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Abstract

When multiple databases are merged, an essential step is identifying sets of records that re-

fer to the same entity. Called duplicate detection, this task is typically tedious to perform

manually, and so a variety of automated methods have been developed for partitioning a

collection of records into coreference sets. This task is complicated by ambiguous or noisy

field values, so systems are typically domain-specific and often fitted to a representative la-

beled training corpus. Once fitted, such systems can estimate a partition of a similar corpus

without human intervention.
While this approach has many applications, it is often infeasible to encode the appropri-

ate domain knowledge a priori or to identify suitable training data. To address such cases,

this thesis uses an active framework for duplicate detection, wherein the system initially es-

timates a partition of a test corpus without training, but is then allowed to query a human

user about the coreference labeling of a portion of the corpus. The responses to these queries

are used to guide the system in producing improved partition estimates and further queries

of interest.
This thesis describes a complete implementation of this framework with three technical

contributions: a domain-independent Bayesian model expressing the relationship between

the unobserved partition and the observed field values of a set of database records; a criterion

for picking informative queries based on the mutual information between the response and

the unobserved partition; and an algorithm for estimating a minimum-error partition under

a Bayesian model through a reduction to the well-studied problem of correlation clustering. It

also present experimental results demonstrating the effectiveness of this method in a variety

of data domains.

Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor
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Chapter 1

Introduction

Most of us really aren't horribly unique. There are 6 billion of

us. Put 'em all in one room and very few would stand out as

individuals.
Herbert Simon

1.1 Motivation and Problem Description

Managers of large data repositories have long been familiar with the

problem of duplicate detection. Database software is typically designed

under the assumption that there is a single record for each entity of in-

terest. The presence of duplicate, or coreferent, records violates this as-

sumption and can result in problems when using the data. For example,

duplicates may displace canonical records in search results, result in mis-

leading computed statistics, and use system resources unnecessarily.

In some cases it is possible to avoid creating duplicates in the first

place. For example, library catalogers use the Library of Congress and

other authority services to provide canonical records of works [39]. How-

ever, such services are of limited use when a library is cataloging a new

work or author, as is frequently the case in academic libraries [82]. In

such cases, judicious inference by the cataloger can reduce the incidence

of duplicate records.

However, there are a variety of scenarios where the problem cannot



be avoided, such as when merging multiple databases, when authority
services don't exist, or when identifying traits of entities are inaccessible
at record creation time. For example, the use of data-mining algorithms
to extract structured data from unstructured text is increasingly com-
mon. In this case, the records are created automatically and thus some
manner of duplicate detection must be employed.

Even for modest-sized databases, it is typically impractical to manu-
ally review each record to find coreferents. For this reason, a variety of
automated methods have been developed to address this problem. The
earliest systems used hand-tuned linkage rules that specified conditions
under which a pair of records should be declared coreferent [65]. In these
early systems, resources were limited and record access had high latency,
so even applying simple pairwise rules was challenging.

Duplicate detection was first formalized in a decision-theoretic frame-
work by Fellegi and Sunter [37], who treated the problem in the statisti-
cal hypothesis testing framework, developing a binary classifier that used
the agreement of a record pair's field values to identify coreferent pairs
or matches. This framework modeled the common application of finding
matched pairs from two clean sources.

problem In general, there may be many sources and many coreferent records
statement within a source, and the problem is that of finding a partition of a set of

records into a set of coreference blocks, or disjoint record sets that refer to
the same entity.' For methods that describe a class of models for finding
partitions, such as supervised methods that fit a model to training data,
we refer to a particular instance of that class as a partitioner, analogous
to a classifier in the classification problem.

A broad variety of approaches have been taken to finding a suitable
partitioner for a data environment. We can categorizes these broadly
into two groups. Pairwise methods have been developed based on su-
pervised classifiers such as the Naive Bayes model [93], support vector
machines [19], and decision trees [88]. Partition-based methods include

'Some authors use the terms partitioning and partition for what we define here as a
partition and block respectively.



generative Bayesian models [67, 14], conditional random fields [59, 66],

constraint propagation models [34], and heuristic algorithms [54].

One aspect common to these approaches is that the partitioner must

be tailored to the data to which it is applied. In the case of hand-tuned

rules, a human expert must determine which rules are appropriate. Even

with machine-learning methods, optimal performance typically requires

either encoding knowledge into a domain-specific model or choosing

appropriate preprocessing steps, domain-specific features and functions,

and hand-labeling training examples.

Bilenko and Mooney [20] provide an insightful look into the impor-

tance of choosing appropriate training data for duplicate detection al-

gorithms. They compared a supervised model trained on data from the

test domain (publications) to one trained on a disparate domain (restau-

rants), and also to a generic similarity model based on string edit dis-

tance. While the appropriately trained model performed best, the generic

model outperformed the one trained on inappropriate data.

One explanation for these results is that there is an ambiguity in ex-

plaining the presence of variation in a data corpus. One source, which we

call population variation, reflects the true variation in the underlying en-

tities and should be used as evidence for coreference decisions. Another

source of variation, which we call observation variation, is an artifact of

the data collection process, and should be disregarded as noise. When

faced with a generic collection of data, it cannot be known a priori how

to account for the observed variation. Domain-specific models and/or

training examples serve as constraints that resolve this ambiguity.

An example of this phenomenon is found in the well-studied case of

duplicate detection using personal names. In this case, the frequency of

particular names and the prevalence of name changes may be considered

part of the population variation, while data entry errors, spelling incon-

sistencies, and the use of nicknames factor into the observation varia-

tion. This distinction between signal and noise is not always clear. For

example, when an individual with a common name adopts an uncom-

mon nickname as a means of distinction, an algorithm that normalizes

known nicknames in preprocessing will eliminate a distinguishing fea-

sources of

data variation



ture. Thus, a variety of rich statistical models have been developed to
account for the intricacies of personal names [92, 67, 26, 23, 14].

Another aspect of the problem highlighted by the work of Bilenko
and Mooney is that generic similarity models are capable of correctly la-
beling most of a problem instance, as superficial similarity is often a good
indicator of coreference. The problem's difficulty lies along the margin
of "somewhat similar" records, which may or may not be duplicates. It is
here where the use of domain-specific models and appropriate training
examples can significantly improve performance by taking advantage of
the characteristics of a particular domain or even the particular data set
within that domain.

1.2 Active Duplicate Detection

While it is clear that domain-specific knowledge is required for optimal
performance, it is not always feasible to encode such knowledge a priori,
either through building domain-specific models or through providing
labeled training examples, because the necessary work cannot be amor-
tized across a large data corpus. This is particularly true for personal
information databases, where users unskilled in database management
informally collect information according to their own idiosyncrasies, of-
ten without adherence to a particular schema. Such data may also have
peculiar statistics; for instance, we expect the distribution of names in a
personal contact database to have a very different distribution from that
in the population at large.

To address such data environments, this thesis develops a domain-
independent active framework for duplicate detection. In this frame-
work, there is no distinction between training and evaluation data: the
system is presented with an unlabeled data corpus from an unknown do-
main, but is allowed to query a human supervisor about the coreference
labels of portions of the data. The goal is to find the best coreference
labeling for a given amount of supervisor effort.

Ideally, the query responses serve both to label the "hard" portion
of the corpus and to simultaneously resolve ambiguities specific to the



corpus in order to improve performance on the remainder of the cor-

pus. Although the supervisor may be labeling the difficult portion of the

corpus, the system is still tasked with identifying this region and distin-

guishing between informative and uninformative queries. Note that hu-

man labeling does not require an expertise in data modeling or machine

learning, but rather the domain knowledge of whether a pair of records

is coreferent.

1.3 Summary of Contributions

The method described in this thesis divides active duplicate detection

into three stages: inference, partition estimation, and query ranking. In

the inference stage, a model of the uncertainty in the coreference par-

tition is generated. This uncertainty model is used both in generating

a single best estimate of the coreference partition and also in ranking

queries to the supervisor. Labels provided by the supervisor may then

be fed back into the inference stage to produce an updated uncertainty

model. Figure 1-1 provides a diagram of the system.

This thesis describes an implementation of this framework with three

technical contributions: a domain-independent Bayesian model of coref-

erence, a criterion for picking informative queries based on maximizing

mutual information, and an algorithm for estimating a minimum-error

partition under a Bayesian model based on minimizing expected pair-

wise error. It also present experimental results demonstrating the effec-

tiveness of this method in a variety of data domains.

1.3.1 Domain-Independent Bayesian Model

Chapter 3 presents a domain-independent generative Bayesian model of

the coreference relation of a data corpus: a distribution over observed

record values conditioned on the coreference partition of the corpus.

Unlike many other Bayesian models for duplicate detection, it uses no

schema-specific distributions or structures. Instead, it provides a generic

model of record generation based on Bayesian nonparametric distribu-



unlabeled data

query labels

queries

partition
uncertainty
model

estimate partition

Figure 1-1: Domain-independent active duplicate detection

tions, which allow the model to be used in a variety of different domains
without modification.

Two different variations of the model are presented: an individual
value distributions (IVD) model in which each coreference block has a
unique distribution over its field values and a shared value distributions
(SVD) model in which the field-value generating distributions may be
shared between coreference blocks. The distinction between these two
models is discussed in detail in section 3.4.

Chpater 4 provides an efficient inference procedure for the model
based on Markov Chain Monte Carlo (MCMC) sampling. The sampling
procedure generates approximate samples of the posterior distribution
over partitions given observed record labels. This sampling procedure



can be used completely unsupervised, when no coreference labels are

known, and also in the case in which the partition is subject to binary

constraints; In the latter case, additional modifications are provided to

meet the ergodicity condition of MCMC sampling.

1.3.2 Correlation Clustering for Minimizing Error

While a Bayesian model provides a model of the uncertainty associated

with a hypothesis, it is still useful in many applications to produce a sin-

gle estimate of an unobserved quantity; for instance, producing a sin-

gle estimate partition from a Bayesian distribution over partitions. The

maximum a posteriori (MAP) estimator is commonly used in Bayesian

modeling.

This thesis proposes an alternative to the MAP estimate for duplicate

detection: the estimate partition that minimizes the expected pairwise

error under the model. Chapter 4 demonstrates that optimizing this ob-

jective under a Bayesian model reduces to correlation clustering, an NP-

hard problem with a number of known approximation algorithms [33].

The minimum expected error objective function is used both because

it provides a more direct measure of the error of an estimate partition and

also because it works well in conjunction with the query ranking measure

proposed in chapter 5: With this objective function, the same inference

computation is used both to provide weights for correlation clustering

and also to rank pairwise queries. Both of these depend on an estimate

of the marginal probability that a pair of records is coreferent.

Though correlation clustering iS NP-hard, the practical running time

of a problem instance depends on the amount of ambiguity in the data;

thus it may be solved exactly for practical data sets with small corefer-

ence blocks and chapter 4 provides a heuristic algorithm for estimating a

partition from samples under this objective that runs quickly in practice.

1.3.3 Mutual Information Ranking for Active Queries

While the model may be used for unsupervised inference, it is intended

to be used in conjunction with a human supervisor in an active label-



ing framework. However, in a typical duplicate detection application, an
arbitrary pair of records is likely to be a trivial nonmatch and therefore
not strong evidence about the true partition. We might expect that such
weak evidence would not alter the results of inference and indeed this is
one of the empirical findings presented in chapter 6. Therefore, in this
framework it is necessary to use the model to pick informative queries.

Chapter 5 develops a formal framework for ranking queries in a Bayes-
ian, partition-based framework. In this formalism, query responses are
treated as unobserved variables and queries are ranked according to the
mutual information between the query response and the partition as a
whole. A derivation is given which shows that the query that optimizes
mutual information is that with the highest posterior entropy in its label
value.

This result leads to an estimate of query effectiveness that can be com-
puted efficiently from McMc samples. Query responses can then be in-
corporated into the model as observations, and additional inference con-
ditions on these observations may produce improved partition estimates
and further informative queries. This result also provides a theoretical
connection between active approaches based on pairwise classifiers and
those based on partition search.

1.4 Overview of Experimental Results

Chapter 6 presents experimental results from using this method in six
different data domains. These experiments look at four practical con-
siderations: the importance of incorporating negative constraints when
merging data from multiple sources; the performance of the proposed
query ranking criterion compared to baseline algorithms; the perfor-
mance characteristics of the individual and shared distributions mod-
els; and the effect of periodically reranking queries through additional
rounds of inference.

These results demonstrate the effectiveness of the proposed query
ranking in improving the performance of the system over its unsuper-
vised performance or with queries ranked using baseline algorithms. They



also demonstrate the significance of feedback in the process: periodi-

cally reranking queries through additional inference, improves the per-

formance of the system for a given number of queries.

These experiments also reveal limitations of the model, including its

unsupervised performance on certain data sets and ability to scale to large

data sets, discussed in section ??. These limitations are used as a basis for

the suggestions of future research directions provided in chapter 7, in-

cluding improved value distribution modeling, extending the model to

handle relational data, and other issues involved in scaling the method

to large data sets.



22



Chapter 2

Background

Automated duplicate detection has long history in the research literature.

The problem was first called record linkage, since the intent was to link vi-

tal records-such as birth and death certficates and marriage licenses-in

order to create a more comprehensive understanding of the data [65, 37].

Researchers have since introduced a seemingly combinatorial number of

names for this problem including:'

instance identification [91], semantic integration [2], data

cleansing [36], authority work [39], the merge/purge

problem[47], data integration [24], citation matching [54],

instance matching [75], reference matching [60], database

hardening [251, entity-name clustering and matching [27],

object identification [88], fuzzy duplicate elimination [7],

deduplication [79], object consolidation [61, 58], identity

uncertainty [67], object co-identification [44], robust

reading [56], reference reconciliation [34], entity

resolution [ 12], author disambiguation [30], and coreference

resolution [45].

This profusion of names is due in part to interest from different research

communities, but also from a desire to highlight aspects of a particular

'This list is derived in part from similar ones compiled by William Winkler [94] and
Mikhail Bilenko [16].



schema structure

data environment or method. We use duplicate detection for its dissoci-

ation with any particular data environment and its alliterative quality.

This chapter provides a high-level overview of various approaches to

the problem, categorized according to architecture, model-constructing

framework, and data environment. These distinctions emphasize the

contributions of this thesis by motivate the scenarios best suited to the

domain-independent, active model presented in later chapters.

2.1 Data Environments

The need for duplicate detection typically arises in data collected to ex-

press knowledge about a real-world domain of entities and their rela-

tionships. One example is that of a library database, which contains
records for the books and other works curated by the library. It may

also contain records for the authors and publishers of the works, and for

the library's patrons. In addition to the ubiquitous example of publica-

tions [39, 54,67, 76, 13], the problem has been explored for such domains

as vital records [65, 93], corporations [24, 87], films [24, 5], music [44],

product listings [17], and biological data [53].

To be effectively processed by a computer, the information of the

domain must be expressed in a data model, a machine-understandable

format for data storage and retrieval. Common data models include re-

lational databases (SQL), object databases [52], document-object mod-
els (e.g., xML), and graph databases [55, 29]. Such models are domain-

independent: they provide features applicable to a wide variety of do-

mains, such as primitive data types and text encodings.

It is frequently desirable to restrict the data to conform to a schema,

a formal description of the types and ranges of valid field values. Con-

tinuing the library example, a schema might dictate that library patron

records must contain a field for the the patron's phone number, and re-

strict the field's value to a valid phone number. Schemas are used to val-

idate the database, facilitate data interchange, and prevent application

errors due to invalid data. Such data is often called structured data.

Schemas are not essential, however, and some data models [90, 29]



allow data conforming to disparate schemas, or to no schemas at all, to

intermingle. Such data is often called semi-structured [55]. Schemas

may also vary in the strictness of their typing. For example, most per-

sonal information applications allow users to enter free-form text strings

as values and typically do not require a value for every field. Conse-

quently, such data is subject to a greater degree of variation than data

that is strictly validated, as is common in business applications.

Another aspect in which data environments vary is in the degree relational

of relational structure present in the data. Inflat databases, each record structure

represents the same type of entity and the field values are primitive types

such as text strings or numbers. For example, most personal address

databases contain records corresponding to individual people, with tex-

tual fields for the person's contact information.

Flat databases hinder the sharing of information between records. In

a flat address database, for example, there is no means to express that

an address is shared by multiple people, and therefore the street address,

city, and zip code values should be the same. Likewise, it may not be

possible to model situations in which an individual is associated with

multiple addresses. To handle these and many other use cases, many

data models admit some form of relational values, wherein records are

permitted to have fields referring to other records. With relational val-

ues, it is possible to explicitly model the many-to-many relation between

people and addresses.

Simple relational data environments have a small fixed number of

record types, but deeply relational models may allow for an arbitrary

number of types with an arbitrary number of relations. This poses a chal-

lenge to duplicate detection in these environments because coreference

decisions between records must be propagated to all related records.

2.2 Duplicate Detection Architectures

Duplicate detection methods can be broadly categorized into pairwise

methods, which develop a coreference classifier for pairs of records, and

partition-based methods, which optimize a scoring function over par-



pairwisefeatures

titions of the records. However, this distinction is not firm and many

methods incorporate aspects of both architectures, for example by using
a pairwise classifier as a component in a partition score.

2.2.1 Pairwise Methods

Pairwise methods were first developed to model the application of find-

ing matches between two files or data sources. In this situation, each
record is associated with a source that is presumed to be free of coref-
erents, as is often the case when databases must be merged. Thus coref-

erence blocks consist of either a single record or a pair of records, one
from each source. These methods may be extended to data without such
a constraint through the use of a linkage algorithm, which combines the
possibly inconsistent pairwise decisions into a final partition.

A common approach is to partition the records in three stages. First,

a similarity function is used to score pairs of records along a real-valued
scale indicating the level of confidence in a match. Next, a threshold is

used to decide which pairs are matched. Finally, a linkage algorithm is
applied to generate a final partition. These stages are not always per-
formed sequentially; an iterative approach may be taken where the simi-
larity function, threshold, and linkage algorithm are adjusted until a ter-

mination condition is reached [13].

Typical pairwise classifiers require record pairs to be represented in a
feature space. A basic representation would be a vector of binary values,
one per field, indicating whether the field values match in the pair, but
more elaborate features are typically used. These may combine attributes
of multiple fields into a real number. Domain-dependent features are

one way of incorporating domain knowledge regarding relevant fields.

Parametric features with learned parameters may also be used [18].

Once a pair of records (i, j) is expressed as a feature vector xij, super-

vised learning techniques can be applied to generate a classifier from la-

beled examples (xij, yij), with yij indicating whether the pair is a match.

Some techniques applied to duplicate detection include decision trees [88],
maximum entropy classifiers [27], support vector machines [19], rule in-



duction [53], and voted perceptron [17]. Supervised learning theory may

also be applied to problems such as feature selection and classifier over-

fitting.

In their classic presentation, Fellegi and Sunter [37] cast the classifi-

cation problem as a likelihood ratio test of the form,

P(x; Y) match

P(x; Y) nonmatch

which requires estimating the two likelihood functions as well as a suit-

able threshold T for the decision boundary. Fellegi and Sunter addi-

tionally show that by using two thresholds, between which records were

classified for manual review, the amount of manual review for a given

error rate could be minimized. Winkler [93] presents an Expectation-

Maximization algorithm for learning the likelihood parameters in a naive

Bayes likelihood model.

The threshold value, or margin in the case of a discriminative clas-

sifier, must be tuned to the number of coreferent pairs in a test set. If

the threshold is set too high or too low, there will be many misclassified

pairs. An appropriate setting can be found using a training corpus, pro-

vided that the frequency of coreference is representative of an evaluation

corpus; otherwise, it may need to be tuned when the classifier is applied

to new data.

Since a pairwise classifier operates on pairs of records, it may produce

inconsistent (i.e., nontransitive) decisions. Consider the simple example

of three records, u, v, and w. A classifier might decide that pairs (u, v)
and (v, w) are matches, but that pair (u, w) is a nonmatch, producing a

linkage graph as in Figure 2-1. A linkage algorithm is used to resolve this

inconsistency. Often, the classifier scores are used directly by the linkage

algorithm and thresholding is applied as part of linkage.

The simplest algorithm, called single linkage, computes the transitive

closure of the match decisions. In the case of the previous example, sin-

gle linkage would declare u, v, and w coreferent. Single linkage may be

viewed as a greedy hierarchical agglomerative clustering algorithm [17],

thresholding

and linkage

hypothesis testing

framework



yvw= [match]

yuw= [nonmatch]

Figure 2-1: A simple linkage graph

blocking

pairwise

relational models

in which each record is initialized in its own block and then blocks are
greedily merged until some termination condition is met. In single link-
age, blocks are merged according to the maximum value the classifier
produced for a pair of records that spans the blocks.

One obvious problem with single linkage is that it doesn't take into
account the overall connectivity between the blocks: If the classifier con-
siders most of the pairs between two blocks to be strong nonmatches,
they may still be joined by a spurious high match. Average linkage recti-
fies this by joining blocks according the the average value of the classifier
across all pairs that span the blocks. A still more conservative approach
is to use the minimum classifier value between the blocks. Nongreedy
approaches have also been used, in which the similarity function and
linkage thresholds are iteratively updated [13].

Applying pairwise classifiers to n records requires n(n - 1)/2 fea-
ture vectors to be computed and classified. This 0(n 2) computation
may be intractable in large data sets, so many practical systems use block-
ing techniques to identify (possibly overlapping) subsets of the data that
are likely to contain coreferent pairs. For publication records, a sim-
ple blocking technique might be to group publications by their copy-
right year field; publications with distinct years are assumed to be non-
matches without the need for classification. In practice, effective block-
ing requires a linear-time algorithm that clusters potential matches into
relatively small subsets.

The pairwise architecture presented thus far is primarily suited for

yuw= {match}]



flat databases. Consider the problem of duplicate detection in a relational

setting, for example merging multiple library databases with publication

and author records in a relational structure. An obvious constraint would

be to require that declaring publication records coreferent would imply

that their related author(s) record(s) would also be coreferent. There is

no obvious extension to the pairwise architecture that embodies this con-

straint.

Despite these difficulties, there are some approaches that combined

pairwise decisions with relational data. Dong et al. [34] describe a method

for defining a dependency graph on pairwise coreference decisions in

a publications domain, allowing coreference decisions to be propagated

between record pairs. Bhattacharya and Getoor [13] describe a method

for partitioning author records using co-authorship relations as an addi-

tional source of disambiguating information.

Although the pairwise architecture has the advantage of allowing a

variety of classification techniques to be used "off the shelf"' there are a

number of significant limitations to pairwise methods. Milch et al. [62]

note that pairwise features cannot capture certain global constraints. For

example, it may be likely for an entity to have a small number of dis-

tinct values for a field (e.g., email address) but unlikely for there to be

dozens. Another problem is the difficulty of applying domain knowledge

and constraints in a principled way across blocking, classifier construc-

tion, threshold choice, and linkage algorithm. Finally, in some domains,

there may arise identical records for distinct entities or disparate records

for the same entity; pairwise methods may have trouble training on such

outlying examples.

2.2.2 Partition-based Methods

Partition-based methods mitigate some of these limitations of pairwise

methods, though typically at the expense of additional computation. A

partition-based method provides a measure over the space of possible

partitions of a data corpus. This measure serves to score candidate par-

titions by their estimated closeness to the true partition. Because the

limitations of
pairwise models
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number of possible partitions grows combinatorially with the number of

records,2 nontrivial measures must be combined with an effective opti-
mization technique.

Generative Bayesian models, including the one described in this the-

sis, are ones means of providing a measure over partitions. In Bayesian

models, conditional probability distributions are used to model the un-

certainty in unobserved quantities. In Bayesian coreference models, the

primary quantity of concern is the coreference partition but other un-

known values may be incorporated into the model as well. One advan-

tage of these models is that these unknown values may be inferred from

data, for example a "clean" version of a publication title may be inferred

from noisy representations.

A generative model provides aprior distribution over partitions P(B)

and a likelihood distribution over observed record values P(V IB). We
may think of the value of the coreference partition as hypothesis, with

the prior specifying our belief about the hypothesis in the absent of data

and the likelihood distribution specifying the likelihood of any particular

observation under any particular hypothesis. Bayesian inference, then,

provides a means of updating posterior belief P(B V) of a hypothesis in

light of observations using Bayes Rule:

P(B V) P(V|IB) P(B)
P(V)

For a fixed set of observations V the posterior probability is propor-
tional to the prior multiplied by the likelihood. Thus, the posterior pro-

vides a score for each partition given the evidence. However, optimizing

this function over the space of all partitions is challenging. Monte Carlo

sampling techniques are commonly used. In these techniques, described

further in chapter 4, the defined distributions guide a stochastic search

through partition space.

Another advantage of Bayesian methods is they allow relational data

to be modeled in a principled way, combining evidence from multiple

2 The number of partitions of n items is commonly known as the nth Bell num-
ber [77]; the Bell numbers grow faster than any exponential function.



types of records to make simultaneous coreference decisions. Pasula et al.

use the language of relational probability models (RPMS) [69] to model a

relational citation domain [67]. Milch et al. develop BLOG, a language for

describing domains with identity uncertainty, and provide BLOG models

for aircraft observations and citation matching [62]. Carbonetto et al.

extend BLOG to a nonparametric setting and also model citation genera-

tion [22].

These models are domain-dependent in that they provides explicit

descriptions of the dependencies between the entities, relations, and field

values specific to the domain of citation coreference. For instance, they

each describe a model of citation generation with distinct string distribu-

tions for a publication's title versus an author's name. Adapting them to

a new domain would require a modeler to chose different distributions

appropriate to that domain.

An alternative to generative models are discriminative models, which

score partitions without requiring the strict conditional independence

assumptions of Bayesian modeling. McCallum and Wellner [58] intro-

duce a Conditional Random Field (CRF) model of noun phrase corefer-

ence, in which the distribution P(B V) is modeled directly. One advan-

tage of this model is that non-independent and overlapping features of

the data may be included as evidence.

In the CRF model of McCallum and Wellner, pairwise features are

used as evidence for the coreference decisions. The training procedure

for the model weights is partition-based, however, maximizing the like-

lihood of the coreference decisions of the training data as a whole. Max-

imum likelihood inference in this model is equivalent to the graph parti-

tioning problem known as correlation clustering [10, 33]. The CRF model

was extended to multiple field citation records by Parag and Domin-

gos [66] and Culotta and McCallum [31].

Discriminative partition-based models may also incorporate block-

level features. Culotta et al. [30] present a feature representation in which

the score of a partition is a weighted sum of block-level features. Effi-

cient training procedures for the features weights based on minimizing

errors are presented, and greedy agglomerative clustering is used to apply

discriminative

models
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learned models to test corpuses. Though not strictly required, the fea-
tures used in this approach were also specific to the evaluation domain

of citation coreference.

2.2.3 Other Methods

This review of methods is far from exhaustive; a recent survey is pro-
vided by Winkler [94]. The categorization of methods into pairwise and
partition-based is intended to be illustrative, but there is not always a
clear distinction, particularly when linkage algorithms take the form of
a partition search.

There are also models which don't fall into either category. For ex-
ample, the Discriminant Descriptions model of Guha [44] finds a feature

function for each entity, called a key, that distinguishes records referenc-

ing that entity from those that do not. We may call this an entity-based

or key-based model.

2.3 Model-Constructing Frameworks

Most duplicate detection methods use structures that depend on the data
environment in which they will be applied. These structures may be cho-
sen by the modeler during a modeling phase (e.g., feature functions) or
they may be estimated from data during a learningphase (e.g., model pa-
rameters). A particular choice of parameters defines a partitioner, which
can then be applied to new data in the evaluation phase. Different meth-
ods take different approaches to constructing a partitioner; we consider
three such frameworks here, which we callfixed, learned, and active, and

discuss their suitability to various data environments.

Many methods depend on a substantial modeling effort. In genera-

tive Bayesian models, the partitioner is tasked with defining the domain

variables and specifying their conditional independence relations and

probability distributions. In discriminative models, appropriate features

must be chosen. Even when structure learning or feature selection algo-

rithms are used, the modeler is still responsible with defining the space of



features from which to choose. Effective modeling requires both knowl-

edge about the particular method being used and also domain knowledge

about the data to which it is being applied.

However they are constructed, most models incorporate some form

of domain or schema-dependent knowledge. As discussed in the pre-

vious chapter, domain-specific features can be essential to achieving ac-

ceptable performance in practice. Domain-specific knowledge may be as

simple as normalizing common abbreviations [63] or it may involve con-

structing an entire Bayesian description of a relational domain [67, 62].

Still, there remains interest in designing more flexible models that re-

quire less modeling up front by using machine-learning techniques to

adapt domain-independent features to a particular domain [88, 5, 19]

The most basic duplicate detection method is to construct, by hand,

linkage rules that determine whether a record pair should be classified as

coreferent. Once specified, such rules define a unique partitioner which

may be evaluated on a test corpus. In this fixed model framework, il-

lustrated in Figure 2-2, a partitioner is produced directly by the modeler.

Though no training is required, such models need not be trivial to imple-

ment: a fully specified Bayesian model may require advanced techniques

to perform effective inference.

testing data

Figure 2-2: Fixed model framework

Most of the methods discussed previously involve some form of fit-

ting models to data. In the learned modelframework, depicted in figure 2-

3, we may think of the modeler as defining a class of partitioners, with

the particular partitioner chosen by a learning algorithm during train-

learned model

fixed model



ing. Training may take two forms: supervised algorithms are commonly

trained on a hand-partitioned corpus, but unsupervised algorithms may

be used either separately or in conjunction to estimate parameters from

an unlabeled corpus. For example, Pasula et al. used a census name file

to estimate parameters in a generative model for author names [67].

(un)labeled
training data

testing data

Figure 2-3: Learned model framework

active-learned

model

The learned model framework may be extended with an active com-

ponent. In this active-learned modelframework, the training algorithm is

able to take advantage of unlabeled or partially labeled data to generate

a partitioner, but is also augmented by a querying algorithm that identi-

fies interesting portions of the training corpus for a human supervisor to

label. These labels are then fed back into the system to produce further

partitioners and queries. The process may terminate when a particular

condition is met or when the results are deemed satisfactory. A diagram

of this framework is given in figure 2-4.

Both Tejada et al. [87] and Sarawagi and Bhamidipaty [79] have pro-

posed active approaches to partitioner training. These works use sim-

ilar architectures, in which a pairwise classifier is first trained using a

small portion of the records in a corpus, then used along with a query-

by-committee [81] approach to identify additional training pairs. Addi-



partitioner

Figure 2-4: Active model framework

tional classifiers and queries are then generated iteratively. Bilenko [16]

uses a "static" active approach, where a schema-generic heuristic is used

to suggest likely-positive examples for training a pairwise classifier. An

active approach has also been applied to clustering documents by Basu et

al. [11]; In this model, binary match constraints were incorporated into

a k-means clustering algorithm.

The choice of model construction framework comes with tradeoffs.

Fixed models are human-designed and so may be easier to introspect and

correct; however they are also unable to take advantage of unanticipated

features of the data that may improve performance. Learned models may

provide better performance, but they too require judicious design and

an appropriate choice of training data. When the work of model design

and labeling training data can be amortized across a sufficient amount of

evaluation data, a learned model may be the best choice.

The active approach is suited to applications where the work of label-

ing a training corpus cannot be amortized to a large amount of evaluation

framework

properties
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data. One compelling application is duplicate detection in personal in-

formation databases: these may have characteristic statistics not found

in a generic training corpus and may be semi-structured, with an ad hoc

schema determined by the user; such data may have novel fields and val-

ues that cannot be anticipated during the modeling phase.

Another use case may be data generated by a process with frequently
changing statistics. For example, in a web commerce application there

may be a large amount of unsupervised data but the characteristics of

duplicate records may vary with market conditions. In this case, active

queries could be used to keep a partitioner performing well while mini-

mizing human involvement.

Finally, even if the statistics of the data are relatively static, an active

approach may be useful in minimizing the amount of human labeling

necessary to achieve an acceptable level of performance. Sarawagi and

Bhamidipaty have shown that selecting a training corpus using an ac-

tive learning technique can produce better classifiers than an arbitrarily
selected training corpus [79].

2.4 Evaluation Metrics

During the evaluation phase, a partitioner produces an estimate partition

of a data corpus. For nontrivial data, it is unlikely that a partitioner will

estimate the true partition perfectly, so evaluating performance quanti-

tatively requires defining a difference metric between the estimated and

true partitions. We discuss the most commonly used metrics here, along

with their properties.

Like the methods themselves, these metrics can be broadly catego-

rized as either pairwise or partition-based. Pairwise metrics treat item

pairs as independent points of comparison. The error rate is the per-

centage of pairs for which the estimate and true partition disagree on the

match/nonmatch labeling. The recall is the percentage of true matches

that are correctly labeled in the estimate, while the precision is the per-

centage of estimated matches that are true matches. When the true par-

tition has no matches, we define the recall to be 100% and when the es-



timated partition has no matches, we define the precision to be 100%.

Precision and recall are often preferred to error rate since they do

not credit a partitioner for accepting the strong null hypothesis that two

records are distinct'. There is also a natural tradeoff between these met-

rics: perfect recall is trivially obtained by the single-block partition, with

all items in a single block, while perfect precision is obtained by the sin-

gleton partition, with each item in its own block. The harmonic mean of

precision p and recall r is called the f-measure: f = .P. The f-measurep+r

ranges from zero, when either precision or recall is zero, to 1 when the

estimate is the true partition.

While pairwise metrics fit neatly into the framework of statistical hy-

pothesis testing, they disregard the fact that coreference decisions are

transitive. Consider a partitioner that leaves one record out of an other-

wise correct block. In this case, the pairwise recall will vary with the size

of the block; larger blocks will accrue greater recall error than smaller

ones. An analogous situation may occur with pairwise precision. This

penalizes a partitioner repeatedly for what may be regarded as a single

error.

For this reason, many researchers prefer partition-based metrics,

which directly compare the generated partition to the true partition. One

commonly used metric is a block-based variant of f-measure called MuC,

developed for scoring the noun-phrase coreference task at the 6th DARPA

Message Understanding Conference [89].

The MUC metrics may be understood by considering how the true

partition may be constructed through a series of link operations that con-

nect coreferent elements. Starting from the singleton partition, a block

b from the true partition can be constructed with |bI - 1 link operations

(a block of size 1 requires no links). This is an upper bound; it can be

shown that at most |b| - 1 links are requires to join the elements from b

starting from any partition, including an estimate partition.

MUC recall for an estimate partition is one minus the Muc recall er-

'this is considered either a strength or a weakness of the precision-recall framework,
depending on one's point of view

partition-based

metrics



ror, which is the ratio of the number of link operations required to join

coreferent elements starting from the estimate partition with the num-

ber of such operations required starting from the singleton partition. As

in pairwise recall, the single-block partition has zero error and thus per-

fect recall. MUC precision is computed in the same way as MUC recall, but

with the roles of the estimate and true partitions reversed. MUcf-measure

is the harmonic mean of precision and recall, as before. When the true

partition has blocks of size no larger than two, then pairwise and mUc

precision and recall are identical. A thorough description of the MUC

metrics is provided by Bagga and Baldwin [9].

The Muc metrics has the desired property of linear dependence on

the size of the blocks, rather than quadratic dependence as in pairwise

metrics. However, this property has a flaw, noted by Popescu-Belis and

Robba [74], that makes it unsuitable for data sets with large blocks in the

true partition: as block size grows, the penalty in precision for spuriously

joining two blocks becomes proportionally smaller. For example, merg-

ing two block of size 20 is interpreted as 19 correct links per block and 1

incorrect link, for a precision of 1 - 1/39 ~ 0.97.

Like pairwise precision and recall, the Muc metrics do not credit for

correctly placing records in singleton blocks. An alternative partition-

based metric that takes singleton blocks into account is the percentage

of blocks in the true partition that are also in the estimate partition (i.e.,

labelled completely correct) [54, 67]. This strict measure is easy to un-

derstand and compute, but does not distinguish between false matches

and false nonmatches nor does it weight blocks by their size or provide

partial credit for large blocks that are "almost correct".

evaluating active Although machine learning techniques are typically evaluated on

approaches an independent evaluation corpus, in active approaches the training and

test sets are often the same, which leads to the question of whether to ex-

clude labeled queries from reported results. This is complicated further

by evaluation sets with blocks of size 3 or greater, where the labels of

query pairs may imply the label of non-query pairs through transitivity.

In the case of data from paired sources, Tejada et al. include results

from labeled pairs [87], while Sarawagi & Bhamidipaty exclude labeled



pairs [79]. There is some justification for either choice. Including the

labeled pairs models the scenario in which active fitting is used for each

new evaluation corpus. This is the approach we take in this thesis. Ex-

cluding labels models the scenario in which actively selected data are

used to train a partitioner that will be applied to many corpora without

active fitting.

In practice there is no universally accepted evaluation metric or frame-

work. It has been noted that the variety of error metrics hinder side-

by-side comparisons between methods, even when standard data sets

are used [20]. While agreeing with this sentiment, we note also that

the choice of architecture, model-construction framework, or applica-

tion may lead to different choices of metric.

2.5 Related Problems

Some practical problems in artificial intelligence are closely related to du-

plicate detection, so much so that similar methods are often applied. This

section serves to briefly review these problems while highlighting their

additional constraints and structures that have no direct analog in dupli-

cate detection.

Clustering is the problem of grouping a set of data points into clus-

ters, either disjoint or overlapping, based on some measure of similarity.

A common application is to automatically organize documents by their

contents into topic groups. From one perspective, duplicate detection

may be thought of as a special case of clustering, since matched records

will generally be more similar than unmatched records.

However, there is a fundamental distinction between these problems

in that clustering is primarily concerned with modeling similarity while

duplicate detection is concerned with modeling identity. In a cluster-

ing problem, identical points are usually considered maximally similar,

while in duplicate detection they may still represent distinct entities. Un-

supervised methods are more commonly used in clustering whereas su-

pervised methods are more common in duplicate detection, perhaps be-

cause in clustering the choice of similarity metric space serves the role of



labeled coreference examples.

Noun phrase coreference is the problem in natural language process-

ing of identifying coreferent noun phrases in a corpus of text [59,45]. For

example, in a news story the same person may be referred to alternately

as "Mr. Obama", "the president" or "he", with the context of the phrase

determining the most likely referent. This problem may be viewed as a

special case of the duplicate detection problem in which the records con-

sist of a single plain-text field. However this disregards the important role

of phrase context, which has no analog in duplicate detection. Without

some model of context, it is impossible to effectively resolve pronouns.

Image correspondence and segmentation are problems in machine vi-

sion. In image correspondence, different views of the same scene are put

into correspondence by finding points in the images that correspond to

the same point in the scene. In image segmentation, the task is to par-

tition an image into related regions, for example, by partitioning a fore-

ground subject from the background. As in noun phrase coreference,

modeling context using methods specific to vision is essential to these

problems.

Schema mapping is the data-mining problem of identifying corre-

sponding fields in different schemas. For example, one address database

might have a single address field, while another may have separate fields

for the street address, city, and zip code. Such correspondences can be in-

ferred from data and, like duplicate detection, this problem is particularly

challenging in highly relational, semi-structured data environments.

2.6 Context for the Work

The distinctions presented in this chapter provide the context for this

work. The technique presented in the following chapters is intended for

estimating a coreference partition in situations where little can be as-

sumed a priori about the data, perhaps because it comes from an un-

known schema or source, and it is not practical to build an explicit model

of the data, either through Bayesian modeling or by choosing domain-

specific feature functions and labeling a training corpus.



Using a partition-based model, the technique is able to take advan-

tage of features of the data involving entire blocks of records, rather than

just pairs. Also, as a Bayesian model, it provides a formal methodol-

ogy for incorporating additional constraints as Bayesian evidence, so that

blocking, thresholding, and linkage decisions are computed in a unified

manner.

Finally, the proposed technique operates in an active learning frame-

work, able both to estimate a partition of unlabeled data, but also to adjust

its estimate by requesting labels for the ambiguous portions of the data.

By combining these three components, we hope to reduce the human ef-

fort required to address duplicate detection in novel data environments.
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Chapter 3

Bayesian Nonparametric Model

All models are wrong. Some models are useful.

George Box

This chapter presents a domain-independent Bayesian nonparametric

model of the coreference relation of a data corpus. This model consists of

two probability distributions: a prior over the coreference partition and

a likelihood model for the distribution over observed record values given

a particular coreference partition. The following chapter presents an in-

ference procedure for this model based on MCMC sampling, which gen-

erates approximate samples from the posterior distribution over corefer-

ence partitions conditioned on a data corpus. These samples serve as a

model of the partition uncertainty.

We begin here with the motivation for the model and a high-level

description of its dependency structure, then continue with an introduc-

tion to some Bayesian nonparametric distributions before describing the

complete model. Two variations of the model are presented: the individ-

ual value distributions (IVD) variant, in which each coreference block has

its own distribution over field values, and the shared value distributions

(SVD) variant, in which value distributions may be shared by multiple

coreference blocks. The chapter concludes with a qualitative description

of the model as well as connections to related models from the literature.



3.1 Motivation

As discussed in section 2.2.2, generative Bayesian models provide an at-

tractive formal framework for duplicate detection: they explicitly model

the uncertainty over possible coreference partitions and allow evidence

to be combined from multiple records, rather than considering only pair-

wise features. Bayesian inference also provides a principled means of in-

tegrating different kinds of evidence. Unlike in most pairwise methods,

for which decisions related to blocking, classification, and linkage are

typically unrelated, in Bayesian models both observed values and high-

level constraints are combined as evidence.

Another advantage Bayesian models is that they explicitly model the

independence assumptions of the data. Although these assumptions are

typically violated by nontrivial data, even simplified models (e.g., naive

Bayes) often provide reasonable performance. Moreover, when models

are inadequate, the Bayesian framework provides modelers with a princi-

pled means to improve performance by relaxing assumptions or choosing

more appropriate distributions for the data.

Many prior Bayesian models for duplicate detection have been devel-

oped for a specific data domain. In particular, a number of models have

been developed for identifying duplicate research citations [67, 62, 22].

This thesis takes a different approach, presenting a domain-independent

model of coreference.

Because the schema is unknown, this model is unable to exploit po-

tentially useful domain-specific features or noise models. However, as

a nonparametric model, its structures are primarily determined by the

data itself. This allows its use on data expressed in a variety of schemas

or data with unusual statistics that may not be anticipated by a domain

modeler.

The model is also intended for an active framework, in which a hu-

man supervisor provides coreference labels to queries made by the sys-

tem. Provided the model is sufficiently accurate to distinguish regions of

true ambiguity from unambiguous labels, the supervisor can provide the

labels for the most difficult cases and the system can resolve the remain-



name addr city type

river cafe 1 water st. brooklyn american (new)

cava 3rd st. los angeles mediterranean

sofi 3rd st. los angeles mediterranean

Figure 3-1: A portion of a flat file database

ing ambiguity without human intervention.

3.2 Model Overview

To explore domain-independent modeling, we start with the simple data
model of a flat table of textual values, with rows representing records and
columns representing fields. The development of richer models, incorpo-
rating other data types and relational values, is left to future work. This

section presents an abstract overview of the model and its dependence

assumptions, with the precise distributions presented in section 3.4.

Figure 3-1 provides a portion of the restaurant corpus from the RID-
DLE repository [15]. This corpus has 5 textual fields: name, street ad-
dress, city, type, and phone number (not shown). Records are assumed
to be distinguishable even when their field values are identical or even
unspecified. This is often accomplished through a special field holding

an identifier for the record itself, but such fields are not explicitly repre-
sented in the model.

We model record values as stochastic variables. Each record ri in
the corpus is associated with a random variable V representing its field
values: V, ..., Vi,. We denote the values for an entire corpus simply as

V. Fields with known values, Vij = vij, are treated as observed variables to
be conditioned on during posterior inference. Missing values are taken
to be missing completely at random and are simply treated as unobserved

variables that are implicitly marginalized during inference.

Any particular corpus has a fixed number n of records and fields m

forming a table of n -m value variables. These quantities are taken to be

determined by the data and not treated as stochastic variables. However,

data model



partition-valued

random variables

posterior

distribution

it is shown in section 3.4.2 that the model presented in this chapter may

be viewed as a distribution over infinite data sets, with unbounded num-

bers of records and fields. The unobserved records and fields are implic-

itly marginalized by the inference procedure as a natural consequence of

the nonparametric distributions of the model.

The distribution over record values is defined conditionally on the

coreference partition of the records, B. The partition is represented as a

vector of integer random variables that are the block indices of the items,

B = [B1, ..., Ba]. In this representation, thepartitionp = {{1}, {2,4}, {3}}

would be denoted as B = [1, 2, 3, 2]. Thus when a record pair (i, j)

is coreferent, their block indices are equal: Bi = B1 . If the records are

totally-ordered, B can be expressed in a canonical form such that every

partition has a unique block index representation.

The prior distribution P(B) of the coreference partition is condi-

tioned on a set eB of Bayesian parameters that influence the partition

structure. The field-value likelihoods P(V I B) are likewise conditioned

on parameters eF which control the variation present in the fields. Spec-

ifying priors p(OB) and p (EF) for these parameters is sufficient to com-

pletely specify the posterior distribution over partitions P(B V). For a

given V, the posterior is proportional to the factored expression,

P(BI V) c fB P(V |B, ) P(B|0B) P F B - (3.1)

additional

independence

assumptions

Though computing the posterior exactly is intractable for the model

presented in this chapter, this equation is provided as a high-level de-

scription of the conditional dependency structure of the model. Figure 3-

2 provides another representation of this structure in graphical model

notation, in which random variables are represented by nodes, depen-

dencies by directed edges, and repeated variables by square plates.

To facilitate tractable inference, the model makes even stronger con-

ditional independence assumptions than those apparent in Equation 3.1

and Figure 3-2. One such assumption is that the field values of records

in distinct blocks are independent under certain conditions. In the IVD



Figure 3-2: Abstract representation of the model dependency structure

variant, the values of records in distinct blocks are conditionally indepen-

dent given the value parameters Vi JL V I OF, Bi * B. This assumption is

relaxed slightly in the svo variant of the model.

An additional assumption is that the values associated with each field

are assumed to be conditionally independent within a coreference block.

That is, the joint distribution over the values within a block, Vb) = {Vi :

B1 = b}, may be factored according to its fields,

m

P(Vb} B, OF) = {J P( b}j I B, OF)-
j=1

This completes the abstract description of the model and its depen-

dency structure. The model is described in terms of its component dis-

tributions completely in section 3.4.

3.3 Bayesian Nonparametric Processes

In recent years, there has been a great deal of interest Bayesian non-

parametric distributions for clustering, segmentation, and natural lan-



guage processing [86,48, 50, 83]. Despite their name, nonparametric dis-

tributions are not those without parameters, but distributions in which

the number of parameters grows with the amount of data.

There are a number of theoretical justifications for using these distri-

butions, such as allowing the number of mixture components in Bayes-

ian mixture models to be data-driven [64] and also the fact that cer-

tain nonparametric distributions exhibit the power-law behavior com-

monly found in natural data sets, such as word frequencies and citation

graphs [43, 85].

These qualities also make Bayesian nonparametrics an attractive choice

for developing a domain-independent Bayesian model of database gener-

ation, both in characterizing the distribution of records into coreference

blocks and for modeling the values observed in coreferent records. These

properties have been noted by other researchers using nonparametric

models for duplicate detection in the domains of publication authors [14]

and noun phrase coreference [45].

We now introduce three closely related distributions prevalent in Bayes-

ian nonparametric models: the Ewens distribution, the Chinese Restau-

rant process, and the Pitman-Yor process.

3.3.1 The Ewens Distribution

The Ewens distribution is a distribution over partitions of the set of in-

tegers {1,..., n}. Described by Ewens [35] as a single-parameter distri-

bution arising in population genetics, it was later generalized to two pa-

rameters by Pitman [71]. We briefly present the distribution here without

derivation in order to provide a qualitative description. For a thorough

treatment and associated literature, see Pitman [71].

The two real-valued parameters of the distribution are commonly

called the strength (or concentration) parameter, s > 0, and the discount

parameter, 0 <; d < 1.1 The distribution over partitions is compactly de-

'In mathematics, the strength and discount parameters are typically denoted 0 and
a, while in machine learning, a or a are sometimes used for the strength parameter and

a, b, or d for the discount parameter. We choose s and d here for clarity.



scribed by representing a partition as a set of blocks,

with k = |p| as the number of blocks and |Bi| as the number of items in a
block Bi. In the two-parameter variant, d > 0, and the Ewens distribution
over B is:

s(s) dkT(s/d + k) k (|Bi - d)
P(B = #3; s, d, n) =~~) Fs/)F1d

r(s + n) f(s/d) i., r(1 - d)'

where the Gamma function F is the well-known extension of the factorial
function. In the one parameter variant, d = 0 and the distribution takes
the simpler form,

T(s) skkP(B = ; s, n) = () H IF(Bi|).
r(s + n) i=

Some observations follow directly from the formulae above. First,
the probability of a partition depends only on the number and size of its
blocks, so it may be used as a distribution over partitions of any set of n
elements. This also implies that the probability of a partition is invariant
under a permutation of its elements: a permutation of the elements with
the same block sizes yields the same probability.

Second, this distribution has support (nonzero probability) on all
possible partitions, but the parameters govern the number and size of
the blocks in a typical partition. Informally, when s and d are near zero,
the distribution favors partitions with a small number of large blocks. In
the limit of s -- 0 and d -+ 0 the probability mass moves to single-block

partition, P(B = {{1, 2, ..., n}}) -+ 1.

As d increases, the distribution favors more blocks and as s increases,
the distribution favors smaller blocks. These tendencies are clearly re-
lated, as size of the blocks necessarily decreases as the number of blocks
increase. The relationship between these parameters is elucidated in the
next section. In the limit of s -+ oo or d -+ 1, the probability mass moves

to the singleton partition, P(B = {{1}, {2}, ... , {n}}) -+ 1.



3.3.2 The Chinese Restaurant Process

The Chinese restaurant process (CRP) is a discrete-time stochastic process

over partitions, B1, ..., B", with the number of elements in Bi = i and Bi

being Ewens-distributed with fixed parameters s and d.

Aldous [6] provided its eponymous metaphor, in which a sequence

of distinguishable customers are seated at a spacious Chinese restaurant

with an infinite number of infinite capacity, indistinguishable tables. At

each time step, a customer enters the restaurant and is seated at a table,

either empty or occupied. After n steps, the seating arrangement defines

a partition P, with the customers representing the n elements and the

tables representing the k blocks. The seating arrangement at a particular

table is irrelevant, as blocks are unordered.

The seating probabilities depend on strength and discount parame-

ters, s and d, as in the Ewens distribution. At time step 1, the first cus-

tomer is seated at an empty table. At time step n + 1, a customer enters the

restaurant with k occupied tables, bi, ..., bk. Customer n +1 is seated at an

empty table with probability (s +k -d)/(n + s) or at an occupied table, bj,

with probability (Ibj I - d)/(n + s). Thus the seating follows a preferential

attachment model, wherein tables with many seated customers are likely

to grow even larger.

This construction further elucidates the relationship between the pa-

rameters and the asymptotic behavior of the Ewens distribution. As s

increases, so does the probability of occupying additional tables. The pa-

rameter d discounts the attraction of existing tables in favor occupying

new tables. When d + 0, the expected number of tables follows a power-

law, growing as O(s nd) [84]. In the case in which d = 0, there is no

discounting and the expected number of tables grows logarithmically, as

O(s log n) [84, 72].

3.3.3 The Pitman-Yor Process

The Pitman-Yor (PY) process [73] is a two-parameter generalization of

the Dirichlet Process [38] and closely related to the CRP. There are a

number of good tutorials on these processes available [42, 51, 64]; here



we provide a brief introduction to the process, focused on the properties
that are relevant to modeling coreference.

A PY process provides a random probability distribution G over some
some discrete or continuous sample space Q. It takes strength s and dis-
count d parameters as in the CRP, as well as a base distribution Go which
may be any probability distribution over f. A number of schemes exist
for constructing samples from a PY process including the stick-breaking
model of Sethuraman [80] and the P6lya urn model of Blackwell and Mac-
Queen [21]. Here we limit the discussion to the Chinese Restaurant con-
struction [70].

In this construction, the Chinese Restaurant metaphor is extended
by associating each customer i with a random variable Xi over fl. Cus-
tomers are seated at tables as before, with probabilities determined by the
strength and discount parameters. The value of a particular X, is deter-
mined by the table customer i is seated at: each table has a value drawn
independently from Go that is shared by all customers seated at the table.
Constructed in this way, an infinite series of X, are distributed according
to a random draw G from a PY process.

A number of properties of the PY process are apparent from this con-
struction. If Go is discrete, there is nonzero probability that two tables
share a value. If Go is continuous, G is still discrete with probability 1,
having support on a countably infinite number of points in fl. The PY

process also exhibits the same preferential attachment statistics as the
CRP, with previously sampled values being more likely to be drawn in
the future. However, in the limits of s -+ oo or d -+ 1, the probability that

each customer i is seated at a new table goes to 1 and P(Xj) -+ Go.

In practical implementations, the CRP construction provides a means
of computing the marginal distribution of a set of variables X1,..., Xt dis-
tributed according to a random G drawn from a PY process with param-
eters s, d, and Go. This marginal distribution integrates over all possible
values of G:



P(X1 = x1, ... , Xt = xt; s, d, Go) =

GP(X1= x1, ..., Xt = xtIG = G)P(G = G; s, d, Go).

To compute this marginal with the CRPconstruction, we define a par-

tition #x of the variables according to their values xi, ..., x, such that all

variables in a block b share a value Xb. If Go is continuous, there is only

one partition f, since the values at each table in the CRP are distinct with

probability 1. In this case, the marginal probability may be computed as

P(X = x1, ..., Xt = xt; s, d, GO) = P(#x; s, d) ]1 P(xb; Go),
bEpx

where P(#x) is Ewens-distributed. Thus, for a continuous Go, the CRP

construction provides an efficient means of modeling a PY process with-

out modeling G; all that is necessary to compute the likelihood of a set

of values under a PY prior is the counts of each value. If Go is discrete, it

is possible for multiple blocks in the CRP construction to share a value.

In this case, computing the marginal distribution requires a sum over all

possible partitions fx as well.

In the Dirichlet process, this sum can be done analytically without

enumerating the partitions. This is because, if the discount parameter

is zero, the probability of a customer being seated at a table with value

x depends only on the number of other customers seated at such tables

and not the exact seating arrangement. When the discount parameter

is nonzero, then the seating arrangement must be summed over explic-

itly or incorporated as state in an MCMc sampling routine. A thorough

analysis is provided by Teh [84].

3.3.4 Exchangeability

Efficiently sampling from a CRP or PY process relies on the fact that ran-

dom variables distributed according to these processes are exchangeable.



That is, the distribution over block memberships B, in in the CRP and the
distribution over variables X, draw from a Py-distributed G are invariant
to permutations of their indices i.

Concretely, if the position of two customers in a CRP is exchanged,
then the distribution over partitions induced is the same. Thus, the block
membership distribution of one element B, conditioned on the remain-
ing block memberships B_, is the same as if that element were the last
one added in a CRP,

I (s + k -d)/(n - 1 + s)
P(Bi = b|B 1i, s, d) = (bjd/nis

(|bj| -d)/(n -1I+ s)

where k is the number of blocks manifest in B-i

elements in B.

if b is a new block

if b = bj Bei,

and n is the number of

3.4 Model Description

Using the nonparametric Bayesian processes described previously, we
describe here the complete generative Bayesian model of coreference,
consisting of a prior over coreference partitions and the IVD and SVD like-
lihood models for values, conditioned on a partition.

3.4.1 Coreference Partition Prior

The two-parameter Ewens distribution is used as a prior over the coref-
erence partition B. Because the frequency of coreference is generally not
known a priori, the strength and discount parameters EB = {S, d} of the
prior are also treated as Bayesian variables, with hyperpriors discussed
in section 3.4.4. Thus the prior is actually an superposition of the Ewens
distribution over the range of parameter values: P(B s, d) P(s, d). Us-
ing Metropolis steps for parameter updates, this prior can be efficiently
incorporated into a Gibbs sampling routine for posterior inference of B.

More than its computational properties, though, this choice is moti-
vated by the observation that the coreference structure in real data cor-
puses often seems to exhibit some form of preferential attachment statis-

preferential
attachment



tics: As new records are observed, they are more likely to be associated

with large coreference blocks versus smaller blocks. An illustration of

this phenomenon is provided in figure 3-3, showing the block structure

for four of the data sets used in the experiments of chapter 6, representing

publications, email addresses, institutions, and authors.

Each of these graphs depicts a symmetric coreference matrix, where

elements (i, j) and (j, i) are white if records i and j are coreferent and

black otherwise. The records have been ordered according to block so

that the matrix is block normal, with the largest blocks in the upper left.

Though the scale is different in each figure, it can be seen that the block

sizes fall off quickly for each data set, with many small or singleton blocks.

publications email addresses

institutions authors

Figure 3-3: Some data sets exhibiting preferential attachment statistics

Some data sets may have a known upper bound on the block sizes,

however. As discussed in section 2.2.1, if data is merged from a set of

clean sources, then the maximum block size is bounded by the number of



sources. For instance, the restaurant data set used in chapter 6 is a merger

of data from Fodors and Zagats restaurant listings. The maximum block

size in this data is two.

The Ewens distribution may still be used as a prior in cases such as

this by conditioning on constraints as Bayesian evidence. Section 4.2

discusses incorporating constraints into inference and section 6.4.1 de-

scribes experiments demonstrating the performance gains from using

constraints appropriate to the data set.

3.4.2 Individual Value Distributions Likelihood Model

We specify here the IVD likelihood model P(V | B, 8F) for record values

conditioned on a particular partition B = P. In this model, the values

V bjj for field j of block b E P are drawn from a value-generating distribu-

tion Gbj. This distribution serves as a model of co-generation, accounting

for the fact that coreferent records are likely, but not required, to share

values for a particular field.

The value-generating distributions for each block and field are mod-

eled as independent draws from a Dirichlet Process P(GbJ = Gb1 06, GjO)
with a shared strength parameter 0j and base distribution GjO. The field

value parameters ®F are simply the strength parameters { 01, ..., O}.

The base distribution for a field is a uniform multinomial distribution

over the field's vocabulary, a discrete set of tokens. The field vocabularies

are taken from the data, allowing the same model to be used for all fields,

irrespective of domain. Because the base distributions are fixed by the

data, they are handled implicitly in the remaining presentation.

As determined by the base distribution, the sample space of the value-

generating distributions are also multinomial, but with probability con-

centrated on particular tokens rather than uniform. For field values con-

sisting of a sequence of tokens, the tokens in Vfb}j are taken to be inde-

pendent draws from Gbj. Thus the order of tokens within a field is in-

significant, constituting what is often called a unigram or "bag of words"

model.

A graphical representation of the dependency structure of the IVD

value-generating

distributions

.

IVD dependency

structure



Figure 3-4: Individual value distributions model

modeling

observation

variation

model is depicted in figure 3-4. In this diagram, each node represents

a random variable, directed edges represent conditional dependencies,

and the rectangular plates represent repeated structures. A table of n

records with m fields has n by m value variables V. Though the number

of value-generating distributions for each field is unbounded, any partic-

ular record i draws its values from the distribution indexed by its block

index Bi. Therefore, the number of generating distributions manifest in

a particular data set is bounded by the number of observed records.

In this model, the per-field strength parameter O6 governs the nois-

iness of field j. If O is low, the value distributions are concentrated and

the tokens within a block are likely to be the same. If it is high, then the

value-generating distributions for a field approach the uniform distribu-

tion and values within a block are no more likely to be similar than values

from different blocks. Thus this parameter serves to model observation

variation for the field.

As described in section 3.2, values from different fields within a block

are conditionally independent under the partition structure and param-

eters. For records within a block b E P, the joint distribution over all field

values is



P( Vb}|B, OF) {b}G B, G 1 =G)P(G =G|6j)
j=1

H P(Vfbl IB, 01 ).
j=1

By exploiting the implicit marginalization provided by the CRP, the

likelihood P(V{b} B, OF) of the block values conditioned on the param-

eters can be computed directly without reference to value-generating dis-

tributions. This distribution is a measure of the coherence of an individ-

ual block. Nonparameteric distributions also allow the model to handle

missing values for a particular field and even treat unobserved records as

variables that are implicitly marginalized from the model. If additional

data is added to the observation, then blocks and partitions are

Because the values of records from distinct blocks are also assumed to

be conditionally independent given the field value parameters, the value

likelihood for a partition is simply the product of the per-block and per-

field factors,

m

P(V|B = f, 01 ... , 6) =H P(V b} I6j).
bEP j=1

This distribution, depicted as a graphical model in figure 3-5, is a measure

of the coherence of a partition as a whole. Because fields are conditionally

independent, unobserved fields are also implicitly marginalized by the

model. Thus the IVD model can be interpreted as placing a probability

distribution on database tables that are bounded neither in their number

of records or number of fields.

3.4.3 Shared Value Distributions Likelihood Model

In order to be tractable, the IVD model makes a number of strong

independence assumptions. In particular, it does not model the signifi-

cance of token order, inter-field dependencies, or inter-block dependen-

marginalizing

generating

distributions

joint likelihood



Figure 3-5: IVD model with marginalized Dirichlet Process priors

cies within a field. The SVD model is an extension of the IVD model which
addresses inter-block dependencies within a particular field. Richer mod-
els of value generation are left future work with some possible extensions
presented in chapter 7.

In the IVD model, the value-generating distributions Gb1 for a partic-
ular block are assumed to be independent draws from a Dirichlet Process.
While this model captures observation variation in the per-field strength
parameters, it does not capture population variation, however. If record
values are similar, then the most likely explanation under the IVD model
is that the records were co-generated. However, in actual databases it
is quite common for records which are not coreferent to have similar or
identical values for a particular field.

For example, in a academic publications database, many publications
may share the same venue and thus have a similar distribution over record
values. This example illustrates a different explanation for record similar-
ity, which is that the records refer to distinct entities which share some
latent properties, giving rise to similar values. In this case, properties
common to many entities, such as a common publication venue or year,
should be discounted as evidence of coreference. Likewise rare proper-



ties, such as an unusual publication year, should provide additional evi-

dence of coreference.

rd coreference
partition

Figure 3-6: Shared value distributions model

The svD likelihood model captures this population variation by al-

lowing the value-generating distributions to be shared among different

blocks. Sharing is accomplished by drawing the value-generating distri-

butions G) for a block from a PY process with a Dirichlet process as a base

distribution. Thus, instead of drawing a new generating distribution for

each block, sometimes a distribution shared by existing blocks is drawn.

A graphical model representation of the svD model is given in figure 3-6.

In implementation, the PY process of the SvD model adds another

partition variable for each field Bi, which partitions the blocks of B ac-

cording to value-generating distribution. The PY process of Bi has its own



parameters sj and dj which govern the amount of sharing. There is one

PY process per field, and the partitions Bi are not constrained to be the

same. For example, a publication record may share its venue field gen-

erating distribution with one set of records and its year field generating

distribution with an entirely different set of records. In the limits of the

PY parameters, Bi is the singleton partition and the SVD model reduces

to the IVD model, with independent value distributions.

s d

0

Figure 3-7: sVD model with marginalized Dirichlet Process priors

Implicit marginalization of value-generating distributions is also used

in the marginalized sVD model, depicted in figure 3-7. In this case, the

marginal distributions of values for field j are computed conditioned on

sets of blocks in BJ which share a value-generating distribution.

3.4.4 Hyperpriors



For a data set with m fields, the IVD model has m + 2 hyperparameters:

the strength s and discount parameter d for the coreference partition and

the strength parameters Oj for the m field Dirichlet processes. The SVD

model adds another 2m parameters in the strength sj and discount dj

parameters for the value distribution sharing process.

The per-field parameters OB use an exponential prior distribution with

parameter 1 for a prior distribution. For the coreference and distribution

sharing CRP parameters the same priors are used: the strength parame-

ters s and Sk use the heavy-tailed lognormal distribution with standard

deviation of 3; this distribution was found to approximately recover the

value of the strength parameter from CRP samples with known strength

values across a wide range (0.5-10000). The discount parameters d and

dj use a uniform distribution over [0, 1].

Though all of these parameters are treated as Bayesian variables, pre-

vious work with Bayesian nonparametric distributions [84, 46] has often

found models to be relatively insensitive to the parameter values, with

the data tending to dominate.

3.5 Related Models

The model of record coreference presented in this chapter is closely re-

lated to recent nonparametric models of natural language, particularly

the hierarchical Pitman-Yor language model of Teh [85 and the adaptor

grammar model of Johnson et al. [50]. We briefly describe these models

here, providing additional insight into the properties of the PY process

and drawing connections between its use in natural language and coref-

erence modeling.

In the hierarchical Pitman-Yor language model (HPYLM) of Teh, sen-

tences are statistically modeled as n-gram sequences of words. The prob-

ability of observing a particular word in a sentence is determined by the

preceding n - 1 words of context. In this model, the conditional proba-

bility distributions for each context are modeled as draws from a PY pro-

cess. Additionally, the model has a hierarchical structure, where the base

distribution over words for context length i is drawn from a PY process

hierarchical PY

language model



for context length i - 1, allowing distributions from different contexts to

share support.

One motivation for using nonparametric distributions with an n-

gram sequence model is to avoid overfitting due to the large number of

parameters in a parametric sequence model. For example in a bigram

(n=2) sequence model, the number of probabilities to be specified is the

square of the vocabulary size, which typically numbers in the thousands

of words. Fully specifying such a distribution would require millions of

parameters to be estimated from data. However, since a training set will

only exhibit a small portion of the possible occurrences, "smoothing"

techniques are required to assign reasonable probabilities to unobserved

occurrences.

The HPYLM capacity grows with the data: as more data is observed in

a particular context the more of the probability mass of the context's dis-

tribution is determined by the data. Teh also demonstrates [84] that the

hierarchical structure of this model implements a Bayesian interpreta-

tion of interpolated Kneser-Ney smoothing, providing a theoretical un-

derpinning for the technique.

adaptor The adaptor grammar model of Johnson et al. extends probabilis-

grammars tic context-free grammars (PCFG) to a nonparametric setting. In a PCFG,

sentences are taken to be generated from a stochastic grammar, which

places a probability distribution over the sentences produced by the gram-

mar. This distribution can be used to infer a posterior distribution over

the parse for a sentence. In the adaptor grammar model, the probabil-

ity distribution of each grammar production taken as drawn from a PY

process.

One advantage of nonparametric distributions in adaptor grammars

is that they provides broad support: Likely productions in a PY sample

need not be specified a priori but may be any of the points in the sample

space, allowing the support of the model to be data-driven. This model is

used [50] to decompose words into stems and suffixes in an unsupervised

fashion, without explicitly specifying valid stems and suffixes.

Language models have a natural connection to models of coreferent

field values. The values of a coreference block may be viewed as a lim-



ited language: we might imagine a sequence or grammar model which

generates a set of alternate observed titles for a book, perhaps sometimes

including a subtitle and sometimes not, or with variations in spelling.

The field value-generating distributions described in this chapter serve

as a model of this language.

One challenge in taking this approach to coreference modeling, how-

ever, is that there are typically very few examples of any particular lan-

guage in a data set. Often there is only a single example (e.g. the title of a

particular book may only appear once in the data). The model presented

in this chapter uses a flat unigram model for generating distributions and

the SVD only allows sharing entire generating distributions. More sophis-

ticated models could allows for sharing between parts of field values, thus

incorporating evidence from all the values in drawing inferences about a

particular record. Some suggestions for how this might be implemented

are provided as future directions in chapter 7.
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Chapter 4

Inference and Estimation

To generalize is to be an idiot.

William Blake

Doubt is not a pleasant condition, but certainty is an absurd

one.

Voltaire

The previous chapter defines a generative model of the coreference rela-

tion of a data corpus. This chapter describes an efficient inference proce-

dure for the model based on Markov Chain Monte Carlo (MCMC) sam-

pling: given a data corpus, this procedure generates approximate samples

from the posterior distribution over the corefence partition and other

model structures. Section 4.2 extends this procedure to handle inference

when portions of the partition are observed; that is when the posterior

distribution is conditioned on observations which take the form of match

or nonmatch labelings on pairs of records as well as the record values.

The chapter concludes with an algorithm for estimating a single partition

from samples based on the optimization problem known as correlation

clustering [49].

4.1 Markov Chain Monte Carlo Sampling

According to sampling theory, the expectation of a function of the ran-

dom variables / = E [f(-)] may be estimated from posterior samples



o1 , ... , aU through the empirical distribution,

1 k

k ,=1

We do not describe the complete theory of MCMC sampling here,

but provide instead a brief introduction for the purposes of explicating

the computational properties of the model and the modifications neces-

sary for sampling distributions over partitions in the presence of pairwise

constraints. A thorough introduction is provided by MacKay [57].

Sampling is used in this work to estimate the pairwise marginal prob-

ability fij that a pair of records (i, j) is coreferent,

1 k

piy= E Yi(Us).k S=1

Where Yij is the indicator random variable for the event that (i, j) is

coreferent in B. Yij is treated here as a function which returns its value in

sample o-. These estimates are used to address two problems: estimating

an optimal partition from samples using correlation custering, described

in section 4.3, and generating an informative query for active duplicate

detection, presented in chapter 5.

In MCMC sampling, a probability model P is used to randomly evolve

the state of a system in a series of discrete steps. At each step, a sample

from a tractable proposal distribution is used to generate a candidate next

state. The candidate state is stochastically accepted or rejected according

to a function of the probability of the current and candidate state under

the model. If accepted, the candidate state becomes the current state,

otherwise the system remains in the current state.

This process defines a Markov chain, a distribution over states Pt at

time t defined conditionally on the state at time t - 1. In general, the

distribution Pt are distinct from P, however under appropriate conditions

on the proposal distribution and acceptance function, Pt -+ P as t -- oo.

ergodicity One of the required conditions is that the chain be ergodic. A Markov

chain is ergodic if it is positive recurrent and aperiodic. A positive recur-



rent chain is one in which it is possible to move from any state to any

other state in a number of steps t with finite expectation E [t]. An aperi-

odic chain is one in which the number of steps to return to a state is not

constrained to be a multiple of some integer k > 1. Ensuring ergodicity is

important when sampling under positive pairwise match constraints as

discussed in section 4.2.

In practice, approximate samples from P are generated by evolving a

system for a specified number of time steps using pseudorandom number

generators. It is left to the practitioner to choose an appropriate proposal

distribution and sufficient step count and interactions between the data,

model, and proposal distribution may result in a model that converges

poorly. Andrieu and Thoms [8] provide a tutorial on adaptive step meth-

ods, with discussion of many of the practical issues in MCMC sampling.

4.1.1 Sampling Block Memberships

A sample from the model of chapter 3 is a set of values for each of the

unobserved variables in the model: the parameters, the coreference par-

tition, and in the SVD variant, the partitions of value-generating distri-

butions for each field. Because the observed record values are taken to

be fixed and the model implicitly marginalizes unobserved values, sam-

pling does not generate missing values for records. Though such samples

could be generated in principle, they would offer limited utility given the

simplicity of the value-generating distribution model.

The block membership variables of the coreference partition are sam-

pled using Gibbs sampling, a form of MCMC sampling where the proposal

distribution is the conditional distribution of a set of variables given the

state of the remainder of the model. Provided the MCMC conditions are

met, this proposal distribution is accepted with probability 1.

Gibbs steps are used to update the block membership variable Bi

of a record i conditioned on the remainder of the model, including the

remainder of the coreference partition B-i. Due to the exchangeability

properties of nonparametric distributions, described in section 3.3.4, this

sampling IvD

blocks



distribution may be computed in the IVD variant as follows:

P(B, s, d, V, OF)

P(B_j, s, d, V, OF)

P(B I s, d) P(VIB,OF)

EBP(BIs, d) P(VIB,OF)

P(Bi I Bj, s, d) P(V I B, B-i, V-i, OF)

E, P(Bi I Bj, s, d) P(V l Bi, B-i,V-i, OF

where V are the observed values of record i and Vj are the remaining

observed values. The probability that B, = b, then, is the product of the

prior and likelihood of the model normalized by the sum of all possible

blocks b, including a fresh block.

Informally, block membership sampling in this model takes the form

of a stochastic walk through the space of all partitions. At each step, a

record is removed from the partition and its membership is resampled,

with model favoring membership in largeer blocks, as determined by the

prior, and more self-similar blocks, as determined by the likelihood.

In the sVD variant, the block memberships are sampled as in the IVD

variant, with two modifications. For computing the prior and likelihood

of B, = b for existing blocks b, the prior and likelihood are computed

as before, except that if b has distributions shared with other blocks, the

values of the records in those blocks are also incorporated into the like-

lihood computation.

However, calculating the likelihood of Bi = b' under a fresh block b'

requires marginalizing Bi for each field-In the IVD variant, the values of

a record placed in a fresh block are modeled as drawn from a distribution

unique to the block. However in the SVD variant, a record placed in a new

block may have values drawn from the generating distribution of other

blocks.

Thus to compute the likelihood of values V under a fresh block re-

quires computing the probability that V came from any of the existing

distributions defined by Bi, as well as the probability that the values are

drawn from a new distribution. However, these are the same likelihoods

P(Bi I Bj, s, d, V, OF) =

sampling SVD

blocks



required to compute the probability of i joining an existing block, so

these computations may be cached. The Gibbs step for the SVD variant

takes a similar form to the IVD step:

P(Bi l B-i, s, d, V, BF, OF)
P(Bi I B-i, s, d) P(Vi l Bi, B-i, V_i, BF, OF)

Bi P(Bi I B-i, s, d) P(Vi I Bi, B-i, Vi, BF, OF)

where BF is the current state of the generating distribution partitions.

In the case where the SVD sampler places a record in a fresh block

b', the membership of b' in the generating distribution partitions Bi are

simultaneously resampled. The Gibbs step for this sample is analogous

to that for the block membership samples.

4.1.2 Sampling Parameters

In addition to the block membership variables, the model has CRP pa-

rameters s and d for the coreference partition and, in the SVD variant,

parameters s1 and dj for each field j. Since the distributions P(B s, d)

and P(Bi l s, dj) can be evaluated analytically according to the Ewens dis-

tribution, any of a number of Metropolis-Hastings step methods may be

used to resample the parameters in a Pitman-Yor model. Johnson et al.

[50] use slice sampling and Teh [84] presents a sampling routine based

on auxiliary variables. The results reported in this thesis were obtained

using a symmetric Metropolis step with a symmetric Gaussian proposal

distribution.

4.2 Conditional Inference and Blocking

There are a number of use cases where it is desirable to incorporate

hard constraints in posterior inference. One such case is the application

of blocking methods, discussed in section 2.2.1, another is the case in

which data comes from known clean sources, discussed in section 2.2.1.



sampling with

negative

constraints

sampling with

positive

constraints

In these cases, the constraints are a set of record pairs taken to be non-

matches, which we call negative constraints.

A final use case is the active framework of this thesis, discussed in

section 1.2, in which a supervisor provides the true coreference labels

of record pairs. In this case, pairs may be either matches or nomatches,

so constraints may be either positive or negative. In order to incorpo-

rate constraint sets into the model, we consider constraints as Bayesian

evidence, to be conditioned on in all steps methods.

Sampling the block memberships in the presence of negative con-

straints requires only a slight modification to the sampling algorithm:

when Bi is resampled, the probability of it being assigned to blocks con-

taining known nonmatches of i is taken to be zero. The probabilities of

the remaining blocks are calculated and normalized as before, constitut-

ing a valid distribution over blocks. In this case we are simply condition-

ing on the event that Bi doesn't violate the constraints.

However, sampling block memberships in the presence of positive

constraints requires additional care to maintain ergodicity; if block mem-

berships were sampled individually and sequentially, valid states of the

model might never be reached. Consider as an example a case where

there are four records, w, x, y, and z, with (w, x) and (y, z) constrained

to be coreferent pairs. Now suppose that the system is in a state where w

and x share block b and y and z share block c.

If the constraints are incorporated into the probability model, then

resampling the block membership of w alone would result in it joining

x in b with probability 1; it would be impossible for w to join block c,

since that would violate the constraints. Of course, the same is true for

x and an analogous situation occurs with records y and z. In this case,

it is impossible for the system to reach the state where all the records

are in the same block, thus violating the ergodicity constraint of MCMC

sampling.

In the presence of positive constraints, the Gibbs sampling algorithm

is modified to resample the block memberships of a set of known matches

simultaneously. If a set of records are known to be matches, then their

membership is normalized by the sum of joint probabilities of their join-



ing existing blocks plus the probability of a new block being created.

4.3 Estimating a Partition from Samples

By the strong law of large numbers, an empirical distribution estimated

from samples approaches the generating distribution almost surely in the

limit of infinite samples. Thus MCMC samples serve as an estimate of

the posterior distribution of the coreference partition under the model.

However, in a practical system it is often desirable to generate a single,

or point, estimate of the partition.

In Bayesian statistics, the maximum a posteriori (MAP) estimator is

commonly used to estimate an unknown variable. This estimator is de-

fined as the mode, or point with the greatest posterior probability. In a

Monte Carlo setting, a direct way to approximate the MAP estimate would

be to find the empirical mode, or partition which occur most often in a

set of approximately independent samples from the posterior.

However for high dimensional variables, such as partitions, the num-

ber of posterior samples necessary to find a good MAP estimate typically

grows exponentially with the number of dimensions. Consider sampling

a sequence of independent, but biased, coin flips: the probability of ob-

taining the mode as a sample, or even two identical samples, decreases

exponentially with the length of the sequence. An analogous situation

occurs in duplicate detection where there are a large number of indepen-

dent points of ambiguity in a data set; it is unlikely that every ambiguous

group will be sampled in its most likely configuration.

Simulated annealing is a technique that can mitigate this problem [57].

In simulated annealing, a "temperature" parameter is added to the distri-

bution that, at large settings, permits transitions that are unlikely under

the unmodified distribution, allowing the system to "explore" the state

space more freely. At small settings, the parameter penalizes unlikely

transitions and favors likely states. By decreasing the temperature grad-

ually according to an annealing schedule, samples with high posterior

probability may be obtained.

While approximate MAP estimates may be suitable for use in an ap-

MAP estimate

MAP versus error



plication, they are not directly tied to other measures of performance

such as error, precision, or recall. In particular, it can be seen that with a

Ewens prior over the partition, a MAP estimate is not guaranteed to min-

imize pairwise error.

Consider the counterexample of a pathological data set in which no

record values are observed; in this case, the posterior distribution P(BI V)

is simply the prior P(B). By the symmetry of the Ewens distribution,

there are a large number of modes or MAP partitions, each with the same

assortment of block sizes but differing by a permutation of the elements.

Also, in the Ewens distribution the marginal probability of any two

items sharing a block is the same. If this marginal probability is less than

0.5, then any matches declared in a MAP partition are expected to be in

error: the expected error can be decreased by declaring the pair a non-

match. In this case, the expected error is minimized by the singleton

partition.

This example serves mainly to show that the MAP partition might not

be the one which minimizes error. However it also exhibits the intuition

that, in the absence of distinguishing information, declaring nonmatches

is expected to result in fewer errors than letting the prior dominate.

4.3.1 Minimum Expected Pairwise Error Partition

We consider as alternative estimate the partition that minimizes expected

pairwise error (MEPE) according to the empirical posterior distribution.

As discussed in section 2.4, the pairwise error S (-) of a partition estimate

fis the number of pairs (i, j) for which P and the true partition disagree,

= (fi yij) 2

(i,j) Ef

Where fij is the binary label of pair (i, j) in P, yij is the label of the pair

in the true partition, and a unit of error is accrued if fij * yij (error may

also be expressed as a percentage of pairs).

Pairwise error cannot be used as an objective function for optimizing

P because it requires access to the true partition, obviating the need for



optimization. In a Bayesian model, however, a distribution over parti-

tions P(B = p) maybe used to calculate the expected error of P in terms

of indicator random variables Yij, taking the value 1 when (i, j) share a

block in p and 0 otherwise. The expected pairwise error is then defined

to be

E[() =E[ E (Yij Yij)]
(i,*j)

= E[(fj Yij)2

= E - ijY
(i,j)

=~ ~ -_'E , 2ij + y.

(i,j)

Considering the possible values of Ajij separately, we note that

-2iYj+Yi P(Yij) ifp1ij is0EL[(Yij -2Y i + 1-P(Yij) if y ij is 1.

Thus we can break out the sum into matched pairs (i, j)+ I CP and the

disjoint set of nonmatched pairs (i, j)~ E P, giving the form

E [,F(P) ]= Z (1-_P(Yij)) + P(YOj)
( ij)+E (ij)- EP

The MEPE partition p* is simply the partition that minimizes this

quantity,

#*= arg min 2 (1 -P(Yi)) + P(Yi)
P (i,j)+Ep (ij)-Ep

4.3.2 Minimizing Error with Correlation Clustering

It is straightforward to estimate the marginal probabilities jij = P(Yi I V)
from a set of approximate samples from the posterior distribution. Find-



ing f* from these estimates is an instance of the optimization problem

known as correlation clustering [10, 33, 49].

Correlation clustering is typically described as a graph optimization

problem. In the general form [33], a problem instance is complete undi-

rected graph G = (V, E) with positive weights w' and w- on the each

edge (i, j). The objective is to partition the vertices, minimizing the sum

of weights w- for edges that respect the partition (i and j in the same

block) with the sum of weights w+ for edges that violate the partition (i

and j in different blocks).

Finding the MEPE partition can be cast as an instance of correlation

clustering by letting G have one vertex for each record and setting the

weights for a pair of records to be

w= 1- Pij
wg pij

Correlation clustering iS NP-hard, with a number of known approx-

imation algorithms [33, 49]. In practice, the difficulty of optimizing a

particular instance depends on the degree of confusion in the instance;

even in large instances it may be possible to perform this optimization

exactly, provided pij is low for most pairs.

To see why this is the case, consider an instance in which w+ < w-

for all pairs (i, j). It is straightforward to prove that the singleton parti-

tion optimizes the instance. Assume to the contrary that a non-singleton

partition P' is optimal. Since P' is not the singleton partition, there exists

at least one pair (k, 1) that share a block b. By removing k from the b, the

weights w- for all j E b are replaced in the sum with the lower weights

w+, forming a new partition #3" with a lower value for the objective func-

tion, contradicting the assumption that p' is optimal.

An analogous argument can be made for a set of vertices c in which

w+ < W- for all outgoing edges {(i,j)|i E c,j / c}. In the optimal par-

tition, no vertices in c will share a block with vertices not in c, since the

objective could lowered by separating such vertices from the block. Thus

the partition of c may be optimized independently from the remainder



of the graph.

This fact leads to an efficient heuristic algorithm for partitioning

graphs where most of the edges have the property w- > w'.. In the MEPE

optimization problem, this property corresponds to fij < 0.5. The first

step in this algorithm is to partition the records into confusion blocks,

blocks of records connected by paths of edges (i, j) for which f ij > 0.5.

This operation is simply computing the transitive closure of the relation

defined by such edges. Since the vertices in a confusion block c are guar-

anteed to only be joined with other vertices in c in the optimal partition,

confusion blocks may be optimized separately; thus the computational

complexity of the problem grows with the size of the largest confusion

block, rather than the instance as a whole.

If jij > 0.5 for all edges (i, j) within the block, then the block is co-

herent and guaranteed to in the optimal partition. Confusion blocks with

less than three vertices are trivially coherent and in many practical in-

stances, many larger blocks are coherent as well. Coherent confusion

blocks are simply added to the partition returned by the algorithm.

Non-coherent confusion blocks are optimized according to their size.

For confusion blocks with less than ten vertices, it is practical to optimize

through an exhaustive search: all possible partitions of the block are con-

sidered and scored and the blocks of the minimum scoring partition is

added to the partition returned by the algorithm. These blocks are also

guaranteed to be in the optimal partition.

Large confusion blocks are optimized heuristically. One option for

this optimization would be to do a local search of some kind, however the

MCMC algorithm already perform such a search in generating samples;

every sample already contains within it a likely partition of the confusion

block. To exploit this search, the algorithm partitions large confusion

blocks by scoring just the partitions generated by the sampler and adding

the one with the lowest score to the partition returned by the algorithm.

This algorithm is simple to implement and worked quickly on all the

data sets used in the experiments of chapter 6; It does have the flaw that

using partitions produced through sampling offers no guarantee about

the approximation returned. In a practical implementation, existing ap-

heuristic

partitioning

algorithm



proximation algorithms or more sophisticated searches could be used for

large confusion blocks to provide such guarantees.



Chapter 5

Query Ranking

To know what we know, and know what we do not know, that

is understanding.

Confucius

Errors using inadequate data are much less than those using

no data at all.

Charles Babbage

Previous chapters describe a Bayesian model for coreferent record gen-

eration and an efficient inference procedure for the model that takes ad-

vantage of pairwise coreference labels as observations. This chapter in-

corporates this model into the active framework described in Section 1.2.

Unlike prior active approaches [87, 79, 16], in the framework described

here the testing and training corpuses are the same; this approach is mo-

tivated by the goal of domain-independent duplicate detection with min-

imal test-time labeling.

In this framework, the algorithm takes as input an unlabeled corpus

of records and Bayesian inference is used to generate an initial estimated

coreference partition as well as a query, a portion of the test corpus to be

labeled by a supervisor. These labels, or query responses, are then fixed

in the model as observed variables and conditional inference is used to

produce further estimated partitions and queries.

Active approaches are motivated by the observation that labeling data



mutual

information

ranking

requires human time and effort, and that computation may be used to

identify the portion of the data where that effort may best be applied.

One challenge in duplicate detection is that a randomly selected pair of

records is typically a trivial nonmatch, and therefore will not provide the

inference algorithm with useful information for improving the estimated

partition. Thus, to be effective, some method of ranking queries by ex-

pected utility is necessary.

This chapter presents an information-theoretic framework for rank-

ing active queries based on maximizing the mutual information between

the query response and the unobserved coreference partition. We con-

sider the scenario in which queries consist of a a pair (i, j) of records

to be labeled with a coreference label that indicates whether the pair is a

match. The label Y1j is treated as an indicator random variable, and we

define the optimal query to be that which maximizes the mutual infor-

mation I(Yij; B) between the query and the partition under the posterior

distribution of B.

We demonstrate that the Maximum Mutual Information (MMI) query

q is the one whose label has the greatest entropy under the distribution,

i.e., the query whose label has marginal probability P(Yq) closest to 1/2.

This result generalizes to any binary query of the true partition and has

the natural interpretation that the maximum information of a binary ran-

dom variable is 1 bit. It also provides a connection between active learn-

ing in a partition-based architecture and active learning using pairwise

discriminative methods, as explained in section 5.2.

5.1 Maximizing Query Information

A distribution P(B) over partitions has as its sample space the set B of all

partitions.' Although a natural interpretation of a binary query q is as a

predicate on B (i.e., a function that is either true or false for any particu-

lar partition P) an equivalent interpretation of a query is as a stochastic

'For clarity we disregard the cardinality n of the set underlying the partition as it is
irrelevant to this derivation



event: the subset of the partitions that respects q.

For example, consider a query (i, j). The response to this query is

true for all partitions in which i and j are in the same block and false

otherwise, partitioning B into two disjoint events: q = {fp E 13 : bi, by E

f and bi = bj} and its complement q. Figure 5-1 shows an interpretation

of a query as an event. Note also that a conjunction of binary queries,

q' = qi A ... A qk is also a binary query which is the intersection of its

component queries.

lB

Figure 5-1: A query as an event on the space of partitions

We further define the label Yq of a query to be an indicator random

variable for the event q in B. Thus, a distribution P(B) over partitions

also defines a distribution P(Yq) for any binary query q in the query space

Q, which is the power set of B.

Interpreting query labels as random variables allows a Bayesian in-

terpretation of the relationship between the label and the partition as a

whole. As discrete random variables, B and Y, have well-defined en-

tropies and conditional entropies according to P(B). Their mutual in-

formation is defined to be I(B; Yq) = H(B) - H(BIYq).

Another quantity of interest is the conditional distribution P(BI Y)

over partitions conditioned on a query label. Since every sample P is
an element of either q or its complement, it is straightforward to show

that this conditional distribution can be defined in terms of the marginal

probabilities for each case, a fact used in the following derivation:



P(B-aYq _ P(B = # A q) P(B = #)/P(Y) if # e q
P(Yq) 0 otherwise

(5.1)

We now turn to the primary result of this chapter: Given Q c; Q, we de-

fine the optimal query q* to be the one that maximizes the mutual infor-

mation between the query label and the partition. We use the definitions

of mutual information and conditional entropy to see that the optimal

query is also the one with the maximum expected decrease in posterior

entropy. In other words, it is the query whose label is expected to most

decrease the uncertainty about the partition as a whole:

= arg max
q E Q

= arg max

= arg max
q EQ

I(B; Yq)

H(B) - H(Bl Yq)

H(B) - B [H(B|Yq = y)]

We express this expectation in terms of q and the base-2 logarithm, lg:

q*= argmax H(B) - [P(q)H(B q) + P(q)H(Blq)]

= argmax H(B)+P(q)EP(#|q)lg(P(#|q))
q E Q PEB

+ P(q) E P(f Iq) lg (P(#Iq))
PEIB

Using P(B Yq) as defined in equation 5.1, we limit the bounds of the

sums to values with nonzero probability,



q = arg max H(B) + E P()[lg (P()) -lg (P(q))]
q EQ PEq

+ E P(P)[lg (P(#)) - lg (P())]

then combining the sums over P(#) lg (P(#)), we subtract out H(B) and

simplify:

q* arg max -lIg (P (q)) P P) - lg (P(-q)) E P (f)
q c f E q f E q

Since the sum of P(#) in an event is just the probability of that event, this

simplifies to

q* = argmax -[P(q)lg(P(q)) +P(-)lg(P(-))]

q* = argmax H(Yq)
qEEQ

C

Thus the mutual information between a binary query and the parti-

tion does not have an explicit dependence on the joint distribution P(B, Yq)
but only on the marginal distribution, P(Yq). Since Yq is a binary ran-

dom variable, its posterior entropy can be efficiently estimated from a

small number of samples by estimating the probability of the query Pq as

the empirical ratio of samples which respect the query to the number of

samples taken.

5.2 Connections to Query By Committee



Choosing to label portions of the data with high uncertainty in their clas-

sification is common in approaches to active learning in which the data to

be labeled are independent points in some input space. However, when

the data to be labeled takes on a more complex structure, such as a parti-

tion, it is not always clear how the uncertainty of a portion of the structure

relates to the uncertainty of the structure as a whole.

The result of the preceding section clarifies the relationship between

pairwise coreference labels and the complete coreference partition, pro-

viding a connection between active learning in pairwise duplicate detec-

tion architectures and the active partition-based approach of this thesis.

In fact, ranking queries on a partition by mutual information may be seen

as a variant of the query-by committee paradigm (QBC) [81] used to train

discriminative models in an active setting.

query by The QBC framework was developed in the context of the following

committee learning problem: A learner is tasked with finding a target function t*

from some concept class C of binary functions over an input space X.

The learner is presented with a stream of unlabeled points xi from X

for which it may request the associated binary label yi. The goal of the

learner is to identify t* with as few label requests as possible.

In one version of QBC, the previously requested labeled points T are

used to restrict C to just the concept classes which respect the labeling of

those points CT. Then for each new point xi in the stream, two hypothesis

functions are drawn at random from CT. If these functions disagree on

the labeling for xi, its label y, is requested.

It is shown by Freund et al. [40] that, under certain assumptions, this

QBC algorithm exponentially reduces the number of labeled points re-

quired to achieve a certain level of classification accuracy when compared

to randomly sampling points from the stream. An intuitive interpreta-

tion of this result is that the QBC algorithm requests labels which approx-

imately divide the space of remaining hypotheses in half.

One challenge with QBC algorithms lies in practically sampling from

the space of restricted hypotheses CT. A typical approach in discrimi-

native learning, from which the technique derives its name, is to train a

committee of binary classifiers using some form of randomness. For ex-



ample, different subsets of a 'seed' collection of training examples may be

used to train a committee of classifiers, which then serves to approximate

a statistical distribution over hypotheses.

This approach has been used in active duplicate detection by Tejada

et al. [87] and Sarawagi and Bhamidipaty [79]. In these methods, record

pairs are represented as independent points xi in a input space, each with

a binary coreference label yi indicating whether the pair is a match. By

treating the pairs as independent training data points and training a com-

mittee of classifiers, QBC provides a framework for choosing new points

to label based on the uncertainty of the committee.

The connection between pairwise and partition-based labels presented

in this chapter further justifies using QBC in pairwise duplicate detection

architectures. However in pairwise methods, the relationship between

the classifier class and the hypothesis space of partitions isn't well char-

acterized. In general, a particular pairwise classifier is not constrained to

generate a consistent partition of the data that respects transitivity2 nor is

it guaranteed that a particular class of classifiers is able to represent every

possible partition of the data.

In contrast, partition-based models of coreference make the connec-

tion between the hypothesis class and the observed record values explicit,

by considering only consistent partitions as hypotheses and allowing in-

formation from blocks of records to be used in determining the posterior

probability of each hypothesis. Making the hypothesis space explicit also

ensures that every possible hypothesis is representable; that is, as long as

the partition-based model is able to represent every possible partition,

then valid hypotheses are not being eliminated a priori due to the con-

struction of the model.

Of course, in neither pairwise nor partition-based models is it possi-

ble to consider every possible hypothesis in practice. Since labeled data

is scare in active learning settings, a pairwise classifier may be more ef-

ficient in practice, in terms of number of pairwise labels, then either a

discriminative or generative partition-based model.

2unless coupled with a linkage procedure, such as single or average linkage

QBC in pairwise

architectures



conditional

inference as

search

Bayesian models also give a natural interpretation of active queries as

a weighted search through the hypothesis space of all partitions. In this

interpretation, each binary query divides the hypothesis space into two

portions. A Bayesian model provides a measure over these portions that

depends on the observed data, namely the posterior probability of each

portion.

Thus conditional inference given a set of observed query labels is the

same as restricting the hypothesis class to partitions consistent with the

observations. It is in this sense that MMI query ranking may be seen as

a form of QBC: during each round of querying, the algorithm choses

the query which approximately divides the remaining probability mass

in half.

This objective of maximizing the expected information gain from

queries has also been proposed by Dagan and Eggleston [32], who pro-

vide an interpretation of QBC for learning Bayesian classifiers. In this

method, called committee based sampling, independent data points are

presented sequentially and the query label for a point xi is requested ac-

cording to a biased random decision. The bias for the decision is deter-

mined by the entropy of the label y for the point as determined by a

committee of Bayesian classifiers sampled from a posterior distribution

over classifiers conditioned on previously observed labels.

5.3 Limitations of the Approach

While mutual information provides a theoretically attractive basis for

choosing informative queries, there are some limitations that must be

considered in its practical application. Perhaps the most significant is

that the effectiveness of queries will be limited by the degree to which

the Bayesian model truly captures the uncertainty about the coreference

partition of real data. Bayesian models are merely models and are not

guaranteed to be useful when applied to data that violates their assump-

tions.

For example, consider a model which places the entirety of its pos-

terior probability mass on a single partition. In this case, the posterior



distribution has zero entropy and thus no information is expected to be

gained by any query. More generally, if a model has no uncertainty in the

label of a particular pair of records, considering them either a match or

nonmatch with probability one, then a query about that pair will placed

at the bottom of the ranking. If the model was wrong about the labeling,

then it will not correct that mistake until all other queries are exhausted.

Another limitation of this approach is that, even if the posterior dis-

tribution is correct, the query that maximally reduces posterior entropy

is not guaranteed to maximally reduce other objective measures of per-

formance, such as pairwise error. Consider the example in Figure 5.3, in

which there are four possible partitions of seven records, each with equal

probability of 1/4.

A A

P =1/4 P =1/4

P =1/4 P =1/4

Figure 5-2: An example of independent coreference uncertainty

In this example, there are two independent sources of uncertainty,

the events A and B. In the event A, a group of five records is split into

two blocks while in its complement A, the records are in a single block.

.... .. ...........



The event B is analogous, but with a group of two records. The marginal

probability of queries associated with each of these events, YA and YB, is

the same, 1/2, and thus each query reduces the entropy by 1 bit. However

by any measure of error that depends on the size of the blocks, the label

YA is expected to have a greater reduction in error than YB.

Thus maximizing an expected reduction in error might serve as an

alternate objective for ranking active queries. However, one issue with

the straightforward application of this approach is that it requires com-

puting the value of the objective function for each possible outcome of

each possible query.

This computation is necessary because the marginal probability of

one pairwise label will generally change when conditioned on another; if

the probability remained the same, then the labels would be statistically

independent and the labels would provide no information about one an-

other. To be feasible, a query ranking criterion requires an efficient way

of optimizing the objective, either exactly or approximately, across the

space of possible queries.

In practice such a computation may not be intractable. Though com-

puting the expected decrease in error is computationally expensive, it

may only need to be done for a relatively small number of queries: in

most applications, most pairs of records are not coreferent, so a reason-

able Bayesian model should place low probability on such records being

nonmatches. In this situation, the expected reduction in error given a

query may be bounded using its marginal probability.

For example, if none of the posterior samples declares a pair (i, j)
coreferent, then the estimated probability of a match fri is zero (or near

zero, depending the estimator). In this case, the expected decrease in

posterior error given the label Yij is also near zero. Informally, because

the model is nearly certain that a pair is not coreferent, obtaining the label

for the pair is expected to leave the estimated partition unchanged.

Thus, an expected error minimization ranking objective would only

need to be computed for pairs which the model considered ambiguous,

which may be far fewer than the total number of pairs in the data. Of

course, if the model fails to identify true matches as possible matches,



then these pairs will not be ranked highly and therefore unlikely to be

corrected through an active process.

Reduction of error as a loss function for active learning has been pro-

posed by Cohn et al. [28] and also Roy and McCallum [78]. Minimizing

error has also been used as objective function in training a partition-

based author coreference model by Culotta et al. [30]. Applying this idea

to active query ranking in duplicate detection is a promising direction

left to future work.
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Chapter 6

Experimental Evaluation

In the computer field, the moment of truth is a running

program; all else is prophecy.

Herbert Simon

To conjecture and not to test is the mark of a savage.

George P6lya

Previous chapters present a complete method for active duplicate detec-

tion: a Bayesian model of the uncertainty of the coreference partition of a

data corpus including McMc sampling procedure, a criterion for ranking

queries based on mutual information, and an algorithm for estimating a

partition from samples based on minimizing expected pairwise error.

This chapter reports experimental results validating this technique in

a variety of data domains. Using the same model for each domain, the

experiments presented here look at four practical considerations: the im-

portance of incorporating negative constraints when merging data from

multiple sources; the performance of the proposed query ranking crite-

rion compared to baseline algorithms; the performance characteristics of

the IVD and SVD model variants; and the effect of periodically reranking

queries through additional rounds of inference.



6.1 Implementation Details

preprocessing

MCMC sampling

The McMc sampling algorithm described in chapter 4 was implemented

the Python programming language using PyMC, a library for MCMC sam-

pling [68]. PyMC provides a framework for running sampling loops, a

collection of standard statistical distributions, and extension points for

creating custom distributions and Metropolis-Hastings and Gibbs step

methods.

These extension points were used to implement custom PyMC ob-

jects for the Chinese Restaurant Process, Pitman-Yor Process, and the

likelihood models for field values under these processes. Because McMc

sampling is computationally intensive, critical sections of the model were

optimized in C. The CRP and Dirichlet Process parameters were sampled

using Metropolis step routines provided by PyMC.

Record field values were minimally preprocessed: in each domain,

value strings were tokenized using whitespace and punctuation as delim-

iters and the resulting alphanumeric tokens were case-normalized. No

other preprocessing was done, including stemming, address normaliza-

tion, stop word removal, or removing TeX commands for sources derived

from BibTeX.

To quickly compare the likelihoods of arbitrary sets of strings under

the Dirichlet Process, each string value is processed into a sorted array

of integers indexing the tokens of a string. In this representation, it is

possible to efficiently count the token overlaps between two arbitrary sets

of strings in a single pass through each array. Sets of strings can also be

efficiently merged in a single pass, as in the merge step of merge sort.

The model state is initialized with every record in its own coreference

block. In the SVD variant, the value-generating distributions are initial-

ized so that no distributions are shared: that is, each block has its own

value-generating distribution for each field. The parameters of the model

are each set to a value drawn from their respective prior distributions.

During each iteration of sampling, every random variable in the model

is updated once. With the partition(s) held fixed, the model parameters

are first sampled sequentially using Metropolis steps. Then, in random



order, the block membership of each record is sampled conditioned on

the state of the remaining records. In the SVD model, when a record is

placed into an empty block, its value distribution attachment is resam-

pled at that time, conditioned on the state of the other value distribution

attachments.

In practice, this sampling routine was found to converge very quickly,

reaching an equilibrium state in as few as three iterations, particular in

data sets with small blocks. Once an equilibrium state was reached, how-

ever, the system was unlikely to reach a state that was much different.

An intuitive explanation for this is that, when resampling an individual

record, it is likely return to the block it was previously assigned to. For

this reason, the Markov chain was reset to the original (singleton) state af-

ter every sample, rather than mixing from that state as is commonly done

in McMc sampling. This has the added benefit of not having to choose a

"thinning" parameter for the McMc chain, as is commonly done.

The only free parameters in the model are in the prior distributions

over the CRP and PY process parameters. The same priors were used for

both the coreference partition and the partition of the per-field shared

value distributions. For the strength parameters, the heavy-tailed log-

normal distribution with standard deviation of 3 was used; this distribu-

tion was found to approximately recover the value of the strength pa-

rameter from CRP samples with known strength values across a wide

range (0.5-10000). For the discount parameter, a uninformative uni-

form distribution over [0, 1] was used. For the per-field Dirichlet Pro-

cesses strength parameters, an exponential prior with a parameter value

of 1 was used.

Informal experimentation with these settings showed the model be-

havior was bimodal. When parameter values were low (< 10000), the

evidence provided the data dominated the model behavior and inference

was largely insensitive to the parameter values. When set very high, the

prior dominated and the data was essentially ignored. This finding is

similar to experiences reported in other work involving nonparametric

Bayesian models [84, 46].

convergence
properties

parameter

settings



6.2 Modeling Active Queries

In order to characterize its performance, the MMI query ranking crite-

rion was compared empirically to three other rankings, called random,

alternating, and idealized. In all four cases, interaction with a human

supervisor was simulated by allowing the algorithm access to the query

labels from a completely labeled coreference partition.

Two baseline rankings were used. The simplest of these is the random

ranking, where the possible queries are ranked in random order. This

models a situation random pairs are picked by the supervisor with no

separate ranking stage. This is a very weak baseline, however, because

such pairs are very unlikely to be matches in most duplicate detection

instances and positive examples of coreference are much more salient to

training than negative examples.

A stronger baseline is the alternating ranking, in which queries are

determined from the estimate partition without regard to the pairwise

marginals. In this ranking, the estimate partition is used to alternate be-

tween drawing a random pair that is declared a match and a random pair

that is declared a nonmatch, thus giving the system a sample of likely

matches and nonmatches from which to improve its estimate. This mod-

els a situation in which a heuristic algorithm is used to pick matches and

nonmatches from which to train, similar to the "static" active approach

of Bilenko [16].

As a gold standard, the idealized ranking was used, in which the true

labels are used to produce queries. After each round of inference, the

estimate partition is compared to the true partition and the pairs that are

incorrectly labeled are placed in random order at the top of the query

queue. This models the situation where a human supervisor picks the

query by choosing a pair that the system labeled incorrectly.

periodic Inference on large data sets is computationally intensive, so for data

reranking sets with more than 300 records queries are asked in batches of 10 or 20.

Instead of alternating between a round of inference and receiving a sin-

gle query label, after each round of inference the queries are ranked and

the labels for the top 10 or 20 are provided to the system. The experi-



ments described in section 6.4.4 explore the effect of reranking queries
frequently or in larger batches.

In some of the query ranking algorithms described it is possible
to rank highly a query whose response is determined from previous re-

sponses due to transitivity. Such queries are removed from the ranking
and never asked. For example, previous response may have established

the coreference of record pairs (x, y) and (x, z) and thus (y, z) is implied
by transitivity. The pair (y, z) is then removed from the ranking. Note
that the MMI algorithm automatically ranks such queries at the bottom,
since inference would assign (y, z) as a match with probability 1, and
thus its label provides no information about the partition.

6.3 Experimental Domains

Because the model presented in this thesis is intended to be domain in-
dependent, data from a number of different domains were used in eval-
uation. These data sets, along with their sources and some statistics, are
presented in figure 6-1. The joins column indicates the number of pair-
wise join operations required to obtain the correct coreference partition,
giving a sense of the prevalence of coreference. Though these data sets
vary by domain and the number and type of fields, all use English as the
primary language and generally had short (<15 token) field values.

Two of the sets, vauniv and games, are provided by the SecondString
project [1]. Secondstring focuses on approximate string-matching tech-
niques, so these data sets consist of a partition of coreferent strings which
are treated here as a single field database table. The vauniv data set con-
sists of names and addresses of universities and other institutions in Vir-
ginia, while the games set consists of names of games.

Two other data sets, cora and learning-publications, are publication
records containing a large number of fields, 12 and 14, respectively. To
keep experimental computation manageable, and since the values of most
of these fields is empty for most records, only fields which had values for

more than 50% of the records were used. This was resulted in a choice of 5
fields each: title, author, year, venue, pages (cora) and volume (learning-

handling

transitivity

constraints



Domain Records Fields Joins

coral publications 1295 5 1183

restaurant' restaurants 864 5 112

karpathos' email addresses 125 3 57

vauniv2 institutions 116 1 59

learning-authors' author names 1648 2 948

learning-articles3  publications 241 6 40

games' game names 911 1 49

1: RIDDLE Repository 2: SecondString Project 3: personally collected

Figure 6-1: Evaluation data sets

publications).

The karpathos data set consisted of email addresses collected from a

10 year archive of the author's eponymous family mailing list. Email ad-

dresses were taken to have three fields: a username, a hostname, and a

label, the free-form text string included by the sender. An address may

generally have multiple labels, which were taken as independent draws

from the value-generating distributions of the model. The mailing list

is named for the ancestral home of the Matsakis family, the island of

Karpathos in Greece. Many family members are named according to the

patronymic and matronymic naming traditions of the area and so share

both first and last names, making this set particularly challenging.

The learning-authors consists of names of authors extracted from the

author strings of personal BiBTeX files, with one record being gener-

ated per mention. These strings were parsed according to BiBTeX's syn-

tax rules into three fields corresponding roughly to given name(s), sur-

name(s), and a suffix (e.g. "III" or "jr."). Because so few authors had

suffixes, the final field was dropped.

Domain IRecords I Fields Ijoins I



6.4 Experimental Results

6.4.1 Effect of Source Constraints

Three of the data sets were created by merging data from clean sources,
for which it is assumed that records from the same source are nonmatches.
Restaurant merges records extracted from Fodor's and Zagat's websites.
Since each of these sites was free of duplicates, the maximum block size in
restaurant is two, with each non-singleton block containing one record
from Fodor's listing and one from Zagat's. Games also comes from 2
sources, and the learning-articles came from the bibtex files of five in-
dividuals.'

As discussed in section 2.2.1, data from clean sources provides a set
of negative constraints that can be used to condition the inferred coref-
erence partition. Though positive constraints are generally considered
more useful, negative constraints may still provide useful evidence for
inference. In particular, negative examples may highlight areas where
superficial similarity should be discounted as evidence towards corefer-
ence. They also may improve the model's estimate of the number of latent
entities represented by the data.

Using the conditional sampling extensions described in section 4.2,
negative constraints are incorporated into inference as if they were labels
provided by the supervisor. Figure 6-2 provides a comparison of unsu-
pervised performance on sourced data with the performance on the same
data using negative constraints. The Muc f-measure, described in section
2.4, is reported for the MEPE estimated partition under the posterior dis-

tribution.

Imposing negative constraints improves the Muc f-measure signifi-
cantly through substantially increased precision. This is to be expected,
since given negative labels can prevent the algorithm from declaring su-
perficially similar pairs coreferent. This is particularly evident in the
games dataset, which is challenging for this model because many dis-

'There are a negligible number of same-source matches in games and learning-
articles; these were not constrained to be nonmatches in experiments.



Figure 6-2: The effect of applying negative constraints on unsupervised
performance of the IVD variant (unless indicated); bolded differences are
significant at the 95% confidence level

tinct games names differ only by one word (e.g. Dog z, Your Com-

puter Petz vs. Catz, Your Computer Petz) or contain

non-distinguishing terms such as by Milton-Bradley.

Recall is negatively impacted, however. One conjecture for the de-

crease is that the negative constraints push the nonparametric parame-

ters towards creating more blocks. However, as discussed in section 6.1

the model is largely insensitive to these parameters. A better explanation

is that the presence of negative constraints increases the total number of

blocks, providing more opportunities for a true match to be separated

during sampling. As the pairwise coreference probability for a pair de-

creases, eventually the MEPE partitioning algorithm prefers to separate

them, decreasing recall.

6.4.2 Comparison to Baseline Algorithms



The effectiveness of the MMI querying algorithm presented in chapter 5,
it was compared to the random, alternating, and idealized algorithms
on each of the data sets described previously using the IVD variant of
the model. The results of these experiments are presented in figures 6-3
through 6-8.

Each of these figures shows the performance of the system on a given
data set as a function of the number of pairwise labels provided; since all
algorithms begin with a round of unsupervised inference, any differences
in performance at the leftmost point on the graph are entirely attributable
to the randomization of the MCMC sampling algorithm.

Performance was measured using three standard metrics: pairwise
f-measure, Muc f-measure, and percentage of blocks correct, described
fully in section 2.4. Muc f-measure is not shown for games and restaurant,
since it is the same as pairwise f-measure for these sets. These metrics
were averaged across five experimental runs for each algorithm and data
set. Error bars depicting the 95% confidence intervals for these averages
are also provided.

The number of labels provided with each run varies with the size of
the data set, but is roughly 1/4 the number of records. As mentioned
in section 6.2, queries were asked in batches for large data sets: the batch
size was 20 for cora and learning-authors and 10 for games and restaurant.

Some general observations are immediately apparent from the graphs.
As one might expect, the random ranking does not improve performance
even after receiving many labels. In fact, the performance of the algo-
rithm typically stays within the confidence interval of its unsupervised
performance. This is because the vast majority of record pairs are non-
matches with little or no overlap in their field values. Obtaining the label
of such an "obvious" nonmatch has little effect on the posterior distribu-
tion and therefore little effect on the MEPE partition. The performance of
the alternating ranking is more variable. In some data sets, particularly
those with relatively large blocks, it performs scarcely better than ran-
dom. For most others, it performs slightly better, but still not as good as
the MMI ranking.

Also to be expected is the fact that the idealized ranking generally



outperforms the others in all measures by a significant margin, because

it has access to the true partition. To the extent that the model doesn't

reflect the process which generated the data, there will be "difficult" pairs,

pairs for which the model assigns the wrong coreference label with high

probability. The MMi ranking will consider such pairs uninformative,

and the baseline rankings are unlikely to uncover them because they are

relatively rare. The idealized ranking, however, will rank such pairs at the

top so they will be identified and corrected in relatively few queries. In

vauniv and karpathos, the system was able to achieve perfect performance

in short order under the idealized ranking.

In most cases, the MMi query ranking performance performed sig-

nificantly better than the baselines and with a tighter confidence interval

as well. However, the performance of the ranking on cora and learning-

authors was equivocal. On both of these data sets, unsupervised pairwise

f-measure was poor due to very poor recall; precision on both data sets

was above 0.96.

The explanation for this is that both of these data sets have very large

blocks relative to the other data sets: the largest block in cora is 64 records

and the largest block in learning-authors is 86. The model tends to break

up such blocks into many different smaller blocks during sampling. Since

there are so many way to break up a large block, no individual pair is

likely to be together in more than half of the samples, causing the MEPE

partitioning algorithm to separate all the records into singleton blocks,

resulting in very poor pairwise recall.

Though the MMI querying algorithm still performs better than the

baselines in these cases, it is not as close to the idealized algorithm as

in other data sets. One possible explanation for this was that these large

data sets had batched updates. Another is simply the fact that the MMI

querying algorithm relies on the model being a good fit to the data; if it

is not, then there are no guarantees that what is ambiguous according to

the model is truly ambiguous.
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cora data set (1295 records, 1183 joins)
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6.4.3 Effect of Sharing Value Distributions

The next round of experiments compares the performance of the IVD

variant of the model with the SVD variant. These experiments were run in

five batches as in the experiments of section 6.4.6, with the same number

of queries and batching policy. Only the mmi algorithm was used. The

results of these experiments are presented in figures 6-9 through 6-14.

On restaurant, SvD variant performed significantly better than the

IVD variant, with f-measure increasing from around 0.78 to 0.92 in the

unsupervised case. However on the remaining data sets results were

mixed, with the SVD variant either performing the same or only improv-

ing performance after many labels have been provided.

One explanation for the improvement on restaurant is that many non-

matched records share values for their city and type fields. Though

similar sharing occurs in other data sets, it is not as prevalent as in restau-

rant. Another possible explanation is that this data set has a high cor-

relation between the field values. In particular, the address, city,

and phone fields are highly correlated. Two restaurants on the same

street in the same city seem very likely to be co-generated to the model,

which assumes that fields are generated independently. By allowing non-

coreferent values to share generating distributions, the SVD model allows

for the possibility of similar records without cogeneration.

Another case that bears discussion is that of the single-field data sets

games and vauniv. In both of these data sets, unsupervised f-measure

was zero for the SVD variant. This is because, when only one field value

is present, there is no way for the model to distinguish between popula-

tion variation and observation variation: it might be that similar values

are caused by coreference or it might be that they are caused by value

distribution sharing.

The samples maintain both hypotheses, but the result is that most

true pairs have a relatively low marginal probability of being coreferent,

so the MEPE partitioning algorithm conservatively chooses the singleton

partition resulting in zero recall. Once there are sufficient labels, how-

ever, the SVD variant matches or exceeded the performance of the IVD

105



variant on these single-field data sets.

This leads to the conclusion that, in order to effectively model the

distinction between population and observation variation, some type of
disambiguating information is necessary. In an active framework where
labeled training examples are scarce, a simpler model may improve re-

sults.
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Figure 6-10: comparison between individual and shared value variants
on cora using MI query ranking (5 runs averaged)
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Figure 6-11: comparison between individual and shared value variants

on games using MI query ranking (5 runs averaged)
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Figure 6-12: comparison between individual and shared value variants
on karpathos using MI query ranking (5 runs averaged)
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Figure 6-13: comparison between individual and shared value variants
on restaurant using MI query ranking (5 runs averaged)
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Figure 6-14: comparison between individual and shared value variants
on vauniv using MI query ranking (5 runs averaged)
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6.4.4 Effect of Query Reranking Frequency

A final question of interest is the impact of reranking queries through

the additional inference. It seems desirable for the system to include all

available information when deciding what query to ask, however the in-

ference stage is the most computationally intensive in the system; Just as

in the experiments of the preceding sections, in practice it may be neces-

sary for the system to request many labels in a batch. Also, it may be the

case that simply eliminating queries whose label is already determined,

as described in section 6.2, is sufficient to achieve good performance with

minimal inference.

Figures 6-15 through 6-19 show the results of a series of experiments

examining this issue by comparing runs of 100 rounds of the MMI al-

gorithm with query reranking every 1, 5, and 20 queries. The random

algorithm, which ignores the results of inference, is also provided as a

baseline. The IVD variant was used for data sets with a single field, and

the SVD variant was used otherwise. A randomly chosen subset of cora

and learning-authors was used, since running 100 rounds of inference on

the full data sets would have been prohibitive.

These results clearly demonstrate that frequent query reranking im-

proves performance above and beyond transitivity constraints. In some

cases, such as in vauniv a given level of performance could be obtained

in half the number of labels if queries were reranked after every query

instead of after every 20. More frequent reranking may also have signif-

icantly improved the relative performance of the MMI ranking on cora

and learning-authors in the experiments of section 6.4.6.
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Figure 6-15: effect of inference frequency on learning-authors using MI
query ranking (5 runs averaged)
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6.4.5 Examples of MMI Queries

Some example queries chosen by the MMI algorithm are provided in this

section along with their responses. The first batch comes from a sin-

gle run on vauniv from the experiments described in section 6.4.4, with

reranking every query. One of the aspects that makes this data set chal-

lenging for duplicate detection is that both true matches and nonmatches

often differ by only a single word, for example the name of a city. Also,

many institutions share non-distinguishing words such as "university"

Though incorporating such domain-specific knowledge into the model

could undoubtably improve performance, the system is still choosing in-

teresting examples which might even be challenging to a human super-

visor who was unfamiliar with the institutions in question.

Top ten MMI queries on vauniv using IVD variant

Question 1: True
United States Army, Engineer Topographic Laboratories, Fort Belvoir
United States Army, Directorate of Evaluation and Standardization,

Fort Belvoir

Question 2: False
Science Applications International Corporation, McLean
Science Applications International Corporation, Hampton

Question 3: False
- Science Applications Laboratory for Atmospheric and Space Sciences,
McLean
- Institute for Computer Applications in Science and Engineering,
Hampton

Question 4: False
Lockheed Engineering and Science, Hampton
Institute for Computer Applications in Science and Engineering,

Hampton

Question 5: True
Hampden-Sydney College
Hampden-Sydney College, Hampden-Sydney

Question 6: True
Old Dominion University, Norfolk
Mechanical Engineering & Mechanics Department, Old Dominion

University, Norfolk
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Question 7: False
- Analytical Mechanics Associates, Inc., Hampton
- W. J. Schafer Associates, Inc., Hampton, Virginia

Question 8: False
- Systems and Applied Sciences Corporation, Hampton
- ST Systems Corporation, Hampton

Question 9: False
- Hollins College, Roanoke
- Roanoke College, Salem

Question 10: True
- West Virginia University, Morgantown
- West Virginia University, Morgantown, W.

The next batch of example queries comes from using the MMI algo-

rithm on the subset of 250 records from restaurant used in section 6.4.4.

The first five are from the IVD variant and the second five from the SVD

variant. Though the SVD variant performed significantly better on this

data set, the questions do not appear qualitatively different. These exam-

ple queries make clear how restaurant violates the conditional indepen-

dence assumptions of field value generation. In particular, many restau-

rants in the data set are on the same street, and thus share a city and

also an area code. In the example queries, the algorithm appears to be

attempting to resolve such superficial similarities.

Top five MMI queries on restaurant subset using IVD variant

Question 1: False
- georgia grille; 2290 peachtree rd. peachtree square shopping center;
atlanta; american; 404/352-3517
- original pancake house (at); 4330 peachtree rd.; atlanta; american;
404-237-4116

Question 2: False
- binion's coffee shop; 128 fremont st.; las vegas; coffee shops/diners;
702/382-1600
- stefano's; 129 fremont st.; las vegas; italian; 702-385-7111

Question 3: False
- art's delicatessen; 12224 ventura blvd.; studio city; american;
818/762-1221
- pinot bistro; 12969 ventura blvd.; studio city; french bistro;
818-990-0500

120



Question 4: False
- nate 'n' al's; 414 n. beverly dr.; los angeles; american; 310/274-0101
- ruth's chris steak house (los angeles); 224 s. beverly dr.; beverly
hills; steakhouses; 310-859-8744

Question 5: False
- camille's; 1186 n. highland ave.; atlanta; italian; 404/872-7203
- eats; 600 ponce de leon ave.; atlanta; italian; 404-888-9149

Top five MMI queries on restaurant subset using SVD variant

Question 1: False
- art's delicatessen; 12224 ventura blvd.; studio city; american;
818/762-1221
- sushi nozawa; 11288 ventura blvd.; studio city; japanese; 818-508-7017

Question 2: False
- citrus; 6703 melrose ave.; los angeles; californian; 213-857-0034
- tommy tang's; 7313 melrose ave.; los angeles; asian; 213/937-5733

Question 3: False
- art's delicatessen; 12224 ventura blvd.; studio city; american;
818/762-1221
- pinot bistro; 12969 ventura blvd.; studio city; french bistro;
818-990-0500

Question 4: False
- vertigo; 600 montgomery st.; san francisco; mediterranean;
415/433-7250
- la mediterranee; 288 noe st.; san francisco; mediterranean;
415-431-7210

Question 5: False
- hayes street grill; 320 hayes st.; san francisco; seafood;
415/863-5545
vicolo pizzeria; 201 ivy st.; san francisco; pizza; 415-863-2382

sec

6.4.6 Comparison to Related Work

The restaurant and cora data sets are also used by Bilenko and Mooney [18]

for duplicate detection using a edit distance measure of field values learned

from training examples. They present results from four algorithms based

on string edit distance models, including two that are learned from train-

ing examples. Though largely domain independent, domain-specific stem-

ming and stopword removal were used as preprocessing steps.
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Figures 6-20 and 6-21 provide pairwise precision-recall curves for

all four algorithms on the cora and restaurant data sets. These figures

were generated as averages of 20 runs of 2-fold cross validation, training

on half the data set and testing on the other half. Figure 6-22 reports

unsupervised point results for this thesis.
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Figure 6-20: Precision-recall curve for cora from Bilenko & Mooney
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Figure 6-21:
Mooney

Precision-recall curve for restaurant from Bilenko &

Bilenko and Mooney also report the maximum f-measure for their al-

gorithms, ranging from 0.826-0.922 for restaurant and from 0.793-0.867

for cora. Picking a threshold for a discriminative classifier that achieves
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Figure 6-22: Unsupervised pairwise performance for IVD and SVD vari-

ants

the maximum f-measure is nontrivial. One commonly used technique

is to hold out a portion of the testing data as a validation set and chose

the threshold by maximizing the performance on that set. However, if

the training or validation sets have match/nonmatch statistics that differ

significantly from the testing set, then precision or recall will suffer in

testing.

The unsupervised pairwise f-measure of the SVD variant on restau-

rant is within the range of maximum f-measures reported by Bilenko

and Mooney for their system. However their results did not include the

telephone number field, which is considered to make the problem eas-

ier. Without further experimentation, it cannot be said whether this field

made much of a difference; the unigram model of field generation cou-

pled with the fact that many telephone numbers share area codes and

exchanges could mean that the field had little impact on the partition

found by the model.

The unsupervised pairwise f-measure of the system on cora was con-

siderably lower. This is due to the problem of poor recall of the non-

parametric model on data sets with large blocks, described in section. It

is interesting to note, however, that the precision-recall tradeoff chosen

by the model does lie approximately on the curves in figure 6-20.
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Chapter 7

Conclusions and Future

Directions

A man with one watch knows what time it is. A man with two

is never sure.

anonymous

This thesis has described an active system for duplicate detection with

three technical contributions: a domain-independent Bayesian model of

coreference, a criterion for picking informative queries based on maxi-

mizing mutual information, and an algorithm for estimating a minimum-

error partition under a Bayesian model based on minimizing expected

pairwise error. Experimental results have been provided, both demon-

strating the effectiveness of this method in a variety of domains, but also

revealing areas for improvement in future research.

7.1 Improved Value Modeling

The model for duplicate detection presenting in this thesis has a number

of theoretical appeals: It is domain-independent, and so does not require

additional modeling effort to be applied to a new domain; it can be used

in an unsupervised or actively supervised setting; it allowed for arbitrary

pairwise constraints to be incorporated, including blocking constraints;
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and it models the statistics of preferential attachment commonly seen in

coreference problems.

However, there are also many areas for improvements. One straight-

forward improvement would be to use a more sophisticated model of

string generation for the value generating distributions. While unigram

models are important to document retrieval, they are generally better

suited to use in modeling long passages of text, such as news article, than

to modeling the shorter strings generally found in database records.

Instead of a unigram model, a bigram model could be used, which

would allow the system the capacity to distinguish between the order of

words as well as their presence. It is important, though, that any model

used for modeling field values maintain sufficient ambiguity in order to

be useful for identifying queries. A bigram model was initially attempted

in developing this work and, though its unsupervised performance was

generally better than the unigram model, it was too certain of its infer-

ence and wouldn't improve performance with additional queries.

Another area for improvement is in the model for sharing support

between value-generating distributions. The SVD model captures the in-

tuition that distinct entities may share properties and therefore values,

however it doesn't capture the fact that some words and phrases within

a field are less distinguishing than others. For example, the phrase "The

proceeding of" is shared by a many conferences while the phrase "neural

information processing systems" is fairly distinguishing.

One option for this type of modeling is to use a hierarchical structure

for the base distribution of the value generating distributions, similar to

the hierarchical Pitman-Yor language model of Teh [85]. This might al-

low the model to find words that are common to many fields and discount

them as evidence toward coreference.

There are also a number of deeper issues in value modeling which

were outside the scope of this thesis but are very important to the problem

of duplicate detection. One issue is modeling field values which have a

temporal component, such that the field values that are common for a

particular entity vary across time.

Another modeling challenge occurs when values from one field may
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be expressed in another. For example, in early digital music databases

there often was not separate field for the composer of a classical work, and

some users chose to put the composer name in the title field, while

others used the artist field. This same problem is also prevalent in

database records created by machine extraction of structured data from

free-form text.

Finally, even when using an effective duplicate detection method, there

remains the problem of how to merge the duplicates into a "clean" database.

Specifically, when multiple different values for a field are present in a

coreference block, which should be chosen for the clean data set? In a

generative model, the latent structures can often be used to generate a

clean version of a particular field, for example the maximum likelihood

value for the latent variable. The unigram model for value-generating

distributions used in this thesis is too simple for such an application, but

it's possible that a different choice of value-generating distribution could

be used effectively.

7.2 Relational Value Modeling

Another area for future work is in domain-independent Bayesian mod-

els for relational data. A number of relational Bayesian models have been

described for duplicate detection in the domain publications [67, 62,22].

These models provide for a domain with a fixed schema, where all the en-

tity types and permissible relations are chosen a priori by the data mod-

eler.

The Bayesian model presented in this thesis is a distribution over

distributions of coreferent records. Thus there is a natural extension of

this model to allow for relational fields: use the model itself as a value-

generating distribution. That is, when generating a relational field value

r2 for a record ri, draw r2 from the IVD or SVD variant. This would cap-

ture the fact that relational values can refer to records or entities that have

been observed before or to entirely new entities.

While defining such a model may be straightforward, there is a chal-

lenge in using sampling for inference. In the model presented in this
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thesis, there was only a single record table, so it was possible to perform

Gibbs sampling by "removing" an arbitrary record from the table and

resampling its block membership. In a relational model there are multi-

ple tables, connected by relations. If the relations are cyclic, such that a

record is related to itself through other relational fields, then the distribu-

tion over its block membership may be defined recursively. Dealing with

such distributions, even if they could be guaranteed to be well-defined,

adds considerable complexity to inference.

7.3 Termination Criteria

A final aspect to active approaches not discussed previously is the prob-

lem of choosing a termination criterion, a method for determining when

further queries are expected to be of limited utility. As is evident in the

results reported in chapter 6, performance tends to level off after a certain

number of queries.

This is to be expected, since eventually the portions of the data deemed

most ambiguous by the model have been resolved. At this point there

may still be errors in the estimated partition, however the model will not

represent these errors as ambiguous, and so many queries may have to

be asked before the erroneous portions are chanced upon.

The MEPE and MMI criteria used in this thesis are a natural starting

point for investigating termination conditions. For instance, a threshold

for expected entropy reduction could be set so that querying would stop

at the point where the expected increase in information from the next

query was less than the threshold. The expected error of the partition as

a whole could also be used for stopping.

In practice, however, additional cost structures may be associated

with querying. For example, a typical user's willingness to answer queries

might be expected to decrease as the number of queries increases, es-

pecially since later queries are unlikely to improve performance consid-

erably. Analyzing the problem of termination when additional queries

have a nonlinear cost function associated with them might lead to in-

sights towards better ranking functions for active duplicate detection.
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