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ABSTRACT

A weekly and monthly statistical analysis was made of the effects
of large scale horizontal and vertical eddy transport processes on the
zonal angular momentum, heat and total energy budget of the 10 to 2mb
layer of the stratosphere. Geostrophic wind components were calcula-
ted based on 1972 data for the 100, 10, 5, and 2mb levels for use in
determining the various quantities needed for the analysis. This re-
presents a first attempt at describing the energetics of the upper
stratosphere using hemispheric data on a time scale of a year.

It was determined that eddy processes in the stratosphere play
a vital role in maintaining the energy budget of the middle and upper
stratosphere. Eddy processes are also responsible for supplying ener-
gy to the stratosphere from the troposphere through the action of a
vertical flux of energy.

The 10 to 2mb layer was found to resemble a heat engine in win-
ter with an internal heat source and destruction of eddy available
potential energy through radiational processes. In contrast, the
summer stratosphere resembles a refrigerator, relying on an external
heat source to maintain itself.

Thesis Supervisor: Reginald E. Newell

Title: Professor of Meteorology
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I, INTRODUCTION

Over the past twenty years or so, there has been an extensive amount

@f work done in describing the energetics of the atmosphere. For the

purpose of a long-term and complete study, though, investigators have

been confined to the region of the atmosphere from the surface to 10 mil-

libars (about 30 kilometers) which encompasses the troposphere, lower and

widdle stratosphere. Above the 10 millibar level, an overall lack of me-

teerological data on a hemispheric scale for extended periods of time (a

year or so) has restricted the examination of the upper stratospheric

energetics to discussions of various aspects of the total picture, such

as studies of the energetics of upper stratospheric warmings (i.e., Miller,

et, al., 1972). The purpose of this study is to examine the magnitude of

Large scale horizontal and vertical eddy processes as well as their effect

on the monthly zonal momentum, heat and total energy budget of a closed

region in the atmosphere. The closed region dealt with in this study is

a North polar cap bounded by a vertical surface at 5* North latitude and

by the 10 and 2 millibar surfaces. In addition, the 100 millibar surface

was included in the calculations so as to examine the influence of pro-

cesses in the lower stratosphere on those occurring in the upper strato-

sphere.

The equations which have been developed for use in a study of the

energy budget of the atmosphere have been derived from the laws of con-

servation of mass, momentum, and energy. Using techniques of statistical

averaging, as first formulated by Priestly (1949) and further refined and

extensively used by Prof. V.P. Starr and his colleagues at M.I.T., in the
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general circulation project (i.e., Starr and White, 1952), one can examine

distributions of meteorological variables such as wind, temperature, energy

flux, etc., by first averaging them with respect to time and space, there-

by reducing them from four-dimensional distributions (X, $, p, t) to two-

dimensional variables in time and space. In this manner, one can get a

better feel for the variation of a particular quantity and its overall ef-

fect on the energy budget.

- In the process of deriving the energetics equations, one begins with

an expression which describes the transport of a quantity B by a wind com-

ponent A. The transport equation is derived through a consideration of

time and space means as first introduced by Reynolds (1894) in which the

quantities A and B can be expressed as follows:

A = A + A' (1.1)

B = B + B' (1.2)

where the bar denotes a time mean and the prime a deviation from that mean.

One can further decompose the time means to obtain space averages as fol-

lows:

A = + A (2.1)

B = [L + (2.2)

-9-



where the bracket denotes an average around a latitude circle and the star

a deviation from that zonal mean. By combining (1.1) and (1.2) one obtains

the following expression:

AB = + A'B' + AB' + A' (3)

which in turn leads to the following equation after taking a time mean of

each quantity:

= A + (4)

where the product of the mean and deviation quantities have now vanished.

Finally, the equation for transport of the quantity B is obtained by ta-

king space averages of theterms in (4) using the relationship given in

(2.1) and (2.2). This yields the expression

[s] - [] []+[X* + (5[)] <s)

in which the three terms on the right hand side represent the total large-

scale transport of B in the following manner: the first term represents

transport by the mean motion; the second gives the standing eddy flux; and

the third term the transient eddy flux of B. If B were to represent sen-

sible heat or angular momentum, then, the terms on the right hand side of

(5) provide a means of evaluating certain terms of the energy budget for

a particular region.
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In an examination of the role which the eddy fluxes play in trans-

poxrting quantities such as angular momentum, the time period used for

Ivgeaging becomes a significant consideration. For the transport of B

y transient eddies, [7B , the bulk of this transport results from ed-

di.s or waves with periods of a minimum of one or two weeks. For the

transport of B by standing or stationary waves, LAB], the concept of

tgg:ionary flow will depend on the period of averaging. On a time scale

pf .gne year, a wave may appear stationary, whereas in terms of a five year

#yeerage -it becomes transient. In terms of observational evidence, Richards

(1967) found that monthly values of the standing eddy transport of angular

uementum were at least equal to and often greater than the transient eddy

transport values. Over a 60-month period of time, though, Starr et. al.,

(1970) found that the transient eddies play the dominant role in trans-

porting momentum. So the role of the standing and transient eddies changes

significantly, depending on the time period used for averaging.

This basic procedure has been used by a number of investigators to ex-

amine the energetics of different regions of the atmosphere. Their results

have clearly shown that eddy fluxes play a vital role in the energy pro-

cesses which control the circulation of the lower stratosphere, as indeed

this study will also show for the upper stratosphere. Further, a good deal

of evidence has been put forth which shows the lower stratosphere to be a

region of forced motion, deriving its energy from the troposphere, as was

originally suggested by Starr (1960). For the upper stratosphere, though,

what has been lacking is observational evidence of the role that eddy

fluxes play in the total energetics. Richards (1967) gave a fairly compre-
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hensive outline of the work that had been done to date in atmospheric

energetics as well as presenting his results of a study of the energy

budget for the region from 100 to 10 millibars for 1965. The aim of this

study is to do the same type of analysis as Richards did but for the re-

gion from 10 to 2 millibars, utilizing data that has been made available

to me for all of 1972. Although there are certain limitations involved

in the utilization of the raw data, this study nevertheless represents

a first attempt at describing the energetics of the upper stratosphere on

an extended time scale.
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II. NOTATION AND DEFINITIONS

C =specific heat at constant pressure = 1.0046 x 10 erg gm 4 OK1

R= gas constant for dry air = 2.8704 x 106 erg gm~l OKI

T = temperature in degrees Kelvin

e = potential temperature in degrees Kelvin = T (

t - time

p 0 0 = 1000mb

p = pressure

R
K - = 0.286 for dry air

P
a = radius of the earth = 6.371 x 108 cm

g = gravitational acceleration = 9.8062 x 102 cm sec-2

$ = latitude, measured northward

X = longitude, measured eastward

Q = earth's angular velocity = 7.292 x 10-5 sec-l

f = Coriolis parameter = 2 0 sin$

H = geopotential height

u = west wind component (positive if from west) = --
fa 313

v = south wind component ( positive if from south) = g (fa cos$)~ 3

W = vertical velocity in pressure coordinates = dt
dz

w = vertical velocity in height coordinates = dt

p = density

a - specific volume

Q = rate of non-adiabatic heating per unit mass

dM = increment of mass = pdxdydz = a 2 cos $ dd( -)
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- stability parameter.

= dummy variables.

N
Adt~ : AN r=1 r

the time averaged value of A at
= a given grid point and level

where N is the number of days
in a month.

= deviation from the time average.

- 1 t2
At f

tl

A'B = AB - A B

~ l N
ABdt-- E A B

N r=l r r
the time average of AB at a given
grid point and level.

the temporal covariance of A and
= B at a given grid point and lev-

el (Transient eddy covariance),

0 (A) =#i A' = V"A -

1 (2A
A T = 0

36
AdX- 3 A36 r=l -r

A* = A - [A]

* *
A B = (A - [A]) (B - [B])

the time standard deviation of A
at a given grid point and level.

Zonal average of grid point val-
des of A at a given latitude and
level.

deviation from the zonal average
at a given grid point and level.

spatial covariance of A and B at
a given grid point and level
(Standing eddy covariance).
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the zonal average at a given lat-
itude and level of the temporal
covariance of A and B.

the zonal average at a given lat-
= itude and level of the spatial co-

variance of the time averages of
A and B.

the space standard deviation of
= the time average of A at a given

latitude and level.

1
A = 27r(1-sin $a ) A cos $ dX d

N

- $ i= [A1 Cos36(1-sin 4)a~ cosl i

+ L [A] cos #
2 a a

[A] "[=A] - A

[AB = [i]' L + *] + [A'B, i

the area average of A at a given
level North of latitude $a where

= N is the number of equally spaced
latitude bands north of latitude

$a'

deviation of the area average from
the zonal average at a given lat-
itude and level.

resolution of the time and space
mean of AB into the mean component

(A1 [5 )and the eddy components
(rA1E5]+ A'B' ]).

THE EQUATIONS FOR ZONAL AND EDDY FORMS OF ENERGY AND FLUX COMPUTATIONS.

A C fyr]i 2 d
AZ 2 yT

Zonal available potential energy
integrated over the entire mass
of the atmosphere in the region in
question. [Lorenz approximation
(Lorenz, 1955 and 1967)].
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dM

AE dM ..2

K fri +I [2)

A f ( *2

KE 2

GZ = Y [ ]" i " dM

GE = Y **] dM

[-wi = p[Ljf L*.v*J = - -l Luj [6 v =

az

[ = - p] u u = r. [i 1
R [ZJ

eddy available potential energy
integrated over the entire mass
of the region in question. [Lor-
enz approximation (Lorenz, 1955
and 1967)].

mean zonal kinetic energy inte-
= grated over the entire mass of

the region in question.

+ [u2+ v2dM

eddy kinetic energy integrated
over the entire mass of the
region in question.

generation of zonal available
= potential energy integrated over

the entire mass of the region in
question. [Lorenz approximation
(Lorenz, 1955 and 1967)].

generation of eddy available
potential energy integrated

= over the entire mass of the re-
gion in question. [Lorenz approx-
imation (Lorenz, 1955 and 1967)].

vertical energy flux at a given
latitude and level (positive flux
upward). [Eliassen and Palm (1961)
approximation].

horizontal energy flux at a given
latitude and level (positive flux
northward). [Eliassen and Palm
(1961) approximation]
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CONVERSIONS BETWEEN EDDY AND ZONAL FORMS OF

BOTH AVAILABLE POTENTIAL ENERGY AND KINETIC ENERGY

CA AZ + AE Rate of conversion of zonal avail-
able potential energy to eddy
available potential energy.

K Z KE = Rate of conversion of zonal kin-
etic energy to eddy kinetic ener-
gy.

CE = AE + KE = Rate of conversion of eddy avail-
able potential energy to eddy
kinetic energy.

CZ = AZ -KZ = Rate of conversion of zonal avail-
able potential energy to zonal
kinetic energy.
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III. DATA AND THEIR REDUCTION

The basic data used in this study are weekly and monthly grid point

values of geopotential height and temperature at the 100, 10, 5, and 2 mb

levels for all of 1972 which were provided in the original map form by

various agencies of the National Oceanic and Atmospheric Administration

of the Department of Commerce. Specifically, the 100 and 10 mb levels,

which were obtained from the National Climatic Center at Asheville, North

Carolina, consisted of once-weekly 1200 Z charts for the entire year as

analyzed by computer at the National Meteorological Center (NMC). The

maps for the 5 and 2 mb levels were obtained from the Upper Air Branch

of the National Meteorological Center and consisted of: once-weekly

maps for January-April and September-December; maps for the middle week

only for months May, June and July; and maps for the middle and last week

for the month of August. It should be pointed out that the maps at the 5

and 2 mb levels were hand drawn by the Upper Air Branch of NMC,based on

both high-level rawindsonde and meteorological rocketsonde data at 5 mb

and mainly rocketsonde data at the 2 mb level. The maps are just prelimi-

nary determinations of the wind field at those levels and represent a first

effort by NMC to prepare constant-pressure charts for the upper stratosphere

over the entire northern hemisphere. Methods of chart analysis, including

station coverage and raw data interpretation, are detailed in other publi-

cations and will not be repeated here (see Finger, et al., 1965, and Staff,

Upper Air Branch NMC, 1971).

The data as received on the NMC maps (NWAC No. 555, Scale 1:40,000,000)

was reduced for use in this study as follows:
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Grid values at all four levels were linearly interpolated from the maps

to obtain the geopotential height (within 20 GPM) and the temperature (with-

in 0.5*0C) at every 10* latitude and longitude from 0* to 90*N. Weekly and

mean monthly geostrophic wind components were then computed at 10* latitude

and longitude increments from 5*N to 85*N and from 5*E to 5*W. Computation

of the geostrophic wind components using finite difference approximations

was as follows: (see Sect. II for notation)

f H - H
u = - -L- i+,j i-,
i,j fa # - $.

(H - H
v = H i,j+l i,j-1-
i,j fa cos # j+l ~j-l

This allows computation of u at 5*N plus every 10* latitude to 850N, at 0*E

plus every 10* longitude. Similarly, v is computed at 50E plus every 10*

longitude to 5*W, at 0* latitude plus every 10* to 90*N (v=0 at 90*N). Then

by averaging the values of u at 5*N 0*E with u at 5*N 10*E and so on around

the latitude circles and averaging v at 5*E 0* latitude with v at 5*E 10*N

and so on along the longitude circle, u and v were computed at a common

point (i.e. 5*N 5*E, 15*N 5*E, 5*N, 150E, etc).

It is important to keep in mind the limitations in such a method of

computation of wind components for a northern hemispheric cap. Due to a

lack of data and/or a lack of significant change of geopotential height and

temperature at tropical latitudes (i.e. from 00 to say 200N) there was nor-

mally little or no analysis on which to base my- interpolation. I attempted

to make reasonable estimates of the geopotential height and temperature
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based on the trend of the variables from high to low latitudeswhich is

particularly dangerous as gradients often change south of 20*N. It is

possible, then, that where I extrapolated the temperature (or height)

down to a minimum (or maximum) at the equator, it may in fact have

reached its minimum (or maximum) value at, say, 5 or 10*N. In such a

case, the u and v components could have an opposite sign from what I

calculated and be quite different in magnitude. For that reason, I did

not include computed quantities at 5* and/or 15*N in cases where the data

were doubtful; even where I have included them, for cases where the pattern

was apparently well behaved, one should exercise caution in utilizing them

for anything beyond gross comparisons. One could, of course, make a bet-

ter estimate of the geopotential height and temperature in the tropical

region if data were available for the southern hemisphere. Another means

of determining the trend in the temperature and height field in the trop-

ics, at least at the lower levels, would be to use published tables of

such values (i.e. Newell, et al., 1972 and Oort and Rasmussen, 1971).

Since I did not have such tables of data available at the 5 and 2 mb levels,

for consistency in my extrapolation, no climatology was used for any of the

levels investigated in the energy budget calculations.

In order to determine the vertical flux across the four levels I ex-

amined, I found it necessary to make use of climatological data from a num-

ber of sources. The equation for determining vertical flux across a given

pressure surface requires a knowledge of the potential temperature gradi-

ent at that level. For the 100 mb level, I made use of temperature data

at the 150 and 82 mb levels. The 150 mb temperatures were obtained from

-20-



Professor R.E. Newell based on a stratospheric study of 1964 data for lati-

.tudes 20-85*N. The remaining latitudes were extrapolated from available

tables (Newell, et al., 1972). For the 82 mb level I made use of data

pxovided by the Oxford University Department of Atmospheric Physics (Ox-

Ioard, 1972) which contained mean temperatures from 0 to 80*N. Again, 90*N

was extrapolated based on Newell, et al. (1972). For the 10 mb level, I

used data from the 16 mb level as given in the Oxford (1972) publication,

and 5 mb data which was generated in the study. Similarly, the 5 mb lev-

el made use of potential temperatures which I calculated for the 10 and 2

zib surfaces. For the 2 mb level, I used mean temperatures at the 40 and

45 km levels as given in AFCRL Report #71-0410 (Groves, 1971) which lists

the mean temperatures and pressures for latitudes 00 to 80*N. The remain-

ing values were extrapolated from my 2 mb data which lies within the 40-

45 km range.

Utilizing the statistical formulas and notation as outlined in Sec-

tion II, the following quantities were computed for each pressure level:

a) At each latitude circle by week:

[T], [u], [uv], [0], horizontal energy flux, vertical energy flux

b) At each latitude-longitude point by month:

u, v, T, 6, vT, T

c) At each latitude circle by month:

uYT ,7 ,T [ + v'T

[u*] [*1 , [u*2 + -*2 *] -*-v ,iu v] v + u'vI,

=t], Sensible heat transfer by standing eddies, momentum trans-
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fer by standing eddies, vertical energy flux, horizontal
energy flux.

d) The following totals and area averages:

T, , vertical energy flux, and by week.

Finally, the total energy contents (AE, AZ' KE, KZ) and conversion rates

(CAP C , CK) were computed for each month.

Values of these quantities are presented in tabular form and/or in

figures at the end of this study. In addition, a discussion of these

quantities and their relationship to the energetics of the stratosphere

is given in Section V.
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IV. PRESENTATION AND DISCUSSION OF EQUATIONS

The equations utilized in describing the energetics of the stra-

tosphere have been derived and/or discussed by a number of authors in

the past (Lorenz, 1955 and 1967; Saltzman, 1957; Oort, 1963; Peixoto,

1965; Richards, 1967; and Newell, et al., 1970 among others). Herein

it will be assumed that the reader is familar with these derivations and

only modifications made for this study will be discussed. Although there

were some terms in the energy budget which could not be calculated, they

will be included in this presentation in order to indicate the calcula-

tions necessary for a complete study of the energetics involved.

A. Zonal Available Potential Energy Equation

AZ = 2f YT

gives the maximum amount of mean zonal available potential energy as a

function of the latitudinal variation of the time and globally averaged

temperature over an isobaric surface. This expression is the Lorenz ap-

proximation to the exact formulation and is more generally used as the

latter requires the data in potential temperature coordinates. The rate

of change of AZ in a layer is a function of the vertical and horizontal

motion and radiational heating and/or cooling taking place in that layer,

and the energy budget equation for AZ is:

aAZ

at Z Z A
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B. The "Generation of AZ" Equation

G =f Y

gives the rate of generation of zonal available potential energy by non-

adiabatic processes (which in the stratosphere are radiational heating

and cooling). Generation occurs when there is heating at the warmer lat-

itudes and cooling at colder latitudes. I was unable to compute this

term in the energy budget due to the uncertainty in the contribution to

total Q by the ozone heating and/or cooling in the 9.6 yam band and to un-

certainty in the ozone distribution between 30 and 50 kilometers. An al-

ternate means of getting at Q will be discussed at the end of this sec-

tion.

C. The "A to K Conversion" Equation

CZ z

represents the rate of conversion from zonal available potential energy in-

to zonal kinetic energy integrated over the entire mass of the region in

question. Physically, the conversion of AZ to KZ is a result of the mean

sinking motion in the colder latitudes and rising motion in the warmer lat-

itudes. Since weekly fields of vertical motion were not computed, I could

not use [j [c] to compute CZ. Also, any terms which involve mean meri-

dional motions cannot be evaluated with my computed values of [vi , since the

geostrophic approximation gives [V] = 0, using the equation

-24-



dXfa Cos $ 3

What was actually needed for determination of the integrand [ug] [;]
was the ageostrophic [v, which I could not compute without a knowledge

of Q or c.

D. The "AZ to AE Conversion" Equation

C -- C fYr T + vT' - dM - C f -A p a # p

+ ~rr] ap d

which represents the conversion rate from zonal available potential energy

to eddy available potential energy integrated over the entire mass of the

region in question. In the atmosphere this conversion would result from

an eddy transport of sensible heat from warmer toward colder latitudes.

The second term of CA could not be computed owing to the lack of informa-

tion about vertical motion for the 10 to 2 mb layer.

E. Eddy Available Potential Energy Equation

AE = Y [TqdM

gives the maximum amount of eddy available potential energy as a function

of the variance of the temperature from the zonal average. Again, this is

the Lorenz Approximation to the exact formulation. The rate of change of

AE in the layer is a function of the vertical and 
horizontal motion as well
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as the radiational heating and/or cooling taking place, and the energy

budget equation for AE is:

3AE

t E E A

F. The "Generation of A " Equation

GEE

GE f y dM

represents the total generation of eddy available potential energy by

non-adiabatic processes (radiational heating and cooling). In this case,

one would find generation of AE, for example, where heating occurs in the

warmer regions and cooling in the colder regions at the same latitudes.

As in the case of GZI was unable to compute this term due to a lack of

knowledge about the effect of the ozone in the stratosphere on Q.

G. The "AE to KE Conversion" Equation

CE = - + o'a' dM

represents the rate of conversion of available eddy potential energy to

eddy kinetic energy integrated over the entire mass of the region of the

atmosphere in question. The actual process of converting AE to KE in the

atmosphere can be resolved into the sinking of colder air and rising of
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armer air. Since I had no means of computing W values for the region

;n question, this term could not be calculated in this study.

H. The Zonal Kinetic Energy Equation

1Z 2 uri r-121
_ 2 +

epresents the mean zonal kinetic energy and is a function of the time

mean and zonal mean atmospheric circulation in the horizontal when in-

:egrated over a volume represented by the 10 to 2 mb north polar cap re-

gjion. The rate of change of KZ in the region is a function of the hori-

wontal transport of angular momentum and the mean meridional overturning,

gnmd the resulting energy budget equation for KZ is:

@KZ

at Z K

I. The "KZ to KE Conversion" Equation

[-*-* ~ ~''Cos # dM -1 Lu o + u'o

K a fu ccos #

dM

represents the rate of conversion of zonal kinetic energy to eddy kinetic

energy as a result of Reynold's stresses within the volume over which the

conversion is integrated. In the atmosphere, the eddy transport of angu-
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Ibr' momentum is, on the average, toward latitudes having higher angular

eocities, giving rise to a conversion of KE into K Z. Again, the por-

tton of the CK equation involving vertical transport of angular momentum

had to be dropped since w is unknown.

J.' The~ Eddy Kinetic Energy Equation

- 2 + -*2] + +

'4hich gives the kinetic energy due to the time and zonally averaged hor-

iiontl eddy motions within the volume over which the energy contents

are integrated, and merely represents the excess of total kinetic energy

over the zonal kinetic energy. Changes in KE are brought about by the

vertical transport of sensible heat and angular momentum, horizontal trans-

port of angular momentum, and by transfer of energy from below, so that

the energy budget equation for KE is:

3KE

at E K [p]
(Kung, 1966 and 1969).

K. The Vertical Energy Flux Equation

[7-] = - j [f] [*-.*]
9 a [e]

3p

gives the total amount of energy transferred from below by vertical eddy

motions. In this way baroclinic eddy activity in the troposphere supplies

energy to the stratosphere. A vertical flux upward would result from a
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grensport of potential temperature northward by standing eddies. This

is the Eliassen and Palm (1961) approximation strictly applicable to

stationary adiabatic standing waves.

The above.-mentioned equations then represent the complete energy

budget of the region from 10 to 2 mb. As was noted in the discussion, a

problem arises in the determination of the energetics because W, [N]ag

and Q are unknown for purposes of this study. If one were to start from

the surface and work up to the 2 mb layer, mass divergence techniques

(i,e, Kung, 19-72) might be used to get at the w term, although it is

quite possible that the vertical velocities would blow up long before

reaching 2 mb. Knowing o, though, one could use a continuity equation

of the form

1 3F-1 0Uo
-vCos # + =0

a cos # #p (6)

to determine jwithout resorting to the geostrophic approximation and,

hence, obtain reasonable values. If Q were known, then w could be

found from:

DT + u _T + Q/C
Tt a cos # 3X a p

o = (7)
R T DT

Cp -p
p

Once w, [], and Q are known, then one is able to compute GZ, GE'

CZ, and CE'
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An alternate method which I examined for determination of the un-

knowns involved the use of the continuity equation (6) and the conser-

vation of angular momentum equation:

Eu] + v I us< + 3 u +at a cos# 3# p 2
a cos #

[[ v* + u'v' cos2 + u+[ ] + u'' +

-f v = 0 (8)

This method was used in the determinations made by Richards (1967) for

the lower stratosphere in which the uD + u']) term was considered

to be so small as to be negligible so that equations (6) and (8) have only

two unknowns (jj] and FI)and can be solved simultaneously to determine

[y and [w] and also Q, using (7). For the upper stratosphere, though, as

a result of a discussion with Professor R.E. Newell, it was decided that

the vertical transport of angular momentum by eddies is of the same order

of magnitude as the other terms in (8) and therefore may not be dropped

from the equation. As a result, we have 3 unknowns and 2 equations, pre-

cluding the possibility of solving the equations simultaneously. So it

appears that a determination of the vertical velocity field is the key to

computation of the missing terms in the energy budget for the upper stra-

tosphere.
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V. RESULTS AND DISCUSSION

The results of this study will be divided into five general cate-

gories as follows: (A) the monthly mean features of the middle and upper

stratosphere in 1972; (B) the computed horizontal transport of angular

momentum and sensible heat, and the horizontal and vertical energy flux;

(C) the time-sequential change of computed quantities; (D) the time and

space deviations of mean variables; and (E) the total energy budget of

the 10-2 mb layer. The categories will be discussed in the order listed,

although they are inter-related in some cases. In addition to being in

tabular form, some of the parameters have been put in figure form to dis-

play the salient features. Heights shown on those figures are based on

U.S. Standard Atmosphere, 1966 values for 15* North latitude and are pro-

vided just as a reference for the pressure levels given. For figures which

display the variability of a parameter on a time-sequential basis (i.e.

Figures 2-8 and 11-12), each point drawn for on the curves represents the

zonal average of that quantity at a particular level and week, with tick

marks on the horizontal scale representing the last Wednesday of each month.

In addition, for the vertical energy flux curves in Figures 3-8, for pur-

poses of clarity, separate curves for each level are not shown where the

fluxes are essentially equal to zero and instead a single zero line is

drawn. This is the case in the summer months and in some cases towards the

end of the year at the lower and highest latitudes.

A. Mean Monthly Features

Tables 1, 2, and 3, give values of [U], [Ti, and re1, respectively,

at each 10* latitude starting at 15*N for DI and 5*N for [and [5j for

each month and level. In addition, monthly cross-sections of u have
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been included for the 100 to 2 mb (apprpximatAly -165 to 43 km) region

of the 4tmQsphere (see Figure 1).

In Jnuary, the zonal wind is clearly weaterly -throughout the region-

vith small easterly values indicated at low latitudes above 5 mb. The po-

lar-night jet reached a maximum mean velocity of 59 im sec~1 at 5 mb and

65*N and extends downward, over a broad area, to the 100 mb level extend-

#ig into the region just north of the upper portion of the middle latitude

tropospheric jet, which appears at approximately 35*N at the 100 mb level

-1
with a maximum mean velocity of 24 m sec . In February, the central vel-

@eity of the polar-night jet has decreased to 39 m sec~1, although it is

still positioned at approximately 65*N. If one follows the locus of the

maximum downward it begins to move south at about 50 mb and extends into

the tropospheric jet, which has increased in intensity slightly (26 m

sec" ) while remaining in relatively the same position.

There is a significant change in March, probably as a result of high-

er temperatures at the poles, with the maximum of the upper level jet be-

ing reduced to 30 m sec~1 and its position shifted considerably southward.

The locus of maximum winds still appears to extend, after following a

parabolic path, into what looks like a northward extension of the tropo-

spheric jet, the center of which has remained relatively stationary al-

though somewhat decreased in magnitude (22 m sec1 ). The low-latitude

easterlies have temporarily disappeared also as westerlies have expanded

to encompass the entire region.

In April there are signs of evolution into a summer regime and the

same general pattern is displayed through August. By April, the polar
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vortex has virtually disappeared and easterlies have replaced westerlies,

reaching a maximum velocity of -8 m sec at 10 mb and 65*N. The wester-

ly tropospheric jet still dominates the circulation at 100 mb, although

its maximum value has decreased to 17 m sec~1 . By May, easterlies extend

over all latitudes above 30 mb, and there are indications of formation

of a low latitude easterly jet at and above the 2 mb level probably-as a

result of solar heating. This easterly summer jet increases to --35-m

sec~1 in June and -44 m sec~1 in July at 2 mb. The position of the-max-

imum shifts from south of 20*N in May to 25*N in June and July. Likewise,

the tropospheric jet has shifted its position northward at 100 mb and has

become more broad and less intense by July, with maximum values of 8 m

-1
sec at 45*N. August appears to be a transition month from the distinct

summer regime back to the normal winter circulation. The easterly jet at

25*N has disappeared, although easterly winds still dominate the region

above 50 mb. The tropospheric jet is beginning to increase in value, the

maximum velocity being 11 m sec~ at 100 mb and 45*N. From September

through December, one sees a rapid increase in the polar-night jet with

the maximum velocity increasing from 11 m sec in September to 59 m sec

in December remaining stationary at 2 mb and 55*N. An exception to the

stationary position occurred in November when the polar-night jet at 2 mb

extended from 25*N to 55*N with values of 40 to 44 m sec~1 throughout the

region. By December, the middle latitude tropospheric jet has shifted

southward to 35*N at 100 mb and increased in velocity to 28 m sec~1.

Overall, then, there appears to be two distinct regimes in the mean cir-

culation field with velocity extremes which appear to be a function of the

-33-



amount of solar heating.

Figpre 11 represents a smoothed meridional distribution of weekly

values of [u) at the 5 and 2 mb levels for 1972. Here again, the dom-

inant westerly polar-night jet is evident at high latitudes in the win-

ter season.and the easterly jet at low latitudes in the summer months.

The maximum velocity in the polar-night jet occurred in January at 65*N

with speeds of 73 m sec~1 at 2 mb and 67 m sec~ at the 5 mb level. The

summer easterly jet attained maximum speeds in July at 25*N of 44 m sec-1

at the 2 mb level and 28 m sec~ at 5 mb. Note that the westerlies change

over to easterlies earlier at high latitudes than at low latitudes in the

Spring and the higher latitudes again precede the lower latitudes in con-

verting back to westerlies in the fall transition.

The same type of 2-season pattern appears in an examination of the

mean monthly values of ET] (Table 2). The January values of [T] appear
to represent a typical winter regime, at least at the lower levels (Newell,

1966 and Richards, 1967), with the semi-permanent dome of cold air at the

100 mb level in the tropics with temperatures of 197.7*K at 5*N. A sec-

ond cold air dome is evident in the polar regions at the 10 mb level with

temperatures about 5 degrees warmer. Between these cold regions there is

an extension of warm air from the sub-tropical middle and upper stratosphere,

which produces the temperature gradient reversal which is common to the low-

er stratosphere in winter. An opposite gradient appears at the 2 mb level

where there are high temperatures in the tropics as well as in the po-

lar region, and low temperatures in the middle latitudes at 55*N. Also of

significance is the fact that at the 10 and 5 mb levels the temperature gra-

dient is in the same direction as the gradient of [TI in the troposphere.

-34-



This feature becomes important in a discussion of the zonal available

potential energy as will be seen later.

February values of [T] display the same pattern as January at the

100, 10 and 2 mb levels. As at 2 mb, the 5 mb level now displays high-

er temperatures at the pole and the tropics than at middle latitudes

which produces a temperature gradient reversal above 10 mb which is the

mirror image of that found below 10 mb. In conjunction with the decrease

in velocity of the polar-night jet as the polar vortex weakens, there

are signs of warming at the higher latitudes in February and March. This is

especially evident by April where the temperatures at 85*N have increased

by 30* at 10 mb and 20* at 5 mb. The rate at which the warming proceeds

in the spring appears to be quite variable, with some levels showing sud-

den warmings in some years and very gradual increases in others (see

Reed et al., 1963 and Richards, 1967). It is interesting to note that

there is a temperature gradient reversal at the 100, 5 and 2 mb levels in

February and none at 10 mb. In April, the temperature structure complete-

ly changes such that the temperature gradient reversal is at the 10 mb lev-

el only, with the lowest temperatures at middle latitudes. This [T] gra-
dient reversal in turn disappears as we move into a typical summer regime

(Newell, 1966 and Richards, 1967) in May where the greatest temperature

contrast with latitudes occurs at 100 mb. The [TI values reflect the path

of the sun quite well as the maximum temperatures occur at the highest lat-

itudes in July just after solar heating has reached a maximum in the north-

ern hemisphere.

The values of in August and September clearly show the effects of



reduced heating as the temperatures drop appreciably at the high lati-

tudes with only modest changes occurring at middle and low latitudes.

In fact, temperatures have dropped enough at the 10 mb level in the high

latitudes to set up a temperature gradient reversal at that level, which

is equal and opposite in nature to that found in the April [T] distribu-

tion. It appears that the occurrence of a temperature gradient reversal

at 10 mb signals a transition between the winter and summer regimes.

This is something that should be investigated as more data becomes avail-

able. By October, the winter regime is quite well established again with

the cold air split into two regions: the semi-permanent cold dome at 100

mb in the tropics and the cold polar dome at 10 mb. A striking feature of

the October through December distributions of [ is the extremely low

temperatures at high latitudes at the 5 and 2 mb levels. The upper half

of Figures 5 though 8 show the weekly pattern of the zonally averaged tem-

perature, [T}, at the higher latitudes and indicate a temperature differ-

ence between January and December at 2 mb of 24*C at 85*N, 21*C at 75*N,

and 160C at 650N. It is possible that once more data has been collected

in the 10 to 2 mb region, the temperature difference between January and

December might decrease somewhat, but the fact that there is a difference

is not unreasonable in view of the effects of solar heating and dynamics.

The difference in solar angle between December and January results in great-

er solar heating, hence higher temperatures, in January. In addition, as

will be shown later in a discussion of vertical energy flux, the dynamics

are such that greater energy is being transported upward in January which

contributes toward maintaining a higher temperature. The weekly patterns
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of zonally averaged temperatures at the higher latitudes (Figures 6-8)

indicate a stratospheric warming occurred the third week in January

thereby reinforcing the idea of higher temperatures resulting from dy-

namics. It should be remembered that there is no data readily available

for December, 1971, for comparison. The distributions of mean potential

temperature, [o , display the same general patterns as those discussed

for the monthly distributions of MT, which is not surprising since the

potential temperature at each constant pressure surface is equal to the

temperature times a constant.

Figure 10 contains zonal cross-sectionsof the January values of u,

v, and T from which the zonal averages u, , and [T at 550N were de-

rived. Large variations with longitude are quite evident indicating the

necessity for adequate spatial sampling in any scheme of statistical anal-

ysis which is based upon zonal means. For example, several rocket sta-

tions clustered in the North American sector would give a biased view. Be-

sides zonal means, any parameters which are to be computed based on comb-

inations of u, v, or T, such as momentum transport by standing waves, would

be seriously affected if poor sampling techniques were used. Profiles of

radiational heating are also longitudinally dependent since its computation

is based on values of T.

B. Horizontal and Vertical Transport Quantities

Note: Henceforth, the terms [uvi, [u*v_1  and u'v'lwill be referred

to as angular momentum transports even though they represent a transport

only after they have been multiplied by the torque arm. Similarly, the

terms [ j, [vTj, and [vT] will be referred to as sensible heat trans-
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ports even though they represent a transport only after they have been

multiplied by the specific heat capacity.

(1) Eddy transport of angular momentum:

Values of [uvl, the total mean transport of angular momentum across

a latitude circle, and u*v , the standing eddy transport of angular mo-

mentum, are given in Tables 4 and 5, respectively. Possibly as a result

of the limited time scale imposed by taking monthly averages of once-

weekly values of u and v, the standing eddy transport in most cases is

greater than the transient eddy transport throughout the year and the

transient eddy terms are quite noisy from one pressure level to the next.

The reader should be alerted to the fact that since only one week of val-

ues per month went into the computation of all terms at the 5 and 2mb

levels in May, June, and July, the transient eddy term will necessarily

be zero during those summer months since it is based on a deviation from

a time mean. Of more interest for purposes of discussion is the distri-

bution of standing eddy transport of mean relative zonal angular momen-

tum per mb of vertical distance across a complete latitude circle. This

transport is computed as follows:

fP f27r -*-* a2 cos2 dX d.

(1mb) 0 g

Values of this quantity are given in Table 6 and the values in the fol-

lowing discussion will all be in units of gm cm2 mb- sec-2 when mul-

tiplied by 1020.

In January, transport of angular momentum is almost entirely north-
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ward, with the maximum occurring in the upper stratosphere (almost

five times as much at 2mb as at 100mb) just south of the main axis of

the polar-night jet. North of the jet core, there is a small amount

of southward transport of angular momentum in the upper stratosphere.

By February, the angular momentum transport is reduced considerably

at the 5 and 2mb levels and yet has remained unchanged at the 100mb

level and increased significantly at the 10mb level. This change is

reflected in the February [u] distribution (Figure 1) which shows a

sharp reduction in westerly wind speeds in the upper stratosphere with

little change in the lower and middle stratosphere. By March, the

transport values are smaller at all levels while still remaining north-

ward except at low latitudes and at 100mb at high latitudes. The para-

bolic path taken by the polar-night jet axis on the March zonal wind

distribution (Figure 1) is reflected in the maximum transport values

as the locus moves from 350N at 100mb to 550N at 5mb then back to 350N

at 2mb.

A drastic change in the values of angular momentum transport occurs

in April as there are small northward transports at high latitudes and

relatively large southward transports at middle and low latitudes, the

resultant giving rise to easterlies in the April zonal wind cross-sec-

tion (Figure 1). Another meteorological parameter which may be related

to the change in the standing eddies in the stratosphere is the mean

surface albedo. Baroclinic activity in the troposphere is clearly af-

fected by changes in the mean albedo and surface heating. As will be

discussed later, an extensive amount of energy is transported upward,
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as a result of eddy activity, from the troposphere to the stratosphere

in winter, with considerably less vertical transport taking place in

late spring and in the summer. With a decrease in the amount of energy

being supplied by the troposphere to the stratosphere in April, the

amplitude of the standing waves in the stratosphere changes, which is

reflected in the decreased amounts of angular momentum transported by

standing eddies in the stratosphere in the late spring and in summer.

Hence, changes in the mean surface albedo are linked to changes in

the troposphere and, in turn, the stratosphere.

The months of May through August exhibit mainly noise at the high

latitudes with extensive southward transport of angular momentum present

at middle and low latitudes at the higher levels. Northward transport

is still evident at the 100mb level, supplying angular momentum to the

sub-tropical tropospheric jet. The transports in September and October

begin to show a resemblance to their March and April counterparts, es-

pecially at the lower levels. October in particular shows a pattern

of convergence into the accelerating polar vortex with maximum north-

ward transport of angular momentum more or less taking place just south

of the maximum zonal wind. Just as there was an abrupt transition from

March to April in the standing eddy transport of angular momentum, there

is in October an opposite and equally abrupt transition to a strong

winter regime. One might look for equally abrupt changes in mean al-

bedo for the earth's surface, as snowfall at high latitudes (i.e., Si-

beria) changes the radiational heating at the surface and in the atmos-

phere. November displays large northward angular momentum transports,
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Aeaecially in the upper stratosphere, with two regions of maximum trans-

port-at 150N and 650N at the 2mb level, giving rise to the broad jet

sore ofwesterly wind previously discussed for November (Figure 1).

-There is still some residual southward transport at low latitudes at

the 10-and 5mb levels which persists into December, although somewhat

Teduced in magnitude. As was the case for January, December displays

p:prong:northward transport of angular momentum at the middle and up-

-per latitudes at all levels with maximum values that are comparable

except at the 2mb level,where December values are less than those com-

puted -for January. This in turn gives rise to a polar-night jet core

-,wich appears to be above the 2mb level in December but moves down-

ward and poleward in January, as evidenced by increased standing eddy

transports of angular momentum at the 2mb level in January. In gen-

eXal, :then, momentum convergence takes place in the region of maximum

westerly flow in the middle and upper stratosphere in winter. In the

summer, transports were quite noisy (probably owing to the small sam-

ple size) and small, indicating the small role played by eddy activity

-in the -general circulation of the stratosphere during the summer months.

(2) Eddy transport of sensible heat:

Values of EvI, the total mean transport of sensible heat across

a latitude circle, and [vT], the standing eddy transport of sensible

heat, are given in Tables 7 and 8, respectively. As in the case of the

angular momentum transports, certain limitations are imposed on the

transient eddy transport by the sampling technique used in this study.

The discussion will again be confined to the distribution of standing
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eddy transport, in the horizontal of sensible heat per-mb -of verti-

cal distance across a latitude circle, which As computed-as follows:

CP f P v 2 T a cos4 dXdpa
(lmb) 0 :g

Values of the sensible heat transport by standing -eddies are given

in Table 9 and the values referred to in -the :following discussion will

be in units of ergs mb- 1 sec-l when multiplied by _117.

Northward transport of sensible heat by :standing eddies is promi-

nent at all latitudes and levels in January, -with:maximum transports

occurring at approximately 550N. The flux values :significantly in-

crease with height, with the maximum 2mb flux being 10 times as great

as the maximum at 100mb. If one compares the values in Table 7 ([vT

+ [ ) with the sum of Tables 8 ( ['71 ) and 9 ( ) from

Richards (1967), the total eddy transport -in 1965 and 1972 was similar

in terms of changes with height and latitude, although the 1965 values

were, on the average, larger than the 1972 values. This difference

may be a result of, among other things, the fact that the transient

eddy transport determined from the 1972 data -may have been small due

to the limited amount of data available. It also seems probable that

there could be a lot of variability in the eddy transport of sensi-

ble heat from one year to the next. With maximum fluxes occurring at

550N, it follows that convergence of sensible heat is taking place

north of 550N and divergence to the south. Even greater -northward

transports are evident in February with flux -values still increasing
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,3dtth height, and the maximum flux of sensible heat still at 550N.

-Norhward transports of sensible heat still dominate all latitudes

4 levels in March, but a drastic reduction in the flux values has

tg.ken place. At the 2mb level, for example, the maximum flux value

is onek-sixth what it was in February. By April there are indications

of both northward and southward transports of sensible heat and the

kmb-ers have been reduced to the noise level of the data.

The transport values remain quite small through September, al-

0hpugh a noteworthy change in the sign of the transport occurs be-

tg.en August and September. Whereas the transports are all northward

At the 100 and 10mb levels in August and September, they are generally

southward at the 5 and 2mb levels. By October, northward transport

is increasing and becoming more widespread at all levels, except for

some residual southward flux at the low latitudes in the upper strato-

sphere. The region of maximum transport of sensible heat appears again

at 550 N with convergence north of that demarcation and divergence south

of it. The numbers tend to increase at all levels through December,

although as was the case with the angular momentum transport, do not

increase to the levels attained in January of the same year, especially

at the 5 and 2mb levels. The region around 400N has become an area of

sensible heat divergence in November and December, as the transports

are all southward to the south of the demarcation and northward to

the north of it. In general, though, the distributions for the winter

months show predominantly northward transport of sensible heat by stand-

ing eddies with predominantly negative standing eddy transports in the
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upper stratosphere and positive (northward) transports in the middle

and lower stratosphere in summer.

(3) The Vertical energy flux:

The vertical energy fluxes are shown in Table 10. In most cases,

the flux values calculated for the 100 and 10mb levels were less than

those calculated by Newell and Richards (1969) for the years 1964 and

1965. Otherwise, the features of the two sets of values are quite simi-

far. Largest flux values occur at about 650N throughout the winter months

(January through March, November and December) and the predominant dir-

ection of the energy flux is upward, especially at the 5 and 2mb levels.

The exception occurs at 100mb where downward flux is the case from 350N

to the tropics. The maximum flux values occurred in February and in

all cases the flux values decrease with height. By May, the polar

vortex has completely vanished, which is evident from the flux values,

as there is no significant flux remaining at high latitudes. The 100mb

level does maintain a small amount of flux throughout the summer months

at around 400N which may be related to the tropospheric jet which is

present in the summer cross-sections of [u] (Figure 1). Above the

100mb level, the flux is mainly downward and quite small.

These small downward flux values last until September at the 100

and 10mb levels and until October at the 5 and 2mb levels, when a tran-

sition to a winter situation begins to occur. In September, a maxi-

mum value of upward flux is clearly indicated at the 100mb level at

55ON with positive values dominating the lower and middle stratosphere.

By October, only the 2mb level is not displaying upward vertical energy
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flux of significant magnitude. Virtually all flux of energy is up-

ward in November and Deeember with maximum values somewhat less than

those indicated in January of 1972. In summary, then, upward flux

of energy is the dominant feature throughout the winter months with

values peaking in February. The summer months, on the other hand,

are characterized by small flux values of varying sign which are at

the noise level of the computations. The reader is reminded that the

formula used in computing the vertical energy flux (as well as the

formula for computing the horizontal flux, which is discussed below)

is based on an approximation to an exact formulation. In the approx-

imation, Eliassen and Palm (1961) assume a straight westerly flow

where the motion is considered to be stationary and adiabatic, to

which they in turn apply a geostrophic approximation. Hence, the ver-

tical energy flux so computed can only give an indication of relative

magnitude and phase of the flux.

(4) The Horizontal energy flux:

The horizontal energy fluxes are shown in Table 11. In January,

the flux is decidedly equatorward at all levels and at all latitudes

except near the pole at the 5 and 2mb levels. The maximum flux occurs

at 354N at the 100mb level but moves poleward with height, showing up

at 650N at 2mb. From February on, though, the situation becomes more

complex with the four levels each displaying a different pattern of

horizontal flux. Except at the 100mb level, where the tropospheric

jet is active, the horizontal flux values reduce to the noise level

during the summer months. By October, the flux is generally southward
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and increasing, with maximum values at the lower levels. In November

and December, there are southward fluxes throughout the region with

maximum values almost comparable in size to those computed in January.

Newell and Richards (1969) found a northward flux at high latitudes for

November and December 1964 and a southward flux for 1965, as is found

here for 1972. Thus, there is a fair amount of variability from year

to year. In general, in 1972, the horizontal flux is southward at all

levels in winter months at low and middle latitudes and relatively small

(except at the 100mb level) in the summer.

(5) Total energy flux divergence:

To gain a better understanding of the effects of large horizon-

tal and vertical energy fluxes in the 100 to 2mb region, the energy

flux divergence was computed in the vertical and horizontal planes.

The horizontal energy flux divergence was computed from values given

in Table 11 using the following equation, given in finite difference

notation:

H div = (a cos$) 1 A(F cose)

where F denotes the flux at latitude $ and O is the increment of lat-

itude used (100). The vertical energy flux divergence was computed

from values in Table 10 using the following equation, also in finite

difference notation:

V div - A = - E , T 2 2
AZ R Ap
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where the F again denotes the flux at each latitude, p is the aver-

age pressure in the layer ( P = El + ), T is the average tempera-
2

ture in the layer ( 1 + 2 ), and Ap is the pressure difference

in the layer ( Ap = p2 - p ). The horizontal flux divergence and

vertical flux divergence were combined to give the total flux diver-

gence for the 55 to 3.5mb layer. Since the total divergence was in-

significant in the summer months, the pattern of the flux divergence

in the winter months of December through March only has been included

in this study for purposes of discussion (Figure 9). In Figure 9,

divergence is represented by positive numbers. A region of energy

flux convergence separates areas of divergence at high and low levels

in January. By February, convergence dominates almost the entire

cross-section, except at 55mb at the higher latitudes and at low lat-

itudes at the higher levels. The divergent region at low levels,

which was quite strong and broad in January, occupies a small area

at 55mb around 700N in February. March displays almost no divergence

to speak of and the maximum convergence area is at and below the 55mb

level at 600N. By December, as was the case in January, convergence

again separates high and low level divergence at middle and high lat-

itudes. So, except for the divergent region at the high latitudes

at 3.5mb in January (presumably associated with the polar-night jet),

the winter months of 1972 seem to indicate a large amount of absorbed

energy in the upper stratosphere and a divergence of energy in the
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middle and lower stratosphere north of about 550N. By April, the energy

flux divergence was essentially reduced to zero, remaining so through-

out the summer and fall. In December, divergence is again indicated

at high and low levels at the high latitudes, 'and at all levels in

the tropics. Energy is still being absorbed in the middle latitudes

at around 10mb indicating the possible buildup of a pattern similar to

that observed in the previous January.

~ C. The Weekly Variation of Temperature and Vertical Energy Flux

The variation of the temperature distribution by latitude on a

monthly basis which was discussed previously leads one to conclude that

there is a significant variation in temperature throughout the year

which follows a different pattern depending on the level in the strato-

sphere. Figure 12 depicts the annual variation in the temperature

averaged over an isobaric surface. In addition, Table 12 gives the

temperature averaged over a given isobaric surface by month. One can

learn more about the behavior of the temperature, though, since it is

latitudinally dependent, if one examines its weekly variation at each

latitude for the 100, 10, 5, and 2mb pressure levels. Figures 2 through

8 represent the resulting patterns when the zonally averaged tempera-

ture is plotted at the 4 levels for each week of 1972, when known. In

addition, the vertical flux computed on a once-weekly basis is in-

cluded in Figures 2 through 8, for latitudes 350N to 851N, far purposes

of discussion. It can be seen that at low latitudes where heating is

more uniform and the dynamics are of minor importance, the zonally

averaged temperature bears no distinct variation with time but instead
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undergoes sporadic variations throughout the year. With increasing

latitude, though, the temperature variation becomes more distinct,

especially at the higher levels, so that at 850N and 2mb, there was

an annual variation of 590C in 1972. Imposed on this annual varia-

tion in [TI, which mirrors the path of the sun, is a number of small

variations which seem to correlate well with vertical fluxes of energy

occurring in the stratosphere. Starting with 450N and more so north-

ward, sudden impulses of energy which are transported upward are in-

variably followed a week later by a distinct rise in temperature at

the upper levels in the stratosphere (especially at 5 and 2mb). Then,

just as the vertical flux returns to small values the following week,

so also does the temperature return to its normal pattern of a gradual

increase (in the first half of the year) with time. The large vertical

fluxes spoken of here appear much more prevalent in the first few months

of 1972 as opposed to November and December. Of course, this pattern

may have been peculiar to 1972 and not the normal situation. If this

is the typical pattern, though, one might look again to the changes

in the surface albedo for a clue as to the cause. In November, the

albedo is just beginning to rise as snow accumulates on high ground

and at high latitudes. Vertical fluxes are correspondingly small and

therefore the fluxes have no effect on the temperature, which continues

to dropunimpeded, from its summer maximum. By December and January,

the mean albedo has reached a maximum and we hypothesize that as a result

the vertical fluxes of energy are more frequent and greater in magni-

tude, having an effect on the stratospheric temperatures which in turn
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are on the upswing. This situation lasts until April when the snow

is melting and the albedo is decreasing rapidly, and we hypothesize

that the vertical flux decrease is associated with this change. There-

after there is a smooth continual rise in temperature. This type of

scheme would account for the temperatures being higher in the first

part of the year than in the last as the data shows, and would give

the lowest temperatures at the higher latitudes in November at each

level, which was also found. It is necessary to examine the corre-

sponding albedo data on a weekly basis to see if indeed there is a

correlation.

These figures clearly indicate the need for a sampling scheme

which utilizes data on a smaller time scale than once a week. The

variation of the vertical flux is quite significant and cannot be ade-

quately examined using values determined on a once-a-week basis. Strato-

spheric warmings, for example, can begin and end in a period of a week

and go undetected if too coarse a time grid is used for analysis. The

reader should take note of the strong vertical energy fluxes in Feb-

ruary which resulted in temperature increases at the higher latitudes

that were equal to or greater than the maximum temperature attained

due to solar heating in July at the 5 and 2mb levels (see Figures 6

through 8).

D. Time and Space Deviations of Mean Quantities

Monthly distributions of LT , the deviation of the area averaged

temperature from the zonal average, are given in Table 13. The sign of

UTI//at 100mb displays a different pattern to that found at the 10, 5,
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and 2mb levels. Throughout 1972 at 100mb, the high and middle lati-

tudes displayed a value of [T" which was positive whereas [T]/at

low latitudes was negative. The 10, 5, and 2mb levels, on the other

hand, display negative values of [T]//at high latitudes in winter and

at low latitudes in the summer, and positive values of IT ]at low

latitudes in the winter and high latitudes in the summer. Another

noteworthy feature of the []values in 1972 is the distinct summer

maximum at the 100mb level at high latitudes, indicating large dif-

ferences in the zonal average and global average of T in the summer

at low levels and high latitudes.

Tables 14, 15, and 16 give monthly values of zonally averaged

time standard deviations of u, v, and T, respectively. Again, the

reader is reminded that since there was only one set of weekly data

for the months of May, June, and July, deviations from a time mean

will be zero for those months. Since u'2 is used in determining the

Eddy Kinetic Energy in the layer, Table 14 can give a rough idea of

what effect u'2 will have on the total KE. It is quite clear that

for the computation of the KE in the 10 to 2mb layer, the value of u,2

contributes the most to the KE content at 2mb, especially at middle

latitudes. Even though my sampling technique was limited to, at best,

once-weekly values at the 100, 10, 5, and 2mb levels, the values in

Tables 14, 15, and 16 compare quite favorably with those computed by

Richards (1967) for the 100 to 10mb layer.

Tables 17, 18, and 19 give the monthly values of the spatial

standard deviations of U, v, and T, respectively. All three variables
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attained maximum values in winter at high latitudes in 1972, with

the C*2 field displaying an especially peculiar pattern. In win-

ter, the values of u* display double maxima at all four levels

with a distinct minimum at 650N. In the computations of the KE in the

winter, this would give rise to a double maxima on a plot of KE on

a height vs latitude cross-section. The double maxima in the $UT

values seem to occur to the north and south of the major axis of the

polar-night jet so that the polar vortex is at the point of minimum

deviation in [U] (i.e., at 650N). As the polar vortex decelerates

in the spring, the maxima and minimum disappear, only to reappear

again in November when the polar-night jet has come into place and

has begun accelerating. The spatial standard deviations of T given

in Table 19 are relatively small at all latitudes and levels, with

the values at 10, 5, and 2mb somewhat larger than the T values

computed at 100mb. Except at 100mb, the maximum spatial deviations

of T occurred in January in 1972, which gives maximum values of AE

in January as will be discussed later.

E. The Total Energy Budget

As I pointed out in the presentation of the energy budget equa-

tion for KE (Section IV), the amount of energy transported vertically

through the action of stationary adiabatic waves is an important part

of the total energy budget. Table 20 gives monthly values of the to-

tal vertical energy flux and the resultant divergence between levels

(a positive number indicates divergence). It is evident that all of

the layers shown absorb significant amounts of energy in the winter
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whereas energy is transported out of the upper layers to varying de-

grges in the summer months. It was rather surprising at first that

puch large amounts of energy are transported upward across even the

2mb level, indicating that the region above 2mb is quite active in

winter, It should be remembered that the diabatic effects in the

stratosphere increase with height as do the errors in the vertical

energy flux approximation, so that the vertical energy flux computed

at the 2mb level, for example, could be off by a significant amount.

The total energy contents and conversion rates by month for the

10 to 2mb layer are given in Table 21. In addition, the conversion

rate for AZ to AE using standing eddy transport of sensible heat only

is given (the column labeled ALT CA ) and the conversion rate for KZ

to N using standing eddy transport of angular momentum only is given

also (the column labeled ALT CK ). A positive sign on CA indicates

a conversion from A to AE Iand a positive sign on C Kindicates a con-

version from KZ to KE. To better illustrate the energy budget values,

a series of box diagrams are included for purposes of discussion (see

Figure 13).

One of the first things to note is that the conversion rates and

the energy involved in the convergence of the vertical flux display

marked seasonal variations in both magnitude and sign, with a maxi-

mum in winter and a minimum that is normally opposite in sign in summer.

Also noteworthy is the fact that the convergence of the vertical energy

is quite comparable in size and often greater than the conversion rates

CA and CK. Further, the contribution of the standing eddies to the
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conversion rate is, in most cases, greater than the contribution from

transient eddies. In the discussion of sensible heat transports via

eddy processes, it was pointed out that the transport was predomi-

nantly northward throughout the winter months with some southward

transport indicated in the summer months at some latitudes. From

the equation for CA given in Section IV, it can be seen that the sign

of the mean available potential energy conversion in the 10 to 2mb

layer will depend on the sign of the mean temperature gradient at

that latitude as well as on the direction of transport. When the

temperature gradient reversed in the spring, a corresponding change

in the sign of the available potential energy conversion rate occurred.

Hence, the conversion of available potential energy is from AZ to AE

in the winter and the conversion reverses in the summer months, re-

sulting in the AE being depleted.

A parallel situation exists in the kinetic energy conversion,

although the situation is more complicated. The sign of the angular

momentum transport in winter months is such that the eddy processes

are feeding momentum to the polar vortex. From the equation for

calculating the conversion CK given in Section IV, it can be seen

that the sign of the mean kinetic energy conversion in the 10 to 2mb

layer will depend on the sign of the mean zonal wind gradient as well

as on the direction of the transport. In the winter, the polar-night

jet at high latitudes dominates the [] cross-section, whereas in

the summer we have the easterly jet at low latitudes, both of which

result in the same sign for the zonal wind gradient. So the sign of
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the transport term becomes important -in determining the direction

of the conversion. In the winter there is a comversion of KE to KZ

which reverses in April when the seasonal transition occurs, then

reverses back again in July and remains a Kto conversion for the

rest of the year, except for October.

The entire energy cycle of the atmosphere appears to be very

much dependent on season with a distinct energy cycle in winter and

energy values at the noise level in the summer.. The transport pro-

cesses and the baroclinicity of the atmosphere drive the energy cy-

cle from eddy kinetic energy through the cycle to eddy available po-

tential energy in the winter and generally in the reverse direction

in the summer. The kinetic energy values attain a maximum in the

winter when the polar vortex is in an accelerated state, and drop to

a minimum in the summer, although it is noteworthy that the zonal ki-

netic energy maintained relatively high values in the summer months

when the easterly jet at high levels in the tropics was at a maximum

(June and July).

As was discussed by Newell (1965) a few years ago, the middle

and upper stratosphere resembles the tropospheric heat engine during

the winter season. Radiational processes are a source of AZ and hor-

izontal eddy processes in turn convert this AZ into AE. Further con-

version of this eddy available potential energy into eddy kinetic

energy may occur but this calculation awaits determination of the cor-

responding vertical velocity field. In addition, Eddy processes con-

vert energy transported from the troposphere into eddy kinetic energy
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in the stratosphere and in turn convert eddy kinetic energy into KZ'

supplying energy to the mean circulatory motions in the stratosphere.

Although I was unable to compute CZ, it seems probable that the con-

version would be from KZ to AZ in winter in the upper stratosphere,

resulting from rising motion at the colder latitudes and sinking mo-

tion in the warmer latitudes. Richards (1967) found subsidence at

the lower latitudes, where temperatures are warmest, and rising mo-

tion at the higher latitudes in the region-of colder temperatures,

at the 10mb level in 1965. This appears to be the normal winter pat-

tern for the vertical motion field, at least at the 10mb level, in-

dicating a conversion of zonal kinetic energy to zonal available po-

tential energy in winter. In summer, the CZ conversion rate would

reduce to the noise level of the data so that the sign of the con-

version would be indiscernible.

During the summer months, the middle and upper stratosphere resem-

ble a refrigerator with radiational processes now destroying AZ as

they transport heat against the temperature gradient. The idea of

heat engines and refrigerated regions in the atmosphere has been dis-

cussed extensively in other publications although not for the upper

stratospheric region (see Barnes, 1962 and Newell, 1966).
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V1, CONCLUSION

Although this study entailed an extensive-amount of calcula-

tion and computer time, it by no means resulted in a-complete

picture of the energetics of the stratosphere. Assumptions had to

be made about the relative importance of some terms whereas certain

of the necessary parts of the energy cycle, such as the generation

of available potential energy, could not be computed at all. In

-addition, due to the limited amount of data, some terms, such as

those involving transient eddies, were given less weight in the

overall calculations than they may deserve. With these shortcomings

in mind, though, the study did reveal some remarkable facts about the

circulation and energetics of the upper stratosphere.

Eddy processes do indeed play an important role in maintaining

the energy budget in all regions of the stratosphere. In addition,

the troposphere, through the action of a vertical flux of energy,

exerts a significant influence on the stratosphere, with its effects

seemingly still felt above the 2mb level. The 10 to 2mb region ap-

pears to function as a heat engine in winter with an internal heat

source and a probable destruction of AE through radiational processes.

The result is more cooling in the warmer regions and warming in the

colder regions at the same latitude. In contrast, the 10 to 2mb

layer acts as a refrigerated region in the summer, having to rely

on external sources of heat to maintain itself.

The final point to be made is that almost all of the quantities

computed appear to have strong seasonal dependence. This fact alone
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points up the need for more than once-monthly data at the 5 and 2mb

levels in the summer months before one can adequately examine the

monthly changes in the energy cycle and the stratospheric circula-

tion as a whole.
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100 mb

Jan. Feb. Mar. Apr.

1.0
8.3

15.1

21.1

22.4

24.0

21.8
13.0

5.0
16.8

17.6
15.2
18.6
26.1
25.0
12.9

0.9
9.4
15.0

16.4
14.9
20.6
22.1
12.5

0.7
4.2
6.1
8.4

13.0
17.4
15.7

11.6

May

0.0
0.2
1.5
5.2
9.8

13.9

13.6
11.2

June

0.3
0.0
0.2
3.1
8.5

10.0
1.1

-3.6

July Aug. Sept. Oct. Nov. Dec.

1.4
3.5
2.3
3.0
8.2
5.1.

-4.1
-4.7

1.6
4.8
4.5
6.2

10.5

4.2
-4.0
-6.2

-0.6
1.2
4.5

10.1

13.2
11.4

3.6
-0.4

4.3
8.2

10.5

12.0

14.8
15.8
11.2

7.2

0.4
3.8

10.5

15.9

19.8
24.8
18.5
9.2

4.8
11.7
14.4
18.2
22.4
27.7
20.8
13.7

10 tab

15.0
39.5
49.2
39.9

22.5
10.0

4.9
4.5

15.3
36.7
39.9

27.4
16.0

8.7
8.1
4.7

5.3
15.6
17.8
11.3

7.1
6.9
6.0
6.6

-1.2

-5.1

-8.1

-7.0
0.6
7.2
7.7
4.1

-1.2
-4.4

-8.5
-8.5
-4.7
-1.3
-4.2
-5.3

-2.1
-6.8

-11.7
-14.3
-12.3

-9.8
-12.9
-17.4

-1.9
-4.7

-9.3

-13.8
-15.1
-16.2
-21.3
-22.3

-0.3
-2.1

-4.7

-7.1
-9.9

-13.9
-19.5
-17.8

1.8
5.3
5.9
5.3
3.4

-1.5
-7.4
-5.3

4.9
14.1
17.4
14.9

10.8
6.2
1.6

-6.9

5.1
15.0

20.2
21.4

19.9
14.8

7.3
2.8

7.7
22.9

32.1

30.1

21.7

16.1
11.0

6.0

TABLE 1. Zonal Average of Mean Monthly Zonal Wind, [u). Units: m sec-1 .

Lat.

85
75
65
55
45
35
25
15



5 "tib

Jan. Feb. Mar. Apr.

112.8
34.8
39.9
29.7
15.2

7.9
8.7

-3.0

0.8
110.5
19.3
17.5
14.6
18.2

8.5
0.4

-0.9
-5.5
-7.2
-3.7

3.0
8.1
3.9

-3.8

14.5
43.1
59.0
50.9
31.6
13.0

2.2
-3.6

May 'Jhe ipy 4 g. bt. Nov. Dec.

-6.9 -4. -4.5 -b.9 1.9 .22 08,8
-6.5 -8.2 -'4.5 -. 49 .9.1 6 31
-9.2 -9.6 -15.0 -4.8 7.5 3.1 26.5 41.9

-10.4 -12.4 -16.5 -8.5 8.5 21.7 29.' 43.8
-10.8 -'14.7 -18.4 -11.5 5.9 .18.4 27.9 34.8
-7.9 -16.7 -23.2 -15.2 -1.8 11.0 25.8 25.5
-6.4 -23.2 -27.7 -16.6 -6.8 6.8 23.0 16.9
-7.5 -8.7 -23.2 -14.1 -6.6 5.1 17.3 11.8

2 mb

17.7
43.7
57.8
52.3
42.4
27.8
14.3
-2.2

12.8
27.5
31.8
27.6
24.4
18.2
14.3

4.7

0.8
8.0

15.7
21.5
28.6
29.7
17.7

6.7

-0.8
-1.7
-1.0

1.9
5.5
7.0
5.3
3.2

-1.3
-5.2
-9.1

-10.3
-9.7

-11.6
-16.6
-29.5

-1.6
-2.5

-12.3
-17.6
-20.7
-28.2
-35.0
-29.1

-10.4
-15.3
-20.5
-26.6
-31.7
-44.2
-24.1

-2.*3
-4.8

-10.d
-12.3
-15.4
-19.8
-11.3

-7.3

1.8
§.5

Ii.4
11.1

9.1
5.4

-0.9
-7.1

8.0
24.8
28.8
30.9
29.1
25.6
24.6
21.8

20.1
35.2
41.1
43.7
44.0
40.7
29.9

.4

50.5
59.3
54.7
50.2
30.2
18.0

TABLE 1 - Continued

Lat.



10Q mb

Jan. Feb. Mar. Apr.

209.2
210.6
213.9
217.4
216.5
210.7
203.7
199.2
197.7

206.5 213.0
209.1 214.4
213.2 217.1
217.0 218.4
216.7, 216.5
210.2 210.4
201.7 202.5
197.3 197.8
196.2 196.3

227.5
225.8
223.0
219.2
214.8
209.2
202.5
198.1
196.5

May June July Aug. Sept. Oct. Nov. Dec.

226.9
226.0
224.1
220.6
216.0
209.8
202.5
197.7
196.3

229.2
228.1
225.5
221.5
215.6
208.0
201.7
198.6
197.5

230.5
228.8
225.6
221.2
214.6
207.0
201.3
197.9
196.3

228.8
227.4
224.8
220.6
213.9
206.2
200.8
197.7
196.2

224.2
223.8
222.5
219.5
214.1
206.8
200.6
197.2
195.8

220.5
220.8
219.9
217.6
213.5
207.2
200.8
196.3
193.7

215.0
216.5
217.8
217.0
213.6
207.2
200.0
195.5
193.4

205.9
208.8
213.2
216.2
215.1
209.4
202.3
197.4
195.1

10 mb

203.6 213.8
208.2 216.7
214.2 220.5
2.1 223.6

225.5 226.8
229.3 229.5
231.1 230.7
231.9 231.4
232.1 232.0

227.2
227.5

27.b
226.2
226.8
228.7
230.4
231.4
231.9

232.5
231.7
230.
229.2
229.6
231.5
233.6
234.7
235.2

237.1
236. A
236.2
23$.1
234.3
234.2
234.7
235.2
235.5

242.1
241.4
237

234.4
233.g
232.9
232.9
233.1

244.2
24'.l 4
24, ~2
238.6
236.4
234.$
233.)
232.3
231.3

238.7

z) .

234.
2 33..0
23 .8
231.0
230.5

227.3 2 4.2 208. 203.3
2 .2 ~.

2 . 2 ? , . 21 -8

2 1.4 ? 222
p1.9 228. 226. 225.,6
231.7 230.0 228.9 22.
231.3 230.7 230.2 230.0
230.8 231.2 231.0 230.8

TABLE 2. Zonal Average of Mean Monthly Temperature, [TI. Units: OK.

Lat.

85
75
65
55
45
35
25
15
5



5 ml

Jan. Feb. Mar. Apr.

245.5 236.1
241.3 233.9
237.0 232.4
235.8 233.9
236.8 237.8
238.8 242.0
240.9 244.7
242.5 245.5
243.2 245.7

241.0
241.6
242.9
244.6
246.1
247.1
247.5
247.6
247.6

250.6
249.8
249.6
249.6
249.2
248.1
246.5
245.0
243.8

255.0
254.5
253.7
252.4
250.7
248.8
247.1
245.8
245.1

259.8 254.4
258.5 252.9
256.3 250.3
253.5 247.5
250.5 245.2
247.2 243.6
244.2 243.1
242.1 243.5
241.0 244.4

221.7
223.8
227.7
232.4
236.2
239.1
241.4
242.7
243.0

2 mb

251.1 256.0 246.3 254.6
249.7 254.3 246.4 256.5
247.0 251.2 247.6 260.0
245.6 249.0 251.0 263.2
248.8 251.5 256.8 265.4
254.7 257.1 262.7 266.5
259.6 261.0 266.6 266.6
261.9 262.3 268.3 266.5
262.2 262.5 269.1 266.5

271.9
271.3
270.4
269.2
268.2
267.3
266.5
265.2
264.0

277.2
276.7
274.3
271.1
268.8
266.6
264.4
262.8
261.5

279.7 270.6
279.2 269.8
278.0 267.7
276.1 265.0
273.4 262.9
270.0 261.6
266.3 261.0
263.1 261.1
261.9 261.4

TABLE 2 - Continued

Lat. S6pt.

237.7
238.5
239.7
240.9
242.1
243.6
245.1
246.0
246.7

222.5
224.3
227.5
231.3
235.3
239.0
242.9
246.2
248.2

214.7
216.3
219.8
224.9
230.7
236.5
241.6
245.3
247.1

211.9
213.3
216.8
223.2
231.9
239.7
243.7
244.8
244.8

250.4
251.9
254.0
255.8
257.4
259.2
260.7
261.8
262.4

231.0
234.5
240.0
245.6
251.2
256.6
260.7
263.3
264.8

226.9
228.0
231.0
236.8
245.0
252.9
258.5
261.9
263.8

227.3
228.5
231.7
238.2
247.1
255.7
260.8
262.2
262.4

dtt. 6 bckAy j ue ju-ly ug.



100 Ab

JAn. Feb. k.a r. Apr. May

404.2
406.8
413.3
420.0
418.1
407.0
393.4
384.8
381.8

399.0
404.0
411.7
419.1
418.6
406.0
389.5
381.1
379.0

411.5
414.2
419.3
421.9
418.2
406.4
391.2
382.2
379.2

439.5
436.3
430.7
423.4
414.9
404.0
391.3
382.7
379.5

438.3
436.5
432.8
426.2
417.2
405.3
391.2
382.0
379.1

Jdhe didy Aug. S'ed. ct. 196V. bec.

44 .7
440.6
435.6
427.9
416.5
401.8
389.6
383.7
381.6

445.3
441.9
435.9
427.4
414.5
399.8
388.8
382.3
379.2

441.
43 .4
434.3
426.2
413.3
398.4
387.8
381.9
379.0

4-.0
432.3
429.0
424.1
413.5
399.5
387.5
380.9
378.2

426.6
424.8
420.3
412.3
400.2
387.8
379.2
374.1

415-.5
4 18. 2
420.8
419.1
412.7
400.2
386.3
377.7
373.6

SI .8
4b .4
411.9
417.6
415.5
404.5
390.8
381.4
376.9

10 mb

760.0
776.9
799.4
821.4
841.7
855.8
862.4
865.3
866.2

797.8
808.6
822.7
834.5
846.5
856.4
860.9
863.4
865.9

847.8
848.8
847.2
844.1
846.4
853.4
859.9
863.7
865.6

867.6
864.8
859.4
855.2
856.7
863.9
871.7
876.0
877.7

884.7
884.2
881.6
877.3
874.3
874.0
875.9
877.7
879.0

903.6
901.0
895.0
885.7
876.1
870.6
869.2
869.2
869.8

911.4
908.2
900.4
890.5
882.1
875.2
870.6
866.9
863.3

890.7
889.5
886.1
880.7
875.2
869.4
864.9
861.9
860.2

848.4
852.4
858.4
862.1
864.4
865.4
864.9
863.3
861.2

799.4
807.0
819.7
834.1
846.2
854.2
858.4
860.9
862.9

777.2
784.5
796.6
812.2
829.4
844.4
854.1
859.1
861.9

758.9
770.6
789.3
809.1
826.8
842.1
853.0
858.5
861.5

TABLE 3. Zonal Average of Mean Monthly Potential Temperature, [f]. Units: OK.

Lat.

85
75
65
55
45
35
25
15

5



5 tb

Jan. Feb. Mar.

1117.3
1098.2
1078.6
1072.9
1077.7
1086.7
1096.3
1103.3
1106.8

1074.2
1064.5
1057.5
1064.3
1082.0
1101.1
1113.2
1117.2
1118.1

1008.6
1018.2
1036.3
1057.4
1074.8
1087.9
1098.2
1104.3
1105.6

Apr. May

1096.4
1099.3
1105.3
1113.0
1119.7
1124.3
1126.3
1126.6
1126.8

1140.3
1136.5
1135.6
1135.6
1133.8
1128.8
1121.8
1115.0
1109.4

ijue July Ada. Sbo . 'c. Nov. bc.

1160.4
li58.0
1154.3
1148.6
1140.6
1131.9
1124.5
1118.5
1115.3

1182.2
1176.1
1166.0
1153.7
1139.8
1125.0
1111.2
1101.5
1096.4

1157.6
1150.5
1138.9
1126.0
1115.5
1108.3
1106.0
1108.2
1112.0

1081.7
1085.1
ib90.6
1096.0
1101.8
1108.6
1115.0
1119.4
1122.6

1012.4
1020.7
1035.2
1052.5
1070.5
1087.7
1105.0
1120.4
1129.3

076.8
984.0

1000.0
1023.1
1049.8
1076.2
1099.2
1116.0
1124.4

064.2

986.6
1015.6
1055.3
1090.5
1108.9
1114.1
1113.9

2 mb

1485.0
1476.9
1460.7
1452.4
1471.5
1506.4
1534.9
1549.0
1550.6

1513.9
1503.8
1485.3
1472.3
1487.0
1520.3
1543.4
1551.3
1552.2

1456.4
1456.9
1464.2
1484.5
1518.3
1553.7
1576.3
1586.4
1591.3

1505.8
1516.8
1537.4
1556.2
1569.4
1575.6
1576.3
1576.1
1575.6

1608.0
1604.2
1598.7
1592.2
1585.7
1580.8
1575.9
1568.2
1561.4

1639.5
1636.5
1621.9
1603.4
1589.5
1576.3
1563.7
1553.9
1546.6

1653.8
1650.9
1644.1
1633.0
1616.5
1596.7
1574.9
1556.0
1548.8

1600.2
1595.3
1582.9
1567.0
1554.6
1547.1
1543.6
1543.8
1545.6

1480.9
1489.7
1502.1
1512.4
1522.3
1532.7
1541.6
1547.9
1551.8

1365.9
1386.5
1419.3
1452.1
1485.5
1517.3
1541.7
1557.3
1565.6

134241
1348.1
1365.9
1400.1
1448.9
1495.8
1528.4
1548.7
1559.8

1344.4
1351.2
1370.4
1408.6
1461.3
1512.2
1542.0
1550.7
1551.6

TABLE 3 - Continued

Lat.



100 mb

Jan. Feb. Mar. Apr.

0.0
-11.6

-9.9
6.5

15.8
22.5

6.4
-0.2

0.0
-6.0
-5.9

-6.4

5.6
10.8

6.0
3.7

0.0
-5.3
-1. 1

2.4
0.4

12.9
8.3

-7.4

0.0
3.0
4.9

-0.4
11.1

23.8
3.6
1.6

May June

0.0
-2.5

-3.0
-0.8

0.5
5.2
5.0
1.7

0.0
-0.8
-2.4

0.0
0.2

-1.4
7.4
6.4

July Aug. Sept. Oct. Nov. Dec.

0.0
-2.0

0.9
2.6
5.8
7.0
2.6

-4.9

0.0
-0.5
-0.7

4.2
0.8
8.4
7.3

-1.6

0.0
-5.2

-4.5

-3.1
4.1

14.0
12.7

2.1

0.0
0.1

-0.7
14.9
18.4
16.3

7.5
-3.8

0.0
-15.7
-9.9-

-8.9
6.2

~20.4
8.5
1.5

0.0
9.6
4.9

20.5

21.5
23.9

3.6
3.2

10 mb

0.0
2.8

10.5

65.9
53.2
13.7
-6.0

4.3

0.0
-21.7
-25.4

46.3
49.9
23.7
-3.3
-2.5

0.0
70.2
45.9

69.5
33.2
12.9
-0.7

-1.8

0.0
8.9
9.4
23.2

13.8
7.8
1.2
7.5

0.0
1.5

-0.4

0.1
-0.4

2.1
2.3
1.8

0.0
0.4

-0.1

1.5
1.0
0.5

-1.2
-1.0

0.0
0.0
0.0
0.2

-0.7
-1. 1
-3.1
-3.8

0.0
1.2
0.7
1.0
0.4

-0.4
-5.8
-3.9

0.0
1.9
3.6
2.9

-0.6
2.5

-1.6
-2.8

0.0
-0.1

5.0
12.5
10.9

1.9
-1.5

-3.3

0.0
26.5

56.9

68.3
32.5

8.5
-0.7
-1.0

0.0
16.6
35.7
45.6

21.4

8.4
0.1
1.7

TABLE 4. Monthly Values of [. Units: m2 sec-2.

Lat.



5 mb

Jan. Feb. Mar. Apr.

0.0
-62.9
-76.9

75.8
83.2
40.0

2.5
0.4

0.0
59.2
89.7
75.6
35.7
31.6

7.8
21.9

0.0
9.7
4.1
4.7

-4.4
-0.2
-9.6

7.3

0.0
-5.6
29.6
11.5

9.4
40.2
-6.7
32.6

May

0.0
5.7

-2.4
-2.7
-2.9

1.0
-0.7
-0.4

June July Aug. Sept.

0.0
1.7
1.1
0.4
0.3
0.2
0.1

-0.7

0.0
3.0
1.7
1.8
0.8
4.7
5.3

33.0

0.0
1.8

-3.3
-3.4

-0.7
0.5

-3.0
-1.1

0.0
3.1

-2.0
3.3

-4.0
5.1

-4.4
4.7

Oct. Nov. Dec.

0.0
4.5

-10.6
0.7
-5.4
0.7

-2.8
6.0

0.0
50.6
60.8
59.6
17.6
12.9
-9.5

-25.6

0.0
27.9
62.5
80.2
48.5
33.0

8.7
46.8

2 mb

0.0
4.3

82.6
141.5
136.2
127.4

67.9
8.4

0.0
-87.0

-2.7

133.2
127.7

65.0
0.3
2.3

0.0
52.1
57.9
56.4
30.2
30.6

4.7
74.7

0.0
8.9
2.6
3.7
0.8
2.9

-0.8
23.5

0.0
2.8

-7.0
-0.9
-3.9

0.0
-7.1
-2.1

0.0
0.0
0.2
0.6
0.8

-0.4
-7.7

-14.8

0.0
1.0
0.3
.0.2
1.2

-1.5
-2.0

1.1

0.0
2.6

-19.3
-13.3

0.4
0.4

-6.1
-4.0

0.0
6.6

-1.2
8.1
1.9

11.0
-2.9

8.0

0.0
6.9
0.6

-2.3
-8.4

4.7
0.9
2.2

0.0
79.1

115.2
97.1
24.8
10.6

-17.5
25.2

0*0
59.5
101.3
128.5
101.7

37.1
23.0
32.3

TABLE 4 - Continued

Lat.



100 mb

Jan. Feb. Mar. Apr.

0.0
12.6

8.5
6.1

13.1
14.0

1.7
1.2

0.0
-20.9
-23.3

0.8
10.7,
14.1

0.9
-2.3

0.0
-2.0
-4.8

-8.3
0.1
3.1
2.1
1.4

0.0
-9.1
-5.4
-0.1
-1.3

3.0
1.2

-6.2

May

0.0
-1.0
-2.5

-1.1
-2.4

0.0
3.4
0.3

June July Aug. Sept. Oct. Nov. Dec.

0.0
-0.2
-0.5

0.2
-0.9

0.4
7.4
3.8

0.0
2.4
1.6
2.4
2.1
5.2
1.0

-3.3

0.0
-0.8

1.1
1.2

-2.1
6.8
6.0
0.0

0.0
-1.7
-1.3
-0.9

0.8
7.7
7.9
2.7

0.0
0.7
2.2
7.8

10.0
1.8
5.4

-7.3

0.0
-8.3

-5.3

-11.5
5.9

13.4

5.7
0.5

0.0
10.1

0.7
8.5

12.1
8.4
4.8
4.7

10 mb

0.0
14.7

20.4
48.0
26.2

3.6
-6.6

5.6

0.0
5.5
31.1

70.5
47.2
18.6
-3.5
-3.6

0.0
22.4

31.6
55.2
26.6

9.1
-1.2
-0.9

0.0
7.5
6.4
9.6
6.9
3.6
0.4
0.9

0.0
0.7

-0.5

-0.3
-0.1

1.5
1.7
1.0

0.0
0.1

-0.1

1.2
0.8
1.7

-0.1
-0.9

0.0
0.0
0.6
0.1

-0.1

-0.6
-3.4
-2.5

0.0
0.3
0.7
0.9
0.1

-1.8
-4.9
-6.7

0.0
1.4
2.6
2.0

-0.1
1.2

-0.9
-1.8

0.0
-2.6

4.6
8.7
8.6

-0.1

-1.4
-1.5

0.0
26.1

46.1

39.5
15.2

3.2
-0.7
-1. 1

0.0
18.0
34.1
39.0
16.0
6.5

-0.3
0.5

TABLE 5. Zona11y Averaged Spatial Covariances of U

Lat.

85
75
65
55
45
35
25
15

and v, ITA* . Units: M2 see-2.



5 mb

Jan. Feb. Mar. Apr.

0.0
-74.6
-30.3
26.6

22.5

16.7
5.0
0.6

0.0
14.4
69.7
53.8

28.2
21.1

9.1
16.1

0.0
4.2
1.7
0.1

-1.4

1.3
-5.4

6.4

0.0
-6.2
69.9

56.5

19.3

24.8
6.9

16.3

May June July Aug. Sept. Oct. Nov. Dec.

0.0
5.7

-2.4

-2.7

-2.9
1.0

-0.7
-0.4

0.0
1.7
1.1
0.4
0.3
0.2
0.1

-0.7

0.0
3.0
1.7
1.8
0.8
4.7
5.3

33.0

0.0
2.4

-1.*1
-1.*1

-0.5

0.3
-0.5
-4.7

0.0
-0.5

-0.4
0.2

-1.9
-0.2
-1.3

0.1

0.0
-2.9

-1.4

6.6
-1.4

2.3
-1.3

1.5

0.0
68.2
76.8
48.2

5.4
1.9
0.2

-1.5

0.0
34.4
65.5

49.7
33.4
15.0

3.1
23.4

2 mb

0.0
-1.3

133.0
134.5

96.7

60.0
28.6

1.3

0.0
-33.3

8.1
69.6
58.9
42.4

2.5
-0.4

0.0
3.8

21.4
29.9
18.9
22.3
-1.9
40.6

0.0
5.5
1.5
2.0
0.0
1.4

-0.6
3.6

0.0
2.8

-7.0
-0.9
-3.9

0.0
-7.1
-2.1

0.0
0.0
0.2
0.6
0.8
-0.4
-7.7

-14.8

0.0
1.0
0.3
0.2
1.2
-1.5
-2.0

1.1

0.0
-1.4

-7.6
-1. 6

3.4
2.2

-0.8
-1.8

0.0
-0.1
-0.9

2.1
0.6
0.0

-1.8
4.3

0.0
11.5

9.2
5.7

-1.0
0.9
2.6
0.5

0.0
101.9
136.5
84.0

22.8
8.0
5.5

24.3

0.0
42.3
49.0

72.9
61.1

29.7

7.9
23.5

TABLE 5 - Continued

Lat.

4



100 mb

Jan. Feb. Mar. Apr. May

0.0
22.0
39.7
52.0

170.3
244.3

37.0
28.8

0.0
-36.5

-108.0
6.7

139.4
246.7

20.0
-54.9

0.0
-3.5

-22.2
-70.8

0.8
54.3
45.8
33.4

0.0
-15.9
-25.3

-0.4
-16.6

52.1
25.6

-150.9

0.0
-1.8

-11.8
-9.7

-31.2
0.3

73.1
6.1

June July Aug. Sept. Oct. t6v. V&c.

0.0
-0.4
-2.5

1.7
-11.1

7.7
157.6

92.8

0.0
4.2
7.4

20.9
27.5
90.2
21.6

-79.4

0.0
-1.5

5.3
9.9

-26.9
119.5
127.5

0.0

0.0
-2.9
-6.2
-7.5
10.5

134.6
168.0

64.5

1.2
10.2
67.1

130.1
30.9

115.7
-178.1

-14.5
-24.8
-'98.0

76.3
233.7
121.6

10.9

o .9
17.5
3.3

73.0
157.6
147.1
102.8
115.2

10 mb

0.0
25.5
94.9

410.4
340.4

63.1
-141.2

136.5

0.0
9.5

144.3
603.1
613.7
324.0
-75.0
-88.5

0.0
39.0

146.9
472.4
345.6
158.5
-25.6
-21.8

0.0
13.1
29.5
81.9
89.8
62.9

7.5
20.8

0.0
1.2

-2.3
-2.6
-1.8
26.1
35.4
23.5

0.0
0.2

-0.5
10.4
10.2
29.4
-2.3

-21.3

0.0
0.1
2.8
1.0

-1.3
-10.0
-73.1
-60.8

0.0
0.5
3.
7.6
1.0

-30.6
-103.9
-161.7

0.0
2.4

12.2
17. 3
-1.5
20.4

-18.4
-43.2

0.0
-4.

21.
74.6

111.9
-1.1

-30.6
-35.2

0.0
40. 4

214.2

197.7
55.0

-15.6
-27.4

0.0
3. 4

158.4
134.0
208.6
113.7

-7.1
11.2

TABLE 6. Relative Angular Momentum Transport by Standing Eddies, ff a* V * a2 c

Units: 1020 gm cm2 mb~- sec-2. (NOTE: 0.0 represents < ±0.05x10 20)

os2$ dX dp.
g

Lat.

85
75
65
55
45
35
25
15



5 mb

Jan. Feb. Mar. Apr. May

0.0
-10.7
324.5
483.5
251.4
432.0
147.5
396.2

0.0
-129.9
-140.5

227.6
292.0
291.2
106.5

14.9

0.0
25.2

323.8
460.2
366.8
368.7
194.6
389.7

0.0
7.4
7.9
1.3

-17.9
23.1

-114.6
156.2

0.0
10.0

-11.0
-23.0
-37.2

17.4
-13.9

-8.5

June July Aug. Sept.

0.0
3.0
5.1
3.2
3.8
4.0
2.8

-17.1

0.0
5.3
7.9

15.2
9.9

81.8
114.1
801.9

0.0
4.1

-4.9
-9.7
-6.3

5.7
-11.1

-115.2

0.0
-0.8
-1.7

1.4
-24.1

-3.4
-27.8

2.1

Oct. Nov. Dec.

0.0
-5.1
-6.6
56.5

-17.7
39.4

-27.8
35.7

0.0
118.8
356.5-
412.7

70.5
33.6

3.6
-37.4

0.0
59.9

304.3
424.9
433.7
262.5

67.1
567.3

2 mb

0.0
-2.2

617.9
1150.4
1257.7
1047.7

611.9
30.4

0.0
-58.0

37.6
595.8
766.1
740.2

53.6
-9.6

0.0
6.7

99.6
255.4
246.1
389.9
-39.9
985.5

0.0
9.7
6.8

17.2
-0.3
24.8

-13.4
86.9

0.0
4.9

-32.5
-7.8

-50.8
0.0

-151.7
-51.2

0.0
0.0
0.8
5.5

10.6
-6.7

-164.2
-358.3

0.0
1.8
1.4
1.8

15.2
-26.8
-41.7

25.6

0.0
-2.5

-35.3
-14.0

44.2
37.9

-18.1
-42.7

0.0
-0.2
-4.1
17.9

8.1
-0.4

-37.7
104.0

0.0
20.1
42.8
48.8

-13.6
15.8
55.1
12.3

0.0
177.5
633.9
718.4
296.5
139.8
117.1
590.7

0.0
73.7

227.4
623.7
794.6
518.6
168.9
570.5

TABLE 6 - Continued

Lat.

85
75
65
55
45
35
25
15



100 mb

Jan. Feb. Mar. Apr.

-0.3
7.3

30.1
32.1
11.9
-0.1
-0.6
-0.3
-0.1

-2.6
-4.0

8.8
11.7

4.4
1.7
0.6
1.3
0.5

-0.7
1.1
5.7
7.8
5.2
1.4
0.0
-0.4
-0.1

-1.6
1.4

11.5
13.6

5.2
-0.9
-0.6

0.1
0.1

May June July Aug, Sept. Oct. Nov. Dec.

0.1
0.7
2.4
2.4
1.4

-0.2
-0.5

0.2
0.0

-0.2
-0.2

1.0
1.2
0.0
0.3
2.4
2.5
0.9

0.3
0.6
1.2
1.8
1.0

-0.3
1.9
2.7
0.9

- 0.1
1.1
1.7
1.7
0.0

-1.1
-0.2
0.3
0.2

0.6
1.8
2.4
3.2
2.3
0.9
0.5
0.8
0.3

0.1
1.7
7.0
8.9
4.3
1.1
0.1
0.8
0.0

-0.19
-0.8

8.4
12.7

6.0
0.2

-1.9
1.0
0.8

0.6
4.8
7,8
8.0
5.2

-0.4
-4.2
-3.7
-1.0

10 mb

2.3
25.5
50.8
44.7
22.3

5.6
0.4
0.1

-0.1

12.7
67.7
87.5
70.0
28.1

4.5
0.4
0.0

-0.1

6.4
27.3
28.8
22.6
10.7

2.2
0.3

-0.3
-0.1

-0.7

-1.4
4.9

10.7
6.8
0.4
0.5
0.6
0.5

1.0
3.2
2.1
1.4
0.6

-0.2
-0.2

0.0
0.0

0.2
1.3
1.4
1.7
1.5
1.0
0.4
0.5
0.3

0.0
0.4
0.6
1.1
0.7
0.0
0.5
0.5
0.1

0.1
1.0
1.6
1.6
1.5
1.2
0.7
0.0
0.0

0.2
1.9
2.9
1.6
0.3

-0.1
0.1
0.1

-0.1

0.3
4.1

11.0
11.0

4.0
0.5
0.2
1.0
0.4

3.5
22.9
32.8
25.6
10.6

2.2
0.2

-0.4

-0.4

1.6
12.8
25.5

28.5
17.7

6.2
1.2
0.0
0.0

TABLE 7. Monthly Values of vT] . Units: OK m sec~1.

Lat.



4 0

5 mb

Jan. Feb. Mar. Apr. May

1.9
29.0

76.7
92.5

68.4
29.5

5.4
0.4
0.2

17.6
93.0

139.6
134.0

70.9
20.9

2.0
-1.4
-0.4

7.0
36.2

43.2
29.9
16.3

6.1
1.9
0.1

-0.1

-1.8

-8.7
-8.9
-4.2
-0.2

0.6
0.7
0.7
0.3

0.8
2.9
1.1
0.0
-0.1
-0.2
-0.2
-0.3
-0.2

June

0.0
0.2
0.2
0.2
0.1
0.0
0.0

-0.3
-0.5

July Aug. Sept. Oct. Nov. Dec.

0.0
0.1
0.2
0.7
0.8
0.4
0.3
0.1
0.0

-0.4
-2.3
-0.8

0.3
0.3
0.4
0.1

-0.1
0.0

0.5
1.9
1.1
0.3
0.3

-0.3
-0.2
-0.5

-0.6

0.5
1.8
3.1
4.1
3.1
2.1
0.3

-1. 1
-0.6

3.7
23.9
32.6
23.9
11.8

5.4
3.2
3.1
1.3

2.4
20.7

34.8
21.6

6.7
-0.6

-0.2
-0.4

0.7

2 mb

0.1
27.0

131.8
180.0
109.6

44.8
15.6

4.2
-1.0

27.6

142.6
194.5
174.7
101.5
31.2

2.5
-1.4
-0.6

6.4
35.1
45.0
35.3

22.6
9.2
4.4
2.4
0.6

-2.4
-7.4

0.2
5.9
5.6
2.3
0.4
1.5
1.6

0.3
1.4
1.9
0.7

-0.1

1.2
1.4
0.7

-0.8

0.1
0.1
0.0
0.3
0.3

-0.9
-2.1
-1.5

-0.6

-0.2
-1.1
-1.8

-1.7
-0.3

1.1
0.8

-0.5

-1.1

-1.3

-768

-8.6

-2.6

-1.0

-0.6
0.9
2.9
2.4

0.5
3.0
3.4
2.9
2.2
0.7
0.1

-0.2
-0.4

0.8
4.9
5.6
3.4

-0.2
-1.5

-0.7

-0.3
-0.1

16.1
77.3
82.7
60.0
25.7

7.5
2.1

-4.0

-2.5

2.6
28.4

45.6

31.1
15.3

4.1
0.4
-0.6

0.0

TABLE 7 - Continued

Lat.

85
75
65
55
45
35
25
15
5



4

100 mb

Jan. Feb. Mar. Apr. May

-0.9
-0.8
15.1

22.8
9.7

-0.1
-1.5
-0.7
-0.2

-0.6
0.5
8.8
9.9
3.6
1.3
0.7
1.0
0.4

-0.5
2.2
6.2
5.1
2.2
0.3

-0.3
-0.5
-0.3

-0.1

0.3
1.2
0.7

-0.3
-0.8
-0.1
0.6
0.0

-0.5
0.5
4.8
9.3
3.9

-1.5
-1.1
-0.2

0.0

June July Aug. Sept.

-0.2
0.0
0.6
0.2

-0.3
0.5
2.4
2.7
0.8

0.2
0.6
0.4
0.7
1.1
0.3
1.8
2.3
0.6

0.1
0.4
0.3
0.6
0.2

-0.1

0.4
0.6
0.2

0.1
0.5
1.5
1.9
1.4
0.0
0.2
0.6
0.3

Oct. Nov. Dec.

0.0
0.4
3.0
4.6
1.9
0.5

-0.3
0.1

-0.3

-0.6

0.3
8.2-

11.-8
5.1

-1.1
-1.6

0.9
0.8

0.5
4.8
7.2
6.7
3.9

-0.3
-2.9
-2.1

-0.7

10 mb

5.1
35.5

43.9
28.0
13.2

3.3
0.5
0.0
0.0

12.8
63.6

75.7
55.7
19.2

3.0
0.4
0.1
0.0

5.3
21.9
23.1

18.0

8.0
1.1
0.1

-0.1

0.0

-0.8

-2.4
-0.6

2.4
2.2

-0.6
-0.3

0.0
0.0

0.3
1.6
1.6
0.9
0.1
-0.4
-0.5
-0.3
-0.1

0.1
0.9
1.2
1.5
1.2
0.6
0.1
0.4
0.2

0.0
0.3
0.2
0.5
0.3

-0.1

0.4
0.5
0.1

0.1
1.0
1.3
1.0
0.7
0.8
0.5
0.3
0.2

0.1
1.0
1.7
1.0
0.2
0.2
0.3
0.2
0.0

0.1
2.0
6.2
6.3
2.2
0.3
0.2
0.7
0.4

4.7
27.5

33.8
22.3

6.8
1.2
0.2

-0.1

-0.1

1.6
12.7

23.9
24.4

14.6
5.4
1.1
0.1
0.0

tAtit 8. Zotaily Averdged Spatial Covariances of v

Lat.

an T T . QUts: Ok th sec-i.



5 mb

Jan. Feb. Mar. Apr.

16.9
98.0

125.6
88.0

37.2
8.5
0.3

-0.7
-0.2

3.5
22.6
31.9
23.6
12.9

5.2
2.2
0.3

-0.2

-0.9
-4.6
-5.5
-2.9
-0.3

0.2
0.1
0.2
0.1

4.8
38.2
63.3
50.8
27.1
10.1

2.0
-0.2

0.3

May June July Aug. Sept. Oct. Nov. Dec.

0.8
2.9
1.1
0.0

-0.1

-0.2
-0.2
-0.3
-0.2

0.0
0.2
0.2
0.2
0.1
0.0
0.0

-0.3
-0.5

0.0
0.1
0.2
0.7
0.8
0.4
0.3
0.1
0.0

-0.2
-1.9
-1. 1

0.0
0.5
0.6
0.1

-0.3
-0.3

0.0

-0.2
-0.4
-0.5

-0.1
-0.6
-0.3
-0.2
-0.3

0.0
0.7
2.2
2.3
1.8
1.5
0.1

-1.0

-0.5

5.6
31.4
34.9
21.3

7.3
0.7

-0.2
0.0
0.2

1.9
15.2
27.1
18.6

7.4
2.5
1.1

-1.1
-1.3

2 mb

2.1
39.0

117.5
123.7

53.3
12.8

2.6
1.6

-0.4

28.3
145.0
170.8
131.6

69.6
22.7

4.9
0.9

-0.2

4.1
23.6
29.3
20.5
11.9

4.2
1.6
0.4

-0.1

-0.7
-2.6
-1.0

0.9
1.7
1.2
0.0
0.0
0.4

0.3
1.3
1.9
0.7

-0.1

1.2
1.4
0.7

-0.8

0.1
0.1
0.0

0.3
0.3

-0.9
-2.1
-1.5

-0.6

-0.2
-1. 1
-1.8
-1.7
-0.3

1.1
0.8

-0.5

-1.1

0.2
-1.0

-2.7
-1.2
-0.9
-0.6

0.3
1.6
1.5

-0.1
-0.5

-0.6
-0.5
-0.2
-0.4

-0.7
-0.9
-0.5

0.3
1.3
1.4
0.5

-1.0

-1.1

-0.7
-0.4

0.0

17.6

81.5
75.5

39.5

8.1
0.1
0.2

-2.2

-1.1

1.0
15.4
35.4
32.2
15.1

3.7
0.9

-0.6
0.0

TABLE 8 - Continued

Lat.



100 mb

Jan. Feb. Mar. Apr.

-0.3
-0.8
26.2

53.7
28.1
-0.5
-5.5

-2.8

-1.0

-0.2

0.6
15.3

23.2
10.6

4.5
2.6
4.1
1.6

-0.2
2.3

10.7
11.9

6.5
1.1

-1.0

-1.9
-1.0

-0.2

0.5
8.3

21.8
11.3
-5.1

-4.1
-0.8

0.1

May

0.0
0.3
2.1
1.7

-0.8
-2.5
-0.4

2.3
0.1

June July Aug. Sept. Oct. Nov. Dec.

-0.1
0.0
1.0
0.6

-0.8
1.6
8.9

10.5

3.3

0.1
0.6
0.7
1.6
3.3
0.9
6.6
9.2
2.6

0.0
0.4
0.5
1.3
0.7

-0.4

1.5
2.2
0.8

0.0
0.5
2.6
4.4
4.2
0.0
0.6
2.5
1.3

0.0
0.5
5.1

10.8

5.6
1.6

-1.3
0.6

-1.2

-0.2

0.4
14.2
27.8
14.6

-3.8
-5.9

3.7
3.1

0.2
5.0

12.4
15.7

11.3
-1.2

-10.6
-8.4
-2.8

10 mb

1.8
37.7
76.1
66.0
38.2
11.2

2.0
0.2

-0.1

4.6
67.5

131.2
131.1

55.9
10.0

1.4
0.6
0.1

1.9
23.2

40.0
42.3
23.2

3.8
0.3

-0.5
-0.2

-0.3
-2.6
-1. 1

5.7
6.5

-2.1

-0.9
-0.1
-0.1

0.1
1.7
2.8
2.2
0.4

-1.2
-2.0

-1.3
-0.2

0.0
1.0
2.1
3.4
3.4
1.9
0.5
1.6
0.7

0.0
0.4
0.4
1.1
1.0

-0.4

1.5
2.1
0.6

0.0
1.0
2.2
2.4
1.9
2.7
1.9
1.2
0.7

0.0
1.0
3.0
2.4
0.6
0.6
1.1
0.8

-0.1

0.0
2.2

10.7
14.8
6.2
1.0
0.9
3.0
1.5

1.7
29.2
58.6

52.4

19.8

4.0
0.8

-0.2

-0.4

0.6
13.5
41.5
57.3
42.4
18.2

4.1
0.4
0.0

TABLE 9. Sensible Heat Transport by Standing Eddies, C / v T a cos$ dX dp.

Units: 1017 ergs mb-I sec- 1 . (NOTE: 0.0 represents <±0.05x1017 ).

Lat.



4 4

5 mb

Jan. Feb. Mar. Apr.

1.7
40.6

109.8
119.5

78.7
34.0

7.5
-0.8

1.1

6.0
104.0
217.8
207.0
108.0
28.5

1.2
-2.8
-1.0

1.3
24.0

55.3
55.5
37.3
17.4

8.3
1.3

-1.0

-0.3
-4.9

-9.5
-6.7

-0.8
0.6
0.3
0.8
0.3

May

0.3
3.1
1.9
0.1

-0.3
-0.7
-0.6
-1.2
-0.8

June July Aug. Sept. Oct. Nov. Dec.

0.0
0.2
0.4
0.5
0.3
0.1
0.0

-1.2
-1.9

0.0
0.2
0.4
1.7
2.4
1.5
1.3
0.6
0.0

-0.1
-2.0

-2.0

0.1
1.5
2.0
0.3

-1.0
-1.3

0.0
-0.2

-0.7
-1. 1
-0.4

-2.1

-1.3
-0.7

-1.0

0.0
0.8
3.8
5.3
5.2
5.1
0.6

-3.8

-2.1

2.0
33.4
60.4

50.2

21.3

2.3
-0.7

0.2
0.7

0.7
16.2

47.0
43.8
21.6

8.3
4.2

-4.4

-5.2

2 mb

0.8
41.4

203.6
290.9
154.5

43.0
9.8
6.4

-1.4

10.1
153.9
296.0
309.7
201.6

76.4
18.2

3.5
-1.0

1.5
25.1

50.7
48.3
34.6
14.0

6.1
1.5

-0.3

-0.2

-2.7
-1.8

2.1
5.0
4.0
0.0
0.2
1.6

0.1
1.4
3.2
1.6
-0.4

4.0
5.2
2.6

-3.3

0.0
0.1
0.0
0.8
0.8

-2.9
-7.6
-5.8
-2.6

-0.1
-1.2

-3.1

-4.0

-0.8
3.6
3.1

-1.9
-4.4

0.1
-1. 1
-4.7

-2.8

-2.6

-1.9
1.2
6.4
6.3

0.0
-0.5

-1. 1
-1.2
-0.5
-1.2

-2.5

-3.7
-2.0

0.1
1.4
2.4
1.2

-3.0

-3.7
-2.6
-1.6

-0.1

6.3
86.5

130.8
93.0

23.4
0.2
0.9

-8.7

-4.4

0.3
16.4

61.4

75.7

43.7
12.6

3.4
-2.2

0.1

TABLE 9 - Continued

Lat.



100 mb

Jan. Feb. Mar. Apr.

-1.9
15.1

214.9
459.6
167.1
-56.4
-28.1

-1.9

-11.0
-33.3
642.2
774.0
352.9
-5.7

-41.7
-6.3

-1.4
13.1

326.3
365.0
105.5
42.1
16.4

8.4

-1.2
25.6
94.5
91,4
51.4

7.9
-4.3
-3.7

May June July Aug. Sept. Oct. Nov. Dec.

0.0
0.2
4.3
7.8
-4.5

-14.9
-1.6

4.2

-0.2
0.0
0.3
1.4

-3.8
6.9
2.9

-6.3

0.8
4.9
1.9
4.1

16.1
2.0

-8.0
-7.4

0.2
4.1
3.1
7.0
4.3

-0.6
-1.7
-2.3

-0.1
1.4

16.4
40.4
34.9

0.2
0.7

-0.2

-0.3
11.5
86.8

127.7
54.0
11.1
-4.0

0.6

-0.8
4.6

268.6
469.8
196.1
-42.4
-32.0

5.5

9.4
208.3
327.6
295.2
165.8
-14.3
-65.2
-19.4

10 mb

15.5
273.5
384.4
176.8

39.9
3.6
0.2
0.0

34.1
416.7
530.7
244.8
42.2

2.8
0.2
0.0

5.4
65.6
76.2
33.4

7.8
0.8
0.0
0.0

0.2
2.4
0.9

-2.6
0.2

-0.5
-0.1

0.0

-0.1
-1.2
-2.2
-1.2
-0.1

0.0
0.2
0.1

-0.1
-1. 1
-2.3
-3.0
-1.8
-0.5
-0.1
-0.3

0.0
-0.3
-0.3
-0.9
-0.6

0.2
-0.7
-0.6

0.0
-0.3
-0.9
-1. 1
-0.8
-1.2
-0.8
-0.3

0.0
0.9
1.7
0.8
0.1
0.0

-0.2
0.0

0.1
5.6

19.4
15.1

3.2
0.2
0.0

-0.2

5.1
85.1

127.6
78.4
18.8

2.0
0.1
0.0

2.7
61.7

149.4
125.2
44.3

9.3
0.9
0.0

TABLE 10. Vertical Energy Flux, [p%].

Lat.

85
75
65
55
45
35
25
15

Units: ergs em-2 sec-1,



4

5 mb

Jan. Feb. Mar. Apr.

10.2

160.5
231.7
113.7
21.2

2.0
0.1
0.0

0.2
12.8
30.6
17.9

6.7
2.6
0.4
0.0

0.0
1.3
1.8
0.4
0.0
0.0
0.0
0.0

3.2
76.9

173.4
113.6
32.6

3.9
0.1
0.0

May

-0.1
-0.9
-0.4

0.0
0.0
0.0
0.0
0.0

June July Aug. Sept. Oct. Nov. Dec.

0.0
-0.1
-0.1
-0.1

0.0
0.0
0.0
0.0

0.0
-0.1
-0.1

-0.5

-0.5

-0.3
-0.2

0.0

0.0
0.3
0.2
0.0

-0.2
-0.3

0.0
0.0

0.0
-0.1

-0.1

-0.2
0.0
0.0
0.0
0.0

0.0
0.8
2.6
2.2
1.2
0.5
0.0

-0.1

2.1
32.0
49.7
29.7

7.9
0.5

-0.1

0.0

1.0
27.1

59.9

37.7
9.8
1.8
0.4

-0.2

2 mb

0.9
39.7

158.2
151.4

46.9
6.1
0.4
0.0

10.0
110.2
141.9

86.3
34.7

7.2
0.9
0.0

0.1
5.4
12.8

10.8
7.3
2.3
0.4
0.0

0.0
0.1
0.0
0.0
0.2
0.2
0.0
0.0

0.0
-0.2
-0.5

-0.2

0.0
-0.3
-0.4

-0.2

0.0
0.0
0.0

-0.2
-0.2

0.5
1.1
0.4

0.0
0.5
1.0
1.2
0.2

-0.8
-0.6

0.1

0.0
0.2
1.0
0.5
0.4
0.2

-0.1
-0.1

0.0
-0.1

-0.2
-0.2

0.0
0.0
0.0
0.1

0.1
0.9
1.1
0.4

-0.7
-0.6

-0.3
-0.1

1.6
42.4
68.6

39.5
7.6
0.1
0.1
-0.6

0.2
12.3
42.6
45.2

17.5

3.3
0.4

-0.1

TABLE 10 - Continued

Lat.



100 mb

Jan. Feb. Mar. Apr.

0.0
-172.5
-210.3
-205.4
-473.1
-556.4

-64.8
-27.1
-47.7

0.0
586.8
667.4
-19.0

-320.9
-610.8

-40.5
51.6
16.8

0.0
31.1

115.1
216.0

-1.5
-106.3

-81.6
-30.2

82.3

0.0
59.2
51.8

0.7
27.0

-86.5
-32.2
126.3

70.8

May June July Aug. Sept. Oct. Nov. Dec.

0.0
0.4
5.9
9.4

38.0
-0.4

-80.3
-5.0

8.5

0.0
0.0
0.2

-0.9

11.7
-7.4

-13.9
24.2

-73.9

0.0
-12.6
-5.6

-11.5
-28.0
-44.1

7.2
-27.3

27.5

0.0
6.2

-8.0
-11.2

35.4
-48.8

41.0
0.0

22.8

0.0
3.1
9.4

14.1
-17.3

-148.1
-49.4

1.7
-7.5

0.0
-8.6

-36.7
-150.2
-241.7

-47.2

-105.7
94.3

-82.4

0.0
50.6
89.3

291.7
-189.0
-557.7
-183.8

-7.4
-91.8

0.0
-195.9

-16.9
-249.9
-438.7
-389.2
-172.8
-115.0
-145.7

10 mb

0.0
-97.0

-163.3
-303.1
-90.8

-5.5
4.9

-3.8
1.5

0.0
-32.2

-195.9
-300.6
-116.3

-24.4
4.3
2.6

-3.8

0.0
-53.3
-86.3
-95.9
-29.0
-9.5

1.1
0.9

-0.6

0.0
5.7
7.8

10.1
-0.6
-3.9

-0.4
-0.5

1.5

0.0
0.5

-0.6
-0.4
-0.1

0.3
1.0
0.8

-0.5

0.0
0.1

-0.2
2.5
1.4
2.5

-0.2
-2.3
-3.2

0.0
0.0
0.8
0.2

-0.2

-1.4
-10.9

-8.4
-2.8

0.0
0.1
0.5

0.9
0.1

-3.7
-14.2
-17.9

23.6

0.0
-1.1
-2.4

-1.6
0.1
0.3

-1.0
-1.4
-5.7

0.0
5.9

-12.7

-20.2
-14.3
0.1
0.4

-1.5

-26.9

0.0
-64.8

-152.2
-135.4

-47.4
-7.2

0.8
0.5
1.7

0.0
-69.6

-180.4

-188.9
-5407

-16.2
0.6

-0.4
0.6

TABLE 11. Horizontal Energy Flux, [pJ. Units: 102 ergs cm-2 sec-14

(NOTE: 0.0 represents < ±0.05x10 2 )

Lat.

85
75
65
55
45
35
25
15

5



5 mb

Jan. Feb. Mar. Apr.

0.0
187.5

88.6
-58.4
-25.2
-9.6

-3.1
0.1
0.8

0.0
-11.3

-100.7
-70.2
-30.2
-27.6

-5.5
-0.5

0.8

0.0
1.7
0.9
0.0
0.3

-0.8
1.5
1.7
0.5

0.0
20.6

-315.4
-215.7

-45.1
-23.5

-1.1
4.2

-9.1

May

0.0
2.6

-1.5
-1.9
-2.2

0.6
-0.3
-0.2

0.7

June July Aug. Sept. Oct. Nov. Dec.

0.0
1.0
0.7
0.3
0.3
0.3
0.2
-0.4
-1.4

0.0
3.0
1.7
2.0
1.0
7.7

10.6
55.3
36.5

0.0
0.6
-0.4
-0.7

-0.4
0.4

-0.7
-4.8

0.0

0.0
0.2
0.2

-0.1
0.8
0.0

-0.6
0.0

-4.4

0.0
4.3
2.5

-10.8
1.9

-1.8
0.6

-0.5

0.2

0.0
-96.5

-161.0
-110.2

-11.4
-3.7
-0.3

1.9
12.5

0.0
-88.8

-220.6
-169.9

-87.1
-27.9
-3.8

-19.6
-0.3

2 mb

0.0
1.6

-216.9
-199.5
-115.0
-45.6
-11.0

0.1
-16.5

0.0
25.1

-7.1

-53.7
-39.8
-20.9
-1.0

0.0
1.4

0.0
-0.9
-9.5

-17.8
-14.7
-17.6

0.9
-7.1
-9.5

0.0
0.2
0.0

-0.1

0.0
-0.3

0.1
-0.3

0.3

0.0
0.4

-1.6

-0.2

-1.0

0.0
-3.1
-1.6

-36.4

0.0
0.0
0.1
0.3
0.4

-0.3
-7.1

-11.4
-31.8

0.0
0.3
0.1
0.1
0.8

-1.3
-2.3

0.7
0.0

0.0
-0.2
-2.0

-0.5

1.4
1.1

-0.3
-0.3
-0.7

0.0
0.0
0.3

-0.6
-0.2

0.0
0.0
0.8
-0.4

0.0
-8.5

-7.7

-5.0

0.8
-0.6
-1.7
-0.3

0.3

0.0
-62.6

-145.0
-101.5
-28.3
-9.7

-6.0

-19.4
-10.5

0.0
-43.5
-74.4

-126.4
-94.2
-40.6
-6.4

-11.3
-1.9

TABLE 11 - Continued

Lat.



Month 100 mb 10 mb 5 mb 2 mb

Jan. 207.3 226.9 238.2 255.8

Feb. 206.1 228.3 240.4 257.8

Mar. 207.1 229.6 241.5 261.7

Apr. 208.1 232.8 246.6 265.3

May 208.4 235.4 247.4 267.4

June 208.7 235.0 249.0 267.0

July 208.0 235.4 247.5 269.4

Aug. 207.5 233.5 245.6 263.2

Sept. 206.9 231.4 244.0 259.3

Oct. 205.8 227.8 239.7 255.7

Nov. 205.0 225.1 236.6 251.8

Dec. 205.6 224.4 236.5 252.9

TABLE 12. Mean Temperature Averaged Over an Isobaric

Surface, T. Units: OK.

-81-



100 mb

Jan. Feb. Mar. Apr.

2.0
3.3
6.7

10.2
9.2
3.5

-3.6
-8.0
-9.6

0.4
3.1
7.1

10.9
10.6
4.1

-4.4
-8.8
-9.9

5.9
7.3
9.9

11.3

9.4
3.3

-4.6
-9.3

-10.9

19.5
17.8

14.9
11.1

6.7
i.1

-5.5
-9.9
-1.6

May

18.5

17.6
15.6
12.2
.7.6
i.4

-5. §
-10.7
-12.2

June July Aug. Sept. Oct. Nov. Dec.

20.5
19.4
16.8
12.9

6.9
-0.7
-7.0

-11.1

22.5

20.7
17.6
13.2

6.5
-i.i
-6.8

-lb.'
-11.7

21.2

19.9

17.3
13.1

6.4
-1.3
-6.8
-9.8

-iI.3

17.2
16.9
15.6
12. 6

7.1
-0.1
-6.3
-9.7

-i1.1

14.7

15.0

14.1
11-. 8
7.6
1.4
-5.1
-9.5

-12.2

9.9
11.5
128
11.9

8.6
2.4

-9.5
-11.6

0.3
3.2
7.6

10-.6
9.5
3.8

-5.
-8.2

-1 .5

10 mb

-23.2
-18.8
-12.7
-6.9

-1.4

2.4
4.1
4.9
5.2

-14.5
-11.6
-7.9

-4.7

-1.5

1.1
2.4
3.0
3.7

-2.4
-2.1
-2.6
-3.4

-2.8

-0.9
0.8
1.8
2.4

-0.3
-1.0
-2.5

-3.6

-3.2
-1.3

0.8
2.0
2.4

1.7
1.5
0.9

-0.3
-1. 1
-1.2
-0.7
-0.2

0.1

7.1
6.4
4.8
2.3

-0.2
-1.7
-2.1
-2.1

-1.9

8.8
8.0
5.9
3.2
1.0

-0.8

-2.1
-3.1
-4.0

5.2
4.9
4.0
2.5
1.1

-0.5
-1.7
-2.5
-3.0

-4.1

-3.0
-1.4
-0.4

0.2
0.5
0.4

-0.1

-0.6

-13.6
-11.5
-8.1

-4.3

-1.0

1.1
2.2
2.9
3.4

-16.9
-14.9
-11.7
-7.5

-2.9
1.1
3.7
5.1
5.8

-21.1

-17.9
-12.9
-7.6

-2.9

1.2
4.2
5.6
6.4

TABLE 13. Deviation of the Area Average From the Zonal Average of the Mean Temperature, .TJ

Units: OK.

Lat.

85
75
65
55
45
35
25
'15
5



5 mb

Jan. Feb. Mar. Apr. May

5.2
1.0

-3.3
-4.6
-3.5
-1.6

0.6
2.1
2.9

-5.4

-7.5
-9.1
-7.6
-3.7

0.5
3.2
4.1
4.2

-5.7
-5.0
-3.7
-2.0
-0.5

0.4
0.9
1.0
1.0

3.2
2.4
2.2
2.2
1.8
0.7

-0.9
-2.4
-3.6

-16.6
-14.5
-10.5

-5.8
-2.0

0.9
3.1
4.5
4.8

June

6.0
5.5
4.7
3.4
1.7

-0.3
-1.9
-3.2
-3.9

July Aug. Sept. Oct. Nov. Dec.

12.3
11.0

8.8
6.0
3.0

-0.3
-3.3
-5.5
-6.5

8.8
7.2
4.7
1.9

-0.5
-2.0
-2.5
-2.1
-1.2

-6.3

-5.6

-4.3
-3.2
-1.9
-0.4

1.0
2.0
2.7

-17.2
-15.4

-12.2
-8.4
-4.5
-0.7

3.1
6.5
8.4

-21.9
-20.3
-16.8
-11.7

-5.9
0.0
5.0
8.7

10.5

-24.6
-23.1
-19.7
-13.3

-4.5
3.2
7.2
8.4
8.3

2 mb

-4.7
-6.1
-8.8

-10.2
-7.0

-1.1
3.7
6.1
6.4

-1.8
-3.5
-6.6
-8.8
-6.3
-0.7

3.2
4.6
4.7

-15.4
-15.3
-14.1
-10.7

-4.9

1.0
4.9
6.6
7.4

-10.6
-8.8
-5.3
-2.1

0.1
1.2
1.3
1.3
1.2

4.6
3.9
3.0
1.9
0.8

-0.1
-0.9
-2.2
-3.3

10.3
9.8
7.3
4.2
1.8

-0.4
-2.5
-4.2
-5.4

10.3
9.8
8.7
6.8
4.0
0.6

-3.1
-6.3
-7.5

7.4
6.6
4.5
1.8

-0.3
-1.6
-2.1
-2.1
-1.8

-8.9
-7.4
-5.3

-3.6
-1.9
-0.2

1.3
2.4
3.1

-24.8
-21.3
-15.7
-10.2

-4.5

0.8
5.0
7.6
9.0

-24.8
-23.8
-20.8
-15.0

-6.8
1.2
6.7

10.1
12.0

-25.5
-24.4
-21.1
-14.6

-5.7

2.9
7.9
9.4
9.5

TABLE 13 - Continued

Lat.



100 mb

Jan. Feb. Mar. Apr.

7.8
4.8
5.7
6.9
5.0
5.3
4.5
6.0

3.7
7.3
6.8
6.6
6.1
5.3
6.0
5.4

7.0
7.5
7.2
7.9
7.7
4.8
5.4
5.1

2.7
2.7
3.4
3.0
5.5
5.3
5.4
7.5

May

2.7
2.6
3.0
3.3
4.3
4.9
4.0
5.2

June July Aug. Sept. Oct. Nov. Dec.

2.3
2.4
2.6
3.2
2.8
4.3
4.3
7.3

3.3
2.8
3.4
2.6
4.9
4.7
3.7
6.0

2.1
3.4
3.9
4.2
5.3
4.7
3.8
4.7

4.5
3.7
4.8
3.7
4.9
5.1
4.6
5.8

3.4
4.2
3.9
5.5
6.2
5.8
5.7
5.0

4.9
4.4
4.1
5.0
5.5
6.6
6.7
5.4

6.7
5.4
7.5
7.3
7.8
6.8
6.6
7.8

10 mb

7.7
10.9

9.9
9.3

12.2
11.3

7.1
3.9

14.7

17.3
15.7
14.3

16.1
11.2

7.8
4.6

15.4
19.5
15.7

9.8
9.5
7.2
4.0
3.8

3.0
4.2
3.5
5.3
6.5
6.8
6.7
5.6

2.2
1.6
2.1
2.6
2.4
4.4
5.0
5.5

1.2
1.7
1.3
1.8
2.4
3.2
4.0
6.7

0.8
2.4
2.4
2.0
2.2
2.2
3.2
5.7

1.4
1.9
2.7
3.8
3.6
3.4
4.2
7.1

2.3
2.9
4.2
4.2
4.2
5.5
6.4

11.3

4.8
3.9
4.0
4.0
4.4
4.3
4.4
5.7

7.3
5.5
4.1
7.2
9.2
7.6
4.2
4.7

4.6
5.3
6.1
6.9
6.4
5.6
4.1
1.8

TABLE 14. Zonally Averaged Time Standard Deviations of

Lat.

85
75
65
55
45
35
25
-15

Units: m sec~1.u,~ u/.2



5 mb

Jan. Feb. Mar. Apr.

17.4
26.3

22.1
17.0
20.9
17.5
11.5

4.5

15.4

23.1

19.2
14.3

11.3
10.7
11.0

8.4

2.6
3.8
3.7
3.6
5.4
6.3
3.9
5.0

11.8

13.8
13.8
15.6

15.4

14.8
15.7

9.3

May June July Aug. Sept.

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1.2
3.3
3.6
3.9
3.3
4.7
3.4
4.6

4.1
3.4
3.9
4.2
6.8
6.7
8.0
4.6

Oct. Nov. Dec.

5.9
4.6
3.8
3.9
6.5
7.0
7.3
7.4

10.2
6.8
7.9-
8.9

10.4
8.5
12.2

12.2

7.2
8.8
7.6

10.9
10.9
11.5
10.8
10.6

2 mb

13.6
17.3
16.1
16.8
19.1
20.4
24.2
19.3

17.7
25.4
25.0
21.1
17.9
18.0
15.1
11.8

11.2
18.0
13.9
12.3
10.6
11.7
10.3
12.9

6.1
4.5
3.2
4.0
6.1
8.6
7.1
6.8

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

2.8
3.8
6.0
7.5
7.8
8.1
4.2
0.7

5.0
6.2
5.4
6.2
9.3

12.2
12.0

8.9

7.4
6.0
6.4
6.6
7.1
6.8
8.2

12.8

12.5
6.8
8.9
9.2

10.8

9.9
16.0
20.4

11.0
10.7

7.7
13.1
15.8
14.9
11.6

10.7

TABLE 14 - Continued

Lat.



100 mb

Jan. Feb. Mar. Apr.

3.4
7.3
7.5
5.7
4.4
5.1
4.6
3.7

4.4
9.2
9.7
7.5
5.3
5.9
5.4
4.2

2.4
4.1
4.3
5.0
4.9
5.5
5.5
4.7

4.4
7.7
6.9
5.9
5.2
4.9
4.8
4.2

May June July Aug. Sept. Oct. Nov. Dec.

1.9
3.2
3.6
4.3
4.3
3.9
4.0
4.2

1.6
2.5
2.4
3.2
3.7
3.2
3.9
4.7

2.3
3.6
3.7
4.5
4.8
4.1
3.6
3.9

1.8
3.5
4.7
5.6
5.6
4.4
3.9
3.9

2.9
4.3
4.3
4.9
4.2
4.0
3.7
2.9

2.5
4.7
6.1
6.3
6.6
6.2
5.6
5.8

3.2
5.5
5.9
6.2
6.7
6.3
5.3
4.4

4.4
7.0
7.0
8.2
8.1
6.8
6.2
4.9

10 mb

6.4
14.9

17.5

14.8
9.5
5.2
2.9
2.7

9.8
21.2

23.0

18.3
10.9

5.5
2.9
2.5

7.6
14. 2
12.2

8.4
4.7
2.9
2.3
2.9

2.0
3.9
4.7
4.5
3.8
3.6
4.0
4.6

1.6
2.1
1.5
1.6
1.8
1.9
2.1
2.3

0.7
1.4
1.7
1.7
2.1
2.1
2.9
3.4

0.9
1.7
1.9

.1.8
2.1
3.0
3.9
4.0

1.5
2.3
2.0
1.8
2.0
2.3
3.2
4.9

1.7
2.7
2.5
2.4
2.2
2.5
2.6
3.3

2.8
5.0
5.1
4.6
3.4
2.5
2.3
3.1

4.6
8.2
7.8
6.6
5.0
3.0
2.2
2.7

2.9
6.0
7.1
7.0
5.4
3.2
1.6
1.6

TABLE 15. Zonally Averaged Time Standard Deviations

Lat.

Unitat m Net-1.of V, v



5 mb

Jau. Feb. Mar. Apr.

12.2
25.4
27.2

22.5

14.4
7.4
2.9
2.3

8.0
14.9
12.6

8.0
5.1
4.1
4.2
5.0

2.0
3.3
3.4
3.4
2.9
2.8
3.7
5.1

7.4
14.0

15.6

15.2
12.6

9.5
7.2
7.4

May

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

June July

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Aug. Sept. Oct. Nov. Dec.

0.8
2.3
3.0
2.9
2.3
1.5
1.4
1.8

2.3
3.7
3.1
2.9
2.7
2.9
2.9
3.6

3.5
6.2
5.9
5.2
4.0
2.7
2.5
3.3

6.4
10.6

10.0
9.3
7.9
6.4
5.3
6.2

4.3
8.8

10.2

9.0
7.2
5.3
5.0
8.8

2 mb

9,4
17.6
17.8
17.1
14.7
10.6

8.1
9.5

11.8
22.9
24.2

20.2
13.7

8.4
5.9
5.0

6.5
11.8

10.2
7.6
6.3
4.9
5.4
7.6

3.5
6.0
4.7
3.4
2.3
1.8
2.5
3.7

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

2.6
4.5
3.6
3.3
3.0
2.1
1.3
1.4

2.9
5.0
4.2
3.7
3.8
4.1
3.8
4.3

4.2
7.5
6.6
5.3
4.3
3.7
3.1
2.2

7.2

10.3
9.9
8.6
7.7
6.8
7.8

5,9
11.5
11.7

9.7
7.0
6.3
5.6
5.7

TABLE 15 - Continued

Lat.



E

100 ab

Jan. Feb. Mar. Apr.

2.6
4.1
4.7
4.2
2.5
1.7
1.5
0.8
0.3

6.9
5.3
4.0
3.0
2.1
1.9
1.3
1.0
0.6

0.8
2.2
2.6
2.2
1.8
1.7
1.2
0.7
0.3

11.0
9.0
5.2
3.2
2.3
2.4
2.4
2.0
1.9

May

1.4
1.7
1.4
1.4
1.5
1.4
1.1
0.8
0.4

June July Aug. Sept.

0.6
0.8
1.0
1.1
1.5
1.6
1.6
1.5
1.3

1.4
0.9
0.9
1.7
1.7
1.4
1.2
1.0
0.7

0.5
0.8
1.5
2.0
1.8
1.5
1.2
1.2
1.1

1.0
1.2
1.3
1.5
1.6
1.6
1.2
0.9
0.8

10 mb

2.9
3.9
6.2
7.4
5.9
3.7
2.8
2.5
2.2

10.7
9.3
8.2
6.6
4.4
2.6
2.0
1.9
1.9

4.0
2.6
2.8
2.7
2.4
2.0
2.0
2.1
2.0

1.7
2.3
2.7
3.0
2.8
2.0
1.4
1.4
1.4

2.8
2.7
2.6
2.4
1.9
1.4
1.0
0.5
0.3

2.7
2.1
2.0
2.2
2.3
2.2
1.9
1.7
1.9

1.6
1.4
1.2
1.0
1.0
1.0
1.0
1.0
0.6

3.0
2.6
1.9
1.3
1.1
1.0
1.0
0.9
0.5

6.4
5.0
3.4
2.3
1.6
1.1
0.8
0.5
0.5

tAntt 16. Zbiil1y intiaged time Staindrd Dai ioins

Lat.

1.6
1.9
I.'9
1.8
1.7
1.6
1.1
1.2
1.4

2.6
2.6
2.6
2.3
1.8
1.8
1.4
1.2
1.1

2.0
2.3
2.,8
2.4
2.0
1.8
1.6
1.3
0.9

3.6
3.7
3.4
2.8
2.2
1.6
1.0
0.6
0.5

1.6
2.8
3.7
3.5
2.6
1.7
0.9
0.6
0.4

3.1
2.8
2.9
3.0
2.6
1.7
0.8
0.2
0.2

Oct. NOV. Dec.

ok n, . iis:



5 mb

Jan. Feb. Mar. Apr.

23.2
16.7

9.9
6.9
5.3
3.5
1.7
1.7
2.2

7.8
6.1
4.7
3.7
2.3
2.5
2.6
2.5
3.1

2.3
3.8
4.7
4.3
3.2
2.2
1.7
1.7
2.0

3.4
6.0
7.7
7.4
6.4
4.4
2.8
3.2
4.0

May June July Aug. Sept.

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

7.2
5.6
3.4
1.6
0.7
0.5
0.8
1.6
2.8

4.4
4.0
3.2
2.5
2.0
1.5
1.5
1.3
1.1

Oct. Nov. Dec.

3.5
3.8
3.3
2.7
2.2
1.7
1.4
1.5
1.8

4.2
4.0
3.6-
3.8
3.9
3.4
2.7
2.9
3.3

5.0
4.5
4.5
4.6
4.1
3.5
2.6
2.0
2.0

2 mb

5.7
4.9
6.4
8.7
8.1
5.8
4.1
3.1
3.1

10.3
10.6

9.3
7.6
6.1
4.4
3.0
2.1
1.9

3.2
4.8
6.5
6.3
4.7
3.7
3.2
2.7
2.8

6.3
6.2
5.7
4.5
3.3
2.4
2.1
2.4
2.7

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

6.4
5.8
4.2
2.6
1.5
1.4
2.5
3.6
4.2

8.2
7.0
5.3
3.9
2.9
2.3
2.2
2.2
2.1

4.7
4.4
3.8
3.2
2.4
1.8
1.2
0.7
0.4

3.9
3.9
4.3
4.9
4.9
4.0
2.8
2.2
1.8

3.8
5.5
7.0
7.5
7.5
6.1
3.9
2.6
2.4

TABLE 16 - Continued

Lat.



100 mb

Jan. Feb. Mar. Apr.

6.2
8.5
5.5
7.1

11.0
8.8
5.7
4.9

5.9
5.8
2.6
7.0
6.6
6.2
4.6
5.1

5.6
2.7
2.8
3.4
5.3
5.6
3.7
5.4

7.8
7.3
5.9
7.5
9.4
8.6
6.2
6.0

May

1.4
1.5
1.8
3.0
3.4
3.9
3.9
7.5

June July Aug. Sept.

3.2
1.6
2.1
3.1
4.3
5.7
4.5

11.7

1.9
2.3
1.8
2.8
5.7
5.5
8.2
9.2

1.6
2.4
1.3
2.8
5.7
4.6
6.4
6.6

2.2
2.4
1.7
3.7
4.5
6.3
5.7
6.7

Oct. Nov. Dec.

2.1
2.6
3.2
4.1
7.7
8.0
7.6
6.2

2.0
5.7
3.1
4.7
6.1

11.2
5.4
4.6

5.3
6.1
3.2
7.4
8.9
9.5
5.6
6.7

10 mb

14.4
19.5

4.7
16.2

18.3
13.6

7.7
4.1

19.7
15.9

6.8
13.6
17.8
14.0

8.1
3.4

15.1

9.9
6.4
9.8

10.7
7.3
4.7
3.0

2.6
4.2
2.6
4.5
4.8
4.0
4.0
3.3

1.2
1.0
0.7
1.1
1.9
1.5
2.5
2.9

0.7
1.0
1.3
1.3
1.8
3.3
2.5
4.4

0.6
1.1
1.2
0.8
1.8
3.4
3.4
6.7

1.3
0.9
1.1
1.1
1.9
3.1
4.9
4.2

1.4
1.8
1.7
2.1
2.0
2.0
3.8
3.2

4.0
3.6
3.7
5.0
5.4
4.3
5.0
3.6

18.2

10.7
4.3

13.7

13.9

8.5
3.8
2.1

6.9
7.4
5.8
6.3
8.8

10.1

7.1
2.2

TABLE 17. Spatial Standard Deviations

Lat.

Units: m sec-1.of 5, fl *



5 mb

Jan. Feb. Mar. Apr.

22.9
17.2

8.8
17.0
16.7
14.0
10.2

2.0

9.1
9.3
8.0

11.1
9.0

10.2
6.1
5.6

2.0
3.4
1.5
3.1
2.3
2.0
2.4
4.7

15.7
20.5
12.9
16.4

24.2
19.4
12.2

7.0

May June July Aug. Sept.

4.6
2.4
4.2
3.8
2.9
4.0
1.8
2.0

2.3
1.9
1.9
0.8
2.3
1.4
1.6
5.4

2.8
2.7
2.0
1.5
3.2
3.4
5.0

11.1

3.0
1.9
2.2
1.4
1.6
3.1
3.6
3.8

2.0
2.2
1.0
2.2
3.4
2.0
3.0
2.0

Oct. Nov. Dec.

3.5
4.1
2.8
3.0
4.4
4.8
4.3
3.0

24.0
12.3

8.5
15.4
17.2
11.5

3.2
5.8

6.9
11.9

7.8
8.4

13.6

15.1
9.7
7.4

2 mb

28.5
26.1

8.9
23.9
30.8

24.7
15.0

9.5

29.9
16.7

8.6
17.6
19.5

20.9
13.8

5.6

5.7
5.8
4.8
7.8
4.8

10.1
5.6
9.6

5.8
2.3
1.5
2.9
1.8
4.0
4.0
5.1

5.5
3.8
2.6
2.4
2.4
2.3
3.9
6.2

0.5

0.5
0.8
1.8
2.4
4.3
5.7

11.6

1.2
2.6
1.7
.1.9
3.9
3.6
6.4
9.3

4.9
2.5
2.0
2.3
3.8
3.6
3.3
2.2

1.4
2.2
1.2
1.6
2.7
2.6
1.8
3.4

3.9
4.5
3.1
3.5
4.8
5.5
3.6
6.5

25.8
13.1
11.8
17.6
18.9
14.3

5.9
10.6

4.5

11.6
9.9
7.9

17.9
18.6

7.1
12.3

TABLE 17 - Continued

Lat.



100 mb

Jan. Feb. Mar.

6.0
13.2
14.7

12.0

6.7
3.8
3.6
3.2

4.8
10.2

9.8
6.6
4.2
3.6
3.7
3.3

5.6
11.6
12.0

9.2
5.6
3.8
3.3
3.5

Apr.

3.2
5.3
3.9
3.7
3.9
3.4
4.1
4.7

May June July Aug. Sept. Oct. Nov. Dec.

1.4
2.9
2.8
3.0
3.3
3.4
3.8
4.2

2.2
4.0
3.2
3.1
3.0
3.3
4.7
4.9

1.6
2.6
3.1
3.7
4.4
4.4
4.2
3.6

1.4
2.9
3.4
3.5
3.7
3.3
3.1
3.2

1.8
3.3
3.2
3.0
3.4
3.5
3.9
3.7

2.3
4.4
5.2
5.2
5.0
5.3
4.4
6.2

2.2
4.4
5.5
5.5
5.4
4.9
4.3
4.7

5.2
10.9
10.6

8.1
5.5
4.6
4.9
4.7

10 mb

9.8
23.0
24.5

16.8

8.6
4.8
3.4
4.0

12.0

25.0

24.6

18.9
11.4

5.5
3.0
2.8

9.4
18.6

16.7
11.8

6.9
3.8
2.5
2.5

1.8
3.4
3.9
3.3
3.2
3.3
3.0
3.7

1.2
2.1
1.9
1.6
1.7
2.6
2.9
2.9

0.6
1.3
1.8
1.8
2.0
2.4
3.3
3.2

0.7
1.2
1.3
1.5
2.3
3.4
4.3
5.0

1.1
1.9
1.7
1.4
1.7
2.8
4.2
5.9

1.4
2.6
2.7
2.0
1.6
2.2
2.3
2.6

2.8
5.8
6.2
5.0
3.0
2.0
2.0
3.3

9.5
17.6

14.1

9.2
4.8
2.5
1.6
1.8

4.1
8.9
9.6
8.4
6.0
3.7
2.0
1.6

of V, ?*2 .TABLE 18. Spatial Standard Deviations

Lat.

Units: m sec-1.



5 mb

Jan. Feb. Mar. Apr.

12.6

24.7
23.6
18.3
11.7

6.0
2.2
2.3

6.6
13.8
12.4

8.3
5.3
3.3
3.0
3.9

1.5
2.5
2.4
1.6
1.8
2.7
3.6
4.2

9.3
21.0
23.5
19.0
11.2

6.4
5.3
5.3

May June July Aug. Sept. Oct. Nov. Dec.

3.3
4.8
2.8
2.0
2.5
2.1
1.3
2.1

2.9
3.1
1.3
1.3
0.9
0.7
0.9
2.1

2.2
3.3
3.3
3.1
2.9
3.1
4.5
6.8

2.0
3.1
2.8
2.5
2.3
2.0
2.1
3.7

1.5
2.9
2.8
2.3
2.1
2.7
2.8
3.3

2.8
5.9
6.4
5.6
4.2
2.5
1.7
2.6

12.6
22.3
16.2
10.0

5.1
2.0
2.0
4.3

4.8
11.2
12.9
10.5

6.9
3.8
4.7
8.3

2 mb

15.2
30.2
28.2
21.4
14.0

8.1
5.1
5.9

15.9
29.0
24.5
19.7
14.8
10.0

5.7
4.8

3.2
6.5
6.3
5.1
4.8
5.0
6.0
8.2

3.6
5.8
4.3
2.9
2.0
1.3
1.7
2.3

3.4
6.0
4.8
3.7
3.5
3.5
4.0
6.2

0.8
1.0
0.9
1.2
2.0
3.2
6.0

10.1

1.4
2.9
3.1
3.1
2.9
3.7
4.3
3.1

3.7
6.2
5.3
4.4
3.3
2.7
2.3
2.9

1.6
2.7
3.0
2.8
2.3
2.3
2.5
3.3

3.2
5.7
6.3
5.6
4.2
2.8
2.3
1.7

13.4
23.8
17.1
10.8

5.9
3.2
3.3
5.3

4.1
9.6

12.1
10.7

7.7
5.9
5.6
5.9

TABLE 18 - Continued

Lat.



100 ii"b

Jan. Feb. Ikar. Apr.

1.3
3.5
4.9
4.1
2.7
1.5
1.4
1.3
0.7

1.7
4.0
4.3
3.1
2.1
1.2
1.4
1.3
0.6

0.6
1.6
2.4
2.7
2.0
1.3
1.5
1.1
0.4

0.5
1.7
3.1
3.0
1.8
1.8
1.9
1.6
0.8

May Juie July ug. Sdpt. t. v. Dec.

0.2 0.3 0. -. .2 G.,2 .4
0.5 1.6 0.4 06.7 0. 6.5
0.9 1.5 1. i.1. 1.6 .7 2.3
1.2 1.2 1.3 1.2 1.6 2.4 3.6 2.7
1.0 1.3 1.6 1.5 1.8 1.8 2.6 2.4
1.4 2.1 2.6 2.1 1.7 1.7 0.8 1.5
1.8 2.5 3.1 2.3 2.0 2.3 2.0 2.3
1.1 1.6 2.2 1.5 1.6 2.1 2.1 2.5
0.5 1.1 1.2 0.8 1.2 1.3 1.3 2.0

10 mb

2.9
8.6

11.1
8.7
4.8
2.0
0.8
0.4
0.2

2.0
5.4
7.1
6.3
3.7
1.5
0.8
0.4
0.3

0.9
1.6
2.1
2.3
1.9
1.2
0.6
0.5
0.2

0.9
1.5
1.2
2.0
1.9
1.1
0.8
0.7
0.5

0.5
1.3
1.5
1.2
1.1
1.2
1.0
0.8
0.5

0.4
1.5
2.1
1.9
1.9
1.6
1.1
1.0
0.9

[*2]

0.4
1.5
2.1
1.8
1.5
1.4
1.2
0.8
0.5

0.4
1.1
1.2
1.3
1.2
1.1
1.0
0.7
0.4

0.4
1.1
1.2
1.0
0.8
0.6
0.5
0.5
0.4

0.3
1.0
1.6
1.9
1.6
0.9
0.5
0.4
0.3

1.8
4.6
5.7
5.1
3.2
1.6
0.7
0.2
0.1

TABLE 19. Spatial Standard Deviations of T,

Lat.

0.7
2.3
4.2
5.5
5.0
3.0
1.2
0.4
0.3

Units: OK.



j

5 mb

Jan. Feb. Mar. Apr. May

2.2
6.4
8.2
7.1
4.7
2.4
1.5
1.0
0.7

1.4
3.6
4.5
4.2
3.2
2.1
1.6
1.3
1.1

0.9
2.2
2.9
3.2
2.7
1.8
1.1
0.7
0.6

0.5
1.0
0.7
0.3
0.2
0.3
0.5
0.8
1.1

3.2
8.7

10.7
8.5
4.8
2.7
2.1
1.3
0.8

June July Aug. Sept. Oct. Nov. Dec.

0.1
0.3
0.4
0.6
0.5
0.3
0.5
0.8
0.6

0.1
0.4
0.7
1.0
1.5
1.7
1.7
1.4
0.9

0.8
1.6
1.5
1.3
1.2
0.9
0.7
0.9
1.1

0.2
0.5
1.0
1.6
1.9
1.8
1.6
1.6
1.7

0.2
0.7
1.3
1.9
2.3
2.0
1.4
1.0
1.0

1.0
2.5
3.2
3.0
2.0
1.4
1.4
1.1
0.9

2 mb

3.2
8.0
9.8
9.8
7.8
5.2
2.9
1.5
0.9

2.6
7.1
9.5
8.9
6.1
3.5
2.0
1.1
0.6

1.5
4.2
5.8
5.7
4.1
2.1
1.0
0.4
0.3

1.1
2.6
2.6
1.8
1.6
1.6
0.8
0.8
1.2

0.4
0.7
0.6
1.3
2.0
1.9
1.2
0.6
0.9

1.0
2.8
4.0
3.9
3.0
2.1
1.6
1.1
0.8

0.4
1.2
2.0
2.3
2.6
3.0
3.4
4.0
4.8

0.9
2.0
2.3
1.9
1.2
0.7
0.8
1.2
1.7

0.3
0.7
0.9
0.8
0.7
0.7
0.6
0.7
0.8

0.4
1.0
1.2
1.3
1.5
1.5
1.1
0.6
0.2

1.4
3.6
4.9
4.6
2.2
1.2
1.6
1.6
1.3

TABLE 19 - Continued

Lat.

0.5
1.7
3.2
3.6
3.1
2.4
1.9
1.4
1.0

85
75
65
55
45
35
25
15
5

1.0
3.0
4.3
3.9
2.2
2.1
2.3
1.3
0.7



Month

Jan.

Feb.

Mar.

Apr.

May

June

July

Aug.

Sept.

Oct.

Nov.

Dec.

100 mb

179.4

403.6

215.1

59.6

-2.8

-0.2

1.1

2.2

24.8

69.7

207.2

173.0

10 mb

163.2

225.4

33.2

-0.4

-0.8

-2.3

-1.0

-1.6

0.6

9.1

60.6

85.0

5 mb

82.3

98.7

15.0

0.6

-0.1

-0.1

-0.5

-0.1

-0.04

1.7

23.3

27.9

2 mb

90.2

75.8

9.1

0.2

-0.5

0.7

0.2

0.5

0.1

0.1

30.1

27.8

TABLE 20. Total Vertical Energy Flux (Units:

Divergence Between Levels (positive

100-10

-16.2

-178.2

-181.9

-60.0

2.0

-2.1

-2.1

-3.8

-24.2

-60.6

-146.6

-88.0

1018 ergs

sign indicates

10-5 5-2

-80.9 7.9

-126.7 -22.9

-18.2 -5.9

1.0 -0.4

0.7 -0.4

2.2 0.8

0.5 0.7

1.5 0.6

-0.6 0.1

-7.4 -1.6

-37.3 6.8

-57.1 -0.1

sec-1) and Resultant

divergence).

10-2

-73.0

-149.6

-24.1

0.6

0.3

3.0

1.2

2.1

-0.5

-9.0

-30.5

-57.2



Month

Jan.

Feb.

Mar.

Apr.

May

June

July

Aug.

Sept.

Oct.

Nov.

Dec.

AZ

1.3

0.5

0.8

0.1

0.1

0.3

0.7

0.2

0.2

1.5

2.8

3.2

AE

0.9

0.5

0.2

0.1

0.02

0.1

0.1

0.03

0.04

0.1

0.2

0.2

KE

7.7

6.8

3.2

1.1

0.5

0.8

0.7

0.5

1.0

1.0

3.2

3.6

ALT
CA

33.6

0.1

7.2

-0.3

-0.1

-0.06

-0.4

0.03

-0.1

1.8

23.3

24.8

Total Energy Contents - AZ, AE, KZ, and KE (Units:

KZ

7.9

3.4

1.9

0.4

1.7

3.0

4.9

1.9

0.4

2.6

5.7

7.6

CA

58.7

6.7

10.4

-0.3

-0.1

-0.1

-0.4

0.2

0.3

3.6

32.0

26.9

1025 ergs) and

Conversion Rates - CA, ALT CA' CK, and ALT CK (Units: 1018 ergs sec-1).

CK

-82.9

-41.4

-24.7

1.6

2.5

0.7

-0.6

-0.5

-0.7

0.6

-13.9

-65.0

ALT
CK

-80.1

-28.2

-19.7

0.04

2.5

0.7

-0.6

0.14

0.3

-0.9

-12.6

-42.1

TABLE 21.
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FIGURE 2. Weekly Pattern of Zonally Averaged Temperature,

(T), at 150 and 250N. Units: OK.
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FIGURE 7. Weekly Pattern of Zonally Averaged Temperature, [T],

in Units of OK, and Vertical Energy Flux, [pw], in

Units of ergs cm-2 sec-1 , at 750N.
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FIGURE 12. Weekly Pattern of Area Averaged Temperature, [T).

Units: OK.
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