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Abstract

Since their invention in 1948 by Dennis Gabor, holograms have demonstrated to be im-
portant components of a variety of optical systems and their implementation in new
fields and methods is expected to continue growing. Their ability to encode 3D optical
fields on a 2D plane opened the possibility of novel applications for imaging and lithog-
raphy. In the traditional form, holograms are produced by the interference of a reference
and object waves recording the phase and amplitude of the complex field. The holo-
graphic process has been extended to include different recording materials and methods.
The increasing demand for holographic-based systems is followed by a need for efficient
optimization tools designed for maximizing the performance of the optical system. In
this thesis, a variety of multi-domain optimization tools designed to improve the per-
formance of holographic optical systems are proposed. These tools are designed to be
robust, computationally efficient and sufficiently general to be applied when designing
various holographic systems. All the major forms of holographic elements are studied:
computer generated holograms, thin and thick conventional holograms, numerically sim-
ulated holograms and digital holograms. Novel holographic optical systems for imaging
and lithography are proposed.

In the case of lithography, a high-resolution system based on Fresnel domain computer
generated holograms (CGHs) is presented. The holograms are numerically designed using
a reduced complexity hybrid optimization algorithm (HOA) based on genetic algorithms
(GAs) and the modified error reduction (MER) method. The algorithm is efficiently
implemented on a graphic processing unit. Simulations as well as experimental results
for CGHs fabricated using electron-beam lithography are presented. A method for ex-
tending the system's depth of focus is proposed. The HOA is extended for the design
and optimization of multispectral CGHs applied for high efficiency solar concentration
and spectral splitting. A second lithographic system based on optically recorded total in-
ternal reflection (TIR) holograms is studied. A comparative analysis between scalar and



vector diffraction theories for the modeling and simulation of the system is performed. A
complete numerical model of the system is conducted including the photoresist response
and first order models for shrinkage of the holographic emulsion. A novel block-stitching
algorithm is introduced for the calculation of large diffraction patterns that allows over-
coming current computational limitations of memory and processing time. The numerical
model is implemented for optimizing the system's performance as well as redesigning the
mask to account for potential fabrication errors. The simulation results are compared to
experimentally measured data.

In the case of imaging, a segmented aperture thin imager based on holographically
corrected gradient index lenses (GRIN) is proposed. The compound system is constrained
to a maximum thickness of 5mm and utilizes an optically recorded hologram for correct-
ing high-order optical aberrations of the GRIN lens array. The imager is analyzed using
system and information theories. A multi-domain optimization approach is implemented
based on GAs for maximizing the system's channel capacity and hence improving the
information extraction or encoding process. A decoding or reconstruction strategy is
implemented using the superresolution algorithm. Experimental results for the opti-
mization of the hologram's recording process and the tomographic measurement of the
system's space-variant point spread function are presented. A second imaging system for
the measurement of complex fluid flows by tracking micron sized particles using digital
holography is studied. A stochastic theoretical model based on a stability metric similar
to the channel capacity for a Gaussian channel is presented and used to optimize the sys-
tem. The theoretical model is first derived for the extreme case of point source particles
using Rayleigh scattering and scalar diffraction theory formulations. The model is then
extended to account for particles of variable sizes using Mie theory for the scattering of
homogeneous dielectric spherical particles. The influence and statistics of the particle
density dependent cross-talk noise are studied. Simulation and experimental results for
finding the optimum particle density based on the stability metric are presented. For
all the studied systems, a sensitivity analysis is performed to predict and assist in the
correction of potential fabrication or calibration errors.

Thesis Supervisor: George Barbastathis
Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

In 1948 Dennis Gabor invented optical holography. This invention, for which he won the

Nobel Prize for Physics in 1971, was a result of an "exercise in serendipity", as Gabor

explains in his autobiography. Optical holography was initially presented in the context

of electron microscopy as a method to resolve the problem introduced by the spherical

aberrations of electron lenses that set the limit in the resolving power [1]. Two detailed

papers, [2], [3], followed his pioneering work, which explored presenting holography as a

method for recording and reconstructing the amplitude and phase of a wave field. He

invented the word "holography" from the Greek words "holos" meaning "whole" and

"graphein" meaning "to write". Holography only attracted mild interest until the 1960s,

when the concept became popular, improved predominantly by the invention of the laser.

The holographic process consists of two main steps: recording and reconstruction. In

the recording step, a hologram is produced by the interference between an optical field

scattered by a coherently illuminated object and a reference wave. In the conventional

form, the interference pattern is recorded on a photosensitive film which is later chemically

processed. This process efficiently encodes the 3D information from the object wave onto

a 2D hologram plane. The interference with the reference wave allows recording both the

phase and amplitude of the complex field scattered by the object. In the reconstruction

step, the hologram is illuminated by the phase conjugate of the reference wave, known as



the probing wave, and diffracts the phase conjugate of the object wave that propagates

through free space and forms a real image of the object. Additional diffraction orders,

such as the virtual image, direct component and halo, are also produced. The virtual

image is a diverging wave that appears to emanate from virtual point sources behind

the hologram. It can be converted into a real image with the help of a lens. The direct

component is the un-deviated diffraction order that propagates in the same direction as

the probing wave. The halo is a divergent wave that depends on the intensity distribution

of the object wave alone and propagates in the same direction as the probing wave.

In the original system proposed by Gabor, the reference wave is incident normal to

the recording medium and a semi-transparent object is placed in its path. This is known

as in-line geometry. This geometry attracted considerable interest due to its simplicity

and efficient way to perform lens-less imaging. However, this geometry only yields good

results when the object to be imaged is sufficiently transparent and small so that it does

not significantly disturb the reference wave. Another disadvantage of this geometry is that

all the diffraction orders produced during the reconstruction step co-propagate, making it

difficult in some cases to recover the encoded signal. Leith and Upatnieks made significant

advancements to Gabor's technique by introducing the off-axis geometry [4], [5]. In the

off-axis geometry, the hologram is recorded with a reference wave (or object wave) tilted

respect to the normal of the holographic medium surface. This variation introduces a

high-frequency carrier signal that allows the different diffraction orders to separate during

the reconstruction step. Undesirable diffraction orders can then be filtered out and the

desired signal can be recovered.

A further improvement became possible when holography began to be analyzed from

the viewpoint of communications theory. The holographic problem then became that of

optimizing the corresponding encoding and decoding processes. This parallelism between

holography, communications and systems theories allowed borrowing notions such as in-

formation transfer, channel capacity, carrier and modulating signals, impulse response

and transfer function, useful in designing and analyzing holographic systems. For exam-



ple, the hologram recording process is analogous to Amplitude Modulation (AM). It was

not until this analogy was found by Leith and Upatnieks that the fundamental virtual

image problem present in Gabor's holograms was resolved. Other examples of systems

that can be treated as communication channels include imaging and lithographic systems

based holograms. In the imaging case, the channel's source is the object or scene and

the receiver can be modeled as the final captured image. In the lithographic case, the

information about a desired mask needs to be transferred to the final exposed pattern

at the photoresist plane. In both cases, the equivalent communication channels may be

subject to noise and additional system constraints, which limit its corresponding chan-

nel capacity as formulated by Shannon [6]. The addition of holography in such systems

allow the manipulation of the information transfer process with great flexibility and by

means of a properly designed optimization algorithm, maximal information extraction

and transfer can be pursued.

In the following years, the holographic process was extended to include different

recording mediums, as well as forms to implement the recording and reconstructions

steps. These new methods can be broadly classified according to their type of recording

and reconstruction processes as optical and numerical. In the first variation, holograms

are recorded and reconstructed optically. This variation includes conventional thin and

volume holograms. These holograms are recorded in a variety of materials such as silver

halide holographic films, photopolymers and photosensitive crystals. The second varia-

tion consists of holograms recorded optically but reconstructed using numerical methods.

This belongs to the field of digital holography. In digital holography, the holograms are

recorded on a photosensitive detector such as a CCD or CMOS sensors. Numerical al-

gorithms simulate the reconstruction process which includes probing the hologram and

performing the corresponding free space propagation. In the third variation, the holo-

grams are designed numerically and reconstructed optically. This belongs to the field of

computer generated holography. Computer generated holograms provide great flexibility

in their design but are limited by the chosen fabrication technique. The last modal-



ity corresponds to holograms recorded and reconstructed numerically. This modality is

primarily used in the design, analysis and optimization of holographic optical systems.

Holographic methods have been adopted in a variety of optical systems used for

imaging and display applications. Imaging systems include diagnostic tools designed to

acquire useful information about the object or scene that would be otherwise difficult to

obtain by conventional means. Examples of imaging systems include digital holographic

cameras designed to study aquatic objects [7], biological cells [8] and complex flow dis-

tributions that require tracking 3D particle fields [9]; volume holographic imaging of 3D

objects [10], holographic optical storage [11] and aberration correction of complex optical

systems based on phase conjugation holography [12]. In contrast, display applications

exploit the hologram's ability to reconstruct 3D optical fields. Examples of these appli-

cations include holographic art, 3D television based on computer generated holograms

[13], and holographic lithography [14].

Over the years, holographic elements have demonstrated to be important components

on a variety of optical systems and their application in new fields and methods is expected

to grow. The increasing demand of holographic based systems is followed by a need for

efficient optimization tools designed for maximizing the performance of the system. The

different variations of holographic methods require distinct formulations that can model

the system under study with sufficient accuracy. Scalar, as well as vector, diffraction

theories may be implemented. In general, optical systems based on holographic elements

introduce new degrees of freedom that can be exploited by the optimization algorithm.

A multi-domain optimization approach is required in which variables from different do-

mains, such as optical, geometrical, material and numerical domains are optimized in

parallel to efficiently explore new regions of the optimization space. The optimization

tools are required to be robust and computationally efficient. These tools should account

for experimental or fabrication related error. In addition, systems analyzed using infor-

mation theory can then be treated as communication channels and their performance or

channel capacity can be maximized. This is equivalent of optimizing the encoding and



decoding strategies and hence maximizing the information transfer between object and

image spaces.

In this thesis, a variety of multi-domain optimization tools designed to improve the

performance of holographic based optical systems are presented. These tools are designed

to be robust, computationally efficient and sufficiently general for the design of a variety of

optical systems. All the major variations of holographic elements are studied as indicated

in Table 1.1. Novel holographic based optical systems for imaging and lithography are

proposed. The design, optimization and experimental implementation of these systems

are conducted. An accurate model of each system is performed, as well as a sensitivity

analysis to account for potential fabrication or calibration errors. The models are studied

using system and information theories. The system's channel capacity and stability of the

related inverse problem as a function of various control parameters are evaluated. The

performance of the corresponding signal encoding and decoding processes is maximized.

Table 1.1: Holographic Processes.
Recording Reconstruction Techniques Thesis Chapter
Numerical Optical Computer Generated Holography 2
Numerical Numerical Holographic System Design 3

Optical Optical Conventional Holography 4
Optical Numerical Digital Holography 5

1.1 Thesis Overview

In Chapter 2, the design, optimization and implementation of computer generated holo-

grams (CGHs) that operate in the Fresnel diffraction zone is presented. In order to

achieve high diffraction efficiencies, only phase CGHs are considered. Two target appli-

cations are studied: high-resolution, non-contact lithography and solar concentration. A

reduced complexity hybrid optimization algorithm (HOA) is proposed. This algorithm is

based on genetic algorithms and the modified error reduction method for the solution of

the highly nonlinear, multivariable problem, subject to stringent constraints. The goal of



the HOA is to maximize the performance of the signal encoding process during the CGH

design. This accounts for maximizing the information transfer between the hologram

and reconstruction spaces. The complexity of the optimization problem is reduced by

optimizing a significantly smaller set of variables by the introduction of the local diffuser

phase elements (LDPE) and local negative power elliptical phase elements (LNPEPE)

masks. The design of a lithographic system based on CGHs is conducted using a multi-

domain optimization approach in which optical, numerical, and material parameters such

as the photoresist response are considered in parallel. Three geometries are studied: in-

line, off-axis and total internal reflection (TIR). The HOA is efficiently implemented on

a graphics processing unit (GPU), resulting in speedups of more than 200 x compared

to standard central processing unit (CPU) implementations. A multiplexing method for

the extension of the depth of focus is proposed to increase the tolerance of potential

axial misalignments during the photoresist exposure process. A simple CGH fabrica-

tion method based on electron-beam lithography is presented, as well as an optimization

scheme designed for the local correction of over and under dose errors. Experimental

demonstrations of the reconstructions from the fabricated CGHs using coherent and par-

tially coherent illuminations are presented. A sensitivity analysis is conducted to predict

and assist in the correction of potential fabrication error. The presented algorithm is ex-

tended for the design and optimization of multispectral CGHs applied for high efficiency

solar concentration and spectral splitting.

In Chapter 3, the design and optimization of a TIR holographic system for photoresist

exposure in the Fresnel diffraction zone is presented. In contrast to the system designed

in Chapter 2, this lithographic system is based on optically recorded and reconstructed

holograms. The holograms are recorded on a photopolymer and operate in the near

ultraviolet regime. The target application considered is a high-resolution, parallel expo-

sure, non-contact, large area flat panel display manufacture. A comparative analysis is

performed between scalar and vector diffraction theories for the modeling and simulation

of the system under study. The considered methods are: Rayleigh-Sommerfeld diffrac-



tion theory, rigorous coupled wave analysis and finite-difference time-domain methods.

Scalar diffraction theory is proven to be sufficiently accurate for the considered geometry

and is chosen for modeling and simulating the system. The system is again designed

using a multi-domain optimization approach in which optical, geometrical and material

parameters are considered. First order models for simulating the material response and

shrinkage of the photopolymer are presented. A novel block-stitching algorithm is in-

troduced for the calculation of large diffraction patterns that allows overcoming current

computational limitations of memory and processing time. The numerical model is im-

plemented for optimizing the system's performance, as well as redesigning the mask to

account for potential fabrication errors. The simulation results are compared to exper-

imentally measured data. A method for extending the depth of focus of the system is

presented.

In Chapter 4, the design, optimization and implementation of a high-resolution seg-

mented aperture thin imager based on holographically corrected gradient index (GRIN)

lenses is presented. The proposed compound imager utilizes a GRIN lens array to collect

the light emanating from the scene, imaging it onto a photodetector effectively reducing

the thickness of the system to less than 5mm. Optically recorded holographic elements

based on a phase conjugation scheme are used for correcting the high-order aberrations

present in the GRIN lens array. Each lens in the array is corrected for a different field

angle resulting in diffraction limited performance. The new degrees of freedom intro-

duced by the holographic elements are utilized for maximizing the information transfer

from scene to measurement spaces. The optical performance of the system is evaluated

using a combination of Matlab and the optical design software Zemax. The imager is

model used system's theory by defining a linear operator known as the Hopkins matrix.

This matrix connects the input and output signals (scene and measurement) and includes

optical, geometrical and detector related parameters such as space-bandwidth product,

pixel size and dynamic range. The system is analyzed using information theory treating

it as a Gaussian parallel communication channel. The channel capacity as well as inver-



sion stability of the Hopkins matrix are studied. The Hopkins matrix is then treated as

an alternate projection that allows extracting more scene information than conventional

isomorphic methods, as well as tolerating higher levels of noise and calibration errors. A

multi-domain optimization approach is implemented based on GAs for maximizing the

system's channel capacity and hence improving the information extraction or encoding

process. The optimized system is proven to be more efficient than conventional microlens

array based compound systems. A decoding or reconstruction strategy is implemented

using the superresolution algorithm. In this strategy, the captured subimages from each

GRIN lens are combined to reconstruct a high-resolution output image. Experimental

results for the optimization of the hologram's recording process are presented. It is found

that the hologram exhibits properties of a volumetric element such as angular selectivity.

The exposure and chemical processing of holograms recorded on silver halide emulsions

is studied by optimizing the diffraction efficiency at the Bragg angle. A tomographic

technique based on the Foucault knife-edge test is presented for the measurement of the

system's space-variant point spread function. A sensitivity analysis is performed to esti-

mate the effect of potential misalignment errors in the assembly process. A modification

of geometry for polychromatic imaging is proposed.

In Chapter 5, a stochastic theoretical model based on the stability metric for the de-

sign and optimization of in-line digital holographic particle imaging velocimetry (DHPIV)

systems is presented. DHPIV systems are used for the characterization of complex fluid

flows by tracking micron sized tracing particles. It is found that the performance of such

systems relies on the correct selection of parameters such as particle density, geometry

and detector related parameters. Similar to Chapter 4, the model of the digital holo-

gram recording process is derived based on system's theory by defining the instantaneous

Hopkins matrix linear operator. This operator includes optical, geometrical and detector

related parameters that connect the measured signal with the particle cloud inside the

volume of interest (VOI) at a given instant in time. The theoretical model is first derived

for the extreme case of point source particles using Rayleigh scattering and scalar diffrac-



tion theory formulations. The model is then extended to account for particles of variable

sizes using Mie theory for the scattering of homogeneous dielectric spherical particles.

The system is analyzed from an information theoretic viewpoint treating it as a Gaussian

parallel communications channel. The influence and statistics of the particle density de-

pendent cross-talk noise are studied. A metric is defined similar to the channel capacity

to study the stability of the associated inverse problem. The stability metric is used for

optimizing the system, maximizing the amount of 3D information from the VOI that

can be encoded by a single hologram. Simulation results are presented for finding the

optimum particle density based on the stability metric. An experimental evaluation is

conducted to study the influence of particle density in the information extraction process

by a set decoding process. The implemented decoding strategy is based on a template

matching scheme designed to automatically process and count the particles present at

each frame. The experimental results are compared to the predictions obtained from the

stability metric.



Chapter 2

Design, Optimization and

Implementation of Fresnel Domain

Computer Generated Holograms:

Applied to Holographic Lithography

and Solar Concentration

2.1 Introduction to Computer Holography

Computer-generated holograms (CGHs) are diffraction optical elements designed to re-

construct a semi-arbitrary 2D or 3D optical field in the near, Fresnel or Fraunhofer

diffraction zones as shown in Figure 2-1. The design and optimization of CGHs is per-

formed using numerical methods allowing the use of ideal wavefronts during the encoding

process, as well as choosing the most adequate encoding strategy for the given application.

Typical problems that arise during the optical recording step of conventional holograms,

such as aberrations of the optical components used in the system, vibrations, thermal

instabilities and recording material properties (e.g. shrinkage, diffusion and lifespan),



can be avoided. CGHs are fabricated using a variety of methods such as computer driven

plotter writing [15], [16], direct laser writing [17], [18], femtosecond laser micromachining

[19], [20], contact or projection lithography [21], [22], [23] and electron-beam (e-beam)

lithography [24], [25]. Similar to conventional holography, the reconstruction or decoding

step is performed optically using a quasi-monochromatic, spatially coherent laser source.

In the design of CGHs, the wave propagation between the hologram and reconstruction

planes is modeled for the given system geometry with the appropriate vector or scalar

diffraction theory. The inverse problem nature in the optimization of CGHs often re-

quires field backpropagation or inverse scattering from the desired intensity or field at a

given plane.

CGH

--------------- z

Near Fresnel domain Fraunhofer domain
field

Figure 2-1: CGH diffraction zones.

The first CGH was made by Brown and Lohmann in 1966 [26]. In the following year,

they presented a more rigorous paper that described in detail the working principle and

required approximations for the design of a Fraunhofer CGH that is known today as the

"detour phase" type [27]. As with many other researchers in those early years, Brown

and Lohmann were originally motivated by the fabrication of 2D optical spatial filters

similar to those used for optical signal processing [28] and imaging.

CGHs are broadly classified as point-wise or cell oriented. In the point-wise type,

the transmittance function of the CGH is discretized into N x M pixels, each pixel

corresponding to at least one degree of freedom (DOF). The required space-bandwidth

product is typically set to match the sampling requirements and with sufficient DOF as

..............................



those from the desired reconstructed intensity. In the cell oriented type, the CGH is

divided in to multiple cells, each composed of a given structure, which again corresponds

to the different DOF available to transform the field transmitted by the hologram.

CGHs are also classified according to the transmittance function's type: pure phase,

pure amplitude or complex (amplitude and phase) [29], [30]]. Ideal pure phase CGHs,

neglecting Fresnel reflections or scattering from material defects, transmit all the power

from the input field with zero absorption. These holograms are desirable to achieve high

diffraction efficiency reconstructions. However, pure phase holograms rely on an efficient

encoding process as the specified amplitude information (desired intensity distribution at

the photoresist plane) needs to be converted into pure phase information (encoded signal)

at the hologram plane. Errors in this information transfer results in noisy reconstructions

with low diffraction efficiencies. The above requirement is relaxed if the hologram is of

the complex type, as the desired signal can be encoded in both the amplitude and phase

of the CGH's transmittance function, effectively increasing the number of DOF by a

factor of 2. However, the amplitude component of the transmittance function absorbs a

large portion of the input energy.

The number of DOF available on a CGH greatly depends on the method selected

for its fabrication. Some fabrication techniques, such as e-beam writing, restrict the

hologram's transmittance function to a binary phase or amplitude in order to avoid

multi-exposure processes subject to severe misalignment errors. For a point-wise binary

CGH, the total number of DOF is: N x M (N x M bits of recordable information). In

contrast, multi-level CGHs quantize the amplitude or phase information using K discrete

levels. The total number of DOF for a point-wise multi-level CGH is: log 2 (K) x N x M.

Multi-level CGHs have been demonstrated by patterning subwavelength structures based

on effective medium theory as described in [31].The effect of discrete phase or amplitude

levels in the transmittance function results in quantization errors that produce poor

quality reconstructions with speckle-like grainy noise [32]. Several algorithms such as

error diffusion [33], pulse-density modulation [34], and phase retrieval methods [35] have



been studied to attempt to improve the signal encoding process for constrained discrete-

level holograms.

An example of a cell oriented Fraunhofer CGH is the detour phase hologram. Detour

phase holograms consist of many transparent dots (or apertures) on an opaque back-

ground as shown in Figure 2-2-a. To an approximation, the width of the aperture is

proportional to the amplitude of the desired signal's Fourier transform, and its lateral

shift respect to the center of the cell is proportional to the transform's phase. The result-

ing phase shift can be understood intuitively by considering the phase difference of waves

originated from two separated Huygens sources [36]. The detailed derivation of the design

equations for detour phase holograms is beyond the scope of this thesis and can be found

at [27]. Detour phase holograms are modeled using scalar diffraction theory with the

approximation of representing the amplitude reconstructed by the hologram in the form

of a Fourier series which is then equated to a Fourier series representation of the image.

Detour phase CGHs typically produce low diffraction efficiency reconstructions as a large

fraction of the input energy gets absorbed by the opaque background. In addition, this

type of holograms are very sensitive to positional errors from the plotter or alternative

fabrication methods that result in undesirable phase shifts on the diffracted wavefront

[37], [38]. Figure 2-2-b shows the reconstructed intensity from the detour phase hologram

of Figure 2-2-a.

Fiue -:(a) Deorpaehlga;()Reosrce nest 3]

a 11.iy M
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Figure 2-2: (a) Detour phase hologram; (b) Reconstructed intensity [39].



In 1977, Lee proposed one the first point-wise CGHs based on the concept of in-

terferograms [15]. Lee realized that the apertures in a detour phase binary hologram

are equivalent to the fringes of an interference pattern from conventional off-axis holo-

graphic recording. In Lee-type holograms, the positions and widths of the fringes were

determined and the CGH was printed using a conventional plotter.

Kinoform CGHs were introduced by Lesem, Hirsch and Jordan in 1969 [40]. Ki-

noforms are point-wise pure phase Fraunhofer holograms that are designed under the

assumption that most of the information on the signal can be encoded in the phase of

the hologram's transmittance function. Deviations from this assumption produce low

quality reconstructions as the amplitude of the signal to be encoded at the hologram

plane is discarded. In contrast to the holograms described previously, Kinoforms only re-

construct a single diffraction order upon on-axis illumination. However, phase matching

errors that may arise during the fabrication process resulting in noisy reconstructions -

the hologram resembles an in-line conventional hologram in which undesirable diffraction

orders, such as the conjugate image, direct component (DC) term and halo, co-propagate

towards the reconstruction plane. To simplify the hologram design, the desired object

intensity is divided into small points (or apertures) and the field at the hologram plane is

calculated using scalar diffraction theory. The final design is printed using a multi-level

grey scale plotter and then is photoreduced and transferred onto a photoresist which

is then bleached to produce a surface relief pattern. Due to the phase nature of the

transmittance function, Kinoforms can achieve much higher diffraction efficiencies than

previous holograms. Figure 2-3 shows an example of a typical Kinoform CGH with its

corresponding reconstruction.

Over the past several years, CGHs have been developed for a broad range of applica-

tions such as beam shaping [41], [42], [43], optical trapping [44], optical signal processing

[45], [46], optical communications [47], optical testing [48], [49], 3D displays [13], [50],

and lithography [51].



Figure 2-3: (a) Kinoform phase hologram; (b) Reconstructed intensity [40].

2.2 Motivation and Problem Definition

The increasing demand for smaller sized features, lower power and large working area

semiconductor devices has led to the development of novel lithographic techniques aimed

to replace conventional lithographic methods. Serial processes such as direct laser writ-

ing [52] and electron beam lithography [53] have been found to be expensive and time

consuming which prevents their implementation in the mass production of semiconduc-

tor devices. In addition, serial methods require high-resolution motorized stages and

are restricted to operate in small working areas to avoid stitching and positional errors.

Some of these limitations are overcome by parallel processes such as Zone-Plate-Array

Lithography (ZPAL) [54]. In ZPAL, an array of zone plates is used to write multiple

points on the substrate in parallel. However, the required system is costly and still re-

quires scanning. Other parallel exposure methods include contact [55] and projection

lithography [56]. In contact lithography, an amplitude mask with the desired pattern is

placed in direct contact with the substrate to be exposed. This method is not suitable

for mass production as it is very sensitive to contaminants and degradation of the mask,

due to the direct contact with the photoresist. Projection lithography is a non-contact

method that involves imaging the desired pattern onto the photoresist plane. Projection

lithographic systems are costly, as they are composed of multi-element optical systems



designed to demagnify the projected pattern, as well as correct for intrinsic optical aber-

rations. In order to achieve high-resolution exposures, expensive optical systems with

large numerical apertures (NA) are required.

Holographic lithography based on computer generated holograms is a promising can-

didate to replace standard 2D or 3D lithographic methods. The main features provided

by holographic lithography are:

" Non-contact: large working distances that prevent damaging the substrate or

CGH. Allows high throughput, ideal for mass production

" Parallel exposure: fast processing as scanning requirements can be minimized or

avoided

" High-resolution: CGHs can be designed to have a large effective NA when oper-

ating in the Fresnel diffraction zone

" Large working area: large area exposures are possible, ideal for applications such

as large area flat panel displays (LCD) manufacture

" Depth of focus (DOF) control: CGHs can be multiplexed and optimized to ex-

tend the system's DOF in order to tolerate potential misaligmnents of the substrate

during exposure

* 2D or 3D patterning: holograms can be encoded to reconstruct 2D or 3D optical

fields

" Standard manufacture: CGHs are manufactured using conventional 2D litho-

graphic techniques

" Robust design: holograms can use their entire surface to encode the information

required for the reconstruction of the desired pattern. Contaminants or manufac-



ture errors in a given section of the CGH have minimal effects on the reconstructed

pattern

e Cost effective: simplified, compact system that doesn't require costly optical

components

An implementation example of a CGH for on-axis lithography is shown in Figure

2-4-a. For 2D lithographic exposures, the CGH and substrate to be exposed are placed

parallel to each other and separated by a given working distance. For Fresnel CGHs,

small working distances of a few tens of microns are desirable in order to achieve large

effective NAs. The CGH is then probed by a quasi-monochromatic, spatially coherent

plane wave. The diffracted optical field propagates in free space and produces the desired

intensity distribution at the photoresist plane where a substrate coated with photoresist

is placed. Upon exposure, the substrate undergoes the standard developing and etching

processes to produce the final pattern as shown in Figure 2-4-b.

(a) (b)

Probing
wave

Desir
intensity Photoresist Substrate

Figure 2-4: (a) In-line photoresist exposure process; (b) Final pattern after chemical
post-processing.

Previous attempts in implementing CGHs for 2D lithography include the work done

by Jacobsen and Howells as described in [57], [58], [59]. Their holograms were of the

complex type (amplitude and phase modulation) designed to operate in the x-ray regime

(A = 1 - 5nm). Hologram designs were investigated for working distances ranging from

50pm to 200pm. They proposed to fabricate their holograms using carbon or tungsten

Now



with at least 16 thickness levels and pixel sizes of 13nm. No experimental demonstra-

tion was conducted and the provided simulations showed low diffraction efficiency, poor

quality reconstructions. Their CGH encoding strategy was based on a point-wise design

optimized using a simplified version of the error reduction algorithm. Moreover, their pro-

posed fabrication method is found to be extremely complex requiring a very small pixel

size and overlay accuracy better than 16nm. Another attempt was done by Wyrowski

as described in [60], [61], [62]. Their proposed CGHs were also of the complex type with

4 phase levels (0, 90, 180 and 270 degrees of phase shift) and two amplitude levels (0

and 1). Their holograms were optimized for a single wavelength (A = 365nm) using a

projection onto convex sets method designed for a gap of 50Pm. For the reconstruction,

they used a discrete polychromatic, partially incoherent source with wavelengths: 365nm

(60%), 405nm (15%) and 436nm (25%). Their holograms were fabricated using electron

beam writing as well as ion beam etching with a pixel size of 1pm. The presented re-

sults were extremely low quality, again suffering from low diffraction efficiencies. Severe

chromatic aberrations were present due to their choice of illumination source. Their en-

coding strategy and choice of initial guess in the optimization algorithm resulted in the

convergence of non-optimum solutions. Additional work on extreme ultra-violet holo-

graphic lithography includes [63]. CGHs have also been proposed for 3D lithographic

exposures [64], [65], [66]. These holograms were designed using an analytical approach

based on cylindrical waves with coordinate transformations for the reconstruction of line

segments on a non-planar surface. The CGHs are of the complex type (binary phase and

pseudo grayscale amplitude) and were fabricated using conventional photolithographic

methods (pixel size of 5pm). Their presented results are low resolution (projected lines of

~100ptm), and suffer from non-uniformities and stitching errors. In addition, their opti-

mization algorithm is not capable of designing holograms that project arbitrary patterns

so a more general optimization algorithm is required.

From the previous discussion it can be seen that an efficient design, optimization

and implementation of CGHs for lithographic applications is of upmost importance. The



choice of encoding strategy and optimization technique is crucial to achieving efficient

transfer of information from the hologram to photoresist planes. The problem in hand

is not simple. Its non-linear nature, large number of degrees of freedom (or decision

variables) and stringent constraint result in a searching space filled with local minima

threatening to trap most optimization algorithms. In addition, the selected optimization

technique needs to be flexible and accommodate different CGH designs for the recon-

struction of arbitrary patterns at the photoresist plane, as well as be computationally

efficient. The second aspect to consider in the design of CGHs is the choice of a sim-

ple fabrication strategy, in order to reduce the required number of fabrication steps and

potential manufacture errors. The selected fabrication method is closely related to the

optimization algorithm by the given optimization parameters and system constraints.

The development of systematic characterization techniques is also required for the eval-

uation of fabricated CGHs and the optimization of the fabrication procedure. Finally, a

sensitivity analysis is necessary in order to estimate the effect and assist in the correction

of potential manufacture errors.

In this chapter, we propose a hybrid optimization algorithm (HOA) based on genetic

algorithms (GAs) and the modified error-reduction (MER) method for the efficient design

and implementation of Fresnel domain point-wise, pure binary phase CGHs for 2D high-

resolution lithographic exposures. To our knowledge, this is the first implementation of

GAs in the optimization of large CGHs in the Fresnel region. As described in the following

sections, the complexity of the optimization algorithm is reduced by the introduction of

specially designed phase masks, namely the local diffuser phase elements (LDPE) and

local negative-power elliptical phase elements (LNPEPE) masks, with a reduced number

of degrees of freedom that improve the transfer of information between the hologram and

photoresist planes. Different objective functions are studied for guiding the optimization

algorithm to produce high diffraction efficiency holograms that reconstruct diffraction-

limit resolution patterns, with low mean-square error of the difference between the desired

and diffracted intensity distributions, at the photoresist plane. The HOA is implemented



and tested on a graphics processing unit (GPU) resulting in significant speedups (over

150 times) compared to conventional central processing unit (CPU) implementations.

Three different geometries are studied and compared: in-line, off-axis, and total-internal

reflection (TIR). A fabrication process based on electron-beam lithography, as well as

methods for the evaluation and characterization of the fabricated CGHs, are proposed

and experimentally tested. A detailed sensitivity analysis is performed to predict the

effect of potential manufacture errors such as over/under dose, proximity effects, phase,

position and stitching errors. The proposed algorithm is extended and applied for the

optimization of multispectral CGHs to be used for solar concentrator systems.

2.3 System Geometries

Three system geometries for the implementation of CGHs for 2D high-resolution lithog-

raphy are studied: in-line, off-axis, and total-internal reflection (TIR). Figure 2-5 shows

the in-line geometry. In this geometry, a quasi-monochromatic spatially coherent plane

wave propagating parallel to the optical axis illuminates the CGH, resulting in both de-

sirable and undesirable diffraction orders. These orders co-propagate a given working

distance towards the output plane. A substrate coated with photoresist is placed at the

output plane which gets exposed by the resulting intensity distribution. This geometry

is similar to the conventional in-line hologram as originally proposed by Gabor. Gabor

holograms encode the desired signal as a form of interferograms (holograms) produced

by the superposition of an in-line reference wave and desired signal,

I(X,y) = 1+O(x,y)| 2  (2.1)

= 1 + O(x, y)12 + O(X, y) + O(x, y)*,

where 0 is the signal to be encoded at the hologram plane. This choice of encoding strat-

egy results in undesirable diffraction orders, such as the direct component (DC) term, halo

and twin image that correspond to the first three terms on the right-hand-side of equation



2.1 respectively. For Fresnel domain holograms with short working distances, the effect

of these undesirable orders (in particular the twin image) is very severe, resulting in noisy

reconstructions. CGHs provide substantial flexibility in the choice of encoding strategy

as they are designed numerically and not by an optical recording process. As discussed in

the following sections, Gabor type encoding is not optimal and better encoding strategies

can be implemented during the CGH design. Despite the choice of encoding strategy, it

is the main task of the optimization algorithm to minimize the effect of the undesirable

diffraction orders on the exposed pattern, while satisfying the stringent constraints that

limit the amount of recordable information on the hologram (N x M bits for a binary

phase CGH).

Hologram Output
Plane Plane

Z

Probing CGH Undesired Desired
Wave diffraction diffractIon

orders order

Figure 2-5: In-line geometry.

The CGH size and working distance determine the effective numerical aperture (NA)

of the system,

NAe55 ~ sin tan-1 (Hize), (2.2)

where Hize is the lateral size of the CGH (a square hologram is assumed), and d is the

working distance between the hologram and photoresist planes. For in-line CGHs, the

choice of pixel size is relatively flexible. However, in order to prevent distortions due to

aliasing, the maximum pixel size needs to be chosen to satisfy the corresponding sampling



requirements. From the Whittaker-Shannon sampling theorem [67], the maximum spatial

frequency tolerated before aliasing is,

1
Umax = 26,42' (2.3)

where 6,3x is the CGH pixel size. For low resolution reconstructions a large pixel size can

be used; however, large pixels reduce the number of degrees-of-freedom available on the

CGH, resulting in low quality reconstructions. The smallest pixel size allowed is typically

determined by the selected fabrication technique. For e-beam lithography, experimental

fabrication of sub-10nm features have been reported [68].However, small pixels signifi-

cantly increase the fabrication time and cost. The choice of pixel size determines a second

numerical aperture enforced to satisfy the sampling requirements,

NASR = UmaxA, (2.4)

where A is the operating wavelength. As the hologram operates in the Fresnel regime,

the system is ultimately limited by the evanescent cut-off,

Uev =1. (2.5)

The system's diffraction limit resolution is given by,

A = 0 .5 A (2.6)
N A'

where NA is the most restrictive numerical aperture as given by equations 2.2 and 2.4.

The diffraction limit resolution is independent of the type of encoding strategy used, as

illustrated in the following example. Consider a point-wise multi-level phase hologram

designed to reconstruct two points separated at the photoresist plane. The system para-

meters are: A = 500nm, Hsize = 150pm, 6,3x = 100nm, and d = 150pm. From equation

2.2, the effective numerical aperture is: NAeff = 0.5. The maximum spatial frequency



allowed as given by equation 2.3 is: umax = 5000mm- 1 (corresponds to NASR = 2.5, that

is non-physical). The diffraction limit resolution is: A = 500nm. For the first encoding

strategy, the phase of the CGH is given by,

6 (x, ) = arg exp ik d + ) [exp (X -Xo) + exp (x + zo) ,
2(2d (2d Xijf

(2.7)

where x0 is the point's lateral shift respect to the optical axis (10pm for this example),

and k = 27r/A. The CGH's phase distribution is shown in Figure 2-6-a. Figure 2-7 shows

the corresponding reconstructed intensity at the photoresist plane. As can be seen, the

half width of the resulting point spread function (PSF) agrees with the diffraction limit

resolution as predicted by equation 2.6. It is also noted that this choice of encoding strat-

egy failed to eliminate undesirable diffraction orders that produce additional peaks on

the image plane. Figure 2-6-b shows the magnitude of the spectrum of the hologram of

Figure 2-6-a. This shows that the spectrum doesn't entirely cover the system's pass-band

as given by the evanescent cut-off of equation 2.5 - ue, = 2000mm- 1 for this example.

Other encoding strategies might be able take advantage of these unused frequency com-

ponents to help eliminate the undesirable diffraction orders and reduce the mean-square

error (MSE) of the reconstructed intensity.
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Figure 2-6: (a) CGH computed from first encoding strategy; (b) CGH spectrum.
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Figure 2-7: Reconstructed intensity from CGH designed using the first encoding strategy.

The second encoding strategy is based on the modified error-reduction optimization

algorithm that will be discussed in the next section. Figure 2-8-a shows the resulting

CGH's phase distribution. The corresponding reconstructed intensity is shown in Fig-

ure 2-9. As can be seen, the resulting PSF is still diffraction limited as predicted by

equation 2.6. However, this choice of encoding strategy helped eliminate the undesirable

diffraction orders at an expense of diffraction efficiency. This is the well known tradeoff

between diffraction efficiency and uniformity in designing CGHs. Figure 2-8-b shows the

corresponding magnitude of the CGH's spectrum. This encoding strategy better utilizes

the entire system's pass-band.

The three frequency cut-offs discussed above are shown in Figure 2-10. The evanescent

cut-off is fixed with the choice of operating wavelength. The geometry and sampling cut-

offs are free to move according the desired hologram size, pixel size and working distance.

Additional advantages of the in-line geometry include the simplicity in the setup,

making the system cost effective. Also, a compact collimation section may be used to

reduce the system's overall size.

The off-axis geometry is shown in Figure 2-11. In this geometry, an off-axis plane

wave illuminates the hologram, reconstructing desirable and undesirable diffraction orders

that propagate in different directions. An aperture stop is placed between the hologram
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Figure 2-8: (a) CGH computed from second encoding strategy; (b) CGH spectrum.

and output planes to block the undesirable diffraction orders. However, the aperture stop

can only be used in geometries with long working distances and with sufficient separation

between the desirable and undesirable orders. Another technique is to place the off-axis

CGH at the front focal plane of a 4f system as shown in Figure 2-12. An aperture stop

is placed at the Fourier plane, one focal length behind the first lens, and is used to block

the spectral components corresponding to undesirable diffraction orders.

The encoding process in off-axis CGHs is similar to amplitude modulation (AM)

in which the signal is modulated by a high-frequency carrier. In conventional off-axis

holography as proposed by Leith and Upatnieks [4], [5], the high-frequency carrier signal

is given by the off-axis reference wave and its frequency is proportional to the off-axis

angle. In this encoding method, the desired signal is again recorded by an interferogram,

I(x,y) = |R(x,y)+O(x,y)|2  (2.8)

= |R(x,y)|2 +|0(x,y) 2 +R*(x,y)O(x,y) +R(x,y)O(x,y)*,

where 0 is the desired signal at the hologram plane and R is an off-axis plane wave given
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Figure 2-9: Reconstructed intensity from CGH designed using the second encoding strat-
egy.

by,

R(x, y) = exp i 27 (ax + ,y + ,yz) (2.9)

where a, # and 6 are the plane wave's direction cosines referenced to the x, y and z

axes respectively. Similar to the in-line case, this geometry results in undesirable diffrac-

tion orders (DC term, halo and twin image); however, these orders are now spectrally

separated as shown in Figure 2-13. As discussed previously, the encoding strategy of

equation 2.8 is not unique - other encoding methods can be implemented to improve the

hologram's diffraction efficiency.

Off-axis CGHs are particularly useful in cases in which the designed hologram has low

diffraction efficiency and the reconstruction noise, due to undesirable diffraction orders,

needs to be filtered out. A less sophisticated optimization algorithm can be used as

higher errors are tolerated. Two main disadvantages of off-axis CGHs are the necessity

of an aperture stop or 4f system and the restrictions on the allowable CGH pixel size. In

order to encode the high-frequency carrier, the pixel size is restricted to,

4ix < A (2.10)
2 sin 0'
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Figure 2-10: Representation of the CGH's frequency cut-offs.
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Figure 2-11: Off-axis CGH geometry.

where 0 is the off-axis propagation angle (modulation in only one lateral direction is

assumed). For example, consider a CGH modulated by an off-axis plane wave incident

at 50 degrees with wavelength: A - 350nm. This restricts the CGH's pixel size to:

6,5, 228nm. An additional restriction is imposed on the signal's bandwidth. For the

encoding strategy of equation 2.8, the bandwidth constraints are,

sin 0
BX 3A max orABua -n (2.11)

whichever is more restrictive. The first constraint prevents overlapping between the
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Figure 2-12: Off-axis geometry. Filtering of the undesirable diffraction orders using a 4f
system.
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Figure 2-13: Spectral representation of off-axis geometry modulation process.

different diffraction orders (Figure 2-13). The second constraint ensures that the signal

lies within the pass-band set by the maximum spatial frequency encoded on the CGH.

This maximum spatial frequency is set by the chosen fabrication method. For e-beam

writing, assuming a minimum pixel size of 50nm, uf{b = 10, 000mm- 1. For the previous

example, the maximum signal's bandwidth on the x-direction is Bx = 730mm-1, which

corresponds to a minimum features size exposed of 0.7pm. Finally, off-axis CGHs are

more susceptible to fabrication errors due to the small pixel size requirements.

Figure 2-14 shows the TIR geometry. In this geometry, a right angle prism is used

~4II1

It

cGH



to couple the probing wave that propagates at an angle equal or larger than the critical

angle, 0c, required for TIR at the dielectric-air interface. The CGH and prism have

approximately the same index of refraction and are held together using, for example,

optical glue. The hologram is also modulated by a high-frequency carrier signal, similar

to the off-axis geometry. However, no aperture stop or 4f system is required as the

hologram is designed such that the undesirable diffraction orders get totally reflected and

exit in a direction conjugate to the probing wave. The desired signal suffers frustrated

TIR and propagates through free space towards the output plane.

TIR Prism Probing
Interface Wave

Undesired
diffraction

orders
ordersHologram

CGH Desired Plane

TIR diffraction
interface order Output

Plane

Figure 2-14: Total internal reflection geometry.

The pixel size in this geometry has the same restriction as equation 2.10; however, the

wavelength is replaced by the effective wavelength inside the prism, Aeff = A/n, where

n is the prism's refractive index, and the angle of incidence is constrained to be equal or

larger than the critical angle, 6 > c,, where, 0c = arcsin(l/n).

Figure 2-15 shows the spectral representation of the reconstruction (demodulation)

process for the encoding strategy of equation 2.8. During reconstruction, the probing

wave down shifts the spectrum of the desired signal to fit inside the frustrated TIR

window. Only the signal within this pass-band will suffer frustrated TIR and escape



towards the photoresist plane. The bandwidth constraints for this geometry are,

sin Oc sin 9 - sin Oc
B < orB 2Aeff

-Aeff2Af

(2.12)

where the first constraint ensures that the encoded signal fits within the frustrated TIR

pass-band and the second one prevents the undesirable diffraction orders from leaking

out towards the output plane. The maximum encoded frequency is also limited by the

method used to fabricate the hologram.

Iz'P!
Probing wave

sin 00 1i

3{CGH} 1
Undesirable

eegdiffraction orders
iesired signal

- ___ -1B 2B sin t9

Reconstruction

Frustrated TIR Suffers TIR
pass-band

=A'"einf

Figure 2-15: Spectral representation of TIR demodulation process.

The TIR geometry is particularly useful when the designed CGH has low diffraction

efficiency and the undesirable orders need to be filtered out. In contrast to the off-

axis case, this geometry allows short working distances as no additional aperture stop

is required. Disadvantages of TIR CGHs include the challenging fabrication due to the

small pixel size requirement and the need of a prism.

2.4 Optimization of Computer Generated Holograms

CGHs are designed and optimized using numerical methods. In this thesis, we are inter-

ested in point-wise pure phase CGHs. An optimization algorithm is required to compute

D

...................



the optimum phase distribution at the hologram plane that reconstructs a desired signal

at the photoresist plane. For simple reconstruction patterns, such as spots or lines, an

analytic approach may be used to calculate the hologram's phase distribution [64], [65],

[66].

Optimization techniques identified in the current literature can be classified into three

main search classes: calculus-based, enumerative, and random [69]. Calculus-based meth-

ods subdivide into two classes: indirect and direct. In the indirect approach, a local

extrema is searched by solving a nonlinear set of equations that result from setting the

gradient of the objective function equal to zero. Direct methods are local search methods

that seek optima by hopping on the function and moving in a direction related to the

local gradient. Calculus-based methods are typically local in scope; they are used, for

example, to seek a local minimum that is the best in a neighborhood of the current point.

The choice of initial searching point is very important; if the algorithm starts searching

too far from the global optima, it might never reach it and instead get trapped at a local

extrema. Finally, calculus-based methods depend on the existence of derivatives, i.e.

well-defined slope values. Enumerative schemes are designed to search the optimization

space by evaluating the objective function at every point in the space, one at a time.

Once all the points have been computed, the global extrema is extracted. Although

enumerative methods are simple to implement and typically consider finite and discrete

searching spaces, they are extremely inefficient and computationally expensive. Random

search methods subdivide into two classes: fully stochastic and randomly guided. Fully

stochastic methods search the optimization space randomly and save the best value found

at each step of the random walk. These methods are also inefficient and in the long run

are expected to perform as well as enumerative schemes. Random guided methods search

the space following a deterministic set of rules that are randomly guided. They are typ-

ically robust and tolerate multimodal, noisy and discontinuous search spaces. As it will

be explained later, genetic algorithms are a type of randomly guided search method.

Several iterative based algorithms have been proposed for the optimization of the



CGHs' complex transmittance function. One example is the direct binary search (DBS)

method originally designed for binary amplitude Fraunhofer domain holograms [70]. This

local search method consists of flipping the binary amplitude at each pixel sequentially

and computing the corresponding error at the reconstruction plane after each flip. The

algorithm stops when no flips are required over an entire iteration. DBS methods suffer

from getting trapped at a local extrema; a combination with a random method can be

used for escaping from the local minima to get closer to global or near global optimum.

In addition, this method requires a large number of operations which makes it compu-

tationally inefficient with a performance close to that of an enumerative method. The

error-reduction [71] and error diffusion [72] methods are other examples of local search

iterative algorithms used for computer holography. In the error-reduction (ER) method,

the algorithm iterates between the hologram and reconstruction planes imposing a set

of constraints at each domain. In this method, the mean-square error is guaranteed to

decrease or remain the same. This algorithm is also subject to becoming trapped at a

local minimum and is very sensitive to the choice of the initial searching point. Some

of the main advantages of this method include the fast convergence and simple imple-

mentation and enforcement of constraints. A variation of this method will be discussed

in more detail later. Other variations of the ER method include the original Gerchberg-

Saxton algorithm [73] and Fienup variants (input-output and hybrid input-output) [74].

Error-diffusion methods attempt to solve the quantization problem in CGHs by distrib-

uting the quantization error of a given pixel into its neighbors. Other calculus-based

methods include projection onto constraint sets [75] and projection onto convex sets [64],

[65]. Simulated annealing (SA) is an example of a random guided method also used

for the design of CGHs [76]. This method seeks to minimize the energy of the system

similar to a metallurgic annealing process, where the global minimum energy or ground

state of the physical system is reached by cooling the system from a high temperature

to a low temperature with a controlled cooling schedule. SA mimics this process by

randomly perturbing the optimization variables, evaluating the energy function (objec-



tive function) and computing the energy difference, AE, between the current and past

energy states (previous iteration). If AE < 0, the perturbation is accepted uncondi-

tionally; otherwise, the perturbation is accepted based on the probability distribution

P = 1/ [1 + exp(AE/T)], where T is the temperature parameter control based on a

given schedule. This random guided scheme accepts perturbations that might increase

the error helping the algorithm to avoid becoming trapped at a local extrema. However,

SA still performs a local search in which the choices of initial searching point and cooling

schedule significantly affect the algorithm's convergence.

2.4.1 Optimization Problem Abstraction

In order to understand this optimization problem and to propose an efficient scheme

for the design and optimization of CGHs, an abstraction of the problem is performed.

The problem is described in the context of holographic lithography; however, the pro-

posed optimization scheme can be easily generalized to a broad range of applications

as discussed later. When designing CGHs, the choice of encoding strategy is crucial to

achieving an efficient transfer of information from the hologram to photoresist planes.

The corresponding optimization problem is highly non-linear, noisy (quantization errors,

etc.), with large number of optimization variables (or degrees of freedom), and is subject

to stringent constraints imposed mostly by our choice of CGH fabrication method. The

following are the desired features for the optimization scheme:

" Optical efficiency: optimized CGHs should have high diffraction efficiencies and be

capable of reconstructing high-resolution, uniform patterns at the photoresist plane

* Computational efficiency: problem complexity should be minimized to decrease the

computational time and required memory for the optimization of large CGHs

" Broad searching range: multi-point parallel optimization with broad coverage of

the searching space



" Multiple constraints: allow the flexible implementation of multiple constraints and

boundary conditions

" Flexible objective function: flexible choice of objective function to guide the algo-

rithm and overcome system tradeoffs such as diffraction efficiency versus uniformity

" Avoid getting trapped at local minima: provide a way to escape from local minima

and continue the search towards global minima

" Robust: algorithm independent of the choice of signal to be reconstructed at the

photoresist plane

In addition, we would like to minimize the processing steps required for the fabrication

of CGHs based on e-beam lithography making the system cost effective and suitable for

mass production. The optimization of the fabrication procedure is beyond the scope of

this thesis; however, our choice of fabrication method has a direct impact on the set of

constraints and boundary conditions applied in the numerical optimization problem.

The problem geometry is shown in Figure 2-16. The hologram plane is divided by

M x N pixels with pixel sizes Jpi.x and 6,,,,. From now on, only square CGHs with a

uniform pixel size will be considered, i.e. M = N and J, 2 = p =pix. The phase

distribution of the CGH is truncated to the hologram window of size Hsize = Hsize, =

Hizey. The reconstruction plane is located at a parallel plane separated by a distance

d and is discretized by M' x N' pixels with pixel sizes ' and Jo - . For numerical

convenience, only square reconstruction planes are considered and the pixel size is set

to be the same as that of the hologram plane: M' = N', and 6,p2 = ,. = , . The

desired signal is restricted to an object window of size: 0 size = Oszze= Osizey. In general,

the CGH is characterized by the complex transmittance function H; however, we will

restrict our analysis to pure phase holograms, |HI = 1 (zero absorption constraint), and

neglect any losses from Fresnel reflections or other sources of scattering. The complex

field at the reconstruction plane is given by R, where the amplitude and phase of the

desired signal may be specified.
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Figure 2-16: Problem geometry.

In addition to the zero absorption constraint, the hologram's phase distribution is

constrained to be binary in order to avoid multi-exposure e-beam processes that would

lead to severe fabrication errors. The number of degrees of freedom (DOF) resulting from

the binary constraint is,

DOFinary = M - N. (2.13)

In contrast, for a multi-level CGH the number of DOF is,

DOFmutiievei = log 2 (Kievels) - M - N, (2.14)

where Kieveis is the number of discrete levels used to quantize the phase - for Kieveis = 2,

equation 2.14 reduces to equation 2.13.

An additional constraint is imposed to the amplitude of the reconstructed field,

|R| = Ide, (2.15)



where Ide, is the desired intensity distribution to be exposed at the photoresist plane. The

phase of the field at the reconstruction plane is unconstrained and acts as a free parameter

that we will exploit for the encoding of the desired signal, Ides, at the hologram plane.

The field propagation between the hologram and reconstruction planes is done using

the Rayleigh-Sommerfeld diffraction formula valid under the scalar diffraction theory

(SDT) approximation [67]. For geometries with a large working distance, d, compared to

the CGH's lateral dimension, Hszze, a Fresnel approximation of the diffraction formula is

used,

-00

where k = 2ir/A is the wavenumber, 0 represents a 2D convolution operation, h is the

free-space propagation point spread function (PSF),

ikz (,2 2

h ,y; = . e (2.17)

X IY~) Z~zff Dzaz

and D is the diffracted field at the hologram plane. For the in-line geometry, assuming

a thin transparency approximation [67], the diffracted field is,

D(x,y) = H(x,y) = eiOH. (2.18)

For the off-axis and TIR geometries,

D(x, y) = e 2(ax+3Y+'z)H(x, y), (2.19)

where a, # and -y are the direction cosines of the probing plane wave as shown in Figure

2-17.



Figure 2-17: Direction cosines.

The Fresnel approximation is valid when the desired working distance satisfies the

following condition,

z3 [(X_ X) 2 + - Y)2] 2 . (2.20)

For short working distances that do not satisfy the condition of equation 2.20, the

PSF of equation 2.17 is replaced with the exact form of the PSF,

zgez VX
2

+yI
2

+Z
2

h(x,y;z) = . .(2.21)
zA X2 + y2 + Z2

The CGH optimization problem can be represented as a combination of encoding and

decoding processes as shown in Figure 2-18 (for the in-line geometry case). This repre-

sentation will help us understand the key aspects necessary for an efficient optimization

scheme. The encoding process begins at the reconstruction plane, where the amplitude

of the field is given by the square-root of the desired intensity (signal to be encoded) and

the phase is a free parameter that depends on our choice of encoding strategy. Selecting a

phase distribution at this plane is analogous to placing a phase mask, Pmask = exp(iOpM),

on top of the desired amplitude mask, VIds. Some examples of phase masks that result

in efficient encoding strategies will be discussed later. The phase, 9 pM, is unconstrained

(although discretized) which results in a large number of DOF. The next step of the

encoding process is to propagate the field from the reconstruction to the hologram plane



by means of a "back-propagation" operator,

OFesne {f(x, y)} = f(x, y) 0 h(x, y; -z). (2.22)

In general, the resulting field at the hologram plane, H, will have a non-uniform am-

plitude and phase that violates the zero absorption and binary constraints stated above.

The last step in the encoding process consists of enforcing the hologram constraints by

discarding the amplitude, H , and binarizing the phase. The purpose of the decoding

process is to retrieve the encoded signal. In contrast to the encoding process which is

done numerically, the decoding process is performed optically - a method also known as

optical reconstruction. The first step in the decoding process is to illuminate the CGH

with the probing beam resulting in a diffracted field, D(x, y), at the hologram plane.

The diffracted field propagates through free space represented mathematically by the

forward-propagation Fresnel operator, OFresnel{}- Finally, the modulus square of the re-

constructed field, R, is computed giving rise to the estimated intensity (decoded signal)

at the reconstruction plane.

A successful optimization algorithm seeks to converge to an optimum phase mask,

Pmask, that maximizes the information transfer from amplitude (reconstruction plane) to

phase (hologram plane) while satisfying the zero absorption and binary constraints,

H(x, y) -- 1, (2.23)

0H - OH

In other words, we are interested in finding a complex function pair, R and H, such

that the amplitude of R is given and H is pure phase. Both functions are restricted to the

object and hologram windows respectively and are related by the Fresnel operator. The

solution of this problem is nonunique. The mismatch between the limited number of DOF

at the hologram plane and the large number of DOF at the reconstruction plane makes the

problem challenging. Errors during the encoding process in satisfying the zero absorption
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Figure 2-18: CGH encoding and decoding processes.

constraint result in noisy, low diffraction efficiency reconstructions. The violation of

the binary constraint results in quantization errors that also degrade the reconstructed

signal. In addition, the energy of the encoded signal must lie within the system pass-band

(evanescent cut-off) to achieve high diffraction efficiency reconstructions.

2.4.2 Reduced Complexity Optimization

Holographic lithography requires the optimization of large CGHs designed for appli-

cations such as flat panel display manufacture. In addition, a large space-bandwidth

product (SBP) is necessary to achieve high-resolution exposures. The number of DOF of

the corresponding optimization problem is extremely large, requiring long computational

times, and quickly becomes unmanageable with current computational means. Memory

limitations set an upper bound on the maximum CGH size that can be handled. The

optimization hypercube can only be searched locally (or with a narrow searching space)



as each searching point is composed of M x N or M' x N'optimization variables, depend-

ing on whether the algorithm directly optimizes the CGH or the phase mask, Pmask, as

shown in Figure 2-18.

These computational limitations raise the following question: can we reduce the com-

plexity of the optimization problem and hence reduce the number of variables while still

being capable of optimizing a large CGH? We found that the answer to this question is

"yes", provided that we utilize some additional information about the system. The addi-

tional information that we are going to use is the type of signals encoded for holographic

lithography applications. The signals of interest are binary and can be decomposed in el-

ementary geometries such as squares, lines and circles. This is because the reconstructed

intensity is used to expose a photoresist with a given contrast curve producing a binary

pattern after the developing and etching processes. Our choice of signal type is not re-

strictive to holographic lithography. Additional applications, such as solar concentration

and optical trapping, utilize similar type signals as will be explained later.

In the following sections we present two methods designed to reduce the complexity of

the optimization problem, while still providing efficient encoding strategies for the design

of large CGHs. These methods are based on the introduction of a specially designed phase

mask, Pmask as in Figure 2-18, with a reduced number of DOF. The proposed phase masks

are: Local Diffuser Phase Elements (LDPE) Mask and Local Negative Power Elliptical

Phase Elements (LNPEPE) Mask.

Local Diffusers Phase Elements Mask

The use of deterministic or pseudorandom diffusers in holography has been studied by

many researchers, including Leith and Upatnieks [77], Gerritsen [78], Gabor [79], Hirsch

[80], and Katyl [81]. In conventional holography, diffused illumination of the object is

used to increase the hologram's diffraction efficiency and to allow multiple viewpoints

of the reconstructed image increasing the system's parallax. In addition, diffusers al-

low reducing the required dynamic range of the recording material by spreading the



information uniformly - each point in the object is effectively recorded over the entire

hologram and thus, any subdivision of the hologram will reconstruct the complete object

(restricted only by diminished viewing angles and resolution) [82], [83]. On the other

hand, diffusers typically spread the energy of the signal outside the system's pass-band,

resulting in speckle-like granular noise in the reconstruction. This mottled granular noise

structure of the optical wavefront affects the reconstruction, making it difficult to resolve

the fine details of the image close to the fundamental resolution limit of the system. For

this reason, several deterministic diffusers with phase distributions that vary widely in

form and/or motivation have been proposed. The diffusers implemented in conventional

holography have the disadvantage that their elaborate phase distributions need to be

fabricated with high accuracy. In contrast, the diffusers used in computer holography

are only implemented numerically and hence sophisticated phase distributions are ac-

ceptable. The use of diffusers not only improves the hologram's diffraction efficiency but

also reduces quantization errors that arise from the hologram calculation and fabrication

[84], [85]. Previous diffusers proposed for Fraunhofer CGHs use uniformly distributed

random phases that extend the signal's spectrum over the entire Fourier plane. The

finite size of the hologram limits the amount of information that can be recorded, giving

rise to errors in the reconstructed signal.

In contrast to previous work, we propose a phase mask that is composed of several

small local diffusers designed to operate in the Fresnel domain. The diffusivity of each

local element can be controlled independently by the optimization algorithm. We call

this phase mask: "Local Diffusers Phase Elements (LDPE) Mask". During the numerical

encoding process, the LDPE mask is point-wise multiplied by the desired amplitude

signal at the reconstruction plane and then back-propagated to the hologram plane. The

amplitude of the resulting field is discarded and the binary constraint is imposed on its

phase. The encoding process is illustrated in Figure 2-19 for the case of an amplitude

signal containing the letters "MIT". The modulus square of the amplitude signal is the

desired intensity distribution to be exposed at the photoresist.



The LDPE mask improves the encoding process by facilitating the transfer of the

amplitude information of the desired signal at the reconstruction plane to pure phase

information at the hologram plane. This is done by back-propagating a field that has

nearly uniform amplitude at the hologram plane as required by the zero absorption con-

straint. In addition, the energy of the signal is distributed evenly over the entire hologram

window resulting in a smoother power spectrum that improves the hologram's diffrac-

tion efficiency and uniformity of the reconstruction. The complexity of the optimization

problem is reduced by only controlling two parameters per local diffuser phase element.

Reconstruction Plane CGH Plane

10-

0~

4'o4

o'~J~.

Each element has
different diffusivity

Figure 2-19: CGH encoding process based on the local diffuser phase elements mask.

The number of diffuser phase elements depends on the strategy used to decompose

the mask. As mentioned before, we will restrict our design to binary signals that can be

decomposed into elementary geometries, such as lines, squares and circles. Figure 2-20

shows an example of a pattern decomposition process, where the color represents the

number assigned to the corresponding elementary geometry. The mask was decomposed

by searching and then labeling all the connected binary structures. This decomposition

strategy is not unique and different segmentations may be implemented.
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Figure 2-20: Example of mask pattern decomposition.

The LDPE mask is given by,

PLDPE(4 Y)

Nbp

EIF(q) exp
q=1

{iarg exp (i27rDaqo R(x', y')

27rrP4)
®A(q)Jinc ( aco

Pev

where Nb, is the number of elementary binary geometries; IP(q) is a binary function that

describes the qth binary pattern,

1 x, y E qth binary pattern
(2.25)

otherwise

R is a random uniformly distributed matrix, A(q) is a constant factor,

Fl)
A(q) = factor

Pev
(2.26)

the Jinc function given by [67],

2J1 (2irr)
Jinc(r) = 2 r

27rr

- ihft (2.24)

(2.27)

IF (q) =



where J1 is a Bessel function of the first kind, order one; r is the Jinc's radius: r =

x2 + y; pev is the evanescent cut-off: Pe, = 1/A; DfJtor, Fj 0 , and 4.,qi are the

diffuser factor, frequency factor and constant phase shift of the qth binary pattern re-

spectively - these parameters control the diffusivity of their corresponding local diffuser

element.

The diffuser factor and constant phase shift specify a sector of the unit circle in the

complex plane as shown in Figure 2-21-a. This sector contains all the possible complex

vectors with unit magnitude and independent, uniformly distributed phase that corre-

spond to elements of the matrix,

S(q) = exp (i27rD (q)R - i4%q). (2.28)

For the rest of the analysis we will only consider LDPE masks that have #bf = 0.

The diffuser factor is unbounded. Figure 2-21-b shows the case for Dfator > 1 - since

the phase is modulo 27r, any overlapping sector result in an increased probability for the

random phase elements lying inside. For Dfactor < 0, the phase angle is measured in the

conjugate direction.
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Figure 2-21: (a) Complex representation of diffuser factor; (b) Dfactor > 1.

The spectrum of the matrix of equation 2.28, .F{S(q) }, covers the entire Fourier plane



and if applied to the amplitude mask would cause the signal's spectral energy to leak

outside the system pass-band, resulting in severe speckle-like noise in the reconstruction.

To solve this problem, a low-pass window is used in the Fourier domain to limit the

spectral bandwidth of S(q). We use an ideal low-pass window given by,

W=circ pF- ) , (2.29)

where p = vu 2 + v2 , u and v are the spatial frequencies in the x and y directions and

the circ function is defined as in [67]. This window gives rise to the Jinc function of

equation 2.24. Other windows such as Hamming and Hann windows may be used [86],

[87], [88]; however, we found that they didn't improve the performance of the LDPE

mask. As indicated in equation 2.29, the frequency factor determines the diameter of the

circular window effectively controlling the diffusivity of the qth local diffuser. A large

diameter low-pass window causes the local diffuser to scatter the light diffracted from

the amplitude mask over a large region in the hologram plane.

The optimum diffuser and frequency factors depend on the signal to be encoded.

Each local phase element is coupled to the others as the diffracted fields add coherently

at the hologram plane similar to a multiple slit Young interferometer. The total number

of DOF required for the optimization of the LDPE mask is,

DOFLDPEmask = 2Np. (2.30)

This number of optimization variables is much smaller than that required for a stan-

dard optimization of a binary or multi-level CGHs (equations 2.13 and 2.14); therefore,

reducing the complexity of the encoding process.

Local Negative Power Elliptical Phase Elements Mask

Next, we describe a second phase mask also designed to improve the signal encoding

process while reducing the required number of variables in the optimization problem.



We call this mask "Local Negative Power Elliptical Phase Elements (LNPEPE) Mask",

and is given by,

PLNEPEX' 27) X= Sin [exp ± sinPLNPEPE (XIi , E (q)P(q) eXp i A + y ] sin } (2.31)
q=1

exp -i [ (x ) + f 2(q)
f J3 f

where TJ(q) is also given by equation 2.25; 1(q) is a truncation window; xz and y!") are

center coordinates of the qth elemental geometry; f q) and f q) are the elliptical phase

semi-major and semi-minor axes for the qth element or equivalently the focal lengths of

two cylindrical lenses in close contact oriented along the x and y directions respectively;

O(q) and 6 4) are the qth off-axis angles that produce a linear phase shift reorienting the

direction of the diffracted field.

The focal lengths are restricted to be negative: fi < 0 and f2 < 0. This is equivalent

to having two thin negative power anamorphic transforming cylindrical lenses that spread

the field diffracted by the qth aperture (elemental geometry of the mask) evenly at the

hologram plane. This is illustrated in Figure 2-22 for the case of an amplitude mask

containing a single binary pattern. The linear phase shift term, controlled by the angles

Ox and 6Y, is equivalent to the off-axis illumination that allows redirecting the light from

any binary pattern in the mask towards the center of the hologram window. Additional

higher-order terms may be included to improve the mask's performance.

The truncation window of equation 2.31 is used to avoid aliasing during numerical

implementation of the LNPEPE mask. The size of this window is set by the Nyquist

limit,

us = 2uoc, (2.32)

vs = 2voc,
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Figure 2-22: CGH encoding
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process based on the local negative power elliptical phase

where u. and v, are the sampling frequencies: u, = v, = 16p2; uoc and vioc are the

local frequencies along the horizontal and vertical directions of the qth elliptical phase

element,

sin 6(q) (x'- X)
U1oc = A - ( ,)

A Af (q)sin 9 (q) (y' -Yc)
vic = -

(2.33)

The truncation window is given by,

'(q) =
0

('- + "'-" 2 1/2[ max Ymax

otherwise
(2.34)
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where Xmax and ymax are,

= (q) 5- 119(q) A (q)(2 35
zX =q f 1, si~n 6X - , (2.35)

max 2pix

()= f(q) sin 6(q) -max 2 y px

The qth local phase element is ultimately limited by the most restrictive binary func-

tion: I(q) or l'(q). However, to preserve the effect of the elliptical phase, binary patterns

with sizes smaller than the truncation window of equation 2.34 are desired.

The values of the focal lengths and off-axis angles depend on the signal to be encoded

and are controlled by the optimization algorithm. The reduced number of DOF is,

DOFLNPEPEmask = 4 Nbp. (2.36)

Similar to the LDPE mask, the optimization variables for all the binary patterns are

coupled and need to be optimized together to help improve the encoding process.

2.4.3 Hybrid Optimization Algorithm

A hybrid optimization algorithm (HOA) is proposed for the robust optimization of bi-

nary and multi-level phase CGHs. The HOA is based on genetic algorithms (GAs) and a

modified version of the error-reduction (MER) method. A simplified block diagram of the

HOA is shown in Figure 2-23. The optimization algorithm begins by specifying the signal

to be encoded and the desired encoding strategy based on the LDPE or LNPEPE phase

masks. A broad multi-point parallel optimization is performed using GAs for the pre-

scribed number of generations. This algorithm searches the nonlinear multidimensional

optimization space thoroughly without becoming trapped at local minima. In addition,

GAs are insensitive to the initial searching point positions as they are stochastically cre-

ated. A set of constraints and boundary conditions are enforced during the optimization



process and the algorithm's performance is tracked by evaluating a fitness or objective

function. GAs produce optimized solutions that lie near the global optimum and act

as the initial searching point for the MER algorithm. The MER method further refines

the solution and it stops when the maximum number of iterations or the minimum error

tolerances is reached.

Hybrid Optiiation Algorithm
I------------------------------'
I LDPE or LNPEPE

Phase Masks

Desired
Signal * Output

CGH

L------------------------------ I

Figure 2-23: Block diagram of hybrid optimization algorithm.

The key features of the HOA are:

" Broad searching range: multi-point parallel and local searching strategies

" Robust: insensitive to initial state; avoids getting trapped at local minima; tolerates

highly nonlinear, discontinuous, noisy optimization spaces

" Allows flexible choice of signal for encoding

" Optically efficient: produces high-diffraction efficiency CGHs that satisfy the sys-

tem constraints and reconstruct high-resolution, uniform patterns

* Reduced complexity: small number of optimization variables by using the LDPE

or LNPEPE phase masks

" Computationally efficient: algorithm implemented in parallel on a graphics process-

ing unit (GPU) resulting in significant speedups

..... .......................................................
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In the next two sections, a detailed description of the blocks comprising the HOA will

be covered.

Genetic Algorithms

Genetic algorithms (GAs) are robust optimization algorithms designed based on the me-

chanics of natural selection and natural genetics [69]. Inspired by biological evolution,

GAs combine the survival of the fittest individual from a population of multiple points

used to search the optimization space. The evolution process is carried out by a struc-

tured, yet randomized, information exchange resulting in fitter offspring with stronger

genes. While randomized, GAs are not simple random walks - they are randomly guided

exploiting historical information to speculate on new search points with expected im-

proved performance. The robustness of GAs enables searching in parallel highly non-

linear multi-dimensional spaces without becoming trapped at local minima. GAs can be

applied to nonstandard optimization problems such as those with discontinuous objec-

tive functions, non-differentiable, stochastic, highly non-linear, or with binary decision

variables. In contrast to most local search optimization methods, GAs are, in theory, in-

sensitive to the initial searching state; however in practice, if the initial searching points

are too far from the solution, the algorithm might suffer premature convergence.

GAs were introduced by Holland and his colleagues at the University of Michigan,

with the goal of explaining the adaptive process of natural systems and designing artificial

systems software that retain the important mechanisms of natural systems [89]. Since

then, GAs have been used in a broad range of applications such as biological cell simula-

tion [90], pattern recognition [91], [92], artificial intelligence [93], finance [94], computer

vision [95], and game theory [96]. In the area of computer holography, GAs have been

implemented for the optimization of point-wise binary and multi-level phase Fraunhofer

CGHs [97], [98], [99], [100]. In their presented work, each pixel in the hologram was

treated as an independent optimization variable that controls the corresponding DOF of

the individual searching point. This approach makes the optimization problem highly



complex and difficult to solve for a reasonable population size (number of individual

searching points) with conventional computational means. Due to numerical limitations,

only holograms with very small space-bandwidth products (32 x 32 and 64 x 64 pixels)

and small number of individuals were considered. The reconstruction results from their

optimized CGHs were extremely low quality due to the limited number of DOF. GAs have

also been proposed for the optimization of cell-oriented holograms [101] and diffraction

optical elements (DOEs) based on 1D parameterization designs [102], [103], [105].

In contrast to previous work, in this subsection we describe the implementation of

GAs as part of the HOA applied to the reduced complexity problem described previously.

This reduction in complexity makes it feasible to optimize efficiently large CGHs with

current computational means. In addition, we present the first implementation (to our

knowledge) of GAs for the optimization of Fresnel domain CGHs applied for holographic

lithography.

The block diagram of the implemented version of GAs is shown in Figure 2-24. The

algorithm begins with the creation function that is used to generate the initial population.

A population is a collection of individuals or chromosomes. Each individual is composed

of several genes that correspond to the DOF or decision variables of the problem in hand.

In our implementation, the type and number of genes that comprise a given individual

depends on our choice of complexity reduction strategy, i.e. encode the signal using

the LDPE or LNPEPE phase masks. The form of the kth individual for the encoding

strategy based on the LDPE phase mask is,

FkD(1 FM1  D (2 ) F(2 ) .  
. D (Nbp) F (Nbp) (.7

Xk = Lfactork, factor' factork' factor' , factor' factor

When the LNPEPE phase mask is used, the form of the kth individual is,

The~ l) n o 1) O~j) 0(j) fgenes for the(2) t(2) i d . (Nbp) e(Nbp) 0(Nbp) an 2.3 respeLk= kIkI Xk'IA (1k) f( J f 2k IXk IYk f '1 J 2 k' IXk I Yk

The number of genes for the two individuals is given by equations 2.30 and 2.36 respec-



tively.

The creation function stochastically generates the required number of individuals for

the specified population size, Popsize. Every generated gene is drawn out of a random

uniform distribution and is forced to be within a given initial range, Inirange. The ini-

tial range is specified independently for each gene and its purpose is to introduce genetic

diversity by controlling the initial span of the search. If the initial range is too large,

the individuals of the initial population would sample the search space coarsely, poten-

tially missing the global optimum. On the other hand, if the initial range is too small,

the searching space is not sampled uniformly and the algorithm might suffer premature

convergence.
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Figure 2-24: Block diagram of the GAs section.

A partial initial population can also be specified by the user and the creation function

is used to generate the remaining individuals. This creation strategy is implemented for

the encoding process with the LNPEPE mask to guide the algorithm to areas where

optimal solutions are likely to be found. A deterministic approach based on geometrical

optics is used to calculate a feasible individual which is then replicated several times to

LDP a



form a partial initial population. Figure 2-25 shows the equivalent problem geometry used

for the calculation of the initial focal lengths f q) and f2(), of the qth binary pattern. The

example shown consists of an amplitude mask with a single rectangular binary pattern

of size wX x wy, centered at the optical axis and represented by an aperture stop at the

reconstruction plane. This amplitude mask represents the desired signal to be encoded.

As mentioned before, the LNPEPE mask is equivalent to placing two negative power

cylindrical lenses oriented along x and y directions (Figure 2-25 only shows the geometry

for the x-direction). In the equivalent problem geometry, the complex mask (amplitude

and LNPEPE masks) is illuminated by an in-line plane wave and the negative lens spreads

the field which propagates towards the CGH plane. The anamorphic transformation

induced by the cylindrical lens is designed to cover the entire hologram window, Hsize,

with semi-uniform amplitude to satisfy the zero absorption constraint. The resulting

field is equivalent to that of a virtual point source located behind the aperture stop as

shown in Figure 2-25. The initial focal lengths are given by,

f(q) = - (2.39)
Hsize -w

(q) w (d

Hsize -W

where a square hologram has been assumed. The off-axis angles, Ox and O6, of the initial

individual are set to zero.

The following example illustrates the deterministic creation of an initial individual.

The simulation parameters are: A = 532nm, Hize = 175[pm, d = 200pm, N = 1,
wX = 5pm and wy = 20pm. The desired amplitude mask is shown in Figure 2-26-a. Fig-

ure 2-26-b shows the calculated LNPEPE mask. We now compare two encoding strate-

gies: without phase mask (zero phase) and with LNPEPE mask. Figure 2-27-a shows

the amplitude distribution of the diffracted field (CGH plane) when no phase mask is

applied. This is the typical Fresnel diffraction pattern from a narrow slit. The non-

uniform amplitude of the diffracted field violates the zero absorption constraint required
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Figure 2-25: Equivalent problem geometry for creation of initial population.

for pure phase holograms. Figure2-27-b shows the corresponding amplitude distribution

when the LNPEPE mask is used. This amplitude distribution uniformly covers the en-

tire hologram window resulting in an improved encoding process. The continuous phase

distributions of the corresponding in-line CGHs for the two cases are shown in Figures 2-

28-a and 2 (the ad amplitude is discarded and set to unity to satisfy the zero

absorption constraint). Figures 2-29 and 2-30 show the amplitude distributions of the re-

constructed field (decoded signal) for the CGHs of Figures 2-28-a and 2-28-b respectively.

Despite that the parameters for the initial LNPEPE mask haven't been fully optimized

by GAs, the reconstructed field is substantially higher quality than that of Figure 2-29.

This proves that the LNPEPE mask improves the signal encoding process for pure phase

resnel CGHs. The diffraction efficiencies of the reconstructed intensities for both cases

are: 77nomask =- 35.85% and 77LNPEPE = 89.58%. The mean-square errors (MSE) of the

difference between the desired and calculated intensity distributions at the reconstruc-

tion plane for both cases are: MSEnomask = 435.01 and MSELNPEPE = 111-25. These

metrics indicate that the improved encoding process not only produced a CGH with high

diffraction efficiency, but also improved the uniformity of the reconstruction.

Following the creation function, the scores for the initial population are computed.

The type of score function used depends on the choice of encoding strategy. Figure 2-
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Figure 2-26: (a) Desired amplitude mask; (b) Calculated LNPEPE mask.
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Figure 2-27: (a) Diffracted amplitude from regular
mask with LNPEPE mask.

mask; (b) Diffracted amplitude from

31 shows the block diagram of the score function for the encoding based on the LDPE

mask. The kth individual is extracted from the population and used for the computations

of a random diffuser, S(q), and circular window, W(O). A constant seed is specified for

the generation of the random matrix, R, used in the diffuser for repeatable results.

The random matrix is drawn out of a uniform distribution. A 2D forward Fast-Fourier

Transform (FFT) operation is performed on the random diffuser and the spectrum is

low-pass filtered by a circular window. The filtered spectrum is transformed back to

space domain by means of an inverse 2D FFT. The phase of the resulting complex signal

is extracted and point-wise multiplied by the binary truncation function, IP(q), which
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Figure 2-28: (a) Computed CGH from regular mask; (b) Computed CGH from mask
with LNPEPE mask.
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Figure 2-29: Reconstructed amplitude from regular CGH.

makes it zero everywhere except inside the corresponding binary pattern (equation 2.25).

The result is then added to the total phase and the process is repeated for every binary

pattern in the mask. The total phase is used to compute the LDPE mask which is then

applied to the amplitude mask and back-propagated to the CGH plane resulting in the

complex signal, H. The CGH, H, is obtained after enforcing the zero absorption and
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Figure 2-30: Reconstructed amplitude from CGH encoded with LNPEPE mask.

binary constraints (equation 2.23) on ft. The binary constraint is given by,

0 |6t(x, y)| <;T
OH (XY 0 1f, y) (2.40)

{ Rphase Ift(x,y) >T

where Rphase is a specified phase delay (typically set to ir), and T is a threshold value

(typically set to 7r/2). The encoded CGH is then reconstructed by means of a forward

Fresnel propagation and the intensity distribution at the reconstruction plane, Iest, is

computed. A fitness function (objective function) is evaluated to estimate the perfor-

mance of the encoding/decoding processes. The fitness functions considered in this thesis

are: diffraction efficiency upper bound, effective diffraction efficiency, MSE before and

after photoresist exposure, and hybrid. The details on each fitness function will be ex-

plained later. The result from the fitness function is the score, yk, for the kth individual.

High scores indicate fitter and stronger individuals with increased probability of surviving

in future generations.

The block diagram of the score function for the encoding process based on the

LNPEPE mask is shown in Figure 2-32. This function begins by extracting the focal

lengths and off-axis angles for the kth individual, as well as the center coordinates of the

- ....................
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Figure 2-31: Block diagram of score function.

qth binary pattern used for the computation of the elliptical phase,

2 - -)2 (Z' _ (q))21

6(q) x' sin 6q + y' sin - (2 2f J . (2.41)

The anti-aliasing window, F(q), and truncation window, 'I(q) are applied to the elliptical

phase and the result is added to the total phase. This process is repeated for all binary

patterns in the mask. The final total phase is used to generate the LNPEPE mask. The

following steps in the score function are similar to those described previously for the

LDPE mask.

The next step in GAs is to scale the computed population scores. The scaling is done

to keep appropriate levels of competition among all the individuals in the population

throughout the simulation. Without scaling, GAs have the tendency to be dominated by

a few superindividuals biasing the selection process. The scaling procedure implemented
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Score
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Figure 2-32: Block diagram of score function based on LNPEPE mask.

affects the performance of the algorithm. If the scaled values vary too widely, a rapid

reproduction of the stronger individuals occurs, talking over the population gene pool

and preventing the algorithm from searching other areas of the search space. On the

other hand, if the values vary very little, the search will be progressively slower as every

individual has approximately equal chance to reproduce. Several scaling methods have

been studied such as linear, sigma truncation, power law scaling, top scaling and rank

[69]. Every method has been found to have its strengths and weaknesses that greatly

depend on the type of problem solved. In this thesis we implement the rank method,

which is a nonparametric procedure that uses the rank of each individual instead of its

score for scaling. The rank of the fittest individual is 1; the next most fit is 2, and so on.

The implemented GA is designed to minimize the fitness function so lower raw scores

have higher scaled values. The rank scaling is given by,

rankl) - , (2.42)



where n is the index of corresponding individual after sorting the scores from best to

worst, and 1 ranges from 1 to the number of individuals in the population, Popsize.

For example, consider a population of 5 individuals with the following scores: Scores =

[3.82, 1.99,4.85,6.19, 0.45]. The corresponding rank is: rank = [0.4472, 0.7071,1, 0.5774, 0.5].

The rank values are then normalized to compute the expectation values of the current

population that will be used during the selection, crossover and mutation processes to

generate the next population. A high expectation value equals high probability of sur-

vival. The expectation values are given by,

expectation rank N(2.43)
rank'(

where Narents is the total number of parents to be chosen during the selection process to

generate the children (offspring) for the next generation. The number of parents is given

by,

Nparents = 2 Nxover + Nmutation, (2.44)

where Nxover and Nmutation are the number of crossover and mutation children needed

for the next generation. Nover an Nmutation are specified by the user and are key

parameters that control the performance of GAs as will be explained later. For the

previous example consider Nover = 2, Nmutation = 1: Narents = 5 and expectation

= [0.6919, 1.0940, 1.5472, 0.8933, 0.7736].

The selection function is designed to choose parents for the next generation based on

their scaled values from the fitness scaling function. The goal of the selection function

is to bias the algorithm by choosing parents with strong genetic codes capable of pro-

ducing even fitter children after the crossover and mutation processes. Several selection

functions are available such as deterministic sampling, remainder stochastic sampling

with and without replacement and stochastic uniform [69]. In this thesis, the stochastic

uniform method is implemented. This method has been shown to be efficient and main-



tain diversity in the population, which prevents premature convergence. The stochastic

uniform selection function performs a linear search through a roulette wheel with slots

corresponding to each parent. The size of each slot on the wheel is proportional to its

expectation value of equation 2.43. The search is done by moving through the wheel with

steps of equal size, so as to cover the entire wheel in Nprents steps (stepsize = 1/Nparents).

At each step, a parent is selected from the slot it landed in. After the selection function,

the parents' indices undergo a random permutation to prevent locality effects.

The reproduction of individuals to form the next generation is performed by the

crossover and mutation genetic operators as well as the selection of elite children. Elite

children are individuals with the best fitness values, guaranteed to survive intact to the

next generation. The user specifies the number of elite children, Neiite, to be selected in

every generation.

The crossover function is a genetic operator used to create new individuals (offspring)

for the next generation by means of a gene exchanging process. Pairs of parents chosen

by the selection function are used to generate one or more children. The fraction of the

population, other than elite children, that will be created from a crossover operator is

determined by the crossover fraction, Fover, which is specified by the user. The number

of crossover individuals generated is,

Nxover = round [(Popsize - Neiite) - Fxover] . (2.45)

Several crossover strategies have been studied such as single point, double point, and

scattered [69]. These functions are designed to force the algorithm to explore regions

on the search space where a better solution may lie. In this thesis we implement the

scattered or stochastic uniform crossover method. In this method, each gene has equal

probability to be exchanged. Figure 2-33 shows an example of the scattered crossover

process. The random vector, r, is drawn out of a uniform distribution and its values are

set to one if r > 0.5 or zero otherwise. The random vector determines which genes from

both parents are exchanged. This process is repeated for every parent pair in order to



generate the desired number of crossover children.

Random
Vector 1 0 0 1 1 1 0 0 0 0 1

Parent i A B C D E F G I J K

Parent 2 A''C' E' F ' '

Children

Figure 2-33: Scattered crossover process.

The mutation function generates children by applying random changes to a single

individual to bring diversity to the population, preventing premature convergence and

to increase the likelihood that the algorithm will generate individuals with better fitness

values. In addition, it allows the algorithm to escape from local minima and continue

the search towards the global optimum. The number of children to be generated from a

mutation operator is,

Nmutation = POpsize - Neite - Nover. (2.46)

The amount of mutation performed by GAs is a critical parameter. If Nmutatin is too

large, the algorithm starts becoming a random walk and the solution might never be

reached. On the other hand, if Nmutation is too small, no new information is added

to the genetic pool and the algorithm might suffer premature convergence or become

trapped at a local minimum. Several mutation operators have been developed such as

Gaussian, uniform and adaptive feasible [69]. In this thesis we implemented the adaptive

feasible mutation function. This function creates new children by perturbing genes on the

remaining parents after the crossover function. The perturbations are done along feasible

directions generated randomly that are adaptive with respect to the last successful or



unsuccessful generation. The feasibility of the perturbed individual is tested to ensure

each gene satisfies the lower and upper bounds, LB and UB respectively. The values of

LB and UB depend on our choice of encoding strategy (LDPE or LNPEPE mask). For

the encoding strategy based on the LDPE mask, the bounds are: -oc < Dfactor < oc;

0 < Ffactor < 1. Despite that the diffuser factor is unbounded, to control the span of the

search the diffuser factor is restricted to: 0 < Dfactor < X, where X is a large number.

For the encoding strategy based on the LNPEPE mask, the bounds are: -oo < fi < 0;

-00 < f2 < 0; -7/2 < 92 < 7/2; -7/2 < 6, < 7/2. Again for practical reasons, the

focal lengths bounds are restricted to: -Y < fi < 0; -Y < f2 < 0, where Y is a small

number.

The next population is the result of combining the chosen elite children and the

created crossover and mutation children. In our implementation, every population has

the same size. The next step in the algorithm is to implement the score function to

compute the fitness value of each individual of the new population. This score function

is the same as those described previously (Figures 2-31 and 2-32). The last step in

the iteration is to check if any of the termination conditions have been met: maximum

number of generations or minimum error tolerance. If no termination condition has been

met, the evolution loop described above repeats; otherwise, the last population is saved

and the best individual is extracted and used to compute the CGH that will serve as an

initial guess for the MER algorithm.

Modified Error-Reduction Algorithm

The modified error-reduction (MER) algorithm is a variation of the error-reduction (ER)

method designed to refine the solution obtained by GAs as described in the previous

section. The ER algorithm is a local search iterative method typically used to solve phase

retrieval problems [106]. This algorithm is a generalized form of the Gerchberg-Saxton

method originally designed to solve a phase retrieval problem in electron microscopy

[73], [107], [108]. The algorithm iterates between two domains, such as the space and



frequency domains, imposing a set of constraints at each domain. For the original electron

microscopy problem, both the modulus of a complex-valued image and the modulus of

its Fourier transform were measured and the goal of the algorithm was to retrieve the

phase distributions at both domains. The ER algorithm was originally proposed by

Hirsh, Jordan and Lesem in 1970 to solve the synthesis problem in computer holography

[80]. This method was later reinvented by Gallagher and Liu in 1973 and applied for the

optimization of Kinoform type holograms [109]. In the following years, the properties of

the ER method were extensively studied. It was proven that mean-square error computed

at the end of each iteration is guaranteed to decrease or remain constant [110]. Also,

it was shown that the algorithm tends to reduce the error rapidly within the first few

iterations and then more slowly for the later iterations. Other variations of the ER

method were introduced such as the input-output and hybrid methods [111], [112]. The

input-output algorithm claims to speed up the convergence in certain problems, differing

from the ER method only for the object domain operation.

The block diagram of the implemented MER algorithm is shown in Figure 2-34 [113].

The algorithm begins the local search from a specified initial search point. For the HOA,

the initial search point is the solution computed from GAs. Two additional encoding

strategies are also studied for the initialization of the MER algorithm: diffracted field

(DF); simulated optically recorded hologram (SORH). The equivalent problem geometry

for the DF is shown in Figure 2-35-a. This encoding strategy is used to compute the

initial CGH (initial search point) for the MER algorithm. The initial CGH is computed

by back-propagating the amplitude mask to the hologram plane and applying the zero

absorption and binary constraints. The geometry for the encoding strategy based on the

SORH is shown in Figure 2-35-b. In this case the initial CGH is computed simulating the

conventional optical recording process in which an object and reference waves interfere

and a phase hologram is produced. The phase hologram is given by,

HSORH (2.47)



where K is a normalization constant and I is the interference pattern given by equation

2.8. The binary constraint is enforced on the phase hologram of equation 2.47.
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Figure 2-34: Block diagram of modified error reduction algorithm.

Once the initial CGH has been specified, it is point-wise multiplied by the probing

wave. For the case of the off-axis and TIR geometries, an additional step is required to

filter the undesirable diffraction orders from the modulated signal as explained before.

The filtering step is performed in frequency domain by applying a low-pass circular

window with the specified cut-off such as that shown in Figure 2-15.

The transition between the CGH and photoresist planes is done by means of a Fresnel

transformation as explained previously. This is numerically implemented in frequency

domain. The forward propagation operation is given by,

R(x', y') = F-1 {.F{D(x, y)} - HFresnel(Uv; d), (

CGH Plane

Initial Search Point:
Solution from GAs

H = e()

(2-48)
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Figure 2-35: Alternative encoding strategies: (a) Diffracted field; (b) Simulated optically
recorded hologram.

where D is the complex field diffracted by the hologram after probing (hologram plane),

R is the reconstructed complex field after propagation (photoresist plane), and HFresnel

is the paraxial Fresnel transfer function,

HFresnel(U, v; d) = e6. (2.49)

The Fresnel transfer function is sampled uniformly with a pixel size 6u. D is stored in an

array of size Nh x Nh, where Nh = Hsize/6 pix. To prevent aliasing, the array is padded

with zeros or ones forming a new array of size: Nz x N', where N, = Zize/J, and

Zize is the lateral size of the field after the padding operation. The frequency domain

pixel size for a padded array is: 6u = 1/Zsize. A large amount of padding results in a

fine frequency sampling. The Fresnel transfer function is a chirp function with a local

frequency that increases linearly with u,

1 d4b(u)
c 2W - Adu. (2.50)U" 27r du

We define the Nyquist cut-off as the maximum local frequency of the chirp that can be

sampled before violating the Nyquist limit,

AdUNyq Nyq ev (2-51)_U A yq 2



In our numerical implementation, an additional circular window, circ(u/ 2uNyq), is

used to truncate the Fresnel transfer function to prevent it from suffering aliasing. For

the in-line geometry, Zsize is chosen such that UNyq > uev. For the off-axis and TIR

geometries, the Nyquist cut-off is required to be equal or larger than the cut-off of the

corresponding demodulation window.

For small propagation distances that violate the condition of equation 2.20, an an-

gular spectrum propagation method is adopted [69]. This propagation method is also

performed in frequency domain as equation 2.48, but HFresnel is replaced with the angular

spectrum transfer function,

HAngular (U, v; d) = e -(A") 2 +(Av) 2  (2.52)

The corresponding local frequency along the horizontal direction is,

/ 1 d4'(u) Adu
=o - du1 (2.53)

and the new Nyquist cut-off is given by,

, 1 U 2d \2
UNyq Uev Zsize (2.54)

A (2dou) + 1Zz

The angular spectrum transfer function is also truncated at the Nyquist cut-off to avoid

numerical errors due to aliasing.

The type of padding implemented depends on the boundary conditions of the problem.

The boundary conditions describe the optical transmission of the substrate surrounding

the CGH. Two types of boundary conditions are studied: clear aperture and opaque

aperture. A clear aperture CGH is fabricated on a transparent substrate such as fused

silica in which only a small section contains the CGH structure. In contrast, the substrate

surrounding a CGH with an opaque aperture is covered with an absorbing material such



as a metallic layer designed to block the incident light. The choice between these two

boundary conditions is application dependent. For example, in holographic lithography

an opaque aperture CGH might be desirable, in order to block the incident light outside

the CGH area preventing to expose the photoresist outside the object window. On the

other hand, in many applications only the signal inside the object window is of interest

and thus a clear aperture CGH can be used. The clear aperture boundary condition is

included in the optimization algorithm by padding the desired array with 1's. For the

opaque boundary condition the array is padded with O's.

The next step in the MER algorithm is to compute the error of the reconstructed

intensity distribution at the photoresist plane. Two error metrics are considered: mean-

square error (MSE) before photoresist exposure, MSEbefore, and MSE after photoresist

exposure, MSEfte,. The MSEbefore is given by,

I No. No,

MSEbefore = N 1 N XI Y' desW, 2 , 255)

where Nox and No, are the number of pixels along the x and y directions - for square

object windows: No = Nox = Noy = Osize/ 6 pix; Ie, is the estimated intensity: Ie, = IR 12

and Ides is the desired intensity at the photoresist plane. The MSE is an estimator

used to quantify the amount by which the estimated intensity differs from the desired

intensity distributions. The MSE as defined in equation 2.55 is the second moment (about

the origin) of the error, and thus incorporates both the variance (uniformity) and the

bias (diffraction efficiency) of the reconstructed intensity. An unbiased version of this

estimator reduces to the variance of the estimated intensity distribution. The MSE has

units of square intensity. Sometimes it is convenient to use the root-mean square error

(RMSE) as it has the same units of intensity. The MSE of equation 2.55 can also be

written as: MSE = VarIest] +(Bias [Iest, Ides])2, where Var is the variance and Bias is

a function given by: Bias [lest, Ides] = E[Iest - Ids,], where E[] is the expectation value.

Additional error metrics can be used to evaluate the reconstruction such as the LI



norm,

.N0 N0  E I I est (x', y') - Ides(W, Y) (-6x NyN=lN(2.56)

that quantifies the bias between the estimated and desired intensity distributions and

the normalized cross-correlation metric,

N, N,

E E (Iest - Iest) (Ides - Ides)

NCC = x =" y,=1 (2.57)
N, Noy No, No,

E EI (lest - Iest ) 2 . 1 E (Idies - Ides)2

X'=1 y'=1 X'=1 '=1

that quantifies the degree of correlation between both intensity distributions. NCC

ranges between [-1, 1], given a value of 1 if the distributions are fully correlated, 0 if

they are uncorrelated and -1 if they are anti-correlated [114], [115].

The computation of MSEfter requires the simulation of the photoresist exposure

process. Three models are considered: ideal photoresist, photoresist model and real

photoresist. The performance of the photoresist is characterized by its contrast curve.

The contrast curve describes the remaining resist fraction of a uniformly illuminated

resist versus the logarithm of the applied exposure dose. Figure 2-36 shows the idealized

contrast curves for positive and negative photoresists. For a positive photoresist, the

sections exposed to light become soluble and are removed by the developer. On the other

hand, for a negative photoresist, the regions exposed become insoluble and remain after

the development process. The contrast of a given photoresist is characterized by the

slope,

1

where D100 and Do are the dose values shown in Figure 2-36. Typical contrast values range

between 2 and 3. In the ideal photoresist model, we assume a high-contrast photoresist

with a contrast curve resembling a step function. The exposed pattern is the result of



binarizing the intensity distribution according to (for a positive photoresist),

R(x', y') = Iest > K

otherwise
(2.59)

where R is the normalized remaining photoresist thickness after development, and K is

a threshold that depends on the exposure energy and time.

D 1 D10D
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Figure 2-36: Idealized photoresist contrast curves.

The second method used is an approximated model of the photoresist in which the

relative remaining photoresist thickness is given by (for a positive photoresist) [60],

R(x', y') =Do
0

D(x', y') < Do

otherwise
(2.60)

where Do is again the clearing dose necessary to give a complete clearing after develop-

ment and D is the exposure dose: D = Ieat (x', y')t, and t is the exposure time. This

model is only good when the thickness of the photoresist is small compared to the im-

aged feature size. The third method used utilizes the real contrast curve from a given

photoresist and is used to compute the exposed pattern.



The MSE after photoresist exposure is given by,

1 N.. N- -2
MSEafter = Nox N Z S [R (x', y') - ides (X', Y') 2 (2.61)

0Y z'=1 y'=1

where ide is the normalized desired intensity distribution (desired exposed pattern). For

a given reconstructed intensity, the MSEafter is calculated for several exposure conditions

and the minimum error is chosen. For example, for the ideal photoresist model, the

MSEafter is computed for different K values within a small range to simulate the best

exposure conditions.

The next step in the MER algorithm is to impose the amplitude constraint in which

the amplitude of the reconstructed complex field is replaced by the square-root of the

desired intensity distribution. Then the algorithm examines if any of the termination

conditions have been met. The three possible termination conditions are: maximum

number of iterations reached, MSEbefore <= toli and MSEafter <= tol2 , where toli and

tol2 are user define tolerances. If any of the termination conditions has been met, the

algorithm stops and the final CGH and reconstructed field are saved to disk; otherwise,

the modified field gets propagated back to the CGH plane. The inverse propagation oper-

ation is done in a similar way to equation [73], but the complex conjugate of the transfer

function is used. After propagation, an additional demodulation process is required for

the off-axis and TIR CGHs. The last step in the iteration is to apply the zero absorption

constraint ( H = 1) and binary constraint as defined in equation [67].

Objective Functions

The HOA allows the flexible minimization of one or more objective functions. The type of

objective function used is application dependent. Different objective functions can guide

the optimization algorithm to converge to diverse solutions. This is primarily due to the

tradeoff between diffraction efficiency and uniformity. The objective function is chosen

according to the desired CGH performance. For some applications, such as holographic



lithography, uniformity in the reconstruction (low MSE) is desirable. On the other hand,

for other applications such as solar concentration, diffraction efficiency is more important

and non-uniform reconstructions can be tolerated. In this thesis, four objective functions

are investigated: diffraction efficiency upper bound, effective diffraction efficiency, MSE

before photoresist exposure, and MSE after photoresist exposure. GAs allows flexibly

choosing an arbitrary fitness function (objective function).

The diffraction efficiency upper bound was originally proposed by Wyrowski for

Fraunhofer holograms [116], [117] and then generalized by Zhou et al. [118]. The diffrac-

tion efficiency upper bound, 77.b, refers to the maximum diffraction efficiency attainable

in order to have a noiseless reconstruction within the object window and is given by,

4 d
4 1f1 fd H 2 fd)') () )Hz

7ub -2 ,(.2

f(d) + Kfc0 2 f(0) 2
' size Hsize f Hsize

where fA) is the illumination field at the CGH plane (f() - 1 for the in-line geometry);

f (x', y') is the desired field at the reconstruction plane; f (x, y) is the result from

back-propagating the desired field to the CGH plane; the brackets,

Jj ddy, (2.63)

represent a 2D integral over the surface, E. Equation 2.62 states that if a desired field

at the reconstruction plane is "fully" specified (amplitude and phase), the diffraction

efficiency upper bound can be estimated. This result is independent of encoding strategy

as the desired field does not have any free parameters. However in many applications,

such as holographic lithography, only the amplitude of the desired field is specified and

as explained previously, the phase is a free parameter that can be used to improve the

encoding process and thus maximize the diffraction efficiency upper bound. That is the

purpose of the LDPE and LNPEPE phase masks. This formulation ignores any quanti-



zation effects so the phase and amplitude distributions are allowed to vary continuously

and the signal's power spectrum is assumed to lie within the system's pass-band.

In order to understand the significance of the terms in equation 2.63, let us consider

the case of an ideal encoding process that achieves a maximum bu. The desired field (at

the reconstruction plane) is confined within the object window and is designed to have

the same power as the illumination wave,

Ptot = fi = fd 2 , (2.64)

where Pot is the total power available in the system (other losses such as Fresnel reflec-

tions are ignored). Using equation 2.64, we rewrite equation 2.62 as,

4 [X2 ]2 P~0
7lub - XJTo 2-65)

[Ptot + X1 ]2 t

where X1 and X 2 are the corresponding terms of equation 2.62. The term X1 is the

amount of power of the back-propagated field that lies within the hologram window. As

explained previously, different encoding masks might lead to different results. For exam-

ple, for an amplitude mask containing a single rectangular binary pattern as that shown

in Figure 2-26-a, a LNPEPE mask (Figure 2-26-b) can be designed to spread the field

uniformly with most of its energy (close to 100%) contained inside the hologram window.

The LDPE mask can also be designed to spread the field even more uniformly than the

LNPEPE mask; however, it tends to leak some energy outside the hologram window.

The term X2 quantifies the uniformity of the back-propagated field amplitude over the

hologram window. As discussed previously, uniform amplitude allows satisfying the zero

absorption constraint for pure phase holograms and maximizes the signal's information

transfer from amplitude (reconstruction plane) to phase (hologram plane). For the ideal

case, let X 1 = X2 = Pot. This is the case when an optimum phase mask is chosen that

spreads the field uniformly with all its energy lying inside the hologram window. For

this ideal case, the diffraction efficiency upper bound of equation 2.65 is: ?lub = 1. From



the example shown in Figure 2-26 (without any optimization) it was proven that our

proposed encoding strategies based on the LNPEPE and LDPE mask can significantly

improve the diffraction efficiency upper bound.

Despite that yT/ was derived assuming a continuous phase and a band-limited signal,

this metric is very useful in the evaluation of the performance of the optimization algo-

rithm. We use this metric as one of the alternative fitness functions to guide the search

from GAs. The diffraction efficiency upper bound fitness function to be minimized by

GAs is given by,

F1 = 1 - (2.66)

It is possible to design CGHs with higher diffraction efficiencies than those predicted by

equation 2.62 at the expense of an increased noise inside the object window. This is an-

other evidence of the intrinsic tradeoff between diffraction efficiency and uniformity. For

holographic lithography, a certain degree of non-uniformity is tolerable as the photoresist

performs some clipping of the incident energy above some threshold as explained before.

The effective diffraction efficiency objective function is used to quantify the amount

of energy inside the reconstructed pattern from a CGH that satisfies the zero absorption

and binary constraints. This metric takes into account the effect of quantization and the

errors resulting from discarding the amplitude of the encoded signal and enforcing the

zero absorption constraint. The effective diffraction efficiency fitness function is given by,

F2 = 1 - 17ef f (2.67)

and,

(KR(x', Y' )2 - Bmask) 0
' 7eff = "2, (2.68)

ill )

where R is the diffracted field, Bmask is a binary mask that is 1 inside every binary

pattern and 0 elsewhere - only the energy inside the binary patterns is integrated.



The fitness functions based on the MSE are,

F 3 = MSEbe fore, (2.69)

F4 = MSEafter,

where MSEbefore and MSEafter are defined in equations 2.55 and 2.61 respectively.

In some applications, a hybrid fitness function that compromises between diffraction

efficiency and uniformity might be desirable. An example of a hybrid fitness function is,

Fhybrid = CF (,q) + -, (2.70)

where C is a penalty parameter, o measures the non-uniformity of the reconstruction

(the unbiased version of the MSE estimator), F is,

F (0) = 2 , (2.71)

and Tid is a desired diffraction efficiency.

The choice between the presented fitness functions depends on the application. In the

next section, simulation results of CGHs designed using F3 for holographic lithography

and F2 for solar concentration will be presented. The results will be compared to those

when the other fitness functions are used to guide the search.

2.4.4 Optimization Results

In this section, examples of the optimization of in-line, off-axis and TIR CGHs based

on the HOA are presented. These CGHs are designed for high-resolution holographic

lithography. The optimization problem is solved using the two proposed encoding strate-

gies: LDPE and LNPEPE masks. The resulting holograms and reconstructed fields are

evaluated using the error metrics of equations 2.55 and 2.61 (for the case on an ideal



photoresist - equation 2.59). In addition, the CGHs are optimized with and without the

binary constraint to show the effect of quantization errors. The optimization results are

compared to those of CGHs designed using the encoding strategies based on the diffracted

field (DF) and the simulated optically recorded hologram (SORH). The convergence of

the HOA algorithm is studied for different control parameters of the GAs block, including

crossover fraction, fitness function and population size, as well as geometrical parame-

ters such as propagation distance. A method for extending the depth of focus (DOF)

of a CGH is proposed. The HOA is implemented on a graphics processing unit and its

computational performance is evaluated. Additional optimization examples are included

in Appendix A.

Optimization of In-line CGHs based on the LDPE Mask

An in-line CGH is optimized to reconstruct a resolution target at the photoresist plane

located at a distance, d = 150pm, from the hologram. The desired intensity distribution

is shown in Figure 2-37. The smallest line in the resolution target is 700nm and the

largest is 2.3pm wide. The desired intensity distribution is scaled to have an input power

equal to unity,

Pin = (Ides)Hsize = 1. (2.72)

To generate the LDPE mask the pattern is decomposed as shown in Figure 2-20, resulting

in 99 binary patterns. The optimization parameters are indicated in Table 2.1. The

working distance and hologram size are chosen to give an effective numerical aperture:

NAeff = 1. The corresponding Nyquist (equation 2.51) and evanescent (equation 2.5)

cut-offs are: UNyq = ue, = 1, 879.69mm 1 . The selected pixel size results in a maximum

spatial frequency (equation 2.3) of: umax = 2,500mm 1 . In this geometry, the maximum

pixel size tolerated to fully utilize the system's pass-band is: 6 pixmax = 266nm (for

Umax = Uev). The diffraction limit resolution (equation 2.6) is: A = 266nm. The initial

range and bounds for an individual chromosome are set according to the ranges of the

diffuser and frequency factors. No initial population is specified - the initial population



is fully generated by stochastic creation. As the hologram is designed for lithography, the

MSE metric before photoresist exposure (equation 2.55) is chosen to guide the GAs block

of the HOA. For the MER block, both MSE metrics before and after photoresist exposure

are used to evaluate the reconstructed signal. In this example an ideal photoresist model

(equation 2.59) is used. For repeatable results an initial random is provided. The number

of optimization variables in the reduced complexity problem is: nvars = 198 (instead of

2.25 x 106 variables required for the regular optimization problem).

Table 2.1: Optimization parameters: in-line CGH - LDPE mask.
Wavelength (A) 532nm Number of Generations (GAs) 100

Working Distance (d) 150pm Population Size 100
Pixel Size (6pi,) 200nm Random Seed 3

Hologram Size (Hize) 300pm Dfactor Range [0,10]
Object Window (0,ize) 180pm Ffactor Range [0,1]
SBP (After Padding) 1500 x 1500 Fitness Function MSEefoe

Elite Children 5 Number of Variables 198
Crossover Fraction 0.6 Number of Iterations (MER) 400

Figure 2-37: Desired intensity distribution: resolution target.

We first present the results from the GAs block. Figure 2-38-a shows the phase



distribution of the final CGH after 100 generations. In this example, no binary constraint

is imposed on the GAs block. Figure 2-38-b shows the corresponding LDPE mask for

the best individual in the final generation. This phase mask shows the tendency of GAs

to converge to solutions in which local diffusers with small diffusivity (small frequency

factor) correspond to narrow lines and diffusers with larger diffusivity correspond to

wider lines. This can be physically understood as the size of the line (aperture stop in

the equivalent problem) is inversely proportional to the width of the Fresnel diffraction

pattern. Narrow lines suffer severe diffraction, which spreads the input energy evenly

over the entire hologram window so that no additional diffuser is required. For large

apertures, the diffraction effects are milder so a local diffuser is needed to spread the

energy uniformly facilitating the improvement of the information transfer from amplitude

(photoresist plane) to pure phase (CGH plane).

(a) (b)

Figure 2-38: (a) Phase distribution of optimized CGH after GAs block; (b) Optimized
LDPE mask.

The amplitude distribution of the reconstructed field is shown in Figure 2-39. The

reconstructed amplitude of Figure 2-39 is very close to the desired distribution of Figure

2-37 which shows the importance of the LDPE phase mask in improving the signal

encoding process. The grainy speckle-like noise in the reconstruction corresponds to



unresolved phase values typically encountered in diffused illumination from the inability

of the local diffusers to keep the signal's power spectrum inside the pass-band of the

system. This noise will be significantly reduced by the MER block. An alternative

method is to use partially incoherent illumination for the reconstruction, as discussed

later. The convergence of the GAs block is shown in Figure 2-40. This figure shows

the fitness score of the best individual and the mean score of the population during the

evolution process. The final score of the best individual is: MSEefore = 89.025. The

corresponding diffraction efficiencies are: ?qeub = 73.054% andr, = 75.52%.

Io

-IG

-60 2

Figure 2-39: Reconstructed amplitude distribution after GAs block.

The next step in the HOA is the MER block. The binary constraint is implemented

in this block. The final binary phase CGH is shown in Figure 2-41. The amplitude

distribution of the reconstructed field is shown in Figure 2-42. This figure also shows

a cross-section of the reconstructed intensity distribution (modulus square of the am-

plitude) that exposes the photoresist. The convergence of the MER block is shown in

Figure 2-43.

In order to estimate the effect of the binary constraint and related quantization er-

rors, the MER block is computed again but without binarizing the phase of the CGH

(multi-level hologram). The amplitude distribution of the reconstructed field and the
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Figure 2-40: Convergence of GAs.

Figure 2-41: Phase distribution of final binary phase CGH.

97

--- Best indvidual
-- Mean Score

160

140 -

120-

100



Figure 2-42: Reconstructed field from optimized binary phase CGH.
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Figure 2-43: Convergence plots: (a) MSEbefore; (b) MSEfter; (c) 77q f
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intensity cross-sections are shown in Figure 2-44. The convergence of the MER block is

shown in Figure 2-45. The MSE before photoresist exposure gets substantially reduced

compared to that of the binary case, and the MSE after exposure becomes zero at the

iteration number 97 (this would normally terminate the algorithm, but in this example

the termination condition was set to reach a maximum number of iterations).

40

-, 
in

Figure 2-44: Reconstructed field from multi-level phase CGH.

Both optimized CGHs (binary and multi-level) reconstruct high quality intensity pat-

terns that meet the resolution requirements, making the system feasible for holographic

lithography. In addition, these CGH patterns can be efficiently fabricated using electron-

beam lithography as will be discussed later.

Optimization of In-line CGHs based on the LNPEPE Mask

In this example, an in-line CGH is optimized based on the LNPEPE mask to also re-

construct the resolution target of Figure 2-37. The simulation parameters are included

in Table 2.2. The initial range is set equal to the variables' lower and upper bounds. A

partial initial population is specified using the geometrical optics solution as explained

previously. The initial score for this individual is: MSEefore = 97.5. The remaining
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Figure 2-45: Convergence plots: (a) MSEe fore, (b) MSEafter; (c) 'reff.

individuals in the initial population are generated by the creation function.

Again, we first present the results from the GAs block. Figure 2-46-a shows the phase

distribution of the final CGH after 300 generations (no binary constraint is imposed).

Figure 2-46-b shows the corresponding LNPEPE mask for the best individual in the

final generation. This phase mask shows the tendency of GAs to distribute the signal

evenly over the frequency spectrum in a process similar to amplitude modulation (AM).

The phase mask is composed of grating-like patterns with varying periods and oriented

in different directions. Each grating allocates their corresponding signal at a different

section on the Fourier plane to form the final multiplexed hologram.

The reconstructed amplitude distribution is shown in Figure 2-47. This distribution

is very close to the desired one (Figure 2-37) and in contrast to the reconstruction Figure
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Table 2.2: Optimization parameters: in-line CGH - LNPEPE mask.
Wavelength (A) 532nm Number of Generations (GAs) 300

Working Distance (d) 150pm Population Size 200
Pixel Size (6,;2) 200nm Partial Initial Population 20%

Hologram Size (Hize) 300pm Variables Lower Bound -1
Object Window (Osize) 180pum Variables Upper Bound 1
SBP (After Padding) 1500 x 1500 Fitness Function MSEbefore

Elite Children 5 Number of Variables 396
Crossover Fraction 0.7 Number of Iterations (MER) 400

Figure 2-46: (a) Optimized CGH after GAs block; (b) Optimized LNPEPE mask.

2-39 (from the LDPE mask), no grainy speckle-like noise is present.

of the GAs block is shown in Figure 2-48.

MSEefore = 47.804.

The convergence

The final score of the best individual is:

The corresponding diffraction efficiencies are: 'qub = 76.25% and

7leff = 72.36%.

We now describe the results from the MER block starting with the case in which the

binary constraint is imposed. The final binary phase CGH is shown in Figure 2-49. The

reconstructed amplitude distribution and intensity cross-sections are shown in Figure

2-50. The convergence of the MER block is shown in Figure 2-51.

The MER block is computed again but without the binary constraint (multi-level
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Figure 2-47: Reconstructed amplitude distribution after GAs block.
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Figure 2-48: Convergence of the GAs block.
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Figure 2-49: Final optimized binary CGH using LNPEPE encoding strategy.
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Figure 2-50: Reconstructed field from optimized binary phase CGH.
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Figure 2-51: Convergence plots: (a) MSEbefore; (b) MSEfter; (c) rmef.

CGH) to estimate the effect of quantization errors. The reconstructed amplitude dis-

tribution and intensity cross-sections are shown in Figure 2-52. The convergence of the

MER block is shown in Figure 2-53.

In-line CGH based on the Diffracted Field Encoding Strategy

We now evaluate the performance of an in-line CGH designed based on the diffracted

field encoding strategy shown in Figure 2-35-a. In this encoding strategy, the desired

amplitude signal is back-propagated to the hologram plane. The amplitude and phase

of the resulting complex field are shown in Figure 2-54. To form a pure phase CGH, the

amplitude distribution is discarded and set to unity. Also, the phase distribution may

be quantized whether the CGH is binary or multi-level. The reconstructed amplitude

distribution for the case of a multi-level CGH is shown in Figure 2-55. The corresponding
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Figure 2-52: Reconstructed field from multi-level phase CGH.
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MSE before photoresist exposure and effective diffraction efficiency are: MSEbef ore =

293.48, and /eff = 49.89%.

wn) X 'W11)

(a) (b)

Figure 2-54: Diffracted complex field: (a) Amplitude; (b) Phase.

In-line CGH based on the Simulated Optically Recorded Hologram

Strategy

Encoding

An in-line CGH is designed based on the simulated optically recorded hologram (SORH)

encoding strategy shown in Figure 2-35-b. The hologram's transmittance function is

computed according to equation 2.47 with s = 1. Figure 2-56-a shows the corre-

sponding multi-level CGH. The reconstructed amplitude distribution is shown in Fig-

ure 2-56-b. The MSE before photoresist exposure and effective diffraction efficiency are:

MSEbefore = 314.41, and T7,ff = 3.39%. The CGH performance varies according to the

selected normalization constant, K.

Comparison of Encoding Strategies

Figure 2-57 shows a comparison of the MSE before photoresist exposure and the effective

diffraction efficiencies for the four encoding strategies described above (before additional
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Figure 2-55: Reconstructed amplitude distribution at photoresist plane.

optimization by the MER block). As can be seen, the proposed LDPE and LNPEPE

masks improve significantly the encoding process producing CGHs that reconstruct pat-

terns very close to the desired signal (near the global optimum). The lowest MSE in this

example is achieved by the LNPEPE mask as its reconstruction is free from the grainy

noise that corrupts the reconstructions from holograms optimized using the LDPE mask.

In addition, the CGHs optimized using the proposed encoding strategies have larger ef-

fective diffraction efficiency than that of those based on the diffracted field and SORH

strategies. Higher diffraction efficiencies can be achieved by choosing a different fitness

function in the GAs block (such as equations 2.66 or 2.67).

Selection of Problem Parameters

The multi-point search performed by the GAs block can be guided by our specific choice

of control parameters. As explained previously, these parameters can be tuned to help

the optimization algorithm search the nonlinear space more efficiently and to avoid pre-

mature convergence. The main control parameters are: crossover fraction, number of

elite children, population size, initial range, number of generations, problem geometry
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Figure 2-56: (a) Multi-level CGH optimized using the SORH encoding strategy; (b)
Reconstructed amplitude.

and type of fitness function used. Four examples are presented to illustrate how the

convergence of the GAs block varies as a function of crossover fraction, population size,

fitness function and working distance.

In the first example, we examine the convergence of GAs for the optimization of an

in-line CGH based on the LNPEPE mask for different crossover fraction values. Figure

2-58-a shows the fitness values of the best individual in the population for crossover

fractions in the range [0.2, 0.9]. The optimization parameters used to generate this figure

are similar to those in Table 2.2 but with a population size of 100 individuals and a

pixel size of: o5*, = 100nm (SBP = 3000 x 3000). The crossover fraction controls

how many individuals at each generation are created from the gene exchange between

parents in the crossover process. If the crossover fraction is too large, the algorithm might

suffer premature convergence as no new information is introduced in the genetic pool,

potentially stagnating at a local minimum. In contrast, if the crossover fraction is too

small, the mutation process takes over and the algorithm rapidly approaches an extremely

inefficient random walk. The choice of crossover fraction is problem dependent and can

be optimized by running the algorithm with different crossover fraction values for a short
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Figure 2-57: Comparison of encoding strategies.

number of generations and evaluating the results. Each case needs to be run several

times to provide statistical significance due to the stochastic nature of the GAs searching

process. For the case of the LNPEPE mask (Figure 2-58-a), a crossover fraction of 0.7

resulted in the lowest MSEefre after 20 generations. The population's mean fitness

score for varying crossover fractions is shown in Figure 2-58-b. As shown, small crossover

fractions generally result in large errors (except for the case of Fxove, = 0.3, where

the random walk landed in a lower error region), and populations with large crossover

fractions do not explore the nonlinear space efficiently, displayed as small amplitude

oscillations of the mean population score. For the LDPE mask it was found that a

crossover fraction of 0.6 leads to the best performance of GAs.

For the second example, several population sizes are used to estimate the performance

of GAs in the optimization of an in-line CGH based on the LNPEPE mask. The simu-

lation parameters are the same as the previous example but with: Fx,,e = 0.7. Figure

2-59-a shows the algorithm's convergence for the best individual in the population. A

larger number of individuals in the population (searching points) are expected on aver-

age to increase the probability of landing near the global optimum, as well as sample the

nonlinear optimization space more efficiently. The initial range and creation strategy are

also important in introducing population diversity and avoiding locality effects (cluster
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of individuals) that might lead to premature convergence. For the optimization of Figure

2-59, 20% of the population was generated using the geometrical optics solution and the

rest was created stochastically and distributed uniformly within the initial range. As

second consideration in the choice of population size is the computational memory and

time. Larger populations need to be stored by the algorithm, increasing the required

memory and computational time. The reduced complexity proposed in this thesis makes

it possible to compute large population sizes with conventional computational means. In

addition, the algorithm is implemented in parallel on a graphics processing unit, reducing

the required computational time as it will be explained later. Figure 2-59-b shows the

corresponding convergence for the mean population score with varying population sizes.

In the third example we compare the GAs' performance as a function of fitness func-

tion. The GAs block provides the flexible choice of fitness function to guide the algorithm

to the desired solution. This cannot be done in the MER block. As discussed previously

for holographic lithography, the MSE before photoresist exposure (equation 2.69) has

been found to give the best results. However, there are other applications, such as solar

collection and optical trapping, in which high diffraction efficiencies are desirable and

the uniformity in the reconstruction is of very little importance. For these applications,

a better choice of fitness function is that of equations 2.66 or 2.67. Figure 2-60-a shows

the convergence for the best individual based on the fitness functions given by the upper

bound and effective diffraction efficiencies. The optimization was performed for an in-

line CGH using the LNPEPE mask with the same simulation parameters as in Table 2.2,

but with a population size of 100 individuals. Figure 2-60-b compares the performance

metrics at the last generation for the two optimization runs.

For the final example, the performance of the GAs block is compared against 6 dif-

ferent working distances. The in-line CGH is optimized using the LNPEPE mask with

the same parameters as in Table 2.2, but with: 6p, = 100nm (SBP = 3000 x 3000),

PopSize = 50, and Gen = 20. Figure 2-61 shows the fitness score of the best individual
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Figure 2-58: GAs convergence for different crossover fraction values:
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at the final generation for the different working distances. As expected, the best per-

formance is achieved at d = 150,um, as this results in an effective numerical aperture

(equation 2.2): NAGff = 1.

Extending the Depth of Focus

In holographic lithography, extending the system's depth of focus (DOF) is of practical

importance in order to tolerate potential axial misalignments of the substrate to be

exposed. A misalignment tolerance in the range of 1 - 4 1Lm is typically considered

acceptable. However, high-resolution CGHs are designed to have large effective numerical

apertures resulting in a small DOF. The theoretical DOF is given by,

Az = A . (2.73)
2NA ef

eff)

In order to tolerate a 4p~m misalignment (+LAz; Az = 2ptm), the system needs to be

designed to have a maximum effective numerical aperture of NAeff = 0.365 (for A =
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Figure 2-61: Best individual's score for different working distances.

532nm) which results in a diffraction limit resolution of A = 0.73pm. This tradeoff

between DOF and resolution is characteristic of most conventional optical systems.

In this thesis we propose a method to extend the system's DOF, while maintaining

a desirable resolution by performing a modification of the hologram's encoding process.

The concept is similar to hologram multiplexing in which several pages of information are

encoded in the same hologram and are designed to reconstruct under different decoding

conditions (e.g., different wavelengths or off-axis angles of the probing waves). In the

proposed method, the HOA presented previously is modified to enforce the amplitude

constraint not only at the reconstruction plane, but also at additional parallel planes as

shown in Figure 2-62-a. The number of planes is given by the desired DOF. However,

due to the limited channel capacity of binary phase CGHs, a large number of planes

result in increased noise in the reconstruction. In the results presented in this section,

the modifications of the encoding process to extend the DOF were done in the MER

block. The algorithm begins the search from the initial binary phase CGH of Figure

2-41. The theoretical DOF of this hologram is: Az = 266nm. Four planes (two on

each side of the reconstruction plane) are used to extend the DOF to tolerate an axial

misalignment of 1.064pm. The diffracted field at the five planes (reconstruction plane
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plus four additional planes) is computed by means of a forward Fresnel propagation.

The amplitude constraint is enforced at each plane and the resulting fields are back

propagated to the CGH plane. At the CGH plane, the fields are added coherently and

the zero absorption and binary constraints are enforced. The algorithm repeats for the

specified number of iterations. Figure 2-62-b shows the MSE before photoresist exposure

for the regular and extended DOF CGHs for different reconstruction distances. From

this figure, it is evident that the proposed method serves in extending the system's DOF.

The slightly higher MSE at the reconstruction plane in the extended DOF version is

the result of the limited channel capacity of binary phase holograms. The corresponding

reconstruction amplitude distribution is shown in Figure 2-63 (only the smallest MIT

pattern at the center of the resolution target is shown).

CGH Plane Reconstruction
Plane

v240 .. .... .... ...... .......... ....

140 - -.. . -.-.-. - ---- + R g a ---
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-z 2A 148 1488S 149 149.5 1510 150.5 151 151.5 152d (pm)
(a)(b (b)

Figure 2-62: (a) Extending DOF concept; (b) MSEbseore before and after DOF extension.

Parallel implementation on a Graphics Processing Unit

Over the past years, the development of graphic processing units (GPUs) have been

driven by the insatiable market demand for real-time, high-definition 3D graphics, evolv-

ing into multithreaded, multi-core, highly parallel systems with high memory bandwidths

and tremendous computational power. GPUs can be used more efficiently to solve com-

plex problems than central processing units (CPUs) as they are designed to have more
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Figure 2-63: Reconstructed amplitude distributions around the focus.

transistors devoted to data processing than data caching or flow control. Figure 78 show

a comparison between the computational performance of some NVIDIA GPUs and Intel

CPUs [119]. In November 2006, NVIDIA introduced CUDATM (Compute Unified De-

vice Architecture), a general purpose parallel computing architecture used to program

complex computational problems in a more efficient way to be solved on NVIDIA GPUs.

CUDA comes with a software environment that allows the development in C as a high-

level programming language as well as supporting other platforms such as the Matlab

Executable (MEX) interface [120]. In addition, codes written in CUDA are scalable

and capable of operating with different compatible NVIDIA GPUs independently of the

number of their multiprocessors.

The possibility of using a personal computer with a GPU to achieve the performances

of an expensive CPU cluster in a simple and cost effective manner has revolutionized

computational physics in a wide range of fields. GPUs have been used in a variety of

applications that require high computational power such as medical imaging [121], mole-

cular dynamics [122], fluid mechanics [123], astrophysics [124] and financial simulation

[125]. In the area of holography, GPUs have been used on 3D displays [126], [127], [128],

[129] and optical tweezers [130] for the near real-time computation of holograms displayed
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Figure 2-64: Performance comparison between NVIDIA GPUs and Intel CPUs [119]

by a spatial light modulator, as well as in digital holographic microscopy systems [131].

The HOA presented previously is particularly suitable for implementation on a GPU,

due to its multi-point search nature that can be parallelized and processed simultaneously.

All the optimization results presented in the previous sections were efficiently computed

on a GPU. Table 2.3 outlines the main specifications of the GPU used. The GPU is

hosted by a personal computer with the following specifications: Intel Pentium 4 CPU,

3.8 GHz clock rate, 3GB of memory, and Windows XP operating system.

Table 2.3: GPU Specifications.
Model GeForce GTX 285 Clock Rate 1.62 GHz

Global Memory 1 GB Memory Bandwidth 159 GB/sec
Multiprocessors 30 Cores 240

Knowledge of the GPU's architecture is necessary to understand how the HOA was

implemented in parallel. A GPU is basically composed of global memory and a variable

number of multiprocessors. Each multiprocessor includes eight scalar processor cores, two

special function units, 8192 registers, a multithreaded instruction unit and one on-chip
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shared memory. The CPU (host) controls the execution of multiple concurrent threads

(independent processes) on the GPU (device) by calling the respective kernels. The

kernel is a function called from the host and executed on the device. While the execution

of a kernel is in progress, the host can perform other activities. When launching a kernel,

threads are arranged in blocks and grids and each block is assigned to a multiprocessor

and the instructions written in a kernel are executed by all the threads. Each thread

has its own ID and thread cooperation is only possibly within the block - they can be

synchronized and can cooperate using shared memory (block's private memory). Within

a block, threads are arranged in groups of 32, referred to as warps. Threads in a warp are

physically executed in parallel and are synchronized. Multiprocessors execute one warp

at time, but if threads in a warp are waiting to access memory, the multiprocessor can

stop executing that warp and start to process another warp eliminating memory's latency

time. The management of warps is automatic and not visible by the programmer. When

optimizing an algorithm, the overhead introduced from transferring memory from host

to device and vice versa needs to be minimized. For this reason, in our implementation

using Matlab's MEX interface, the desired mask and some preliminary calculations are

done in Matlab and then transferred to the GPU at the beginning of the function. The

computed data resides on the GPU for the most part and is only transferred back to the

host at the end of the optimization. Most of the operations performed by the GPU are

conducted using a floating-point precision (32-bit), and some operations use a double-

point precision (64-bit). NVIDIA GPUs offer scalable line interconnects (SLI) that can be

used to connect several graphics cards in one personal computer and to further maximize

the computational power.

To evaluate the computational performance of the HOA, a comparison between CPU

(Matlab function) and GPU (CUDA function) implementations of a single evaluation

of the fitness function (based on the LDPE and LNPEPE masks) is conducted. The

comparison is done for varying space-bandwidth products in the range of 500 x 500 (0.25

million) to 4000 x 400 (16 million) pixels. Figure 2-65-a shows the resulting computa-
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tional times for a single evaluation of the fitness function based on the LDPE mask. The

corresponding speedup factors are shown in Figure 2-65-b. A speedup factor of over 120

times is measured. However, a much faster performance of the GPU implementation has

been observed for multiple computations of the fitness function as the memory transfer

overhead is reduced. Speedup factors of over 200 times have been achieved when opti-

mizing large CGHs. Figure 2-66-a shows the computational times for a single evaluation

of the fitness function based on the LNPEPE mask. The corresponding speedup factors

are shown in Figure 2-66-b. Again, higher speedup factors (over 200 times) are measured

for consecutive evaluations of the fitness function in the GAs block.

140

0 

140

0 251 2.25 4 6.25 9 12.25 16
01 1Number of Pixels 1

(a) (b)

Figure 2-65: (a) Computational times: LDPE encoding strategy; (b) Relative speedup
factors.

The computational time of the GAs block for optimizing the CGH based on the LDPE

mask of Figure 2-38 is: tGPU = 4.47 hours. The corresponding mean computational time

per individual is: tind = 1.611 seconds (instead of tind = 2 seconds as predicted from

Figure 2-65-a due to the memory transfer overhead). The estimated computational time

for the same function on the CPU is: tcpu = 16.48 days. Similarly, the computational

time of the GAs block to generate the CGH based on the LNPEPE mask of Figure 2-46

is: tGPU = 13.66 hours. The corresponding mean computational time per individual is:
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Figure 2-66: (a) Computational times: LNPEPE encoding strategy; (b) Relative speedup
factors.

tind = 0.8196 seconds. The estimated computational time for the same function on the

CPU is: tCpU = 99.96 days. From these two examples it is clear that the implementation

of the HOA on the GPU significantly improves the computational performance.

Figure 82 shows the computational time of the GAs block as a function of population

size for the results corresponding to Figure 2-59 (for 20 generations of the optimization

of the LNPEPE mask). As expected, the computational time increases linearly with the

number of individuals in the population. It was also found that the computational time

is relatively insensitive to varying crossover fractions (Figure 2-58) on the GAs block.

Optimization of Off-Axis CGHs

In this section, we present an example of the optimization of an off-axis binary phase

CGH based on the geometry of Figure 2-12. The hologram is optimized using the MER

block (Figure 2-34) with the additional modulation and demodulation steps as described

previously. The optimization parameters are indicated in Table 2.4. During the optimiza-

tion procedure, the hologram is modulated according to Figure 2-13 and demodulated in

a similar form as Figure 2-15 to remove the undesirable diffraction orders. This demod-
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Figure 2-68: (a) Optimized off-axis CGH; (b) Reconstructed amplitude distribution.

Optimization of TIR CGHs

The TIR geometry of Figure 2-14 has the advantage, respect to the off-axis geometry,

that no additional optical components (aperture stop or 4f system) are required to filter

out the undesirable diffraction orders of the modulated encoded signal. Instead, the

undesirable orders suffer TIR and the dielectric-air interface which can be explained by

the demodulation model of Figure 2-15. In this section we present an example of a TIR

CGH optimized using the MER block with the parameters indicated in Table 2.5. Figure

2-69-a shows the final optimized TIR binary phase CGH. Similar to the off-axis case, the

CGH is modulated by a high-frequency carrier signal that limits the allowable pixel size

(equation 2.10 but replacing A with Aeff). For this example, the maximum pixel size is:

6,a = 165nm. The logarithm of the magnitude of the CGH's spectrum is shown in Figure

2-69-c. The CGH is reconstructed by an off-axis wave that shifts the modulated signal

back to the center of the frequency plane. The reconstructed amplitude distribution at

the photoresist plane is shown in Figure 2-69-b.
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Table 2.5: Optimization Parameters: TIR CGH.
Wavelength (A) 350nm Object Window (Osize) 340pm

Working Distance (d) 200pm Off-Axis Angle 450
Pixel Size (6,i2) 100nm Initial Search Point SORH

Hologram Size (Hsize) 340pm Number of Iterations 100
SBP (After Padding) 4000 x 4000 Prism Refractive Index 1.5

2.5 Experimental Fabrication and Characterization

of CGHs

2.5.1 Fabrication Process

The CGHs considered in this thesis are fabricated using electron-beam (e-beam) litho-

graphy. E-beam lithography is a direct writing method in which a beam of electrons is

scanned to form the desired pattern on a substrate coated with resist. After exposure the

substrate commonly undergoes developing and etching processes. E-beam lithography

is a high-resolution method allowing the fabrication of smaller features than alternative

techniques such as direct laser writing, which is typically limited by diffraction. Fab-

rication of small features down to 10nm has been experimentally demonstrated [68].

For computer holography, e-beam lithography offers the possibility of fabricating CGHs

with large space-bandwidth products, submicron pixel sizes and good positional accuracy

within the field-of-view of the e-beam writing system [24], [25].

In this thesis, the process chosen to fabricate the optimized CGHs is restricted to single

e-beam exposures to produce binary phase holograms. The presented fabrication process

could potentially be extended to produce multi-level phase CGHs requiring multiple e-

beam exposures or subwavelength patterns as suggested by effective medium theory. The

implementation and optimization of the fabrication process are beyond the scope of this

thesis; however, an understanding of the steps involved is necessary for characterizing the

CGHs' performance, as well as for performing a sensitivity analysis that can be used to

predict and correct potential manufacture errors. The fabrication process adopted in this
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Figure 2-69: (a) Optimize TIR CGH; (b) Reconstructed amplitude; (c) CGH spectrum.

thesis is shown in Figure 2-70. The first step consists of spinning a layer of Hydrogen

Silsesquioxane (HSQ Dow Corning Fox-series) onto a fused silica substrate. HSQ is a

negative resist sensitive to e-beam and X-ray radiations. The thickness of the HSQ layer

is proportional to the desired phase delayed of the CGH,

t = ,A (2.74)
27r (n 2 - ni)

where # is the required phase delay (corresponding to Rphase in equation 2.40; typically

set to 4 = 7ri), n2 is the refractive index of the HSQ layer at the operating wavelength,
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and ni is the refractive index of the surrounding medium (typically ni = 1). The spin

speed is determined from the spin (spin speed-thickness) curve of the HSQ with the

particular dilution. After spinning, the HSQ is baked at 150 degrees for 2 minutes, then

at 220 degrees for another 2 minutes using hotplates. Next, a thin (5-6nm) metal layer

is deposited on the HSQ by e-beam evaporation. This metal layer is required to avoid

charging during the e-beam exposure as all the layers underneath are non-conductive.

Any type of conductive material that does not react with HSQ and can be easily deposited

and removed without significantly damaging the layers underneath is appropriate for this

layer. The next step is the e-beam exposure process. The phase distribution of the CGH

optimized by the HOA is converted into a file compatible with the e-beam writing machine

which indicates the locations on the substrate that need to be exposed by the electron

beam. The CGHs presented in the following section were fabricated using the Raith 150

e-beam exposure system located at the NanoStructures Laboratory (NSL) facilities in

MIT. The time for e-beam write varies according to the hologram's size, pixel size and

dose, taking approximately 30 minutes to 1.5 hours to write an entire structure. After the

e-beam writing step, the metal layer is removed by wet chemical etching, and the HSQ is

developed for 2 hours with Shipley Microdeposit MF CD26, a TMAH-based developer.

- Al
ijMhAL M :c AM| jJgg7 HSQ

Fused Silica Fused Silica

Silica SL bstrate a-beam Write CGH pattern

HSQ v~]fj~- ii VHSQ
Fused Silica Fused Silica

Coat HSO and evaporate Al etqh Al and develop H

Figure 2-70: CGH fabrication process.

At the beginning of the fabrication run, a small section of the CGH is written several

times using different uniform e-beam doses to determine the correct exposure energy. The
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written structure is then evaluated using a scanning electron microscope (SEM) and the

dose that results in the highest quality pattern is chosen. A more quantitative method

to characterize the fabricated samples based on a 2D error map will be introduced later.

In general, e-beam writing is known to suffer from proximity effects that distort the

resulting pattern in the resist. In order to minimize this effect, the dose of the beam

must be properly chosen according to the beam energy, pattern and the stack of layers

that the e-beam writes on. Due to the complex structure of the CGH's phase distribution,

an additional local dose correction is employed. In the local dose correction, the phase

pattern is divided into several regions and the optimum dose (above or below the uniform

dose obtained from the dose matrix) is estimated using the 2D error map. An alternative

method for correcting these errors is by the implementation of specialized proximity effect

correction (PEC) software [132].

The proposed fabrication process of Figure 2-70 is simple and does not require an

additional etching step as HSQ, once exposed and developed, acquires mechanical and

optical properties similar to glass [133]. In addition, HSQ is a high-resolution material

with a long lifespan. HSQ can be spin coated with thickness accuracies better than 1%,

avoiding phase errors in the fabricated CGH.

2.5.2 Examples of Fabricated In-line CGHs

The first fabrication example is of an in-line binary phase CGH optimized by the MER

block with the initial search point given by the diffracted field encoding strategy. The

optimization parameters are given in Table 2.6. Figure 2-71-a shows the phase distribu-

tion of the optimized CGH and Figure 2-71-b shows the converge plot of the optimization

algorithm for the error metrics of equations 2.55, 2.56 and 2.57. The corresponding simu-

lated reconstructed amplitude at the photoresist plane is shown in Figure 2-72-a. Figure

2-72-b shows a SEM image of a fabricated CGH. The fabricated CGH has not been fully

corrected for errors due to proximity effects, as shown in the close up section of Figure

2-73 in which the red circles indicate examples of good pattern replication and the yellow
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circles show examples of missing structures.

Table 2.6: Optimization Parameters: Fabricated In-line CGH.
Wavelength (A) 532nm Object Window (0,ize) 350ptm

Working Distance (d) 250pm SBP (After Padding) 2500 x 2500
Pixel Size (6,p2) 200nm Initial Search Point Diffracted Field

Hologram Size (Hize) 358pmx353pm Number of Iterations 200

U

4a

2

Iterations

(b)

Figure 2-71: (a) Optimized in-line CGH; (b) Convergence plot.

The second example consists of the fabrication of an in-line binary phase CGH op-

timized based on the LDPE mask. Figure 2-74-a shows the computed CGH and Figure

2-74-b shows the corresponding convergence plot. The optimization parameters are the

same as those of Table 2.6. The simulated reconstructed amplitude distribution is shown

in Figure 2-74-c. As discussed previously, the LDPE mask helps to significantly improve

the encoding strategy, producing high-quality reconstructions with lower errors than that

of the previous example. Figure 2-75 shows an SEM image of the fabricated CGH. Simi-

lar to the previous case, the fabricated sample has not been fully corrected for proximity

effects. In the next section, a quantitative evaluation of this sample will be performed.
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(a) (b)

Figure 2-72: (a) Simulated reconstructed amplitude; (b) SEM of fabricated CGH.

Desired Pattern Fabricated Sample

Figure 2-73: Comparison between designed and fabricated CGHs.

2.5.3 Experimental Characterization of Fabricated CGHs

The fabricated CGHs contain geometrical distortions due to fabrication errors such as

non-ideal exposure doses, proximity effects, stitching errors and beam positioning errors.

Three methods are implemented for a quantitative characterization of the fabricated

samples: evaluation algorithm (2D error map), optical characterization and photoresist

exposure test.
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Figure 2-74: (a) Optimized in-line CGH; (b) Convergence plot; (c) Simulated recon-
structed amplitude.

Evaluation Algorithm: 2D Error Map

A 2D error map of the difference between the desired and fabricated CGH patterns is

computed and used to quantitatively evaluate the fabricated sample. The block diagram

of the evaluation algorithm used to calculate the 2D error map is shown in Figure 2-

76. The first step is to acquire N high-resolution images of the fabricated CGH using a

confocal or scanning electron microscopes. Due to the microscope's limited field of view

when operating at high-resolution, multiple images of different sections of the sample

are captured. An auto-stitching algorithm is used to produce a complete, high-resolution

image of the entire fabricated CGH. The auto-stitching algorithm begins by performing a
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Close-up of fabricated CGH

Figure 2-75: SEM of fabricated CGH.

noise reduction and 2D interpolation (for sub-pixel stitching accuracy) of each captured

image. In order to stitch an image to its neighbors, horizontal and vertical template

patches are extracted and a spectral cross-correlation algorithm is performed. For the

nth image, a 2D cross-correlation map is computed,

xC(")(x, y) = F-1 {(F {Pneighbor(x, Y)) (, mpate(Xy))} , (2.75)

where P(n) is the extracted horizontal or vertical template patch (zero padded to

match the size of Pneighbor),Pneighbor is the corresponding neighboring image, and * repre-

sents the complex conjugate operation. The coordinates of the correlation peak (max[xC(C)])

are computed and used for placing the image at the corresponding location on a high-

resolution grid. The final stitched image is then binarized using Otsu's method, which

chooses the threshold to minimize the intraclass variance of the black and white pixels

[134]. Figure 2-77-a shows an example of the resulting high-resolution binary image gen-

erated from 12 SEM images after the auto-stitching and binarization processes. This
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figure corresponds to the fabricated sample of Figure 2-75. The high-resolution binary

image is then rotated and scaled to match the desired CGH pattern as closely as possible.

The optimum rotation and scale factors are found by genetic algorithms by minimizing

the fitness function,

F = W [F-1 {(F {Pdes}) (F {R {S {Pfab}}})*}] ma' (2.76)

where Pde, and Pfab are the desired and fabricated CGH binary patterns, R and S

are the rotation and scale operators, and W is a weighting factor. The next step in

the evaluation algorithm is to compensate for lateral shift again using a spectral cross-

correlation algorithm. The final step consists of computing the 2D error map, which is

the result of the difference between the desired (Pdes) and fabricated (Pfab - after lateral

shift compensation) binary patterns. Figure 2-77-b shows the 2D error map computed

for the fabricated hologram of Figure 2-75. The blue and red patches (error values of -1

and 1) correspond to sections on the fabricated sample that need to have a local e-beam

dose correction. In addition to the 2D error map, a global MSE metric is computed and

used for comparing different fabricated samples. The 2D error map is used to assist in

the local correction of e-beam doses for future fabrication runs.

Optical Characterization

An optical characterization test is implemented to evaluate the quality of the recon-

structed intensity distributions from the fabricated in-line CGHs, presented in the previ-

ous section. The CGH optical characterization setup is shown in Figure 2-78-a. A green

laser (A = 532nm) is spatially filtered and collimated to produce a plane wave that probes

the fabricated in-line CGH. The reconstructed intensity distribution at the photoresist

plane is imaged by a microscope objective (100 x, NA = 0.75) onto a 16 megapixel CCD

camera (pixel size = 9[pmx9pm). The microscope objective and CCD are placed on top

of a motorized linear stage with 1pm axial resolution designed to axially scan the recon-
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Figure 2-76: Block diagram of the evaluation algorithm.

(a) (b)

Figure 2-77: (a) Example of high-resolution image produced by the auto-stitching and
binarization processes; (b) 2D error map.
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struction space to find the location of the focal plane (photoresist plane). A LabView

interface was developed to automatically perform the characterization of the fabricated

CGH samples. A screenshot of this interface is shown in Figure 2-78-b. The CGH char-

acterization interface allows controlling the camera and motorized stage parameters, as

well as performing automatic scanning cycles of the reconstruction space (linear motion

plus image acquisition). In addition, the captured images are evaluated comparing them

with a target pattern and the correct focus (intensity distribution at photoresist plane)

is automatically extracted.

Photoresist
Spatial Plane Scanning Stage
Filter CGH A

To MO
Collimating Aperture

Lens Stop

CCD

-*Z Computer

_ _ --

Figure 2-78: (a) Optical characterization setup; (b) Measuring station GUL

Figure 2-79 shows the experimental reconstructed intensity distribution from the fab-

ricated hologram of Figure 2-72-b. The reconstructed pattern shows good contrast and

well-defined edges, which indicates that a significant amount of high-frequency com-

ponents survived the fabrication process and produced a high-resolution pattern. An

additional local dose correction is necessary to improve the diffraction efficiency and
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uniformity of the reconstructed pattern.

Figure 2-79: Measured reconstructed intensity distribution.

Figure 2-80 show the experimental reconstructed intensity distribution from the fab-

ricated hologram of Figure 2-75. Despite the fabrication errors indicated on the 2D error

map of Figure 2-77-b, this CGH still reconstructs the MIT logo at the photoresist plane.

Also, this experiment shows how the resulting CGH is robust against potential contami-

nants as the LDPE encoding strategy spreads the encoded signal over the entire hologram

window. The grainy speckle-line noise present in the reconstruction is the result from

lost spatial frequencies after the fabrication process. An additional optimization of the

fabrication process for this sample is required.

Figure 2-80: Measured reconstructed intensity distribution.
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Reconstructing with Partially Spatially Incoherent Illumination

The speckle-like nose present in the reconstructed intensity distribution of Figure 2-

80 corrupts the photoresist exposure process and hence needs to be eliminated. Two

potential techniques to eliminate this noise are: improve fabrication process (reduce error

in 2D error map following the optimized CGH as closely as possible), and reconstruct the

hologram with partially spatially incoherent illumination. The effects of reconstructing

the CGH with partially spatially incoherent illumination are simulated by probing the

hologram with several plane waves oriented at slightly different off-axis angles (equation

2.9). The angles are drawn from a random uniform distribution with a range given by the

desired degree of coherence. The reconstructed field from each plane wave is calculated

using the Fresnel operator and the fields at the photoresist plane are added incoherently:

Itot = 1 + 12 + 13 + - - - IN, where I,, is the reconstructed intensity distribution at the

photoresist plane corresponding to the nth probing wave.

The experimental implementation is conducted with the optical setup of Figure 2-

81. The illumination source is a tungsten halogen white lamp with variable output

power. The white light source delivers the light by means of an optical fiber bundle.

A narrow band-pass filter (center wavelength: A = 532nm) is used to produce a quasi-

monochromatic spatially incoherent illumination. A variable aperture is used to manually

control the effective degree of coherence. Larger apertures results in a more incoherent

illumination. The rest of the optical components are similar to those of the coherent

illumination case of Figure 2-78-a.Figure 2-82 shows the captured reconstructed images

using partially incoherent illumination for the hologram of Figure 2-75. The size of the

variable aperture is progressively increased from images 1 to 6 (from high to low effective

degree of coherence). This technique reduces the effect of the speckle-like noise at the

expense of spatial resolution.
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Figure 2-81: Optical characterization setup for partially coherent illumination.

Figure 2-82: Measured intensity distribution for different degrees of coherence.

Photoresist Exposure Test

In the photoresist exposure test, the imaging section of the optical characterization setup

(microscope objective and CCD) is replaced with a substrate coated with photoresist.

Several exposures are conducted with different exposure energies and axial positions to

evaluate the optimum printing conditions. The exposed substrate is then developed and

the fabricated sample is inspected using a confocal or scanning electron microscope.

The test results presented in this section were performed at the Mechatronics Center

facilities of Samsung Electronics in Suwon, South Korea. The CGH used in the experi-

ments was designed to reconstruct a resolution target consisting of a 5 x 5 grating array

with periods ranging from 700nm to 1400nm. The CGH was optimized using the MER
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block with the optimization parameters indicated in Table 2.7. Eight CGH samples with

different e-beam doses were fabricated and analyzed using the evaluation algorithm. The

global error metric was used to choose the best sample. Figure 2-83 shows the binary

phase distribution of the desired (optimized) and chosen fabricated CGHs as well as the

corresponding 2D error map. The fabrication errors indicated in the 2D error map are

primarily from e-beam proximity effects. An additional local dose correction is required.

Figure 108 shows the desired reconstructed intensity and the expected reconstructed

intensity from the fabricated sample (simulated using the phase distribution of Figure

2-83-b). The CGH fabrication errors result in non-uniformities on the reconstructed in-

tensity distribution. Figure 109 shows a confocal microscope image of the printed pattern

after the photoresist exposure test. The non-uniformities present on the printed pattern

very closely match those predicted in the simulations (Figure 2-83-b).

Table 2.7: Optimization Parameters: In-line CGH for Photoresist Exposure Test.
Wavelength (A) 364nm Object Window (Osize) 50pm

Working Distance (d) 50pm Hologram Size (Hize) 62.5pimx 120pm
Pixel Size (,32) 100nm Number of Iterations 100

2.6 Sensitivity Analysis

A sensitivity analysis is performed to estimate and assist in the correction of potential

manufacture errors that may occur during the e-beam writing and development processes.

Five different types of errors are studied: over and under dose, proximity effect, phase,

stitching and positional errors. Simulation algorithms are presented to model these errors

and quantitatively evaluate their influence on the reconstructed patterns.

For uniform featured size patterns, such as gratings, a uniform dose can yield accu-
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Figure 2-83: (a) Optimized CGH; (b) Fabricated CGH; (c) 2D error map.

Figure 2-84: (a) Simulated reconstruction from optimized CGH; (b) Simulated recon-
struction from fabricated CGH; (c) Confocal microscope image of reconstructed pattern.
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rate results. Finding the correct dose can be done experimentally by writing a matrix of

patterns with different dose energies and performing a post evaluation of the processed

structures. Since HSQ is a negative resist, an underexposed pattern washes out most of

the features leaving the substrate behind after development. For overexposed patterns,

the features are also washed out and a substantial amount of HSQ is left behind. For

the fabrication of CGHs, over and under doses result in the loss of spatial frequencies

(or fringes in the CGH pattern) that contain information of the encoded signal. Small

features (or high frequency components) are washed out first, decreasing the hologram's

diffraction efficiency and producing non-uniform reconstructions. To model the over and

under dose fabrication errors, an algorithm based on dilation and erosion structures is

implemented. In the case of overexposure, a dilation pattern of a specified shape and size

is defined and applied to the binary phase pattern of the desired (optimized) CGH. Disk

structures are typically used and their diameter is given by the desired level of dilation.

Dilating the CGH's phase pattern causes the fringes to become thicker and progressively

disappear by merging together. A similar effect happens for the under dose case in which

the erosion process causes the fringes to become thinner and progressively disappear.

For each dilation or erosion state, the hologram is reconstructed and the MSE before

photoresist exposure is computed. Figure 2-85-a shows an example of the CGH's phase

distribution and reconstructed amplitude for three dilation states, designed to model a

potential overexposure error of the hologram of Figure 2-71-a. The corresponding ID

cross-section of the reconstructed intensity distributions is shown in Figure 2-85-b. As

can be seen, the simulated error introduces undesirable diffraction orders such as the

virtual image and direct component. CGHs designed with the diffracted field encoding

strategy do not spread the signal's information uniformly over the entire hologram win-

dow. The encoded signal is only spread over a very small path with the high-frequency

components located near the edges of the hologram and larger features towards the cen-

ter. After the dilation or erosion processes, the fringes near the edges disappear first,

significantly affecting the reconstructed pattern. In contrast, the information encoded in
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CGHs optimized using the LDPE or LNPEPE masks is distributed uniformly over the

entire hologram window introducing redundancy and making them less sensitive to over

and under dose errors.

Dilation-1 Dilation =2

Field Amolitude

Dilation 4

Field Amolitude

(a)
D Di 1pCj

Dilation= 4 pix

(b)

Figure 2-85: (a) Example of dilation analysis; (b) Intensity cross-sections.

Proximity effects occur when high-energy electrons interact via electromagnetic fields

with resident electrons continuously losing energy through the excitation of secondary

electrons. These electrons undergo multiple small angle scatterings producing a gradual

spread of the well-defined incident beam. In addition, some of the incident electrons

undergo large scattering angles, producing backscattering electrons that emerge at points

that are remote to the original entry point. To a first degree approximation, this error is

also modeled using the algorithm based on the dilation and erosion structures.
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The phase error consists of variations in the height of the pattern which translates

to errors in the phase delay produced by the diffraction element. Two types of binary

phase errors are modeled: uniform and non-uniform. In the uniform case, a constant

phase shift is added to the range R of equation 2.40 and the hologram is reconstructed

and evaluated. For the non-uniform case, the pattern's phase delay is perturbed by an

arbitrary-shaped distribution. For the fabrication process considered in this thesis, the

uniform case is more relevant as the binary phase error is directly proportional to errors

in the thickness of the HSQ after spin coating. The spin coating process is very accurate

and can be controlled within a few nanometers by optimizing the spin speed and viscosity

of the HSQ. For this reason, a small degree of phase error is expected on the fabricated

samples. Figure 2-86-a shows the reconstructed amplitude distribution for three different

degrees of uniform phase error for the hologram of Figure 2-71-a. The corresponding

ID cross-section of the reconstructed intensity is shown in Figure 2-86-b. This analysis

reveals that even relatively large uniform phase errors do not significantly degrade the

reconstructed signal.

E-beam stitching errors are primarily the result of calibration errors which produce

overlapping or discontinuous fields. Stitching errors can be mitigated by the implementa-

tion of techniques such as spatial phase-locked e-beam lithography. To model this error,

the CGH's phase distribution is divided into multiple e-beam fields and each block is

laterally translated according to the desired degree of calibration error. An example of

the e-beam stitching error analysis is shown in Figure 2-87. The CGH pattern is di-

vided into four blocks of 200pumx200pum which correspond to the typical e-beam field

size. A positive or negative offset is applied to simulate cases when the fields overlap or

become discontinuous. For each state, the hologram is reconstructed and the MSE before

photoresist exposure is computed.

B-beam positional errors are predominantly caused by stray fields that deflect the

incident beam, causing field distortions. Additional causes include thermal expansion,

charging and laser interferometer quantization errors. Positional errors are quantified by
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Figure 2-86: (a) Example of phase error analysis; (b) Intensity cross-sections.

computing the 2D error map as explained above.

By using a combination of the error modeling algorithms discussed above, it is possible

to decouple the errors present in a given fabricated sample and help in the correction of

future fabrication runs. This can be done by analyzing the reconstructed intensity using

the optical characterization procedure and matching the parameters of the sensitivity

variables to simulate a hologram that contains similar distortions. Figure 2-88 shows an

example of a simulated reconstruction pattern from a hologram perturbed to match the

optical reconstruction of Figure 2-79. The simulated pattern very closely matches the

experimental result, enabling the estimation of the different degrees of errors present in

the fabricated sample.
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Figure 2-87: Example of stitching error analysis.

Figure 2-88: Simulated reconstructed pattern from perturbed CGH.
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2.7 Optimization of Multispectral CGHs for High-

Efficiency Solar Concentration

In recent years, a great effort has been placed on the development of new technologies

that exploit solar energy for the production of electricity to satisfy current demands. The

sun provides two orders of magnitude more resource availability over wind and more over

biomass, geothermal, and waves [135]. Some of the challenges faced by new emerging

solar technologies today include the development of efficient and cost effective systems.

One of the main factors driving the cost of solar systems is the expensive photovoltaic

(PV) cells required. Solar concentrators allow the replacement of large PV devices with

smaller cells reducing the overall systems' cost and improving the collection efficiency.

These systems are characterized by the concentration ratio,

C = ''"p , (2.77)
Doutput

where Diapt and Dutpt are the input (entrance pupil) and output (field stop, e.g. PV

cell size) diameters of the solar concentrator system [136]. The collection angle is related

to the concentration ratio by the Lagrange invariant of the optical system (given by the

characteristic 6tendue of the optical system),

niDi sin 01 = n2D2 sin 02 , (2.78)

S n2sinO2
ni sin 01'

where ni and n 2 are the refractive indices of the surrounding media and PV cell respec-

tively, D1 and D2 are the ray's heights (corresponding to the input and output diameters),

and 01 and 62 are the acceptance half angles of the system. Solar concentrator systems

are broadly classified as 2D and 3D [137]. In the 2D case, the system concentrates the

incident solar energy into a line. The concentration ratio for the maximum collection
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angle (02 = 90degrees and ni = 1) simplifies to [138],

C2D = n2(2.79)sin 01

Small concentration factors lead to large acceptance angles, making 2D systems suitable

for passive operation (no tracking required - tolerate daily or seasonal variations of

the sun). For the 3D case, the solar energy is concentrated into a tight spot and the

concentration ratio for the maximum collection angle is given by,

C3D =( )2 (2.80)
(sin 01)

Large concentration ratios can be achieved by 3D systems, provided that an efficient

optical system is used for the collection of sunlight. The effective concentration ratio

is: Ce!! = C? 6ff, where qeff is the effective efficiency of the optical system. Only

relatively narrow collection angles can be achieved in 3D concentrator systems, requiring

the implementation sun tracking devices.

Solar concentrator systems based on CGHs are strong candidates, promising to de-

liver high concentration efficiencies in a cost effective manner. As demonstrated in the

previous sections, CGHs can be designed to reconstruct arbitrary patterns at a parallel

plane with high diffraction efficiencies (over 80% for the case of multi-level phase CGHs).

In solar concentrator systems, CGHs can be used to redirect the incidence light to a

narrow spot where an optimized PV cell is placed, replacing conventional systems such

as those based on lenses, Fresnel zone plates or parabolic mirrors. CGHs can be designed

to operate with extremely short working distances (distance from the CGH to the PV

cell) reducing the overall size of the system. In addition, a multiplexing based encod-

ing strategy can be implemented to design holograms that perform a spectral splitting

operation on the incident light. The CGHs not only concentrate the incident energy,

but can also redirect particular spectral bands to a desired location where a PV cell

optimized for that particular spectral band is located. Undesirable spectral bands can
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be redirected outside the region of interest, improving the overall efficiency of the PV

cell. Alternatively, bands not used for the PV conversion process can be deflected and

used for thermal solar heating, effectively using a greater portion of the solar spectrum

compared to most conventional techniques. In addition, CGHs can be multiplexed to

perform passive tracking of the sun at different points during the day.

Conventional holographic elements have been developed and applied for solar collec-

tion [138], [139], [140]. Most of these systems perform a 2D collection and are based

on transmission or reflection gratings designed to deflect the incident beam to a desired

direction. These holograms are recorded optically, limiting the encoding process, result-

ing in low diffraction efficiencies over the entire solar spectrum. These holograms are

typically unstable over long periods and have a short lifespan.

Figure 2-89 shows the CGH based solar concentrator system studied in this section.

The optimized CGH concentrates the incident sunlight and spectrally separates different

bands deflecting them to single junction solar cells with matching bandgaps.

Sun Light

CG H

Photovoltaic Cells

Figure 2-89: CGH based solar concentrator.

We present some preliminary results on the optimization of multispectral CGHs. In

the presented example, the optimization is done for four discrete wavelengths. The

optimization parameters are indicated in Table 2.8. The corresponding concentration
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ratio and maximum full acceptance angle are: C3D = 10, 01 = 56.63degrees. Figure 2-90-a

shows the optimized multispectral CGH. To demonstrate the spectral splitting capability

of the designed CGH, the hologram is reconstructed for each wavelength independently.

The reconstructed amplitude is shown in Figure 2-90-b. The effective optical diffraction

efficiencies are plotted on Figure 2-91. Diffraction efficiencies over 50% are achieved. We

predict that an even higher performance can be obtained by optimizing the multispectral

CGH using the HOA discussed above. An additional analysis is required to take into

account dispersion effects and to include extended spectral bands.

Table 2.8: Optimization Parameters: Multispectral CGH.
A, 731nm Working Distance (d) 25mm
A2  887nm Hologram Size (Hize) 4mmx4mm
A3  1.13pm Pixel Size (6p,;) 1pm
A4 2.48tm PV Cell Size 0.4mmx0.4mm

(a) (b)

Figure 2-90: (a) Optimized multispectral CGH; (b) Reconstructed amplitude for different
operating wavelengths.
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Figure 2-91: Computed diffraction efficiencies per solar cell.
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Chapter 3

Design and Optimization of Total

Internal Reflection (TIR)

Holographic System for Photoresist

Exposure in the Fresnel Diffraction

Zone

In the previous chapter, the design, optimization and implementation of computer gen-

erated holograms (CGHs) and their application to high-resolution lithography was dis-

cussed. CGHs were proven to reconstruct high-quality patterns that satisfy the high

diffraction efficiency and uniformity demands when optimized using the proposed hybrid

optimization algorithm with the reduced complexity formulation that allowed improving

significantly the signal encoding process in a computationally efficient manner.

In this chapter, the design and optimization of a total internal reflection (TIR) holo-

graphic system is presented. This system is also applied for high-resolution lithography.

In contrast to the previous method based on CGHs, the holographic elements used in the

TIR system are optically recorded on a photosensitive material. The hologram record-
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ing process fixes the type of strategy used to encode the desired signal. This encoding

strategy can be optimized by the manipulation of several geometrical, material and fab-

rication related parameters. Similar to the previous system, the reconstruction or decod-

ing process is performed optically and is applied for the exposure of a substrate coated

with photoresist in the Fresnel diffraction zone. The correct modeling and simulation of

the recording and reconstruction processes is very important to assist in optimizing the

system parameters, as well as designing an optimum binary mask (desired signal) that

minimized potential fabrication errors. Scalar and vector diffraction formulations are im-

plemented and their performance under the studied geometry is compared. The results

obtained from simulations are compared to those from experiments verifying the validity

of the implemented algorithm. The response of the photosensitive material used for the

recording of TIR holograms is studied. A method for extending the system's depth of

focus is proposed. A novel block-stitching algorithm is introduced for the calculation of

large diffraction patterns that overcomes current computational limitations of memory

and processing time. Finally, the advantages and disadvantages of the TIR holographic

system and the system based on CGHs are compared.

3.1 Background and Problem Definition

The optical recording of holograms using the TIR geometry was originally proposed by

Stetson in 1967 [14], [141]. This new form of holography made it possible to record

the complex field scattered by an object located in close proximity to the holographic

recording material in the near or Fresnel regimes. High spatial frequency components

including evanescent waves can be used during the signal encoding process. In addition,

the TIR geometry provides an effective way to filter out the undesirable diffraction or-

ders that result from the hologram reconstruction process without the need for additional

optical components, such as an aperture stop or 4f system, as required in the off-axis

geometry. Over the following years, several researchers experimentally studied the phys-
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ical properties of TIR holograms such as Bragg selectivity (over varying incident angle

and wavelength), polarization dependence [142], emulsion thickness, diffraction efficiency,

and signal-to-noise ratio. Simplified theoretical models based on Kogelnik's coupled wave

theory [143] and vector diffraction theory [144] for the extreme cases of thick and thin

emulsions were developed to try to explain the experimentally measured data.

Recently, TIR holography has been found to be a promising technique for high-

resolution lithography [145], [146]. This geometry allows exposing high-resolution pat-

terns with low background noise while having the photoresist in close proximity to the

holographic emulsion. As a result, high effective numerical apertures (~1) can be easily

achieved. In addition, the required system is lensless, inexpensive and allows the exposure

of large areas - ideal for applications such as liquid crystal display (LCD) panels [147] and

field emission displays [148]. The photoresist exposure process can be integrated with

scanning systems for the manufacture of large area semiconductor devices. Subwave-

length exposures of periodic patterns have been demonstrated using off-axis illumination

of the mask during the TIR recording process [149].

Despite the increasing popularity of TIR holographic lithographic systems, currently

there is no multi-domain optimization algorithm designed to improve the overall sys-

tem's performance. This chapter will present a numerical model that allows simulating

the TIR recording and reconstruction processes, including the material response of the

holographic emulsion used. The optical, geometrical and material parameters of the sim-

ulation algorithm can be used to optimize the photoresist exposure for arbitrary mask

patterns.

3.2 System Geometry

The TIR recording and reconstruction geometries are shown in Figure 3-1. In the record-

ing step, the field diffracted by an amplitude mask (such as a chromium pattern on a

fused silica substrate) located at a working distance, d, from the holographic material in-
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terferes with the incident and reflected components of the reference wave. The reference

wave gets coupled into the system with the help of a right angle prism and illuminates

the hologram at an angle, 0, larger than the critical angle, 0c = arcsin(ni/n 2). As a

result, the reference wave suffers TIR at the prism-air and hologram-air interfaces and

exits the system in the conjugate direction. The holographic emulsion has a refractive

index approximately equal to that of the prism and is held together using, for example,

optical glue or oil. Three effective holograms are recorded: transmission, reflection, and

Lippmann [150]. The transmission hologram results from the interference of the reflected

component of the reference wave and the object wave and has relatively low spatial fre-

quencies. The reflection hologram is produced by the interference of the incident reference

wave and the object wave and has higher spatial frequencies. The Lippmann hologram

is produced by the self-interference of the incident and reflected reference waves. The

influence of this hologram can be reduced to some extent by controlling the polarization

of the reference wave and the incident angle [151], [152]. Upon total reflection, the wave

suffers a phase shift known as Goos-Hanchen shift [153], which changes the polarization

state of the reflected wave. It is sometimes desirable to eliminate the additional recorded

holograms as much as possible, as they utilize the finite dynamic range provided by

the photosensitive holographic material lowering the resulting diffraction efficiency. A

replication of the recorded hologram to form a surface relief hologram has been proven

to reduce the effect of these additional holograms at the expense of a more elaborate

fabrication process [154]. Surface relief holograms have a higher index contrast that re-

sults in higher diffraction efficiency and longer lifespan compared to that of conventional

photopolymers, as they are typically etched into a glass substrate. After recording, the

hologram undergoes developing and bleaching processes or alternatively a fixation process

using UV uniform illumination.

In the reconstruction step, the hologram is illuminated by a probing wave that is phase

conjugate of the reference wave. This results in desirable and undesirable diffraction

orders. The desirable diffraction orders suffer frustrated TIR and propagate towards the
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Figure 3-1: (a) TIR recording geometry; (b) TIR reconstruction geometry.

photoresist plane located at the same working distance, d. The undesirable diffraction

orders suffer TIR at the hologram-air interface and exit the system in the conjugate

direction as the probing wave. After exposure, the photoresist undergoes the standard

developing and etching processes.

3.3 Comparison of Vector and Scalar Diffraction For-

mulations for the Simulation of TIR Holographic

Systems

We begin our analysis by comparing vector and scalar formulations for calculating the

optical field diffracted by the mask at the hologram plane. Three methods are compared:

rigorous coupled wave analysis, finite-difference time-domain and scalar diffraction theory

(Fresnel approximation and exact formulation). The modeled masks consist of phase and

amplitude binary gratings with periods: A = 2ptm. The phase mask is used to simulate

the diffraction from the hologram in the reconstruction step. The operation wavelength
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and working distance are: A = 350nm and d = 200pm. Two polarization states are

considered: TE and TM. After the analysis, the best method (in terms of accuracy

and computational performance) will be selected and used for modeling the entire TIR

holographic system.

3.3.1 Rigorous Coupled Wave Analysis

Rigorous coupled wave analysis (RCWA) is one of the most widely used methods for the

accurate analysis of the diffraction of electromagnetic waves by periodic structures such

as gratings, holograms and surface relief structures. It provides a relatively straightfor-

ward technique for obtaining the exact solution of Maxwell's equations for the diffraction

of grating structures. It is a noniterative, computationally efficient, deterministic method

based on state-variable space representation that converges without numerical instabili-

ties. The accuracy of the solution depends solely on the number of terms retained in the

field space-harmonic expansion.

RCWA was originally proposed by Moharam and Gaylord in 1981 [155]. Since then,

this method has been successfully used to analyze a variety of structures, including

transmission and reflection planar dielectric-absorption holographic gratings [156], binary

phase gratings [157], arbitrary profiled dielectric-metallic surface relief gratings [158],

[159], multiplexed holographic gratings [160], and anisotropic gratings for both planar

and conical diffraction [161].

Diffraction from Binary Phase Grating

We begin by describing the RCWA formulation for the case of a binary phase grating mask

under TE polarized incident illumination (where the electric field oscillates perpendicular

to the plane of incidence). The general geometry of the grating structure is shown in

Figure 3-2. The grating is assumed to be of infinite extent. The problem parameters

are indicated in Table 3.1. We will consider the case of normal incidence; however, the

general formulation will be presented.
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Table 3.1: Problem Parameters: Binary Phase Grating.
Wavelength (A) 350nm nr 1

Period (A) 2pam nj 2.04
Duty Cycle (f) 0.5 Thickness (t) 200nm

Incidence Angle (0) 0 Polarization TE

k

EX Region I

Figure 3-2: Grating geometry: TE polarization.

Three regions are defined: region I (air), region II (dielectric) and grating region

(0 < z < t). In the grating region, the periodic relative permittivity can be represented

using Fourier series,

.2rhx
E(X) = E 6exp (. A

(3.1)

where the Fourier coefficient is given by,

6h E f (x) exp
2

.27rhx
- dx. (3.2)

The refractive index and relative permittivity are related by: n = F (where we assumed
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yPrelative ~ 1). The relative permittivity within one grating period is,

n 2I

n 2II

n 2

A
5.< X < LfA
2 2

LA < <A
22

Substituting equation 3.3 into equation 3.2 we find the expression for the Fourier

harmonics,

6o = fnr + n (1-f),
2sin (wrhf)

h (ni1 - n2) i hI I 7th

(3.4)

where 6o is the average value of the relative permittivity. Figure 3-3 shows the relative

permittivity modulation for the problem parameters of Table 3.1. The Gibbs phenomena

shown in this figure is related to the number of retained Fourier harmonics.

4

3.5-

3

2 . -
2

1.6
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x u~r)
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Figure 3-3: Relative permittivity modulation of phase binary grating.

The binary grating structure is illuminated by a TE polarized plane wave given by,

Einc,, = exp [-ikni (sin Ox + cos Oz)], (3.5)
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where k = 27r/A. The total electric field in region I is,

Er,y = Einc,y + E R(q) exp [-i (k() x - k (z)] , (3.6)

where R(q) is the qth reflection coefficient, and k) and k ( z are the components of the

qth reflected wave vector along the x and z directions respectively. Similarly, the total

electrical field in region II is,

Err,y = 1 T(q) exp [-i (k ()x - k - t))] , (3.7)

where T(q) is the qth transmission coefficient, and k () and k ( are the components of

the qth transmitted wave vector. The x-component of the reflected and transmitted wave

vectors, kW , is required to satisfy the Floquet condition (phase matching condition),

k(q) = k nrsin- q ]. (3.8)

The z-component of the wave vectors in both regions are derived from the dispersion

relation for the cases of external and internal reflection,

-q) - 2 1/2
k [nc - ne__lk > kX"

k ) i 2 1/2 , (3.9)
-ik k -nLe nek < kx"

where L = I, II.

Next, we express the tangential electric field in the grating region as a Fourier expan-

sion,

E g ,y = ( S 4)(z) exp (-ik (qx) , (3.10)

where S(') is the normalized amplitude of the qth space-harmonic electric field. The

Fourier expansion of the x-component of the magnetic field is found using equation 3.10
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and Maxwell's equation: H = (i/wp) V xE,

Hgx 1/2 exp) i ()X

H,,2 = -i [ UAq )(z) exp(ik)x) (3.11)

where UW is the normalized amplitude of the qth space-harmonic magnetic field, and

,o and po are the permittivity and permeability of free space. Equations 3.10 and 3.11

satisfy Maxwell's equations,

-'" = iwuoHg,x, (3.12)
OZ

OHg,x H~&Hz = iwEoE(x)Eg,y + .xOz Ox

Substituting equations 3.10 and 3.11 into equation 3.12 we obtained the set of coupled-

wave differential equations,

OSCq)

YUq k q)
OZ_ k X (3.13)

auk S k e(q - p) SP

We can rewrite equation 3.13 into the reduced matrix form,

[a (Z/)21 = [A] [Sy], (3.14)

where z' = kz; A = K - E (A is an n x n matrix, where n is the number of harmonics

retained after the expansion and is symmetric for dielectric gratings and Hermitian for

lossy gratings); E is the matrix formed by the permittivity harmonic components, with

the q, p element being equal to E(q -p); and Kx is a diagonal matrix with the q, q element

being equal to kx(W/k.

The set of coupled differential equations is solved using the eigenvalues-eigenvector
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method. The general solution is given by,

S(z) = >Z n v$() [c+ exp (-k(mz) + c- exp (k(m(z - t))] , (3.15)

Ux')(z) = 1 r [-ct exp (-k(mz) + c- exp (k(m(z - t))]

where v$, are the elements of the eigenvector matrix V; (m are the positive square root

eigenvalues of the matrix A (elements of diagonal matrix C); c+ and c- are unknown

constants to be determined using the boundary conditions at z = 0 and z = t; and

rM = (mvmi are elements of the matrix n = VC.

Next we use the boundary conditions to match the amplitudes of the electric and

magnetic components to R(q) and T(q) in regions I and II. The resulting set of coupled

differential equations (in matrix form) is,

6(q) I V VX c +[ J+ [[ R] = LJ[ J, (3.16)
Lin, COS06(q) -L-iY1 x R Lr - rX c-

VX V C+ I[] = [T],
rX -K c- iYII

where 6 (q) = 1 for q = 0 and 6 (q) = 0 for q # 0; X, Yj and YI1 are diagonal matrices

with the diagonal elements e(ik(mt), (k0/k) and (kq7/k); and I is the identity matrix.

Equation 3.16 is solved simultaneously to find the values of R(q) and T(q). Figure 3-4

shows the magnitude and phase of the total optical fields in regions I and II.

The diffraction efficiencies for the reflected and transmitted waves are defined as,

k M)
DEq) = RC)R (q)* Re I''s) (3.17)

R~ q R knicos0

k M)
DE 3 = T (q)T ()* Re .I'

T ( kn cos 0
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Energy conservation requires that,

DET + -DE = 1. (3.18)

Figure 3-5 shows the corresponding diffraction efficiencies for the binary phase grating

structure.

Diffraction from Binary Amplitude Grating

We now use RCWA to calculate the diffracted field from a binary amplitude grating. The

grating consists of a quartz substrate and a thin layer of chromium, patterned to form

the grating lines in a similar geometry as that of Figure 3-2. The results presented in

this section are for TE polarized illumination. The problem parameters are indicated in

Table 3.2. The complex index of refraction of chromium was obtained from [162].

Table 3.2: Problem Parameters: Binary Amplitude Grating.
Wavelength (A) 350nm n 1

Period (A) 2pim nHj 1.5655
Duty Cycle (f) 0.5 nchromium 1.812 - i2.619

Incidence Angle (0) 0 Thickness (t) 200nm

The problem formulation is similar to that described in the previous section except

that the complex permittivity function is used to characterize the dielectric modulation

within the grating region. Figure 3-6 shows the complex relative permittivity within the

grating region. The phase and amplitude of the total fields in regions I and II are shown

in Figure 3-7. The corresponding diffraction efficiencies for the reflected and transmitted

waves are shown in Figure 3-8.
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Unwrapped Phase: Reflected + Incident fields
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Figure 3-4: (a) Complex field in Region I; (b) Complex field in Region II.
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Figure 3-5: (a) Diffraction efficiency of reflected wave; (b) Diffraction efficiency of trans-
mitted wave.
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Figure 3-6: Complex permittivity of amplitude binary grating.

3.3.2 Finite-Difference Time-Domain (FDTD) Method

In the FDTD method, the time-dependent Maxwell equations are discretized using

central-difference approximations and the resulting set of finite-difference equations is

solved. The solution of the problem is done in a leapfrog manner: the electric field vector

components are solved in a volume of space (Yee cell [163]) at a given instant in time;

then the magnetic field vector components at the same volume of space are solved at the

next instant in time. The process is repeated until the desired steady-state electromag-

netic field behavior is reached. The main strengths of FDTD modeling are its versatility

and ease of use. In addition, animations of the electrodynamics of the problem can be

produced as the algorithm calculates the electric and magnetic fields everywhere in the

computational domain as they evolve in time. Some of the disadvantages are that the

entire computational domain must be gridded, and the grid spatial discretization must

be sufficiently fine to resolve both the smallest geometrical feature and operation wave-

length. This results in long computational times and memory problems. For this reason,

the computational domain must be truncated by inserting artificial boundaries, such as

a perfectly matched layer (PML). The FDTD method has been used in a variety of

problems in computational electrodynamics such as photonic crystals, nanoplasmonics,
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Unwrapped Phase: Reflected + Incident fields
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Figure 3-7: (a) Complex field in Region I; (b) Complex field in Region II.
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Figure 3-8: (a) Diffraction efficiency of reflected wave; (b) Diffraction efficiency of trans-
mitted wave.
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solitons, antennas and radar [164].

The numerical results presented in this section were performed by Satoshi Takahashi

using the open source software Meep [165]. Figure 3-9-a shows the evolution of the

electric field for the case of the binary phase grating discussed previously. The simulation

parameters are the same as those in Table 3.1. The simulation results for the case of the

binary amplitude grating are shown in Figure 3-9-b. In this simulation, the chromium

layer was replaced by a perfect conductor.

FOTD Sirnulation: Ampltude Binary Grating

-2

8

10 V t -i j

-10 -8 -6 4 -2 0 2 4 6 8 10
(xn)
(b)

Figure 3-9: (a) FDTD results for binary phase grating; (b) FDTD results for binary
amplitude grating.

3.3.3 Scalar Diffraction Theory Analysis

The behavior of the electric and magnetic field components inside a dielectric medium

that is linear, isotropic, homogeneous and nondispersive is identical and it is fully de-

scribed by the scalar wave equation. In the treatment of light using scalar diffraction

theory analysis (SDTA), phenomena associated with the vectorial nature of the electric

and magnetic fields, such as polarization, is ignored. For the analysis of TIR holography,

this formulation is accurate under the following assumptions: thin hologram (Raman-

Nath regime [67]), to avoid coupling effects due to the variations of the refractive index
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inside the volume; neglect polarization; and diffracting structures large compared to the

operation wavelength.

SDTA offers a variety of formulations including Huygens' Principle [166], Rayleigh-

Sommerfeld theory [167], Kirchhoff formulation [67] and angular spectrum propagation

[168]. In the previous chapter, the formulations based on the first solution of the Rayleigh-

Sommerfeld and angular spectrum theories were discussed for the optical field propaga-

tion in the Fresnel regime. The free space propagation impulse response for the Fresnel

approximation and exact formulation are given by equations 2.17 and 2.21 respectively.

As discussed previously, the computation of the diffracted field is numerically imple-

mented in frequency domain (equation 2.48) using the Fresnel approximation (equation

2.49) or angular spectrum propagation (equation 2.52) transfer functions depending on

the geometry of the system (equation 2.20).

Block and Stitching Method for the Calculation of Large Diffraction Patterns

Holographic lithography often requires the calculation of a field diffracted from a large

pattern (transmission function) such as a mask. The large size of the transmission func-

tion makes the computational implementation particularly challenging. To numerically

compute the diffracted field, the transmission function needs to be discretized using N x N

pixels. The resulting large space-bandwidth product makes it impossible to process this

function with conventional computational means. Memory and computational time lim-

itations promptly arise.

To solve this problem we propose an algorithm designed for the efficient calculation

of large diffraction patterns. We call this algorithm block-stitching (BS) method. The

BS method is based on SDTA and it computes the diffracted field by splitting the prob-

lem into manageable portions (blocks), perform field propagation operations on each

block and stitching them afterwards. This algorithm leverages on the spatial locality of

most Fresnel diffraction patterns. For binary masks that are composed, for example, of

squares, lines and circles such as those used in lithography, the field diffracted by each el-
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ement is confined within a small patch of size given by the corresponding Fresnel number.

The geometry of the studied diffraction problem is shown in Figure 3-10. The cor-

responding block diagram of the BS method is shown in Figure 3-11. A transmission

function, t(x, y), of size Xjze is defined on plane 1 and is divided into Mx x My blocks

of size Bsize,x = Xsize/Mx (for the x-direction). The total number of blocks depends

on: 1. Computational time (each processed block adds memory transfer overhead); 2.

Spatial frequency content of the signal inside the block. The second point is related to

the required block size after zero padding. Zero padding the block before performing

the field propagation operation is necessary, as the diffracted wave diverges at a rate

proportional to the signal's spatial frequency content. In addition, a zero padded signal

results in better sampling in frequency domain and avoids aliasing in the evaluation of

the propagation transfer function.

Plane 1 Plane 2
x x'

t(x.v) g(x,.v)

Ix0 :d

Figure 3-10: Geometry of diffraction problem.

To determine the block size after zero padding two methods are employed: Fresnel

number and signal's power spectrum. The first method based on the Fresnel number

is particularly suitable for transmission functions composed of binary patterns, such as

traditional masks used in lithography. Depending on their signal content, different blocks

might lead to different block sizes after zero padding. The size of the mth zero padded
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Figure 3-11: Block diagram of BS method.

block along the x and y directions is given by,

$ wBM ( m) + 2 + (l et,, (3.19)

where L = x, y (specifies the direction); Wh is the half width of the smallest aperture

inside the mth block (equals to the smallest radius for the case of a circular aperture);

n = 1 for rectangular apertures and s = 1.22 for circular apertures (from the location of

the first ring of the Airy pattern); loffset is the length offset of the center of the smallest

aperture respect to the center of the block; and F is the Fresnel number given by,

F =m) (3.20)L Ad

where A is the operation wavelength and d is the propagation distance. The zero padded

block size of equation 3.19 guarantees that most of the energy of the diffracted signal

at plane 2 is contained within the computed padded patch in order to avoid potential

stitching errors.

For the second method, the power spectrum of the mth block is computed. Next, the

cut-off frequencies along the horizontal and vertical directions for an idea low-pass window

that contains more than 90% of the energy after being applied to the signal are found.

166

... . .......



The cut-off frequencies correspond to the direction cosines of the highest off-axis plane

wave (highest spatial frequency of interest) emanating from plane 1: cutoff = Ucutoff A,

Ocutoff = ucutoff A. The resulting off-axis angle sets the effective numerical aperture of the

system: NAeff,2 = arccos(acteff), NAeff,y = arccos(cutoff). The zero padded block

size is given by,

,= 2dNAef f, + B (3.21)

The second method for determining the zero padded block size is useful for general

signals other than the binary patterns used in lithography. An alternative method can be

implemented based on the Wigner distribution function [169]. Despite the chosen method,

the maximum block size after padding is ultimately limited by the memory available in

the processing unit. In the presented work, a maximum array size of 4000 x 4000 elements

(Bsize,x/ 6 pix x Bsize,y/6ix) is implemented.

The following example illustrates the calculation of the zero padded block size using

the two methods described above. Consider a finite size transmission function given by

(ID case),

t(x) = - + - cos (27rfox) rect (3.22)
12 2 1 Xize

= g(x)rect (,ze)
Xsie

where fo is the grating's frequency. The transmission function is divided into three blocks

(M = 3),

t_1(x) = g(x)rect XB (3.23)
Bsize

to(x) = g(x)rect (BXze)

ti(x) = g(x)rect Bsze '
Bsyze a

where Bsize = Xsize/M. It can be easily proved that by adding the equations 3.23 we
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arrive at equation 3.22. The Fourier transform of each block's transmission function is

given by,

To(U) = Bsizeinc (Bize) + B se [sinc (B,ie (u - f,)) + sinc (Buize (+ fo))](3.24)Tou)- 2 (B4e)+ SZ\

T-1(u) = Bsize sinc (BsizeU) e-i27rBizeU + Bsize [sinc (Bize (U - f,)) e-i27rBze(u-fo)
24

+sinc (Bize (u + f0)) e- 2 7Bize(U+fo)]

Ti(U) Bsize sinc (BsizeU) ei27rBieu + Bze [sinc (Bize(U - fM)) ei 2 7rBsize(u-fo)
2 z4[sn

+sinc (Bsize (u + fo)) ei27rB.ize(u+fo)].

The summation of the frequency spectrums of equation 3.24 leads to the spectrum of the

original transmission function,

Xiz
T(u) = Tm(u) = 2izesinc (XsizeU) (3.25)

m 2 '

+ Xize [sinc (Xsize(U - f)) + sinc (Xize (U + f))4

To estimate the zero padded block size using equation 3.21, consider the following

parameters: A = 500nm, 6,,i = 100nm, Xsize = 600pm, Agrating = lpm (Agrating = 1/f),

and d = 100pm. The corresponding space-bandwidth product is, SBP = 6000 x 6000,

which is too large to process conventionally. The block size is: Bize = 200pm (SBPbl,k =

2000 x 2000). From equation 3.24, we see that the block's spectrum is composed of a sinc

function centered on the frequency axis and two additional sinc functions shifted by f,.
The cut-off frequency is given by the location of the first zero of the shifted sinc functions:

Ucutoff = fo + 1/Bize = 1005mm- 1 . The corresponding effective numerical aperture is:

NAeff = 0.5025. The zero padded block size given by equation 3.21 is: BsZze = 300.5pum

(SBP = 3005 x 3005). Dividing the function into blocks allowed us to reduce the SBP to

an amount that is manageable with current computational means. We now compare the

zero padded block size computed using equation 3.19. To use this equation, the grating

pattern is binarized: g(x) = 1 for g(x) > 1/2 and g(x) = 0 for g(x) < 1/2. Each grating
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line becomes a rectangular aperture (rs = 1) with a half size: wh = 0.25pm. For the

center block, the offset distance of the furthest aperture is: loffset = Bsize/2 = 100pm.

The corresponding Fresnel number is: F = 1.25 x 10-3. The resulting zero padded block

size is: Bsize = 300.5pm.

The next step in the BS method is to zero pad the mth block to the calculated

size. Then, the block's diffraction pattern is computed by performing forward or inverse

field propagations. Next, the diffracted field at plane 2 is stitched to the neighboring

diffracted blocks coherently adding the overlapping regions. As an optional step, the

computed diffraction block is placed on a high-resolution grid (provided there is enough

memory); otherwise, the result is saved to hard drive. These steps repeat until all the

blocks have been processed.

Figure 3-12-a shows an example of the segmentation of a large binary mask into 16

blocks to be processed by the BS method. The zero padding and diffraction steps for the

first block are shown in Figure 3-12-b. The stitching procedure for the first four blocks

is illustrated in Figure 3-13-a. Figure 3-13-b shows the final diffracted pattern. Notice

how the stitching procedure did not introduce any boundary errors.

3.3.4 Comparison of Diffraction Theories

The three methods described above (RCWA, FDTD and SDTA) are used to simulate

the field diffracted from an amplitude binary grating mask with a working distance:

d = 200gm. Figure 3-14 shows a comparison of the resulting field amplitude along the

x-direction. As can be seen, the results from SDTA using both the Fresnel approxima-

tion and exact formulations very closely follow the solution computed from RCWA. The

discrepancies between FDTD and RCWA are attributed to the type of material used

and the selected computational region. For the simulation results based on RCWA, the

pattern of the amplitude mask is composed of chromium. On the other hand, a perfect

conductor is used for the simulation based on FDTD. In addition, spurious reflections

from the perfectly matched layer are observed that contributed to the resulting field
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(a)

Propapaton

(b

Figure 3-12: (a) Mask segmentation process;
of first block.

(b) Zero padding and diffraction calculation

Figure 3-13: (a) Stitching process; (b) Final diffracted field.
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amplitude.

From the results of Figure 3-14, we conclude that the SDTA formulation is feasible for

modeling the recording and reconstruction processes of TIR holograms. SDTA is com-

putationally efficient, accurate and allows simulating different mask designs. In contrast,

RCWA can only be used to simulate diffraction from periodic structures.

04
-RCWA

- SDTA (Exact)
SDTA (Fresnel)

02 - - - . - -- FDTD

02

-04 -

-0.8 -

-10 -8 -6 -4 -2 0 2 4 6 8 to
x (pr)

Figure 3-14: Comparison of diffraction theories.

3.4 Simulation and Optimization of TIR Holographic

Systems

3.4.1 Optical Recording Process

The TIR hologram recording geometry is shown in Figure 3-15. To simplify the analysis,

the incidence angle is set to: 9 = 7r/4. This angle is slightly larger than the critical angle:

0c e 41.8degrees (for n2 ~ n3 = 1.5). The reference wave suffers TIR at the dielectric-air
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interface, giving rise to two plane waves with wave vectors,

27r
k = eff

- sin 6

- cos 6

27r
k2 Aeff

-sin 0
,

cos 9
(3.26)

where Aeff is the effective wavelength inside the dielectric media: Aeff = A/n. At the

hologram plane (z = d), the reference waves are given by,

r1 = exp [- 27r = (x' + d) r 2 = exp i (-x' + d)].I I~~~~ ~ eff \I /Aeff f2
(3.27)

Figure 3-15: TIR recording geometry.

The holographic emulsion is exposed by the intensity distribution,

=r1 + r2 + Ol2 = |r1|2+|r2|2+|O02 + (r1 + r2) 0* + (r* + r*) 0 +r*r2+rir*, (3.28)

where 0 is the field diffracted by the mask: 0 = t(x, y) 0 h(x, y; d). The spectral rep-

resentation of the exposed intensity distribution is shown in Figure 3-16-a. The encoded

signal is modulated by a high frequency carrier with frequency proportional to incident

angle of the reference wave. Similar bandwidth constraints, as those described in the

previous chapter (equation 2.12), apply.

Depending on the type of holographic material used, two types of holograms can be
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recorded: amplitude and phase. The amplitude hologram is recorded, for example, on a

silver halide emulsion [170]. Upon exposure, the silver halide grains are converted into

metallic silver at a rate proportional to the incident illumination. Following the expo-

sure, the hologram undergoes developing and fixation processes. The resulting amplitude

transmission function is: H oc I. Figure 3-16-b shows the recorded intensity distribution

for the resolution target mask. The case of phase holograms will be discussed later.

1+ +' 1y+~ + 11

sin 

(a) (b)

Figure 3-16: (a) Spectral representation of exposed intensity; (b) Recorded instensity
distribution.

3.4.2 Optical Reconstruction Process

In the reconstruction step, the phase conjugate of the reference wave is used to illuminate

the hologram. The diffracted field at the hologram plane is given by (for the amplitude

hologram case),

R(x', y'; d) = (r* + r*) H oc U1 + U2 + U3 + U4 + U5 + U6 ,
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where,

U1 = r* (Iri| 2 + 2 r2 |2 + 1 2 ) ; U2 = r* (2 r1 |2 I+ r 2+101 2 ) ; (3.30)

U3  = 0 [(r* + r*) 2]; U4 = r2r*2

U5  = rir22; U1 =* (r1| 2 +r 2 + rir* + r*r2).

The effect of the probing wave is to shift the spectrum of the encoded signal (Figure

3-16-a) in a similar demodulation process as that of Figure 2-15. An ideal circular low-

pass window with cut-off frequency, PTIR = sin(6c)/A, is applied to the shifted spectrum

simulating the TIR process and eliminating the undesirable diffraction orders. Provided

all the diffraction orders do not overlap in frequency domain, the filtering process is

equivalent to,

r(x', y'; d) = R(x', y'; d) - U1 + U2 + U3 + U4 + U5  2 + 2 cos 4 7 d) ]0*. (3.31)

The resulting field of equation 3.31 is the reconstructed signal that suffers frustrated TIR

and propagates towards the photoresist plane. The output intensity distribution is given

by,

Photo = r(x', y'; d) * h(x', y'; d) 2 = r(x, y; 0)12 (3.32)

Figure 3-17 shows the reconstructed intensity distribution at the photoresist plane.

This simulation was processed using the BS method described previously. The recon-

structed intensity distribution exposes the photoresist and this process is simulated using

the methods described in the previous chapter.

3.4.3 Modeling Material Response

The previous model for the recording and reconstruction processes assumes ideal exper-

imental conditions and does not consider the response of the holographic material. In

addition, the analysis is restricted for the case of amplitude holograms. We now extend
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Figure 3-17: Reconstructed intensity distribution at the photoresist plane.

the model for the case of phase holograms, as well as include the nonlinear response of

the holographic material.

Phase holograms can be produced by directly modulating the refractive index of the

holographic material or by an additional bleaching step that produces a surface relief

hologram. For silver halide emulsions, bleaching returns metallic silver grains back to

a transparent silver halide compound. The variation of concentration of silver grains

produces variations in refractive index and a surface relief. The transmission function of

a thin hologram is given by,

t = exp (-ap) exp i-pn = Itl exp (i#), (3.33)

where p and n are the emulsion's thickness and refractive index. For a lossless hologram:

a = 0 -+ |t| ~ 1. As indicated in the Hurter-Driffield curve (Figure 2-36), the phase

distribution (in the form of index modulation or thickness variation) is proportional to

the logarithm of the exposed energy when operating in the linear regime: # oc log E,

where E = I - T and T is the exposure time. The exposed intensity distribution of
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equation 3.28 can be rewritten as,

I = |r1+r 2 +012 = |R+ 01 2  (3.34)

= (|R 2 +1012) 1 + 2 2R110 cos (#-

where #o and $R are the phases of the object and reference waves respectively. The

modulation of the emulsion's refractive index is proportional to the exposed intensity

distribution and is given by,

n(x, y) = no + An(x, y), (3.35)

where no is the average refractive index. Under the weak reference condition (IRI << |01)

[171], the phase hologram's transmission function reduces to,

t = exp [ikp (no + AnR + Ano)] exp [i2kp/AnRAnO cos (#0 - OR)] (3.36)

= exp [ikp (no + AnR + Ano)] ()q Jq 2kp AnRAno) exp [iq (0 - $]

where k = 27r/A; Ano and AnR are the refractive index modulations corresponding to the

exposures with 1012 and |R12 ; and J is Bessel function of the first kind, order qth. The

multiple diffraction orders present is characteristic of phase holograms. We are interested

to recover the -1 order as all the other terms suffer TIR. The reconstructed diffraction

order at the hologram plane is,

t_1 exp [ikp (no + AnR + Ano)] (2kp/rAnRZAno) exp(-i4o). (3.37)

The following example illustrates how the reconstructed pattern at the photoresist

plane is affected by the holographic material's response. Consider a hologram recorded

on a Dupont photopolymer: OmniDex613 [172]. Figure 3-18 shows the material's photo-

response. Figure 3-19-a shows the material's response curve for the following simulation
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parameters: T = 100sec, Pot = 0.240W/cm 2, no = 1.5, and d = 200pm. The recon-

structed intensity distribution is shown in Figure 3-19-b.

If we set T = 400sec and all other parameters remain the same, we find the mater-

ial's response curve shown in Figure 3-20-a. The corresponding reconstructed intensity

distribution is shown in Figure 3-20-b.

Dupont OmniDmx613

3 300 400 SW 601 O 005 0.1 015 0.2 0.25
Exposure Time (sec) Intensity (mW/cm

2 )
(a) (b)

Figure 3-18: OmniDex613 photo-response: (a) Exposure time; (b) Intensity.

Duponi OmniDex613 i = 00sec
0012

001

S0002

0 0 0 1 015 02 0 0 3 0 04
Itensity (mW/cm

2
)

(a) (b)

Figure 3-19: (a) Material response curve; (b) Reconstructed intensity distribution.

The second aspect in modeling the material response is to analyze the effects of shrink-

age of the holographic emulsion after the recording step and additional post processes.
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Figure 3-20: (a) Material response curve; (b) Reconstructed intensity distribution.

This analysis departs from the assumption of thin holograms, as shrinkage modifies the

modulated refractive index within the material's volume introducing errors in the re-

construction. The presented shrinkage model can be applied to a variety of recording

materials; however, specific examples for Dupont photopolymers will be presented.

The properties of Dupont photopolymers have been studied theoretically and experi-

mentally by several research groups [173]. These photopolymers are mainly composed of

polymeric binders, free monomers, photoinitiators, and sensitizing dyes [174]. Upon ex-

posure, the activated dye in the material photoinitiates polymerization and the monomer

molecules start moving toward regions of higher polymer concentrations in a diffusion-

based process. To model this process, local and non-local diffusion models have been

developed [175], [176]. In the diffusion process, monomers are polymerized forming poly-

mer chains that grow away from the point of origin, removing active monomers as they

grow and smearing the exposed pattern. This smearing limits the highest spatial fre-

quency recordable on a given photopolymer. For Dupont photopolymers, polymer chains

of around 50-110nm have been predicted [175]. The main advantages of Dupont pho-

topolymers are: relatively large index modulation (An ~ 1 x 10-2), dry processing,

long lifetime, good photo-speed, wide spectral sensitivity, high-resolution and low cost.

To study the dynamics of the recording process, real-time monitoring systems based on
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tracking the Bragg diffraction angle have been implemented [174], [177]. The shrinkage

of the holographic emulsion is mainly attributed to the recording and fixation processes.

For the recording process, it was found experimentally that the DC term is the dominant

factor contributing to the material's shrinkage [177]. The fixation process consists of

exposing the recorded hologram with a uniform high intensity light to polymerize the

residual monomers. This process also causes shrinkage due to an increase of volume den-

sity in the material. It was found experimentally that post baking the hologram after

the fixation process can reduce the effect of shrinkage due to the irreversible thermal

expansion property, the decrease of the average refractive index and the loss of volatile

components of the recording material [174], [178].

To model the effects of shrinkage of the holographic material, a model based on the

weak diffraction approximation (1st-order Born approximation) is implemented [179]. In

this model, multiple diffractions are neglected and the reconstruction probing wave is

assumed to be unaffected while propagating through the hologram (in practice, there is

a depth-dependent absorption of this wave). The total response is given by the super-

position of all the contributing point sources. In addition, only uniform shrinkage along

the axial direction is assumed. From experimental measurements, shrinkage factors of

around 1-2% have been estimated for the Dupont photopolymer: OmniDex 613. The

implemented shrinkage model is shown in Figure 3-21. In this model, the recorded phase

distributions before shrinkage at several parallel planes separated by a distance, Az,

within the hologram's volume are calculated using the method described above (only two

planes are shown). The computed planes are then shifted axially by a shrinkage factor,

At. The resulting hologram is reconstructed and the fields diffracted by each plane are

added coherently at the photoresist plane and the output intensity distribution is com-

puted. Due to shrinkage, the optical path traversed by each plane will be different than

that before shrinkage.

Figure 3-22 shows an example of the reconstructed intensity distributions before and

after shrinkage for a hologram recorded on an OmniDex 613 photopolymer with the fol-
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Figure 3-21: Geometry of shrinkage model.

lowing simulation parameters: A = 350nm, d = 200pim, no = 1.5, Itt = 0.240mW/cm 2 ,

T = 100sec and 10% shrinkage.

3.4.4 Extension of the Depth of Focus

Similar to the previous chapter, extending the system's depth of focus (DOF) is critical

to tolerate potential axial misalignment of the substrate to be exposed. The theoretical

DOF is given by equation 2.73. In this section, we propose two methods to extend the

DOF of TIR holographic systems: 4f relay system and finite beam scanning. In the first

method, a 4f system is placed between the mask and the hologram and is used to relay the

field diffracted by the mask to the hologram plane during the recording step. A variable

circular aperture is placed at the Fourier plane and is used to limit the frequency extent

of the signal. This results in a reduction of the effective numerical aperture (NA) and

thus an increase in DOF at the expense of some resolution loss. In the second method,

the reference wave and mask are illuminated by a finite size beam which is raster scanned

to sequentially expose the entire hologram. The finite beam size also reduces the effective

NA extending the system's DOF.

For the resolution target example presented in the previous sections, the simulation

parameters are: A = 350nm, Hize = 400pm, d = 200pLm, and 6pi,, = 100nm. The

corresponding Nyquist and evanescent cut-offs (equations 2.51 and 2.5) are: UNyq = Uev =
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Figure 3-22: (a) Reconstructed intensity with no shrinkage; (b) Reconstructed intensity
with 10% shrinkage; (c) Intensity cross-sections.

2, 857.2mm-2. The effective NA (equation 2.2) is: NAeff = 0.7071. The diffraction limit

resolution and theoretical DOF are: A = 247.5nm, and DOF = t350nm. In order

to extend the DOF, the effective NA of the system is reduced to: NAeff = 0.21. This

corresponds to a cut-off frequency of the low-pass filter (aperture stop in the 4f system) of:

Ucutoff = 600mm- 1 . The diffraction limit resolution and extended DOF are: A = 1.02pm

(feasible for LCD panel manufacture), and DOF = ±3.97pm.

Figure 3-23 shows the normalized intensity at the center of the PSF as a function of

axial distance for the system before and after extending the DOF. The DOF is estimated

as the region where more than 80% of the irradiance is contained. Figure 3-23-c show

an example of the reconstructed defocused image (at d = 203pm) for the regular and

extended DOF holograms, using the same simulation parameters as those from the pre-

vious example. The holograms are designed to reconstruct the desired resolution pattern
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at a working distance: d = 200pm.

u.w) .(0m)

(a) (b)
Defocused Reconstruction: d = 203pm
Regular I Extended DOF

Line widths = 2.9um. 3um Line widths = 2.9um. 3um

Figure 3-23: Normalized intensity PSF's center: (a) Before extension; (b) After Exten-
sion; (c) Reconstructed intensity before and after extending DOF.

3.4.5 Optimizing the Mask Design

The presented algorithm allows simulating the recording process and predicting the op-

tical reconstruction under a variety of optical, geometrical, material and experimental

conditions. The corresponding controlling parameters can be optimized to produce high

quality reconstruction patterns. An additional degree of freedom is added by redesigning

the mask in a way that allows for compensating potential reconstruction errors. This can

be particularly useful in systems with low effective NA such as aperture limited systems

or those designed to extend the DOF. The reconstructions from this type of system are

characterized by low-pass filtering the desired mask. When a line pattern in the mask
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gets low-pass filtered, the sharp edges become blurry and the reconstructed line becomes

narrower. This is shown in Figure 3-24-a.

To solve this problem, the mask design is modified by the introduction of dilations,

serifs and mousebites. This optical proximity correction technique has been widely used

to enhance the resolution in conventional optical lithographic systems [180], [181]. The

amount of dilation, location and size of the serifs and mousebites is found by an opti-

mization algorithm with an error metric given by the MSE of the difference between the

desired and reconstructed intensity distributions at the photoresist plane. Figure 3-24-b

shows the optimized mask design for a single line pattern.

(b)

Figure 3-24: (a) Low-pass filtering of line pattern; (b) Mask correction process.

3.5 Experimental Validation

A graphical unit interface (GUI) is designed for the flexible implementation of the pre-

sented simulation algorithm. The GUI is used for the design and optimization of TIR
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holographic lithographic systems for LCD panel manufacture. A screen shot of the GUI

is shown in Figure 3-25.

HoloLithography ToolBox ver to

__G I
f.iI5. dO 0 5G oG 0 111 0O O

Figure 3-25: HoloLithography ToolBox.

Experiments conducted at the Mechatronics Center of Samsung Electronics Corpora-

tion in Suwon, South Korea, are used to validate the accuracy of the presented simulation

algorithm. Figure 3-26-a shows a section of the desired gate pattern mask. Figure 3-26-b

shows a close up section of the simulated intensity distribution at the hologram plane.

Figure 3-26-c shows the corresponding microscopic image of the real fabricated surface

relief hologram. Figure 3-26-d shows a microscopic image of the pattern exposed onto a

photoresist after developing and etching. It is found that a critical factor in the design of

TIR surface relief holograms is to avoid nonlinear shape distortion of the resulting grating

[182]. These distortions can be avoided by designing holograms with small aspect ratios

of width versus depth.

3.5.1 Comparison of Holographic Lithographic Methods

We now compare the holographic lithographic systems based on CGHs presented in the

previous chapter and optically recorded TIR holograms presented in this chapter. The

comparison is performed against the in-line CGH geometry. Similar arguments can be

applied to the off-axis and TIR geometries. The main advantages and disadvantages of

both systems are described in Table 3.3.
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(a)

Figure 3-26: (a) Desired gate pattern mask;
(c) Image of fabricated hologram; (d) Image

(b)

(d)

(b) Simulated intensity at hologram plane;
of exposed pattern.

Table 3.3: Comparison of CGH and TIR Holographic Lithographic Systems.
Conventional TIR System In-line CGH System

Optical recording Numerical design
Optical reconstruction Optical reconstruction

Difficult recording: sensitive to Simple fabrication process
vibrations, temperature, etc. using e-beam lithography

Material problems (photopolymers): HSQ: robust material, no degradation
shrinkage and lifespan and long lifespan

Complex reconstruction system: large Simple optical set up
prism and robust motion stage
Undesirable diffraction orders Optimization algorithm need to

suffer TIR eliminate undesirable orders
Fixed encoding strategy Flexible encoding strategy
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Chapter 4

Design, Optimization and

Implementation of High-Resolution

Segmented Aperture Thin Imager

Based on Holographically Corrected

GRIN Lenses

The optimization problems discussed in the previous chapters are formulated to maximize

the information transfer between object and hologram spaces during the signal encoding

and decoding processes. Several geometrical, optical, material and fabrication related

parameters are used to control the system's performance in a multi-domain optimization

approach. For the case of holographic lithography based on CGHs, it is found that the

choices of encoding strategy and optimization algorithms when designing a hologram

subject to stringent constraints are critical to produce high-quality reconstruction pat-

terns at the photoresist plane. In the case of lithographic systems based on conventional

TIR holograms, the encoding strategy is fixed by the optical recording process and the

optimization is done by controlling the corresponding optical (wavelength, exposure con-
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ditions), geometrical (working distance, numerical aperture), and material related (photo

response, post-processing) parameters. In both cases, the signal decoding is performed

by an optical reconstruction process. This process can also be optimized by implementing

techniques such as the extension of the system's depth of focus. In addition, a sensitivity

analysis allowed us to actively predict and assist in the correction of potential fabrication

errors. Finally, both systems presented previously utilize holograms as active components

in the system exploiting their ability to encode complex 2D or 3D information efficiently

on a 2D plane.

In this chapter, another optimization example designed to maximize the information

transfer between object and detector spaces is presented - but this time it is applied to

imaging. A novel segmented aperture thin imager based on holographically corrected

gradient refractive index (GRIN) lenses is proposed and studied. This non-conventional

imager is designed to be high-resolution and have a maximum thickness of 5mm. The

system is modeled using system's theory and simulated by a combination of Matlab and

Zemax [183], [184] interfaces. An analysis of the system is conducted using information

theory. A multi-domain optimization is performed using GAs. An example of decoding

strategy is presented based on the superresolution method for post-processing of the

captured image. Experimental results for the optimization of the hologram's recording

process as well as the measurement and characterization of the system's point-spread

function are presented. A sensitivity analysis is performed to estimate the effect of

potential misalignment errors in the assembly process. A modification of the system's

geometry is proposed for polychromatic imaging.

4.1 Motivation and Problem Definition

The rapid evolution of electronics witnessed over the past few decades has drastically

changed the design of imaging systems [185]. In particular, the introduction of digital

photodetectors and numerical post-processing methods have allowed the development of
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non-conventional imaging systems designed to extract scene information more efficiently

than conventional systems. In a similar way, the revolution in mobile technology and the

increasing trend to develop smaller pixel-size photodetectors has led to the development

of small-size imaging systems. Thin imaging systems have been a popular area of research

due to their wide range of potential applications. Emerging military applications envision

large-scale deployment of compact imaging systems mounted on a variety of platforms

such as soldier's helmets, ground vehicles and unmanned aerial vehicles (UAVs) for nav-

igation, guidance, target localization and recognition. These systems are required to be

low power, lightweight, high-resolution and with a large field-of-view, as well as overcome

stringent challenges in cost and fabrication volume. To this end, the Defense Advanced

Research Projects Agency (DARPA) initiated a program called "Multiple Optical Non-

redundant Aperture Generalized Sensors (MONTAGE)" [186] under which the presented

work was developed. In the medical industry, minimally invasive procedures require

the implementation of small-size imagers in devices such as endoscopes. Mobile devices

such as cell phones, portable computers and video cameras also rely on these types of

imagers with a market growing at a pronounced rate. Compact, low-power sensors are

also required for collecting sensitive oceanographic data in a variety of platforms such as

drifters. Finally, more sophisticated surveillance systems have currently been developed.

The design of high-resolution thin imaging systems is challenging and requires the

development of non-conventional optical and numerical methods. To illustrate the prob-

lem, consider a conventional imaging system based on a single lens. From the imaging

condition we find that an object located at a distance, s,, is imaged by the lens at a

distance: si = sf /(s, - f), where f is the lens' focal length. The minimum imaging

distance occurs when s, - oo and si -> f. To make the system thin, the focal length

is reduced while maintaining constant f/ #. Because the f/# is being held constant, a

reduction in focal length is followed by a reduction in aperture diameter. This results

in a loss of photon count that in many cases will produce an unacceptable loss of image

quality. The collected optical power is a quadratic function of the focal length and in
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the presence of additive white Gaussian detector noise the corresponding signal-to-noise

ratio is: SNR oc 1/f2. In addition, the system would suffer a loss of resolution and field-

of-view. If the f/# is allowed to vary, a decrease in focal length would lead to complex

curved surfaces, physical constraints, optical aberrations and cost-related limitations. In

order to reduce the resulting optical aberrations a multi-element design would normally

be required, increasing the size of the imaging system. A similar argument applies when

using Fourier optics. In this case, diffraction also plays a role in the degradation of the

captured image in aperture-limited systems. In addition, the limited space-bandwidth

product and pixel-size of current CCD and CMOS sensors limits the sampling of the

captured image.

Several methods have been proposed for the design of non-conventional thin imaging

systems. Examples of such systems include: thin folded imagers [187], [188], systems

based on compressive sensing applied to visible and infrared imaging [189], [190], task-

specific imaging systems [191], and compound systems using planar, spherical and rota-

tional based geometries [192], [193], [194]. In addition, methods that rely on alternate

projections of the collected field have been investigated such as wavefront coded (using,

for example, a cubic phase mask) [195] and coded aperture systems [196].

Compound imaging systems have been demonstrated to be a good candidate for ultra-

thin imaging configurations. They are segmented aperture systems typically composed

of a lenslet or pinhole array and a digital detector. Compound imagers try to mimic

natural apposition compound eyes found in, for example, flies or moths, where an array

of lenses is used to capture the incident light and each lens has a small number of asso-

ciated photoreceptors forming a channel called "ommatidium". For small invertebrates

that have external skeletons, eyes are very expensive in terms of weight and consumption

of metabolic energy. Compound eyes simplify their visual system in comparison to single

refractive lens based eyes and provide a larger field-of-view at the cost of comparatively

lower spatial resolution. The concept of compound imaging was originally introduced by

Lippmann in 1908 [197]. An example of an artificial compound imaging system is the
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"thin observation module by bound optics (TOMBO)" [198]. This system is composed

of a microlens array, signal separator (to prevent cross-talk from adjacent lenses) and

a digital detector. Each lens produces a low-resolution elementary image of the scene.

The captured elementary images are later combined to retrieve a high-resolution image

by means of a post-processing algorithm. Several reconstruction algorithms have been

proposed, such as the sampling method [198], pixel rearrange method [199] and back

projection method [200]. A variation of the pixel rearrange method known as the su-

perresolution algorithm will be presented later. Additional applications of compound

systems include the measurement of 4D light fields [201], [202], Shack-Hartmann sensors

[203] and task-specific imaging systems [204].

Thin segmented aperture systems based on refractive microlens arrays suffer from

severe optical aberrations due to the short focal length requirement. Refractive lenses

bend the light at the dielectric-air interfaces so a short focal length (increase in opti-

cal power) requires highly curved lens surfaces that are difficult to make. Aberrations

and diffraction artifacts degrade the quality of the elementary images and fail to extract

useful information from the scene. This results in low quality reconstructed images af-

ter the post-processing algorithm. Moreover, a proper optical characterization in terms

of, for example, the system's point-spread function (PSF) or modulated transfer func-

tion (MTF), has not been conducted on previous work for compound systems such as

TOMBO. No methods for the correction of such aberrations applied to thin segmented

aperture systems have been proposed.

4.2 Description of Proposed System

In this thesis, a novel segmented aperture thin imager based on holographically corrected

GRIN lenses is proposed. This system is high-resolution and has a relatively large field-of-

view. In contrast to conventional systems based on refractive lenses, the refractive index

of GRIN lenses is modulated quadratically allowing them to utilize their entire volume to
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smoothly guide the incident light to the focal plane. As a result, shorter focal lengths can

be achieved with a better optical performance (lower aberrations). To reduce the cost of

the system, commercially available GRIN lenses are utilized. These lenses are optimized

for on-axis illumination, requiring an additional mechanism for the correction of optical

aberrations. In the proposed system, the GRIN lenses are corrected by a specially de-

signed holographic element. Figure 4-1 shows the geometry of the proposed system. The

light scattered by the scene is collected by the hologram-GRIN lens array combo and is

focused onto a photodetector such as a CCD or CMOS sensor. The captured frame is sent

to the computer for image post-processing. Each lens in the array forms a low resolution

elementary image of the scene. The aberration correction for each lens is performed for

different field angles (correction points in the image plane) as shown in Figure 4-2. This

alternate projection scheme allows recording of additional information from the scene

that otherwise would be lost, as will be proven using an information theoretic analysis.

The location of the correction points introduces a new degree of freedom that can be

exploited to optimize the system to extract scene information much more efficiently than

can be achieved using conventional isomorphic methods. This optimization is performed

using a multi-domain approach based on genetic algorithms with a fitness function given

by the system's channel capacity. The encoding process is then defined by the acquisi-

tion of a frame composed of N elementary images. The proposed encoding process is

proven to be more efficient than that of conventional systems such as TOMBO. A recon-

struction algorithm is used to combine the captured information from all the elementary

images and produce a restored high-resolution image. Several decoding strategies can be

implemented. In the presented work, the superresolution algorithm is used.

The aberration correction process is conducted using phase conjugation holography

(PCH). The holograms used in PCH are recorded and reconstructed optically. The

recording geometry for PCH is shown in Figure 4-3-a. A diffraction limited point source

is generated at the front focal plane of the GRIN lens using, for example, a pinhole or

microscope objective. An ideal GRIN lens would produce a collimated output plane



<5mm

CCD

Elementary Images

Correction Points

GRIN Lens Array

I~ Aberration
Correcting Hologram

IN

Figure 4-1: Geometry of holographically corrected segmented aperture thin imager.
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wave. Instead, the aberrated GRIN modifies the wavefront of the output field generating

a phase distorted signal wave. A beam splitter is used for coupling the plane reference

wave in transmission geometry. A photosensitive holographic material is used to record

the interference pattern produced by the superposition of the signal and reference waves.

The hologram then undergoes the standard development, bleaching and fixation steps and

is placed back into the system for reconstruction. The reconstruction geometry is shown

in Figure 4-3-b. An incident plane wave probes the hologram reconstructing the phase

conjugate of the signal wave that propagates back through the GRIN lens, cancelling

the intrinsic aberrations and producing a corrected point source at the camera's back

focal plane. To reduce the thickness of the system, the beam splitter is removed and the

recorded hologram is optically glued to the front surface of the GRIN lens. The effects of

removing the beam splitter on the system's PSF are analyzed by means of a sensitivity

analysis.

Recording Reconstruction

Point GRIN Lens Beam Splitter
Source Hologramn

Signal Wave Probing Wave Corrected
Diffracted Wave Point Source

Reference Wave
(a) (b)

Figure 4-3: Phase conjugation holographic process: (a) Recording; (b) Reconstruction.

The PCH aberration correction method shown in Figure 4-3 is performed for a single

field angle (point in the image plane) per lens. Each lens in the array is corrected for a

different field angle by laterally translating the point source and rotating the reference

wave to the corresponding angle during the hologram recording step. An alternative

technique, not explored in this work, involves recording multiple holograms by means of

a multiplexing technique. During the image acquisition process, the light scattered by

an object located in the far-field arrives at the nth Hologram-GRIN lens combo as a fan

of plane waves propagating in different directions with each direction corresponding to a
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point on the object. Plane waves with angles close to the correction angle are efficiently

focused by the system forming a close to diffraction limit spot at the image plane. Only

the plane wave travelling at the same angle as that used during the recording process will

produce a diffraction limited spot. Plane waves propagating at angles significantly differ-

ent to the correction angle produce aberrated spots at the image plane. In other words,

each elementary image has an aberration-free patch centered at a particular location

which is different from that of the other lenses. The correction positions are found by the

optimization algorithm to maximize the information exchange from object to detector

planes.

Correction of aberrations by means of PCH dates back to 1966 with the work of Leith

and Upatnieks [205]. Since then, PCH has been extensively used in applications such as

aberration correction in telescopes [206], [207], [208], microscopes [209], [210], refractive

lenses and zone plates [211] and imaging through diffusing media [212], [213].

An alternative geometry is proposed to increase the system's field-of-view and is

shown in Figure 4-4. In this geometry all the lenses in the array are corrected for an

on-axis point source but the incidence angle of the reference wave is varied. The off-axis

field coming from the scene is rotated by a holographic element, allowing it to be imaged

by the lens and hence increasing the system's field-of-view. A hybrid combination of the

two proposed geometries (Figures 4-2 and 4-3) may be implemented. The holographic

element can also be replaced by a CGH designed to correct the optical aberrations for

different points on the image plane. In the following analysis, we will concentrate on the

system geometry of Figure 4-2.

4.3 Optical Performance of Uncorrected and Cor-

rected GRIN Lenses

We begin our analysis by studying the optical performance of uncorrected and corrected

GRIN lenses using the PCH method described above. The evaluation is done using the
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Figure 4-4: Geometry for increasing the system's field-of-view.

optical design software Zemax. The specification parameters of the selected GRIN lens

are indicated in Table 4.1. This lens is chosen such that the total thickness of the optical

system is less than 5mm. In addition, the pitch of the lens allows the back focal plane

to be away from the lens surface at a working distance (back focal length), d. This

helps bypassing the glass cover that protects the photodetector's pixels, ensuring a sharp

focus of the incoming plane waves. The imager is designed for infinite conjugates to

avoid complex focusing mechanisms. The GRIN lens is made out of SELFOC® material

provided by NSG America, Inc. [214]. These GRIN lenses are manufactured using a high-

temperature ion exchange process within the glass and the host material that results in a

controlled variation of the refractive index. However, this fabrication process introduces

variations on the index gradient constant up to ±3% between ion exchange of different

batches and ±1% for the same batch that modifies the optical performance of each lens.

The PCH approach allows correcting for these aberrations independently for each lens.

The GRIN lens has a radial parabolic modulation of its refractive index given by,

n(r) = no - r 2, (4.1)
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Table 4.1: Specification Parameters of Selected GRIN Lens.
Company Newport Transmission > 89%, 320 - 2000mn

Model LG1630-1 Clear Aperture 70%
Operation Wavelength (A) 630nm Coating Single-layer MgF 2 AR

Pitch (p) 0.23 Material SELFOC
NA 0.46 Diameter (4) 1.8mm

Working Distance (d) 0.21mm Length (L) 4.26mm

where no is the refractive index at the center of the lens (no = 1.6075), and A is the

gradient index constant given by,

VA 27rp (4.2)
L

For the selected lens: A = 0.1148.The modulated index of refraction is shown in Figure

4-5 (for A = 630nm).
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Figure 4-5: Refractive index profile of GRIN lens: LGI630-1.

Inside the GRIN lens, a given ray follows a sinusoidal trajectory with period: P =

27r/V/A = L/p. To find the unaberrated back focal length or working distance (from

the last lens surface to the focal plane), we consider an input marginal ray propagating

parallel to the optical axis and evaluate its trajectory inside the lens and outside to-

wards the focal plane. The resulting unaberrated working distance (under the paraxial
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approximation) is given by,

dideal = cot (Lv/7)
nov/

(4.3)

Using equation 4.3, we find the position of the second principal plane and use it to

compute the effective focal length,

EFL= nv'sin (L A
(4.4)

The corresponding location of the principal planes is given by,

(4.5)lprincipal = tan ( L
nvA 2

Figure 4-6 shows geometry of the GRIN lens. For the selected GRIN lens: dideal =

0.232mm, EFL = 1.85mm, and lprincipal = 1.618mm.

1st PP

4--

dideal

2nd PP

FFL

incpincpa
prlncipaL

Figure 4-6: GRIN lens geometry.

This sinusoidal trajectory followed by a ray inside the lens also specifies the maximum

acceptance angle of an incoming off-axis ray,

Omax = sin-1
no VA)

2 ). (4.6)
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The corresponding field-of-view is: FOV = 20.. For the selected lens: FOV = 40.14

degrees (only using 70% of the lens aperture).

Ray tracing is performed to evaluate the optical performance of the uncorrected GRIN

lens using geometrical optics. Figure 4-7-a shows the ray tracing results for two field

angles. The corresponding spot diagram is shown in Figure 4-7-b. As can be seen,

the GRIN lens suffers from aberrations deviating from the perfect Gaussian image. To

quantify these aberrations, the optical path difference (OPD) for the two fields along the

meridional (tangential) and sagital planes is plotted, as shown in Figure 4-8-a. The OPD

represents the difference between the optical path length of the ray under consideration

and the chief ray in traveling from the point object to the reference Gaussian sphere

at the exit pupil [215]. From the geometrical optics point of view, for an unaberrated

system all the rays launched from the object traverse equal optical paths and arrive at

the image plane forming a perfect spot. The corresponding wavefront map error (from

the difference between the wavefront at the exit pupil and the ideal Gaussian reference

sphere) is shown in Figure 4-8-b. A calculation of the Seidel aberration coefficients reveals

that the dominant aberrations present in the system are astigmatism and distortion.

Spot Diagram

GRIN Lens 10 degrees off-axis

_______1O* off-axis

* RMS radius: 6.4im

on-axis 0, on-axis

RMS radius: 3.67gsm

(a) (b)

Figure 4-7: Uncorrected GRIN lens: (a) Ray tracing; (b) Spot diagram.

The effects of diffraction and evaluate the optical performance using the system's

modulated transfer function (MTF) are now considered. The MTF of the uncorrected

GRIN lens is shown in Figure 4-9 for the aberrated and diffraction limited cases. The
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Figure 4-8: Uncorrected GRIN lens: (a) Optical path difference; (b) Wavefront map.

aberrated lens performs unsatisfactory for both on-axis and off-axis configurations, at-

tenuating most high spatial frequencies.

The numerical model of the holographically corrected GRIN lens is performed using

Zemax's optically fabricated hologram surface. A recording geometry is specified similar

to that shown in Figure 4-3-a for a given correction point and field angle. A hologram

with high diffraction efficiency is assumed in the simulations. The performance of the

corrected lens is first evaluated using geometrical optics. Figure 4-10-a shows the ray

tracing results for a GRIN lens corrected for an on-axis plane wave. The corresponding

spot diagram is shown in Figure 4-10-b. According to geometrical optics, PCH results in

perfect aberration correction for the designed field angle. These results can be verified

from the optical path difference plots of Figure 4-11-a (for A = 658nm). The MTF of

the corrected GRIN lens is shown in Figure 4-11-b. This curve shows that a diffraction

limited performance is achieved for the designed correction angle.
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Figure 4-9 Modulated transfer function of uncorrected GRIN lens.

4.4 System Model

A model of the segmented aperture thin imager is used to characterize the image acqui-

sition or encoding process. Using 1D linear operator formalism, the model of the system

is given by,

g = Hf +n, (4.7)

where g is a M x 1 vector with elements given by raster scanning (or rearranging in

lexicographic order) the measured intensity distribution; f is a N x 1 vector corresponding

to raster scanned scattered intensity distribution by the object (or scene) sampled at

the desired resolution; H is a M x N tensor that functions as a linear operator also

known as the Hopkins matrix; and n is a M x 1 vector of additive white Gaussian noise

(AWGN). The Hopkins matrix, H, includes the responses of both, the optical components

(GRIN lens array and holographic film) and digital photodetector. Figure 4-12 shows

the graphical interpretation of the system model for the case of a thin imager based on

a 2 x 2 GRIN lens array. The object space is sampled into M discrete point sources.

As the object space is located in the far-field, each object point source corresponds to

a plane wave arriving at the camera with a different field angle. For the nth hologram-

GRIN lens unit, the field before the photodetector is given by the superposition of the

space-variant incoherent PSF responses. The resulting field is then subsampled by the
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Figure 4-10: Corrected GRIN lens: (a) Ray tracing; (b) Spot diagram.
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Figure 4-11: Corrected GRIN lens: (a) Optical path difference; (b) Modulated transfer
function.
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photodetector with a given space-bandwidth product. In the example shown, the output

signal is composed of 2 x 2 low resolution images of the object space, each one with a

different modulation (holographic correction), subpixel shift, and added noise.

Field~~ BeoeCDOtut Im;age
Object Space: ,,,,~

I L t~us

Point Source e,,,

H Undersampled PSF1

f H g

Figure 4-12: Graphical interpretation of system model.

The structure of the Hopkins matrix for the case of a holographically corrected thin

imager based on a 2x2 GRIN lens array is shown in Figure 4-13-a. To compute the

Hopkins matrix, the space-variant impulse response of the system (subsampled incoherent

PSF) corresponding to the nth GRIN lens is computed for each field angle sequentially.

The impulse response is then placed at the corresponding location on the image plane

and the resulting image is raster scanned. Figure 4-13-b shows an example of the images

captured by the four GRIN lenses corresponding to unraster scanning the first column

of the Hopkins matrix. In general, the Hopkins matrix is block-space-variant. For a

diffraction limited system, the Hopkins matrix is block-Toeplitz as the system becomes

space invariant.

Using the model of the system presented above, the optical performance of an uncor-

rected and corrected GRIN lenses based on their space-variant PSFs is compared. The

case of a single uncorrected GRIN lens used to image an array of 63 x 63 point sources in

the object space is first examined. Each object point source corresponds to an incident

plane wave that is imaged by the lens. Figure 4-14 shows the resulting intensity distrib-

ution at the image plane before the photodetector (before subsampling). The incoherent

PSFs are normalized based on their Strehl ratio. The Strehl ratio is the ratio between the
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Figure 4-13: (a) Structure of
column of Hopkins matrix.
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aberrated and diffraction limit response observed at the peak intensity. The imaged point

sources correspond to a FOV of approximately 15.5 degrees. The aberrated PSFs have

large sidelobes smearing the image and spreading the optical energy. Next the intensity

distribution before the photodetector for the case of a GRIN lens corrected for an on-axis

field (center of the image plane) is computed. The result is shown in Figure 4-15. At the

center of the image plane, the incoherent PSF is diffraction limited with: Strehl ratio =

1. As the hologram used for correcting the aberrations is relatively thin, the PSFs within

a region centered at the image plane have near diffraction limited performance. Overall

the optical performance of the corrected GRIN lens is much better than the case without

correction, as will be shown in the next section.

4.5 System Analysis Based on Information Theory

Information theory [6] offers a powerful framework for characterizing the quality of an

imaging system in terms of its information content. The result from this characterization
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can then be used to assist in the design of the optical system to maximize information

exchange process. In this formulation, the optical system is treated as a communication

channel and the captured image is treated as a received message, which gives information

about the object or scene. The model of the channel includes factors such as power loss,

aberrations, limited bandwidths (optical and detector) and noise.

It is found that standard metrics used for the characterization of optical systems, such

as the two-point Rayleigh resolution criterion or the detector's space-bandwidth product

(SBP), do not offer significant insight into the true reliability or fidelity of the system

[216]. For example, an imaging system subject to severe blur might suggest low fidelity

in the standard sense; however, by implementing a deconvolution procedure, the high-

resolution pattern might be retrieved. A better metric for the evaluation of the system's

performance is the Shannon or channel capacity [217]. The channel capacity specifies

the highest information transfer rate that can be achieved at a given channel with an

arbitrary low probability of error. It provides a useful bound that allows determining

the ultimate performance limitations of the system subject to a set of design variables.

The SBP metric is commonly taken to represent the amount of information content of

an image; however, this measure fails to estimate the system's channel capacity and it

does not include the effects of noise. In contrast, the signal-to-noise ratio (SNR) provides

a better description of the system performance and is included in the description of

channel capacity as will be derived later. For the proposed system model, the Hopkins

matrix represents an alternate projection that can be optimized using this information-

based metric. This allows maximizing the extracted scene information and relies on the

existence of an inversion procedure that can be implemented to retrieve the encoded

signal.

In the analysis considered in this section, the optical system is modeled as a channel

subject to additive white Gaussian noise (AWGN). In this formulation, the quantum

fluctuations that lead to Poisson noise are ignored. Instead, the system is assumed to be

corrupted by shot noise produced by ambient light, as well as electronic noise from the
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photodetector [218]. To simplify the analysis, the object space is discretized and each

point is mapped to another discrete point inside the working area of the image plane.

Each pixel in the detector represents a Gaussian channel of the form: Y = Xi + Zi,

where Xi is the input, Y is the output, and Zi is the noise. The noise is assumed to be

independent of the input signal. The power of the input signal is constrained to,

1 X 2 < P, (4.8)
n i=1

where P is the total available power. The amount of information on average required to

describe the input and output signals is given by the entropy. The discrete entropy of

the random input signal is,

h(X) = - ZP(x) log 2 p(x), (4.9)
xEX

where p(x) = Pr{X = x}, x E X, is the probability mass function and the entropy

has units of bits. For example, the entropy for an input signal that only contains two

possible states with equal probability is: h(X) = ibit. Similarly, the joint and conditional

entropies for the input and output signals (random variables X and Y) are,

h (X, Y) = - E 1 p(x, y) log2 p(x, y), (4.10)

h(Y|X) = - Ip(,y)og 2 (yIX)-
xEX xEY

The expressions of equations 4.9 and 4.10 are related by the chain rule as: h(X, Y) =

h(X) + h(Y|X). We now define the mutual information that allows quantifying the

amount of information than the output contains about the input. The mutual information

can be viewed as the intersection in the Venn diagram of two regions defined by the
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entropies of the input and output signals. The mutual information is given by,

I (X; ' Y) log2 (Xy)
~X, L~d~ p~, y)log2 p(x)p(y) (.1

= h(Y) - h (Y|X).

Equation 4.11 can be understood as the reduction of uncertainty or entropy of the mea-

sured signal, Y, by some shared knowledge about the input. The channel capacity of a

discrete channel as the maximum mutual information between input and output signals

is defined,

C = max I(X; Y), (4.12)

where the maximum is taken over all possible input distributions p(x). The definitions

of entropy, mutual information and channel capacity can be extended for the case of

continuous random variables. In doing so, the summations are replaced by integrals over

the support set of the random variable, and the probability mass function is replaced by

the probability density function. This notion is used to compute the differential entropy

of the noise, Z, that is assumed to have a zero mean normal distribution,

1 1 x2
f (z) = exp (4.13)

2r 2  ((2o.2

The corresponding differential entropy is: h(Z) = (1/2) In 27reN nats (natural bits) or by

changing the base of the logarithm, h(Z) = (1/2) log 2 27reN bits, where N = U2 is the

noise power.

The mutual information for the considered Gaussian channel is now calculated,

I (X; Y) = h(Y) - h (X + Z\X) (4.14)

= h(Y) - h(Z),
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as the noise, Z, is independent of X. The entropy of the output signal is bounded

by [217]: h(Y) (1/2) log 2 (27re) E [Y2], where E [Y2] = E [(X + Z)2 ] = E [X2 ] +

E [2XZ] + E [Z2 ] = P + N, and E[ ] is the expectation value. Substituting these results

to equation 4.14 we get,

1 1
I (X; Y) < - log 2 27re (P + N) +- log 2 27reN (4.15)2 2

= 1og2 1 + )= 1og2 (1 + SNR) .

The mutual information of equation 4.15 is maximized (equality) when the probability

distribution of the output is also Gaussian [219]. The entropy is greatest when the para-

meters are statistically independent and from the central limit theorem the probability

distribution is Gaussian. Using equation 4.15 the channel capacity for a Gaussian channel

is found,

C = 1log 2 1 + ). (4.16)

Now the formulation for a set of parallel Gaussian channels (pixels on the photode-

tector) is extended. The total information capacity of a 2D pixilated optical imaging

system is determined by the capacity of a single pixel times the number of pixels [216]:

CT = Cp, M, where M is the total number of pixels. The power constraint requires the

total power to be distributed among the channels,

E X2] P. (4.17)

Using the same methods as above, the channel capacity for parallel Gaussian channels is

derived,

C = log2 1 + ,F (4.18)

where Pi = E[Xi'], and Pi = P. Finally, we use these results on our system model
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of equation 4.7. The resulting channel capacity is given by,

C = in (1 + ,(4.19)

where pi is the ith singular value of the Hopkins matrix and o2 is the noise variance

(assumed to be constant over every channel). Singular value decomposition (SVD) is

performed on the Hopkins: H = UEVT, where U and V are unitary matrices and E is

a diagonal matrix with elements equal to the singular values. The units of the channel

capacity are nats due to the change of base in equation 4.19. Also, power normalization

is assumed. The term ps/o 2 can also be identified as the SNR of the system.

The singular values and channel capacities for two thin imagers, one based on an

uncorrected 2x2 GRIN lens array (similar to the TOMBO system) and the second one

based on a corrected GRIN lens array, are now compared. For the imager based on

the holographically corrected array, two correction configurations are simulated. The

correction points are chosen arbitrarily and are indicated in Table 4.2. The simulation

parameters are: A = 658nm, detector SBP = 120 x 120pixels (pixel size= 9pm), Hopkins

matrix computed for a grid of 63 x 63 point sources. The singular values for the three

cases are shown in Figure 4-16-a. Notice how the overall magnitude of the singular values

is increased for the both cases of the corrected imager. This increase is substantial despite

that no optimization of the correction position has been conducted. To understand the

significance of the improvement the system's SNR is first considered. As indicated in

Figure 4-16-a, in the presence of noise the low magnitude singular values are lost making

it difficult to recover the original Hopkins matrix that characterizes the system. This

concept is analogous to that used in matrix approximation theory [220]. For optical

systems, high magnitude singular values correspond to low frequency components of the

imaged object or scene. Similarly, low magnitude singular values correspond to high

frequency components of the scene. If these singular values are lost, the system is unable

to resolve small features. The dependence of spatial frequency can be seen in Figure

4-16-b when computing the Karhunen-Loeve modes corresponding to the singular values:
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1, Ao550 , and P9oo.

Table 4.2: Correction Positions.
Correction 1 Correction 2

Lens x (mm) y (mm) x (mm) y (mm)
GRIN 1 -0.13 -0.13 0 0
GRIN 2 -0.13 0.13 0 0.2
GRIN 3 0.13 -0.13 0.2 0
GRIN 4 0.13 0.13 0.2 0.2

Karhunen-Loevs Modes: 1, = 2AM0.5r
500 10000

Kahunen-Loeve Modes: pA.= 2.0438
0

0.5[

-0.50 
5

Karhunen-

0.2O

0'

OOD
Loeve Modes: pwe - 1.967

Figure 4-16: (a) Singular values of uncorrected and corrected 2 x 2 GRIN lens arrays;
(b) Karhunen-Loeve modes.

A second viewpoint for quantifying the improvement of the holographically corrected

imager is based on matrix stability. In general, the associated inverse problem is ill-posed

in the sense of Hadamard [221]. For the problem to be well-posed, the corresponding

solution must be unique and exists for arbitrary data as well as depend continuously on

the data. If any of these conditions is not satisfied, the problem is considered ill-posed.

The non-existence of the solution and the lack of uniqueness in imaging systems are

commonly attributed to the fact that the system does not transmit complete information
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about the Fourier transform of the object at certain frequencies. This information loss

cannot be recovered by any mathematical trickery or decoding algorithm. The alternate

projection, introduced by the Hopkins matrix of the holographically corrected system,

allows recovering some of the information lost and hence improves the stability of the

system. The third condition that requires continuous dependence on the input data

relates to numerical instabilities that may arise during the inversion process. If a small

error in the initial data results in a large error in the solution, the associated problem is

called ill-conditioned and is quantified by the condition number. If the condition number

is large, the problem is ill-conditioned. On the other hand, if the condition number is

close to one, the problem is well-conditioned. The condition number controls the error

propagation from the data to the solution. The condition number is given by,

cond = "max (4.20)
Amin

where pma and pmin are the maximum and minimum singular values of the Hopkins

matrix. Figure 4-17-a shows a comparison of the condition numbers of the uncorrected

and corrected systems using the first configuration indicated in Table 4.2. Finally, the

channel capacity as defined in equation 4.19 for both cases with and without holographic

correction is compared. Figure 4-17-b shows the computed channel capacity for a noise

level of 0.08. This figure proves that the holographically corrected system is more efficient

in extracting information from the scene than the TOMBO-like system. This result will

be further improved in the next section by performing a multi-domain optimization.

In the last example, the system is evaluated for different numbers of lenses in the

array. Figure 4-18-a shows the computed channel capacity. Figure 4-18-b shows the

corresponding singular values. This result is expected, as adding more lenses increases

the effective aperture of the system. The larger effective aperture allows collecting more

power from the object signal. An opposite result would be expected if the total power

available is constrained and a comparison is performed between a single lens and a seg-

mented aperture system, where both systems have the same effective aperture. Ignoring
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the effect of aberrations, the single lens system yields to a larger channel capacity com-

pared with the segmented aperture system, as the power in this system is distributed

over the lenses. In addition, there is a tradeoff between SNR and number of pixels or

pixel size that can be exploited to find an optimum SBP or pixel size in the sense of

information theory [216].

4.6 Multi-Domain Optimization based on Genetic

Algorithms

In a traditional imaging system, the optical components are optimized to perform as close

as possible a linear mapping between the object and measured signals. This formulation

then requires a Hopkins matrix: H -+ I, where I is the identity matrix. Such formula-

tion is suboptimal, as the optical system is ultimately limited by diffraction and by the

sampling properties of the photodetector, limiting the amount of information that can be

extracted from the scene. In contrast, we are interested in finding an alternate projection

as represented by H not equal to I and g (intensity measurement) being the input of an

image post-processing algorithm. The output of the post-processing algorithm is,

a = P(Hf+n) (4.21)

= PHf + n-,

where P is a potentially nonlinear operator representing the post-processing (decoding)

algorithm. The equivalent operator, W = PH, combines the actions of the optics,

detector and post-processing, and can be optimized simultaneously using a multi-domain

optimization (MDO) approach [222]. If the output, a, is required to be an isomorphic

or geometrical representation of the source, f, the operator P needs to be proportional

to the inverse of the Hopkins matrix. Other applications, such as machine vision or

pattern identification, might not require an isomorphic representation of the object. An
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alternative MDO relies on maximizing the channel capacity of the Hopkins matrix to

extract more scene information and to improve the stability of the combined operator,

W, respect to noise perturbations in the measurement or imperfect calibrations of the

optical system. This is the approach implemented in this section.

The configuration (positions and field angles) of the holographic correction for the

proposed segmented aperture imager is optimized using genetic algorithms (GAs) based

on the fitness function: f = 1/C, where C is the channel capacity as defined in equation

4.19. The GAs optimization is conducted in the same way as in Chapter 2. To simplify

the analysis, a smaller grid of 5 x 5 source points is used to construct the Hopkins

matrix. This model assumes that the resulting PSF is locally shift-invariant within a

small isoplanatic patch [219]. A grid of 6 x 6 possible image plane correction points per

GRIN lens is considered. The system evaluation and correction points are indicated in

Figure 4-19-a. The optimization parameters are indicated in Table 4.3. Figure 4-19-b

shows the computed optimum correction positions. The singular values of the optimized

Hopkins matrix for the holographically corrected system and those from the uncorrected

TOMBO-like imager are shown in Figure 4-20-a. The corresponding channel capacities

are (assuming a noise level N = 0.8): corrected = 20.78nats, Ccorrected = 17.74nats.

Figure 4-20-b shows the convergence plot (fitness function score) for the best individual

and the population mean.

Table 4.3: MDO Parameters.
Array Size 2 x 2 Number of Generations (GAs) 25

Operation Wavelength (A) 658nm Population Size 50
Photodetector Pixel Size 2pm Crossover Fraction 0.5

SBP (pixels) 233 x 233 Elite Children 1
FOV 15.60 Number of Variables 8
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4.7 Decoding Algorithm: Image Post-Processing

The decoding algorithm involves solving the inverse problem to retrieve an estimate of

the object, a, from the measured intensity, g. In the simplest form, the decoding oper-

ator takes the form: P = H-'. The computation of such inverse might not be stable,

requiring the implementation of the pseudoinverse based, for example, on the SVD of the

Hopkins matrix: P = VDtUT, where t represents the inverse of the diagonal singular

values matrix. This technique is also known as the back projection method [198] and

is a common way to compute the best fit in the least squares sense of a solution to a

system of linear equations that lacks of unique solution. However, in practical implemen-

tation, the calculation of the pseudoinverse might not be possible, due to the large size

of the Hopkins matrix resulting in memory and computational time problems. An alter-

native method is then required. Several decoding algorithms have been investigated for

segmented aperture systems. Examples include the linear minimum mean-square error

method [222], sampling method [199] and pixel rearrange method [200], also known as

the superresolution algorithm. In this section the implementation of the superresolution

algorithm for the post-processing of the captured images is described.

In the superresolution algorithm, the low-resolution captured images from each GRIN

lens in the array are combined to produce a high-resolution image [223], [224]. The mea-

sured low-resolution images suffer aliasing where high-frequency components are folded

into the low frequency components of the image and, as a result, the subtle or detailed

information is lost. Various superresolution algorithms have been reported in the liter-

ature and can be broadly classified as iterative and noniterative. Examples of iterative

methods include maximum a posteriori [225], and expectation maximization algorithms

[226]. Noniterative methods include the k-nearest weighted neighbor approach [227].

The superresolution method is a form of de-aliasing algorithm that can be used to

recover this information in systems with PSFs smaller than the pixel size of the detector.

By utilizing k images produced by an array of k lenses, the expected resolution improve-

ment from the information theory viewpoint is: 6pix/vk x 6piX/vfk, where 6,42 is the
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detector's pixel size. For example, for the simulation results presented in the previous

section based on a 2 x 2 GRIN lens array and a pixel size, ,3 2p = 2pm, the resulting

improvement is 6 pix,HR = 1pm, which results in an increase of the bandwidth of the

recovered signal by a factor of two. The performance of the superresolution algorithm is

ultimately limited by diffraction (limited pass-band of the optical system).

There are three mayor steps in the superresolution image reconstruction method: 1.

Acquisition of multiple images with subpixel shifts; 2. Estimation of subpixel shift; 3.

Reconstruction of high-resolution image. The first step is done in a single shot on a

segmented aperture imager. For imagers with a small number of lenses, the perspective

variations of the scene can be neglected. Otherwise, a homomorphic transformation may

be applied. This perspective variation is exploited in some applications such as 4D light

field imaging [201]. For the example presented here, any perspective variations of the

scene are neglected. In the second step, an algorithm is implemented to estimate the

subpixel shifts relative to a reference frame. Here we implement an estimation algorithm

based on spectral cross correlation to explore the translational differences of Fourier

transforms of the analyzed images. The block diagram of this algorithm is shown in Figure

4-21. Before estimating the subpixel shift, the algorithm of Figure 4-21 is implemented

without the upsampling and low-pass windowing sections to estimate integer pixel shifts.

Then, the algorithm is used to compute the k - 1 subpixel shifts, Xshift and Yshift, using

the first image, k = 1, as a reference frame. The upsampling is done by zero padding

the cross correlation spectrum, G, to a size larger that the optical system's pass-band

given by the highest spatial frequency of the MTF for the diffraction limited system. In

order to avoid ripples in space domain, the spectrum is low-pass filtered using the power

window [87] given by,

W(u, v) = circ ( exp (-ap") , (4.22)
\ pcutoff /

where a and n are constants, pcutoff is the desired cut-off, and p = v/u2 +v2. The power
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window is a Fourier-based smoothing window that preserves most of the spatial frequency

components within the pass-band and attenuates quickly at the transition band. It is

differentiable at the transition point which gives the desired smooth property and limits

the ripple effect. After cross correlation, the location in the spatial domain of the peak

identifies the relative shifts.

Irf

i Conjugate

Dnly for Subpixel Shift

0 . .

Upsample:
Zero Padding

Low-Pass

Windowing

Figure 4-21: Block diagram of subpixel shift estimation algorithm.

In the third step, the low-resolution images are placed on a high-resolution grid using

the subpixel shift estimates. The samples that do not correspond to any of the captured

low resolution images are set to zero. This high-resolution grid is called the processing ar-

ray. Several algorithms have been developed to retrieve a high-resolution image from the

processing array. These techniques include the nonlinear interpolation method [228], reg-

ularized inverse processing [229], and the iterative error-energy reduction (EER) method

[230]. In this section the EER method is implemented. This method is a variation of

the modified error reduction algorithm implemented in Chapter 2. The block diagram

of this method is shown in Figure4-22. The algorithm iterates between space and fre-

quency domains imposing constrains at each domain. A bandwidth constraint is imposed

in frequency domain by low-pass filtering the signal spectrum using the power window

with a cut-off frequency given by the diffraction limited optical system pass-band. For

the space domain constraint, the samples of the space domain signal at the measured

locations are replaced by those from processing array. The algorithm repeats until the
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maximum number of iterations is reached.
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Figure 4-22: Block diagram of error-energy reduction algorithm.

The model presented in the previous sections is used to simulate the subimages cap-

tured by a 2 x 2 holographically corrected segmented aperture thin imager. The correc-

tion positions are those found by GAs indicated in Figure 4-19-b. The object or scene is

formed by an array of point sources forming a resolution target pattern. The object is

placed in the front focal plane of an ideal lens that collimates the point sources simulat-

ing an object in the far field. The space-variant PSFs are computed at the image plane

before and after being sampled by the photodetector. Figure 4-23 shows the intensity

distribution at the image plane by GRIN len 3 before the photodetector. The intensity

distribution is normalized to the Strehl ratio. The image plane area corresponds to a

FOV of approximately 9 degrees. Figure 4-24 shows the subsampled images captured by

the four GRIN lenses in the array. Each low-resolution image has a different subpixel

shift and distribution, due to the different holographic correction points. Despite that

the detector's pixel size is small (6 pix = 2pm), the PSFs are averaged by the pixel pho-

tosensitive area (a fill factor of 100% has been assumed) and the small details about the

object are lost.

The superresolution algorithm is then used to combine the information contained on

the four captured images of Figure 4-24 to produce a higher resolution image. After

estimating the subpixel shifts and initializing the processing array, the EER algorithm

is run for 300 iterations. Figure 4-25 shows the reconstructed high-resolution image. As

219

2D FT *
INo

ProcesnitiliArray



Figure 4-23: Intensity distribution before photodetector imaged by GRIN lens 3.

GRIN 2GRIN 1

GRIN 3

Figure 4-24: Simulated captured images from holographically corrected segmented aper-
ture system.
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can be seen, some of the modulation due to the array of point sources is retrieved. A

better result is expected for a larger number of lenses. In addition, the information about

the model (configuration, correction position, hologram/GRIN response) can be used to

improve the reconstruction. For example, a decoding strategy based on the pseudo inverse

of the Hopkins matrix can be applied to each subimage, where the Hopkins matrix only

contains the response for that single lens. In this way, distortions due to the hologram can

be compensated. The processed images are then used by the superresolution algorithm

to generate a high-resolution output image.

Figure 4-25: Reconstructed high-resolution image.

4.8 Experimental Implementation

In this section we present some experimental results on the design and optimization of

the proposed holographically corrected segmented aperture thin imager. The holographic

recording process is optimized to achieve high diffraction efficiency and the experimental

results are compared to those predicted by Kogelnik's coupled wave theory. A method

for characterizing the system's PSF based on the Foucault knife edge test is presented.
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A comparison between an uncorrected and holographically corrected GRIN lenses is

performed. A sensitivity analysis is conducted for estimating potential axial and lateral

misalignment errors.

4.8.1 Optimization of Hologram Optical Recording Process

The optimization results presented in the previous sections rely on high diffraction effi-

ciency holograms to minimize the optical aberrations produced by undesirable diffraction

orders on the reconstructed field. The hologram's diffraction efficiency is closely related

the recording conditions, processing steps and holographic material used, as well as its

properties such as thickness, refractive index modulation and absorption coefficient. Over

the last few decades, several materials have been studied for the optimum recording of

holograms such as dichromated gelatins [231], photopolymers [232] and photographic

materials [233]. Among these materials, silver halide (AgH) photographic emulsions are

the most widely used, due to their high energy and spectrum sensitivities, repeatability

of results and commercial availability. Silver halide emulsions are composed of silver

halide grains suspended in a gelatin support. In addition, sensitizing agents are added to

the gelatin to influence the introduction of dislocation centers within the crystals. Most

commercially available emulsions are coated on a base such as a glass plate, mylar or

acetate (in the case of films). Light incident on the emulsion initiates a complex physical

process consisting of the following major steps: 1. The incident photon absorbed by a

grain releases an electron-hole pair within the grain; 2. The resulting mobile electron

in the conduction band is eventually trapped at a crystal dislocation; 3. A silver ion is

attracted by the trapped electron and combines to form a metallic silver atom; 4. The

collection of silver atoms forms a development speck, which comprises the latent image.

The exposed emulsion then undergoes a prescribed chemical post-processing.

The holograms studied in this section are recorded on a silver halide emulsion with

the specifications indicated in Table 4.4. To optimize the diffraction efficiency of the

hologram, an unslated transmission hologram is recorded under varying exposure ener-
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gies using the geometry of Figure 4-26. A Helium Neon laser (A = 632.8nm) is used

as the illumination source. A computer activated shutter allows the accurate control of

the exposure time and hence the exposure energy. The beam expansion and collimation

is conducted using a spatial filter and a plano-convex lens. A polarized beam splitter

divides the input beam into the reference and object beams. The relative optical power

of these beams is controlled by properly adjusting the A/2 waveplates. The light reflected

by two mirrors interferes at the hologram plane, forming an unslated hologram within the

volume of the emulsion. The fixed angle between the object and reference beams is set

to 30 degrees. The polarization of the interference beams is perpendicular to the plane

of incidence. The holographic film is sandwiched between two microscope slides and

placed on a holder on top of a motorized rotation stage. The rotation stage is a Newport

URS Series with angular resolution of 0.0005 degrees. It is used to calibrate the record-

ing geometry to the desired incidence angle, as well as for characterizing the recorded

angular selectivity of the hologram. Two chemical processing methods are studied: fixa-

tion free rehalogenating bleaching and silver halide sensitized gelatin methods. For each

processing method, several holograms are recorded with varying exposure energies. After

processing, the holograms are characterized by measuring the diffraction efficiency of the

first order at the Bragg angle, angular selectivity of the diffracted (1st order) and trans-

mitted (0th order) beams, and total diffracted, transmitted and scattered powers. The

measurements are conducted with Newport's dual-channel power meter model 2832-C,

which communicates with the computer using a LabView interface. The second pho-

todetector is placed on top of a linear motorized stage (Newport UTM50CC1DD with

1pm position accuracy) to track the diffracted beam during the angular selectivity test.

The tracking position is calculated by estimating the output diffraction angle based on

the grating's equation: A(sin Om - sin 0.) = mA, where A is the grating period, Om is the

output angle of the mth order, Oiis the incident angle, and m = 1 for the first diffraction

order. The rotation and linear motorized stages are operated using the universal motor

drive controller UniDrive 6000 from Newport.
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Table 4.4: Silver Halide Emulsion Specifications.

Manufacturer Slavich Emulsion Thickness (d) 7.32pm
Model PFG-01 Substrate Thickness 180.Lm
Type Film Spectral Sensitivity 600-680nm

Substrate Triacetate (nsb = 1.478) Emulsion Resolution ,3000 lines/mm
Grain Size ~40nm Extinction Coefficient (r) 8x 10-5

Photodetector 1

-Photodetector 2
------- I& Unear Motion Stage

Mirro 2

Rotation Stage

Holographic Material

Mirror 1 __=15*

Shutter Collimating A/
Lens Waveplates

Figure 4-26: Hologram recording geometry.

In the chemical post-process the exposed holograms are first developed to transform

the silver specks into metallic silver, amplifying the effect of exposure. Common de-

velopers include one-part solutions, such as Kodak's D-19 which tends to produce low

contrast results, and two-part developers that are mixed before use. Before development

the holographic film is transparent, turning black after the development bath. Volume

holograms recorded on silver halide emulsions are commonly bleached to obtain phase

holograms with increased diffraction efficiencies. The fixation free rehalogenating (FFR)

bleaching process has been studied by several researchers using a variety of commercially

available holographic emulsions [234], [235]. It is assumed that diffusion of the material

from exposed to unexposed regions occurs during the bleaching bath. The metallic silver

grains are converted back to silver halide grains by an oxidation process. As a result,
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a refractive index modulation is produced between the exposed and non-exposed zones

and is proportional to the size difference of the silver halide grains and concentration.

The implemented fixation free rehalogenating process contains the following steps: 1.

Immerse hologram in two-part developer for 2 minutes; 2. Rinse in water for 3 minutes;

3. Immerse in bleaching solution for 2 minutes; 4. Second rinse for 3 minutes; 5. Wetting

agent bath for 1 minute to promote uniform drying of the processed film. The developer is

prepared according to the following recipe: part 1 - catechol (20g), ascorbic acid (10g),

sodium sulfite anhydrous (10g), urea (75g), distilled water (1000ml); part 2 - sodium

carbonate (60g), distilled water (1000ml). The two parts are mixed before processing

with a ratio 1/1. The bleaching solution is prepared according to the following recipe:

potassium dichromate (5g), sodium bisulfate (80g), distilled water (1000ml). The de-

veloper and bleaching solutions are kept at room temperature. The wetting solution is

Kodak's PhotoFlo and is diluted in distilled water (1ml/11). After the chemical process,

the holograms are hung to air dry.

In the silver halide sensitized gelatin (SHSG) process, the variations of optical density

between exposed and unexposed regions in the emulsion are converted to variation in the

degree of hardening of the emulsion gelatin [236]. As opposed to the previous method, this

method includes a fixation step in which the silver halide grains are removed, resulting in

an increased diffraction efficiency and lower scattering loss. This method has proven to

be a good alternative to dichromated gelatin in the production of transmission holograms

[237]. The implemented SHSG consists of the following steps: 1. Developer bath for 5

minutes; 2. Rinse in water for 2 minutes; 3. Bleaching bath for 3 minutes; 4. Rinse

for 2 minutes; 5. Fixation bath for 2 minutes; 6. Rinse for 10 minutes; 7. Three step

dehydration process. Kodak's D-19 developer is used and is composed of: metol (2g),

sodium sulfite anhydrous (45g), hydroquinone (8g), sodium carbonate anhydrous (50g),

potassium bromide (5g), distilled water (11). The bleaching solution is composed of two

parts and is prepared according to the following recipe: part 1 - ammonium dichromate

(20g), sulfuric acid (14ml), distilled water (11); part 2 - potassium bromide (92g), distilled
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water (11). The two parts are mixed on a ratio of 1/30. Two temperatures are considered

for the bleaching solution: 20'C and 30'C. Kodak's nontanning F-24 is used as a fixer

solution. The dehydration steps consist of immersing the hologram in baths of 50%, 90%,

and 100% isopropanol, each bath for 3 minutes. The processed holograms are then hung

for air drying.

We first present the diffraction efficiency results from the holograms processed using

the fixation free rehalogenating bleaching method. The diffraction efficiency is calculated

as the ratio of the measured powers from the diffracted beam (1st order) and input power

(illumination beam). Figure 4-27-a shows the measured diffraction efficiencies as a func-

tion of exposure energy. The highest diffraction efficiency without taking into account

reflection losses is 53% (corresponding to an exposure energy of 213.12P J/cm 2 ). If the

effect of Fresnel reflections from all the interfaces involved (microscope slides, substrate

and emulsion) is subtracted, the corresponding diffraction efficiency is 64%. The calcula-

tion of the reflection losses is conducted using the Fresnel equations for TE polarized light

[153]. The reflection coefficients at the five interfaces (air-glass-emulsion-triacetate-glass-

air) are computed using the following refractive indices: nglass = 1.5, nemuIsion = 1.609,

ntriacetate 1.478. The power of the additional transmitted and reflected diffraction

orders is measured and subtracted to the input power to estimate the scattering and

absorption losses. These losses account for 15.5% of the incident energy as no fixation

step is used. Figure 4-27-b shows the measured powers of the diffracted and transmitted

(zeroth order) beams. The corresponding input power is: Pin = 3.18mW/cm 2 . These

results are consistent to those presented in [235].

The holographic emulsion used in the experiments is close to the boundary between

the Raman-Nath and Bragg regimes. This boundary is described in terms of the Q factor,

Q = . (4.23)
A 2 nemui

If Q < 27r, the operation is on the Raman-Nath regime, while if Q > 27r, operation is in

the Bragg regime. The recorded hologram has a period: A = (A/2) sin(15) = 1.22pm.
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Figure 4-27: (a) Measured diffraction efficiency; (b) Measured powers of diffracted and
transmitted orders.

From Table 4.4 and with nemu. = 1.609 and A = 632.8nm, the quality factor is: Q =

12.103. The resulting Q factor is slightly larger than 27r so the hologram is expected to

exhibit properties from volumetric materials such as Bragg selectivity.

The hologram's angular selectivity is measured by a controlled rotation and automatic

measurement of the power from the first diffraction order. The measurements are then

compared to the predictions from Kogelnik's coupled wave theory [143]. Kogelnik derived

an approximated formulation to describe the behavior of thick holographic gratings. The

main assumptions of Kogelnik's formulation are: sinusoidal modulation of the refractive

index and absorption coefficient; small index modulation, An << 1; small absorption loss

per wavelength; slow energy interchange between two coupled waves; light incident at or

near the Bragg angle; neglect other diffraction orders. Kogelnik considered the cases of

reflection and transmission holograms, lossless and lossy phase (dielectric) and amplitude

(absorption) holograms, slanted and unslanted gratings, TE and TM polarizations, and

mixed gratings (amplitude and phase). We are interested in the solution for a lossy,

unslanted, phase, transmission hologram. The field of the first order diffracted wave at

the output of the hologram is given by (a detailed derivation of this equation can be
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found in [143]),

/ ad \ sin v2 2
S = -iexp ad exp (-ki) , (4.24)

where a is the mean absorption coefficient; d is the hologram thickness; 0 = arcsin(sin(0h)/no),

is the half angle of the probing or reconstruction wave inside the medium, where 0 h is the

corresponding half angle in air and no is the hologram's average index of refraction. Also,

v = (7rAnd)/(A cos 0), where An is the refractive index modulation, and is proportional

to the dephasing measure that estimates deviations from the Bragg angle and is given

by,
7rd (sin - (4.25)

A cos 6 2noA

The diffraction efficiency is given by,

-- S p -2ad) sin2 /2 +
r= SS* =exp s (4.26)

At the Bragg angle, ( = 0, and the diffraction efficiency of equation 4.26 reduces to,

Bragg x cs sin 2v Bragg 42
COS 6Bragg

and it will be maximum when v = r/2 -> An = (A cos OBragg)/(2d). The maximum

diffraction efficiency depends on the attainable refractive index modulation from a given

chemical processing. For the considered geometry and optical parameters, the required

index modulation is: An = 0.0446. If the refractive index of the emulsion is under or over

modulated, the hologram will reconstruct with low diffraction efficiencies. Both consid-

ered chemical processes (FFR and SHSG) can be controlled to achieve index modulations

close to the ideal. However, as we will see later, the absorption losses resulting from the

FFR method are larger to those from the SHSG technique. The hologram's extinction
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coefficient is related to the absorption coefficient by: a = (2wn)/c, where W = 27rf,

f = c/A, and c is the speed of light. For the parameters of Table 4.4, the absorption

coefficient is: a = 1.5886x10 3 m 1 .

Figure 4-28-a shows a comparison of the measured and theoretical diffraction effi-

ciencies with different probing angles (without considering Fresnel reflections) for the

hologram with the highest diffraction efficiency of the batch processed using the FFR

bleaching method. As can be seen, the couple wave theory model of equation 4.26 fits

very closely the measured data. The thickness of the emulsion limits the system's FOV

to approximately 20 degrees (relative to the Bragg angle). Because the expression for

the theoretical diffraction efficiency depends on the refractive index modulation, thick-

ness and absorption coefficient, information about these parameters can be obtained by

fitting the theoretical function to the experimental data. However, these parameters can

also be determined experimentally using, for example, ellipsometry or polarization based

methods [238]. Figure 4-28-b, shows the corresponding measured angular selectivity for

the transmitted wave. The small shift from the Bragg angle is a direct result of shrinkage

of the emulsion after chemical processing.
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Figure 4-28: (a) Comparison of measured and theoretical diffraction efficiencies; (b)
Measured angular selectivity of the transmitted wave.
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A similar study is performed on holograms processed using the SHSG method. Tak-

ing into account Fresnel reflections, the highest measured diffraction efficiency is 82%.

However, it is found that the results from this process are not fully repeatable due to

the unstable chemical reaction. It is also found that the processed holograms suffer from

higher shrinkage than those processed using the FFR method. This is due to the ma-

terial removal that occurs during the fixation process. A further characterization and

optimization of the chemical recipe is required. Control parameters include the influence

of time spent at each bath as well as the temperature of the solution.

4.8.2 Measurement and Evaluation of the System Point Spread

Function

The performance of the optical system can be fully characterized by the measurement

of the space-variant PSF of the optical system. An automatic test station for the mea-

surement and evaluation of the PSF of an uncorrected and corrected GRIN lenses is

implemented. The measurement technique used is based on the knife-edge test, origi-

nally proposed by Foucault in 1859 for testing concave mirrors [239]. Since then, this

method has been extended for the characterization of optical aberrations in a variety

of optical systems [240], [241]. In the traditional Foucault knife-edge test, the optical

system under study is illuminated by a collimated beam and a razor blade is used to

scan the output beam on the image space. The razor blade is positioned in front, at, and

after the focal plane. A screen or photodetector is used to capture the shadowgram cor-

responding to each position of the razor blade. An example of this test is shown in Figure

4-29-a for the evaluation of a single ideal and aberrated lens. In the case of an ideal lens,

the shadowgram produced when the razor blade is positioned before or after the focal

plane has an opposite orientation than the razor blade. If the razor blade is placed at

the focal plane and scanned laterally, the corresponding shadowgram is either all bright

or all dark. In the case of an aberrated lens, the shadowgram can be used to infer the

degree of aberration present. Figure 4-29-b shows the shadowgrams corresponding to an
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uncorrected GRIN lens subject to on-axis and off-axis (10 degrees) illumination.

Idea Lens Ideal Lens

Lens Razor Blade Screen Shadowgram

Ideal Lens Aberrated Lens

(a)

On-axis Off-axis (10 degrees)

(b)

Figure 4-29: (a) Foucault knife-edge test; (b) Shadowgrams of uncorrected and corrected
GRIN lenses.

To measure the PSF of the GRIN lens we used a variation of the knife-edge test

explained above. Instead of capturing the shadowgram, we measure the optical power

integrated by a single photodetector while scanning the razor blade laterally and axially.

The axial scan allows us to find the location of the focal plane. The measured power dur-

ing a single lateral scan corresponds to the cumulative sum (or integral) of the projected

intensity distribution along a line perpendicular to the scanning direction. This can be

expressed mathematically as,

Pmeas(l) = Jht)dl, (4.28)
-00

where h(0 ) is the incoherent PSF projected along a line L with angle 0. For example,
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if the edge of the razor blade is oriented parallel to the y-axis, the incoherent PSF is

projected to the x-axis and the cumulative sum is measured. To reconstruct the system's

PSF, the first derivative of the measured power is computed and used to populate an

M x N tensor where M is the number of discrete power measurements obtained from a

single scan and N is the number of projection directions measured. An inverse Radon

transform [221] is performed on the resulting tensor to recover the 2D PSF, h. This

reconstruction process is similar to that used in X-ray tomography.

Figure 4-30-a shows a photograph of the experimental setup used for the measurement

and evaluation of the corrected and uncorrected GRIN lens PSFs. Two linear motorized

stages (Newport UTM50CC1DD ) with positional accuracy of 1pm are used for the axial

and coarse later scans. A 3-axis piezo stage (Thorlabs MDT630A) is used to perform the

fine later scan. The GRIN lens is illuminated with a collimated beam and the output light

is collected by a microscope objective and relayed towards the photodetector (Newport

2832-C). The GRIN lens is placed on a specially designed mount that also holds the

holographic film and is secured on top of a motorized rotation stage. The rotation stage

allows measuring the projected PSF at different angles that can be then reconstructed

using the inverse Radon transform. A graphical unit interface implemented in LabView is

designed to automate the PSF evaluation process and coordinate the execution of all the

motion stages and photodetector. Figure 4-30-b shows a screenshot of the implemented

Foucault knife edge test interface.

We first present experimental results on the characterization of an uncorrected GRIN

lens subject to on-axis illumination. Figure 4-31-a shows the raw measured power for an

axial and lateral scans with steps: Az = 1pm, Ax = 20nm. The raw data is then filtered

using the power window of equation 4.22 to reduce the measurement noise. A 2D bilinear

interpolation of the filtered data is performed and the result is shown in Figure 4-31-b.

The data processing scheme allows minimizing the amplification of noise when taking

the derivative. A finite difference approximation is implemented to compute the space

derivative of the processed measured data along the x-direction. Figure 4-32-a shows
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Figure 4-31: Measured intensity: (a) Raw data; (b) Processed data.
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Figure 4-32: (a) Computed projected PSF; (b) Focal plane estimation process; (c) Re-
constructed PSF.
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In the second set of experiments, the GRIN lens is holographically corrected for on-

axis illumination. A photograph of the experimental setup is shown in Figure 4-33-a.

Figure 4-33-b shows a photograph of a small mount designed to hold the GRIN lens,

holographic film and prism for the easy recording and realigning with micron resolution

of the processed hologram. The hologram is recorded on a silver halide film and is

chemically processed with the optimized technique presented in the previous section.

The lens response is measured using the same procedure as described for the uncorrected

GRIN lens. Figure 4-34 shows the reconstructed 2D normalized PSF and a comparison

between its cross-section and the simulated PSF using Zemax. Again, the measured PSF

closely matches the expected response from the model. The corrected PSF has decreased

sidelobes and has a higher energy contained within the main lobe as quantified by the

Strehl ratio. The effect of holographic correction is even more pronounced for off-axis

angles.

Recordingm&tir s
Replay

(a)

(b)

Figure 4-33: (a) Experimental setup; (b) Hologram-GRIN lens mount.
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Figure 4-34: Reconstructed corrected PSF.

4.8.3 Sensitivity Analysis

A sensitivity analysis is performed to estimate the effect of potential misalignment errors

of the holographic film after chemical processing. Two types of errors are considered:

axial and lateral misalignments. Perfect phase conjugation fails if the holographic film

is misaligned during the implementation or reconstruction process. The Zemax model

described above is used to simulate the resulting PSF for different degrees of axial and

lateral misalignment. The error metric used is the L2 norm of the difference between the

diffraction limited (no misalignment) and aberrated (misaligned) PSFs. To estimate the

misalignment tolerance we decouple the axial and lateral misalignments and study the

performance of a GRIN lens corrected for on-axis field. Figure 4-35 shows the computed

error map with its corresponding isometric view. The estimated tolerance to misalign-

ment is: Ax = Ay = i40[tm. This level of misalignment can easily be avoided with

the designed mount of Figure 4-33-b. The error plot of sensitivity to axial misalignment

is shown in Figure 4-36. As the hologram is recorded with a planar-like object wave, it

can tolerate large axial deviations without sensibly affecting the lens' performance. This

high tolerance to axial misalignment is exploited by removing the beam splitter used

during the recording step and placing the hologram in direct contact with the GRIN
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lens, reducing the thickness of the imager.
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Figure 4-35: Lateral misalignment analysis.

4.8.4 Geometry for Color Imager

Figure 4-37 shows the proposed geometry for polychromatic implementation of the seg-

mented aperture thin imager. A red, green and blue color filter array, such as a Bayer

filter, is used to decompose the different color channels. The phase conjugated holograms

are recorded on a panchromatic film sensitive to a wide spectral range, such as Slavich's

PFG-03C (spectral sensitivity between 457-700nm). Each elemental image produced by

a lens in the array is processed in a similar way as the one described above to reconstruct

a high-resolution color image. A similar approach is proposed in [242] for conventional

microlens array-based systems.
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Figure 4-37: Polychromatic holographically corrected segmented aperture thin imager.
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Chapter 5

Stability Metric for the Design and

Optimization of Digital Holographic

Particle Imaging Velocimetry

Systems

In the previous chapter, the optimization of a holographically corrected segmented aper-

ture thin imager is presented. The imager is modeled using system's theory by the

evaluation of the space-variant point spread function (PSF). The model is written in ma-

trix form defining the structure of the Hopkins transfer matrix. This matrix connects the

input and output (object and measured intensities) and includes geometrical, optical and

digital detector parameters. The proposed system differs from conventional compound

systems in that the GRIN lens array is holographically corrected for optical aberrations

using phase conjugation holography. The configuration of the holographic correction po-

sitions introduces a new degree of freedom that modifies the structure of the Hopkins

matrix resulting in an alternate projection. It is proved that by an adequate system

design and control of the correction positions for each lens in the array, the stability for

inversion of the Hopkins matrix and the channel capacity of the system are significantly
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improved. The resulting alternate projection allows extraction of the scene information

more efficiently than conventional isomorphic methods. The system is studied using an

information theoretic framework in which the object or scene is treated as a message,

the optical system (including digital detector) as the communications channel, and the

captured image as the received message. The communication channel is assumed to be

Gaussian. A multi-domain optimization (MDO) approach based on genetic algorithms

is implemented. The optimization is performed to maximize the system's channel ca-

pacity and improve the stability (reduce the condition number) of the Hopkins matrix.

An example of a decoding strategy based on the superresolution algorithm is presented.

Experimental results and a sensitivity analysis for the design and optimization of the

proposed segmented aperture imager are described.

In this chapter, we present a stochastic theoretical model that is used for the design

and optimization of digital holographic particle imaging velocimetry systems. Similar to

the previous chapter, the encoding strategy is optimized based on information theory to

maximize the amount of 3D information from the sample volume encoded by a single

captured hologram. The system is modeled as a Gaussian communication channel and

is written in matrix form using the Hopkins matrix formulation. The Hopkins matrix

comprises an alternate projection of the optical system and includes geometrical, op-

tical and detector related parameters such as number of particles, particle sizes, pixel

size and space bandwidth product. In contrast to the holograms presented in previous

chapters, the holograms studied here are recorded optically using a digital photodetector

and reconstructed numerically. The system model is first presented for the limiting case

of point source particles. An extension of this model for particles of various sizes using

Mie theory is presented. The developed model is used for optimizing the system based

on a stability metric (channel capacity) to find optimum system parameters such as the

particle density that leads to maximum information transfer. This is another form of

MDO. Simulations as well as experimental results are presented.
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5.1 Motivation and Problem Definition

The study of particle distributions using holographic methods for the description of

complex 3D non-stationary flow fields has become increasingly popular. In these methods,

a fluid volume is seeded with several micron-sized tracing particles, each corresponding to

a sample point, which are then measured to retrieve their positions, velocity vectors and

trajectories for the characterization of the flow field under study. Recent advancement in

experimental and computational fluid dynamics research has increased the demand for

instantaneous full-field 3D flow velocity measurements with high spatial and temporal

resolutions. Holographic methods offer important advantages over conventional particle

image velocimetry (PIV) methods in that information from a complex 3D field can be

efficiently encoded by the hologram and can be later decoded for detail post-analysis. In

addition, the information capacity provided by the hologram is much higher than that

of conventional imaging systems as the phase and amplitude distributions of the optical

field are recorded. Traditional PIV methods measure two in-plane components of fluid

velocities in a 2D planar domain using a laser light sheet illumination and a conventional

imaging system based on photographic films or digital detectors [243]. This technique

has been widely used to study complex fluid phenomena such as turbulent flows [244].

Stereoscopic imaging geometries are used to measure three velocity components in a

planar domain at the cost of a more complicated optical setup [245]. Despite the advents

of traditional PIV methods, only 2D multi-point velocity measurements are possible.

Attempts have been made to try to generalize PIV methods for 3D volumetric fields

through scanning with severe limitations in spatial and temporal resolution as well as

can only be applied to characterize static flows [246]. In particular, measurements of

turbulent and complex flows require high accuracy and high spatio-temporal resolutions

over large volumetric domains.

Holographic particle imaging velocimetry (HPIV) methods are broadly classified as:

conventional and digital recording. In conventional HPIV systems, the holograms are

recorded optically on a holographic material, such as the silver halide film studied in
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the previous chapter. The hologram is the result of the interference between a reference

wave and the wave scattered by the cloud of particles (object wave). Systems based on

in-line [247 and off-axis [248] geometries have been studied. As explained in Chapter 2,

the off-axis geometry has the advantage that the reconstructed desirable and undesirable

diffraction orders are spatially separated and can be filtered out, resulting in reconstruc-

tions with a higher signal-to-noise ratio (SNR). In addition, off-axis holographic systems

tolerate higher particle densities and have increased resolution and shorter depth of field

due to the increased effective numerical aperture from particle side scatterings. However,

off-axis systems require more complicated optical setups with powerful laser sources that

have high coherence length. Also, the produced holograms are more susceptible to fab-

rication errors such as shrinkage of the holographic emulsion. As a compromise, hybrid

systems have been developed that involve in-line recording and off-axis reconstruction

[249]. Holographic systems have also been developed based on high-power lasers for side

and back-scattering measurements of particle clouds [250]. The holograms recorded by

conventional HPIV systems are chemically processed and reconstructed optically using

the conjugate of the reference wave. The real image of the particle field is produced in

space and is measured using, for example, a scanning procedure based on a digital pho-

todetector or flat scanner. This process is extremely inefficient due to the large amount

of data recorded by the hologram that needs to be analyzed. To obtain velocity vectors,

two holograms are recorded at different time instances using, for example, a double expo-

sure or multiplexing techniques. A numerical algorithm is used to correlate the particles

from different holograms and estimate their velocity vectors. Several algorithms have

been implemented, such as correlation-based [251], genetic algorithms [252] and particle

reconstructed by edge detection methods [253].

Digital holographic particle image velocimetry (DHPIV) systems are developed to

overcome the efficiency limitations in handling large amounts of data, complicated chem-

ical processing, elaborate optical setups and cost related problems that arise in tradi-

tional HPIV systems [254]. The holograms captured by DHPIV systems are recorded
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on a digital photodetector such as a CCD or CMOS sensor. Digital holograms have the

advantage that the recorded information is already digitized and ready for numerical

post-processing. This allows capturing holograms of fast moving flows at high frame

rates. However, the performance of digital holography is limited by the detector's space-

bandwidth product (SBP), pixel size, dynamic range, and quantum efficiency. In par-

ticular, the diffraction limit resolution as well as the ability to accurately recover the

particle positions is mainly limited by the detector's SBP and pixel size. The system

suffers from relatively large depth of focus compared to the attainable lateral resolution

[255]. Also, the information capacity of digital photodetectors is less than that of conven-

tional holographic materials. The large pixel size imposes a constraint on the maximum

off-axis angle that can be sampled before aliasing. For a photodetector with a pixel size

of 10pm, the maximum off-axis angle is approximately 1 degree (for A = 632nm). Such a

small angle results in insufficient separation of the desirable and undesirable diffraction

orders, limiting the bandwidth of the recordable signal. For this reason, most DHPIV

systems operate using the in-line geometry [9], [256]. The hologram reconstruction step

is done numerically. Several reconstruction algorithms have been developed such as the

convolution method [7] and reconstruction based on wavelet transforms [257], [258]. The

convolution method is a back-propagation algorithm based on the Fresnel transfer func-

tion of equation 2.48 similar to that used for the simulation of the diffracted field based

on scalar diffraction theory explained in Chapter 2. The velocity vectors are computed

by numerically processing the reconstructions from two frames separated by a known

period of time. Similar algorithms to those used for conventional HPIV systems are used

to locate and correlate the tracing particles. Additional applications of DHPIV systems

include measurement of water-air mixtures [259], microgravity experiments [260], plank-

ton imaging [7] and airborne systems [261]. In addition, a multiplexing method for the

acquisition of large SBP holograms with high temporal resolution is proposed [262].

Despite that DHPIV systems have been used widely in a variety of applications, there

is still very limited understanding about how system parameters such as particle density,
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particle size and distribution, volume size, recording geometry, number of pixels, pixel

size, detector's dynamic range and noise affect the performance of the system. All these

parameters are coupled together and affect the system's ability to extract information ef-

ficiently from the object space (particle cloud). In particular, it has been experimentally

demonstrated that the choice of particle density affects the performance of the recon-

struction algorithm [263]. High particle densities are desirable for multi-point sampling

of complex flows. However, high densities affect the hologram quality making it diffi-

cult to retrieve the particle positions. Early studies of the influence of particle densities

in conventional HPIV systems ignored the influence of the virtual image and detector

with finite SBP (film recorded holograms) [264], [265]. A later study for DHPIV systems

showed that that the volume depth and shadow density affect the percentage of extracted

particles [266]; however, they didn't account for number of pixels, pixel size, and dynamic

range. The influence of virtual images on the SNR was also studied [267]; however, the

particle diameter, distribution and detector's dynamic range were ignored.

From our literature search, we conclude that currently there is no model available

which includes all the important system parameters that can assist in the optimization

of a DHPIV system. We propose a stochastic model based on information theory that

can be used for the design and optimization of DHPIV systems. Similar to the previous

chapter, the system model is mainly characterized by a Hopkins matrix, which includes

all the important system parameters mentioned above. A stability metric given by the

system's channel capacity under the assumption of Gaussian probability distribution is

used to maximize the amount of information that can be extracted from the sampled

volume. This choice of metric allows improving the stability of the associated inverse

problem during the particle recovery or reconstruction processes.

The analyzed problem is equivalent to maximizing the performance of the hologram

encoding process. This is illustrated in Figure 5-1 for the recording of an in-line hologram.

A plane wave of wavelength, A, propagating parallel to the optical axis illuminates a vol-

ume, V, seeded with tracing particles of size, d,, at a density, p. The wave scattered by
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the particles interferes at the hologram plane with the undiffracted wave and is recorded

on a CCD sensor with M pixels of size 6,42., dynamic range D, and added electronic

Gaussian noise 0Gaussian- In addition, there is an associated particle density dependent

noise, IN. An abstraction of the encoding problem can then be as follows: maximize

the amount of information of the 3D object space (number of particles) that is encoded

on a 2D discrete hologram plane subject to fixed system parameters (or constraints).

Each particle corresponds to a sampling point within the volume of interest (VOI) and

thus, adding more particles increases the amount of information that describes the ob-

ject space. However, due to the system's limited channel capacity and particle density

dependent noise, there is an optimum number of particles that can be encoded and de-

coded (reconstructed) with arbitrarily low probability of error. This represents a tradeoff

between particle density and information capacity and will be analyzed in more detail in

the next section. Similar tradeoffs respect to other system parameters can be obtained

from the proposed model. The maximum stability metric represents an upper bound for

performance of a given system, which maximizes the hologram encoding process. This

upper bound is independent of our choice of decoding strategy. The decoding strategy is

application dependent and its performance is related to the choice of reconstruction algo-

rithm selected to process the captured holograms. Different applications required specific

information to be extracted from the hologram, such as number of particles, particle po-

sitions, distribution of positions or size and shape. The good choice of decoding strategy

might lead to a performance closer to the upper bound given by the stability metric.

By optimizing the system parameters and hence the stability metric, the performance of

the decoding strategy is also improved as the associated inverse problem becomes more

stable as proved in the previous chapter.
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Figure 5-1: Equivalent problem: encoding and decoding.

5.2 Theoretical Model: Point Source Particles

The theoretical model is first derived for the extreme case of point source particles. The

model geometry is shown in Figure 5-2. The VOI is illuminated with a uniform quasi-

monochromatic spatially coherent plane wave propagating parallel to the optical axis

with electric field: Ei = Ui exp(ikz), where U; is the wave's amplitude and k = 2pi/A.

Point particles are randomly distributed inside the VOI and scatter a spherical wave

of the form: E, = U, exp(ikr), where U, is the amplitude of the spherical wave, and

r = V/x2 + y2 + z 2 is the radial position from the center of the particle to an arbitrary

point in the image plane. The spherical waves scattered by each particle interfere at the

image plane with an in-line plane reference wave of the form: E, = U, exp(ikz), where

U, is proportional to Ui. The resulting interferogram is recorded on a digital detector

with M pixels of size: Jix x 6,32. The object space (VOI) is divided into V voxels of

size: 6 oxel x 6 voxel x 6voxe. Each voxel is constrained to only contain a single particle.

The minimum voxel size is then: 6voxel = 6 "oxel = 6 v'el = d,, where d, is the particle's
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diameter. By controlling the voxel size, the mean distance between particles is also varied.

A binary random variable, a(v), is assigned to each voxel,

a() = 1 , (5.1)
0 i-p

where p is voxel's probability of containing a particle. A higher probability value results

in higher number of particles inside the VOL. The particle density is then related to

the voxel size and its probability of success. The mean expected number of particles is:

Nmean = pV. The corresponding variance is: Nvar = Vp(1 - p).

Object Space: VOI Image Space: Detector

4 

4

AO 0

l ,

"1AParticles 1~

px

Figure 5-2: Problem geometry.

To analyze the field scattered by a point particle, a Rayleigh scattering formulation

is adopted. Rayleigh scattering characterizes the scattering of electromagnetic waves

by particles much smaller than a wavelength. This is quantified by: a << 1, where a

is a characteristic length given by, a = k(d,/2). The scattered electromagnetic field is

computed by modeling the homogeneous dielectric particle as a radiating Hertzian dipole

and enforcing the appropriate boundary conditions [153]. In general, the scattered electric
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field, ES, is related to the incident electric field, E*, by means of the scattering matrix,

E08 e-ikr+ikz S2 0 EO'(52
Es s~kr 0S1 E

where the incident and scattered electric fields are expressed in spherical coordinates; 0

is the angle measured from the positive z-axis; p is the azimuth angle; Si and S 2 are

the scattering functions. E0, and E,, are the components of the electric vector polarized

parallel and perpendicular to the scattering plane. The scattering plane is defined as

that containing the ki vector of the incident wave and the position vector, r. Under the

Rayleigh scattering assumption, S1 and S2 take the form,

Si ~ n2-1 -ias ,2+ (5.3)

S2 _C,3n2 1-
S2  ~ ia3[ 2  cos9,r11 n2+21 'o0

where n is the particle's refractive index. The corresponding intensity distributions for

the parallel and perpendicularly polarized waves are,

I Z a6 [n2 _ 1-]2 _L 4 2 [ n2 _ 1-]2 _LOrs
I = 2= "~rkr [n ]2= " o- (5.4)

k2r2 n2 +2 r2 n2 +2 r2 s

1,o1k 4r2 - 2 _ 1- 2 Co o 111 S2IlJlr2 =_1Icos2 0 = " -, cos2 O,
r2  [n 2 +2j r2

where If and I0J are the intensity distributions for the vertically and horizontally polar-

ized incident field, r, is the particle's radius, and a- is the scattering cross-section given

by,

o= kr [.] (5.5)r n2 + 2

In general, the polarization of the scattered wave is elliptical. In contrast, the polar-

ization of the reference wave is assumed to remain linearly polarized in a direction similar
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to that of the incident wave. From equation 5.4 we see that for a perpendicularly polar-

ized incident wave, the scattered power is uniformly distributed around a sphere. In our

model, a vertically polarized incident wave is assumed. This state of polarization maxi-

mizes the fringe visibility over extended scattering angles. The total power scattered by

the wave is found by integrating the intensity of equation 5.4 over a sphere P"' = 4rIo-s.

The corresponding power over a small spherical cap with angular acceptance, 9, is,

pca, _ ptot A 4rr 2 sin 2 (0/2) (5.6)
s S Asphere S 47rr 2

= 47rIou, sin 2 (0/2).

For a particle centered in the VOI and located at a distance, z,, from the detector,

the effective numerical aperture is: NA = sin 9 = sin [arctan(Xsizezp/2)], where Xsize =

v/M6pix, is the detector size. Under the paraxial approximation (x, y << zp) the spherical

cap becomes planar and coincides with the detector. Using equation 5.6, the power form

the particle captured by the detector is,

pdet =1rOU92 _ 7r'Xr1 z (57PS = OS I2-z2 250 ss" (5.7 )s 2zP

The amplitude of the scattered spherical wave is found by dividing equation 5.7 over

the area of the detector,

u2 (U) 2  (5.8)P ~z 2

P
U, = viU,

zp

where 77 = (rus)/2 is a small number and is assumed to be constant over the x-y plane.

Also, 77 is assumed to be the same for all the particles in the VOL. The resulting field at
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the mth pixel scattered by the vth particle is,

E(m'V) - Uia(v) exp v(' (5.9)
z,

where,
(mX_(v) 2 (ym) _() 2 1

4(mt,v) = k [z " + (m)- 2zv -. (5.10)

The amplitude of the reference wave is found using power conservation,

P = P, + 1 a(V)pot (5.11)

Pr =U2(X2ze) = U2(X,2ize) - U241raN,

r F1 4w N- I 1/2
U =U 2 I1, 2

8

L Xsize .

where N is the total number of particles inside the VOI for a given random experiment:

N = a(v). In deriving equation 5.11, we assumed that the incident illumination

for each particle remains constant. This assumption is valid for small particles and

relatively low densities. For larger particles or higher densities, the power of the wave

that illuminates a given particle decreases progressively while propagating through the

tank.

Using the previous results, we compute the intensity recorded by the detector,

V 2

I"') = Ur + E U(") exp [i#"')] (5.12)
v=1

+(| U")|2 + 2U, U) cos [#(mv)
V V

+ U()~f exp [~(~m'v) - 4O$mvf))

V V':V#4V'

K +~[ 2 Ur 1: U(V) Cos O(M'V)] +1 XM
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where r = |Ur 2 + |U V)I2; and,

Iyf = S E Up "U') exp Li ((m'v) - #M'V') . (5.13)
'N V vl:V:vl i(0v5.3

The first two terms of equation 5.12 correspond to the direct component (DC) and halo.

The third term contains the information of the signal to be recovered. The fourth term

is the cross-talk (interference) between every particle pair. In this analysis, the cross-talk

term is treated as noise that does not add any useful information about the measured

signal. This term will be referred to as the cross-talk noise and its properties will be

discussed later.

The term K is proportional to the total detected power. Under the weak scattering

object wave assumption (|U l2 << |Ur 2, where U is the amplitude of the object wave

that includes the contributions from all the particles), and for Ui = 1: r ~ 1. Equation

5.12 then becomes,

V [I 2Urfj

I(m) = a(V) + 2U n cos (#''" + I (5.14)
v=1 [N

Equation 5.14 can be written in matrix form as: I = Ha + IN, where I is an M x 1

vector of the raster scanned measured intensity, a is a V x 1 vector with zeros and ones

representing the particle locations inside the VOI at an instance in time, IN is an M x 1

vector of the raster scanned cross-talk noise, and H is the M x V Hopkins matrix of the

system that connects the input and output signals. The elements of the Hopkins matrix

are obtained from the following equation,

1 2,i1 [ I - cos -/2 (X(m) - X(V) )2 + (y(m) _ (v) 2-
h("''") = + - _ 1 "Z cos k z '") +

N z 2z v)
(5.15)

Similar to the Hopkins matrix derived in the previous chapter, the resulting Hopkins

matrix from equation 5.15 contains the impulse response of the systems and includes
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optical, geometrical, and detector parameters such as number of pixels and pixel size.

Additional parameters, such as detector's dynamic range, can easily be included by quan-

tizing the corresponding intensity values. The general structure of the Hopkins matrix

is shown in Figure 5-3. The system's impulse response of equation 5.15 is shift-invariant

over the x - y plane and shift-variant over the axial direction. By properly raster scanning

the VOI, the Hopkins matrix can be arranged in a block Toeplitz form.

The Hopkins matrix characterizes the system at a given instant in time in which the

particle positions are obtained from the random vector a. This vector contains ones and

zeros and multiplies the Hopkins matrix during the forward problem. The columns of H

that are multiplied by the elements of a that are zero do not contribute any information to

the measurement. This problem is equivalent to modifying the Hopkins matrix: H -+ H,

where H has zero columns corresponding to the positions of empty voxels. The rank of

H is, in general, lower than that of a full H (no zero columns) as it has several linearly

dependent columns. The matrix H can also be collapsed by removing the zero columns

and forming a smaller matrix of the same rank. This is justified as both matrices have

the same singular values that are used for the stability metric. The matrix H will be

referred to as instantaneous Hopkins matrix. To fully characterize the performance of the

system under a fixed particle density, several random experiments are performed, each

resulting in a different instantaneous Hopkins matrix.

To analyze the statistics of the cross-talk noise, equation 5.13 is rewritten as,

P

I(M) A ' cos A(mI, (5.16)
1=1

where the index 1 = {v, vIv > v/}; P = (Iv|2 - |v)/2; the amplitude and phase difference

terms are,

A(1) a a 1 = (5.17)

O(m,1) = (MV) - ~(mv')
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Figure 5-3: Structure of Hopkins matrix

The expectation value of equation5.16 is,

E I(m) E [A(')] cos Aom') (5.18)

2 1:2'COS

1 Zp1l ZpI

The mean cross-talk noise of equation 5.18 is composed of the superposition of several

small amplitude sinusoids with varying phase shifts. It can be shown that for medium

to large particle densities (P -> oo): E[Ifm] ~ 0. The second central moment of the

cross-talk noise is given by,

E[(m)] - E [A(l)A(h)] cos A#m') cos A#(m,h) (5.19)
1 h

0 17 h

4,) 2v' COl=h

By virtue of the central limit theorem we find that the cross-talk noise follows a Gaussian
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probability distribution with zero mean and variance given by (equation 5.19),

op2 e 4'rp 2  Cos(A4$M) 5.20)

As shown in Figure 5-4, not every particle contributes to the cross-talk noise at a point

0, but only those that lie inside the effective volume, Veff. This is because the cross-

talk interference patterns produced by particle pairs outside the effective volume have

frequencies higher than the sampling frequency and get integrated by the detector and

produce a uniform background. To estimate the volume size, consider the interference

pattern produced by two particles at points Q1 and Qi separated by a distance Axi

(Y1 = Y2 = 0). The resulting interference pattern is,

I = U,eii + Upe?02 2 (5.21)

S 2 c - X2 + 2xAxi= 2U 21 +Cos k.
P _ 2z,egf

The local frequency of the interference pattern is: ulc = Axi/pze. At the Nyquist

limit we get: Axi = Azref/2Jpix.This corresponds to a half apex angle of: 0 e A/(46,3x).

The resulting effective volume is,

7rA 2

Veff = 4862 [D 3 + 3D (z,2,f + Dzref)] . (5.22)
pix

The effective number of particles that contribute to the cross-talk noise term is: Neff =

pVeff, where p is a given particle density.

The system model described above can also be considered as a Gaussian parallel

channel similar to the information theoretic analysis of Chapter 3. In addition to the

cross-talk noise, additive white Gaussian noise (AWGN) may be added to account for

potential noise fluctuations from the detector. A stability metric similar to the channel

capacity of equation 4.19 is defined to estimate the stability of the inversion of the system
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Figure 5-4: Effective volume contributing to the cross-talk noise.

model for a given instant in time. The stability metric is given by,

S = In 1+ , (5.23)

where pi is the ith singular value of the instantaneous Hopkins matrix, H; o is the to-

tal noise variance that includes the particle density dependent cross-talk noise (equation

5.20) and any other sources of noise such as AWGN. The ratio pi/o2 again represents

the signal-to-noise ratio (SNR) of the ith eigenmode of the system. The stability metric

of equation 5.23 is used to maximize the information transfer from object space to im-

age space subject to various system parameters such as particle density, geometry and

detector characteristics.

5.3 Mie Theory: Particles of Various Sizes

The problem of a plane wave scattered by a spherical particle can be solved rigorously

using Mie theory [153]. In such a formulation, particles of various sizes and materials can

be modeled. We will restrict our analysis to spherical particles composed of homogeneous

dielectric material. Consider the scattering from a single particle centered at the optical
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axis as shown in Figure 5-5. The illumination wave is assumed to be vertically polarized

and propagated in the z-direction: Ej = ,U exp(ikz). The electric field components per-

pendicular and parallel to the scattering plane are again found by equation 5.2. However,

the scattering functions now take the form,

002q 
+ 1

S1 = [aqirq (cos 0) + bqT, (cos 0)] , (5.24)

002q 
+

S2 = Eq(q +)[bqrq (cos 0) + aqTq (cos 0)] ,

where,

1
q (cos 0) = Pq (cos 0) , (5.25)

sinG

Tq (COS0) = dP1 CS0dor,(co0 =dOP (cos9),

and P' (cos 0) is the first degree, qth-order associated Legendre function of the first kind.

The scattering functions of equation 5.24 are obtained by solving Maxwell's equations in

spherical coordinates and the coefficients, aq and bq, are found by applying the boundary

conditions. The coefficients are given by,

I' (na) "q (a) - T q (na) ' (a)
aq = , q (5.26)

bq = l' (na) (q (a) - Xq (na) (' (a)

b nV' (na) T, Xa)- (na) V' (a)
n' (na)(q (a)- Xq (na) ( (a)'

where n is the particle's refractive index, a is again the characteristic length: a = krp,

and,

Tq (X) = +1/2(W, (5.27)

(x) H 2( ),
(q(X W = !_q+/
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are Riccati-Bessel functions. The scattered components of the electric field are (for the

far-field solution),

eikr
Eo = .cosS 2 (),

ikr
eikr

Ew = e sin S1 (0).
ikr

(5.28)

We next express the field components in Cartesian coordinates,

= cos 0 cos E0 - sin pE,

= cos 0 sin pEo + cos WE,,

= - sin pEo.

(5.29)

Figure 5-5: Scattering problem geometry.

In general, the wave scattered by the particle is elliptically polarized. In contrast, the

reference wave, Er, is assumed to have the same polarization state as the incident wave.

Let E0 be the total object field scattered by the particle cloud. The object field can be

decomposed into components parallel and perpendicular to Er: E1, Ef. The resulting
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interference pattern is given by,

I (E + El) (E + El)* + |E-j. (5.30)

From equation 5.30, we see that only the component of the object wave that is parallel

to E, contributes to the interferogram. Under the weak scattering assumption, the

magnitude of the object wave component perpendicular to the reference wave is small and

thus can be neglected. If we assume an incident illumination polarized in the x-direction

as indicated above, only the x-component of the scatter field is needed to compute the

interference pattern. Substituting equation 5.28 in to the x-component of equation 5.29

we get,
eikr

E ik= . ,(5.31)

where G is a complex amplitude function that depends on the particle size, material,

wavelength, and observation position and is given by,

G = cos6cos2 WS2 - sin 2 WS1. (5.32)

From equation 5.31 we see that the field scattered by the particle is a spherical wave

similar to that of the point source particle assumption, but is modulated by the complex

amplitude of equation 5.32. This modulating term has amplitude that is proportional

to the particle's scattering cross-section and a phase that modifies the otherwise perfect

spherical wavefront which can be considered as an intrinsic aberration [268]. Under the

paraxial approximation, equation 5.32 takes the same form as equation 5.9, with <pf"'')

given by equation 5.10, and the amplitude given by,

U(Mv) - ,kz~v) (5.33)

where G(mv) is the paraxial approximated modulating function of equation 5.32 that

depends on the positions of the particle and observation pixel as well as the particle's
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refractive index and size distribution. Different size distributions may be used, such as

log-normal distributions that characterize fine particles [269].

It only remains to calculate the remaining power of the reference wave after several

scattering events of the incident wave. This is calculated in the same way as equation

5.11 but the total power scattered by the particle is replaced with,

P"tot = 8 U (2q + 1) [laq|2 + |bq2 ] , (5.34)
q=1

where again we have assumed that each particle is illuminated by an incident wave with

the same power. In contrast to the previous case, the power is not uniformly distributed

over a sphere and varies with position [270]. For larger particles, most of the scattered

energy goes in the forward direction. This introduces an advantage of the in-line geometry

versus the off-axis case, as the detector collects most of the signal power. Using these

results, the rest of the model can be derived in the same way as that described in the

previous section. For particles smaller than the wavelength, the extended model reduces

to that of the point source particle case.

5.4 Simulation Results

In this section, simulation results for the numerical computation of the stability metric

based on the described theoretical model are presented. The simulation experiments are

conducted for the extreme case of point source particles. As discussed previously, the

scattered power by these particles is small and hence they can be used to estimate the

upper bound performance of the system. To simplify the numerical computations and

to reduce the size instantaneous Hopkins matrix, a single x-z cross-section of the VOI

is considered. This cross-section is taken at y = 0. To control the effective particle

density, the probability, p, of having a particle at the vth voxel is varied in the range

[0, 0.2]. The total number of voxels in the x-z slice is set to be the same as the total
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number of detector pixels: V2 = M = 61 x 61. The detector's pixel size is: 65. = 9pm.

The mean distance between the detector and the VOI is: zM = 50mm. The operating

wavelength and amplitude coefficient are: A = 632.8nm, frj = 0.001. The voxel size

along the z-direction is fixed to: dvo"" = 50pm. Three simulation experiments are

conducted in which the voxel size along the x-direction is set to be smaller, equal and

larger than the system's diffraction limit resolution, A = 0.5(A/NA). For each particle

density value (probability value), 100 random experiments are performed. For every

random experiment, the instantaneous Hopkins matrix, cross-talk noise and stability

metric are computed. In addition, the mean and standard deviation of the stability

metric corresponding to each random are computed.

Figure 5-6 shows the computed stability metric for the three cases as a function of

probability (particle density). As expected, an increase in the number of particles inside

the VOI (increase in probability) results in an increased amount of information encoded

by the system. Each particle represents a sample point within the volume. Larger number

of particles better characterizes the complex flow under study. However, the cross-talk

noise also depends on the number of particles and becomes more severe when the density

increases. A large amount of cross-talk noise corrupts the encoded hologram making it

difficult to recover the original signal. This is the well-known tradeoff between particle

density and stability of the inverse problem. The proposed model allows estimating the

inflection point in which the stability metric is maximized. This point corresponds to

the optimum particle density that guarantees maximum information extraction from the

object to the image spaces. Similar tradeoffs may be found respect to other system

parameters, such as number of pixels or pixel size. From the three cases shown in Figure

5-6, it can be seen that the stability metric is the smallest when the voxel size along

the x-direction is smaller than the diffraction limit resolution. This result is expected

as particles in close proximity cannot be correctly resolved by the optical system. If

the distance between particles increases, such as the case when d'XeI >> A, the particle

reconstruction is less affected by the added noise and hence it has a larger stability metric
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value. This influence of voxel size in the stability metric can also be seen in Figure 5-7

for the case of a fixed probability value of: p = 0.04. As the voxel size increases, the

stability metric also increases and then saturates around a point corresponding to the

system's diffraction limit resolution.
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Figure 5-6: Stability metric simulation results.

Figure 5-8-a shows the corresponding increase in cross-talk variance as a function

of probability. The estimated number of particles in the x-z plane as a function of

probability is shown in Figure 5-8-b.

5.5 Experimental Verification

Experiments are conducted to examine the influence of particle density to the ability

of a given decoding strategy to extract information from the recorded holograms. The

experimental results are expected to follow a similar trend as that predicted by the

stability metric shown in Figure 5-6. The geometry of the implemented optical setup is

shown in Figure 5-9. A 658nm, 100mW diode laser is used as the coherent illumination

source. The laser beam is first spatially filtered and then collimated using a plano-

261



1400

1200

1000

Stability Metric: p=0.04

400-
200

01
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Voxel Lateral Size ."' (pm)

Figure 5-7: Stability metric for different lateral voxel sizes.

Cross-talk Noise:5""' =0.5lpm

) 0.02 004 0.06 0.08 0.1 0
Probability p

Number of Particles: S.""'=0.65sm

.12 0.14 0.16 0.18

Figure 5-8: (a) Cross-talk noise variance; (b) Number of particles.

262

A
Probability p

(b)

x 10.0



convex lens to produce a uniform plane wave. A tank is filled with small tracing particles

suspended in water. The tank dimensions are: width = 0.34", height = 0.74", length

= 2.13". The plane wave's diameter is truncated such that the sampled volume is:

VOI = 28mm 3 . The particle's diameter and standard deviation are: d, = 78.1pm,

o- = 0.95pm. The particles are produced by Bangs Laboratories, Inc., and are made out

of polystyrene. A small mixer is used to maintain the particles uniformly distributed

and prevent them from settling at the bottom of the tank. This guarantees consistency

between different realizations of a given experiment. The holograms are captured on

Kodak's KAF-16801E CCD sensor with pixel size: 6 Pi, = 9pm. The SBP of the captured

holograms is: 200 x 200 pixels. The holograms are transferred to the computer by

means of a frame grabber. To avoid motion blur, the diode laser is modulated using a

microcontroller. The microcontroller synchronizes the photodetector's integration time

and the execution of a single laser pulse.

Mixer
Diode Spatial
Laser Filter CCD

Tank with
particles

Figure 5-9: Experimental setup.

Holograms are recorded for 17 different particle densities. The particle densities are

controlled by carefully extracting a sample volume using a micropipette from a solution

source with suspended particles of known density. The extracted samples are further

diluted with water to produce constant volumes throughout the experiments. For each

dilution level, 100 holograms are captured. This is equivalent to having 100 repetitions

per given random experiment. Figure 5-10 shows an example of three captured holograms

corresponding to low, medium and high particle densities. For high particle densities,

263

:'Ie



a speckle-like pattern is observed. This corresponds to the cross-talk noise analyzed in

the previous sections. The standard deviation is computed to quantify the statistical

variations in intensity over the different captured holograms. The results are shown in

Figure 5-11-a. This figure includes the variations of the signal as well as the cross-talk

noise, as opposed to the simulation results shown in Figure 5-8-a that only included the

variance of the cross-talk noise. The corresponding mean intensity is shown in Figure

5-11-b.

Low Density
Density = 1065.24 particles/ml

Medium Density
Density =2556.58 particles/mlI

High Density
Density = 6391.46 particles/m

Figure 5-10: Example of captured holograms.

Density (#particles/mi) Density (#particles/ml)
(a) (b)

Figure 5-11: Hologram statistics: (a) Variance; (b) Mean intensity.
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A decoding strategy is chosen and its ability to extract information from the recorded

holograms is studied. This strategy utilizes a template matching scheme based on a

cross-correlation algorithm. The algorithm is designed to process all the captured holo-

grams automatically and keep track of the detected number of particles per frame. The

block diagram of the template matching algorithm is shown in Figure 5-12. The algo-

rithm begins by loading a given hologram. The 3D reconstruction volume is created

by reconstructing the hologram at several planes within the VOI separated by an axial

step, Az. The reconstruction is conducted using the Fresnel back-propagation method of

equation 2.48. Next, the template is loaded and used in the cross-correlation algorithm.

The template is a small image that contains a single particle in-focus. This template can

be extracted from one of the hologram reconstructions or can be digitally created for the

known particle diameter. A 2D cross-correlation is computed between the template and

a given x-y plane of the reconstructed 3D volume. The resulting correlation maps are

stored on the 3D cross-correlation volume. This volume contains peak responses at the

locations where the reconstructions match the template. The 3D volume is then bina-

rized using a fixed threshold to isolate the peak responses. This process results in 3D

binary objects that elongate along the optical axis. The binary objects are then labeled

and their areas and centroids are computed. Three tests are designed to find the "true"

responses from particles and discard "false" binary objects. In the first test, binary ob-

jects with an area smaller than the expected area are discarded. In the second test,

the intensity grey level values corresponding to the centroids of the binary objects are

extracted from the 3D reconstruction volume. The objects that have an intensity value

larger than a given threshold are discarded. This is because the particles are opaque

and the reconstructed intensity distribution is expected to have low grey values inside

the particle. The third test compares the correlation peak values from the 3D cross-

correlation volume. Binary objects with values lower than a set threshold are discarded.

The strength of the correlation peak is also used to estimate double particles that are

stuck together.
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Figure 5-12: Block diagram of template matching algorithm.

Figure 5-13 shows an example of three reconstructed images processed using the

template matching algorithm. These images correspond to low, medium and high particle

density holograms. The reconstruction shown in Figure 5-13 is not the reconstructed

intensity distribution at a given plane, but the project minimum intensity along the axial

direction of the 3D reconstruction volume. The red and green crosses indicate detected

single and double particles respectively. As can be seen for the high density case, the

algorithm fails to detect all the particles contained inside the VOL.

Low Density Medium Density High Density
Detected Particles = 60 Detected Particles = 83 Detected Particles = 79

Figure 5-13: Example of reconstructed images.
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The comparison between the expected number of particles from the measured densities

and the detected number of particles from the template matching algorithm is shown

in Figure 5-14. As can be seen, the experimental results follow a similar trend as that

predicted by the stability metric shown in Figure 5-6. The expected and detected number

of particles increases linearly for low to medium particle densities and then decreases

after the inflection point. For high particle densities, the decoding algorithm fails to

extract information from the hologram and the reconstruction is dominated by cross-

talk noise. The peak from Figure 5-14 corresponds to an optimum particle density of

~ 3409particles/ml (3.4 particles/mm3 ). A more efficient decoding strategy may be

implemented; however, its performance will be ultimately limited by the upper bound

set by the stability metric.

z

'0

U

0)

(U

Expected Number of Particles

Figure 5-14: Comparison between detected and expected number of particles.
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Chapter 6

Conclusions

This thesis presents a variety of multi-domain optimization tools designed to improve the

performance of holographic optical systems. Specific examples are described of systems

designed for imaging and lithography. Novel optical systems and optimization algorithms

are proposed. The developed optimization tools are designed to be robust, computation-

ally efficient and sufficiently general to be extended to other holographic based systems.

All the major forms of holographic elements are analyzed: computer generated holo-

grams, thin and thick conventional holograms, numerically simulated holograms, and

digital holograms. The design, optimization and experimental implementation of the

proposed systems are performed. Each system is accurately modeled using the appropri-

ate scalar or vector diffraction theories. Additional studies are performed using system

and information theories. The system's channel capacity and stability of the related in-

verse problem as a function of various control parameters are evaluated. The performance

of the corresponding signal encoding and decoding processes is maximized. A sensitivity

analysis is performed to predict and assist in the correction of potential fabrication or

calibration errors.

Two lithographic systems are presented, one based on CGHs and the other using

optically recorded TIR holograms. The first system is proven to reconstruct high-quality

patterns that satisfy the high diffraction efficiency and uniformity demands when opti-
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mized using the proposed hybrid optimization algorithm based on GAs and the MER

method. The introduction of the local diffusers phase elements (LDPE) and local negative

power elliptical phase elements (LNPEPE) masks enabled reducing the complexity of the

optimization problem by only controlling a small subset of optimization variables. The

algorithm is efficiently implemented on a GPU, resulting in speedups of more than 200 x

compared to standard CPU implementations. A multiplexing method for the extension

of the depth of focus is proposed. A simple CGH fabrication method based on electron-

beam lithography is presented, as well as an optimization scheme designed for the local

correction of over and under dose errors. Experimental demonstrations of the recon-

structions from the fabricated CGHs using coherent and partially coherent illuminations

are presented. A sensitivity analysis is conducted. The presented algorithm is extended

for the design and optimization of multispectral CGHs applied for high efficiency solar

concentration and spectral splitting.

The second lithographic system is studied for the target application of high-resolution,

parallel exposure, non-contact, large area flat panel display manufacture. This system

is based on TIR holograms recorded on a photopolymer that operate in the near ultra-

violet regime. A comparative analysis between scalar and vector diffraction theories for

the modeling and simulation of the system is performed. Scalar diffraction theory is

proven to be sufficiently accurate for the considered geometry and is chosen for model-

ing and simulating the system. First order models for simulating the material response

and shrinkage of the photopolymer are presented. A novel block-stitching algorithm is

introduced for the calculation of large diffraction patterns that allows overcoming cur-

rent computational limitations of memory and processing time. The numerical model is

implemented for optimizing the system's performance as well as redesigning the mask to

account for potential fabrication errors. The simulation results are compared to experi-

mentally measured data. In addition, a method for extending the depth of focus of the

system is presented.

Two imaging systems are presented: holographically corrected segmented aperture
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thin imager and DHPIV system. The first system is proposed to achieve high-resolution

imaging on space constrained geometry (maximum thickness of 5mm) better than con-

ventional microlens array compound systems. This imager utilizes phase conjugation

holography for correcting the high-order aberrations present in the GRIN lens array.

The new degrees of freedom introduced by the holographic elements are utilized for

maximizing the information transfer from scene to measurement spaces. The optical

performance of the system is evaluated using a combination of Matlab and Zemax. The

imager is modeled using system's theory by defining the Hopkins matrix which connects

the input and output signals. The system is analyzed using information theory treating

it as a Gaussian parallel communication channel. A multi-domain optimization approach

is implemented based on GAs for maximizing the system's channel capacity and hence

improving the information extraction or encoding process. A decoding or reconstruc-

tion strategy is implemented using the superresolution algorithm. Experimental results

for the optimization of the hologram's recording process are presented. A tomographic

technique based on the Foucault knife-edge test is presented for the measurement of the

system's space-variant point spread function. A sensitivity analysis is performed to esti-

mate the effect of potential misalignment errors in the assembly process. A modification

of geometry for polychromatic imaging is proposed.

The second studied imaging system utilizes digital holography for the measurement

of complex flow fields by tracking micron sized tracing particles. The overall perfor-

mance of DHPIV systems relies on the proper selection of parameters such as particle

density, geometry and detector related parameters. A stochastic theoretical model based

on a stability metric similar to the channel capacity for a Gaussian channel defined in

information theory is presented. The stability metric is used for optimizing the system,

maximizing the amount of 3D information from the VOI that can be encoded by a single

hologram. The theoretical model is first derived for the extreme case of point source

particles using Rayleigh scattering and scalar diffraction theory formulations. The model

is then extended to account for particles of variable sizes using Mie theory for scattering
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of homogeneous dielectric spherical particles. The forward problem (recording of digital

hologram) is modeled using system's theory by defining the instantaneous Hopkins ma-

trix. The influence and statistics of the particle density dependent cross-talk noise are

studied. Simulation results are presented for finding the optimum particle density based

on the stability metric. An experimental evaluation is conducted to study the influence

of particle density in the information extraction process by a set decoding algorithm.

The implemented decoding strategy is based on a template matching scheme designed to

automatically process and count the particles present at each frame. The experimental

results are compared to the predictions obtained from the stability metric showing similar

trends.
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Appendix A

Additional CGH Optimization

Results

In this appendix, additional optimization examples of the design of CGHs are presented.

The first example consists of optimizing an in-line binary phase CGH designed to recon-

struct a gate pattern that is used in the fabrication of liquid crystal displays (LCDs).

This CGH is optimized using the encoding strategy based on the LDPE mask. Four

different values of the diffuser factor are considered showing how the LDPE mask helps

to spread the encoded information over the entire hologram window and improve the

quality of the reconstructed signal. The diffuser factor values range from 0 to 1. In the

case of Dfactor = 0, the problem reduces to the diffracted field encoding strategy. The

simulation parameters are indicated in Table A.1. Figure A-1 shows the resulting opti-

mized CGHs for progressively increasing diffuser factors. For the CGH optimized with

Dfactor = 0, the encoded information is not uniformly spread over the hologram window.

This results in large empty patches showing that the hologram is not using the available

16 million degrees of freedom (16 million bits of information capacity). The information

spread increases with larger diffuser factors progressively covering the entire hologram

window. The corresponding reconstructed amplitude distributions close ups are shown

in Figure A-2. This reconstruction example demonstrates how the LDPE mask helps in
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the reduction and elimination of background noise, due to undesirable diffraction effects

and improving the hologram's diffraction efficiency and uniformity of its reconstruction.

These results are not fully optimized and a better solution can be found by implementing

the HOA to find the optimum diffuser and frequency factors.

Table A.1: Optimization Parameters: In-line CGH - Gate Pattern.
Wavelength (A) 364nm Object Window (0,,ie) 350pm

Working Distance (d) 200pm Hologram Size (H,,i) 400pm
Pixel Size (6J;) 100nm Number of Iterations 100

Df = 0 Dba =0.2

14

Figure A-1: Optimized CGHs for different diffuser factors.

The second example is the optimization of a binary phase CGH using the LDPE

mask, designed to reconstruct a 2 x 2 array of the resolution target of Figure 2-84-a. The

simulation parameters are indicated in Table A.2. The final optimized CGH is shown

in Figure A-3-a. The corresponding reconstructed amplitude distribution is shown in

Figure A-3-b.
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D__=0 D__=0.2

Figure A-2: Reconstructed amplitudes from CGHs designed with different diffuser fac-
tors.

Table A.2: Optimization Parameters: In-line CGH - Resolution Target Array.
Wavelength (A) 364nm SBP (After Padding) 2000 x 2000

Working Distance (d) 2 00pm Hologram Size (Hsize) 400[m
Pixel Size (6ia) 100nm Number of Iterations 150
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(b)

Figure A-3: (a) Optimized CGH; (b) Reconstructed amplitude.
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