the fluid flow is no longer governed by

this law. To address this frequency-dependent fluid transport problem, Johnson et al.



(1987) developed the theory of dynamic permeability for fluid-saturated porous media

based on these low- and high-frequency behaviors of the pore fluid motion. Because

of the similarity between the the theory of dynamic conductivity of a fracture and

that of the dynamic permeability of a porous medium, it is instructive to compare

the two theories and obtain a reconciliation for the theories. It will be shown in this

chapter that dynamic permeability, when applied to the fracture case, is in excellent

agreement with the exact dynamic conductivity. The success of this comparison will

further demonstrate the general applicability of the dynamic permeability to porous

media, whatever the pore shape and sizes.

There are two major parts in this chapter. In the first part, dynamic wave equa-

tion for a viscous fluid are solved in conjunction boundary conditions at the fracture

surface. This leads to a characteristic equation which governs the relative importance

of viscous shear effects and wave propagation effects. Based on these solutions and

Darcy's law, the fracture dynamic conductivity is derived to characterize fluid con-

duction under dynamic conditions. Then the dynamic flow theory is used to study

Stoneley wave attenuation across a borehole fracture. Relevance to previous Stoneley

wave attenuation theories will also be discussed. In the second part, the theory of

dynamic permeability is tested with the exact fracture dynamic conductivity in the

case of a fracture. The relation between dynamic permeability and Biot's slow com-

pressional wave is also demonstrated. By using dynamic permeability, an equation

that governs the dynamic pore fluid flow is derived, which will be applied to study

wave propagation in permeable boreholes in Chapter 3.

2.2 Dynamic Fluid Flow in a Fracture and Dy-

namic Conductivity

In this section, the dynamic response of a viscous fluid in a borehole fracture to the

oscillatory pressure excitation of borehole Stoneley waves at the fracture opening will



be studied. In a viscous fluid, a small-amplitude wave motion is governed by the

equation of motion (i.e., the Navier-Stokes equation, see Landau and Lifshitz, 1959)

and the equation of continuity, which are written as

pT + YV ) = - V p +[p v 7v v, (2.1)

+ V (PV) = 0 ,(2.2)

respectively, where t is time, V is the fluid particle velocity, p is the pressure pertur-

bation, and p is viscosity. The density of the fluid, p, can be written as

P = po + p' , (2.3)

where po is the density at equilibrium and p' is the density perturbation. Neglect-

ing thermal effects in the fluid, one has the relation between pressure and density

perturbations:

p = ap' , (2.4)

where af is the acoustic velocity of the fluid. This relation follows from the constitu-

tive equation of fluid p'/p = p/Kf, where K = poa. Substituting equation 2.3 and

2.4 into equations 2.1 and 2.2 and using the fact that i is also a perturbation, one

can linearize equations 2.1 and 2.2 by taking only the first order perturbation. In the

frequency domain, the linearized equations are

1 2 - V --iwv±+-Vp = vV V + - V - , (2.5)
PO 3

-imp+ poaf V = 0 , (2.6)

where w is angular frequency and v = lpo is the kinematic viscosity. Using vector

decomposition, one can write V as

V = V4+,7 x 0 ,(2.7)

where 4 is the acoustic wave potential and ' is the viscous shear potential (Landau

and Lifshitz, 1959). Substitution of equation 2.7 into equations 2.5 and 2.6 gives

7 2 + 2 4. = 0 , (2.8)
a - WV
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V2 + - 0 . (2.9)
V

Equations 2.8 and 2.9 can now be applied to study the fluid motion inside a horizontal

borehole fracture, which is modeled as a plane-parallel channel of thickness Lo and of

infinite extent. A fracture of finite extent can also be modeled in this way as long as its

extension is large compared to the wavelength. One considers cylindrical coordinates

(r, P, z) where r is the distance from the borehole axis, p is the polar angle, and z is

the vertical coordinate, with z = 0 at the center of the fracture opening. Assuming

axial symmetry of the problem, one can chose b = @',, where e is the unit vector

along the increasing p direction. Equations 2.8 and 2.9 may thus be written as

+ +. # = 0 (2.10)Or 2  r Or z 2  a - zo

+ + +2-0= 0 . (2.11)Or2  rOr r2  Oz2  v

By separation of variables, solutions of equations 2.10 and 2.11 are found to be

= H" 1)(kr)[Acos(fz) + Bsin(fz)] , (2.12)

=HM (kr)[C cos(fz) + D sin(fz)] , (2.13)

where

f2 = -k 2 , (2.14)
af - VzWV

f2 - k 2  , (2.15)

HP) and H4) are outgoing Hankel functions of order zero and one k = w/c is

the wavenumber of the fracture fluid, and A, B, C, and D are parameters to be

determined.

2.2.1 Characteristic Equation

One can now determine the parameters in equations 2.12 and 2.13 with the boundary

conditions at the fracture surface. Because of the axial symmetry, the fluid particle



(2.16)

velocity has only two components. According to equation 2.7, they are

ar Az
- -I)(kr)[Akcos(fz) +Bksin(fz) - Cfsin(fz) +Dfcos(fz)]

&q# 8#b #
az ar r

= H 1l(kr)[-Afsin(fz)+Bfcos(fz)+Ckcos(fz)+Dksin(fz)]

(2.17)

It is now assumed that the formation is rigid. This is appropriate when the fracture

is in a hard formation whose elastic moduli and density are much larger than those of

the fluid. The non-rigid formation case will be addressed later in section 2.4 of this

chapter. For the rigid fracture surfaces, the viscous non-slip boundary condition at

the fracture surface gives

Vr = Vz = 0 , (at z L (2.18)

Substitution of equations 2.16

homogeneous equations:

and 2.17 into equation 2.18 results in a system of

Gx=0 , (2.19)

where:

X T= [A B C D] , (2.20)

and G is a 4 x 4 matrix whose elements are given by the terms such as k cos(fL),

f sin(f ka), etc. (equations 2.16 and 2.17). For x to have a non-trivial solution, the

determinant of G must vanish and this leads to the following characteristic equation

-Lo Lo
k 2 tan(f-) + ff tan(f -) = 0

2 2 (2.21)

This is an important equation because it relates both viscous shear and acoustic

propagation effects in the fracture. As a result, k = w/-c is no longer the free space



wavenumber, wave dispersion and attenuation will both occur. When k is found by

solving this complex equation the velocity dispersion is determined and the quality

factor of the fracture fluid is given by

Re{k}
= .Imk} (2.22)

Figure 2-1 plots the wave velocity and Qf versus frequency for different fracture

widths. The fluid is water (p=l g/cm 3, p=0.01 gs-1 cm, and ay=1500 m/s). As

seen from this figure, the velocity and Qf are substantially reduced with decreasing

aperture and frequency. This can be understood because viscous shear is mostly a

boundary layer effect (Burns, 1988). The thickness of the boundary layer is measured

by the viscous skin depth 6 = f2v/w. When the 26 is comparable to the fracture

aperture, the viscous shear effects become dominant and the fluid motion exhibits

the diffusive nature, as can be seen from the decrease in both velocity and quality

factor in Figure 2-1. On the other hand, when 6 is small compared to the fracture

thickness, the viscous shear effects are minimal and the fluid motion is a propagat-

ing wave with its phase velocity approaching the free space velocity. In fact, these

behaviors can be obtained by asymptotically solving equation 2.21 at low and high

frequencies or small or large fracture apertures. When the argument of the tangent

functions in equation 2.21 is small (this condition can be satisfied by requiring either

low frequencies or small flow apertures), the tangent functions can be expanded in a

Taylor series

tan(f -) ~ f--+ (f )3 + (2.23)2 2 3 2
Lo -Lo 1 -Lo

tan(f ) ~ f + -(f-) 3 + - . (2.24)2 23 2

Substitution of the above equations into equation 2.21 results in

L2 L2k2 + f 2 + -- I2k2+-f4 ~0 (2.25)
12 12

Solving this equation, one finds

2 2 12) ( a 2 _!iw -1
= 2 4 . + - (2 + 3 (2.26)(af - gzv Lo zwv
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As will be shown in the following, the term wv/a' is a small quantity for ordinary

fluids. It can also be readily seen that (wLo/agf) 2 is a very small number at low

frequency or small fracture apertures (alternatively, one may interpretate this as that

the acoustic wavelength is much larger compared to the fracture aperture). Therefore,

the second term in both the numerator and the denominator of equation 2.26 is much

larger than the first term. This results in

12iwV
k2 L ' (6 > LO) . (2.27)

Equation 2.27 agrees with Rayleigh's (1945) results for sound propagation in an ex-

ceedingly narrow aperture. To show the high-frequency behavior of equation 2.21,

one rewrites it as

t n L ow 2 i2 2 2[1 i2 a2 -
2t \ a[1 - 4w (3 \ af[1 - 4iwv/(3af)])

Lo .2xv e2-
+ tan -o 2 -E1 = 0 (2.28)

26 i 2 WV

where 6 = V2v/w is the viscous skin depth, and e is the wave velocity in fracture. It

can be shown that Wv/v 2 (v can be either e or af) is a very small quantity even for very

viscous fluids and ultrasonic frequencies. As an example, one can take v = 10-3 m2/s

(this is 103 times as viscous as water), w = 27r x 106 Hz, and af ~ i ~ 1500 m/s. For

this case, wv/v 2 is on the order of 0.003. Thus for moderately high frequencies and for

fluids of ordinary viscousity, this quantity is generally very small. One now considers

the second term of equation 2.28. When the fracture aperture is considerably larger

than the viscous skin depth so that L0/(26) > 1 (this condition requires that either

w or Lo be large), the tangent approaches i, a finite value. But the denominator is

a large quantity. The second term is therefore a small quantity. To make the first

term a small quantity, e must be close to af (note that 4iwv/3aj < 1). Expanding

the tangent of the first term in series and taking the first order, one finds from

equation 2.28 that

i ) .e ~ af (1 - (2.29)



Since 6/Lo < 1, one has c ~ af. Thus

k - ~ - , (Lo > 6) . (2.30)
c af

The asymptotic solutions of equation 2.21, as given in equations 2.27 and 2.30, will

be used to illustrate the low- and high-frequency behaviors of the dynamic fluid

conduction in a fracture in the following section.

2.2.2 Dynamic Conductivity of a Fracture

It is well known that fluid conduction in a fracture under a static pressure gradient

obeys the cubic law (Snow, 1965). The fluid conduction in a fracture under dynamic

pressure excitations is of particular interest of this section. By using k determined

from equation 2.21, a non-trivial solution of x in equation 2.20 can be found, whose

elements are specifically given as

B =0,

C = 0,
k cos(f '0)

D - - A (2.31)
S fcos(fI2 )

Therefore, only one parameter (say A) needs to be found, and it is determined by

pressure continuity at the fracture opening. By using equations 2.6, 2.7, and 2.12,

pressure in the fracture is found to be

p = ipOA Ho1)(kr) cos(fz) . (2.32)1 - (4iov)/(3aj)

At the fracture opening r = R, equation 2.32 is averaged over the fracture width LO

to match the borehole fluid pressure p(w, R), which is taken to be independent of

z because LO is small compared with the Stoneley wave wavelength (Hardin et al.,
1987). By so doing, A is determined as

p(w, R)[1 - 4iwv/(3a2)]f Lo/2
A = - (2.33)

iwpoHol (kR) sin(f Lo/2)
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Once A is known, the fluid motion in the fracture is completely specified by equa-

tions 2.16 and 2.17. One can therefore find the fluid flow conducted into the fracture

opening, which is given by

LO
q(F) = 21xR [2 vdz , (at r = R)

2

ZwL 0  H(1) (k)- k2a -p(w, R)k 27rR . (2.34)
kpo HOl (kR)

By differentiating equation 2.32 with respect to r and using equation 2.33, it is readily

shown that the term in square brackets in equation 2.34 is the pressure gradient O av-

eraged over Lo and evaluated at the borehole radius r = R. Comparing equation 2.34

with Darcy's (1856) law

q = -C Vp , (2.35)

where q is now the flow rate per unit fracture length (analogous to q(F)/27rR in

equation 2.34) and C is the hydraulic conductivity for the steady state case, one can

see that the term in front of the square brackets in equation 2.34 is analogous to C,
and is therefore defined as the dynamic conductivity of the fracture:

O V = 2ciwo (2.36)

where k is given by the solution to equation 2.21. It should be emphasized that,

although equations 2.21 and 2.36 are obtained with a borehole geometry, they are

also valid in general fracture fluid flow problems. The asymptotic behaviors of C at

low and high frequencies (or small and large flow apertures) can be readily obtained.

Substituting equations 2.27 and 2.30 into equation 2.28, one has

C (6 > Lo) (2.37)
12p

-i Lo
C L , (6 < Lo) (2.38)

wpo

Equation 2.37 is exactly the cubic law (Snow, 1965). Thus the definition in equa-

tion 2.36 is consistent with this well defined law at low frequencies. Whereas at high



frequencies, C becomes a purely imaginary quantity, decreasing with frequency as

w-1. This means that the fluid conduction will be largely reduced as W --> 00. Fig-

ure 2-2 plots the amplitude (a) and phase (b) of the dynamic conductivity for different

flow apertures. The amplitudes reach the highest value given by the cubic law at the

zero frequency, and decreases with increasing frequency. The larger the aperture, the

faster they decrease, as indicated in Figure 2-2a. Figure 2-2b is a complement to

Figure 2-2a showing that the phase of C approaches 7r/2 as frequency increases. The

larger the aperture, the faster the phase approaches this value, at which C becomes

an imaginary quantity.

2.2.3 Application to Stoneley Wave Attenuation across a

fracture

In this section, the fracture fluid flow model is applied to study Stoneley wave at-

tenuation across a single horizontal borehole fracture. Using the same cylindrical

coordinates described previously, the borehole fluid pressure due to Stoneley waves

can be written as (Biot, 1952; Cheng and Tok6z, 1981)

p() = E(l)Io(nr)e±irz , (2.39)

where Io is the zeroth order modified Bessel function of the first kind and E(O's are

as yet undetermined coefficients. Equation 2.39 includes Stoneley waves incident on

(= I, e±irz _+ e+iKz), reflected back from (I = R, el" -+ e-inz), and transmitted

across (I = T, eisz _, C+iKZ) the fracture opening; and

C2

n2 ,2(1 - )2 (2.40)
a1

where , = w/c and c is the Stoneley wave phase velocity along the z axis. The axial

particle velocity in the borehole fluid is given by

1 dp(l)
o 1=dpQ , (1 = I, R, T) . (2.41)zw po dz



Since fracture width Lo is generally small, no significant pressure drop will occur

across the fracture. Pressure continuity gives

P(I) + P(R) _ P(T) , (at z = 0) (2.42)

Substituting equation 2.39 into equation 2.42, one obtains

E(T) = E(I) + E(R) . (2.43)

Under dynamic conditions, volume conservation of fluid flow is governed by equa-

tion 2.6. Integrating this equation over a small volume AV and applying the diver-

gence theorem, one gets

- 6-dS= 2  -pdV , (2.44)

where AV =rR 2Lo is a flat cylinder of height Lo and radius R located at the fracture

opening, and S is the surface enclosing AV. The normal to S is pointed outwards

from AV. Equation 2.44 has the simple physical meaning that the net flow into AV

equals the dynamic volume compression of AV. In previous models of Mathieu (1984)

and Hornby et al. (1989), this dynamic effect was not taken into account. However,

this effect is generally not significant since LO is small. The net flow into AV is

- . d5 q(I) + q(R) q(T) q(F) , (at-z0) (2.45)

where

q() =27r R v('Irdr , ( = I, R, T) (2.46)

and q(F) is the flow away from AV into the fracture, as given by equation 2.34. If one

approximates the pressure inside AV by the transmitted pressure p(T), the volume

integral in equation 2.44 is given by

V p(T)dV = 2rL0 I1 (nR)E(T) , (2.47)



where 11 is the first order modified Bessel function of the first kind. When the

integration in equation 2.46 is completed using equations 2.39 and 2.41, equations 2.44

and 2.47 are combined to give

q(F) 27rR I1(nR) E(I) - E(R) - (1 - iwcLo )E(T) . (2.48)
pocn a a2

Equating the pressure at the fracture opening (i.e., p(w, R) in equation 2.34) to

p(T)(w, R), one has

p(w, R) = E(T)Io(nR) . (2.49)

Equations 2.44 and 2.48, together with equations 2.34, 2.47, and 2.49, are solved to

give the reflection and transmission coefficients of the waves. They are:

E(R) Y
Ref = E(I) i+Y (2.50)

E(T) 1
T, = E(') 1+y (2.51)

where:

PocOy k Io(nR) H' (kR) 2

2 Ii(nR) HO1l(kR)

where C is the dynamic conductivity given by equation 2.36. Thus it can be seen that

when a Stoneley wave comes across a borehole fracture, part of the wave is reflected

at the fracture opening, resulting in the attenuation of the wave amplitude of the

transmitted wave. Figure 2-3 shows the amplitude of the transmission coefficient

|T,,| as the function of fracture width LO for different frequencies. The borehole

diameter is 7.62 cm. The borehole fluid is water (af=1500 m/s), and the Stoneley

wave velocity is taken to be 0.95af. The general behavior of ITs| decreases with Lo

and increases with frequency. The simple Stoneley attenuation model derived here

will be compared with a more elaborate model in Chapter 5.

2.2.4 Relevance to Existing Stoneley Attenuation Models

In previous sections of this chapter, the fluid motion inside a fracture with rigid walls

is rigorously solved by relating both viscous shear effect and acoustic propagation



effect. The relative importance of these two effects is governed by a complex equation

(equation 2.21). When the former effect dominates, the fluid motion is diffusive, while

when latter effect dominates, the motion is propagational. A qualitative criterion is

the viscous skin depth b = 2v/w. For example, taking w = 27r x 1000 Hz, the

skin depths for water and mud (pmud 100p1water, Burns, 1988) are about 20 pm

and 200 pm, respectively. It has been shown in Figure 2-1 that when Lo > 100 Pm,

the velocity dispersion is not very significant (the fluid is water.). Also, as has been

shown in Figure 2-2, the dynamic conductivity for the small aperture (Lo =10 pm)

curve is nearly constant (the cubic law). The conductivity decreases with increasing

frequency when the flow aperture is large. These examples demonstrate that, for

fractures with large apertures, fluid flow is mainly a propagational effect. However,

when the flow aperture is the order of 2b, viscous effects will control the fluid motion.

The relevance of the present Stoneley attenuation model to previous models of

Mathieu (1984) and Hornby et al. (1987) can now be discussed. In Mathieu's model,

flow in the fracture was assumed diffusive and the fracture conductivity was given by

the cubic law. In addition, pressure excitation at the borehole opening was treated

as quasi-static by averaging it over the half cycle. An important parameter of this

model is the fluid diffusivity in the diffusion equation (Mathieu, 1984)

L 2
b = 4 (2.53)

127yp

where Y = p- 1(OP/&P)T is the fluid compressibility. It can be shown that iw/b is the

k2 in equation 2.27 at low frequencies. One uses the thermodynamic relation,

op C, _p

(--)T = - ( -)s , (2.54)
(9p CV OP

where S denotes entropy while T denotes temperature. For fluid, the ratio of the heat

capacities C,/Cv ~ 1. Thus y ~ p-1 (ap/0 p)s = p-la- 2 . This immediately gives

iw 12iwv
(2.55)b a2L2



agreeing with equation 2.27, where k2 oc iw implies that the wave motion is diffusive.

Thus the present model reduces to Mathieu's model at low frequencies or small aper-

tures. However, Mathieu (1984) modeled the pressure excitation as a step function in

the time domain, which is inconsistent with the present dynamic model. In addition,

Mathieu's model predicts that the transmission coefficient is minimally dependent on

frequency, whereas the present one can be strongly dependent on frequency. This

implies that when using the present model to determine flow aperture, this frequency

dependency has to be taken into account. Moreover, in order to produce a specific at-

tenuation, the present model generally requires a larger flow aperture than Mathieu's

model does.

In the Hornby et al. (1989) model, the fluid motion in a fracture is purely propaga-

tional. This is valid when the fracture fluid has very low viscosity (such as water), the

fracture aperture is not very small, and the frequency is high. In fact, under the above

mentioned conditions, the fracture fluid wavenumber, as determined by equation 2.21,

approaches the free space wavenumber, and the fluid motion becomes propagational.

Therefore, under these conditions, the present model is almost identical to Hornby et

al. (1989) model. However, as shown previously, at 1 kHz, the viscous skin depth is

of the order of 20 to 200 pm, depending on the viscosity. In situ fracture apertures of

the order of 100 pm are not uncommon. In VSP's, lower frequency means that the

skip depth is even greater, of the order of 500 pm or more, and thus one must take

the viscous effect into account for this to be a complete theory. The present model is

a complete theory valid for any flow aperture, fluid viscosity, and frequencies.

2.3 Dynamic Permeability of porous media and

Fracture Dynamic Conductivity

Under an oscillatory presure gradient, the motion of a viscous fluid that saturates the

pore space of a porous medium exhibits strong frequency-dependent behaviors. As



in the fracture case, the distinction between high- and low-frequencies is whether the

viscous skin depth, 6 = V2v/w, is small or large compare to the size of the pores.

For a homogeneous, isotropic, porous solid saturated with a Newtonian viscous fluid,

Johnson et al. (1987) developed the theory of dynamic permeability to characterize

the frequency-dependent behavior of the pore fluid flow. This theory is constructed

based on the high- and low-frequency behaviors of the pore fluid motion and a simple

model that satisfies certain analytical properties required by causality and reality for

a complex frequency. Detailed derivation of the theory is referred to the original

article of Johnson et al. (1987). Assuming that the solid frame is rigid, they derived

the complex permeability as

K (W) = , (2.56)
[1 - 4iaopow/(pA202)]1I 2 - iaopo/[

where no is the static Darcy permeability, w is the angular frequency, a is the high

frequency limit of the dynamic tortuosity, which is a parameter describing the tortu-

ous, winding pore spaces, po and p are fluid density and viscosity, respectively, and

# is porosity. The symbol A is a measure of pore size. If one models the pores as a

set of non-intersecting tubes, A is then given as (Johnson et al., 1987)

A 8aKo 1/2. (2.57)

In the case of a fracture, A is the fracture aperture and the number 8 in equation 2.57

is replaced by 12. For general porous media, one can use the relation in equation 2.57

for the value of A in equation 2.56. The low- and high-frequency behaviors of K(w)

are readily derived from equation 2.56. At low frequencies, N(w) --+ o; at high

frequencies, K(w) -+ ip#q/(apow), varying inversely proportional to w. Since K(w) is a

very important parameter that will be applied to the problem of logging in permeable

formations in the next chapter, it is desirable to test its validity and accuracy against

a simple model with known results.

In the first part of this chapter, the fracture dynamic conductivity has been ob-

tained based on the study of frequency-dependent fluid flow properties of a single



fracture. It is now ready to compare the fracture conductivity given in equation 2.36

with the dynamic permeability of a porous medium in equation 2.56. In order to do

so, one needs to use appropriate parameters for the permeability and deduce from

it a fracture conductivity that can be directly compared with the one given in equa-

tion 2.36. For the fracture case, the parameters in equation 2.56 are chosen as: a = 1,
A = Lo, o = L2/12 and <I = 1 . By Darcy's law, the fracture conductivity and per-

meability are related via C = rLo/p. Therefore, the fracture dynamic conductivity

derived from equation 2.56 is

L0 /121p
CMw = ./ (2.58)

[1 - ipowLO/(36pt)]' - ipowL /(12p)

It is obvious that the low- and high-frequency behaviors of equation 2.58 are exactly

those of the fracture dynamic conductivity, as given in equations 2.37 and 2.38. Thus

at low and high frequencies the two theories are in agreement. A complete comparison

between equation 2.36 and equation 2.58 is illustrated in Figure 2-4 for a set of fracture

apertures ranging from 10 Pm to 100 pm. The fluid is water with p = 1 cp. The

reason for choosing different apertures is that the fracture fluid motion is controlled

by the viscous skin depth 6 = V2v/w . For water, the skin depth is about 20 pm at

1 kHz and 8 pm at 5 kHz. For apertures which are small compared to 26 the fluid

motion is dominated by diffusion. While for apertures which are large compared to

6, the motion is mostly propagational. Thus the comparison of C(w) and C(w) from

small to large apertures will fully illustrate their compatibility in frequency ranges

from quasi-static to dynamic regimes. Figure 2-4a shows the amplitudes of C(w)

(solid curves) and O(w) (dashed curves) in the frequency range of [0-5] kHz. The

conductivities are normalized by their zero frequency value LQ/(12p). An excellent

agreement of C(w) with the exact O(w) is seen from the quasi-static regime (the

lower frequency part of the Lo = 10 pm curves), through the transition regime (the

Lo = 30 and 60 pm curves), to the dynamic regime (the higher frequency part of

the Lo = 100 pm curves). Figure 2-4b shows that not only their amplitudes but also

their phases are in excellent agreement. Thus the general formula of equation 2.56,



when applied to the special case of a fracture, agrees extremely well with the exact

solution of equation 2.36. In fact, equation 2.56 has been successfully tested with

large tube lattices with randomly varying radii (Johnson et al., 1987). The present

test, together with the previous test, further reflects the general applicability of the

theory of dynamic permeability to the modeling of frequency-dependent fluid flow

properties of porous media.

2.3.1 Relation Between Dynamic Permeability and Biot's

Slow Wave

It has been shown that the frequency-dependent transport property of porous media

can be expressed in terms of the dynamic permeability. It is appropriate here to

demonstrate the relation between dynamic permeability and Biot's slow compressional

waves and derive an equation that will later be used in the borehole propagation

problem. For a fluid-saturated porous medium, the equation of continuity for the

pore fluid is

--(p46) + N(4p) = 0 (2.59)

where t is time, v is the macroscopic fluid velocity through the porous medium. For

a small amplitude fluid motion, the density p can be written as

p=po+ p', 1(2.60)

where p' is the density perturbation which is related to the pressure disturbance P as

P P(2.61)
po K5

where 1K7 = p0a' is the fluid modulus. At this stage, elasticity of the solid frame

is ignored and only pore fluid flow that results from the pore pressure gradient and

permeability is considered. Therefore, one can still use Darcy's law

= - () P (2.62)
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However, an important modification to the conventional Darcy's law is that the static

permeability to is now replaced by the dynamic permeability 1i(w) given by equa-

tion 2.56. Transforming equation 2.59 into the frequency domain, then substituting

equations 2.60, 2.61, and 2.62 into it and taking the first order perturbation terms,

one obtains a linearized equation for the pore fluid pressure

SP+ -P = 0 ,(2.63)Do

where

Do (w)Kf (2.64)
#p

is the pore fluid diffusivity for the rigid frame case. A plane wave solution to equa-

tion 2.63 has a wave number k = Viw/Do . Using the dynamic permeability given

in equation 2.56 and substituting it into Do given in equation 2.64, one obtains

the low- and high-frequency behaviors of this wave motion. At low frequencies,

Do ~ const. and k oc viw , indicating that this motion is diffusive. At high fre-

quencies, Do oc (i)-' and k oc w , implying that this motion becomes a propaga-

tional wave. Therefore, based on the theory of dynamic permeability, equation 2.63

correctly predicts the general behavior of Biot's slow compressional waves.

One can now relax the assumption that the solid frame is rigid and make a correc-

tion for the effects due to its elasticity. Based on Biot's theory, Chang et al. (1988)

as well as Norris (1989) showed that at low frequencies, if the frame elasticity is taken

into account, the diffusivity given in equation 2.64 should be corrected to become

D = Do(1 + ()-1 , (2.65)

with ( given by

K5 { 1 Kb 4
q5(Kb+± N(1 - -- ) - K, - (K + -N)j , (2.66)$(Kb + N) Ks Ks 3

where K, is the solid grain bulk modulus, Kb and N are the solid frame bulk and

shear moduli, respectively. It should be noted that in Chang et al.'s (1988) formula,



the permeability in Do was the static permeability so. Here Ko has been replaced

with r,(w), but the correction term ( given in equation 2.66 is used to account for the

frame elasticity. Because rc(w) --+ co as w -+ 0, equation 2.65 is identical to Chang

et al.'s (1988) diffusivity at low frequencies. As frequency increases, the frequency-

dependent fluid flow is accounted for by i(w), and the effects due to frame elasticity

will be compensated by the correction term (. With this correction, equation 2.63

becomes

2 P + -P =0 .(2.67)
D

The wavenumber of the slow wave is now given by

k2 = iw/D = (2.68)
x(w)a2(1 + )(

The complex slow wavenumber determined from equation 2.68 is in complete agree-

ment with that from the exact Biot formulation (for an example of this formulation,

see Chang et al.'s (1988) article) in the low-frequency region of the Biot theory. In the

high-frequency region, the two wavenumbers are slightly different depending on poros-

ity and permeability. As will be shown in Chapter 3, the application of equation 2.67

to borehole logging problem yields satisfactory results, even in the high-frequency

region of the Biot theory.

2.4 Discussion

In section 2.3.1, the effect of solid elasticity on the fluid motion in a porous medium

is addressed. It is seen that this effect does not change the dynamic permeability

n(w) that governs the fluid transport property, but only modifies the wavenumber of

Biot's slow wave. In fact, as pointed out by Johnson et al. (1987), the quantity M(w)
is independent of the elastic property of the solid. Because of the similarity between

c(w) and the fracture dynamic conductivity O(w), it is reasonable to assume that,
when the fracture is bounded by an elastic solid, the dynamic conductivity C(w)



is independent of the elastic property of the solid, and that the effect of the solid

elasticity is only to change the the wavenumber of the fracture fluid wave motion.

For the fracture case, k2 in equation 2.68 can be written as

kL2 = - ,(2.69)
C(w)pov2

where = 1 and K(w) = pu(w)/Lo have been used in equation 2.68, and v2 here is

analogous to af(1 + c)-1 in equation 2.68. The free space velocity af has now been

modified by the solid elasticity to become an effective velocity Ve. Accordingly, the

definition of C given by equation 2.36 should also be modified to become

-iwLo
C w= (2.70)

k2vg po

A candidate for ve can be obtained by neglecting the viscousity of the fluid and

solving a fracture dispersion equation that results from the coupling of an inviscid

fluid with the elastic solid. This equation is given in equation 4.24 in Chapter 4. The

effective velocity can be equated with the velocity of the fundamental wave mode

in the fracture, since this mode is the extension of the dynamic fluid flow in the

presence of the elastic fracture wall. In the high-frequency region where Lo > 6,

such that the viscous effect is minimal, this choice of Ve can be readily justified.

Because the effect of solid elasticity is to reduce the effective velocity from af to

ve, the squared wavenumber k2 in equation 2.69 is simply w2/v , and the dynamic

conductivity in equation 2.70 becomes O = iLo/(wpo), agreeing with with the high-

frequency behavior of the dynamic conductivity in the rigid fracture case, as given in

equation 2.38. In the low-frequency region where 6 > LO, this choice of ve may not be

adequate because the fundamental mode velocity determined from equation 4.24 goes

to zero as Lo and w decrease (Ferrazzini and Aki, 1987; Tang and Cheng, 1989). In this

case, a further study is needed to investigate the fracture fluid motion that involves

the coupling between a viscous fluid and an elastic solid. For the acoustic logging

studies, however, the typical frequency band is [2-20] kHz and fracture thickness

of interest is on the order of millimeter to centimeter. Under these conditions, the



applications are often in the high-frequency region of the fracture dynamic flow theory.

Therefore, the high-frequency expressions for the fracture dynamic conductivity and

wavenumber are used in the study of effects of a major fracture on the propagation

of borehole acoustic waves.

2.5 Conclusions

In this chapter, fluid motion in a narrow aperture has been treated by considering

both viscous shear and wave propagation effects. A characteristic equation has been

obtained (equation 2.21), which governs the relative importance of the two effects.

The viscous fluid flow is important for very narrow apertures or high viscosity fluids,

especially at low frequencies. Outside of these situations, fluid motion is mostly

propagational. Under dynamic pressure excitations, fluid conduction in a fracture is

characterized by the dynamic conductivity (equation 2.36), which reduces to the cubic

law at low frequencies or small flow apertures. This dynamic flow law, instead of the

cubic law, can be applied to dynamic flow problems in a fracture. The present flow

model has been used to obtain Stoneley wave attenuation across a borehole fracture,

which will be compared with a more elaborate model in Chapter 5.

The theory of dynamic permeability of a porous medium has been compared with

the theory of fracture dynamic conductivity. The excellent agreement of the two

theories reflects the general behavior of frequency-dependent fluid motion in fluid-

saturated conduits of rocks, regardless whether they are fractures or pores. It has

also been shown that the dynamic permeability, together with a simple correction for

the solid elasticity, is a very good description of Biot's slow wave. Analogous to the

dynamic wave motion in a porous medium, a correction for the effect of solid elasticity

on the fracture wave motion has been obtained, and its validity in the high-frequency

region has been justified. The dynamic flow theory studied in this chapter will be

applied in the following chapters to study the effects of porous formations, a vertical



fracture, and a horizontal fracture on the propagation of borehole acoustic waves.
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Figure 2-1: (a) Velocity dispersion (b) and attenuation of a viscous fluid wave motion
in a fracture. In both (a) and (b), the curves are plotted for a set of fracture widths
of 50, 100, and 500 pm. The fracture fluid is water. .



(b)

ACOUSTIC WAVE

120

90

60

30

ATTENUATION IN A FRACTURE

1250 2500 3750

FREQUENCY

5000

CHz)

Figure 2-1: (b) Attenuation (plotted as quality factor) of the fracture wave motion.



FRACTURE DYNAMIC CONDUCTIVITY

500 1000 1500 2000

FREQUENCY (Hz)

Figure 2-2: (a) Amplitude of the dynamic conductivity versus frequency for different
fracture widths. The amplitudes are normalized by their zero-frequency value L'/12pt
(the cubic law).
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Figure 2-2: (b) Phase of the dynamic conductivity (normalized
quency for different fracture widths.
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THEORETICAL TRANSMITTED WAVE AMPLITUDE
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Figure 2-3: Amplitude of the theoretical transmission coefficient versus fracture width
for different frequencies. The parameters are R = 3.81 cm, a = 1500 m/s, and
c = 0. 9 5af.
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Figure 2-4: Comparison between the theory of fracture dynamic conductivity and the
theory of dynamic permeability applied to the fracture case. The two theories are
respectively evaluated using equation 2.36 (dashed curves) and equation 2.58 (solid
curves) for fracture aperture LO equals 10, 30, 60, and 100 pm, as indicated on the
curves. The amplitudes in (a) are normalized by their zero frequency value L'/12p.
Both amplitudes (a) and phases (b) of the two theories are in excellent agreement for
all apertures and frequencies.
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Figure 2-4: (b) Comparison of phases of the two conductivities (normalized by 7r/2).



Chapter 3

Application of Dynamic Fluid

Flow Theory to Acoustic Logging

in Porous Formations

3.1 Introduction

In Chapter 2, the general characteristics of dynamic fluid flow in fractures and porous

media were studied. The dynamic permeability was shown to be a very good measure

of the fluid conduction under dynamic wave excitations. An equation (equation 2.67)

which governs the dynamic fluid pressure in a porous medium was also obtained.

In this chapter, the theory of dynamic fluid flow in porous media will be applied to

study the Stoneley wave propagation in permeable boreholes. The concept of dynamic

permeability will be used to characterize the fluid flow excited by the Stoneley wave

at the borehole wall. A simple dynamic model of Stoneley wave propagation will

be derived. The same problem was formulated by Rosenbaum (1974) using Biot

(1956a,b) theory for a porous and permeable medium. This model has been referred to

as Biot-Rosenbaum model (Cheng et al., 1987). As will be shown later in this chapter,

the theoretical predictions from the simple model agree well with those from the



complete model of the Biot-Rosenbaum theory, but the formulation and calculation

are much simplified. Therefore, this chapter provides a simple and useful theory that

can be easily applied to the estimation of formation permeability from Stoneley wave

measurements.

In the following, models concerning acoustic logging in porous formations will be

reviewed to give some background materials that are relevant to the development of

the present theory. Next, the theoretical formulation of the simple model is presented.

The results from this model are then compared with those from the Biot-Rosenbaum

model and the experimental results available from Winkler et al. (1989). Finally, the

conditions under which the simple model is valid or inadequate will be discussed.

3.2 Background

In the past few years, the estimation of rock permeability from borehole acoustic

logging measurements has become a topic of intense research. Field measurements

clearly indicated the effects of formation permeability on borehole Stoneley waves

(Bamber and Evans, 1967; Staal and Robinson, 1977; Williams et al., 1984; Zemanek

et al., 1985). A convincing example is the published data of Williams et al. (1984)

which shows excellent correlation between the Stoneley wave velocity and attenuation

and core measured permeability. On the other hand, theoretical models were devel-

oped to study the correlation between permeability and Stoneley propagation. White

(1983) and Hsui and Toks6z (1986) developed low-frequency models of Stoneley wave

propagation and predicted this correlation, although these models are not accurate

at high frequencies. Rosenbaum (1974) was the first to use Biot's (1956) theory

for a porous solid to model acoustic logging in a porous formation and investigated

the effects of permeability on high-frequency borehole acoustic waves. This model is

therefore termed the Biot-Rosenbaum model. Using this model, Burns and Cheng

(1986) inverted in-situ permeability from Stoneley wave velocity and attenuation and



found a good agreement between the inverted permeability and core measurements.

Cheng et al. (1987) applied this model to the medium frequency range of [0-8] kHz,

in which the Stoneley wave is effectively excited. They found substantial influence of

permeability on Stoneley propagation and a good agreement of the theory with field

observations. Schimtt et al. (1988) extended the model to study the permeability

effects on the Stoneley and other borehole waves (e.g., pseudo-Rayleigh waves). Win-

kler et al. (1989) performed laboratory model experiments on borehole Stoneley wave

propagation to evaluate the applicability of the Biot theory to logging in porous for-

mations. The theory was found to be in excellent agreement with the experiment. In

addition, Chang et al. (1988) and Norris (1989) derived low-frequency asymptotics of

the Biot-Rosenbaum theory for the Stoneley wave and showed that the White (1983)

and Hsui and Toks6z (1986) models are the low-frequency representation of the the-

ory when the frame of the solid is very rigid. In summary, it has become clear that

the Biot-Rosenbaum model is the appropriate basic theory for wave propagation in a

borehole penetrating a porous formation.

As summarized briefly in Chapter 2, there are three types of waves which can

propagate independently in a fluid-saturated porous medium (Biot, 1956a,b, 1962a,b).

The fast compressional wave and shear wave are primarily associated with the motion

of the solid matrix, but modified by the presence of the pore fluid. The slow compres-

sional wave is associated primarily with the motion of the pore fluid, but modified

by the presence of the solid matrix. In the case of Stoneley wave propagation in a

permeable borehole, the borehole wave will excite all three types of Biot waves in

the formation. The Biot-Rosenbaum model deals with the interaction between the

borehole propagation and these three waves by rigorously solving a set of coupled

partial differential equations in connection with boundary conditions at the borehole

wall (Rosenbaum, 1974). Although such an approach is complete and accurate, the

mathematics and computation involved make the model complicated. Particularly in

an inverse problem to extract formation permeability from Stoneley wave measure-



ments, this model is not convenient to use. In this chapter, a much simpler alternative

approach is taken to handle this problem. The interaction between the Stoneley wave

and a porous formation is decomposed into two parts. The first is the interaction of

the Stoneley with the formation shear and fast compressional waves in the absence

of the slow wave. This problem is equivalent to the one with a formation having

effective elastic moduli corresponding to the first two waves, for which the solutions

are known. On the basis of the first step, the second step is to add the interaction

between the Stoneley and the formation slow wave, for which the dynamic perme-

ability is applied to measure the loss of Stoneley energy that is carried away by the

slow wave into the formation. Since the correlation between Stoneley attenuation and

permeability is largely due to this latter interaction (Schmitt, 1988; Winkler et al.,

1989), the final results of the present approach are expected to be consistent with

those from the Biot-Rosenbaum theory, as long as the frequency-dependent trans-

port property of the porous formation is correctly accounted for. The success of this

effort will not only further verify the Stoneley attenuation mechanism in permeable

boreholes, but will also provide a much simplified useful model that is of sufficient

accuracy in applications to both forward and inverse problems concerning borehole

Stoneley wave propagation in a porous formation.

3.3 Theoretical Formulation of the Simple Model

For a fluid-filled borehole, the cylindrical coordinates (r, 0, z) can be used, where z is

along the borehole axis, r is the radial distance from the axis, and 0 is the polar angle.

The borehole fluid displacement potential T satisfies the following wave equation:

atT+822 + = , (3.1)

where V is the acoustic velocity of the fluid, w is the angular frequency, and

2 2 1r
Vt =a2+rO



is the two dimensional Laplace operator. In the present formulation, the azimuthal

symmetry is assumed thus the 0-dependencies are dropped. In terms of T, the bore-

hole fluid pressure P and radial displacement U are given by

P = pow 2 I , (3.2)

U - T . (3.3)or
For a Stoneley wave propagating along the borehole, T, P, and U can be written as

TJ(r, z) = 0 (r) exp(ikzz)

P(r, z) = p(r) exp(ikzz) , (3.4)

U(r,z) = u(r)exp(ik2 z)

where k2 is the axial Stoneley wavenumber. Using equations 3.2, 3.3, and 3.4, one

can relate the potential b and its radial derivative through the equation

-(pow2 -) = 0 ,(3.5)

Dr p

which, when evaluated at the borehole boundary r = R, becomes the boundary

condition for @. Consequently, @ is given by the following boundary value problem

20 + V2@ = 0
Vt 2(/p~o(3.6){40 = pow 2(u/p)@ , (at r = R)

where a, denotes taking derivative with respect to r and v = w2 /V/ - k2 is the

radial wavenumber. The wall conductance (inverse of impedance) (u/p) is the ratio of

the displacement u and pressure p evaluated at the borehole boundary r = R. When

the borehole wall is permeable, u includes two contributions. The first is the elastic

displacement of the wall, given by ue. The second is the fluid flow into pores that are

open to the borehole wall, given by qu$ , where 4 is the porosity of the formation. As

illustrated by a diagram in Figure 3-1, the present problem can be decomposed into

two problems. The first problem is equivalent to that of a borehole with an equivalent

elastic formation consisting of the porous skeleton and fluid. In the first step, only P



and S waves in such a formation need to be considered. They are analogous to Biot's

fast compressional and shear waves. Whereas for the second problem, one is mainly

concerned with pore fluid flow, which is Biot's slow compressional wave. Splitting the

problem of equation 3.6 into two, one can write b and v2 as

0 = e , (3.7)

V2 = 2 + , (3.8)

where ke satisfies the following boundary value problem

72be + Ve2 e = 0
Vt N = 0(3.9){,re = pow2(ue/p)be , (at r = R)

and of and v are perturbations to Oe and v , respectively. They result from the

fluid flow at the borehole wall. The solution to the elastic problem (equation 3.9)

is known. The boundary condition in equation 3.9 leads to a borehole dispersion

equation (see equation 4.9 in Chapter 4). Given the effective elastic moduli or P and

S wave velocities of the equivalent elastic formation as well as its effective density, one

can solve the dispersion equation to find ve, from which the Stoneley wavenumber

kze without the flow effects is obtained as kze = w _2. The calculation of

the effective moduli and the velocities are described in the next section. To find V,

one substitutes equations 3.7 and 3.8 into equation 3.6 and obtains a boundary value

problem for of

7 + fo + Vf'V 0(Uf /P)(3.10)

8,I f = pOW 2(Ue/p)#f + pow 2 4(u 1/p)# , (at r = R)

To this end, one can see that the fluid flow at the borehole wall is to modify the

boundary condition corresponding to the equivalent elastic formation, so as to change

the fluid displacement potential from "e to 0, and the wavenumber from ke to k2 -

Therefore, a boundary condition perturbation technique (Jackson, 1962; Morse and

Feshbach, 1953) can be applied to incorporate the fluid flow effects and to find the



resulting changes in wave propagation. The condition at the borehole boundary and

its effects over the borehole area are related through the two-dimensional Green's

theorem

J1fAOe V' Of - Of V' Oe]dA = [# R - 4 ] , (3.11)

where

A : borehole area; S : borehole boundary r = R

Applying equation 3.11 to equations 3.9 and 3.10 and using their respective boundary

conditions, one gets

2 = -POW 2(( \fS##0edS
2y -po (-) f44~J. (3.12)Vi ~ p IffA##edAl(.2

To evaluate v2, one needs to find the flow conductance (uf /p) and the ratio of integrals

in equation 3.12. As a first order perturbation, this ratio is approximately the ratio

of bore perimeter to bore area

#Es fedS 2~ -2(3.13)
ff ,##edA R

To find (uf /p), one can make use of equations 2.67 and 2.62, as derived in Chapter 2.

The first equation governs the dynamic pressure in the porous formation through

the use of the dynamic permeability r(w) (equation 2.56) in the fluid diffusivity D

(equation 2.65). The second equation is the modified Darcy's law, in which the

dynamic permeability is used to measure the fluid transport driven by a dynamic

pressure gradient. Under the excitation of a borehole propagation e kz , the formation

pore fluid pressure has the form

P(r, z) = p(r)eikzz , (r > R) . (3.14)

In the previously mentioned quasi-static, low-frequency models, the term eikzz was

ignored (see White, 1983 for example). This is valid when the wavelength is large

compared to the borehole radius. However, at higher frequencies, the pore fluid

motion is coupled with the borehole propagation and this term should be included.



Substitution of equation 3.14 into equation 2.67 results in a Bessel's equation for p

d2p l dp iwd + + ( k, -W 2)p = 0,(r;R)3.5
dr2  r dr D

for which the solution is

Ko(rV-iw /D + k2)
p(r) = p(R) , (3.16)

K0( RV-Li D + kZ2)

where p(R) is the borehole pressure at the wall and KO is the second kind modified

Bessel function of order zero. By differentiating equation 3.16 with respect to r and

using the modified Darcy's law given by equation 2.62 (note that v = -iwu 1 in this

equation), the wall conductance due to flow is found to be

Uf iis(w) K1 (Rv-iw/D + k2)(-io/D + k2 (.7
P W/# Ko(R -iw/D + k2)

where K1 is the second kind modified Bessel function of order one. It is a very good

approximation to replace kz in equation 3.17 by kze, since the amplitude of their

difference is considerably smaller than that of ke. Using equations 3.12, 3.13, and

3.17, and a relation following from equation 3.8

2 2 V2 2 2
vf = V _ = k, - k,2

one gets a final expression for the Stoneley wavenumber

2ipowrs(w) iw +k 2 K 1 (RV-io/D + kze)

= ke+ + o(R-iD (3.18)

In this manner, a simple, explicit formula for calculating Stoneley wave propagation

in permeable boreholes is obtained. The Stoneley phase velocity and attenuation are

calculated using

VST = w/Re(k) ,

Q-1 = 2Im(kz)/Re(k,) .

Equation 3.18 is the central result of this chapter. Before comparing this simple

model with the complete model of the Biot-Rosenbaum theory, it is instructive to



point out the relevance of the present model to other simple low-frequency models.

At low frequencies, one has in equation 3.18 that iw/D > k, ii(w) -+ no, and

ke -> pow2 (1/Kf + 1/N). With these relations it can be readily seen that the

present model reduces identically to Chang et al. (1988) and Norris (1989) quasi-

static models. When the solid is taken as rigid, the present model reduces to the

White (1983) and Hsui and Toks5z (1986) models. It is emphasized here that the

major improvements of these quasi-static models by the present simple model are

the use of the dynamic permeability and the Stoneley wavenumber corresponding

to an equivalent elastic formation. The former parameter takes into account the

frequency-dependent effects of the pore fluid flow at the borehole wall, while the

latter parameter, the effects of the formation elasticity on borehole Stoneley waves.

In addition, as will be shown later, the use of the latter parameter can even allow

one to model Stoneley propagation in the presence of intrinsic attenuation due to the

anelasticity of the formation and borehole fluid.

3.4 Comparison With Biot-Rosenbaum Model

In this section, the simple model derived in the previous section will be compared

with the Biot-Rosenbaum model for the effects of frequency, permeability, porosity,

and intrinsic attenuation. The cases of a hard and a soft formation will also be

studied to check the applicability and limitations of the simple model. A parameter

in the Rosenbaum (1974) formulation is the borehole acoustic pressure impedance

factor K . When r, = 0 , the borehole fluid pressure and the formation pore fluid

pressure are equal, this case being referred to as the open hole case, in which fluid

flow occurs through pores that are open to the wall. With increasing K, the pressure

communication between the two fluids decreases. As K goes to infinity there is no

hydraulic exchange at the wall and this is referred to as the sealed borehole case. All

examples in this study will assume the open hole case, except that the relationship



between the two models for the sealed hole case will be briefly mentioned in the

following. In both models the solid frame bulk and shear moduli are calculated using

(Schmitt et al., 1988; Norris, 1989)

Kb = (1 - q)ps(V,2 - 4Vf /3) , (3.20)

N = (1 - 4)pV 2 , (3.21)

where p, is the density of the solid frame, V and V, are the compressional and shear

velocities of the dry rock. For the equivalent elastic formation, the effective P and S

velocities are calculated using

V = (Ke + 4N!3)/pe , (3.22)

VS = N/Pe, (3.23)

where the effective density Pe and bulk modulus Ke of the formation are given by the

Gassmann equations (Gassmann, 1951):

Pe = pf + ( - 4)p , (3.24)

Ke = Kb + ( . (3.25)
[4/K + (1 - 4)/K, - KbIK](2

Equation 3.25 indicates that the effective bulk modulus equals the bulk modulus of

the skeleton plus a fluid-dependent term. The elastic formation Stoneley wavenum-

ber ke in equation 3.18 is calculated by substituting the above given V, and V,

and pe into the borehole dispersion equation given in equation 4.9 of Chapter 4.

Interestingly, the Stoneley wavenumber kze so obtained is almost equivalent to the

wavenumber corresponding to the sealed borehole case of the Biot-Rosenbaum the-

ory. This equivalence will later be demonstrated in section 3.5, where the Stoneley

velocity calculated using the above procedure is in close agreement with the velocity

calculated for a non-permeable wall using the Biot-Rosenbaum theory. This is not

surprising since Biot's (1956a, b, 1962a, b) theory for a porous solid is formulated

on the basis of Gassmann's (1951) theory by adding fluid flow and dissipation ef-

fects (White, 1983). Without flow at the borehole wall, the Stoneley wave primarily



interacts with the fast compressional and shear waves in the formation. These two

waves are little affected by the pore fluid flow effects associated with their motions,

although these effects are predicted by the Biot-Rosenbaum model (see Schmitt et

al., 1988), which yields some (negligibly small) attenuation for the Stoneley wave.

Thus, for the sealed hole case, the above calculated ke is adequate to determine the

borehole Stoneley propagation. In the open hole case, ke is substituted into equa-

tion 3.18 to calculate the Stoneley wavenumber with the fluid flow effects. The whole

procedure is straightforward and much simpler than solving the borehole dispersion

equation corresponding to the Biot-Rosenbaum theory (Rosenbaum, 1974). Espe-

cially in an inversion procedure where extensive computation of the forward model

is required, using the present model will be much simpler and faster than using the

Biot-Rosenbaum theory. In cases where one approximately knows the velocity of the

Stoneley wave and only wants to know the effects of a given permeability on Stone-

ley waves, the calculation of ke using equation 4.9 can even be omitted. Since the

velocity dispersion of the Stoneley wave due to the borehole is relatively not very

significant (Cheng and Toks6z, 1981), one can substitute ke by w/VST, where VST

is a roughly measured or estimated Stoneley velocity. The Stoneley wavenumber k2

calculated in this way reflects the permeability effects relative to other effects, such

as intrinsic attenuation.

In the following, the present simple model and the Biot-Rosenbaum model will be

compared by numerically evaluate the models for a given set of model parameters.

In all examples, the grain modulus K, = 3.79 x 1010 Pa, the solid density p, = 2650

kg/m 3 , the borehole radius R = 10 cm, and the borehole and formation pore fluid

is water with po = 1000 kg/m 3 , p = 0.001 Pa.s (1 cp), and Vf = 1500 m/s. The

tortuosity a for both models is taken to be 3 (the a in equation 2.56 is equivalent to

Morse's dynamic fluid-solid coupling factor E in the Rosenbaum (1974) formulation).

Other parameters that vary from example to example are summarized in Table 3.1.



3.4.1 Hard Formation

A hard formation is the one whose shear wave velocity is greater than the borehole

fluid velocity. This formation is important because many permeable reservoir rocks,

such as sandstone, fall into this category. Another reason for studying this case is that

in this formation, the rock is less compressible than the pore fluid, so that the fluid-

solid coupling is not pronounced and the simple correction for the frame elasticity in

the fluid diffusivity D (equation 2.66) is expected to be adequate.

The effects of the dynamic permeability in equation 3.18 are first studied, since

this parameter is a major quality by which the present model differs from other quasi-

static, low-frequency models. These effects can be illustrated by respectively using

the dynamic permeability 1(w) and the static permeability no in equation 3.18 and

comparing the results against those of the Biot-Rosenbaum theory. In this compari-

son, a permeability tco 10 Darcy is used in the calculations. Although this value is

rather high for common reservoir rocks, it serves to demonstrate the dynamic effects

of n(w) in equation 3.18. Other parameters involved are given in Table 3.1. For this

value of so, Biot's critical frequency fc = p~f/(2irnoapo) (at fc the viscous and the

dynamic effects are comparable) is only about 1.3 kHz. But the dynamic effects occur

before this frequency is reached. Figure 3-2a shows the dynamic permeability in the

frequency range of [0-8] kHz. The amplitude of n(w) (solid curve) is normalized by no,

and its phase (dashed curve) by 7r/2. The static Darcy permeability (solid line) is also

plotted. As seen from this figure, the amplitude decreases, and the phase increases

with frequency, this behavior of n(w) being substantially different from the constant

Ko. Figure 3-2b shows the Stoneley wave attenuations calculated using equation 3.18

with n(w) (solid curve marked 'dynamic') and no (solid curve marked 'quasi-static'),

respectively. The results are compared against that of the Biot-Rosenbaum model

(dashed curve). Surprisingly, the result from the simple dynamic model fits that from

the complete theory very well, simply because of the use of n(w). Whereas the re-

sult from using n0 agrees with the theory only at the low-frequency limit. It largely



over-predicts the attenuation at frequencies above 2 kHz. The difference between the

dynamic and quasi-static results can be qualitatively explained by the behavior of

rz(w) shown in Figure 3-2a. That is, because of the decrease of K(w) with frequency,

the formation is less permeable under high-frequency excitations than it is under

low-frequency excitations. Figure 3-2c shows the Stoneley wave dispersions associ-

ated with Figure 3-2b. To one's satisfaction, the simple dynamic model (solid curve

marked 'dynamic') agrees with the complete theory (dashed curve) fairly well, the

velocity of the simple model being slightly lower than that of the Biot-Rosenbaum

model. The velocity from using ro is significantly lower than that of the dynamic

models. This difference can be explained as follows: For the high permeability used,

the dynamic (or inertial) effects of pore fluid flow are increased, which tends to de-

couple the borehole propagation from the formation (Schmitt et al., 1988) and the

Stoneley wave velocity tends to reach the free space fluid velocity. Since these effects

are accounted for by the dynamic permeability, the simple dynamic model correctly

shows this tendency (i.e., the increase of Stoneley velocity). However, the use of

Ko assumes that the pore fluid flow is still governed by viscous forces and therefore

maintains significant borehole-formation coupling, resulting in lower Stoneley velocity

than that of the dynamic models.

Next, the two models are compared versus frequency for a representative range of

permeabilities and porosities found from typical reservoir rocks (Table 3.1). Note that

the permeability here refers to the static Darcy permeability (i.e., tco in equation 2.56).

Figure 3-3a shows the Stoneley wave attenuations predicted by the simple model

(solid curve) and the Biot-Rosenbaum model (dashed curve). The frequency range

is [0-10] kHz. This is a range in which most field Stoneley wave measurements are

made. A general good agreement between the two models is obtained for formations

ranging from low (curve A), medium (curve B), to high (curve C) permeabilities and

porosities. Figure 3-3b shows the Stoneley wave phase velocities predicted by the

two models. Again, the agreement is quite good between the two models. For the



low and medium permeability (porosity) cases A and B, the agreement is excellent.

For the high permeability (porosity) case C, the simple model predicts slightly lower

velocity at higher frequencies than the Biot-Rosenbaum model does. This difference

should be expected since the effect of fluid-solid coupling due to the relative motion of

the two phases may become significant when permeability and porosity are increased.

But this effect is not taken into account in the present simple model. However, these

differences, as well as those shown in Figure 3-3a for the attenuation, are only of

academic importance because in practice they are well within the error of Stoneley

wave measurements made in the field or even in the laboratory.

As the third example, the Stoneley wave attenuations and dispersions from the two

models are compared versus permeability. Figure 3-4 shows the results at 1, 2, and 5

kHz for a sandstone with 15 percent porosity. In Figure 3-4a, the agreement between

the two models is quite good throughout the permeability range of [0-1000] mD for

the three frequencies. The attenuations from the simple model (solid curve) and

from the Biot-Rosenbaum model (dashed curve) are fairly close and show the same

increasing tendency with permeability. In Figure 3-4b, the velocities from the two

models are almost identical in the low permeability range up to 100 mD. This range

corresponds to curves A and B in Figure 3-3b. As permeability further increases, they

begin to show some differences because of the increase of the inertia coupling effect

between fluid and solid in the Biot-Rosenbaum model. These differences can also be

reflected in curve C of Figure 3-3b. However, as explained above, the differences of

this kind are of little practical importance. What is interesting in Figure 3-4b is that

the simple model even shows a complex feature of the Biot-Rosenbaum model, i.e.,

the increase of Stoneley velocity with permeability (an effect due to the increased

pore fluid mobility, as explained above). This feature can be seen from the high

permeability end of the 2 and 5 kHz curves. Although the comparisons are shown

only for the permeability range of common reservoir rocks, the agreement between

the two models will continue at higher permeabilities. This has been demonstrated



by the agreement shown in Figure 3-2, where ro = 10' mD was used. Again, in

complement to Figures 3-2 and 3-3, the comparison shown in Figure 3-4 confirms the

validity of the simple model.

As a last example for the hard formation case, the validity of the simple model is

demonstrated in the presence of intrinsic body-wave attenuation in the fluid acous-

tic wave and the formation shear and compressional waves. Because in the field the

measured Stoneley wave attenuation is coupled with the intrinsic attenuation (Cheng

et al., 1987), the latter effect must be considered for the present model to be appli-

cable under field conditions. In the Biot-Rosenbaum model, the effects of intrinsic

attenuation are taken into account by using the complex body-wave velocities. In the

present model, this problem can treated in much the same way. In calculating the

elastic formation Stoneley wavenumber ke in equation 3.18, one can simply introduce

the effect of intrinsic attenuation by using the transformation

Vy -* V/(1 + i/2Q,) ,

where subscript 7 can be each one of the subscripts p, s, and f, and V, and Q,
correspond to V, VV, V and their respective Q's. The anelastic body-wave dispersion

can also be added as necessary. Here this minor effect is neglected. Figure 3-5 shows

the comparison between the two models for the intrinsic attenuation effect. Formation

and borehole fluid quality factors are taken to be Q, = 100, Q, = 50, and Qf = 20.

Other parameters involved are the same as those of curve C in Figure 3-3a, given

in Table 3.1. The Stoneley attenuation due to intrinsic effects is also shown, which

is nearly constant throughout the frequency range, consistent with the results of

analyzing partition coefficients (Cheng et al., 1982). The total attenuation curves

from the simple model (solid curve) and the Biot-Rosenbaum model (dashed curve)

are seen to agree quite well, showing only slight difference in the higher frequency

range. In fact, the total attenuations are almost equal to the respective sums of the

attenuations due to flow (curves C of Figure 3-3a) with the intrinsic attenuation in

Figure 3-5. From this example, it is seen that the effects of intrinsic attenuation are



properly handled by using the complex-valued wavenumber ke in the simple model.

3.4.2 Soft Formation

A soft formation has a shear wave velocity smaller than the fluid acoustic velocity.

Because of this, the solid may have a compressibility closer to that of the pore fluid

and the dynamic coupling between the two phases becomes strong, especially at high

frequencies. As a result, the simple model that ignores this coupling effect may not

be adequate under such conditions. This case is studied here in order to show the

differences between the simple model and the Biot-Rosenbaum model in the presence

of a soft formation, so that one will be aware of these differences when applying the

simple model to such conditions.

Figure 3-6 shows the comparison between the simple model (solid curves) and

Biot-Rosenbaum model (dashed curves) for three different soft formations given in

Table 3.1. The permeabilities and porosities are the same as those used in Figure 3-3

and the curves A, B, and C have the same correspondence as in Figure 3-3. Because

the effective Stoneley excitation will be shifted to a lower frequency range in the soft

formation case (Cheng et al., 1982), the results in Figure 3-6 are shown only in the

frequency range of [0-6] kHz. Although the attenuations in Figure 3-6a predicted

by the two models are identical at low frequencies and all decrease with increasing

frequency, the attenuation from the simple model is significantly over-predicted at

high frequencies, compared with the attenuation from the Biot-Rosenbaum model.

This indicates that the fluid flow effects are less pronounced for the soft formation

case, than they are for the hard formation case. Figure 3-6b shows the Stoneley wave

phase velocity from the two models. Compared to the attenuation in Figure 3-6a, the

difference between the two models is less apparent from the velocities. Only the high-

permeability curves C show some meaningful differences. Despite these differences,

the simple dynamic model may still be a reasonably good model if one applies it to

the low-frequency range (e.g., < 2 kHz in this particular case), because in the soft



formation case the Stoneley wave energy is located in a narrower low-frequency range

than it is in the presence of a hard formation.

The two models are now compared versus permeability for three different frequen-

cies of 1, 2, and 5 kHz. The porosity of the formation is 30 percent. Figure 3-7a shows

the attenuations from the simple model (solid curves) and from the Biot-Rosenbaum

model (dashed curves). Both attenuations increase with increasing permeability, with

the simple model results higher than those of the other model. For the 1 kHz case,

both results are in reasonably good agreement. As frequency increases, they begin to

differ significantly. These effects can also be seen from Figure 3-6a. Figure 3-7b shows

the velocities associated with Figure 3-7a. The velocities from the two models are very

close at low permeabilities. They begin to differ as permeability increases. This dif-

ference also appears on curves C of Figure 3-6b. Again, the comparison in Figure 3-6

shows the applicability of the simple model at low frequencies. At higher frequencies,

this model over-predicts the Stoneley attenuation, especially at high permeabilities.

3.5 Comparison With Laboratory Experimental

Results

In a recently published paper, Winkler et al. (1989) showed the experimental results

on the Stoneley wave propagation in permeable materials. These experiments were

performed to evaluate the applicability of Biot's theory to acoustic logging in porous

formations using Stoneley wave measurements. Excellent agreement was found be-

tween theory and experiment. In their experiments, they used formation materials

with different permeabilities, velocities, and porosities, and fluids with high and low

viscosities. By varying these parameters, they were able to conduct the experiments

in both low- and high-frequency regions of Biot's theory, as well as in the intermediate

transition zone. Thus, in addition to the comparison with Biot-Rosenbaum theory in

the previous section, these experiments provide a further test of the simple model and



its validity in different frequency regions of Biot theory, as well as its applicability to

porous materials with different properties. Four samples were measured in their ex-

periments. Three were synthetic materials made of resin-cemented glass beads. One

was a rock sample made of a Berea sandstone. All these samples were cylindrical in

shape, having a diameter of 21.6 cm. A borehole was drilled along the sample axis,

the diameter of the hole was 0.95 cm for the synthetic samples and 0.93 cm for the

rock sample, respectively. The sample and fluid properties are given in Table 1 of

Winkler et al. (1989), and are summarized in Table 3.2 of this chapter for reference.

One can see from the properties given in Table 3.2 that all the samples belong to the

hard formation case because their shear velocities are higher than fluid velocities. The

present model has been shown to be applicable to such a formation. In Winkler et al.'s

(1989) article, the experimental results were given for the Stoneley phase velocity and

attenuation, which can be directly compared with the theoretical results calculated

from equations 3.18 and 3.19. In the experiments, P and S velocities and density

of the fluid-saturated samples were also measured, as listed in Table 3.2. One can

therefore use these parameters as the effective elastic formation properties to directly

calculate the elastic Stoneley wavenumber k,, in equation 3.18. In addition, although

the present model is for the borehole with a formation of infinite radial extent, the

results still hold true for the laboratory models of finite size. This comes from the

fact that the Stoneley wave is a guided wave trapped in the borehole, so that it is

not sensitive to the large outer boundary of the samples, as long as the radius of this

boundary (10.8 cm) is much bigger than the borehole radius (0.47 cm).

The comparison begins with sample A, saturated with high-viscosity silicon oil

with p = 96 cp (Table 3.2, sample A). With this high viscosity, the pore fluid motion is

controlled by viscous effects. This puts one in the low-frequency region of Biot theory.

Figure 3-8a shows Stoneley velocity versus frequency. The experimental data were

digitized from the published figures of Winkler et al. (1989). The theoretical curve

(solid curve) is calculated using equation 3.18. The theory fits the data extremely



well. A copy of Winkler et al.'s (1989) Figure 4 is shown in Figure 3-8c and d. The

theoretical curve shown in Figure 3-8c goes slightly above the data points, although

this is insignificant for the confirmation of the theory. The dashed curve in Figure 3-8a

is the Stoneley velocity corresponding to the sealed borehole case, which is calculated

from the given parameters of the fluid-saturated sample (Table 3.2). This curve fits

almost exactly with the original curve shown in Figure 3-8c which is calculated with

a non-permeable borehole wall using the complete Biot-Rosenbaum theory. This is

also the case for the remaining three examples. This fit indicates that when the

borehole wall is sealed, the formation acts like an equivalent elastic formation with

effective properties given by equations 3.22 through 3.25. The corresponding Stoneley

attenuation data as 1/Q versus frequency are shown in Figure 3-8b. Again, the theory

fits the experimental data excellently.

For the next example, the theory and experiment are compared for a sample

saturated with low-viscosity fluid (Table 3.2, sample C). This low viscosity (0.818

cp) puts the experimental bandwidth in the high-frequency region of Biot theory.

As seen from Figure 3-9a, the open hole Stoneley velocity crosses the sealed hole

velocity at about 17 kHz. This high-frequency behavior due to the permeability

effects, as predicted by Biot-Rosenbaum theory, is seen to be also predicted by the

simple model, although this crossing is less significant than what is shown on Winkler

et al.'s (1989) theoretical curve (Figure 3-9c), and the high-frequency portion of the

simple theoretical curve goes slightly below the measured data, while the curve of

Winkler et al. (Figure 3-9c) goes slightly above the measured data in the high-

frequency range. The scatter of the data around 20 kHz was attributed to the mode

interference due to the finite size of the sample (Winkler et al., 1989). In spite of the

scatter, the theory fits the experiment very well. For the Stoneley attenuation shown

in Figure 3-8b, both theory and experiment show the strong increase of attenuation

as frequency decreases. The simple model predicts slightly higher attenuation than

the theory of Winkler et al. (1989) shown in Figure 3-9d. However, the agreement



between the simple theory and experiment is still very good.

The third case (Table 3.2, sample B) is a sample having an intermediate viscosity.

This places the experimental bandwidth in the intermediate transition region of Biot

theory. The velocity and attenuation data are shown in Figure 3-10. In this case,

the agreement between the theory and experiment is not as good as in the previous

two examples, the same as what is shown in Winkler et al.'s (1989) results (Figure 3-

1Oc,d). In their case, the theoretical velocity (Figure 3-10c) crosses the data at about

35 kHz and the sealed velocity at 50 kHz. Thus it is not able to fit the data. The

simple model fits the high-frequency portion of the data, although the misfit in the

low-frequency portion persists. The theoretical attenuation shown in Figure 3-10b is

very close to that of Winkler et al. (1989) shown in Figure 3-10d. But the discrepancy

between the theory and experiment is significant. The discrepancies of Figure 3-10

were attributed by Winkler et al. as due to the undetected heterogeneities in the

sample or perhaps due to the behaviors of the porous material in the transition

region that are not well defined in Biot theory.

The last example (Table 3.2, sample Berea S.S.) is a Berea sandstone saturated

with silicone oil (p = 9.34 cp). Since this is the only case where a reservoir rock was

measured, the results for this case are especially important, because a useful theory

must eventually work in rocks. The properties of the sample given in Table 3.2 put

the experimental bandwidth in the low-frequency range of Biot theory (Winkler et

al., 1989), which is relevant to most field situations. The theoretical velocity and

attenuation predicted by the simple model (shown in Figure 3-11a,b) are very close

to Winkler et al.'s (1989) results (shown in Figure 3-11c,d). For both velocity and

attenuation, there is an excellent agreement between theory and experiment.

The above examples show that, in general, the laboratory experimental results

are in excellent agreement with the simple Stoneley propagation theory developed in

this chapter. These examples substantially confirm the validity of the simple theory

and its general applicability to porous media with different properties.



3.6 Discussion

In this section, the cause of disagreement between the simple model and the Biot-

Rosenbaum model in the presence of a soft formation will further be explored. Dis-

cussion will also be made to show how one can incorporate the effects of a borehole

logging tool into the present model.

In the formulation of the simple model, the interaction between the borehole

propagation and the porous formation was split into two parts, i.e., the one due to

formation elasticity and the other due to pore fluid flow. By this separation, it was

implied that the pore fluid flow associated with the motion of the slow wave is not

strongly coupled with the motion of the solid matrix. Strictly speaking, this is true

only if the latter motion is small compared to the former motion. In fact, in a Biot

solid, the effective moving fluid volume is proportional to the relative motion between

the two phases

v Oc 4(uf - u,)

where u, is the displacement of the solid associated with the slow wave motion. An

example of the relative motion and the associated solid displacement has recently

been shown by the finite difference modeling of Zhu and McMechan (1989). In a hard

formation, or in the very low frequency range in which viscous fluid flow dominates (for

either a hard and a soft formation case), u, is small compared to uf, so that the moving

volume v is dominated by the contribution from uf. This point has been demonstrated

by the agreement of the simple model with the Biot-Rosenbaum model in the presence

of a hard formation and in the low-frequency range of the soft formation case. This can

also be seen from Zhu and McMechan's (1989) finite difference modeling in the low-

frequency region of the Biot theory, in which the solid displacement associated with

the slow wave motion is indeed considerably small compared with the relative motion

between fluid and solid. However, in the presence of a soft formation, the increased

compressibility results in a larger u,, hence the relative motion u1 - u, is reduced



and the effective flow volume v decreased. In terms of borehole Stoneley waves, this

means that less energy will be carried away and that the attenuation will be less

severe. In the Biot-Rosenbaum theory, this coupling process is modeled in the form

of coupled partial differential equations. Therefore, for given porosity, permeability

and pore fluid, the high-frequency Stoneley wave attenuation for a soft formation will

be less pronounced than that for a hard formation (for example, one can compare

the Biot-Rosenbaum results shown on Figure 3-3a and Figure 3-6a). However, in the

simple model, the relative motion u1 - u, is still taken as uf. Although the frequency

dependent behavior of uf is accounted for by using the dynamic permeability, which

is independent of the solid elasticity (Johnson et al., 1987), and the effects of solid

elasticity on u1 have been corrected (equation 2.65), the resulting flow volume v is still

larger than it actually is because of the missing term u,. As a result, the predicted

Stoneley wave attenuation is higher than the correct result. This is indeed what one

has seen in Figure 3-6a.

In the presence of a logging tool of radius a in the borehole, the present model

needs two simple modifications. The first is the ratio of the boundary integral of

#e to the area integral of @e in equation 3.12. Without the tool, this ratio is

approximately the ratio of bore perimeter to bore area (i.e., 2/R in equation 3.13).

With the tool, the area becomes that of the fluid annulus and equation 3.13 is now

written as
#s 00edS 2R

ffAOO@edA R 2 - a2

Thus the resulting correction is to replace the term 2/R in equation 3.13 with

2R/(R 2 - a2). Another modification is calculating the elastic formation Stoneley

wavenumber ke in conjunction with the logging tool. This procedure has been de-

scribed by Cheng and Toks6z (1981). It is worthwhile to note that in a soft formation,

the presence of a logging tool will push the agreement between the simple model and

the Biot-Rosenbaum model to a higher frequency range, simply because the tool re-

duces the effective borehole area and the wave propagation is approximately similar



to that of a borehole with smaller radius (Cheng and Toks6z, 1981).

3.7 Conclusions

In this chapter, the theory of dynamic fluid flow has been applied to the important

problem of acoustic logging in porous formations. A simple dynamic theory has been

developed to model Stoneley wave propagation in permeable boreholes. This model is

formulated based on the dynamic hydraulic exchange between the Stoneley wave and

formation pore fluid, in which the concept of dynamic permeability is used to mea-

sure the frequency-dependent fluid transport into the formation. This formulation

clearly points to the physical process involved in the problem. The simple model has

been compared with the exact model of the Biot-Rosenbaum theory for the effects

of frequency, porosity, permeability, intrinsic attenuation, and formation type (hard

or soft). It has been shown that both models yield practically the same result in the

hard formation case. In a soft formation, the simple model over-predicts the Stoneley

wave attenuation at higher frequencies, because the increased coupling between the

solid and fluid is not fully accounted for. However, since many important permeable

reservoir rocks belong to the hard formation category, this model will be of signif-

icant applicability to the estimation of formation permeability using Stoneley wave

measurements, because of its simplicity and validity in the hard formation case. Com-

parison with the available experimental data showed the excellent agreement between

the simple model and the data and further confirmed this simple theory. A further

study on this theory is perhaps the application of it to formulate an inverse problem,

analyze its sensitivity to each model parameter, and finally invert for the parameters

(particularly the permeability) using available Stoneley measurement data.



Figure (m/s) (m/s) (%) (mD)

3-2 3800 2200 25 104

3-3 3800 2200 5,15,25 10, 102, 0I3

3-4 3800 2200 15

3-5 3800 2200 25 103

3-6 2300 1200 5,15,25 10,102, 103

3-7 2300 1200 30

Table 3.1: Parameters used for comparison with Biot-Rosenbaum model. Biot's struc-
tural constant is v , and tortuosity a is 3. Borehole and pore-fluid is water with
po = 1000 kg/m 3 , V = 1500 m/s, and p = 0.001 Pa-s. The solid grain density p,
=2650 kg/m 3 and modulus K, =37.9 GPa. The borehole radius is 10 cm.



Sample

# (%)

ro (mD)

a

P, (kg/m 3 )

K, (GPa)

Po (kg/m 3)

pI (cp)

V (m/s)

Fluid-saturated sample:

Pe (kg/m 3 )

P, (m/s)

V (m/s)

A

26.5

3600

2.4

2300

50

960

96

1014

1940

2850

1680

B

22.9

2300

2.4

2270

50

934

9.34

999

1960

2930

1610

C

22.3

1300

2.4

2290

50

818

0.818

926

1970

2822

1665

Berea S.S.

21.0

220

3.2

2650

37

934

9.34

999

2090

3208

2005

Table 3.2: Physical properties of the samples and fluids in Winkler et al.'s (1989)
experiment.
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Figure 3-1: Diagram showing the two contributions to the displacement of the bore-
hole wall. The first is the contribution due to the elastic deformation of the formation.
The second is the contribution due to the dynamic fluid flow.
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Figure 3-2: Test of effects of dynamic permeability against Biot-Rosenbaum model.
(a) The dynamic permeability K(w) as a function of frequency. Its static value o =
10' mD. The amplitude is normalized by ro and phase by 7r/2.
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Figure 3-2: (b) Stoneley wave attenuations calculated from equation 3.18 using i'(w)
(solid line marked 'dynamic') and so (solid line marked 'quasi-static'), respectively.
The result from the Biot-Rosenbaum theory (dashed line) is also plotted, which agrees
with the simple dynamic model very well. (c) Stoneley phase velocities associated
with (b). This figure shows also the agreement of the simple dynamic model with the
full theory and the disagreement of the quasi-static results.
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Figure 3-3: Comparison between the simple dynamic model (solid curves) and the
Biot-Rosenbaum model (dashed curves) for three different (hard) formations (see
Table 3.1) in the frequency range of [0-10] kHz. In both (a) and (b), curves A are for
a formation with 4 = 0.05 and Ko = 10 mD, curves B are for q$ = 0.15 and Ko = 100
mD, and curves C are for 4 = 0.25 and no = 1000 mD. Both the Stoneley attenuation
(a) and phase velocity (b) show the good agreement of the two models.
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Figure 3-3: (b) Phase velocity associated with (a).
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Figure 3-4: Comparison of the simple model with the Biot-Rosenbaum model versus
permeability ro for different frequencies. The formation is a sandstone with 4 = 0.15.
(a) Stoneley wave attenuation. (b) Stoneley wave phase velocity. In both (a) and (b),
the two models agree quite well.
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Figure 3-4: (b) Phase velocity associated with (a). Note that in (b) the simple model
can even model the the slight increase of velocity with permeability (see the 5 kHz
curve), a complex feature predicted by the Biot-Rosenbaum theory.
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Figure 3-5: Comparison between the two models in the presence of intrinsic attenu-
ation for a hard formation with < = 0.25 and Ko = 1000 mD. Intrinsic Q values are

Q, = 100, Qs = 50, and Qj = 20. The total attenuation of the simple model (solid
curve) and that of the Biot-Rosenbaum model (dashed curve) are the sum of the
intrinsic attenuation curve and their respective predicted attenuations due to fluid
flow. The two results agree well.
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Figure 3-6: Comparison of the two models versus frequency for three different soft
formations (properties given in Table 3.1). In both (a) and (b), curves A are for a
formation with 4 = 0.05 and so = 10 mD, curves B are for 4 = 0.15 and no = 100
mD, and curves C are for 4 = 0.25 and so = 1000 mD. In (a), the attenuations from
the simple model (solid curves) coincide with those from the Biot-Rosenbaum model
at low frequencies, but differ from them at higher frequencies.
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Figure 3-6: (b) Phase velocity associated with (a). The velocities from the two models
agree fairly well for low permeability cases A and B. For high permeability case C,
two models differ at higher frequencies.
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Figure 3-7: Comparison of the two models versus permeability for a soft formation
case. The formation has a porosity of 30 percent. In (a), the Stoneley attenuations
from the simple model (solid curves) differ from those from the Biot-Rosenbaum
model, especially at higher permeabilities and frequencies.
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Figure 3-7: (b) Phase velocity associated with (a). The Stoneley velocities from the
two models fit at low permeabilities, but begin to differ as permeability increases.
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Figure 3-8: Stoneley velocity (a) and attenuation (b) versus frequency for sample
A. Dots are experimental results. Solid curves are theoretical predictions from the
simple model. The dashed curve in (a) is Stoneley velocity corresponding to a sealed
borehole wall.
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Figure 3-8: (c) and (d) Original results of Winkler et al. (1989) for sample A.
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Figure 3-9: Stoneley velocity (a) and attenuation (b) versus frequency for sample C.
Dots are experimental results and solid curves are theoretical predictions. The dashed
curve is the sealed-hole Stoneley velocity.
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Figure 3-9: (c) and (d) Winkler et al.'s (1989) results for sample C.
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Figure 3-10: Stoneley velocity (a) and attenuation (b) versus frequency for sample B.
Dots are experimental results and solid curves are theoretical predictions. The dashed
curve is the sealed-hole Stoneley velocity. The data are in the transition region of
Biot theory.
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Figure 3-10: (c) and (d) Winkler et al.'s (1989) results for Sample B.
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Figure 3-11: Stoneley velocity (a) and attenuation (b) versus frequency. The sample
is made of a Berea sandstone. Dots are experimental results and solid curves are
theoretical predictions. The dashed curve is the sealed-hole Stoneley velocity.
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Figure 3-11: (c) and (d) Winkler et al.'s (1989) results for sample B.S.



Chapter 4

Stoneley Wave Propagation in a

Fluid-filled Borehole With a

Vertical Fracture

4.1 Introduction

An important application of full waveform acoustic logging is the detection of open

borehole fractures. Although horizontal and inclined fractures are a common feature

encountered in borehole acoustic logging, vertical fractures are of particular interest

in certain situations. For example, a fracture resulting from hydraulic fracturing

in oil production is often vertical, and its aperture is an important parameter that

governs the amount of fluid conducted into (or away from) the borehole. The Stoneley

wave has been explored as a means of fracture detection and characterization. In

many situations, this wave mode is the most recognizable wave in the full waveform

acoustic logs because of its relatively large amplitude and slow velocity. Based on field

observations, Paillet and White (1982) have suggested that the Stoneley wave may be

the portion of the full waveform which is most indicative of fracture characteristics. If

the quantitative relationship between Stoneley propagation and the fracture character



can be found, it will provide a method for estimating fracture characteristics by means

of Stoneley wave measurements. The objective of the study in this chapter is to

develop a quantitative analysis of Stoneley propagation in the presence of a vertical

borehole fracture and to provide the theoretical basis for its application to fracture

detection and characterization.

Apart from its practical importance, this problem points to an interesting "leaky"

wave-guide phenomenon. Because of a fracture along the borehole wall, the wave

propagation is attenuated as a result of the leakage of wave energy into the fracture.

Since the leakage occurs at the fractured part of the borehole wall, it is expected that

the problem does not have an axial symmetry and one needs to consider azimuthal

distribution of borehole wave motions. Driven by the pressure associated with the

borehole waves, dynamic fluid flow occurs at the fracture opening. The amount of the

flow conducted into the fracture is measured by the fracture dynamic conductivity

given in Chapter 2 (equation 2.36). On the other hand, the fluid flow at the fracture

opening is connected with the fluid motion in the fracture. The characteristics of the

fracture fluid motion subject to the excitation of propagating borehole acoustic waves

must also be understood in order to study its effects on the borehole propagation.

There are two characteristics for the fracture wave motion. The first is the nature

of the "slow" wave in a fracture. Ferrazzini and Aki (1987) have recently studied

the dynamic wave motion in a fluid-filled fracture between two elastic solids. One

significant result of their study is the nature of the slow wave existing in a fracture.

Essentially, the slow wave is the fundamental mode of the fracture and is analogous

to the borehole Stoneley wave. But unlike the Stoneley wave which has a finite ve-

locity at zero frequency, the slow wave velocity goes to zero as frequency decreases.

This behavior has been observed by Tang and Cheng (1988) in their laboratory ex-

perimental study. The fluid conduction in the case of an elastic fracture has been

discussed in section 2.4 of Chapter 2. The modified fracture dynamic conductivity is

given by equation 2.70 and will be employed to measure the dynamic fracture fluid



flow in this chapter. The second characteristic is that the fracture wave motion in the

present problem propagates in two dimensions. One is in horizontal direction away

from the borehole, and the other is in vertical direction complying with the borehole

propagation. These characteristics and their effects on the borehole propagation will

be studied in this chapter.

Owing to a discontinuity in the formation surrounding the borehole, seeking an

exact solution will be a formidable task. This study therefore turns to the use of a

perturbation theory. A boundary condition perturbation technique will be developed

to treat the problem. This technique has been employed to treat acoustic problems

involving perturbation of boundary conditions from the ideal "hard" (Neumann) or

"soft" (Dirichlet) extremes (Morse and Feshbach, 1953). In the borehole propagation

problem, however, the technique needs to be further developed because the boundary

condition at the borehole wall is neither ideally hard nor ideally soft, due to the

coupling between the borehole fluid and the elastic formation. In fact, an example of

this kind was demonstrated in Chapter 3, where the boundary condition perturbation

technique was applied to study the effects of fluid flow at the borehole wall. The wall

was modeled as elastic. Then the elastic boundary condition was perturbed by adding

the fluid flow effects. Because of the axial symmetry of that problem, the first order

perturbation sufficed to yield satisfactory results. In the present problem, however,

because of its non-axial-symmetric nature, the development of full perturbation series

is needed to obtain convergent solutions for the azimuthal as well as axial borehole

fluid motions induced by the fracture.

In the following text of this chapter, the problem is first described. Next, the

elastic motion of the wall as a boundary condition in the absence of the fracture

is determined. In the presence of the fracture, the fracture fluid motion excited by

the borehole propagation is studied and its effect is incorporated into the boundary

condition. Then the problem is formulated and solved by developing a boundary

condition perturbation technique for the borehole situation. Following the solution of



the problem, numerical examples are presented for a hard and a soft formation case.

Finally, the laboratory experiments are carried out and the experimental results are

compared with the theoretical predictions.

4.2 Statement of the Problem

Consider a fluid-filled circular cylindrical borehole with a vertical fracture. The frac-

ture is a vertical formation discontinuity having an aperture L, is filled with fluid, and

intersects the borehole diametrically (Figure 4-1). The formation outside the bore-

hole consists of a homogeneous isotropic elastic solid with density p, compressional

velocity V, and shear velocity V. The borehole and the fracture are filled with the

same fluid with density pf and acoustic velocity V. The formation can be either hard

(V, > V > Vf) or soft (V > Vf > V) with respect to the borehole fluid.

A cylindrical coordinate system (r, 0, z) will be used, with z coinciding with

borehole axis that is taken to be vertical, r is the radial distance from the center

of the borehole, and 0 the angle measured from the radial direction that points into

the fracture (Figure 4-1). In the borehole fluid, the fluid displacement potential I

satisfies the wave equation

(r )+ - + ko2 = 0 (4.1)
rOr or r209 2  0z 2

where ko = w/V is the acoustic wavenumber of the fluid and w is the angular fre-

quency. This equation is similar to equation 3.1 in Chapter 3, but now the second

derivative of T with respect to 0 is considered in order to account for the azimuthal

fluid motion induced by the fracture. The fluid displacement U and pressure P are

given by

U = VT ,(4.2)

P = pfw 2 ' . (4.3)



For a propagation along the positive z direction, T can be written as:

TI(r,0, z) = # (r,0) exp(ikzz) , (4.4)

where k, is axial wavenumber. Substitution of equation 4.4 into equation 4.1 results

in

Vi 0 + r =0 (4.5)

where

129 1 82
-- (r-) + - (4.6)

r ar or r2 19g2

is the two-dimensional Laplace operator, and r = - k2 is the radial wavenumber.

Equation 4.5 will be solved in conjunction with the boundary condition at the borehole

wall.

In the absence of a vertical discontinuity in the elastic formation, solutions have

long been available for wave motions both in the formation solid and in the borehole

fluid (Biot, 1952; Cheng and Toks6z, 1981). The two solutions are matched at the

borehole wall using continuity conditions. Consequently, the elastic motion of the

wall is specified. The known wall motion may be treated as a boundary condition

prescribed at the borehole boundary. In the presence of the vertical fracture, this

boundary condition will be perturbed. To know the extent to which the boundary

condition is changed, one needs to study the fluid motion in the fracture and its

interaction with the borehole fluid motion. The effect of this change in the boundary

condition on the borehole Stoneley propagation will be investigated by means of the

boundary condition perturbation technique.

4.3 Boundary Condition Without Fracture

For a fluid-filled borehole of radius R in an unfractured elastic formation, the elastic

motion at the wall may now be prescribed as a boundary condition for the borehole

fluid motion. According to equations 4.2, 4.3, and 4.4, one may relate the potential



0(r, 0) and its radial derivative through the following equation

8@ U_( -0 = . (4.7)
Or P

where U is the radial fluid displacement. At the radial boundary r = R, one has

the continuity of radial stress and displacement. These conditions can be expressed

through a match of the wall impedance (Biot, 1952)

P o
P U(4.8)
U UWj

where o- and U, are the elastic radial stress and displacement at the borehole wall,

respectively. Equation 4.8, together with the condition that the elastic shear stress

vanish at the wall, leads to a dispersion equation given by (Cheng et al., 1982)

Io(fR) _ p 2Vlg [1 2 Ko(gR) 1 2V _2Ko(R)(

fI1(fR) pf I k c2  gR c2 K1(gR) c 2 K 1(lR) '

with the radial wavenumbers 1, g, and f given as

= k 1 - , 1 g=kz 1- , f = k 1- , (4.10)
p V2

where I and 11 are the first kind, and KO and K1 are the second kind modified

Bessel functions of order zero and one, respectively. The parameters V, V,, V, p,

pf, and R have all been defined previously. The phase velocity of wave modes is c.

Equation 4.9 has an infinite number of solutions for c, giving rise to different wave

modes. Specifically, for a hard formation, an infinite number of pseudo-Rayleigh

(or normal) modes exist (Biot, 1952; Cheng and Toks6z, 1981), while for a soft

formation, an infinite number of leaky-P modes exist (Paillet and Cheng, 1986).

In both situations, a fundamental mode - Stoneley mode exists for all frequencies.

Depending on whether the mode velocity c is greater or smaller than the fluid acoustic

velocity Vf, equation 4.7, evaluated at r R, can be written as

o I [fh(f R) 1 = 0 , (c < Vf, Stoneley mode) (4.11)
Or f J(fR)'

-o+ 1f)0 (+)r = 0 , (cf> V, other modes) (4.12)
Or [Jo(fR).



where Jo and J are the first kind Bessel functions of order zero and one, respectively.

Equations 4.11 and 4.12 can be readily derived by noting that the solution for 0 is

0= CUo(fr) , (c < Vf)

4 = CJo(fr) , (c > Vf)

where C is an arbitrary constant. Substitution of the given function of 4 into equa-

tions 4.2 and 4.3 gives the wall impedance P/U in equation 4.7, from which equa-

tions 4.11 and 4.12 are obtained. It is noted that equation 4.11 or 4.12 has the form of

the conventional mixed (or the third) boundary condition. A somewhat "unconven-

tional" point in this boundary condition is that the coefficient in front of 0 assumes

different values depending on different wave modes determined by equation 4.9. How-

ever, as one will see later, since the perturbation theory applies to one particular wave

mode (e.g., Stoneley mode in the present study), equation 4.11 or 4.12 can still be

treated as the conventional mixed boundary condition for this particular wave mode.

4.4 Boundary Condition With Fracture

In the presence of the vertical fracture, the boundary condition at the borehole wall

will be perturbed. It is assumed here that significant change in the boundary con-

dition occurs mainly at the fracture opening, so that the boundary condition (for

the Stoneley) away from the fracture can still be approximated by equation 4.11.

This assumption is based on the laboratory experimental observation (which will be

shown later) that the Stoneley velocity along a fractured borehole does not differ sig-

nificantly from that along an unfractured borehole. This indicates that the boundary

condition as a whole is not significantly changed and the change should be mainly at

the fracture opening. Therefore, for the solid part of the borehole wall one can still

write

- hoo = 0 , (solid part of the wall) (4.13)r
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where ho = f1i (f R)/o(f R). Whereas for the fluid part of the wall where the fracture

opening is located, the boundary condition will be determined by the interaction

between the borehole and the fracture fluid systems. When a borehole acoustic wave

propagates along the fracture opening, wave motion will be excited in the fracture,

which in turn will affect the borehole propagation. For this reason, one needs to know

how much motion is excited. Using the theory of dynamic conductivity developed

in Chapter 2, a quantitative measure is given for the amount of fluid flow conducted

into the fracture opening.

Q = -Op ,(4.14)
ay

where Q is the volume flow rate per unit fracture length, O is the dynamic pressure

gradient normal to the fracture opening. C is the dynamic conductivity governed

by both effects of viscous shear at the fracture surface and wave propagation along

the fracture. It has been shown in Chapter 2 that, when the viscous skin depth

6 = /2v/w (v = kinematic viscousity) is small compared to the fracture aperture L,

C is given by a simple formula (equation 2.38)

iL , (L >) . (4.15)
WPf

As discussed in section 2.4 of Chapter 2, this equation holds true regardless whether

the fracture surface is rigid or elastic. At logging frequencies between [0.1-8] kHz for

the Stoneley wave, 6 is the order of 10 pm to 100 pm, depending on viscosity. The

fracture aperture of interest here is the order of millimeter to centimeter. Thus the

use of equation 4.15 is well justified. Therefore, viscous effects will be neglected for

the present study. The determination of the pressure gradient in equation 4.14 needs

the knowledge of fluid motion in the fracture which will be studied in the following

section.
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4.4.1 Fracture Wave Excited by Borehole Propagation

Consider the Cartesian coordinate system (x, y, z) shown in Figure 4-1, where the

fracture surfaces are located at x = -L/2 and x = L/2, z is parallel with the borehole

axis, and y is measured from the fracture opening and is pointed into the fracture.

The fracture fluid pressure Pf satisfies the scalar wave equation

V 2 P + kP 0 , (4.16)

where

2 2 a2 02
7 5X-- ay 2 +-Z I

In terms of Pf, the fluid displacement is given by

4= .pf (4.17)

In the elastic solid bonding the fracture, a general solution to the vector equation of

motion can be written as (Pilant, 1979)

U = VD - V x V x (2,G) + V x ('XA) , (4.18)

where U' is the elastic displacement, ex is the unit vector along x axis, and D, Q, and

A satisfy the following wave equations:

24+ 02 0 = 0
P

V20 + W = 0 (4.19)V2

V 2 A + A = 0
V2,

They represent P-wave, SV-wave, and SH-wave motions, respectively. The elastic

stresses ai are given by the constitutive relation for an isotropic elastic solid:

Uij = A( )6 + p(ai + ) , (4.20)
OXk a x3  0xi

where &ij is the Krokener delta and A and p are elastic moduli; x1 = x, x 2 = y,

and x3 = z; ui, (i, j = 1, 2, 3) represents the stress system ( o,,,, o, , ,
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UY,). Because of a propagating borehole pressure wave P(w) exp(ikzz) along the

fracture opening, the propagation in the fracture has two components. The first is

the propagation along z direction to comply with the borehole propagation, given by

exp(ikzz). The second is the propagation towards y direction, denoted by exp(ikyy).

The latter propagation is initiated by the pressure difference between the borehole

and the fracture fluid. Taking this two-dimensional propagation into account and

considering the fact that the borehole pressure P(w) is symmetric with respect to x,

one has solutions to equations 4.16 and 4.19 in the form of

Pf Pfo cos qx

exp(iky y) exp(i~kzz) ,(4.21)
O Goe-q Ix|

A LAoe-qi

where

q W2 -k2W2 q 2
q = k -k , qp,= k+ k2 -= k2+ k2

Substitution of the solutions in equations 4.21 into equations 4.17, 4.18, and 4.20

yields fluid displacement in fracture and elastic stresses and displacement in solid.

The boundary conditions at solid-fluid interfaces x = ±L/2 are the vanishing of

shear stresses

oUxy = 0 1(4.22)

O-22 = 0 ,

and the continuity of normal stress and displacement. This continuity condition can

be expressed by an impedance equation (Ferrazzini and Aki, 1987)

Pf - , (x = ±L/2) . (4.23)
Uf ux

Equations 4.22 result in the vanishing of SH-wave motion in the elastic solid (i.e.,

Ao = 0). This is to be expected since the type of coupling between solid and fluid

as stated in equations 4.22 and 4.23 only allows P-SV waves to exist. Equations 4.22
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and 4.23 lead to the following dispersion equation:

Lw v2 pVY"v 2 /y 1 1 [( v2 2 v2 v2
cot 1 =F - 2- - -4 1-- -

2v p v 1- v2/V 2 V \ V- \ 2

(4.24)

where v is the phase velocity of the wave modes existing in the fracture and cot repre-

sents the cotangent function. The same dispersion equation has been obtained by sev-

eral authors (Ferrazzini and Aki, 1987; Paillet and White, 1982) for one-dimensional

propagation cases. As the above derivations show, this dispersion equation holds true

for general two-dimensional propagation cases. One only needs to notice that the

fracture wavenumber k determined by equation 4.24 is related to k. and k, via

w
k=- k2 +k 2 . (4.25)

V Y

The wave modes determined by the dispersion equation (equation 4.24) have been

experimentally confirmed by a laboratory measurement (Tang and Cheng, 1988).

Analogous to the dispersion equation (equation 4.9) for the borehole modes, equa-

tion 4.24 results in an infinite number of normal or leaky-P wave modes, depending

on whether the solid is hard or soft with respect to the fracture fluid. In particular, a

fundamental mode analogous to the borehole Stoneley mode exists for all frequencies.

However, the velocity of this fundamental mode goes to zero at very low frequencies

(see Tang and Cheng, 1988) while the velocity of the borehole Stoneley mode ap-

proaches a finite value. Although a number of wave modes may exist in the fracture,

the fundamental mode is the most important one which one is interested in. It is as-

sumed that the borehole pressure is nearly uniform over the fracture aperture, since

the aperture is generally small compared to the borehole perimeter. If the formation

is rigid, the uniform pressure at the opening excites only the fundamental mode in

the fracture. It is reasonable to assume that the borehole pressure will mostly excite

the fundamental fracture wave mode when the formation is elastic. This assumption

has been verified by numerically evaluating the amplitude of each mode excited by

an uniform pressure at the opening. It was found that the fundamental mode indeed
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dominates even in the case of a soft elastic formation. One therefore needs only to

consider the interaction of the fundamental fracture wave mode with the borehole

propagation. When the fundamental mode velocity is found by solving equation 4.24,

the fracture fluid wavenumber is given by

k=r (4.26)
V

Like what was done for the fracture fluid pressure in Chapter 2, the fracture pressure

in equation 4.21 is averaged over the fracture aperture L and is matched with the

borehole pressure P(w, R) at the fracture opening. By doing so, it is readily shown

that the pressure gradient in equation 4.14 (averaged over the fracture aperture) is

given by
aP

- ikP(w, R) , (4.27)

where

k= k,- kf . (4.28)

A few remarks will help to illustrate the interaction between the fundamental fracture

wave and the borehole propagation. The wave front in the fracture has an angle a =

SZn 1(ky/kfp) with respect to the wave front in the borehole. As has been mentioned

before, at very low frequencies, the fracture wave velocity goes to zero, while the

(unfractured) borehole Stoneley velocity approaches a finite value. Thus kfr > k2 and

a -+ 7r/2. The borehole pressure pushes the fluid radially into the fracture, causing

strong interaction between the two fluid systems. Whereas at high frequencies, both

the fracture and the borehole velocities approach the Stoneley velocity along the

fluid-solid interface (i.e., Scholte velocity, for the borehole case see Cheng and Toks6z,

1981; for the fracture case see Ferrazzini and Aki, 1987). Thus ky ~ 0 and a -+ 0;

the fracture wave motion is nearly in phase with the borehole propagation, resulting

in minimal interaction. It is therefore expected that the effects of the fracture will be

more significant at low frequencies than at higher frequencies.
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4.4.2 Boundary Condition for Entire Wall

With C and O known, equation 4.14 can be used to determine the average radial

fluid displacement U at the fracture opening. Since Q, the unit-length flow rate,

is the integral of flow velocity (given by -iwU) over the aperture L, the average

displacement is given by

- = Q _ik

U w Y"2P(w, R) (4.29)
-iwL pyW2

By using equation 4.7, equation 4.29 can be expressed in terms of the displacement

potential 0.

-ky# = 0 , (at fracture opening) . (4.30)
Or

Combining equations 4.13 and 4.30, one can write the boundary condition for the

entire borehole wall as

r ho# + (-iky + ho)W(6)# = 0 , (at r = R) (4.31)
Or

where

1 , I -L/(2R) 0 < L/(2R)

W() = 1, r - L/(2R) 5 0 < r + L/(2R)

0 ,otherwise

Because the coefficient in front of # is the function of the azimuthal variable 0 in this

boundary condition, equation 4.5 cannot be solved using the conventional method of

separation of variables. One therefore has to seek approximate solutions using the

perturbation theory.

4.5 Formulation of Boundary Condition Pertur-

bation

For a perturbation theory, the term (-ik + ho)W(6) in equation 4.31 may be treated

as a perturbation to the original boundary condition Or, - hoo = 0. Although this
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term may not be a small quantity at the fracture opening, the fracture aperture is

generally small compared to the borehole perimeter, such that its overall effect on

the borehole propagation is a perturbation. It is therefore convenient to consider the

solutions to the unperturbed boundary value problem as basis functions

V7dmn + Kmnnmn = 0 ,{ rmn - hoqmn = 0 , (at r = R)

where "cmn's are the eigenvalues of the problem, and qmn are the associated eigen

functions that form a complete orthogonal set. Using the conventional method of

separation of variables (Morse and Feshbach, 1953), solutions of equation 4.32 are

readily found, as given by

1 Cos mO r
lomn = Jm(mn -) , (4.33)

vrNmnem sinm9 R

with

m= 0,1,2,--- nde 2 m =0Sand mm=
n = 1,12,13,1-.-. 1 M > 0

where
N {[Jn(7mn)]2 + (1 - r,)[Jm mn)]2 (4.34)Nmn 2 (4.34)mn) Jm(^m

is the normalization factor, Jm is the mth order Bessel function of the first kind, and

1mn = KmnR

is the nth root of the following equation:

dJm(7y)
dm - hoRJm(y) = 0 . (4.35)d-f

This equation is obtained from the boundary condition of equation 4.32. Equa-

tion 4.35 gives a set of eigenvalues tcm, and determines their associated eigen func-

tions qmn (equation 4.33). Note that hoR in this equation has to be found by solving

the borehole dispersion equation for the Stoneley mode. Consequently, the set { mn}
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can be regarded as the sub-set (or sub-modes) of the Stoneley mode (Analogously,

there are sub-modes for the pseudo-Rayleigh modes and leaky-P modes). The non-

dimensional quantity hoR = fRI1 (fR)/1Io(fR) depends on the formation and fluid

properties. In fact, it characterizes the compliance of the borehole wall with respect

to the borehole fluid. Figure 4-2 shows hoR as the function of frequency for both hard

and soft formations surrounding a fluid-filled borehole of a given radius. As shown in

this figure, hoR is small for a hard formation and large for a soft formation. In the

extremely hard formation case, hoR approaches zero and equation 4.35 corresponds

to the rigid boundary condition. For this case, the roots of J,(-Y) = 0 are available

(Abramowitz and Stegun, 1970). For an elastic formation of finite rigidity, hoR has

a finite value and the roots of equation 4.35 have to be determined for the different

values of hoR. What makes equation 4.11 or 4.35 special is the negative sign in front

of the coefficient of @ or of Jm(7). In this place, the commonly encountered third

boundary condition has a positive sign. Doak and Vaidya (1970) have studied the

behavior of the roots of the equation 4.35 type equation. Based on their results, one

can draw the following two useful properties.

e For n = 1, 7mi is imaginary if hoR > m and is real if hoR < m.

e For n > 1, all 7mn's are real regardless whether hoR > m or hoR < m. They

are interplaced with the roots of J,,(7) = 0 .

Thus if 7mn's are real, they can be found by solving equation 4.35 using the roots of

J,(I) = 0 as an initial guess. While when 7m1 = iim is imaginary, jim can be found

as the single root of
_dIm (i)
I _ - hoRIm(7) = 0 , (4.36)

d7

where Im is the mth order modified Bessel function of the first kind, resulting from the

imaginary argument of Jm. The fact that 7mn has imaginary solutions indicates the

presence of the Stoneley type modes in the sub-set {qmn} (the Stoneley has a radial

function of I instead of J). In this case, {#mn} still forms a complete, orthogonal real
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set (Watson, 1941). With a slight modification, this set can be written as

If 7mn is real:

= n 2 7mn cos m9 Jm(7mr/R)
x R2 7 +(hR 2-m sin m0 JM(7mn)

If 7mi is imaginary:

S 2 7m cos mO Im(Imr/R)
2m =m (4-38)

- R2 fm ) - (hIR)2 + m2  sin mO ImCim)

In equation 4.37 or 4.38, equation 4.35 or 4.36 has been used in the normalization

factor Nmn given by equation 4.34. Having obtained the unperturbed eigen functions

qmn, one now uses them to formulate the boundary condition perturbation theory.

To develop, one employs the two-dimensional Green's function G(, F0; w) satisfying

the same mixed boundary condition as in equation 4.32 at the borehole boundary

r =R.

17tG + r,2G = -4716(r - 0-) ,439{,G - hoG = 0 , (at r = R)
where 7t has been defined in equation 4.6, 6(r'- io) represents the two-dimensional

Dirac function, and the two-dimensional vectors

J rocosOo a rcosO0
ro= and r= _

ro sin 00 11r sin G

are the source and field positions, respectively. Using the eigen functions {mn },
one expands the Green's function with waiting-to-be-determined coefficients and the

Dirac function with known coefficients. Substituting the expansions into the partial

differential equation in equation 4.39 and comparing the coefficients on both sides of

the equation, one obtains the series solution for the Green's function:

G(r, ro; w) = 47rZ cos [m( - 00)I Jm(7mno)Jm(7mn)
m,n M )Nmn R R

4 mn(r)4mn(ro) (4.40)
m,n mn
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Applying the two-dimensional Green's theorem

[G V$ -$V G~dA = f [G- - p ]dS , (4.41)
A SOr Or

where

A: borehole area; S : borehole boundary ro = R

to equations 4.5 and 4.39, one gets

4 -x@(rw) = [G-- - OG (4.42)
Or Or

Note that the integrand in equation 4.42 is evaluated with the source point on the

borehole boundary ro = R. Thus the respective boundary conditions for b and

G (equations 4.31 and 4.39) can be used. Substituting 0,G = hoG and Oro =

ho0-(-ikv+ho)W()4 into equation 4.42 and letting r approach Fo on the boundary,

one obtains the following integral equation for 0(60):

o(#0 , w) j h(S)G(Fo, Fo; w)r(Fo, w)dS , (4.43)

with

h(S) =(-iky + ho)W(O) , (S = RO) . (4.44)

Equation 4.43 is a second kind homogeneous Fredholm integral equation and can be

solved by series expansions. It is assumed that $(i0, w), being the perturbed wave

function, can be expanded using the unperturbed eigen functions (or sub-modes)

(, w) = Cmndmn(o,w) , (4.45)
m,n

where Cmn's are the expansion coefficients. In the unfractured borehole case, the

Stoneley mode itself suffices to satisfy the axial-symmetric boundary condition (equa-

tion 4.11), whereas in the fractured borehole case, the Stoneley sub-modes combine

to form a wave packet, in order to satisfy the azimuthally varying boundary condition

(equation 4.31). Substitution of equations 4.40 and 4.45 into equation 4.43 results in

SCmnmn = pq Cpqhmnpq (4.46)
m,n m,n mn

110



where

hmnpq = sh(S)4mn(o)pq(o) dS

An analysis of the fracture and borehole geometry shown in Figure 4-1 indicates that

the fluid motion in the borehole is symmetric with respect to the diameters coinciding

with 0 = 0 and 0 = 7r/2, so that the azimuthal function of qmn (equation 4.33 or

4.37 and 4.38) has only cos mO component, and the integer m must be even numbers.

Using this fact and the h(S) given in equation 4.44, hmnpq can be readily integrated

out as

h 4(-ikv + ho) 7mn7pq
h ""p = 7R, ei L[ + (hR)2 - m2] 2y + (hR)2 - p2 ]

sin[(m - p)L/(2R)]/(m - p)+ sin[(m+ p)L/(2R)]/(m+ p) , m p

x L/(2R) + sin(mL/R)/(2m) , m=p#0

L/R , m=p=0

(4.47)

with

mjp= 0,2,4,-

n, q= 1, 2,3,---.

where Ymn and 7pq can be real or imaginary depending on the solution to equa-

tion 4.35. From equation 4.46, one obtains a set of linear simultaneous equations for

the coefficients Cmn.

r- rn) 6
mponq - hmnpq]Cpq = 0 . (4.48)

pq

The matrix of this equation is of infinite dimension because m, n, p, and q can go to

infinity. In practice, however, this problem can be approximately solved by making

the matrix finite dimensional (Bender and Orzag, 1978). The series in equation 4.46

is truncated at m = M (M is an even number) and n = N. Equation 4.48 may thus

be written as

HC=O , (4.49)

111



where H is a (M/2 + 1)N x (M/2 + 1)N symmetric square

H =

2 _ -2-h M - ho01

-ho201

-ho3o1

-hMNo1

2_K- o202

-h3O2

-hMNo2

-hoo3

2- 03 - hos3

-hMNo3

and C is the vector representation of the coefficients

elements, given by

matrix, given as

-.. -- ho1MN

-h2MN

-ho3MN

C* havin (MN - hMNMN

Cmn,, having (M/2 + 1) x N

CT = [CO1 --- CoN c21''c2N ... CM1... CMN -

The condition that there be nontrivial solutions C is that the determinant of H

vanishes.

det H = 0. (4.50)

This results in a series of perturbed eigenvalues for r2. The complicated boundary

value problem is therefore reduced to a perturbative eigenvalue problem (Bender and

Orzag, 1978).

4.5.1 Borehole Stoneley Wave

Because of the effects of the fracture, the sub-modes {4mn} are perturbed, and their

associated eigenvalues rm, are modified, as given by the solutions of equation 4.50.

The eigenvalue corresponding to the perturbed borehole Stoneley mode is the lowest

order one of all the eigenvalues determined by equation 4.50. This lowest order

eigenvalue is designated by K2r. When Ir is found by solving equation 4.50, the

borehole Stoneley wavenumber k, is given by

k = k - KIr
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and the Stoneley phase velocity CST and attenuation coefficient aST are obtained from

the real and imaginary part of k, as

CST = w/Re{k,} (4.52)

aST = Im{kzl -

The attenuation of the perturbed Stoneley mode results from the loss of wave energy

into the fracture. To illustrate how the presence of the fracture affects the bore-

hole Stoneley propagation, one expresses 4 r, with a series expansion of the secular

determinant in equation 4.50 (Morse and Feshbach, 1953).

2 2~--oo-- hoipq hpqoi
KST K1 + ho101 + E2 h 2, h1

pgo ST - Kpq pqpq
q01

+ z ho1pqhpqrshrso1 +(453)
p (r: ; , T - nPq hpqpq)(SCT - -r hrsrs) +... (.3

r~p; q:As

Thus if the fracture does not exist (i.e., hmpnq = 0), rST is given by oi1 =11R

where -o is the root of equation 4.36 for m = 0. In fact, for m = 0 equation 4.36

reduces to the borehole dispersion equation (equation 4.9), and -yo corresponds to the

radial fluid wave number f in equations 4.10. This gives the unperturbed Stoneley

wavenumber
2

k( k )o = Vk ,,0 (4.54)
C

where c is the borehole Stoneley velocity determined by equation 4.9. In the presence

of the fracture, 4 2 is given by the perturbation series in equation 4.53, with Koi as

the zero-order solution. The perturbations are in ascending orders of hmpnq. From

equation 4.47, one has, approximately,

wL
mnq o<rR2

Therefore, at low frequencies or small fracture apertures, hmpnq is small and Kr, can

be well approximated by taking only the zero and first order terms. Thus

W2 2L(-iky + ho)[1o(f R)]2
\ c 7rR 2 {[Io(f R)]2 - [I1(f R)]2 1 (5-
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where the expression for ho101 given by equation 4.47 has been used. With increas-

ing frequency (or aperture), r in equation 4.53 involves higher order perturbation

terms. In this situation, one must increase M and N in equation 4.48 to yield ac-

curate results. Physically, this means that the effects of higher frequency or larger

fracture aperture will involve higher degree of azimuthal (characterized by M) and

radial (characterized by N) fluid motions. For a given frequency range and fracture

aperture, M and N can be practically determined by comparing the numerical result

at M, N with that at M + 1, N + 1. When the two results are sufficiently close, one

may then reckon that the perturbation series in equation 4.53 converges to its true

value at M and N. Since 2ir is the lowest order eigenvalue, it converges to its limit

more rapidly than any other eigenvalues as M and N increase (Bender and Orzag,

1978). Therefore, moderate values of M and N will be sufficient to yield accurate

results.

4.6 Theoretical Results

In this section, theoretical results are presented for the effects of a vertical borehole

fracture on the Stoneley propagation. Cases of both a hard and a soft formation

are investigated, and the behavior of these effects will be illustrated in both low and

higher frequency ranges.

4.6.1 Hard Formation

The effects of the fracture in the presence of a hard formation are first investigated.

Figure 4-3 shows the results for a radius R = 10 cm borehole with a L = 1 cm fracture

in a low frequency range of [0-2] kHz. For the formation, the compressional and shear

velocities are V =5 km/s and V, =3 km/s, respectively. Its density p =2.5 g/cm3 .

For the fluid, the acoustic velocity Vf = 1.5 km/s and the density p = 1 g/cm3 . Fig-

ure 4-3a shows the velocity dispersion of the Stoneley wave in the fractured borehole,
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plotted against the velocity of an unfractured borehole having the same radius. A

prominent feature in this figure is the drastic decrease of the perturbed Stoneley ve-

locity as frequency approaches zero while the unperturbed Stoneley velocity remains

relatively unchanged. As discussed previously, this behavior is associated with the

slow wave behavior of the fracture fundamental mode at low frequencies (Ferrazzini

and Aki, 1987; Tang and Cheng, 1988). That is, the decrease in fracture wave velocity

creates a large pressure gradient between the borehole and the fracture fluid, which

drives the bore fluid effectively into the fracture, resulting in the retardation of wave

propagation in the borehole. Figure 4-3b shows the calculated Stoneley wave atten-

uation coefficient in the same frequency range. The attenuation drastically increases

with frequency to reach a maximum at low frequencies, then decreases with increasing

frequency. In fact, the behaviors of Stoneley dispersion and attenuation at very low

frequencies are well predicted by the first order theory given by equation 4.55. For a

check of the theory, both results from the first order theory (equation 4.55) and from

the complete perturbation theory (equation 4.50) are plotted in Figure 4-3b. The later

theoretical result is calculated by setting M = 16 and N = 5 in equation 4.48. Corre-

sponding to equation 4.53, this result involves the summation of (M/2 + 1) x N = 45

perturbation terms, and should be regarded as quite accurate. As expected, the first

order theory does not differ from the complete theory in the low frequency range.

As frequency increases, they begin to show some discrepancy, the attenuation from

the first order theory being slightly higher than that from the complete theory. At

higher frequencies, this discrepancy will be non-negligible and one should rely on the

complete theory to yield accurate theoretical results. Figure 4-4 shows the Stoneley

wave dispersion (a) and attenuation (b) in a higher frequency range ([0-20] kHz) cal-

culated using the complete perturbation theory. The parameters for the numerical

evaluation are the same as those of Figure 4-3. In Figure 4-4a, the Stoneley disper-

sion curve of the fractured borehole is plotted against that of a unfractured borehole

of the same radius. Drastically increasing from small values at low frequencies, the
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perturbed Stoneley velocity becomes slightly higher than the unperturbed velocity in

the medium frequency range. As will be discussed later, this effect is to be expected

since the opening of the fracture reduces the guiding effects of the borehole and the

Stoneley velocity tends to move towards the free space velocity of the fluid. At high

frequencies, both velocities approach the Scholte wave velocity (i.e., Stoneley velocity

along a planar fluid-solid interface). Figure 4-4b shows the Stoneley attenuation coef-

ficient as the function of frequency. Starting from a maximum at very low frequencies

(see Figure 4-3b), the attenuation monotonically decreases with increasing frequency.

From Figures 4-3 and 4-4, it can be seen that the overall effects of a vertical fracture

on the borehole Stoneley waves are very similar to those of a permeable borehole with

a porous formation as studied in Chapter 3. Both types of effects involve dynamic

fluid flow at the borehole wall and are more important in the very low frequency

range than at higher frequencies.

To show the effects of the fracture thickness on the Stoneley wave, Figure 4-5

plots the Stoneley velocities (a) and attenuations (b) for a set of fracture apertures

in a borehole with a 20 cm diameter. They are L = 0.2, 1, and 3 cm, respectively.

The frequency range is [0-4] kHz. The fluid and formation properties for the calcula-

tions are the same as those used in Figures 4-3 and 4-4. Figure 4-5a shows that the

decrease of Stoneley velocity at low frequencies is more pronounced for a big fracture

(L=3 cm) than for a small fracture (L=0.2 cm). But they all approach the same

limit at high frequencies (see also Figure 4-4a), where the effects of a fracture become

minimal. Figure 4-5b shows that the Stoneley attenuation increases with increas-

ing fracture aperture, especially at low frequencies. But the increase is not linearly

proportional to the fracture aperture. This can be explained by the behavior of the

fracture slow wave. Although the increase in aperture results in a linear increase of

fracture conductivity (equation 4.15), the velocity of the slow wave is also increased.

According to equation 4.28, this means that the fracture-borehole interaction tends

to be reduced. Therefore, although the overall effects are increased by increasing the
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fracture aperture, they are not linearly proportional to it.

4.6.2 Soft Formation

In the case of a soft formation whose shear velocity is less than the acoustic velocity

of the fluid, the Stoneley wave velocity in the borehole and the fundamental mode ve-

locity in the fracture are considerably lower than those in the case of a hard formation

(for the fracture wave velocity, see Tang and Cheng, 1988). These effects are reflected

in the term hmnpq in equation 4.47, which governs the perturbation by the fracture.

The soft formation or the slower Stoneley velocity causes the wall compliance hoR

to be much larger than that of a hard formation, particularly at high frequencies

(Figure 4-2). On the other hand, the slower fracture wave velocity makes ky have a

larger value, especially at low frequencies. This results in the increase in the dynamic

pressure gradient at the fracture opening and produces stronger borehole-fracture

interaction. It is therefore expected that in the low frequency range, the effect of a

given fracture in the soft formation case will be more prominent than that in the hard

formation case.

Figure 4-6 shows the Stoneley wave dispersion (a) and attenuation (b) in a low

frequency range of [0-2] kHz. The borehole radius and the fracture aperture are the

same as those in Figure 4-3. They are R = 10 cm and L = 1 cm. The formation and

fluid velocities are: V = 3 km/s, V, = 1.4 km/s, and Vf = 1.5 km/s. The formation

and fluid densities are 2.5 g/cm 3 and 1 g/cm3 , respectively. As seen from Figure 4-

6a, the perturbed Stonely velocity exhibits a similar behavior as has been seen and

discussed in Figure 4-3a, except that the difference between the perturbed and the

unperturbed velocities are more significant than that in Figure 4-3a between 0.5 kHz

and 2 kHz. The attenuation shown in Figure 4-6b also has the similar behavior as

that shown in Figure 4-3b. But the former is higher than latter, because of the effects

of a soft formation. In addition, one also notices that the attenuation given by the

first order theory begins to significantly differ from the one by the complete pertur-
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bation theory at about 1 kHz, because of the increased wall compliance. Figure 4-7

shows the Stoneley dispersion (a) and attenuation (b) in the frequency range of [0-20]

kHz. The borehole radius and fracture aperture as well as the formation and fluid

parameters are the same as those of Figure 4-6. The Stoneley velocity of a fractured

borehole is significantly higher than the velocity of an unfractured borehole in the

lower frequency range of Figure 4-7a. As frequency increases, both velocities approach

the Scholte wave velocity corresponding to a soft solid-fluid interface. In Figure 4-

7b, the attenuation of Stoneley wave has its maximum value at very low frequencies

(see also Figure 4-6b), then it rapidly decreases with increasing frequency. Beyond

10 kHz, the attenuation becomes very small. In the hard formation case shown in

Figure 4-4b, the Stoneley attenuation is still significant even at 20 kHz. The fact

that the Stoneley attenuation due to a fracture is most significant at low frequencies

allows it to be separated from the intrinsic attenuation of the formation and fluid.

The latter attenuation is small or negligible in the low frequency range.

To show the effects of the fracture thickness on the Stoneley wave in the presence

of a soft formation, Figure 4-8 plots the Stoneley velocities (a) and attenuations (b)

for a set of fracture apertures in borehole with a 20 cm diameter. They are L = 0.2,
1, and 3 cm, respectively. The frequency range is [0-4] kHz. The fluid and formation

properties for the calculations are the same as those used in Figures 4-6 and 4-7. As

in the hard formation case (Figure 4-5), Figure 4-8a shows that increasing fracture

aperture increases the dispersion of Stoneley velocity at low frequencies. In addition,

for a big fracture, the tendency for the Stoneley velocity to increase towards the free

space velocity is pronounced (see the L=3 cm curve). As mentioned previously, this

is related to the reduction of the solid-fluid coupling by the fracture. The borehole

fluid is more intimately coupled with a soft formation than with a hard formation

(see Figure 4-2), so that the Stoneley velocity is significantly lower in a soft formation

than in a hard formation. Once this coupling effect is reduced, the Stoneley velocity

increases towards the free space velocity. But the increase from the low velocity
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(the soft formation case) is more significant than the increase from the high velocity

(the hard formation case), because in the hard formation case the Stoneley velocity

is already close to the free space velocity (see Figures 4-4 and 4-5). However, this

phenomenon occurs only in the medium frequency range. At very low frequencies,

the strong interaction of the borehole fluid with the fracture drastically reduces the

Stoneley velocity. At very high frequencies, the borehole acts like a planar surface

and the Stoneley velocity approaches the Scholte velocity. Figure 4-8b shows that

the attenuation coefficient in the presence of a soft formation is generally higher than

in the presence of a hard formation (see Figure 4-5b). The attenuation increases

with increasing fracture aperture. At higher frequencies, the attenuation decreases

with increasing frequency. The bigger the fracture is, the faster the attenuation

decreases, so that the attenuation of the 3 cm fracture drops below that of the 1

cm fracture above 3.5 kHz. This is related to the fact that the slow wave effects

become less significant as frequency and fracture thickness increase. When the slow

wave velocity approaches the borehole Stoneley wave velocity at high frequencies or

large fracture apertures, the fracture wave is almost in phase with the borehole wave

motion, resulting in the decrease of fluid flow into the fracture. This effect is more

pronounced for a soft formation than for a hard formation.

4.7 Laboratory Experimental Study

The characteristics of Stoneley wave propagation in a borehole with a vertical fracture

have been theoretically analyzed. It is desirable to test the validity of these analyses.

For this purpose, ultrasonic modeling experiments are carried out to measure Stoneley

propagation in laboratory fracture borehole models.
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4.7.1 Experimental Procedure

In the ultrasonic laboratory experiment, one must ensure that the borehole diameter

lies in the range of ultrasonic wavelengths, so that the guided wave effects are easily

measurable. Thus to simulate an in-situ Stoneley wave of peak frequency 5 kHz

in a 20 cm diameter borehole, the model borehole diameter is scaled to the order

of 1 cm for a laboratory Stoneley wave with peak frequency around 100 kHz. The

vertical fracture is simulated by a saw cut in the model, which crosses the borehole

diametrically and has an aperture on the order of 1 mm. Aluminum is used to simulate

the hard formation and lucite is used to model the soft formation. They are shaped

into cylinders. The aluminum cylinder is 20 cm in diameter and 25 cm in height. The

lucite one is 15 cm in diameter and 18 cm in height. Water is used as the borehole

fluid. The acoustic properties of the three media are given in Table 4.1.

A diagram of the experimental setup is shown in Figure 4-9. An acoustic trans-

ducer is mounted at the bottom of the borehole model. The signal receiver is a small

transducer located some distance above the source. During the experiment, the model

assembly designed in Figure 4-9 is submerged in a water tank. The ultrasonic wave

is generated at the source transducer by a Panametrics 5055PR pulser. The received

signals are first amplified by a Panametrics 5660B preamplifier, then filtered by a

Krohn-Hite 3203R filter, and finally digitized by a Data Precision DATA 6000 digital

oscilloscope with 12-bit amplitude resolution. The digital oscilloscope and the step

motor controller are interfaced with IBM PC-AT computer by the IEEE-488 interface

bus. Digitized data are first stored in the IBM PC-AT. After experiment, they are

transferred to a VAX 8800 computer for data processing. When a received waveform is

digitized at a 0.4 ps sampling rate at a receiver position, the receiver is automatically

moved to the next receiving position at a 1.8 mm step by the step motor controller.

With about 50 receiver positions, a waveform array is obtained. The array data are

then processed using the refined Prony's method (Ellefsen et al., 1989). Assuming

the homogeneity of the formation and fluid along the array, this method of array
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processing involves changing the data from the time domain to frequency domain by

applying a fast Fourier transform to each trace and then estimating the amplitude

and phase for a propagating wave mode at every frequency using the method of least

squares. The decay of amplitude along the array gives attenuation coefficient while

the phase yields the phase velocity of the wave mode. Since it is desired to measure

the Stoneley wave attenuation and dispersion along the fractured borehole, this array

processing technique is ideal for this purpose. For the velocity estimate, this tech-

nique yields accurate results, even when wave amplitude is small. For the attenuation

estimate, one obtains reasonably accurate results when the signal-to-noise ratio of the

wave is high. But the quality of the results will be degraded when this ratio is low.

4.7.2 Experimental Results

The results of the hard formation fracture model experiment are first presented.

Figure 4-10 shows the waveform array data for the aluminum model. The borehole

radius R=1 cm and the fracture aperture L=1.1 mm. The high frequency arrivals are

water wave propagating in the bore fluid (Biot, 1952; Winbow, 1988). The fact that

its propagation is virtually unaffected by the presence of the fracture indicates that

the effects of the fracture is minimal at high frequencies - a behavior that is predicted

by the theory. Following the water arrivals is the Stoneley wave (indicated by ST in

this figure). This wave moves across the array at almost no noticeable dispersion.

However, one can notice the decay of wave amplitude as source-receiver distance

increases, particularly in the low frequency portion of the waves. This indicates that

the Stoneley wave gradually loses its energy into the fracture in the propagation. The

array data shown in Figure 4-10 are then processed using Prony's method. Figure 4-

11 shows the estimated wave amplitude spectrum (a), attenuation coefficient (b),

and the phase velocity (c) for the Stoneley wave. The attenuation and velocity are

plotted versus the theoretical predictions calculated by solving equation 4.50 using

the parameters in Table 4.1 for the aluminum. As shown in Figure 4-11b, in a
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broad frequency range of [0-250] kHz, both the predicted and measured attenuations

decrease with increasing frequency. From 70 kHz to 250 kHz in which the wave

has most of its energy (see Figure 4-11a), the agreement is very good, although the

measured values are a little higher than those of the theory towards the low frequency

range. The theoretical and experimental velocity dispersions shown in Figure 4-

11c show very good agreement throughout the frequency range. In particular, the

decrease of velocity at very low frequencies - a characteristic of the effect of fracture

as predicted by the theory - is detected by the experiment. Only in this very low

frequency range, does the perturbed Stoneley velocity have noticeable difference from

the unperturbed (i.e., the intact borehole) Stoneley velocity (dashed line in Figure 4-

11c) in this particular case.

Next, the results of the soft formation fracture model experiment are presented.

Figure 4-12 shows the waveform array data for the lucite model in which the borehole

radius is 0.53 mm and the fracture aperture is 1.4 mm. The full waveform consists

of a leaky-P (P) wave, a water wave (W), and a Stoneley wave (ST), as indicated in

this figure. The leaky-P and water waves are typical of a soft formation (Chen, 1988)

but they are of little interest at present. The Stoneley wave moves out approximately

at a velocity of 1070 m/s, nearly the same as the Stoneley velocity without the effect

of fracture. However, as one can notice from the figure, the Stoneley wave amplitude

rapidly attenuates as the wave moves across the array. The array data shown in

Figure 4-12 are then processed using Prony's method. Figure 4-13 shows the estimated

wave amplitude spectrum (a), attenuation coefficient (b), and velocity dispersion (c).

The theoretical predictions for the attenuation (b) and dispersion (c) are also plotted.

Considering the fact that lucite is an attenuative medium, the intrinsic attenuation

for the Stoneley wave is calculated using the theory of partition coefficient developed

by Cheng et al. (1982). In this calculation, the presence of the fracture is neglected

and a shear quality factor Q, = 40 is used for the lucite. As shown in Figure 4-

13b, the intrinsic attenuation is linearly superimposed on the fracture attenuation
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(solid curve) to give the total attenuation (dashed curve). As expected, the total

attenuation does not differ significantly from the fracture attenuation in the lower

frequency range. As seen from the same figure, in the frequency range of [60-180] kHz

in which the wave amplitude is the most significant, the measured attenuation shows

little scatter and falls between the fracture attenuation and total attenuation curves.

The agreement of the experiment with the theory is fairly good. The velocity estimate

is shown in Figure 4-13c. The measured velocities are in very good agreement with

the theory. Particularly, in the range of [60-180] kHz, the experimental results closely

follow the theoretical velocity curve for a fractured borehole (solid curve), which is

slightly higher than the velocity corresponding to an unfractured borehole with a

soft (lucite) formation (dashed curve). At low frequencies, the measured velocities

show the tendency to decrease with decreasing frequency, as predicted by the theory,

although this tendency appears to occur at slightly higher frequencies.

4.8 Conclusions

This chapter has presented a quantitative analysis of the Stoneley wave propagation

in a fluid-filled borehole with a vertical fracture. This analysis is based on a boundary

condition perturbation technique developed for the borehole situation, in which the

change in the boundary condition due to the fracture is treated as the perturbation

to the fluid-solid boundary condition at the borehole wall. To find this change in the

boundary condition, the fracture fluid motion excited by the borehole propagation

was studied. The boundary condition at the fracture opening can thus be specified by

the interaction between the borehole wave and the fracture fundamental wave. The

boundary condition perturbation technique reduces the complicated boundary value

problem to a perturbative eigenvalue problem. The Stoneley wavenumber is obtained

from the lowest order perturbed eigenvalue, giving the attenuation and velocity of

the Stoneley wave as a function of frequency. Whatever the formation, hard or
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soft, significant Stoneley wave attenuation is produced because of the dynamic fluid

flow occurring at the fracture opening. The attenuation is more significant at low

frequencies than at higher frequencies. In the presence of intrinsic attenuation that

is small at low frequencies, this behavior allows one to separate the two effects. The

effects of a fracture on the Stoneley velocity is generally not very significant at higher

frequencies. But they drastically reduce the Stoneley velocity at very low frequencies

because of the increased borehole-fracture interaction. The theoretical predictions

were tested with laboratory experimental results for both hard and soft formation

situations. The theory and experiment are in good agreement. Specifically, the

decrease of Stoneley velocity at very low frequencies is observed by the experiment and

the measured Stoneley attenuation is close to the theoretical values in the frequency

range where the wave amplitude is high. The theoretical results of this study provide

the quantitative relationship between Stoneley propagation and the character of a

vertical fracture in connection with acoustic properties of the formation and fluid. The

boundary condition perturbation technique developed in this study can be modified

to study the effects of a vertical fracture on the propagation of other wave modes that

exist in a borehole environment, such as pseudo-Rayleigh mode, leaky-P mode, and

flexural wave mode.
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Table 4.1: Density p, compressional velocity V, and shear velocity V, of the fluid and
solid used in the measurement.
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Medium p (g/cm3 ) V, (m/sec) V, (m/sec)

Aluminum 2.7 6410 3180

Lucite 1.2 2740 1330

Water 1.0 1480 0
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Figure 4-1: A cross-section of the borehole and fracture systems and their correspond-
ing coordinates (r, 0, z) and (x, y, z). The z axes of the two systems are respectively
at r = 0 and x = y = 0 and are pointing outwards from the figure.
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WALL COMPLIANCE
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FREQUENCY (kHz)

Figure 4-2: Wall compliance hoR of hard and soft formations versus frequency. The
parameters are: V = 3 km/s and V, = 1.2 km/s for the soft formation; V = 5 km/s
and V, = 3 km/s for hard formation (1) and V = 4 km/s and V, = 2 km/s for hard
formation (2). In all cases the formation density p = 2.5 g/cm3 , the borehole has a
radius of R = 10 cm and is filled with a fluid of Vf = 1.5 km/s and pf = 1 g/cm3

Note that the compliance of a soft wall is much greater than that of hard walls.
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Figure 4-3: Stoneley wave dispersion (a) and attenuation (b) in the low-frequency
range for the hard formation case. As indicated in (a), the Stoneley velocity of a
fractured borehole drastically decreases at very low frequencies. In (b) the Stoneley
attenuations from the first order theory and from the complete perturbation theory
are plotted. The two results are identical at low frequencies and begin to differ as
frequency increases.
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Figure 4-4: Stoneley dispersion (a) and attenuation (b) of Figure 4-3 in a higher
frequency range. In (a) the perturbed velocity drastically increases to become slightly
higher than the unperturbed velocity in the lower frequency range. Both velocities
approach Scholte velocity as frequency increases. In (b) the Stoneley attenuation is
the most significant at low frequencies and decreases as frequency increases.
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Figure 4-5: Stoneley wave velocity (a) and attenuation (b) for three different fracture
apertures, which are 0.2 cm, 1 cm, and 3 cm, as indicated on the curves. Other
model parameters are the same as those used in Figures 4-3 and 4-4. This figure
demonstrates that the effects of a fracture increase with increasing fracture thickness.
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Figure 4-5: (b) Stoneley attenuation coefficient associated with (a).
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Figure 4-6: Stoneley dispersion (a) and attenuation (b) in the low frequency range
for the soft formation case. In (a) the perturbed velocity exhibits the same behavior
as in Figure 4-3a. In (b) the attenuation from the first order theory begins to diverge
from that from the complete theory even in the low frequency range, because of the
effects of the soft wall.
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Figure 4-7: Stoneley dispersion (a) and attenuation (b) of Figure 4-6 in a higher
frequency range. As shown in (a), the perturbed velocity becomes higher than the
unperturbed velocity in the lower frequency range. Both velocities approach Scholte
velocity along a soft solid-fluid interface as frequency increases. In (b) the attenua-
tion is the most significant at low frequencies and rapidly decreases with increasing
frequency.
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Figure 4-8: Stoneley wave velocity (a) and attenuation (b) for three different fracture
apertures in the presence of a soft formation. The apertures are 0.2 cm, 1 cm, and 3
cm, as indicated on the curves. Other model parameters are the same as those used
in Figures 4-6 and 4-7. In (a) the tendency for the velocity to reach the free space
velocity becomes pronounced as the aperture of the fracture increases.
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Figure 4-8: (b) Stoneley attenuation coefficient associated with (a). The attenuations
are generally higher than those shown in Figure 4-5a for a given fracture aperture.
For a big fracture, the attenuation decreases rapidly with increasing fracture (see the
3 cm curve).
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Figure 4-9: Block diagram of the laboratory experimental setup for measuring wave
propagation in a fluid-filled borehole with a vertical fracture. The fracture is simulated
by a saw-cut in the model. A transducer source is mounted at the bottom of the model
while a receiver is placed into the borehole to measure the waves.
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Figure 4-10: Experimental waveform array data received in the aluminum model at
varying source-receiver distances. Note that the wave amplitude, particularly that
of the lower frequency waves, gradually decreases as the source-receiver distance in-
creases.
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Figure 4-11: Experimental results versus theoretical predictions for the hard forma-
tion (aluminum) model. (a) Wave amplitude spectrum. (b) Measured Stoneley at-
tenuation (dots) and the theoretical attenuation (solid curve). (c) Measured Stoneley
velocity (dots) versus theory (solid curve). Note that in (c), at very low frequencies
the experimental velocity decreases with decreasing frequency, as predicted by the
theory.
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Figure 4-12: Waveform array data received in the lucite model. The labels are: P:
leaky-P waves, W: "water" waves, and ST: Stoneley waves. Note that the Stoneley
wave rapidly attenuates with increasing source-receiver distance.
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Figure 4-13: Experimental results versus theory for the soft formation (lucite) model.

(a) Wave amplitude spectrum. (b) Measured Stoneley attenuation (dots) and the

theoretical attenuation (solid curve). (c) Measured Stoneley velocity (dots) versus

theory (solid curve). The Stoneley velocity of an unfractured borehole (dashed curve)

is also plotted.
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Chapter 5

Acoustic Wave Propagation in a

Fluid-filled Borehole With a

Horizontal Fracture

5.1 Introduction

The characterization of borehole fractures is important in reservoir evaluation and

hydrocarbon production. Full waveform acoustic logs provide a means of fracture

detection and characterization. Field measurements have shown effects of permeable

fractures on the attenuation of borehole acoustic waves (Paillet, 1980; Hsu et al.,

1985; Hardin et al., 1987; Brie et al., 1988). Borehole Stoneley (or tube) waves have

been of special interest because these waves dominate the low frequency portion of the

acoustic logs. In Chapter 4, the effects of a vertical borehole fracture on the Stoneley

propagation have been studied. It was shown that the major effects are the Stoneley

attenuation due to fluid flow into the fracture. In the present chapter, the problem

of borehole guided wave propagation across a horizontal fracture will be treated.

This problem has been treated by several authors using finite-difference modeling

(Stephen, 1986; Stephen et al., 1985; Bhashvanija, 1983). These calculations require
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large fracture apertures in the modeling because of the number of nodal points needed

to resolve effects of the fracture. In addition, although these calculations display the

wave characteristics in the vicinity of the fracture, the response of each individual wave

component, such as pseudo-Rayleigh or Stoneley mode, to the fracture is not easy

to resolve because of the overlap of the waveforms in the time domain. Therefore,

the major purpose of the present study is to analyze the effects of fractures with

different apertures on the borehole guided waves. The results are expected to provide

useful information for fracture detection and characterization using acoustic logging

techniques.

The borehole guided waves, or Stoneley and pseudo-Rayleigh waves, are the domi-

nant waves on an acoustic log. Their response to the effects of a fracture will be easily

recognized in terms of changes in the wave amplitude. In the presence of a horizontal

fracture, the problem becomes more complicated than the case of a vertical fracture

because, in addition to the fluid flow into the fracture, the scattering effects of the

fracture should also be considered. A borehole guided wave is coupled with the wave

motion in the formation. This coupling will be affected when the formation wave

energy encounters a discontinuity (the fracture). For the fluid flow effects, a simple

model has been developed in Chapter 2 to account for the Stoneley attenuation due

to these effects. Hornby et al. (1989) have also presented a similar model for this

problem. The two models are identical when the viscosity of the fluid is neglected.

In both models, the fracture surfaces were modeled as rigid and Stoneley wave at-

tenuation occurs because of the fluid flow into the fracture. In the present study, the

treatment will be extended to incorporate scattering effects of the fracture by match-

ing the boundary conditions at the fracture surfaces. Borehole pseudo-Rayleigh waves

will also be included.

The present problem involves treating a discontinuity that intersects the direction

of borehole wave propagation. Because of the discontinuity, the problem cannot be

solved using the conventional wavenumber integration technique (Cheng and Toks6z,
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1981). The difficulty lies in the necessity that the solutions must satisfy conditions at

two perpendicular boundaries, i.e., the borehole boundary and the fracture surfaces.

However, if modal solutions for the borehole propagation are used, the boundary

conditions at the borehole boundary are automatically satisfied and one can use the

sum of the modes to match boundary conditions at the fracture surfaces. Although

the combination of the borehole leaking modes can be used for this purpose, the

multivaluedness of these modal functions will force one to perform integrations along

contours on the complex frequency and wavenumber planes (Haddon, 1987, 1989),

which is inconvenient for the present problem where boundary conditions at the frac-

ture are matched for each real frequency. This study will adopt a hybrid method used

by Tsang (1985, 1987) and Nolet et al. (1989). An artificial boundary is introduced

at a radial distance that is large compared to the borehole radius. This boundary

generates discrete wave modes, which form a basis for the solutions in the regions sep-

arated by the fracture. Boundary conditions at the fracture surfaces then couple the

solutions in the two regions. This coupling results in the transmission and reflection

of the incident borehole acoustic waves.

5.2 Theoretical Formulation

Consider the borehole and fracture configuration shown in Figure 5-1. The fracture

is modeled as a horizontal fluid layer with thickness L, which crosses the borehole

perpendicularly. The fracture separates the domain of propagation into two regions.

If taking the borehole axis as z, the upper region is the z < 0 region, while the lower

one is the z > L region. The formation for the two regions is an isotropic homogeneous

elastic solid, with compressional and shear velocities V and V, and density p. The

borehole and the fracture are filled with the same fluid having acoustic velocity V

and density pf. In either the upper or lower region, the borehole fluid displacement

potential of and the formation compressional and shear displacement potentials #,
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and 4, satisfy the following wave equations:

7 2 4Of + kjf = 0

P20s + k 4, = 0 , (5.1)

v 20 + k20s = 0 ,

where

2 a2  i a 2
ar2 r r + z2

is the cylindrical Laplace operator, r is the radial variable, kf = w/Vf, k, =wV,,

k_ = w/V,, and w is the angular frequency. In this problem, the azimuthal symmetry

is assumed. From the potentials, the fluid and formation displacement vectors Ulf and

, are calculated using

= 7f 
(5.2)

US = V7s+V x (Oks),

where se is the unit vector tangential to a circle of radius r (Biot, 1952). In the

frequency domain, the fluid stresses are simply

0rrf = Ozzf = -Pf W , (5.3)

and the formation stress components are calculated using

grrs = A[ (rurs) + ] +2 'U'r ar az Br
1a a u Ou

OzzS A [ra(rurs) + azs] + 2 a (5.4)

Urzs = paz ar

where A and p are Lam6 constants of the formation and can be calculated from the

given V, V, and p of the formation.

5.2.1 Construction of Modal Solutions

In order to generate modal solutions for the problem, one places an artificial boundary

at r = d (d > a). At this boundary, the displacement components ur, and uzs are let
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to vanish so that it represents a rigid boundary. At the borehole boundary r = a, one

has the continuity of the normal stress and radial displacement, and the vanishing

of the formation shear stress. With the given radial boundaries, the solutions to

equations 5.1 can be written as

Of = AIo(fr)exp(ikz)

O, = [BKo(lr) + B'Io(lr)] exp(ikz) , (5.5)

OS = [CK1(mr) + C'I1(mr)]exp(ikz) ,

with radial wavenumbers given as

f= = k -k, 1- k2 -k,2, m= k2 -k,, (5.6)

where k is the axial wave number, I,, and K,, (n = 0,1) are the first and second

kind modified Bessel functions of order n, respectively, and A, B, B', C, and C' are

constants to be determined. From the potentials in equations 5.5, the stress and

displacement components can be calculated using equations 5.2, 5.3, and 5.4. They

are given in Appendix A. By using the boundary conditions at r = a and r = d,
a system of equations for determining the constants in equations 5.5 is obtained as

follows

anl a 12 a13 a 14 a15  A
a21 a22 a23 a24 a25  B
0 a32 a33 a34 a35  B' = 0 , (5.7)

0 a42 a43 a44 a45  C

0 a52 a53 a54 a55  C

where the matrix elements ai are given by

al = k2Io(f a) ,

a1 2 = [(A/Af)(l2 - k2 ) + 2(p/Af)12]Ko(la) + 2(p/Af)(l/a)K1 (la)

a1 3 = 2(p/Af)ikm[Ko(ma) + K1(ma)/(ma)]

a 1 4 = [(A/Af)(12 - k2 ) + 2(p/Aj)12 ]Io(la) - 2(p/Aj)(l/a)I1 (la)
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a15 = -2(p/Af)ikm[Io(ma) - Ii(ma)/(ma)]

a21 = fli(fa)

a22 =K (K1(a),

a23 = ikK1(ma)

a24 = -lIi(la)

a25 = ikIi(ma)

a3 2 = -2iklK1(la)

a33 = (k2 + m 2)K1(ma)

a34 = 2iklI(la) ,

a35 = (k2 + m 2)Ii(ma)

a42 = ikKo(ld)

a43 = -mKo(md)

a44 = ikIo(ld)

a45 = mIo(md)

a5 2 = -1K 1(ld)

a53 = -ikK1(md)

a54 = II(ld)

a55 = -ikI(md)

where Af = p1 V/ is the fluid modulus. The condition that there be nontrivial solutions

for A, B, B', C, and C' requires that the determinant of equation 5.7 (denoted by D)

vanish. This leads to

D(k,w) = . (5.8)

For a given frequency w, equation 5.8 determines M number of values for k, denoted

by ka (a = 1, 2, ---, M). Each k, is associated with a wave mode. As already shown

by Tsang (1987), for real w these k values are located at the real and imaginary k

axes. The mode with k, > k1 is the well known Stoneley wave; the modes with
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kI > k, > k, are the pseudo-Rayleigh modes. The Stoneley and pseudo-Rayleigh are

guided waves that are trapped in the borehole and are therefore insensitive to the

boundary at r = d if d > a. The modes with Re{k,} < k, are radiation modes.

The fact that their locations coincide with the Sommerfeld branch cut indicates that

the mode locations represent the discretization of the branch cut, and the sum of the

modes approximates the contribution from this branch cut (Tsang, 1987). Therefore,

the total modes form a basis for the solution to the borehole wave motion. The

wave motion of each mode is distributed both in the borehole and in the formation,

as shown in equations 5.5. The constants in equations 5.5 govern this distribution.

After k. is evaluated, the normalized eigenvector for the constants is found by solving

equation 5.7 with A set to 1. The ath eigenvector is denoted by [1, B,, B', C,, C'J.

It is worthwhile to mention some of the numerical manipulations that are required

to calculate the roots of equation 5.8 and their associated eigenvectors. Because the

radial boundary r = d is a large number, the modified Bessel functions In (n = 0, 1)

evaluated at this boundary may create overflow problems. To overcome this difficulty,

one makes the following substitutions:

B" = B'I 0 (ld) , (if k > k)

C" = C'Io(md) , (if k > k,) .

When equations 5.9 are used, the the fourth and fifth columns of the matrix in

equation 5.7 are modified as:

ai4 ->ai4/Io(1d) , (if k > kp)

ai5 -+ ai5/Io(md) , (if k > k,)

where i =1,2,3,4, and 5. Once B" and C" are found from the modified equation 5.7,
equations 5.9 are used to recover B' and C'. The overflow problem is thus overcome.

Another manipulation is in the root finding procedure of equation 5.8. The modes

are generally close together around k, and k, (Tsang, 1987). This behavior poses some

difficulty in locating these modes. It is therefore advisable to locate the modes using I
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instead of k when k is around k,, and using m when k is around k,. This can be seen

by noting a relation that can be derived from equations 5.6, i.e., dl = kdk/ k2 - k2;

when k is close to kP, the separation dl on the I axis is much bigger than dk on the k

axis. The same is true for dm.

Tsang (1987) has shown that the modes so determined satisfy the following or-

thogonality relation

W( kg )6co = jo-2(k3, r)uz5(ka, r)rdr

+ jd[o-ZZS(k, r)uz,(k,, r) - os.2,(kU,r)u,.,(ky, r)]rdr , (5.10)

where &,0 is the Kronecker delta. The normalization constant W(ka) is given by

(Tsang, 1987)

W(ke) =- , (D/k)(wI) (5.11)
2 N(w, k,)

where N(w, k,) is the determinant of a 5 x 5 matrix. This matrix is obtained from

the one in equation 5.7 by replacing all with -k'Ko(fa) and a21 with fK1(fa),

respectively. Equation 5.11 can be readily derived from the evaluation of the mode

amplitude using the theorem of residues (see Tsang, 1987). The factor -ipw 2/2 in

equation 5.11 was given as -pfw 2/r in Tsang's (1987) equation 9. This is because

Hankel and Bessel functions were used in Tsang's (1989) formulation, and here the

first and second kind modified Bessel functions are used in the present formulation.

The orthogonality equation given in equation 5.10 is an important relation that will

later be used to determine the mode coupling at the fracture surfaces.

5.2.2 Solution of Wave Motion in the Fracture Fluid Layer

The solution for the fracture fluid wave motion is needed in order to couple the wave

motions in the two regions separated by the fracture. The fracture fluid displacement

potential 4 satisfies the wave equation

(r-) + 2 + k2 = 0 ,(0 < r < d7, 0 < z < L) . (5.12)r Br or 49z2
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In terms of 4, the fluid displacement U' and pressure p are given by

(5.13)
p = pfLw20

At r = d, the fluid motion is let to satisfy the same rigid boundary condition as in

either the upper or lower region, i.e.,

- = 0 , (at r = d) . (5.14)
or

At the fracture surfaces z = 0 and z = L, one prescribes the values of 4, which are

related to the normal stresses o-zf and o. of the two regions through the continuity

of these stresses. To find the solution of equation 5.12 with the given boundary

conditions, one first solves the Green's function determined by the following boundary

value problem.

1 a aG 1 2G a2G A7r
(r ) + + - + kG =--6(r - ro)6(6 - o)(z - zo) (5.15)

r-r r r2 + z r , (.5

with

G = 0 , (at z = 0 and L) , - 0 , (at r = d)
Or

where 0 is the azimuthal variable, (ro, 0, zo) and (r, 0, z) are source and field points,

respectively, and 6 is the Dirac delta function. Following the procedures for finding

Green's function (Morse and Feshbach, 1953), the solution to equation 5.15 is found

to be

G(r, , z, w; ro, Oo, zo) =

4 eim(o-o)Jm((mnr)Jm(Cmnro) sinh(VQ, - k) z<) sinh[jC - kj(L - zy)]
Smn (1 - m 2 /Qn)J,2((mnd) J2 - kf sinh(V , - kfL)

(5.16)

where

z< = min(z, zo) , and z> = max(z, zo)
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the symbol sinh represents the hyperbolic function, Jm is the mth order Bessel func-

tion, and (mnd is the nth root of

Jn((mnd) = 0 , n = 1, 2,13,1- , (5.17)

where the prime denotes taking the derivative. By using Green's theorem, 4 is ex-

pressed as
1 4 G

47= -r (G - 45 )dSo , (5.18)

where no is the outward normal to the boundary surface So, which now includes the

upper and lower surfaces of the fluid layer, as well as the circular strip at r = d.

Using the respective boundary conditions for 4 and G at z = 0 and L, and r = d,

one can express 4 using the surface integrals over the upper and lower surfaces of the

fracture fluid layer.

4 = - dSo - 4G dSo (5.19)
47r ffzo=0 aZ0 4r 2jz0 =L Oz0

Because of the azimuthal symmetry in q and the orthogonality of the function exp(imOo)

over the interval [0-27], the integration over So knocks out all the m # 0 terms in the

Green's function given in equation 5.16. Thus one only needs to use the m = 0 terms

of this equation. In addition, for m = 0, equation 5.17 becomes

J1((nd) = 0 , n = 1,2,3. -. . (5.20)

Without using all the roots of equation 5.17, the summation in equation 5.16 is now

only over the positive roots (including the root Cd = 0) of equation 5.20. In the

following, equation 5.19 will be used to couple the wave motions at both sides of the

fracture.

5.2.3 Determination of Transmission and Reflection of In-

cident Waves

One now lets a borehole wave be incident on the fracture and determines transmission

and reflection. In the z < 0 region there are incident and reflected waves, while in
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the z > L region, there are only transmitted waves. The reflected waves propagate in

negative z direction and have exp(-ikaz) dependencies. It has been shown (Tsang,

1987) that replacing kc, with -k, will not change the sign of o-22, 0 zzf, and u,, but

will reverse the sign of uz1 , U2S, and o,z,. In the following, this property will be used

to write the boundary conditions at the z = 0 surface. At this surface, one has the

continuity of normal stress and displacement, and the vanishing of shear stress. In the

z < 0 region, these quantities are expressed by the linear combination of the incident

and reflected modes, while in the fracture fluid layer the pressure and displacement

are derived from equations 5.13 and 5.19. One therefore has the following equations

for the z = 0 surface:

For 0 < r < a

Z(b+ - b-)uzy (ka, r) = a , (5.21)

(b+ + b;-)ozz(ka, r) = -pfw 2 4 . (5.22)

For a < r < d

E(b+ - b-)uzs(ka, r) = , (5.23)

(b+ + b)o-zz,(ka, r) = -pw 2 4 , (5.24)

(b+ - b-)o2rzs(ka, r) = 0 , (5.25)

where b+ and b; are amplitude coefficients of the ath incident and reflected wave

modes, respectively. One then makes use of the orthogonality relation (equation 5.10)

to relate these equations. Multiply equation 5.21 by -zzf(kg, r)r and integrate from

0 to a. Next, multiply equation 5.23 by o2 2,(kp, r)r and equation 5.25 by -u(k 3 , r)r

and integrate from a to d. Add the equations together and apply equation 5.10 to

the left hand side of the resulting equation. One obtains

W(k-)(b+ _ b-) = d ozz(ko,r) rdr , (5.26)
0 0 7zz=O

where the normal stress o-22 equals -2,, in the formation and o-zzf in the borehole.

Similarly, one matches boundary conditions at the lower boundary z = L using the
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transmitted wave modes and the fracture fluid pressure and displacement.

For 0 < r < a

c ,u(kaer) (5.27)

cceOZZf(ka,r) = -pfW24 . (5.28)

For a < r < d

cUz,(ka,r) = - (5.29)
az

c+2zzs(ka,r) = -pfw 2 4 , (5.30)

c a,.2(kajr) = 0 , (5.31)

where c! is the amplitude coefficient of the ath transmitted wave mode. In equa-

tions 5.27 through 5.31, a factor exp(ikaL) is absorbed in ct because these equations

are evaluated at the z = L surface. Again, following the same procedure as for the

upper boundary z = 0, one obtains

W(ko)c = J OZ(kp,r) T rdr . (5.32)
0 Oz z=L

To get 8 needed in equations 5.26 and 5.32, one differentiates equation 5.19 with

respect to z. This results in

84 1 2G1 tO 2 G
-- # 0 a2ZG dSo -- 1  4 2G dSo . (5.33)Oz -47r Jzo =0 zzo 47r Jzo=L dzazo

At this stage, however, mathematical difficulty arises when one lets z -+ 0 and z -+ L

to obtain the surface values of -. This is because the kernel of the integrals 2

is strongly singular in view of the discontinuity in G as a function of the field point,

when the source point is on the boundary surface (Morse and Feshbach, 1953). The

integrals are therefore non-integrable in the classical sense. Nevertheless, multiplying

equations like equation 5.33 by a regularizing function and integrating over the field

points may regularize this kind of problem (Delves and Walsh, 1974), providing that

this function has good behavior over the domain of integration. In the present case,
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the regularizing function is z,,(k, r) in equations 5.26 and 5.32. However, the inte-

grals in these two equations are still singular because o22 is discontinuous at r = a

[0Izzy(k, a) -f o-22(k, a)]. One therefore defines a continuous stress function

o k(k,3,r), r) , (a < r < d) (534)
I Uzzy(kp, r) + [r22(ko, a)]H(a - r) , (0 < r < a)

where [oa22(k, a)] = o-22(k, a) - zzf(k, a) is the normal stress discontinuity at the

borehole boundary r = a and H(a - r) is the step function. By using or2, the

integrals in equations 5.26 and 5.32 become

Z-2(ko,r)- rr d= rr - [o2(ka)] -rdr. (5.35)
o Lz z o z

Because the discontinuity is removed from al2, the first term of equation 5.35 is

now regular. By substituting #|2,=0 given in equations 5.22 and 5.24 and #|20=L in

equations 5.28 and 5.30 into equation 5.33, this term, evaluated at z = 0 and L, may

now be respectively written as

d Ih kr)
O- z2(ko) r) T rdr = Z(b + b)Ocp -E c+O/ ,

(5.36)

Joz(kr) z rdr =J (b+ +b-)') -( c+0 ,
az2=L aeo eC eC

with

Gap2 Ika (sIi~g,(s) fQ- kj cosh(VQ - kg L)) d2pfw2 ( J2((nd) sinh( V-k L) 1
(5.37)

where the summation in equations 5.37 is over the roots of equation 5.20 and

d
I(ka,C (n) = j ZZ(ke, r)Jo((,r)rdr (5.38)

d
1(ko, ( = ou (ko, r)Jo((nr)r dr (5.39)

can be analytically integrated out and are listed in Appendix B. The second term

in equation 5.35 carries the singularity of the problem (using equations 5.16 and
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5.33, one can show that this term is divergent). Since the integration of this term

is over the borehole area, it can be regularized using a physical model based on

the conservation of mass. From equation 5.13, one can see that is the axial

borehole fluid displacement at the lower boundary z = L. Multiplying this term by

-Zw and integrating over the borehole area gives the borehole fluid flux through the

boundary. Based on the conservation of mass, the difference between the flux through

the z = L boundary and that through the z = 0 boundary equals the fluid flux into

the fracture. Thus one has

fa fa g$
- iw2r ] rdr + z Jw27r rdr = 2raq , (5.40)0 Oz z=L 0 Oz z=0

where q is the volume flow rate per unit fracture length. According to the theory

of dynamic conductivity of an open fracture, as studied in Chapter 2 , q is given by

(equation 2.35)
O p

q= -C , (r = a) (5.41)

where C is the fracture dynamic conductivity and 2 is the dynamic pressure gradient

at the fracture opening. If one assumes that the viscous skin depth of the fluid is

small compared to the fracture aperture L, C is then given by (equation 2.38)

iL 
(5.42)

WPf

As discussed in section 2.4 of Chapter 2, this formula holds true even though the

formation bounding the fracture is elastic. In addition, as in the case of a vertical

fracture studied in Chapter 4, it is assumed that the fluid flux is carried away mainly

by the fracture fundamental wave mode. The pressure associated with this wave is

given by the Hankel function poHol)(kfrr)/HO)(kfra), where po is the pressure at the

fracture opening and the fracture wavenumber kfr is found by solving the fracture

wave dispersion equation (equation 4.24) for the fundamental mode. The pressure

gradient at the fracture opening is obtained as

Op H_(k_,a)

Or - -pok1 , H.1) (kjra) (5.43)or HOl (kf ra)
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As an approximation, one can assume that po is the average of the borehole pressures

of the upper and lower surfaces evaluated at r = a. Using equations 2.22 and 2.28,

one has

1 1
Po = pW2 (#|2=o + #f |=L)| .=a = -+ (b+ + b- + c+)o.zzf(ka, a) . (5.44)

With q determined, equation 5.40 is used to regularize the second term of equa-

tion 5.35. To couple the fluid flow at z = 0 and z = L, one expresses the flux through

z = 0 using q and the flux through z = L. The latter flux is calculated with 0d

given in equation 5.21. Similarly, one expresses the flux through z = L using q and

the flux through z = 0. The latter flux is calculated using the surface value of 2±

given in equation 5.27. Finally, the following coupled matrix equations are obtained

for vectors b- and c+, which respectively contain the reflected and transmitted am-

plitude coefficients.

= 0'(b+ + b-) - Oc+ - N(b+

= 8(b+ +b-) - 'c+ +N(b+

where W is a diagonal matrix with the ## element

been defined in equations 5.37, and K and N are

elements are as follows

+ b~ + c+) - K(b+ - b-),

+ b+ c+) + Kc+

(5.45)

equal to W(kl), E and 0' have

M x M square matrices whose

Ka 3 = (ikaa/f)I1(fa)[-22(kO,a)] , (5.46)

Na = (aL/2)Io(faa)[2zz(k,3 ,a)]kfrH (k,a)H (ka),

where fa is calculated by replacing k in f given in equations 5.6 with k". To solve

the coupled matrix equations (equations 5.45), one can use the auxiliary vectors

x = (b~ + c+)/2 ,(5.47)

y = (b- - c+)/2 ,

and obtains the following decoupled matrix equations for x and y, respectively.

(W - 0 - '1+ K)b+

(W - 0 + E)'- K - 2N)b+
= (W++O'+K)x ,

= (W + E) - E)'- K + 2N)y.
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Once x and y are found by independently solving the above equations, the vectors

b- and c+ are obtained using equations 5.47, and the transmission and reflection of

the incident wave are thus determined.

It is convenient here to give a short discussion on the present theory and its

relevance to previous model given in Chapter 2, as well as the one developed by

Hornby et al., (1989). In the above theoretical development, one balances the fluid

flow across and into the fracture in order to overcome the singularity problem. This

technique has been used in Chapter 2, and by and Hornby et al. (1989) in the modeling

of Stoneley attenuation across a fracture. In addition to the fluid flow feature of the

previous models, the present theory includes effects of mode conversion at the fracture

by matching the boundary condition at fracture surfaces. Thus it is expected that

there are similarities and differences between the present model and previous models.

In addition, the balance of fluid flow is appropriate for the incidence of guided waves

that are trapped in the borehole, since these waves can produce an effective borehole

pressure to drive the flow into the fracture. Therefore, the present study is primarily

concerned with the determination of the transmission and reflection for the guided

wave incidence.

Let a guided wave mode with amplitude coefficient b+ be incident on the fracture,

one can calculate the resulting transmitted and reflected amplitude coefficients c+

and b; corresponding to the same mode (Stoneley or pseudo-Rayleigh). This defines

the transmission and reflection coefficients of this wave mode.

Tu = ct /b+r S a 1( 5 .4 9 )
Rf = b;|b+ ,

where the subscript a refers to either Stoneley or pseudo-Rayleigh wave mode. In

addition, synthetic microseismograms can also be calculated to show the effects of

the fracture on the incident wave mode. Given a guided wave mode generated at a

distance h above the fracture in the region I, one lets this mode be incident on the

fracture. At the source, the amplitude coefficient is 1/W(ki,) (Tsang, 1987), where
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k,, is the wavenumber of the incident mode. At the upper fracture surface, this

coefficient becomes

- ikn (5.50)
W(kin)

Upon interacting with the fracture, the incident wave energy is partly reflected and

partly transmitted, together with some converted wave energy originating from the

fracture. Thus in region I, the total borehole fluid pressure wave field is

P1 =pf2[bf(ki, r)eikin + Z b-f(ka,r)e-k*] , (z < 0) . (5.51)

In region II, this pressure field is

P' - pWc2 (c+4f (k,r) eikaz , (z > L) . (5.52)

In equations 5.51 and 5.52, the sum is over all the modes found from equation 5.8, and

the axial distance z is measured from the upper fracture surface. In calculating the

synthetics, equations 5.51 and 5.52 are convolved with a wave source. A Kelly source

(Kelly et al., 1976; Stephen et al., 1985) is used in this study. Given a center frequency

wo of the source, one can choose the maximum frequency wmax as 2.5 wo. Starting from

Wmax, one calculates the amplitude coefficients b- and c+ of each wave mode for each

decreasing frequency. After equations 5.51 and 5.52 are evaluated for each frequency,

they are multiplied with the source spectrum and the products are transformed by the

fast Fourier transform (FFT) into time domain to generate waveforms for each given

distance z in regions I and II. In this way, synthetic microseismograms are obtained

which display the wave characteristics in the vicinity of the fracture.

5.3 Theoretical Results and Discussion

In this section, the theoretical results are presented for the Stoneley and pseudo-

Rayleigh waves, respectively. In the theoretical calculations, the borehole radius is

a = 10 cm and the rigid boundary is set at d = 130 cm. The formation properties
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are V, = 5 km/s, V, = 3 km/s, and p = 2.5 g/cm3 . The borehole fluid velocity and

density are V = 1.5 km/s and pg = 1 g/cm3 , respectively. In the summation of the

modes, the mode series is truncated by neglecting those modes whose k, values are

on the imaginary k axis, since they are not traveling waves (see Nolet et al., 1989 and

Tsang, 1985, 1987).

5.3.1 Stoneley Wave

The effects of the fracture on the incidence of Stoneley waves are first investigated.

Before presenting the results in more detail, it is instructive to compare the present

theory with the previous model given in Chapter 2. Figure 5-2 plots the transmission

coefficients from the two models in a low frequency range of [0-5] kHz for a set of frac-

ture apertures ranging from 0.5 cm to 5 cm. The two models are qualitatively similar

in this low frequency range. Both models predict that the transmission across the

fracture is reduced as the fracture aperture increases. The major significant difference

is at low frequencies. Although both models show the decrease of transmission with

decreasing frequency for each given aperture, the present theory predicts a greater

decrease than the previous theory does. This discrepancy is due to the assumption

of the rigid fracture wall in the previous theory. The present theory takes into ac-

count the elasticity of the wall by using equation 5.43, in which the wavenumber kf,

is found by solving a period equation corresponding to the elastic fracture (equa-

tion 4.24). The effects of mode conversion have also been checked. It is found that

the number of modes found from equation 5.8 decreases with decreasing frequency,

as pointed out by Tsang (1985, 1987), and that the amplitude of the radiation modes

is considerably smaller compared with that of the Stoneley mode at low frequencies.

This means that the energy converted to radiation is small. One therefore concludes

that, at low frequencies, the transmission of Stoneley waves across a fracture is mainly

controlled by the amount of fluid flow into the fracture.

Next, the theoretical results are presented in a higher frequency range of [0-15]
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kHz. Figure 5-3 shows the transmission (a) and reflection (b) coefficients of Stoneley

waves in this frequency range for a set of fracture thicknesses, the thicknesses being

indicated on each curve of this figure. At low frequencies, the characteristic decrease

in transmission and increase in reflection indicate the fluid flow effects, as discussed

previously. At higher frequencies (above 5 kHz), the transmission decreases and

reflection increases. These effects are closely related to the increasing coupling of

the Stoneley mode with radiation modes, since the number and amplitude of the

latter modes increase as frequency increases. These effects are not predicted by the

previous theory since mode coupling was not considered. As frequency crosses the

cut-off frequency of the first pseudo-Rayleigh mode, the transmission and reflection

coefficients exhibit a discontinuous feature across the cut-off. The discontinuity is

small for small fracture thickness (one can see this from the 0.5 cm and 1 cm curves),

but becomes prominent as thickness increases. This discontinuity indicates the strong

coupling of the Stoneley mode with the pseudo-Rayleigh mode. Because both modes

are guided waves trapped in the borehole, the conversion of Stoneley wave energy to

pseudo-Rayleigh energy is more efficient than the conversion to radiation modes, for

the latter conversion occurs mostly at the fracture surfaces where the Stoneley energy

is not as significant as in the borehole. To illustrate Stoneley wave characteristics due

to a fracture as a function of frequency, synthetic microseismograms with different

source center frequencies are calculated and the results are shown in Figures 5-4 and

5-5. In Figure 5-4, the source center frequency is 12 kHz, while the cut-off frequency

of the first pseudo-Rayleigh wave mode is 8.36 kHz for the model used. Thus the

coupling of the Stoneley with this wave mode is expected. Figure 5-4a shows the

synthetics for a 1 cm thick fracture whose location is indicated by an arrow on the

fracture-receiver offset axis. A Stoneley wave is generated at z = -1.2 m from the

fracture and then incident on it from the negative z direction. In both (a) and (b)

of Figure 5-4, the scale for the amplitude is expanded to show the small amplitude

converted waves. As can be seen from Figure 5-4a, the Stoneley wave impinging
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on the fracture is largely transmitted and partly reflected, in accordance with the

transmission and reflection coefficients shown on Figure 5-3. In addition, there is

some small amplitude wave energy originating from the fracture. The early portions

of these waves move out above and below the fracture at the formation shear velocity

(indicated by the solid lines). Following them are the dispersive pseudo-Rayleigh

waves. The noise in the seismogram is due to the approximation of the branch cut

integration using a finite number of modes (see also Nolet et al.'s (1989) seismograms).

In addition, the use of the fast Fourier transform (FFT) assumes a periodic signal,

so that signals which arrive outside the time window 1/Af, with Af the frequency

spacing, will fold over into this time window (Nolet et al., 1989). However, the noise is

small compared to the Stoneley and pseudo-Rayleigh waves. This example shows that,

in addition to the transmission and reflection effects, a small portion of the Stoneley

waves is converted to pseudo-Rayleigh waves at the fracture. In the next example,

the fracture aperture is increased to 4 cm and other parameters are kept unchanged.

The resulting synthetics are shown in Figure 5-4b. This figure exhibits much stronger

converted pseudo-Rayleigh waves than those shown on Figure 5-4a, because of the

increased Stoneley to pseudo-Rayleigh conversion due to the much thicker fracture.

Using the synthetic examples, it has been demonstrated that the discontinuity in

transmission and reflection coefficients shown in Figure 5-3 is due to the coupling

of Stoneley with pseudo-Rayleigh waves. Below the cut-off frequency, there are no

pseudo-Rayleigh waves, and the only guided wave that exists in the borehole is the

Stoneley wave. In Figure 5-5a, the fracture aperture is still 4 cm, as used in Figure 5-

4b, but the source center frequency is reduced to 5 kHz. Around this frequency, the

waves existing in the borehole are the Stoneley wave and a number of small amplitude

radiation modes. The synthetics in Figure 5-5a show that, at low frequencies, the

major effects are the transmission and reflection of the Stoneley mode according to

the the coefficients given in Figure 5-3a and Figure 5-3b. the mode conversion effects

are minimal and the converted radiation waves are not visible on the seismograms.
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As an extremal example, Figure 5-5b shows the synthetics corresponding to very low

frequency tube (Stoneley) waves. In this figure, the source frequency is only 300

Hz, and the fracture aperture is 2 cm. A Stoneley wave is generated at z = -13 m

from the fracture and incident on it from the negative z direction. One can notice

the strong Stoneley reflection from the fracture and the significant attenuation of

the transmitted waves across the fracture. These phenomena are commonly observed

in VSP measurements where low frequency tube waves are often excited (Hardin et

al., 1987). The important implication of this example to field measurements is that

the strong, coherent low frequency tube wave reflections are often associated with a

fracture. Thus they may be used to provide useful information for fracture detection

and characterization.

5.3.2 Pseudo-Rayleigh Wave

Pseudo-Rayleigh waves comprise an important portion of full waveform acoustic logs

following the onset of formation of shear arrivals. Because these wave modes are more

intimately coupled with the formation than the Stoneley (Stephen et al., 1985), they

may be more sensitive to a formation fracture than the Stoneley wave.

Figure 5-6 shows the transmission (a) and reflection (b) coefficients of the first

two pseudo-Rayleigh modes in the frequency range of [7-21] kHz for three different

fracture apertures, which are 0.1 cm, 1 cm, and 2 cm, respectively. The apertures

are chosen to model very thin (L = 0.1 cm) and relatively thick (L = 2 cm) borehole

fractures. The parameters for the calculations are the same as those used for the

Stoneley wave calculations. A prominent feature shown in Figure 5-6a is that, for all

apertures, thin or thick, the pseudo-Rayleigh waves are strongly attenuated across the

borehole fracture, the second mode being more attenuated than the first one. This

behavior of pseudo-Rayleigh waves is very different from that of the Stoneley wave

shown in Figure 5-3a. This difference can be expected from the wave motion charac-

teristics of the two waves and from the analysis of partition coefficients of these waves
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(Cheng et al., 1982). In general, in the presence of a hard formation, the Stoneley

wave energy is mostly confined in the borehole fluid and its particle motion is dom-

inantly in the axial direction. Because of this, the Stoneley is not sensitive to the

formation shear property (Cheng et al., 1982). As has been shown previously, apart

from some energy loss due to mode coupling at higher frequencies, the attenuation

of the Stoneley by a fracture is due largely to the fluid flow into the fracture driven

by this wave motion. Whereas for the pseudo-Rayleigh wave, the particle motion at

the borehole interface is of elliptical shape and is dominated by horizontal motion

(Stephen et al., 1985). The partition coefficient due to the formation shear property

primarily controls the pseudo-Rayleigh wave at lower frequencies above the cut-off

(see Cheng et al., 1982). Therefore, the pseudo-Rayleigh wave motion requires the

formation shear strength to sustain its propagation. Consequently, when this wave

motion encounters a crack filled with material of zero shear strength, this motion

picture will be destroyed. Thus, as long as there is no shear coupling between the

fracture surfaces, pseudo-Rayleigh waves will be significantly affected, whatever the

fracture thickness. This is what one has seen in Figure 5-6a. Moreover, for the trans-

mitted energy, it may take a while for this energy to organize its elliptically shaped

wave motion and become reguided. Thus, after being transmitted across a fracture,

the pseudo-Rayleigh wave may disappear for a while before it reappears as a guided

wave, leaving a blank part on the acoustic logs. This characteristic will later be

illustrated with laboratory examples. Another interesting feature in Figure 5-6a is

that as the frequency decreases to approach the cut-off frequency, the transmission

coefficients also decrease, the first mode being more drastic. This behavior can also

be expected from analyzing the partition coefficient (Cheng et al., 1982). Because

the partition coefficient due to the shear property is the most significant towards the

cut-off, the pseudo-Rayleigh wave that is controlled by this coefficient is affected the

most with the vanishing of shear strength at the fracture. This decrease in transmis-

sion will make the severely attenuated pseudo-Rayleigh waves even weaker near the
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cut-off frequencies. This characteristic has been observed in the laboratory and will

be shown in the next section. This characteristic may also have some implications

in detecting borehole fractures using acoustic logs. Because the phase and group

velocities of the pseudo-Rayleigh wave reach their maximum value at the cut-off fre-

quency, which is the formation shear velocity V, (Cheng and Toks6z, 1981), the early

arrivals of this wave are the wave energy near the cut-off frequencies. Therefore,

on an acoustic log, if one traces the formation shear arrival times across a fracture,

the lack of wave energy following these arrival times may be a very good indication

of the existing fracture. One now takes a look at the reflection coefficients shown

on Figure 5-6b. The reflection of the pseudo-Rayleigh waves by a fracture is strong

even for the very thin fracture with thickness of 0.1 cm. The reflection increases to-

wards the cut-off, corresponding to the decrease of the transmission coefficient shown

in Figure 5-6a. However, as the aperture varies from the very thin to relatively

thick fractures, the reflection coefficient does not change significantly, especially for

the first mode at higher frequencies. This is in agreement with the finite difference

modeling of Stephen (1986). In his modeling, the source frequency is between the

cut-off of the first pseudo-Rayleigh mode and that of the second mode. For different

fracture apertures, he obtained reflected pseudo-Rayleigh waves with practically the

same amplitude. Thus, thin fractures are practically as effective as thick fractures

in decoupling the pseudo-Rayleigh waves from the lower formation. The reflected

pseudo-Rayleigh waves, when not seriously contaminated by later arrivals of incident

waves, may also be an indication of the existence of borehole fractures.

5.4 Laboratory Experimental Studies

Laboratory experiments were performed to study the propagation characteristics of

borehole guided waves across a horizontal fracture. These experiments also provide

a test of the theoretical analysis of this study.
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5.4.1 Experimental Procedure

The laboratory setup for acoustic logging experiments have been described in Chap-

ter 4, where borehole models with a vertical fracture were used. For the present

study, one only needs to replace the vertical fracture model in Figure 4-9 with a

horizontal fracture model shown in Figure 5-1 in the experimental setup. Two alu-

minum cylinders were used, each having a height of 12 cm and diameter of 20 cm.

The compressional and shear velocities of this material are V = 6.4 km/s and V, =

3.1 km/s, respectively. Its density is 2.7 g/cm 3. A borehole of 1 cm diameter was

drilled at the center of each cylinder. A horizontal fracture is simulated by a gap

between the smooth ends of the two cylinders, as shown in Figure 5-1. By varying

the thickness of the gap, one can measure the effects of the fracture aperture on the

borehole acoustic waves. In the experiment, an acoustic transducer is mounted at

the bottom of the model and a receiver with a diameter of 0.9 cm is placed in the

borehole to measure the waves. Because of its size, the receiver measures the average

incoming wave field over the borehole area and, when the source and receiver are on

the same side of the fracture, the receiver is not sensitive to the waves reflected back

from the fracture. In other words, the experiment detects the effects of the fracture

by measuring the transmission of borehole acoustic waves. During the experiment,

the model assembly is submerged in a water tank. The water acoustic velocity is

1.5 km/s and its density 1 g/cm3 . The receiver is initially placed below the fracture.

After a waveform is recorded, the receiver is moved to next position by a step motor

controller at a step length of 0.18 mm. In this process, the receiver passes the fracture

and eventually moves above it. The whole process generates a waveform array. This

array is processed by stacking the desired signal at its move-out velocity. If the de-

sired signal is not the dominant wave in the data (for example, the pseudo-Rayleigh

wave may be followed by strong Stoneley arrivals), windowing the signal may become

necessary. The stacked signals below and above the fracture give the average incident

and transmitted waves. The amplitude spectral ratio of the incident wave relative to
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that of the transmitted wave in the frequency range of interest gives the transmission

coefficient across the fracture in that frequency range.

5.4.2 Experimental Results

The experimental results for the Stoneley waves are first presented. Figure 5-7 shows

the experimental array waveform data of Stoneley waves. The waves were recorded

below the cut-off frequency of the first pseudo-Rayleigh wave (which is about 174 kHz

for the model used), so that the Stoneley waves are the strongest phase in the data.

For this example, the fracture has an aperture of 2.8 mm. Its location is indicated

in Figure 5-7 on the source-receiver offset axis. It can be seen that the transmitted

wave amplitude is reduced by the fracture. Figure 5-8a shows the averaged incident

and transmitted wave spectra obtained by respectively stacking the wave traces above

and below the fracture. The reduction of the transmitted wave amplitude is clearly

seen in the frequency range of about [90-180] kHz, in which the wave amplitudes are

the strongest. Figure 5-8b shows the ratio of the transmitted amplitude relative to

the incident amplitude in the same frequency range. The theoretical transmission

coefficient is also plotted. The measured data and the theory are in good agreement.

In addition, Figure 8 also shows the incident and transmitted wave spectra and the

measured transmission coefficient versus the theoretical coefficient obtained for 5.1

mm (c and d), 1.0 mm (e and f), and 0.2 mm (g and h) thick laboratory model

fractures. Again, in the same frequency range, the measured transmission coefficient

and the theoretical transmission coefficient are in good agreement, although there are

some scatter in the experimental results due to the noise in the data. The experiments

were performed for a set of model fractures with thickness ranging from 0.2 to 5.1

mm. The theoretical and experimental transmission coefficients were averaged in the

frequency range around 135 kHz, as shown in (b) and (d) of Figure 5-8. The averaged

results are plotted versus fracture thickness in Figure 5-9 . They agree very well. As

can be seen from this figure, the transmission coefficient decreases with increasing
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fracture aperture. This result agrees with those of the previous experiments given in

Tang and Cheng (1989) and Hornby et al. (1989).

In the experiment, the pseudo-Rayleigh waves were also measured to study their

response to the effects of a fracture and to test the theoretical predictions. In order to

effectively excite pseudo-Rayleigh waves, the experiments were performed in a higher

frequency range around 340 kHz. Figures 5-10 and 5-11 show the array waveforms for

the laboratory measurements with fracture aperture equal to 0.3 mm (Figure 5-10)

and 2.5 mm (Figure 5-11), respectively. In these two figures, the scale is expanded

for the wave amplitude to highlight the pseudo-Rayleigh waves (denoted by P-R in

this figure), particularly the transmitted waves. A line across the array (denoted

by S) indicates the formation shear arrival time of each trace. The location of the

fracture is indicated by an arrow on offset axis. In fact, the array waveforms for

the two very different fracture apertures are very similar. For the upper part of

the array (incident waveforms), the pseudo-Rayleigh waves are effectively excited.

Following them are some high-frequency fluid arrivals which are mixed up with the

pseudo-Rayleigh waves. However, right after being transmitted across the fracture,

the pseudo-Rayleigh portion of the waveforms is drastically attenuated, leaving a

region with very emergent wave energy. At some distance farther from the fracture,

the waves become reguided and reappear as coherent pseudo-Rayleigh waves. One

may also notice that the early part of these waves following the formation shear

arrival times (indicated by the line across the array) is very weak compared with

the early part of the incident waves. The fact that the above described phenomena

are common for both the thin (L=0.3 mm, Figure 5-10) and the thick (L=2.5 mm,

Figure 5-11) fractures agrees with the theoretical prediction that a thin fracture is

as effective as a thick fracture in affecting pseudo-Rayleigh waves. As discussed

previously, after the elliptically-shaped particle motion is destroyed at the fracture,

the propagating pseudo-Rayleigh energy may take a while to organize its original

motion and become reguided. This is demonstrated by the almost blank region across
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the fracture in both Figure 5-10 and Figure 5-11. For analyzing the waveforms in

Figures 5-10 and 5-11, Figure 5-12 plots the phase (solid line) and group (dashed

line) velocities of the first and the second pseudo-Rayleigh modes for the laboratory

borehole model (aluminum). As can be seen from this figure, in the experimental

frequency range around 340 kHz, the phase velocity of the first mode is close to the

fluid velocity (1.5 km/s), and its group velocity is lower than the fluid velocity. The

phase velocity of the second mode around this frequency is close to the formation

shear velocity (3.1 km/s) and is fairly flat. Its group velocity is significantly higher

than the fluid velocity. Thus in Figure 5-10 or Figure 5-11, the early part of the

waveforms before the fluid arrivals is mainly composed of the second mode. This can

also be evidenced by tracing the one particular phase (trough or peak) of the early

waveforms across the upper part of the array. The phase moves out at a velocity close

the the shear velocity and there is no significant dispersion of the waves (see the flat

dispersion curve of the second mode around 340 kHz in Figure 5-12), showing the the

waves are indeed from the second mode. The weak early arrivals of the transmitted

waves are the wave energy near the second cut-off frequency. Their small amplitude

compared with that of the incident waves also agrees with the theoretical result that

the transmission coefficient is generally the smallest near the cut-off frequencies. To

make a quantitative comparison between the experiment and the theory, one needs

to process the data of Figures 5-10 and 5-11. The pseudo-Rayleigh waves before

the fluid arrivals were windowed. As shown by previous discussion, the windowed

signal is mainly composed of the second pseudo-Rayleigh mode. Then upper part

of the windowed array was stacked to obtain the average incident waveform. For

the. lower part that corresponds to the transmitted waves, the last 9 traces which

consist of coherent pseudo-Rayleigh energy were stacked. This gives the average

transmitted waveform. The results of the processing are shown in Figure 5-13 for

the L=0.3 mm (a) and L=2.5 mm (b) fractures. In this figure, the formation shear

arrival times are marked on each waveform, and the transmitted wave amplitude is
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scaled relative to the maximum incident amplitude. As can be seen from this figure,

the relative amplitudes of the transmitted and the incident waves in both (a) and

(b) are very similar, despite the fact the one fracture (L=2.5 mm) is more than 8

times as thick as the other (L=0.3 mm). Moreover, for the transmitted waves in

both (a) and (b), there is some weak energy following the formation shear arrival

times, indicating the strong attenuation of pseudo-Rayleigh waves near the cut-off

frequencies. Figure 5-14 shows the amplitude spectra (a and c) of the waves shown in

Figures 5-10 and 5-11 and the resulting transmission coefficients (open circles on (b)

and (d) of Figure 5-14) obtained from the spectral ratio of the transmitted spectrum

relative to the incident spectrum. The theoretical transmission coefficients (solid line)

calculated for the second mode are also shown. As shown on Figure 5-14b and (d),

theory and experiment agree in both cases. Both results show the same amount of

amplitude attenuation of the transmitted waves and the general decreasing tendency

of the transmission coefficient towards the cut-off frequency. The experiments on the

pseudo-Rayleigh waves have shown the wave characteristics across an open horizontal

fracture and confirmed theoretical analysis on these waves.

5.5 Conclusions

In this chapter, the propagation of borehole guided waves across an open horizontal

fracture has been investigated. The theoretical analysis was based on a hybrid method

(Tsang, 1985, 1987). This method generates wave modes which are summed to match

the boundary conditions at the fracture surfaces. To overcome the singularity problem

in matching the surface conditions, the borehole fluid flow across and into the fracture

were balanced, as has done for the Stoneley waves in Chapter 2. The coupling at the

fracture surfaces results in the transmission and reflection of an incident borehole

guided wave. Based on the analysis, one can calculate the transmission and reflection

coefficients due to a fracture for the Stoneley and pseudo-Rayleigh waves. At low
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frequencies, the effects of the fracture on the Stoneley wave are controlled by the

amount of fluid flow into the fracture. This has been confirmed by comparison with

the flow model developed in Chapter 2 and by laboratory measurements on Stoneley

waves. As frequency increases, the effects of mode conversion at the fracture become

important. Particularly above the the cut-off frequency of the first pseudo-Rayleigh

mode, the conversion to pseudo-Rayleigh wave is significant, especially for a thick

fracture, as has been shown by synthetic microseismograms. For the pseudo-Rayleigh

wave, an open fracture, whatever the thickness, drastically reduces the transmitted

wave amplitude and produces strong reflection, these effects being more significant

towards the cut-off frequencies than away from these frequencies. As shown by the

laboratory measurements performed using thin and thick fractures, because of the

destruction of its elliptically-shaped particle motion at the fracture, the transmitted

pseudo-Rayleigh wave leaves a region with very weak wave energy in the vicinity of

the fracture. This characteristic may be an important indication of the existence of

an open fracture on an acoustic log. In addition, laboratory experiments indicated

the weak early arrivals of the transmitted pseudo-Rayleigh waves, as predicted by

the theory. In general, the theory and experiment agree quite well. The guided

wave characteristics due to a fracture described in this study may provide useful

information for the fracture detection and characterization using acoustic logs.
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Figure 5-1: Borehole intersected by a horizontal fracture with thickness L. For the
hybrid method, a rigid boundary is placed at r = d > a. The formation at both
sides of the fracture is an elastic solid. The borehole and the fracture are filled with
the same fluid.
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Figure 5-2: Comparison of the present theory (solid line) with the previous one dashed
line) for the transmission of Stoneley waves in he low frequency range. The model
parameters are given in the text and the fracture apertures are indicated on the
curves. At low frequencies, the present theory shows more attenuation than the
previous theory.
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Figure 5-3: Transmission (a) and reflection (b) of Stoneley waves in the frequency
range of [0-15 kHz. Above 5 kHz, the transmission decreases and reflection increases
with frequency because of the coupling with radiation modes. At the cut-off frequency

(marked by an arrow) the coefficients are discontinuous, indicating the coupling of
the Stoneley with pseudo-Rayleigh waves.
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Figure 5-3: (b) Stoneley wave reflection coefficient associated with (a).
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Figure 5-4: Synthetic microseismograms showing the conversion of Stoneley waves
to pseudo-Rayleigh waves above the cut-off frequency. The Stoneley is the incident
wave. In (a), the fracture aperture is 1 cm. In (b), it is 4 cm. The solid lines indicate
the move-out of the formation shear signals originating from the fracture. Following
them are the converted pseudo-Rayleigh waves.
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Figure 5-4: (b) Seismograms with a 4 cm thick fracture. For the thicker fracture, the
converted waves become stronger.
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Figure 5-5: Stoneley waves below the cut-off frequency. In (a), the fracture aperture
is 4 cm and source center frequency is 5 kHz. The Stoneley is simply transmitted and
reflected at the fracture with little mode conversion effects.
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Figure 5-5: (b) Stoneley waves in the VSP frequency range. The fracture is 2 cm
thick and the center frequency is down to 300 Hz to model tube waves observed in
VSP measurements. The strong reflection and attenuation of the tube wave due to a
fracture are common in such measurements.
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Figure 5-6: Transmission (a) and reflection (b) of the first two pseudo-Rayleigh modes
as a function of frequency and fracture thickness. These types of wave modes are
strongly attenuated and reflected by thin as well as thick fractures. Near the cut-off
frequencies, the attenuation is generally the strongest.
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Figure 5-6: (b) Pseudo-Rayleigh wave reflection coefficient associated with (a).
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Figure 5-7: Experimental array waveform data for Stoneley waves. A fracture of 2.8
mm thick in the model is indicated on the offset axis. The Stoneley amplitude is
reduced across the fracture.
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Figure 5-8: Measured incident and transmitted spectra (top figures) and transmission
coefficient (bottom figures). For (a) and (b), the fracture thickness is 2.8 mm.

181

1.0

0.8-

0.6-

0.4-

0.2 -

0 0 00

00 cO 00o *6 00 0*

- theory

0 experiment

-I

185



(c)

85 110 135 160 185

FREQUENCY (kHz)

(d)
1.0

0.8-

0.6-

0.4-

0.2-

110 135 160 185
FREQUENCY (kHz)

Figure 5-8: (c) and (d) For a 5.1 mm fracture.
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Figure 5-8: (e) and (f) For a 1 mm fracture.
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Figure 5-8: (g) and (h) For a 0.2 mm fracture.
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Figure 5-9: Experimental and theoretical transmission coefficients versus fracture
thickness. These coefficients are averaged over the frequency range shown in Figure 5-
8.
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Figure 5-10: Experimental array waveform data for pseudo-Rayleigh waves. The
fracture thickness is 0.3 mm. Fracture location is indicated by an arrow. The pseudo-
Rayleigh waves are denoted by P-R. A line across the array denoted by S indicates
formation shear arrival times. Note the waves are missing across the fracture and
become reguided at some distance away from it. Note also the lack of wave energy in
the early part of the transmitted waves.
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Figure 5-11: Experimental array waveform data. The fracture thickness is 2.5 mm.
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Figure 5-12: Phase (solid line) and group (dashed line) velocities of the first and
second pseudo-Rayleigh modes for the laboratory aluminum borehole model.
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Figure 5-13: Averaged incident and transmitted pseudo-Rayleigh waveforms. They
are obtained from the data shown in Figures 5-10 and 5-11 by windowing the signal
before the fluid arrivals and stacking the traces above and below the fracture. For
the transmitted waves, only the last 9 traces of Figures 5-10 and 5-11 which have
coherent wave energy are used. Note the similarity between the waveforms in (a) and
(b) and the weak early part of the transmitted waves.
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Figure 5-14: Experimental results obtained from the waveforms shown in Figure 5-13.
The spectra in (a) and (c) show almost the same substantial amplitude reduction for
the two very different fractures. The open circles in (b) and (d) are the measured
transmission coefficients and the solid lines are the theoretical coefficients. Theory
and experiment agree well.
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Figure 5-14: (c) and (d) Experimental results for the 2.5 mm fracture.
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Chapter 6

Summary and Conclusions

The purpose of this thesis was to study how the fluid flow in pores and fractures of a

formation responds to the excitation of borehole acoustic waves and how these effects

can be detected with acoustic logging techniques. To this end, the thesis addressed

two major issues. The first is the characteristics of dynamic fluid flow in conduits

of rocks. The second is the application of the dynamic fluid flow theory to acoustic

logging in porous and fractured formations.

The general behavior of dynamic fluid flow in hydraulic conduits of rocks was stud-

ied. Using a plane parallel fracture model, the dynamic conductivity of a fracture was

derived. Although an actual fracture may differ from this simple model, the physics

of dynamic fluid flow is clearly illustrated by this model. It is this same physics that

governs the dynamic fluid flow in hydraulic conduits of rocks. The excellent agreement

between the theory of dynamic conductivity and the theory of dynamic permeabil-

ity of a porous medium shows the general physical principle governing the dynamic

fluid motions. That is, the distinction between the static fluid motion (Darcy's law)

and the dynamic motion is whether the viscous skin depth, 6 = 2p/w, is small or

large compared to the sizes of the pores or the thickness of the fracture. With this

result, the the behavior of dynamic fluid-flow in a natural fracture can be addressed.

A natural fracture is characterized by its surface roughness (Brown, 1987). When
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the height of the surface roughness is small compared to the viscous skin depth, its

effects are accounted for by using an effective aperture for the fracture, and the fluid

flow is governed by the dynamic permeability at low frequencies. When the average

height of the roughness is large compared to the viscous skin depth, the fluid flow

is also characterized by the dynamic permeability. The effects of the rough surfaces

are accounted for by the tortuosity and an effective fracture aperture in the dynamic

permeability. These quantities describe the tortuous, widing fracture flow channels.

In either cases, the dynamic flow properties are characterized by the dynamic per-

meability. This illustrates that the theory of dynamic permeability has tremendous

predictive power in the sense that the dynamic fluid flow in a given sample, regardless

whether it is a porous medium or contains a fracture, can be characterized by vari-

ous input parameters in the dynamic permeability. The important conclusion is that

in acoustic logging measurements performed in a typical frequency range of [2-20]

kHz, the dynamic fluid flow theory, instead of the conventional Darcy's law, is the

appropriate theory for the fluid flow induced in the formation flow system (pores or

fractures).

The validity of the dynamic flow theory was verified through the application of it

to the important problem of acoustic logging in permeable porous formations. The

application of the concept of dynamic permeability to charactering formation fluid

flow not only points to the physical process involved in the problem but also yields

a simple, useful theory that will be of significant applicability to both forward and

inverse problems concerning Stoneley wave propagation in permeable boreholes. For

example, for the forward problem, this model can be used to study the effects of

a permeable zone on the borehole Stoneley propagation. Because of the predictive

power of the dynamic permeability, this permeable zone can be characterized by

such parameters as permeability, porosity, tortuosity, and fluid viscosity, regardless

whether it is composed of a porous medium or fractures. Thus the simple model is also

a useful theory in the fracture characterization using acoustic logging techniques. For

193



an inverse problem, the simple model can be used to formulate an inversion procedure,

analyze its sensitivity to each model parameter, and finally invert for the parameters

(particularly the permeability) using available Stoneley measurement data.

For fractures that are parallel to the borehole axis (vertical fractures), the results

of Chapter 4 showed that the effects on the Stoneley wave propagation are primarily

due to the dynamic fluid flow in the fracture. The resulting Stoneley wave charac-

teristics are similar to those of a Stoneley wave in a permeable borehole, as studied

in Chapter 3. As in the permeable borehole case, the dynamic fluid flow occurring

at the fracture opening results in significant attenuation and decrease of velocity at

low frequencies. This indicates that the gradual decay in amplitude of low-frequency

Stoneley waves across a certain part of a borehole may be diagnostic of the existing

fracture, as have been illustrated by the laboratory experimental examples in Chap-

ter 4. A special feature of an open fracture is that in the medium frequency range,

the Stoneley velocity has the tendency to reach the free space acoustic velocity of the

fluid. As frequency increases, the velocity decreases to approach the Scholte velocity

along a planar solid-fluid interface. This effect is especially pronounced for a thick

fracture in the presence of a soft formation. In addition, the study of the vertical

fracture in Chapter 4 assumed the planar plate surfaces for an open fracture. Al-

though an in-situ fracture may differ from the parallel fracture model, the general

wave characteristics in a leaky wave guide are demonstrated by this model. This can

be seen from the similarity between the wave characteristics of the vertically fractured

borehole and those of a permeable borehole. This similarity is due to the fact that

as long as fluid flow occurs at the borehole wall, the borehole Stoneley wave will lose

energy into the formation, regardless whether the flow is into the fracture or pores.

Furthermore, the study of a fracture that differs from the parallel plate model can be

carried out based on the studies of this thesis. An in-situ fracture may be composed

of multiple fractures, or it may be a major fracture filled with materials like gravel

or clay. To model the effects of such a fracture on the Stoneley propagation, one can
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use the dynamic permeability to characterized the fluid flow into the fracture. The

boundary condition perturbation theory developed in Chapter 4 can then be applied

to study the resulting effects on the Stoneley propagation. In conclusion, because

the effects of vertical fractures are initiated by the dynamic flow along the fractures,

the vertical fractures can best be characterized as a permeable zone or channel and

their flow properties can be determined from the measured Stoneley wave propagation

characteristics, such as attenuation and dispersion.

In the case of acoustic propagation across fractures that intersect the borehole,

the propagation of borehole guided waves in the vicinity of the fracture was theo-

retically analyzed and tested with laboratory experimental results. The theoretical

results showed that at low frequencies, the Stoneley wave attenuation across an open

horizontal fracture is due largely to the fluid flow into the fracture. As frequency

increases, the coupling of the Stoneley wave with the radiation waves at the fracture

becomes important. Above the cut-off frequency of the first pseudo-Rayleigh wave

mode, the Stoneley is strongly coupled with the pseudo-Rayleigh wave at the fracture.

This coupling is pronounced when the thickness of the fracture increases. Pseudo-

Rayleigh waves are strongly attenuated by thin as well as thick fracture. The reason

for this is that the pseudo-Rayleigh wave depends on the formation shear strength to

sustain its propagation. Once it encounters a fracture of zero shear strength, its prop-

agation is greatly affected. The effects of a fracture on pseudo-Rayleigh waves have

been verified in the laboratory by experimenting with thin and thick fracture models.

Although these results were obtained for a horizontal fracture, the physics involved is

also true for an inclined fracture. Consequently, the lack of pseudo-Rayleigh energy

across a borehole fracture may be a very good indication of the existing fracture.

Moreover, the theory also predicts that the effects of a fracture on pseudo-Rayleigh

waves are more pronounced towards the cut-off frequencies than away from these

frequencies. Because the early arrivals of the pseudo-Rayleigh wave are the energy

near the cut-off frequency, the missing of wave energy of these early arrivals may also
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be an indication of the existing fracture. These examples were demonstrated by the

laboratory experimental studies in Chapter 5. Again, as in Chapter 4, the parallel

plate analogy was used to model the borehole fracture. By modeling the fracture

as a crack without shear strength, this model was quite successful in explaining the

strong attenuation of pseudo-Rayleigh waves across a borehole fracture. In many

cases, an in-situ fracture is characterized as a discontinuity that lacks shear strength.

Therefore, the result for the pseudo-Rayleigh waves is applicable to the field situa-

tion. For the Stoneley waves, however, this model requires a rather large fracture

aperture (on the order of centimeters) to attenuate the Stoneley wave significantly.

However, fractures with such apertures are rarely found in the field (Hornby et al.,

1989), but Stoneley wave attenuation (up to 50% or more) across in-situ fractures

is commonly observed (Paillet, 1980). This means that an in-situ fracture may be

quite complicated. It may be a very permeable zone intersecting the borehole, or it

may be a major discontinuity with its surfaces loosely bounded. Therefore, realistic

fracture models need to be developed to model in-situ fractures. For the permeable

zone case, the model developed in Chapter 3 can be employed. If the the fracture is a

fracture with its surfaces in contact, the boundary condition at the fracture surfaces

may be modeled as a slip boundary condition (Murty, 1976). The hybrid method of

Tsang (1987) can then be used to treat this problem. In conclusion, acoustic logging

can be used as an effective tool in the detection and characterization of horizontal or

inclined fractures. Specifically, the pseudo-Rayleigh waves that are sensitive to for-

mation fracturing can be used to detect and locate the fractures, while the Stoneley

waves, which are sensitive to permeability of the formation, can be used to find the

flow properties of the fractures.
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Appendix A

Dispacement and Stress

Components for the Hybrid

Method

In this appendix, the displacement and stress components for the formation and

borehole fluid are listed. Given the solutions in equations 5.5, these components are

calculated using equations 5.2, 5.3, and 5.4. The components are:

For the fluid:

uzf = ikAlo(fr) , (A.1)

U,. = fAI1(fr) , (A.2)

Ozzf = -pjw2AIo(fr) . (A.3)

For the formation:

U,.,= l[-BKI(lr) + B'I1(lr)] - ik[CK1(mr) + C'I1(mr)] , (A.4)

uz= ik[BKo(lr) + B'Io(lr)] + m[-CKo(mr) + C'Io(mr)] , (A.5)

o- = -(pw 2 + 2p12 )[BKo(lr) + B'Io(lr)]

+2pikm[-CKO(mr) + C'Ko(mr)] , (A.6)
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UrzS = 2,pik l[-BK1(lr) + B'I1(r)]

+(k2 + m 2)p[CK1(mr) + C'I1(mr)] , (A.7)

-rrs = B[(-pw2 + 2pk 2)Ko(lr) + 2p(l/r)K1(lr)]

+B'[(-pw2 + 2pk 2)Io(lr) - 2p(l/r)I1(lr)]

+2pikmC[ Ko(mr) + K1(mr)/(mr)]

-2pikmC'[Io(mr) - I1(mr)/(mr)] . (A.8)

Note that every equation in this Appendix has the exp(ikz) dependencies.
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Appendix B

Analytical Expressions for the

Integrals in Equations 5.38 and

5.39

In this appendix, the analytical expressions are given for the integrals in equations 5.38

and 5.39. For the first integral, one makes use of the expressions of U2 and o-2 , which

are respectively listed in equation A.3 and equation A.6 of Appendix A. Multiply them

by Jo(Cr)r (here the subscripts a and n omitted) and integrate over from 0 to a and

a to d. The resulting expression contains integrals involving products of Bessel and

modified Bessel functions of the zero order, which can be analytically integrated out

as (Gradshteyn and Ryzhik, 1963)

iIoyr)Jo((r)rdr
Ko(7r)Jo((r)rdr

= (72 + ( 2)-1 [(ylo/Y)J,((y) - (xIO(7x)Ji(x)

+7y Jo((y)I1(7y) - 7x Jo((x)I1(7x)] ,

(72 + ( 2)' [(yKo(7y)J1((y) - (xKo(7x)J1((x)

-yyJo((y)K(yy) + 7xJo((x)K1(7x)] ,

where the limits of integration x can be 0 and a, and y can be a and d; the symbol

y can be each one of the radial wavenumbers f, m, and 1. As a result, the integral
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given in equation 5.38 is found as

I(k,() = (aJ1((a)[ao/((2 + f 2) + a1/((2 + 12) + a2/(( 2 + m2)]

+Jo((a)[bo/(( 2 + f 2 ) + bi/(( 2 + 12) + b2 /(( 2 + m2)]

+Jo((d)[c1/(( 2 + 12) + C2/((2 + m2)]

where

For the integral in

the identity

ao = -pw 2Io(fa) , (B.4)

ai = (pw 2 + 2pl 2 )[BKo(la) + B'Io(la)] , (B.5)

a2 = 2pikm[CKo(ma) - C'Io(ma)] , (B.6)

bo= -pfw 2fall(fa) , (B.7)

b= (pw2 + 2pl12)la[-BK1(la) + B'Ii(la)] , (B.8)

b2 = -2pikm 2a[CK1(ma) + C'Ii(ma)] , (B.9)

C1 = (pw 2 + 2p2 )ld[BK1(ld) - B'11(ld)] , (B.10)

C2 = 2pikm 2 d[CK1(md) + C'I(md)] . (B.11)

equation 5.39, one uses the ol defined in equation 5.34. Applying

d
Jo(Cr) = dr [rJ1((r)]/((r) (B.12)

to equation 5.39 and integrating by part, one gets

11(k, () = (-1[rJi((r)o' (k, r)] d- d d[ (k, r)]Ji(()rdr . (B.13)z 0 Jo dr 0 zkr]j(r B13

Because al is continuous at r = a and J1 ((d) = 0 (equation 5.20), the first term

vanishes. From equation 5.34, one can see that the derivative of ou equals that of

Ora. Using o-22 given in Appendix A (equations A.3 and A.6) and completing the

integration of the second term, one obtains

-1(k,()= J1((a)/([a' /((2 + f 2 ) + a'/((2 + 12) + a'2/((2 + m2)]

+aJo((a)[b' /((2 + f 2 ) + b' /((2 + 12) + b'2/((2 + m2)] (B.14)

+dJo((d)[c' /(( 2 + 12) + c'2/((2 + m2)]
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a = pjw2 f 2 alo(fa) , (B.15)

a = -(pw 2 + 2p12 )g2a[BKo(la) + B'Io(la)] , (B.16)

2= 2pikm 3a[-CKo(ma) + C'Io(ma)] , (B.17)

b= -pfw 2 f1(fa) , (B.18)

b= -(pw 2 + 2pt12 )l[BK1(la) - B'I1(la)] , (B.19)

2= -2paikm 2 [CK1(ma) + C'I1(ma)] , (B.20)

c = (pw 2 + 2p1
2 )l[BK 1(ld) - B'1(ld)] , (B.21)

c= 2pikm 2 [CK1(md) + C'I1(md)] (B.22)
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