
An Adaptive Control Technology for Flight Safety

in the Presence of Actuator Anomalies and
MASSACHUSETTS INSi'fIJTE

Damage OF TECHNOLOGY

by MAR 2 2 2010

Megumi Matsutani LIBRARIES

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics Engineering

at the ARCHIVES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Jan 2010

© Massachusetts Institute of Technology 2010. All rights reserved.

A uthor ... .. ................----

Department of Aeronautics and Astronautics
Jan 15, 2010

A

Certified by ..... ............ ..........

Dr. Anuradha Annaswamy
Senior Research Scientist

Thesis Supervisor

A ccepted by ........ . .........................
Prof. Eytan H. Modiano

Associate Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students



9



An Adaptive Control Technology for Flight Safety in the

Presence of Actuator Anomalies and Damage

by

Megumi Matsutani

Submitted to the Department of Aeronautics and Astronautics
on Jan 15, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics Engineering

Abstract

The challenge of achieving safe flight comes into sharp focus in the face of adverse
conditions caused by faults, damage, or upsets. When these situations occur, the
corresponding uncertainties directly affect the safe operation of the aircraft. A tech-
nology that has the potential for enabling a safe flight under these adverse conditions
is adaptive control. One of the main features of an adaptive control architecture is
its ability to react to changing characteristics of the underlying aircraft dynamics.
This thesis proposes the building blocks of an adaptable and reconfigurable control
technology that ensures safe flight under adverse flight conditions. This technology
enables the synthesis of such controllers as well as the systematic evaluation of their
robustness characteristics.

The field of adaptive control is a mature theoretical discipline that has evolved
over the past thirty years, embodying methodologies for controlling uncertain dynamic
systems with parametric uncertainties [1, 2, 3, 4, 5, 6]. Through the efforts of various
researchers over this period, systematic methods for the control of linear and nonlinear
dynamic systems with parametric and dynamic uncertainties have been developed

[7, 8, 9, 10, 11, 12]. Stability and robustness properties of these systems in the
presence of disturbances, time-varying parameters, unmodeled dynamics, time-delays,
and various nonlinearities, have been outlined in the references [4]-[13] as well as in
several journal and conference papers over the same period.

In this thesis, we consider the control of a transport aircraft model that resembles
the Generic Transport Model [14]. While the vehicles' geometry and aerodynamic
model are those of a C5 aircraft, every other aspect has been made to coincide with
the GTM, e.g. anti wind-up logic, time-delay due to telemetry, baseline control struc-
ture, low-pass and wash-out filters. We delineate the underlying nonlinear model of
this aircraft, and introduce various damages, and failures into this model. An adaptive
control architecture is proposed which combines a nominal controller that provides
a satisfactory performance in the absence of adverse conditions, and an adaptive
controller that is capable of accommodating various adverse conditions including ac-
tuator saturation. The specific adverse conditions considered can be grouped into the



following three categories, (a) upsets, (b) damages, and (c) actuator failures. Specific
cases in (a) include flight upsets in initial conditions of various states including an-
gle of attack, cases in (b) include situations where structural failures cause changes
in the location of the Center-of-Gravity (CG)[15], while cases in (c) include situa-
tions where symmetric and asymmetric failures in control surfaces and engines occur.
These failures include losses in control effectiveness, and locked-in-place control sur-
face deflections.

The resilience of the adaptive controller to uncertainty is evaluated for safety using
the control verification methodology proposed in [16]. This methodology enables
the determination of ranges of uncertainty for which a prescribed set of closed-loop
requirements are satisfied. This thesis studies several one-dimensional uncertainty
analyzes for two flight maneuvers that focus on the longitudinal and lateral dynamics.
As compared to the baseline controller, the adaptive controller enlarges the region of
safe operation by a sizable margin in all but one of the cases considered.

Thesis Supervisor: Dr. Anuradha Annaswamy
Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 Adaptive Flight Control

1.1.1 Adaptive Control

The field of adaptive control has addressed the problem of control of dynamic systems

with parametric uncertainty [1]-[5],[17]. The simplest example is the control of a plant

having the form

y = (W,(s, 0))u (1.1)

where W,(s) represents the aircraft dynamics linearized about a trim condition, 60

is the nominal value of the uncertain parameter 0, and u and y represent a vector

of control inputs and measurable outputs. We will assume that 0 belongs to the set,

H(60, A) where A, the uncertainty radius, is proportional to the uncertainty we have

in the actual value of 0. H(0, A) may be due to uncertain aerodynamic coefficients,

inaccurate atmospheric models, or actuator failures. The adaptive controller is given

by

u = C(k(t), y, 6,-') (1.2)



where k(.) is a control parameter that is varied nonlinearly as a function of on-

line measurements of the vehicle, J is a vector of command signals, and F is an

adaptation gain. It is well known that the closed-loop system is guaranteed to be

stable, and that the output tracks specified command signals arbitrarily closely under

certain matching conditions. Yet another uncertainty that can be addressed is due to

unmodeled dynamics whose effects may be due to atmospheric excitation, or flutter

modes. If these effects are represented through the operator pA(s) , where A(s) has

a bounded norm and p is a finite gain, the vehicle dynamics is now given by

y = (W,(s, 9) + pA(s))u. (1.3)

For every uncertainty model H, choice of an adaptation gain F, command signal 6 and

performance metric, there exists a critical gain p*, that can be tolerated [4]. Bounds

of p* have been derived for general uncertainties A(s).

1.1.2 On-line Reallocation in the Presence of Actuator Fail-

ures

The advantage of any adaptive control system is its ability to cope with unforeseen

changes in the flight and environmental dynamics. Possible causes of such changes

are actuator failure, vehicle geometry changes, and other disturbances. In [10], a

direct-adaptive flight controller is proposed to enable reconfiguration in the presence

of actuator failures, environmental disturbances, and modeling errors. The controller,

developed using the K&A algorithm in [7] enables stable compensation in the presence

of actuator failures via on-line reconfiguration and control allocation, while accom-

modating for magnitude constraints on the control input. For the system in (1.3), an

adaptive controller which incorporates reallocation over control surfaces is designed

as

U = G(Go, X, t, Xcmd) (1.4)



where G is a nonlinear reallocation algorithm which depends on Go, a constant re-

allocation matrix, x is the state, and Xcmd is a command signal. Benefits of the

proposed adaptive controller were demonstrated using a linearized six-degree of free-

dom simulation model of a large, four engine transport aircraft. It was observed

that this algorithm provides improved performance compared to a standard adaptive

algorithm.

1.2 Control Verification & Validation

1.2.1 Control Verification Methodology

The set of design requirements to be satisfied by the closed-loop system can be de-

scribed by a collection of inequality constraints that depend on the uncertain pa-

rameters and the design variables. In general, these requirements can be prescribed

as

g(O, t, d, p, A) < 0 (1.5)

where d is the design variable. The projection of the constraint in (1.5) onto the 6-

space partitions the uncertain space into two regions, a region where the constraint is

violated, called the Failure Domain F, and a region where the constraint is satisfied,

called the Safe Domain. Depending on the requirement being cast by Equation (1.5),

excursions into the Failure Domain could represent instability, poor handling qualities,

or excessive control actuation.

The Parametric Safety Margin, whose evaluation requires the homothetic defor-

mation of the set H(60 , A), is the "distance between H(0, A) and the Failure Domain.

This deformation, which uses 00 as an anchor point while preserving the orientation

and proportionality of H, is performed until the deformed set touches the boundary

of the Failure Domain. The resulting deformed set is called the Maximal Set. The

Parametric Safety Margin is a measure of the size of the Maximal Set. The larger

the Parametric Safety Margin, the larger the smallest excursion from 00 required for



violating Equation (1.5), thus, the better the robustness.

When Equation (1.5) casts the stability and performance requirements on the

closed-loop system, the Parametric Safety Margins unambiguously characterizes the

resilience of the adaptive controller to uncertainty in 6. A methodology for robustness

analysis and robust design, based on Parametric Safety Margins, has been proposed

in [18]. These robustness metrics can be used to evaluate the ability of control sys-

tems to satisfy the closed-loop stability and performance requirements in the presence

of uncertain physical parameters, control failures, and damage. Because this frame-

work is applicable to nonlinear, possibly time-varying systems, where requirements

that explicitly depend on time are present, these metrics are well suited for adaptive

control.

The Parametric Safety Margins can also be used to systematically "robustify adap-

tive controllers. By this we mean that we can search for a control architecture so that

the set of free parameters maximize the robustness margins. This thesis does not

tackle such a optimization problem though and applies the metrics only to the ro-

bustness study of the adaptive control architecture to be designed in this thesis and

to the evaluation of the improvement in flight safety attained by adaptation.

1.2.2 Generic Transport Model

The Generic Transport Model (GTM) is a dynamically scaled model of a transport

aircraft for which NASA Langley has developed a high-fidelity simulink model. This

simulation uses non-linear aerodynamic models extracted from wind tunnel data, and

considers avionics, sensor dynamics, engine dynamics, atmospheric models, sensor

noise and bias, telemetry effects, etc. This aircraft has ten controllable inputs and

overall the open-loop plant has 278 states. As the actual vehicle itself, this model

departs considerably from the Linear Time Invariant (LTI) system usually assumed

for control design and therefore enables us to determine whether the improvements

in stability, safety, and performance expected can be realized in practice. Using this

vehicle, conducting a flight test is one of our plans to validate an adaptive control

technology for flight safety. As well as the studies to be conducted in this thesis, this



strongly connects this mature theoretical discipline of adaptive control to the actual

world, and leads to realization of actual applications of adaptive control on aerospace

applications to achieve a safety flight.

1.3 Organization of this Thesis

In this thesis, we start with building the nonlinear dynamic model of C5, a large

transport aircraft in Chapter 2. For this GTM-like model, we design an adaptive

control architecture in Chapter 3. With the control verification metrics which is to

be introduced in Chapter 4, we then evaluate the robustness of the adaptive system to

uncertainties in Chapter 5. Based on the studies from the previous chapters, Chapter

6 presents developments of an adaptive controller for the GTM. Finally Section 7

summarizes the thesis.
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Chapter 2

The Model of a Large Transport

Aircraft

In this chapter, we begin with a description of the nonlinear dynamic model of C5,

a large transport aircraft whose aerodynamics data is available in [19]. We consider

rigid body dynamics, aerodynamics, the effect of the control inputs and derive the

overall nonlinear flight model. We then discuss adverse conditions such as flight

upsets, damages, and failures, and how to model them.

2.1 Nonlinear Dynamic Model

A typical dynamic model of an aircraft consists of the equations of motion, aerody-

namics, actuator dynamics, actuator saturation, and sensor dynamics. The standard

conservation equations [20] describe the dynamics of u, v, and w, the body-fixed air-

craft velocities; p, q, and r, the roll, pitch, and yaw rates; and the Euler angles #, 0,

and V$. The aircraft's equations of motion are given by

X
it = g X- g sinO - qw + rv, (2.1)

Y
g = + g cos 0 sin #-ru + Pw, (2.2)

z
tb gz+gCs0Cs0+q v (2.3)



= izz [L + Izzpq - (Izz - Ivy)qr] + jj [N - Ixzqr - (Ivy - Ixx) pq] , (2.4)
ID ID

= [M - (Izz - Izz) pr - Iz (p2 - r2)] , (2.5)

r = [L + Izzpq - (Izz - Ivy) qr] + " [N - Ixzqr - (Iy - Ixx) pq] , (2.6)
ID ID

=p+ q sin0tan +rcos #tan0, (2.7)

9 = q cos # - r sin #, (2.8)

= (qsin# + r cos #) sec 9, (2.9)

In the above, ID = IxxIzz I2z; X, Y , and Z are the aerodynamic forces in body

axes at the nominal CG, and L, M, and N are the aerodynamic moments about the

same point. The values of the gross aircraft weight W, the moments of inertia Izx,

IYY, and Iz, as well as the product of inertia Ixz can be found in [19].

The following navigation equations determine x and y, the positions of the aircraft

in the north and east directions respectively, as well as the altitude h:

S= u cos 0 cos 0 +v(- cos # sin) + sin # sin0 cos@)+ (2.10)

w(sin # sin4' + cos # sin 0 cos @),

= u cos 0 sin V + v(cos # cos4' + sin # sin 0 sin4@)+ (2.11)

w(- sin # cos @ + cos # sin 0 sin 4),

h = u sin0 -v sin# cos 0 - w cos # cos 0. (2.12)

It is often convenient to replace the body-fixed velocities with the true airspeed VT,

the angle-of-attack a, and the side-slip angle /. These new states can be calculated



from the body-fixed velocities, neglecting wind and gust-induced effects, as

VT = u2 + v 2 + w 2 , (2.13)

tana = -, (2.14)
U
V

sin/3 = VT(2.15)

It is well known [21] that the aerodynamic forces and moments acting on the air-

craft can be expressed in terms of the non-dimensional force and moment coefficients

through multiplication by a denationalizing factor and, in the case of the forces, a

transformation from wind to body axes. The forces and moments are therefore given

by

X cos a 0 - sin a -CD
Y qS 0 1 0 Cy (2.16)

Z sina 0 cosa [-CLJ

L bref CI

M = qS Cref Cm , (2.17)
N bre5 Cn

where CL, CD, and Cy are the lift, drag, and side-force coefficients respectively while

C1, Cm, and Cn are the moment coefficients. The values of the the wingspan bre5, the

mean aerodynamic chord cref, and the wing surface area S can be found in [19].

Table 2.1 shows the aircraft states, plant (i.e., inputs to the plant), control (i.e.,

outputs of the controller), and pilot inputs. The system state vector is given by

X = [VT a 0 p q r p 6 x y h]T . (2.18)

The pilot inputs are ailerons, rudders, and elevators commands. Plant inputs are 4

engine throttles and the deflection of 6 control surfaces. As in the early version of the

GTM the engines are not controllable. Therefore, the throttle values will be fixed at

their trim values except for in Chapter 6.



Table 2.1: Aircraft states, actuators, and pilot inputs.

Variable Description Component of

Vt Velocity State (x)

a Angle of Attack State (x)

#8 Side-slip Angle State (x)

< Euler Angle State (x)

0 Euler Angle State (x)

1p Euler Angle State (x)

p Roll Rate State (x)

q Pitch Rate State (x)

r Yaw Rate State (x)

t1  Left outboard Throttle Plant input

t2  Left Inboard Throttle Plant input

t 3  Right Inboard Throttle Plant input

t4  Right outboard Throttle Plant input

ei Left Elevator Plant input, Control output (u)

e2 Right Elevator Plant input, Control output (u)

a1 Left Aileron Plant input, Control output (u)

a2 Right Aileron Plant input, Control output (u)

r1 Lower Rudder Plant input, Control output (u)

r2 Upper Rudder Plant input, Control output (u)

Je,cmd Virtual Elevator Pilot input (r)

6
a,cmd Virtual Aileron Pilot input (r)

6 r,cmd Virtual Rudder Pilot input (r)



The virtual inputs available to the pilot are the elevator, aileron, and rudder

commands denoted as Aoe,cmd, A 6 a,cmd, and Ar,cmd. The aerodynamic force and

moment coefficients are given by

CL = CLa + CL, 6e,

CD = CD, C + CD 6 6e, (2.19)
C~~Cbref ± (Cyr _Cy.i5 bref YaYr

Cy =C,0 + Cy'p + C, )v,( - + CYs,,6a + Cy66,,Y,~+p 2V y1)kK 2 VT

Ci= C1,30 + CpP + (C, -C )(r - b) + QCi,6 a + C6 ,6,,

CM= Calph.a + (Cm + Cm)(q - 6) + Cm6 e, (2.20)2 VT

Cn =Cn, + Cnp + (Cn, - Cn4)(r -)r + C, 6a + Cn,6,,flf~3'2 fl VT 2 VT ~ rr

where

6_ ei + e2
2

6a = ai - a2 (2.21)

6 ri + r 2

2

These set of equations prescribe the non-dimensional coefficients in Equations (2.16)

and (2.17) as a a function of the state. In the context of Chapters 2-5, the control

surface deflections are related to the control inputs by ui = ei, U2 = e 2 , U3 = ai,

U4 = a2, U5 = ri, and u6 - r2. Overall, the aircraft dynamics is given by the equations

above along with an aerodynamic model. The model to be used herein is prescribed

subsequently.

We can compactly describe the overall nonlinear model as

X = F(X, AU) (2.22)

where the input U consists of ui, for i = 1, ..6, and A is the control effectiveness



matrix.

For control purposes, the nonlinear plant is linearized about a trim point (Xo, UO)

satisfying F(Xo, Uo) = 0. This leads to the linear time invariant system

=zAx + Bpu + g(xp, u) (2.23)

where

AP - F(X, U) B - OF(X, U) (2.24)
OX 'a U

X0, UO X0, UO

and g(xp, u) is higher order terms.

2.2 Adverse Conditions

We now describe the three categories of upsets, damages, and failures that we shall

introduce in the above model.

2.2.1 Flight upsets:

These adverse conditions result from large deviations in the initial conditions of the

state from its trim value. If a system is stable, guarantees for a bounded performance

are automatically obtained. Since in practical situations the closed-loop system is

subject to unknown bounded disturbances, case for which only uniform ultimate

boundedness can be proved, there are initial conditions for which the state may grow

unbounded. Whether the actual responses are bounded and actually stay within

limits of what is an acceptable remains to be demonstrated. In this paper, oZ(0) will

be considered as an uncertain parameter. Since the baseline controller designed for

the GTM does not enable lateral command following, flight upsets in #(0) were not

studied.



2.2.2 CG movement:

A serious condition that needs to be addressed is structural damage. This causes,

among other things, a movement of the CG from its nominal position. Assuming that

this movement only occurs in the xy plane, the changes to Equation (2.17) are given

by

AL = (Lcosa + Dsina)Ay

AM = -(Lcosa + Dsina)Ax (2.25)

AN = (Dcosa - Lsina)Ay

where Ax and Ay is the displacement from the nominal CG location to the post-

failure one. The contribution of the tangential component of the acceleration can be

accounted for by using the inertia tensor about the actual CG

I' = Izz + mAy 2

I'/ =I +mAx 2  (2.26)

I' = Izz + mAx 2 + mAy 2

In the studies that follow the contribution of the centripetal component of the accel-

eration resulting from CG movement is ignored. The reader can refer to [15] for an

explicit formulation of the equations of motion.

2.2.3 Actuator Failures:

We now consider adverse conditions that result from losses in control effectiveness

and time delay.

As in reference [22], we model these failures by pre-multiplying the Bp matrix of

the linearized model by the control effectiveness matrix A. That is, the Bp matrix

in (2.23) is changed to BA where A is a matrix of dimension 6 x 6, which is equal to

the identity matrix in the nominal case. Losses in control effectiveness are modeled

by making the terms in the diagonal of A to assume values between zero and one.



For example, if the right elevator fails by 50%, and the left aileron fails by 40%, A

takes on the form

A = diag 1 0.5 0.6 1 1 1]-

In general, the control effectiveness matrix takes the form

A = diag Aci Ae2 Aal Aa2 Ari Ar 2 , (2.27)

where 0 < max{A} < 1.

In addition to these actuator failures we will also consider time delay in all six

control inputs and control surface lock-ups. In the latter type, the uncertain pa-

rameter is the duration of the lock-on-place failure. Note that from all uncertainties

mentioned above, only those in A affect the value of the control Uo at trim.



Chapter 3

Adaptive Control Architecture

The control architecture proposed augments a nominal controller with an adaptive

component. While the nominal controller is designed to meet the performance re-

quirements under ideal operating conditions, the adaptive one copes with failures

and uncertainties. The very same structure of the controller that Langley designed

for the GTM will be used in the nominal controller. Details on such a structure are

presented next.

3.1 Nominal Controller

The nominal controller has three main components, an array of low-pass and wash-

out and filters, an LQR controller with integral action, and a hard-limiter to cope

with control saturation. This limiter enforces an anti-integration windup logic based

on the elevator deflection. This logic makes the system linear time varying. Each of

these components is described in more detail next.

3.1.1 Washout Filters and Low-pass Filters

The GTM model has an array of low-pass and wash-out and filters to mitigate mea-

surement noise and improve handling qualities. A block diagram of the system is

shown in Figure 3-1. In particular, the states a, p, q, and r will be low-pass filtered



but only p, q, and r will be washed-out. These filters will be taken into account when

designing the nominal controller.

I plant-model

OcmdContre rX

Saturation 
- X

x

Washout low-pass
filters filters

Figure 3-1: Washout filters and low-pass filters

3.1.2 LQR Controller with Integral Action

For control design purposes, we assume that the pitch, yaw and roll dynamics are

weakly coupled. In order to closely follow a command in angle of attack, an integral

state ec, is added

e. = f (a - acmd)dt (3.1)

where acmd = 10 6 e,cmd. Note that elevator command does not affect elevator angle,

instead it generates integral error. The signal 6 e,cmd is one of the plant inputs in
r 1 T

Jcmd = LJe,cmd 6 a,cmd 6r,cmd . The augmented plant dynamics is therefore described

as

=P A ][x] + Bp U + 0acmd
[e H 0 eJ 0 -I

& A x B1 B 2

(3.2)



Since the states in Equation (3.2) are accessible, an LQR controller is designed as

6en =- [Kea Keq K q

- -J (3.3)
6a,n K[Kap 0 p + 6a,cmd
6r'n J [0 K,,, [ J [r,cmdj

K,s5cmd

where the control gains K6 minimize the cost function

J = f (x' Rxxx + UT Ruuu)dt, (3.4)

and Rx, Ruu are weighting matrices. When only the baseline controller is used u =

Un = [6e,n, 6 a,n, 6e,n] and that ei = e2 = 6 e,n/2, ai = -a 2 = 6 a,n/2 and r1 = r2 = 6 r,n/2.

Equations (3.1)-(3.3) prescribe the closed-loop dynamics of an LTI approximation of

the GTM for an LQR controller with integral action.

3.2 Saturation

To ensure that the control input does not exceed the saturation limits for the three

control surfaces, the rectangular saturation function

R,(uj) = {m if ||UiI| < Ui,max, (3.5)
Ui,max sign(uj) if IIui|| > Ui,max,

is used. The control deficiency caused by saturation is given by

UA = U - R,(u). (3.6)

Besides this physical saturation constraint, an anti-windup logic that depends on



ea is also implemented. This logic is governed by the time-varying saturation function

Re(ea, 6e(t)) ec if ea > 0 or e, < eavailable, (3.7)
eavailable if a < 0 and e > eavailable-

where eavailable is given by

( Rs(6e) - ( 6 e,trim + KseQOa + Keq q.) (.
eavailable = max {0, K3 . (3.8)

The error deficiency caused by the saturation function in Equation (3.7) is defined as

eQA = ea - Re (ea, e(t)). (3.9)

By replacing u with R,(u,), and eQ with Re(ea, &c(t)) in Equation (3.2) we obtain

the LTV system

P = Ap - BK -BpKs, x1 Bp Kc
[eaj L H 0 J [eaJ 0J

Am X Bi

+ a0cmd - [ u -BpKea 1 eaA, (3.10)
-I 0 0

B2  R1 R2

which is the closed-loop system corresponding to the nominal controller. The bound-

edness of this system can be established for all initial conditions inside a bounded

set. This bounded set extends to the entire state-space when the open-loop plant is

stable and there is no unmodeled dynamics (e.g., time-delay).

3.3 Adaptive Controller

Since the nominal controller in (3.3) has been designed for a plant-model under nomi-

nal conditions, it may prove to be inadequate in the face of failures and uncertainties.



To mend for this we augment the controller in (3.3) with an adaptive component as

follows:

U = UO + Un + Ua = Uo + (K + 62)x + (Kr + 9r)r + f (3.11)

where 0,, Or, and f are adjusted to minimize the state error between the controlled

plant-model and a reference model. The latter is chosen to generate the desired plant

output for the commanded input. In the current problem, the reference model is

given by the non-linear closed-loop system corresponding to the baseline controller

for the case where there are no uncertainties. Besides, none of the saturation functions

above are part of the reference model. Figure 3-2 shows the block diagram of this

control architecture. Adaptive controllers for the GTM using a reference model that

.cmd 0 x

-X0

Washout low-pass
filters filters

Figure 3-2: Control Architecture.

accounts for the time delay in telemetry have shown promise. Such controllers will

be presented in Chapter 6.

Let xm be the state of the reference model. Defining the state error e as

e = x - xm

q0

(3.12)



we choose the adaptive laws for adjusting the adaptive parameters in (3.11) as

Ox = -F1BTPeuxT -- aox

Or = -F 2BT Per - U2Or

Tpe (3.13)
f = -F 3BTPeU - U3Of

A = -F 4diag(uA)B,'Pe -o4

where ATP + PAm = -Q, Q > 0, Pi is diagonal and positive definite for i = 1, ...4,

and eu = e - eA. The auxiliary error eA is defined as

eA = Ame - Ridiag(A)uA. (3.14)

Note that if the control does not saturate uA = 0, eA -+ 0 and eu -+ e. eA is the

error that occurs due to saturation, and by subtracting it out from e, we obtain eu

which is the sum of the error due to uncertainties and the error due to e,,A. The o

modifications prevent the drift of the adaptive parameters O0, 0r, f and A caused by

disturbances. The term f is an adaptive parameter aimed at counteracting constant

disturbances.

It should be noted that the stability and boundedness of the closed-loop aug-

mented system has been proved in [7, 11, 23] when physical saturation constraints

are present. The stability analysis for the resetting-based anti-windup logic was also

established and to be appeared elsewhere.



Chapter 4

Control Verification

This chapter introduces a framework for evaluating the degradation in closed-loop

performance caused by increasingly larger values of uncertainty. This is attained by

determining the largest hyper-rectangular set in the uncertain parameter space for

which a set of closed-loop requirements are satisfied by all set members. A brief intro-

duction to the mathematical framework required to perform this study is presented

next. References [16] and [18] cover this material in more detail.

4.1 Mathematical Framework

The parameters which specify the closed-loop system are grouped into two categories:

uncertain parameters, which are denoted by the vector p, and the control design

parameters, which are denoted by the vector d. While the plant model depends on

p (e.g., aerodynamic coefficients, initial conditions, time delay, actuator failures), the

controller depends on d (e.g., control gains). The Nominal Parameter value, denoted

as p, is the value that p assumes when there is no failure/uncertainty. The value of d

on the other hand is assumed to be available and will remain fixed.

Stability and performance requirements for the closed-loop system will be pre-

scribed by the set of constraint functions, g(p, d) < 0. This vector inequality, as all

others that follow, hold component wise. For a fixed d, the larger the region in p-space

where g < 0, the more robust the controller. The Failure Domain corresponding to



the controller with parameters d is given byl

dim(g)

.F(d)= U Fj(d). (4.1)
j=1

Fi(d) = {p : gj (p, d) 0}, (4.2)

While Equation (4.2) describes the failure domain corresponding to the jth require-

ment, Equation (4.1) describes the failure domain for all requirements. The Non-

Failure Domain is the complement set of the failure domain and will be denoted2 as

C(F). The names "failure domain" and "non-failure domain" are used because in

the failure domain at least one constraint is violated while, in the non-failure domain,

all constraints are satisfied.

Let Q be a set in p-space, called the Reference Set, whose geometric center is

the nominal parameter . The geometry of Q will be prescribed according to the

relative levels of uncertainty in p. One possible choice for the reference set is the

hyper-rectangle

7Z(,n)=f{p:zp-n p .ii+n}. (4.3)

where n > 0 is the vector of half-lengths. One of the tasks of interest is to assign a

measure of robustness to a controller based on measuring how much the reference set

can be deformed before intersecting the failure domain. The Homothetic Deformation

of Q with respect to the nominal parameter point - by a factor of a > 0, is the set

7-(Q, a) = {p + a(p - ) : p c Q}. The factor of this deformation, a, is called

the Similitude Ratio. While expansions are accomplished when a > 1, contractions

result when 0 < a < 1. Hereafter, deformations must be interpreted as homothetic

expansions or contractions.

In what follows we assume that the controller d satisfies the requirements for the

nominal plant, i.e., g(p, d) < 0. Intuitively, one imagines that a homothet of the

reference set is being deformed until its boundary touches the failure domain. Any

'Throughout this thesis, super-indices are used to denote a particular vector or set while sub-
indices refer to vector components, e.g., pji is the ith component of the vector p3.

2The complement set operator will be denoted as C().



point where the deforming set touches the failure domain is a Critical Parameter

Value (CPV). The CPV, which will be denoted as p, might not be unique. The

deformed set is called the Maximal Set (MS) and will be denoted as M. The MS

is the largest homothet of Q that fits within C(F). The Critical Similitude Ratio

(CSR), denoted as d, is the similitude ratio of that deformation. While the CSR is

a non-dimensional number, the Parametric Safety Margin (PSM), denoted as p and

defined later, is its dimensional equivalent. Both the CSR and the PSM quantify the

size of the MS. Details on the implementation of these ideas are presented next.

The CPV corresponding to the deformation of Q = Z(p, n) for the jth requirement

is given by

=arg min {Op - -1| : gj(p, d) > 0, Ap > b}, (4.4)
P

where |llxH = supi{|xil/ni} is the n-scaled infinity norm. The last constraint in

Equation (4.4) is used to exclude regions of the parameter space where plants are

infeasible and uncertainty levels are unrealistic. The overall CPV is

p = pk, (4.5)

where

k = arg min {l|p - P||} . (4.6)
1 jidim(g)

The critical requirement, which is the one preventing a larger deformation, is gk < 0.

Once the CPV has been found, the MS is uniquely determined by

M(d) = R(p, &n). (4.7)

where & = ||p - -|| . The Rectangular PSM is defined as

p=&|n||, (4.8)

The last two equations, which apply to the overall CPV, can be extended to individual

CPVs, by using P7 instead of P. Note that overall PSM is equal to the smallest



individual PSM.

Because the CSR and the PSM measure the size of the MS, their values are pro-

portional to the degree of robustness of the controller associated with d to uncertainty

in p. The CSR is non-dimensional, but depends on both the shape and the size of

the reference set. The PSM has the same units as the uncertain parameters, and

depends on the shape, but not the size, of the reference set. If the PSM is zero, the

controller's robustness is practically nil since there are infinitely small perturbations

of P leading to the violation of at least one of the requirements. If the PSM is posi-

tive, the requirements are satisfied for parameter points in the vicinity of the nominal

parameter point. The larger the PSM, the larger the (-shaped vicinity.

4.1.1 One-dimensional Case

In the case where dim{p} = 1, the expressions for the CPVs, the PSM, and the MS

are given by

S=arg min {jp - pl :g(p, d) > 0, Ap 2 b}, (4.9)
P

p =pk, (4.10)

P p 1 (4.11)

M(d) = (P - p, f + p), (4.12)

where

k = arg min {ip -p}. (4.13)
1<j<;dim(g)

Figure 4-1 shows an sketch with relevant variables and sets. Note that the non-failure

domain is given by the intersection of the individual non-failure domains. Besides,

the overall CPV is the parameter value closest to the nominal point where at least

one component of g is equal to zero. From the figure we see that l - p < p2 So

P = P and k = 1. By construction, all the points within the MS, which is centered

about the nominal parameter point, satisfy the closed-loop requirements.

As expected, analyzes arising from considering each uncertain parameter individu-



Figure 4-1: Relevant variables in the 1-dimensional parameter space.

ally are unable to capture the effect of the dependencies among uncertain parameters.

When such dependencies are important, the collection of PSMs that result from per-

forming dim(p) one-dimensional deformations can misrepresent the actual system's

robustness. For instance, if p1 is the PSM corresponding to a one-dimensional defor-

mation in pi, p2 is the PSM corresponding to a one-dimensional deformation in P2,

and p3 is the PSM corresponding to a two-dimensional deformation in [Pi,P2]; it is

possible to have p3 < min{pI, p2}. In such a case there is a combination of uncertain

parameters much closer to p that will be missed by both one-dimensional searches.

4.2 Analysis Setup

4.2.1 Uncertain Parameters

We will consider the following set of uncertain parameters

[Aee Aail, Arud, Athr, 7,1 tl yX Az A ) -4.4



where the first 6 components, can be categorized as actuator uncertainties or fail-

ures, the next two account for structural failures and last one for a flight upset. In

particular,

Aeie = Aei, Ae2

Aaii LAal, Aa 2  (4.15)

Arud [Arl, Ar2(

Athr [At I, At2, A 3, At 4

are the control effectiveness of elevators, ailerons, rudders, and engine throttle; r is

a time delay in all input channels, and t is the duration of a control surface lock-

up. The terms A. and AY are components of the position vector in the xy-body

frame of the post-failure CG location with respect to a reference point. The last

component, which models a flight upset, is the initial condition in angle of attack.

The nominal parameter values corresponding to the set of parameters in Equation

(4.14) is [1, 1, 1, 1, 0, 0, 0, 0, 01.

4.2.2 Closed-loop Requirements

The following stability and performance requirements will be considered

go = max{ [Utrim - Umax, Umin - Utrim]}, (4.16)

gi= max - 2.5, (4.17)
[ 9

92 = [(a - acmd )2 + kc a5+( - Ocmd )2 + kp 21tt - ci, (4.18)



93 = T(p, d) - c2 71(p, dbase), (4.19)

17 = wiIl a - acmdll2 + w2 11p - PcmdII2 I w317 - TcmdiI2-

The first requirement, go < 0, is used to determine if the vehicle has enough control

authority to trim, i.e. if it satisfies Umin < Utrim < Umax. Note that this requirement

is independent of d and may indicate instability. gi < 0 is a structural requirement

enforced by preventing the loading factor from exceeding the upper limit of 2.5. The

requirement 92 < 0, where 0 < ci < 1, ke, > 0 and k,3 > 0, enforces stability and

satisfactory steady state performance. The last requirement, 93 < 0, for c2 > 1,

W1 > 0, w2 > 0 and w3 > 0, is used to measure satisfactory transient performance.

This requirement prevents the cumulative error from exceeding a prescribed upper

limit. Such a limit is c2 times larger than the cumulative error incurred by the baseline

controller under nominal flying conditions.

In practice, control requirements are prescribed in advance before the control de-

sign process even starts. When such requirements are only described qualitatively

several g implementations are possible. This creates the additional challenge of con-

structing functional forms that capture well the intent of the requirement while having

a minimal amount of conservatism. This thesis does not tackle such a challenge and

assumes that the g above is given.

4.3 Flight Conditions (FC)

The closed-loop response depends on p and d as well as on the intended flight ma-

neuver f. This implies that g(p, d, f). Two flight conditions, namely fr,, and flat,

will be considered in the analyzes that follow. In the former one, which mostly af-

fects the longitudinal dynamics, a step input in 6 e,cmd is commanded. In the second

one, which affects both the longitudinal and lateral dynamics, the vehicle also starts

from level flight and a set of commands in 6 a,cmd and 6r,cmd makes the vehicle turn.

Figures 4-2 and 4-3 show the vehicle's trajectory as well as relevant states for both

flight conditions when there is no uncertainty/failure. The p command for flat is a



sequence of two step inputs (only one is shown) where the second one is commanded

so that it cancels the first one after a suitable time.

dtude 2E(tf)
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Figure 4-3: Time simulation for lateral flight condition.



Chapter 5

Results

In this chapter, we evaluate the baseline controller in Equation (3.10) and the adaptive

controller in Equations (3.11) - (3.14) according to the control verification setting of

Chapter 4. The aerodynamic model used can be found in [19]. The numerical value

of other variables are shown in Table 5.2.

5.1 One-dimensional Case

In Case A we consider a flight upset in the angle of attack, Aa(0) about atrim =

2.20(deg) for the longitudinal flight condition. The dependency of g on Aa(0) for both

controllers is illustrated in Figure 5-1. The dashed lines and the solid lines represent

results from the baseline and adaptive controllers respectively. A comparison of these

curves shows that the non-failure region of the adaptive controller is larger by virtue

of the structural and tracking performance requirements. The same line convention

used in this figure applies to those that follow.

In Case B we consider the movement of the CG in the x-direction for the longi-

tudinal flight condition. Recall that a positive value of the CG movement denotes a

forward movement. Figure 5-2 illustrates the dependency of g on the CG location for

both controllers. Note that the system loses stability when the CG moves backward,

while the tracking performance degrades the faster when the CG moves forward. The

baseline controller has a PSM of 0.175 while the adaptive one attains a PSM of 0.197.



Table 5.1: Cases analyzed

Case Failure/Uncertainty

Case A Flight upset in angle of attack [Aa(O) fA0o]
Case B CG movement along x-axis [A, fron]
Case C CG movement along y-axis [Ay fiat]

Case D Symmetric Aileron failure [Aaii fiat]

Case E Symmetric Elevator failure [Acie fion]

Case F Asymmetric Aileron failure [Aai flat]

Case G Asymmetric Throttle failure [Au fion]
Case H Elevator lock-in-place failure [tl fion]

Case I Time delay in all control inputs [r fion]

Table 5.2: Numerical Values
Variable Value

Velocity at trim 614(ft/sec)

Angle of Attack at trim 2.2(deg)

Height at trim 20000(ft)

Kse -0.4420

K 6 e -0.9105

K6  -0.7906

Koa -0.1000

-0.3000

1 diag([1, 1, 100, 100, 100, 100]) x 200

F2  diag([1, 1, 100, 100, 100, 100]) x 100

1 3  diag([1, 1, 100, 100, 100, 100]) x 50

F4  diag([1, 1, 1, 1, 1, 1]) x 100

Q diag([1, 1, 1, 1, 1])
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Figure 5-1: Case A: g(Aa(O)) for the longitudinal FC.

In Case C we consider the movement of the CG in the y-direction for the lateral

flight condition. In this setting a positive CG movement denotes a movement to

the right. Figure 5-3 illustrates the dependency of g on the CG location for both

controllers. The curves are asymmetric with respect to the nominal parameter value,

since the flight condition is itself asymmetric. As before, the adaptive controller

attains a larger PSM. The baseline controller has a PSM of 0.0029 while the adaptive

one attains a PSM of 0.0069.

In Case D, we consider a symmetric failure in both ailerons, where Aaii = Aai = Aa 2 ,

for the lateral flight condition. Figure 5-4 illustrates the dependency of g on Aati for

both controllers. As before, the adaptive controller attains a larger PSM. While the

PSM for the baseline is 6.6%, the PSM for the adaptive is 10%. In both cases, the

tracking performance is the critical requirement.

In Case E we consider a symmetric failure in both elevators, where Aee = Ae, =

Ae2 , for the longitudinal flight condition. Figure 5-5 illustrates the dependency of g

on Aee for both controllers. While the PSM for the baseline is 33%, the PSM for the

adaptive is 42%. In both cases, the tracking performance is the critical requirement.



-0.2 -0.1 0 0.1 0.2 0.3 0.4

cg movement along x-axis (/chord length)

Figure 5-2: Case B: g(Ax/cef) for the longitudinal FC.
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Figure 5-3: Case C: g(Ay/bref) for the lateral FC.
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As before, the adaptive controller has better robustness characteristics.

Unlike Case C, Case F considers an asymmetric aileron failure where A, is un-

certain and A,2 = 1. Figure 5-6 illustrates the dependency of g on A, for both

controllers. While the PSM for the baseline is 14%, the PSM for the adaptive is 20%.

Consistently, the tracking performance requirement remains being critical. We note

however that the PSM corresponding to the stability requirement for the adaptive

controller becomes smaller.

2

1.5

0.5 % %

0-------- ------ ---- --- -

-0.5'

-1

-1.5

-2
0.4 0.5 0.6 0.7 0.8 0.9 1

control effectiveness in ailerons

Figure 5-4: Case D: g(Aai) for the lateral FC.

In Case G we consider a failure in the left outboard engine At, for the longitudinal

flight condition. Figure 5-7 illustrates the dependency of g on At, for both controllers.

While the PSM for the baseline is 1.7%, the PSM for the adaptive is 2.9%. As

before, the tracking performance is the critical requirement. We note that the margins

obtained in this case are considerably smaller than those found in the other cases.

The non-failure domains are small since the throttle inputs are not controlled and

remain fixed at their trim values. Results similar to those in Figure 5-7 were observed

when the lateral flight condition was used.

A lock-in-place failure in the left elevator is considered in Case H. This is simulated

by keeping this control input at a constant value for a period of tj seconds. The larger
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Figure 5-5: Case E: g(Aee) for the longitudinal FC.
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Figure 5-6: Case F: g(Aai) for the lateral FC.
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Figure 5-8: Case H: g(ti) for the longitudinal FC.



the tj the more severe the failure. Figure 5-8 illustrates the dependency of g on the

lock-in time. Substantial differences in the functional dependencies are apparent. It

can be seen that the PSM for the baseline is 1.1 while the PSM for the adaptive

is 2.1. We also note that while the tracking performance is critical for the baseline

controller, the stability requirement is critical for the adaptive one.

Case I considers the case when there is a time delay r in all three control inputs.

Figure 5-9 illustrates the dependency of g on this uncertain parameter for the longi-

tudinal flight condition. In contrast to all other cases, the non-failure domain of the

adaptive controller is smaller than that of the baseline. Hence, the nominal controller

is more robust to uncertainty in the time delay than the adaptive one. One may infer

that this is the price of attaining improved system performance through aggressive

actuation. We however note that this observation may not hold when multiple uncer-

tainties occur simultaneously. Figure 5-10 shows time responses for both controllers

when r = 0.74s. This point belongs to the non-failure domain of the baseline con-

troller and to the failure domain of the adaptive one.

0.5-

0 - - - - - - - - - - - - - - - - - -- I

-0.5-
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-1.5

0 0.2 0.4 0.6 0.8

time delay (sec)

Figure 5-9: Case I: g(r) for the longitudinal FC.

Table 5.3 summarizes the results above by presenting the relative change in PSM



10 20 30 40 50 60 0 10 20 30 40 50 60

0 10 20 30 40 50 60 0 10 20 30
Time (sec) Time (sec)

Figure 5-10: Time simulation for r = 0.74s.

Table 5.3: Summary for

20

10

0 -

-10
0

20
the results of all cases

Case ap - 1) x 100% Critical Requirement

A +4.01 % 91,93

B +11.4 % 92, 93

C +133 % 92, 93

D +63.6 % 93

E +27.3% 93

F +46.7 % 93

G +70.6 % 93

H +88.9 % 92, 93

I -13.9 % 92, 93

attained by the adaptive controller and the critical requirement. In all but one of

the cases considered, the adaptive controller attains better robustness by a sizable

margin.

5.2 Multi-dimensional Case

In all the cases above only a single uncertain parameter has been considered. In this

setting, the effect of the dependencies among parameters can not be captured. The

same analysis can be conducted for a multi-dimensional vector p. In such a case,

multiple failures and uncertainties occur simultaneously and the correlation among

them may play a significant role. Studies of this type will be presented elsewhere.

However, Figure 5-11 presents a time simulation of the controlled response for a multi-

40 50 60



dimensional parameter realization when 2 pitch doublets are commanded. Therein,

we assume losses in control effectiveness of 30% for the elevators, 10% for the ailerons,

and 10% for the rudders. Besides, the CG has been moved to the left by 0.004/cref,

and a flight upset in the angle of attack of 0.2 degrees is assumed. It is apparent

that the adaptive controller achieves good tracking performance while the nominal

controller can not recover and makes the system unstable.
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Figure 5-11: Time simulation for multiple uncertainties.
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Chapter 6

Adaptive Control Design for the

Generic Transport Model

In this chapter we focus on the development, implementation of adaptive control

technology for the Generic Transport Model (GTM). In particular, we design a con-

troller for the GTM and study improvements resulting from adaptation when various

uncertainties and failures occur. The GTM is a dynamically scaled model of a trans-

port aircraft for which NASA Langley has developed a high-fidelity simulink model.

This simulation uses non-linear aerodynamic models extracted from wind tunnel data,

and considers avionics, sensor dynamics, engine dynamics, atmospheric models, sen-

sor noise and bias, telemetry effects, etc. This aircraft has ten controllable inputs and

overall the open-loop plant has 278 states.

The adaptive control architecture consists of three major components, (i) a base-

line controller that provides satisfactory performance under nominal flying conditions,

(ii) an adaptive controller that accommodates for anomalies resulting from uncer-

tainty and failure, and (iii) a partially nonlinear reference model designed according

to the GTM dynamics. While the baseline controller is based on a control alloca-

tion scheme that correlates inputs, the adaptive controller accommodates for control

saturation and integration wind-up without enforcing any allocation, which enables

inputs to be independent. A significant improvement in flight safety introduced by

the suggested control design is studied with several failure and damage cases.



6.1 Control Design

Again we start with the overall system dynamics which can be represented as

X = F(X, AU) (6.1)

where X is the state, U is the input, and A is the control effectiveness matrix. For

control design purposes, this nonlinear plant is linearized about a trim point (XO, Uo)

satisfying F(Xo, Uo) = 0. Deviations from the trim values X0 and Uo will be written

as lowercase letters in the developments that follow, e.g., X = Xo+x, and U = Uo+u.

Linearization about the trim point leads to the LTI system

(6.2)

where

A F(X, AU)
ax xo, UO

B F(X, AU)
aU x0, UO

and h(xp, u) contains higher order terms. After ignoring high order terms, this model

can be written as

. , =A((p)x, + B1A(P)(R,(u) + d) + B 2 (6.4)

where A, and A are unknown matrices, d is an exogenous disturbance, r is the refer-

ence input, and R,(u) is a saturation function. The state x is

x = [ae 3 V p q r x y z p 9 ]T (6.5)

which are angle of attack, sideslip angle, true aerodynamic speed, roll rate, pitch rate,

yaw rate, longitude, latitude, altitude, and the three Euler angles [20]. The input u

is

U = [JeLo eLI JeRO JeRI oaL 6
aR 

6
rU JrL 

6
thL EthR (T

(6.3)

Ii APx, + BpAu + h(xp, u)

(6-6)



which are the outer-left elevator, the inner-left elevator, the outer-right elevator, the

inner-right elevator, the left aileron, the right aileron, the upper rudder, the lower rud-

der, the left engine throttle and the right engine throttle, respectively. The reference

command r is

r = [O'cmd Ocmd Pcmd Vcmd] (67)

which are angle of attack-, sideslip-, roll rate- and true aerodynamic speed-commands.

These four commands are used by the pilot to attain the desired flight maneuvers.

The sources of unknown time-delay in the control input T are both known (e.g.,

telemetry, signal processing) and unknown (e.g., sensor failure, asynchronous com-

munication).

The overall control architecture includes a baseline controller that is augmented

by an adaptive component. While the baseline controller provides satisfactory perfor-

mance in the absence of adverse conditions and uncertainties, the adaptive controller

accommodates for them. Both controllers are based on a single trim point design. The

point attains horizontal flight for a true aerodynamic speed of 80 knots, an altitude

of 625.48ft, and a zero path angle.

6.1.1 Baseline Controller

The nominal controller consist of three controllers for the longitudinal dynamics, the

lateral/directional dynamics, and the auto-throttle, depending on fast and slow states

in the vehicle dynamics. LQR-PI architectures with integral actions corresponding

to each of the reference command r are used. Anti-windup schemes for each error

integral state are included to prevent undesired responses due to actuator saturation.

A control allocation that correlates inputs to the same devices actually makes only

four are independent out of the ten plant inputs. (i.e., elevator input 6 e, aileron input

6a, rudder input 6r, and throttle input 6th).



Longitudinal Controller

The plant in the longitudinal axis of the aircraft is described as

zIon = A 10 nx 10 n + Bionje (6.8)

where Alone R2 x 2 is the system matrix, Bion C R2xi is the input matrix, and Xion =

[a q]T is the state. In order to follow a command in angle of attack, the integral error

state is added.

e= (a - acmd)dt (6.9)

This leads to the augmented plant

Ion Alon 0 [Ion + Bion 6 [ 0 acmd (6.10)
eL Hi 0 eH o 0 L-1

Since the states in Equation (6.10) are accessible, an LQR controller that minimizes

J = J(XTQx + uTRu)dt, (6.11)

where Q = QT > 0, R = R T > 0 are weighting matrices, is designed. This leads to

= [K7 k "" (6.12)
ea

This controller is designed so that it attains enough stability margins with which the

inclusion of the low-pass and anti-aliasing filters in the sensors and the 40ms input

delay caused by telemetry do not compromise closed-loop stability and performance.



The actual input to the plant is given by the saturation function

u if Umin < U < Umax,

R,(u) = Umax if U ;> Umax,

Umin otherwise

In particular, u = 6 e, Umax = 6 e,max and

The control deficiency is given by

Umin = 6 e,min for the longitudinal controller.

UA = R,(u) - u. (6.14)

The controller proposed uses an anti-windup technique. The aim of anti-windup

compensation is to modify the dynamics of a control loop during control saturation

so that an improved transient behavior is attained after the system leaves saturation.

It was observed that the anti-windup technique chosen tends to prevent the growth of

u by imposing virtual saturation limits on the error integral state used for feedback.

This time-varying saturation function is described as

ec

Re (e ,6 e) =R

R2

if R2  co < R1 ,

if R1 < ea,

if en < R2.

(6.15)

where the limits R 1, R2 are given by

Rs(e) - (Ae + KIL§xion) -R,(6e) - (Ae + K T zion)
R1 = max 10, jVIka Io

R,(Je) - (Ae + K Tx 1on) -Rs(e) - (Ae + T
R2= min 0,I

Ik ksen

(6.16)

where Ae is elevator deflection at trim. Figure 6-1 illustrates the logic behind this

technique. When the input saturates at t = ti, the feedback term depending on the

integral error state is k3e R1 . At t = t 2 , e, is equal to zero and the value of e, is reset

(6.13)



be,max
I I

I I

I I

t

6 e,min

e. 1

ti t 2 t 3

Ri(t)

t

R 2 (t)

Figure 6-1: Anti-wind up technique for e, and 6e.

to the active virtual limit. A resetting action taken at time tri is defined as

ea(t+) = Ri (6.17)

where tri is the time instant at which

(a) 116e(tri)II < e,min or 6e,max < ||e(tri) II and
(6.18)

(b) ea (tri) = 0

and Ri is the virtual limit which is active at t = tri. Then the output of the controller

is

Jc= [K T k] "":e
Ion R(ea, Je)

(6.19)

This technique usually leads to shorter input saturation periods, and smaller input



rates after the system leaves saturation. The error deficiency is

ea,A = Re(ea, 6e) - ea. (6.20)

The resulting linear time varying (LTV) system which describes the closed-loop lon-

gitudinal dynamics is given by

[0Il Aon + Bion KT Bionk_ x[ol B[onol1.n JI [ H1 n 0 J eaJ + (uN + k,5e e,a ) + J ocmd
e cn Hi 0 J ea j 0 _jL-1I_

(6.21)

with (6.17). The boundedness of the system can be established for all initial conditions

inside a bounded set. This bounded set extends to the entire state-space when the

open-loop plant is stable and there is no unmodeled dynamics [24].

Lateral/Directional Controller

The LTI model of the plant is

zIat = AiatXiat + BiatUlat (6.22)

where Aiat E R3x3 is the system matrix, Biat C R3x2 is the input matrix, Xiat [# p r]T

is the state, and ulat = [6a 6r]T is the input. To achieve the command following, error

integral states for sideslip and roll rate which are given by

e = J ( - #3cmd)dt (6.23)

e,= J(p - Pcmd)dt (6.24)

are added. The integral error in sideslip was chosen over that of the yaw rate to

facilitate the generation of commands for coordinated turns with non-zero bank angles



and for cross-wind landing. The augmented plant is given by[at 1 [Aiat 0 liat 1 Biat 0 [cmd (6.25)
H2 0 90 + I pemI

A LQR-PI control structure is adopted, which leads to

XIat[a= [KT K T KT] (6.26)
Jr [1 e e

As before, the controller is design so that its stability margins can accommodate for

the filters in the sensors and the time delay. The anti-windup technique presented in

Section 6.1.1 which are exemplified with the pair of (ea, 6e) is also applied to (e,3, J,)

and (ep, 6a).

Auto-throttle

The auto-throttle helps the pilot to attain a desired airspeed by controlling the total

thrust. A PID structure having the integral error

ev = (V - Vcmd)dt (6.27)

as input is used. This leads to

ev
oth = [kp k, kD eV (6.28)

eyj
where the gains are determined by the Ziegler-Nichols tuning rule. To reduce the

sensitivity to noise in the airspeed, a first-order lag is added to the controller and

diV is calculated using an approximate differentiator. The anti-windup technique



is applied herein to the pair of (ev,tAh). We note that the slow engine dynamics,

which contains a low-pass filter scheduled with the RPM of the turbine, makes the V

response much slower than that of a, #, p, q, and r.

Control Allocation

Equations (6.12), (6.26), and (6.28), along with the four realizations of the anti-

windup technique, prescribe the input u, = [6e 6a 6r 6th]T. This input along with a

control allocation scheme fully determines the ten control inputs to the aircraft.

Unom = Gu, = GKT x, (6.29)

where G is the control allocation matrix, and Kn is the feedback gain designed.

The allocation of un enforced by G is as follows. JeLO = JeLI = 6
eRO = 6 eRI = 6e,

-6aL = a = 6a, r 6 = orL = Jr, and thi, = 6 th, = Jth.

6.1.2 Adaptive Controller

The adaptive controller is augmented to the baseline controller to accommodate for

adverse conditions and uncertainties. The whole control signal is

U = Unom + Uada (6.30)

where Unom and Uada are the inputs corresponding to the baseline and adaptive con-

trollers. In contrast to the baseline controller, the adaptive controller generates inde-

pendent signals for each of the ten inputs. This enables the system to use the engines

for attitude control when control surfaces fail. An immediate consequence of integrat-

ing the engines to the flight control system is the enlargement of the failure set where

the vehicle remains controllable. We note that the LTI systems used to design the

longitudinal and lateral/directional controllers are accurate approximations as long

as coupling between the corresponding dynamics is weak. However, there might be

present strong coupling due to the failures and uncertainties, e.g., both left elevators
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Figure 6-2: Control Architecture.

are locked-in-place with a non-zero deflection. In such a case, the adaptive component

of the controller, whose underlying dynamic model is coupled, will be active. The

adaptive controller designed is summarized in Fig, 6-2.

Reference Model

An LTI representation of the closed-loop system corresponding to the baseline con-

troller under nominal flying conditions can be used as the reference model.

Xm =[Ap + BGKT]m + BmT (6.31)

where Am E R8x8, Bm E R8x 3 , Xm = [a # p q r ea e, ep]T, and i = [Cecmd /cmd Pcmdl-

This model captures the coupling between the longitudinal and lateral/directional

dynamics. We note that a modified model which is not exactly the same as (6.31)

is used when implementing, in order to accommodate for the negligible effect of

nonlinearities. Details of the model which is actually implemented are discussed in

Section 6.2.1.
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Adaptive Law

The plant to be controlled is assumed as

P= Apx, + B1A (Rs(u) + d) + B (6.32)

where A, E Rsx8, B 1 E RSxio, A = diag(A) E R1Ox1O, and B 2 c R~x3. The states,

inputs, and commands in (6.32) are

z = [Ti xT ea ep ep]T

(6.33)U = [eLO 6
eLI 

6 eRO 6
eR, 

6
aL 

6
aR ru 

6
rL 

6 thL 6thR ]T

r = [acmd Ocmd Pcmd]

while d c RlOxi is a input disturbance.

The adaptive input with an anti-windup modification is given by

Uada = zTW = [T 0d]
1 (6.34)

where Ox E R 8xio, and 9d (E RlXl are adaptive parameters. Defining the state error

e as

e = XP - Xm, (6.35)

we choose the adaptive laws for adjusting the adaptive parameters in (6.34) as

O = -FwePBsign(A) - o6

= -7 \diag(ri)B 1Pe

(6.36)

(6.37)

where P PT > 0 with AT p +PAm = -Q,Q = QT > 0andes = e-ex. To



accommodate for the control deficiencies (6.14), the auxiliary error eA is defined as

eA = AmeA - Bidiag(A) K (6.38)

= uA + (Ke + 6 ")eA (6.39)

While eA is the error caused by the saturations in the actuators and in e0, eu is the

error due to uncertainties. The variables l' > 0, PA > 0, and o- are design parameters

that determine the speed of adaption.

It should be noted that the stability and boundedness of the closed-loop aug-

mented system has been proved in [7, 11, 23] when physical saturation constraints

are present. The stability analysis for the resetting-based anti-windup logic was also

established and to be appeared in [meglOACC].

6.2 Control Implementation

This section describes aspects of the implementation of the controller that depart

from the LTI framework used for control design.

6.2.1 Reference Model

In contrast to developments made with LTI plants and reference models, which sup-

port most of the theoretical foundations of adaptive control, the GTM is a nonlinear

model whose flight envelope extends beyond the region in the state space where a

single LTI system is sufficiently accurate. As a consequence, even without any failure

or uncertainties, the adaptive system with the linear reference model in Equation

(6.31) attempts to minimize the tracking error by adjusting its gains. That is, due to

the nonlinearities, the adaptive controller is activated even without any failure in the

system. Therefore what is necessary are alternatives to the linear reference model in

(6.31), in order to expand the range of accuracy of the reference model which leads

to a desirable adaptation.

One choice is to combine the full non-linear model of the aircraft under nominal
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Figure 6-3: Reference model.

flying conditions with the baseline controller. Even though this is a very accurate

model, its computational requirements are exceedingly high.

The search for a simple yet accurate reference model lead us to develop a LTI model

with a nonlinear engine model where the states and inputs are x = [a # V p q r x y z

) # ]T and u = [e 60 ~5,. 6 ]. Furthermore we include a 20ms input delay to all

states due to the up-link and down-link, an additional 40ms to the Euler angles due

to the MIDG sensor dynamics, anti-aliasing filters and command rate limiters.

It was observed in the simulation studies that this model is sufficiently accurate to

describe the actual vehicle dynamics, in which the engine has a first-order lag whose

time-constant is a nonlinear function of the engine RPMs and of the fuel dynamics.

A sketch of the adopted reference model is shown in Figure 6-3. We note that only a

subset of the states in this reference model is used as Xm in Equation (6.31). We also

note that even though V is accurately represented by the reference model, it is not

a state used in adaptation. This state is neglected because of its comparatively slow

dynamics.

6.2.2 Adaptive Rate

In real systems there present nonlinearites and time delays. Therefore the robustness

of the adaptive system to unmodelled dynamics has to be guaranteed. While small



adaptive gains diminish the performance, large adaptive gains reduce the robustness.

The adaptive rate we choose for the suggested controller is based on the heuristic

rule proposed in [13], and tuned further according to the closed-loop performance

observed in simulation.

6.3 Case Studies

In this section we compare the performance of the baseline and adaptive controllers for

a set of damages in the structure of the aircraft. The models of the first six cases are

included in the GTM simulation code. In all cases, the aircraft is initially trimmed for

a 45 deg bank angle turn with a flight path angle of 3 deg and an aerodynamic speed

95 knots. The damage occurs at t = 5. Throughout the simulation the commands

keep the values they assumed at trim.

6.3.1 Rudders Off

This case is referred to as Damaged Case 1 in the GTM simulation code. This is a

mild damage in which both rudders are off. As a result, the inertial properties of the

vehicle (i.e., weight, CG location and inertia tensor) are altered, the aerodynamics

of the airframe (e.g., CN#, rolling moment, yawing moment and side force due yaw

rate) change and the control effectiveness of both rudders becomes zero.

Figure 6-4 shows the time response of the states corresponding to (i) open-loop

with no damage, (ii) open-loop with damage, (iii) closed-loop for the baseline con-

troller with damage and (iv) closed-loop for the adaptive controller with damage.

We note that the vehicle keeps climbing at the desired flight path angle when the

controllers are on. We also note that even though the transient response of the base-

line controller is slightly better than that of the adaptive controller, they converge to

similar steady states. Throughout the simulation none of the control inputs saturate.
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6.3.2 25% Left Wingtip Off

This case is referred to as Damaged Case 4. This is a mild damage in which 25% of

the outboard left wing tip is lost. In this case the inertial properties of the vehicle are

altered, the aerodynamics of the airframe (e.g., CL,, rolling moment from left wing)

change and the effectiveness of the left aileron becomes zero. This damage generates

residual roll moments that increase dynamic coupling. In Figure 6-5 we see that the

effects of both controllers are practically indistinguishable and the vehicle is recovered

without saturation. Figure 6-5 shows the time response of the states corresponding

to the cases (i), (ii), (iii) and (iv).

6.3.3 Aft CG Shift

In this case the CG is moved aft 50% of the mean aerodynamic chord from its nominal

location and the outer left elevator is locked-in-place at zero degree. While aft CG

movements lower stability margins, the actuator failure couples the longitudinal and

lateral/directional dynamics. In contrast to all previous damages, The improved
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performance resulting from the adaptation is apparent. in this case. Figures 6-6, 6-7

and 6-8 show the closed-loop responses corresponding to the baseline and adaptive

controllers. The adaptive controller suppresses the high frequency oscillations after

a short transient. While the functioning elevators and throttle inputs corresponding

to the baseline controller saturate repeatedly, those corresponding to the adaptive

controller only do so during the transient. It is during this transient that most of the

adaptation takes place. Figure 6-8 shows the left-right input differentials generated

by the adaptive controller. Even though the magnitude of the differentials is small

relative to the total control input deflection (with the exception of the ailerons for

which the differential is about 50% of the deflection), they converge to non-zero

values. This exemplifies a situation where the adaptive controller takes advantage of

not allocating inputs.
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6.4 Conclusions and Remarks

This chapter proposes an adaptive control architecture for safe flight which is applied

to the actual GTM. The most salient features of this controller are its ability to cope

with control saturation and integration wind up. The case studies show that the

proposed adaptive control architecture improves flight safety, which is almost a con-

sistent result with the previous chapters. In particular, the robustness to CG shifts

improves significantly. The robustness attained by the proposed controller is consis-

tent with that of the controller designed to primarily accommodate for parametric

uncertainty. It can be expected that other architectures targeting systems with large

dynamic uncertainties, such as the time delay, may lead to further improvement in

the performance in the presence of various uncertainties and damages.

A comparison between the controller designed and studied in the previous chapters

and the one developed in this chapter is in order. The baseline controller designed for

the GTM is further augmented with two more error integral states (e,3 and ep), which

improve the performance in the lateral/directional axes. As a result, the performance

of the adaptive controller gets indistinguishable from that of the baseline in the cases

of Rudders Off and 25% Left Wingtip Off.
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Chapter 7

Summary

The challenge of achieving safe flight comes into sharp focus in the face of adverse

conditions caused by faults, damage, or upsets. A technology that has the potential

for enabling a safe flight under these adverse conditions is adaptive control. One of

the main features of an adaptive control architecture is its ability to react to changing

characteristics of the underlying plant dynamics. Even its ability to deal with un-

certainties which belong to certain families in the system are well known and proven

both theoretically and analytically, it remains to be determined whether the adaptive

control technology truly meaningful to be adopted in the aerospace applications to

achieve the safety flight. This thesis addresses this question by performing a compar-

ative analysis of the robustness of the best non-adaptive controller with its adaptive

augmentation.

The adaptive control architecture is proposed by augmenting the baseline con-

troller which consists of a longitudinal, and a lateral/directional controller with the

adaptive components. While the baseline controller uses anti-wind up devices and

a control allocation scheme that correlates inputs of the same class, the adaptive

controller accommodates for control saturation and integration wind-up without en-

forcing any allocation. This leads to an architecture where each control input is

actuated independently.

The stand-alone control verification framework is used, for evaluating the degra-

dation in closed-loop performance caused by increasingly larger values of uncertainty



by attaining the set in the uncertain parameter space for which a set of closed-loop

requirements are satisfied. This thesis studies several one-dimensional uncertainty an-

alyzes for two flight maneuvers that focus on the longitudinal and lateral dynamics.

As compared to the baseline controller, the adaptive controller enlarges the region of

safe operation by a sizable margin in all but one of the cases considered. We there-

fore can conclude that the adaptive control technology realizes the system with the

increased robustness to uncertainties. We note that this framework also enables us

to assess and compare different advanced controller alternatives to achieve the safety

flight, regardless of the methods, assumptions, and control structure used to derive

them.

Finally, this thesis also proposes an actual adaptive control architecture for the

GTM. Since this model, as the vehicle itself, departs considerably from the Linear

Time Invariant (LTI) system usually assumed for control design, it remains to be

determined if the improvements in stability, safety, and performance observed in such

an assumption can be realized in practice. Several case studies show that the adaptive

control enables the system to regain the nominal flight even with the severe failure

such as CG movement, which is the consistent result with the proceeding studies based

on C-5 aircraft model. Based on the suggested adaptive control design, conducting a

flight test is also on our research road map. As well as the studies conducted in this

thesis, this strongly connects this mature theoretical discipline of adaptive control to

the actual world, and leads to realization of actual applications of adaptive control

on aerospace applications to achieve a safety flight.
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